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Theinitiation of cell division integrates a large number of intra- and extracellular
inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of
DNA replication'. Increased levels of cyclin D promote cell division by activating
cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), whichin turn phosphorylate
and inactivate the retinoblastoma tumour suppressor. Accordingly, increased levels
and activity of cyclin D-CDK4/6 complexes are strongly linked to unchecked cell
proliferation and cancer*’. However, the mechanisms that regulate levels of cyclin D
areincompletely understood*®. Here we show that autophagy and beclin1regulator1
(AMBRAL1) is the main regulator of the degradation of cyclin D. We identified AMBRAI

inagenome-wide screen to investigate the genetic basis of the response to CDK4/6
inhibition. Loss of AMBRA1 results in high levels of cyclin D in cells and in mice,
which promotes proliferation and decreases sensitivity to CDK4/6 inhibition.
Mechanistically, AMBRA1 mediates ubiquitylation and proteasomal degradation of
cyclin D as asubstrate receptor for the cullin 4 E3 ligase complex. Loss of AMBRAL1
enhances the growth of lung adenocarcinomain amouse model, and low levels of
AMBRAI correlate withworse survival in patients with lung adenocarcinoma. Thus,
AMBRA1 regulates cellular levels of cyclin D, and contributes to cancer development
and the response of cancer cells to CDK4/6 inhibitors.

CDK4/6 inhibitors have been approved to treat breast cancer, and are
under investigation for the treatment of many additional types of can-
cer®. Clinical and preclinical studies have begun to identify mechanisms
of inherent or acquired resistance to these inhibitors, such as loss of
the retinoblastoma tumour-suppressor protein (RB) or upregulation
of cyclinE (anactivator of CDK2, which caninturn phosphorylate and
inactivate RB)”®. However, many cases of resistance lack a clear molecu-
lar basis®. To address this gap in knowledge, we sought to identify genes,
in an unbiased manner, whose loss affects sensitivity to the CDK4/6
inhibitor palbociclib, with the hope that this approach may help us
to better understand the regulatory networks that control cell cycle
progression.

AMBRA1loss dampens response to CDK4/6 inhibitors

We performed a genome-wide CRISPR-Cas9 screen in U937 cells and
identified hundreds of genes whose knockout significantly altered
proliferation under palbociclib treatment, including known members

of the RB pathway (Fig. 1a, Extended Data Fig. 1a-f, Supplementary
Tables 1-3). We investigated AMBRAI further because the loss of this
gene had the largest protective effect. The growth advantage of U937
AMBRAI-knockout and RBI (which encodes RB)-knockout cells upon
palbociclib treatment was validated in independent clones and was
associated with impaired cell cycle arrest (Fig. 1b-d, Extended Data
Fig.1g-1, Supplementary Fig. 1). A similar decreased sensitivity to
CDK4/6 inhibition upon AMBRA1 knockout was observed with abe-
maciclib (another CDK4/6 inhibitor), as well as in four additional cancer
cell lines that contain wild-type RB (Extended Data Fig. 1m-o).

Levels of cyclin D increase upon AMBRA1 loss

AMBRA1-knockout cells showed increased phosphorylation of RB
and cell-cycle gene expression with palbociclib treatment compared
to control cells (Fig. 1e, Extended Data Fig. 1p, q), which suggested
anincreased activity of cyclin-dependent kinases. Accordingly, we
observed a notable increase of proteins in the cyclin-D family and
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Fig.1| AMBRAL1loss regulates the response to CDK4/6 inhibition as well as
levels of cyclinD. a, Volcano plot of a CRISPR-Cas9 screen for genes that
regulate the response to palbociclib in U937 cells, analysed using the Cas9
high-throughput maximum likelihood estimator (casTLE). FDR, false-discovery
rate. b, Immunoassay for AMBRA1 or RB in control and AMBRAI- or RB1-knockout
U937 clones. sgAMBRAI no.1and no. 2 denote two different sgRNAs against
AMBRAT; sgCtrl, control sgRNA. ¢, Change in U937 cell numbers after a48-h
treatment with 0.5 pM palbociclib or DMSO. d, BrdU and propidiumiodide
staining analysis of cycling S-phase U937 cells treated with 0.5 uM palbociclib for
24 h.Eachsymbolinc,dis anisogenic clone (n =3 biological replicates per
clone). e, Immunoassay of RB phosphorylation (at S795) in U937 cells treated
withincreasing doses of palbociclib or DMSO (-) for 24 h. f, Immunoassay of G1
cyclinsand cyclin-dependent kinases in U937 clones. U937 cells do not express
cyclin D1. g, Volcano plot of shotgun mass spectrometry comparing control

and AMBRA1-knockout (KO) U20S cells. Significant hits (|log,-transformed

amodestincrease in CDK4 in all of the AMBRA1-knockout cell lines
that we tested (Fig. 1f, Extended Data Fig. 2a-c). Acute knockdown of
AMBRA1 using shortinterfering RNA (siRNA) suggested thatincreased
levels of cyclin D are a more immediate consequence of AMBRAL1 loss
thanareincreasesin CDK4 (Extended DataFig. 2d, e). Codependency
datafromthe Cancer Dependency Map further suggested a functional
link between AMBRA1 and the RB pathway (Extended Data Fig. 2f, g,
Supplementary Table 4). Our RNA-sequencing analysis of control and
AMBRAI-knockout cells showed few statistically significant (P < 0.01)
differences between the two genotypes (Extended Data Fig. 2h, i, Sup-
plementary Table 5). We performed shotgun proteomics analyses,
which also identified few changes upon AMBRAI loss—however, the
three D-type cyclins (cyclin D1, cyclin D2 and cyclin D3) were in the
top 11of 25 upregulated proteins (Fig. 1g, Supplementary Tables 6-8).
Finally, AMBRAI knockout also led to increased levels of cyclin D in
mouse embryos (Extended Data Fig. 3a-d). Thus, AMBRAI controls
the protein levels of D-type cyclins in all of the contexts we examined
(in normal and cancer cells, and in vitro and in vivo).

Cyclin D upregulation mimics AMBRA1 loss

AMBRALI can promote autophagy' and inhibit mTOR activity" and
MYCY, all of which could affect cell cycle progression and the response
to CDK4/6 inhibition. However, we did not observe reproducible
changes in these pathways upon AMBRA1 loss in U937 cells, with or

fold change| >1, adjusted P< 0.05) are inred. BH, Benjamini-Hochberg.

h, Immunoassay of cyclin D1and haemagglutinin (HA) in U20S cells
overexpressing HA-tagged, stabilized cyclin D1 (cyclin D1(T286A)-HA) or red
fluorescent protein (RFP) control. i, Analysis of cycling S-phase cells fromh
treated with increasing doses of palbociclib for 24 h (n =3 biological replicates).
Jj, Top, analysis of cycling S-phase U20S cells after cyclin D1 (CCNDI) knockdown
by siRNA pools. Bottom, corresponding immunoassay 48 h after siRNA
transfection (n =3 biological replicates). NT, non-targeting control.

k, 1, Co-immunoprecipitation (IP) of cyclin D1 (k) and CDK2 (1) in control,
AMBRA1-knockout and cyclin-D1(T286A)-overexpressing U20S cells, and
immunoassay of relevant protein complexes (n=1(k) or n=2 () biological
replicates). Tubulinand HSP90 are loading controls. All data are mean + s.d.
Pvalues calculated by two-sided unpaired ¢-test (c, d), negative binomial test (g),
two-way analysis of variance (ANOVA) with post hoc Sidak test (i, ANOVA

Pepine <0.0001) and two-sided paired t-test (j).

without palbociclib treatment (Extended Data Fig. 4a-h). Our proteom-
ics analysis of AMBRAI-knockout U20S cells suggested upregulation of
PLK1and Aurorakinases (Fig.1g), which has previously been associated
with palbociclib resistance®?, but these observations were not repro-
ducible inindependent experiments (Extended Data Fig. 4i, j). Thus,
these pathways probably do not account for the decreased response to
CDK4/6 inhibition of AMBRA1-mutant cells. By contrast, overexpres-
sion of the three D-type cyclins or of a phosphomutant form of cyclin
D1 (cyclin D1(T286A)), which is stable and highly expressed™*", was
sufficient to promote S-phase entry and decreased sensitivity to low
doses of palbociclib (Fig. 1h, i, Extended Data Fig. 5a-d). Differences
in palbociclib response between overexpression of cyclin D and loss
of AMBRAL are possibly due to limitations of the ectopic expression
system for cyclin D. AMBRAI-knockout cells remained highly dependent
oncyclin D1for proliferation, similar to control cells (Fig. 1j, Extended
DataFig. Se).

These observations raised the question of how upregulation of cyc-
linD mediates anincreased tolerance of CDK4/6 inhibitors. Compared
to control cells, immunoprecipitation of cyclin D1 pulled down more
CDK4 and CDK2 from AMBRA1-knockout cells or cells expressing cyc-
linD1(T286A), and reciprocal CDK2 immunoprecipitation confirmed
theincreased binding of cyclin D1to CDK2 inboth of these cell models
(Fig. 1k, I). Cyclin D-CDK2 complexes can phosphorylate RB* 8, and
increased activity of CDK2 promotes resistance to CDK4/6 inhibi-
tors®°?°, In addition, the binding of the CDK2 inhibitor p27 to CDK2
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Fig.2| AMBRA1lregulates the stability of cyclin D. a, Inmunoassay of cyclin D1
in control and AMBRAI-knockout U20S cells treated with 10 ug ml™ translation
inhibitor cycloheximide (CHX) for O to 4 h. b, Quantification of cyclin D1 (left),
cyclinD2 (middle) and cyclin D3 (right) levels asin a (n =3 biological replicates).
¢, Immunoassay of cyclin D1 phosphorylated at T286 and total cyclin D1in U20S
cells treated with 1 uM proteasome inhibitor bortezomib (BTZ) for 4 h.

d, e, Quantification of cyclin D1(d) and cyclin D1 phosphorylation at T286 (e) in
cells from c (n =4 biological replicates). f, Schematic of the tandem ubiquitin
binding entities (TUBE) assay toimmunoprecipitate ubiquitylated proteins. g,
Immunoassay of ubiquitylated cyclin Dlisolated from U20S cells using TUBEs.

h, Quantification of cyclin D1ubiquitylation relative to total cyclin D1 fromg(n=3
biological replicates). Data from both AMBRA1 sgRNAs are pooled. Only data from
samples with similar levels of ubiquitin pull down are shown. See Supplementary

was decreased in AMBRAI-knockout cells and cells expressing
cyclin D1(T286A), and at the same time p27 was more abundantly
bound to cyclin D1 and CDK4 (Fig. 2k, I, Extended Data Fig. 5f). p27-
cyclin D-CDK4 trimers are active and resistant to palbociclib in
some contexts??, Thus, increased levels of cyclin D lead to changes
associated with increased CDK4/6 and CDK2 activity, which sug-
gests that upregulation of cyclin D is a key mechanism by which the
loss of AMBRAL influences cell cycle progression and the response to
CDK4/6 inhibitors.

AMBRAL1 regulates the ubiquitylation of cyclinD

Cyclin D typically hasashort half-life, which is thought to allow for pre-
cise control of CDK4/6 activity during G1 progression and to limit levels
of cyclinDin S phase, in which it is detrimental to DNA replication®.
Weblocked translation using cycloheximide, which revealed a marked
increasein the half-life of all three D-type cyclinsin AMBRAI-knockout
cells (Fig. 2a, b). Acute proteasome inhibition with bortezomib—but
not inhibition of autophagy—was sufficient to increase the levels of
cyclinDinwild-type cells, whereas proteasome inhibition did not fur-
ther increase the levels of cyclin D in AMBRA1-knockout cells (Fig. 2c,
d, Extended DataFig. 6a-c). Cyclin D1 phosphorylation at T286, which
precedes cyclin D1 ubiquitylation and degradation*%, was increased
in AMBRAI-knockout cells to levels similar to those in wild-type cells
treated with bortezomib (Fig. 2c, e). AMBRAI-knockout cells or cells
in which AMBRAI was knocked down showed lower levels of cyclin D1
polyubiquitylation compared to control cells (Fig. 2f-h, Extended
DataFig.6d-h, Supplementary Table 9). Mass spectometry analysis of
immunoprecipitated ubiquitylated proteins showed reduced cyclin D1

796 | Nature | Vol592 | 29 April 2021

Table 9 for all data. i, Schematic of mass spectrometry (MS) analysis to detect
ubiquitylated proteins afterimmunoprecipitation with anti-K-e-G-G antibodies.
Jj, Quantification of cyclin D1 ubiquitylation at the three lysines detected by
immunoprecipitation and mass spectrometry of K-e-G-G peptides. shAMBRAI no.
1and no.2 denote two different short hairpin RNAs (shRNA) against AMBRAI;
shNT, non-targeting shRNA. k, Co-immunoprecipitation of endogenous AMBRA1
and cyclin Din U20S cells pretreated with 1pM bortezomib for 4 h, analysed by
immunoblot. DDB1is a positive control for AMBRA1binding. The cyclin D
antibody recognizes cyclin D1and D2. Representative of two independent
experiments. HSP90 and tubulin are loading controls. All data are mean +s.d.
Pvalues calculated by two-way ANOVA (b), two-sided ¢-test (paired ¢-test ford, e;
unpaired t-test for h), and two-sided unpaired ¢-test with Benjamini-Hochberg
correction (j).

ubiquitylation at several lysine residues upon knockdown of AMBRA1
(Fig. 2i, j, Extended Data Fig. 6i-k, Supplementary Table 10). Thus,
AMBRALI promotes ubiquitylation and proteasomal degradation of
cyclinD.

CRL4*VERA! directly ubiquitylates cyclin D

Our immunoprecipitation of cyclin D with AMBRAL upon protea-
some inhibition (to stabilize cyclin D) suggested that AMBRA1 may
directly regulate cyclin D ubiquitylation (Fig. 2k, Extended Data Fig. 7a).
AMBRALI belongs to the DDB1 and CUL4-associated factor family of
proteins, which specifies substrates for CUL4-RING E3 ubiquitin
ligase (CRL4) complexes**®. Inhibition of all cullin-RING ligase com-
plexes with the neddylation inhibitor MLN4924 increased levels of
cyclin D1in control cells but not in AMBRAI-knockout cells, whereas
MYC (another target of cullin-RING ligases) accumulated regardless
of AMBRAL status (Fig. 3a, b). We found a predominant association of
AMBRA1with CUL4A and CUL4B, consistent with previous studies™?*,
but only CUL4B knockdown led to increased levels of cyclin D1 and
blocked cyclin D1 polyubiquitylation upon AMBRAL1 overexpression
(Fig.3c-e, Extended DataFig.7b, ¢). Amutant AMBRA1 that cannot bind
CRL4 (AMBRA1(AH))* could not rescue increased levels of cyclin D1
in AMBRAI-knockout cells nor increase cyclin D1 polyubiquitylation
(Fig.3f, g, Extended DataFig. 7d-f). AMBRA1 knockdown did not further
increase the half-life of cyclin D1(T286A), and this cyclin D1 phosphomu-
tantshowed decreased binding to AMBRA1 (Extended Data Fig. 7g-i).
Finally, inin vitro ubiquitylation assays, high-molecular-weight poly-
ubiquitylated cyclin D1species accumulated inatime-dependent man-
ner and required the presence of both CRL4*ME** and recombinant E1
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Fig.3| CRL4*V®*A1ybiquitylates cyclin D. a, Immunoassay of cyclin D1and
MYCinU20S cells treated with 1uM neddylation inhibitor MLN4924 for O to

8 h.b, Quantification ofa (n=3biological replicates). Left, cyclin D1; right,
MYC. ¢, Immunoassay of cyclin D1in U20S cells following knockdown of
AMBRAT1orvarious cullin proteins. Asterisk, nonspecificband. The CUL4B
antibody appearsto cross-react with CUL4A. d, Quantification of cyclinDlinc
(n=3biological replicates). e,Immunoassay of cyclin D1ubiquitylationin293T
cells following overexpression of AMBRAland knockdown of CUL4A or CUL4B.
Cellswere pretreated with 1M bortezomib for 3 h. Representative of two
independent experiments. f,Immunoassay of cyclin D1and AMBRA1in U20S
cells with doxycycline-inducible wild-type AMBRA1(WT), AMBRA1(AH) (AH) or

and E2 proteins (Fig. 3h, i, Extended Data Fig. 8a-c). Altogether, these
data show that CRL4*MB**! ybiquitylates Cyclin D.

AMBRALl loss promotes lung adenocarcinoma

Mutations in AMBRAI are found in 2% of the ‘Pan-Cancer Atlas’ stud-
ies of The Cancer Genome Atlas (TCGA), and two cancer-derived
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of cyclinD1inf(n=3biological replicates). h,Immunoblot of cyclin D1
polyubiquitylation (poly-Ub) frominvitro ubiquitylation assays performed on
purified cyclin D1. AMBRAland CUL4B (CRL4-AMBRA1) were independently
purified from 293T cells, and E1, E2 and ubiquitin (Ub) are recombinant
proteins (n=1experiment). i, Immunoblot of cyclin D1 polyubiquitylation from
invitro ubiquitylation time-course assays, similar to h. Representative of two
independent experiments. HSP90 and actin are loading controls. Alldataare
mean +s.d. Pvalues calculated by two-way ANOVA (b) or two-sided paired t-test
d,g).

mutations in AMBRAI impaired its ability to control the levels of cyc-
lin D (Extended Data Fig. 9a-c), which suggests that AMBRA1 may act
as a context-dependent tumour suppressor. We tested this ideaina
mouse model of lung adenocarcinoma driven by oncogenic KRAS
using Tuba-seq, a highly quantitative tumour barcoding system?. We
intratracheally infected Kras 2% ;Rosa26- @m0 ] 1+:¢4? (hereaf-
ter, KTC) and Kras**-“2%*; Trp§3"":Rosa26S-@™omato - 1 119 (hereafter,

Fig.4| AMBRALl s a tumour suppressor in KRAS-mutant
lung adenocarcinoma. a, Schematic of multiplexed
CRISPR-Cas9 gene editing and Tuba-seq in KPTC mice,
KTC mice (wild type for p53) and KT mice (wild type for p53
and lacking Cas9). sgID-BC, dual barcode toidentify each
individual tumour and its associated sgRNA. Neo denotes
the neomycin resistance gene. b, Relative tumour sizes for
eachsgRNAin KTC mice (n=9 mice). Tumour sizes were
calculated from merged data from all tumoursin all mice
and normalized to inert sgRNAs 15 weeks after cancer
initiation. Error bars denote 95% confidence intervals
determined by bootstrap sampling. ¢, Representative
haematoxylin and eosin (H&E) staining of lung sections
from control and Ambral-mutant KC mice 15 weeks after
cancer initiation. Scale bars,1 mm. d, Quantification of
tumoursinc.n=6(sgNeono.1)or 5 (sgAmbral no.1) mice.
Data are mean ts.e.m. e, Kaplan-Meier plot of AMBRAI
expression (high, upper third; low, bottom third) in TCGA
KRAS G12-mutant lung adenocarcinoma (n=136 patients).
f, Forest plot of Cox proportional hazard model of TCGA
KRAS G12-mutant lung adenocarcinoma (n =131 patients).
Modelis adjusted by stage, age and gender. Hazard ratios
are given with 95% confidence interval in parentheses.
Pvalues calculated by two-sided unpaired ¢-test (d),
log-rank test (e) and Wald test (f).
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KPTC) mice with lenti-single guide (sg)RNA-Cre pools that consisted
of sgRNAs against Ambral and three other tumour suppressors (Rb1,
Apcand Rbm10) as well as five inert sgRNAs. Kras*-¢122 :Rosa 26+ 1dTomato
(hereafter, KT) mice (without Cas9) were used to account for differences
in sgRNA representation in the viral pool (Fig. 4a). Sequencing and
tallying theintegrated barcodes from tumour-bearing lungs revealed
that loss of Ambral had the greatest effect on tumour size among
all tumour suppressor genes tested in KTC and KPTC mice (Fig. 4b,
Extended Data Fig. 9d-g). Loss of Ambral resulted in an increase in
tumour burden—accompanied by increased levels of cyclin D—ininde-
pendent Kras*-“2%; H11*-%** (hereafter, KC) mice (Fig. 4¢, d, Extended
Data Fig. 9h,i). Similarly, AMBRA1 knockout led to increased levels of
cyclin D1 and greater tumour growth in a human xenograft model of
lung adenocarcinoma (Extended Data Fig. 10a-c). In the lung adeno-
carcinomadataset from TCGA, lower expression of AMBRAI mRNA was
associated with worse overall survival in a Kaplan-Meier analysis of
patients with KRAS®?-mutant tumors (log-rank test, P=0.0017) (Fig. 4¢).
This association was also significant ina multivariate Cox proportional
hazard model that adjusted for key clinical covariates (log hazard ratio
of -0.5,95% confidence interval of —0.92 to —0.09, P= 0.015) (Fig. 4f).
Additionally, a stepwise linear regression model that included RB path-
way genes (Supplementary Methods) identified a significant inverse
correlation between AMBRA1 expression and protein levels of cyclin
D1 (Extended Data Fig. 10d). These associations were not observed
insamples that contained wild-type KRAS or mutant EGFR (Extended
Data Fig.10e-j). Thus, AMBRA1l acts as a tumour suppressor in lung
adenocarcinoma driven by mutant KRAS.

Discussion

Our work, and accompanying studies®”*®, conclusively identifies
CRL4*MBRA 35 3 major regulator of the stability of cyclin D in every con-
text we examined and places AMBRA1 as amember of the RB pathway
(Extended Data Fig. 11). Additional mechanisms may further control
the stability of D-type cyclins in more specific contexts*?. Given the
various cellular functions of AMBRAL, it may serve as a central node
to coordinate the cell cycle, cell growth and cell death in response to
avariety of inputs. However, our data in lung adenocarcinoma sug-
gest that the oncogenic effects of the loss of AMBRA1 may depend on
the genetic context, similar to other members of the RB pathway*°.
Our work highlights the complexities of the factors that regulate how
cancer cells respond to CDK4/6 inhibitors. Increased levels of cyclin D
may promote resistance to CDK4/6 inhibitors by directly and indirectly
increasing the activity of both CDK4/6 and CDK2in cells, but upregula-
tion of cyclin D has also previously been linked to increased sensitiv-
ity to CDK4/6 inhibition'?°*"%, These observations underscore the
need to further explore the mechanisms that regulate the levels and
activity of complexes containing CDK4/6 or CDK2 in human tumours
to optimize the use of CDK4/6 or CDK2 inhibitors in a broad range of
patients with cancer.
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Extended Data Fig. 1|Identification of AMBRA1 and other factorsinvolved in
the response of cells to CDK4/6 inhibitors. a, Proliferation of U937 cellsin the
presence of 0.5 uM palbociclib (palbo) over 6 d, determined by cell counting
(n=1experiment). b, Immunoassay of total RB and RB phosphorylated at S807 and
S811 (p-RB S807/811) in U937 cells over 36 h of palbociclib treatment. c,
Quantification of phosphorylated RB relative to total RB from b (n=1experiment).
d, Schematic of the CRISPR-Cas9 screen in U937 cells. e, Protein-protein
interaction map of screen results, generated using Metascape. Coloured nodes
represent densely connected gene neighbourhoods. Legend indicates the gene
ontology term that is most significantly enriched within each neighbourhood.
Nodessize indicates the degree of connectedness. Gene names can be foundin
Supplementary Table 3. f, Schematic of the screen results among RB-pathway
genes expressed in U937 cells. g, Number of control and knockout U937 cells
treated with 0.5 uM palbociclib or DMSO control for 48 h. Each symbolis an
isogenic clone (n=3 biological replicates per clone). h, Left, schematic of the
competition assay between GFP-negative parental U937 cells and GFP-positive
knockout cell populations. Right, example of flow cytometry analysis for one
experiment with AMBRAI-knockout cells. i, Percentage of GFP-positive control or
knockout populations in competition assays asinh (n=3 biological replicates).j,
Representative flow cytometry plots of annexin V and propidiumiodide (PI)
staining in U937 cells treated with 0.5 uM palbociclib for 24 h. k, Percentage of

apoptotic (annexinV'PI") U937 cells after a24-h palbociclib treatment
(n=3biological replicates per clone). Palbociclib does not induce apoptosis in any
genotype.l, Representative flow cytometry plots of BrdU and Pl staining in U937
cells treated with 0.5 uM palbociclib for 24 h. m, Percentage of S-phase cells by
BrdU and Pl staining in U937 cells treated with 1M abemaciclib for 24 h
(n=3biological replicates per clone). n,Immunoassay for AMBRAland RBin
control and knockout cancer cell lines generated by CRISPR-Cas9. For U20S
(osteosarcoma), NCI-H1792 (lung adenocarcinoma) and NCI-H460 (large cell lung
cancer), each laneis anisogenic clone. MCF7 cells (breast cancer) are populations.
o, Percentage of cycling S-phase cells from n after a24-h treatment with palbociclib
(0.5uM for all cell lines except for MCF7 cells, 0.04 pM). U20S, NCI-H1792 and
NCI-H460 cells were analysed by BrdU and Pl staining, and each symbolis an
isogenic clone (n =3 biological replicates per clone). MCF7 cells were analysed by
PlIstaining (n =3 biological replicates). p, Quantification of RB phosphorylated at
S795 (p-RB S795) over total RBin U937 cells treated with increasing doses of
palbociclib for 24 h, measured by immunoassay (n =4 biological replicates). q,
Fold-change in mRNA levels of E2F target genes in U937 cells treated with 0.5 pM
palbociclib for 24 h, measured by quantitative PCR with reverse transcription (RT-
gPCR) (n=3biological replicates). Alldata are mean +s.d. Pvalues calculated by
two-sided unpaired ¢-test (g, k, m, 0) and two-sided paired t-test (i, p, q). Tubulin,
HSP90 and actin are loading controls.
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Extended Data Fig.2 | AMBRAL1 loss regulates cyclin D post-transcriptionally
and dependency on AMBRAI1 correlates with cyclin D signalling networks. a,
b, RT-qPCR analysis of the genes encoding D-type cyclins (CCND genes) and
CDK4in U937 cells (a) (n =3 biological replicates per clone) or expressed D-type
cyclinsin other cancer cell lines (b). For U20S, NCI-H1792 and NCI-H460 cells,
each symbolis anisogenic clone (n=2biological replicates per clone). MCF7
cells are populations (n=3 biological replicates). Pvalues evaluate differences
between knockout cells and controls for each gene. ¢, Immunoassay of D-type
cyclinsin cancer celllinesinb. d, Immunoassay of AMBRALI, cyclin D1and CDK4
in U20S cells after 48 h of AMBRAI knockdown by siRNA pools. e, Quantification
of cyclin D1and CDK4 protein levels ind (n=3 biological replicates).

f, Correlation of gene dependency scores between AMBRA1, RB pathway genes
and additional cancer drivers, according to DepMap. Red lines mark the top and
bottom 5% of genes. g, The 20 most significantly enriched gene ontology terms
among the top 100 genes, the loss of which best correlate with loss of AMBRALin
DepMap. h, Principal component (PC) analysis of RNA-sequencing data from
U20S cells, three biological replicates per cell line. i, Volcano plot of
RNA-sequencing results comparing control and AMBRAI-knockout U20S cells.
Significantly differentially expressed genes (P<0.01) arein red. All datashown as
mean +s.d. Pvalues calculated by two-sided unpaired ¢-test (a, b), two-sided
paired t-test (e), hypergeometric test (g) and Wald test (i).
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and mutant (n=3) embryos atembryonic day (E)13.5. Similar to previous
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Scale bar,2 mm. ¢, Representative cyclin Dimmunofluorescence (red signal,
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E13.5embryos (from n=3embryos per sgRNA). DAPIshows DNA. Theliver is
autofluorescent.Scale bar,1mm. d, High-magnification view of the developing
brain from one control and one Ambral-mutantembryo (asterisksinc).v,
ventricle, cp, choroid plexus. Scale bar, 500 um. Representative of three
embryos per sgRNA.
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Extended DataFig. 4 |Pathways previously associatedwith AMBRAldonot  cytometry plots of BrdU and PIstainingin cells from c. e, Quantification of
explain tolerance to CDK4/6 inhibitors. a,Immunoblotanalysis ofautophagy  S-phasecellsfromd (n=3biological replicates). Autophagy inhibition does not
flux by LC3 conversion (LC3-1to LC3-1I, which occurs during autophagosome alter palbociclib response. f,Immunoassay of the mTORC1 target

formation) and RB phosphorylation (p-RBS795) in U937 cells treated with phosphorylationsites (52448 of mMTOR, and T37 and T46 of 4EBP1) in U937 cells
0.5pM palbociclib for 24 hand acutely treated with 25 uM chloroquine (CQ) (an  following amino acid starvation. Representative of two independent
autophagy inhibitor) for the final 4 h. b, Quantification of LC3-1llevels with4 h experiments. g, Immunoassay of MYC in U937 clones. h, Quantification of MYC

of chloroquine treatment, indicating autophagy flux, fromcellsina fromg.Eachsymbolisanisogenicclone (n=3biological replicates per clone).
(n=3biological replicates). No significant differences were identified by i, Immunoassay of PLK1and AURKA and immunoblot of AURKB in control and
two-way ANOVA (P.cjijine = 0.44, Pyrearment = 0-38, Pinceraction = 0.92). ¢, Immunoblot AMBRAI-knockout U20S cells. Eachlane is abiological replicate.

of'totaland phosphorylated RBand LC3 conversionin wild-type U937 cells Jj,Quantification of i (n=3biological replicates). All dataare mean +s.d. Pvalues
treated with 0.5 pM palbociclib, 25 uM chloroquine or both for 24 h. calculated by two-way ANOVA (b), two-sided paired t-test (e, j), and two-sided

Representative of three independent experiments. d, Representative flow unpaired t-test (h). HSP90, tubulin and actin are loading controls.
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Extended DataFig. 5| Cyclin D mediates the phenotypes of AMBRAI-

mutant cells. a, Immunoassay of cyclin D1, D2, and D3 in wild-type U20S cells
overexpressing all three D-type cyclins from the same lentiviral vector or RFPas a
control. b, Representative flow cytometry plots of BrdU and Pl stainingin cells
from a treated with increasing doses of palbociclib for 24 h. ¢, Percentage of
cycling S-phase cells from b (n=3 biological replicates). Data are mean * s.d.
Pvalues calculated by two-way ANOVA (P;i. < 0.0001) with post hoc Sidak test.
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overexpressing stabilized cyclin D1(T286A)-HA or RFP control, treated with
increasing doses of palbociclib for 24 h. e, Representative flow cytometry plots of
BrdU and PIstaining in control and AMBRAI-knockout U20S clones after 48 h of
cyclin D1(CCNDI) knockdown with siRNA pools. f, Co-immunoprecipitation of
p27incontrol, knockout and cyclin-D1(T286A)-overexpressing U20S cells, and
immunoassay of relevant protein complexes (n =2 biological replicates). HSP90
isaloading control.

d, Representative flow cytometry plots of BrdU and Pl staining in U20S cells
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cyclins. a, Immunoblot analysis of cyclin D3 in wild-type U937 cells (left) or orn=3(sgAMBRAI) biological replicates) asshownine, f, respectively. For all

cyclinDlinwild-type U20S cells (right) treated with 0.5 uM palbociclib, 25 uM TUBE experiments, only quantification of samples with similar levels of
chloroquine orboth for24 h.LC3 and HSP90 blots for U937 cellsarethesameas  ubiquitin pulldown are shown. See Supplementary Table 9 for all data.

inExtended DataFig. 4c, asthe experiments were performed simultaneously. i, Immunoblotanalysis of AMBRA1in293T cells expressing control or
Untreated AMBRAI-knockout cells serve as a control for increased cyclin D AMBRAI-targeting shRNAs, pretreated with 10 utMMG132 for 4 h.

expression. Asterisk, unspecific band.n=3 (U937) or n=1(U20S) biological (n=1experiment).j, Principal component analysis of mass spectrometry data
replicates. b, ¢,Immunoassay quantification of cyclinD2 (b) and cyclinD3(c)in ~ fromcellsini(tworeplicateseach of shNT no.1and shAMBRAIno.1and no.2)
U20S cells treated with 1uM bortezomib for 4 h (n =4 biological replicates). after enriching for ubiquitylated peptides. k, Volcano plot of

d, Quantification of ubiquitylated cyclin D1relative to total cyclin Dlisolated mass-spectrometry datacomparing ubiquitylated peptidesin controland
from U20S clones pretreated with1pM bortezomib for 4 h using TUBEs. Each AMBRA1lknockdown 293T cells. Each dotis a peptide. Red symbols,
symbolisanisogenicclone (n=3 (sgCtrl) orn=5(sgAMBRAI)). e, f, significantly upregulated peptides; blue symbols, significantly downregulated
Immunoassay of ubiquitylated cyclin D1lisolated using TUBEs following peptides, withtheindicated cut-offs. All other dataare mean +s.d. Pvalues
AMBRA1lknockdownin U20S cells (e) or in populations of control and calculated by two-sided paired t-test (b, ¢), two-sided unpaired t-test (d) and
AMBRAI-knockout MCF7 cells (f). g, h, Quantification of ubiquitylated cyclin two-sided unpaired t-test followed by Benjamini-Hochberg correction (k).

Dlrelative to total cyclin D1in AMBRAI-knockdown U20S cells (g) HSP90 and GAPDH areloading controls.
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Extended DataFig.7| AMBRA1binding to CUL4 isrequired for regulating
cyclinD. a, Co-immunoprecipitation of transfected AMBRA1-Myc-Flag and
cyclinD-HA (D1,D2 or D3) in 293T cells, analysed by immunoassay.

b, Co-immunoprecipitation of transfected Myc-tagged cullin proteins with
endogenous AMBRALin U20S cells, analysed by immunoassay. ¢, RT-qPCR
analysis of CCNDI mRNA expressionin U20S cells following knockdown of
AMBRA1I or various cullin genes by siRNA pools (n =3 biological replicates).

d, Co-immunoprecipitation of transfected wild-type (WT) AMBRAland
AMBRA1(AH) withendogenous CUL4A and CUL4Bin293T cells. e,
Immunoassay of AMBRALin control and AMBRAI-knockout U20S cells with
doxycycline-inducible expression of wild-type AMBRA1, AMBRA1(AH) or GFP
control, after treatment with 500 ng mI™ doxycycline (+Dox) or DMSO (-Dox)
for2d.f, Immunoassay of cyclin D1ubiquitylationin 293T cells with

I X T HA (cyclin D1)
10012 = HSP90

overexpression of wild-type AMBRA1or AMBRA1(AH). Cells were pretreated
with1pMbortezomib for 3 hand lysedin denaturing conditions before
immunoprecipitation of cyclin D1. Representative of two independent
experiments. g, Immunoassay of cyclin DI-HA in U20S cells expressing
wild-type cyclin D1or phosphomutant cyclin D1(cyclin D1(T286A)) treated with
10 pg ml™ cycloheximide for up to 2 h. Cells were transfected with control or
AMBRAI-targeted siRNA pools 3 d previously. h, Quantification of cyclin DI-HA
proteinlevelsin U20S cells from g with best-fit curves for one-phase decay
(n=3Dbiological replicates). i, Co-immunoprecipitation of cyclin DI-HA
(wild-type or T286A) and endogenous AMBRA1in U20S cells. CDK4 serves as a
positive control for cyclin D1binding. Representative of two independent
experiments. All dataare mean +s.d. Pvalues calculated by two-sided paired
t-test (c) and two-way ANOVA (h). HSP90 and actin are loading controls.
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Extended DataFig.9|AMBRALlis atumour suppressorin KRAS-mutant normalized toinert sgRNAs 15 (d) or 14 (e) weeks after cancer initiation.
mouse lung adenocarcinoma. a, Lollipop plot for RBIand AMBRAI mutations  f,g, Tumour number for each sgRNA in KTC mice (f) (n=9 mice) and KPTC mice
in10,953 patients (10,967 samples) in 32 studies from TCGA (data downloaded (g) (n=5mice). Datafromall tumoursinall mice were merged and normalized
from https://cbioportal.orgin September 2020). b, Immunoassay of AMBRA1 totheaverage tumour number acrossinert sgRNAs. Ford-g, error bars denote
and cyclin D1in AMBRAI-knockout U20S cells upon stable expression of GFP, 95% confidenceintervals determined by bootstrap sampling. h,
wild-type AMBRA1 (WT) or two mutant forms of AMBRA1 from a (stop codons Representative H&E staining of tumours from KC mice infected with lentiviral
atthe positionindicated by an asterisk). HSP90 isaloading control. Expression  vectorsencoding Crerecombinase and either acontrol or Ambral-targeted
of217*was not detected, suggesting an unstable protein. ¢, Quantification of sgRNA.Scalebar,100 um.n=6 (Neono.1) orn=5(Ambralno.1) mice).
cyclinDlinb (n=3biological replicates). Dataare mean+s.d. Pvalues i, Representativeimmunofluorescence for cyclin D in control and

calculated by two-sided paired t-test. d, e, Relative tumour sizes foreachsgRNA  Ambral-knockout KC tumours. The cyclin D antibody used recognizes cyclin D1
inKT mice (lacking Cas9) (d) (n =4 mice) and KPTC mice (e) (n=5mice). Tumour  andD2.Scalebars,100 um.Fromn=2mice per sgRNA).
sizes were calculated from merged data from all tumours inall mice and
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Extended DataFig.10| AMBRAL1lis a tumour suppressorin KRAS-mutant
humanlung adenocarcinoma. a,Immunoassay of AMBRA1, RB and cyclin D1
incontrol and knockout human A549 lung adenocarcinomacells. Actinis a
loading control. b, Growth of controland mutant A549 xenograftsin
NOD-SCID-gamma (NSG) mice (n=8 tumours per SgRNA). ****P,_ ... ion <0.0001
by two-way ANOVA comparing the AMBRA1-knockout curve with control.
Tumour volume measurements for RBI-knockout tumours were staggered 1d
behind controland AMBRAI-knockout tumours, which precludes two-way
ANOVA. Dataare mean ts.e.m., with best-fit curves for exponential growth. c,
Finaltumour weights fromb. Each symbolis one tumour (n=8 per sgRNA).
Dataaremeants.d.d, g, j, Cyclin D1 proteinlevels as measured by reverse
phase proteinarray in relation to the mRNA expression as measured by RNA
sequencing (upper quartile of fragments per kilobase of transcript per million
mapped reads (FPKM-UQ)) of RB pathway genes that best predict cyclin D1

Cyclin D1

AMBRA1
p=0.018

CCND1
p=0.024

MYC
p=0.045

CCND3
p=0.147

Cyclin D1

AMBRA1
p=0.915

CCND1
p=0.045

MYC
p=0.256

CCND3
p=0.004

Cyclin D1

AMBRA1
p=0.374
CCND1
p=0.006
CDK4
p=0.111
CDKN2C
p=0.153

CDKN2B
p=0.019

S50

Patient tumors

v-¢-0ctv 9
21008-7 BUBD)

Patient Tumors

v-¢-0ctv 9
21008-7 dUBD)

Patient Tumors

- 0¢ ¢t
8100G-7 BUSD)

i

proteinin TCGA KRAS G12-mutant lung adenocarcinoma (d) (n=90 samples),
KRAS wild-type lung adenocarcinoma (g) (n=257 samples) and EGFR-mutant
lungadenocarcinoma (j) (n=41samples), using astep-wise regression model.
Forg,j,AMBRAIwas notselectedinthe final modelbutis shown for
comparison. Each columnisanindividual sample, and samples are sorted by
cyclinD1proteinlevels. e, h,Kaplan-Meier plot of AMBRA1 expression (high,
upper third; low, bottom third) in TCGA KRAS wild-type lung adenocarcinoma
(e) (n=361patients) and EGFR-mutantlungadenocarcinoma (h) (n=60
patients).f, i, Forest plot of Cox proportional hazard model of TCGA KRAS
wild-type lung adenocarcinoma (f) (n =340 patients) and EGFR-mutant lung
adenocarcinoma (i) (n =60 patients). Model is adjusted by stage, age and
gender. Pvalues calculated by two-way ANOVA (b), two-sided unpaired t-test
(c), F-test(d, g,j), log-rank test (e, h) and Wald test (f, i).
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Extended DataFig.11| AMBRA1regulates cyclin D protein stability and
signalling through the RB pathway. AMBRA1limits CDK4/6 activity by
mediating ubiquitylation and degradation of D-type cyclins as part of the CRL4

C R L4AMBRA1

E3ligase complex. Loss of AMBRA1 leads to accumulation of cyclin D protein
and decreased sensitivity to CDK4/6 inhibitors, owing to sustained RB
phosphorylation and therefore persistent cell cycle progression.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Flow cytometry data was collected using BD FACSDiva (BD Biosciences) and CytExpert (Beckman Coulter). Simple Western (TM) protein
quantification and size determination data was collected using Compass software v4.0.0 (ProteinSimple). Immunoblot protein
quantification was performed using ImageJ.

Data analysis The CRISPR/Cas9 screen was analyzed using casTLE v1.0 (Morgens et al. PMID: 27159373) and Metascape (https://metascape.org/gp/
index.html). For Tuba-seq analysis, Python 3.6 and R 3.6 were used to analyze the data, and code is available at https://github.com/
lichuan199010/Ambral-in-KT-KTC-and-KPTC. For RNA-seq analysis, RNA was quantified using salmon v0.8.2 with human genome version
GRCh38, and differential gene expression analysis was performed using DESeq2 v1.22.2. All patient outcome and correlation scripts have
been developed using R 3.5.3. Survival analysis was done using the survival v3.1-12 and survminer v0.4.8 packages. Correlation analyses
were done using MASS package v7.3-53. Scripts are available at https://github.com/cancersysbio/AMBRA1_paper. Shotgun mass
spectrometry data were analyzed using Python 3.7.5, Byonic 3.8.13, and R 4.0.2 software and the msmsTests v1.24.0 package. Mass
spectrometry data of ubiquitylated proteins was analyzed using R v3.6.0, MaxQuant v1.6.10.43, artMT v1.2.7, and MSstats v3.16.2. All
other statistical analyses were performed using Prism v8.4 (GraphPad).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Sequencing data from Tuba-seq experiments are available from the Gene Expression Omnibus (GEO) under accession number GSE146303. RNA sequencing data
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from AMBRA1 KO U20S cells are available from GEO under accession number GSE159920. Mass spectrometry data from shotgun proteomics experiments and
analysis of ubiquitylated proteins are available through the ProteomeXchange Consortium with dataset identifiers PXD021789 and PXD022111, respectively. Public
non-protected RNA-seq, copy number alteration, exome sequencing and RPPA TCGA Lung Adenocarcinoma datasets have been downloaded from gdc.cancer.gov.
Clinical data were obtained from Liu et al. (PMID: 29625055). Protein sequences for mass spectrometry analysis were obtained from the NCBI Homo sapiens
protein database (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/release-notes/archive/RefSeq-release86.txt, downloaded 05/11/2018) and the Uniprot canonical
protein sequences database (https://www.uniprot.org/uniprot/?query=proteome:UP000005640%20reviewed:yes, downloaded 02/28/2020). Gene dependency
data from the Cancer Dependency Map is publicly available at www.depmap.org. All other data are available in the article and supplementary materials.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. For mouse studies, sample sizes were determined to account for statistical
noise, based on previous experience with the Tuba-seq method (Rogers et al., PMID: 28530655) and xenograft studies (Coles et al. PMID:
32531271). For in vitro experiments, the sample sizes are similar to those generally employed in the field and used extensively in our
previously published studies. For experiments with isogenic knockout cell lines, at least two knockout clones with different sgRNAs were used
to ensure that phenotypes were not an artifact of clonal variability or sgRNA off-target effects.

Data exclusions  For analysis of endogenous cyclin D1 ubiquitylation using Tandem Ubiquitin Binding Entities, any samples with poor ubiquitin pull down were
excluded from the quantification and statistical analysis (Fig. 4h, Extended Data 7d,g,h). Data exclusion is noted in the figure legends. All raw
data for these experiments are available in Extended Data Table 6.

Replication The majority of in vitro experiments were performed 3 or more times on independent samples, and all results were reproducible. Where
experiments were performed once, the phenotypes were robust and validated using orthogonal methods and/or the same experiment
performed in different cell lines. The exact n for each experiment is noted in the figure legends. Mouse studies were not replicated but
included sufficient sample sizes to account for biological variability.

Randomization  For each mouse study, male and female mice were included in each group, but otherwise cages were allocated randomly. Randomization of
samples into experimental groups was not used in other experiments as it was not relevant.

Blinding For the pathological analysis of control and Ambral knockout tumors from mice, investigators were blinded to group allocation. Investigators
were not blinded for the analysis of other experiments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines [ 1IIX| Flow cytometry
|:| Palaeontology |:| MRI-based neuroimaging

Animals and other organisms
[ ] Human research participants

[] Clinical data

XXOXOO S

Antibodies

Antibodies used AMBRAL1 (Santa Cruz Biotechnology (SCBT) sc-398204), AMBRA1 (ThermoFisher PA5-88053), RB (Developmental Studies
Hybridoma Bank (DSHB), Rb 4.1), phospho-RB $807/811 (Cell Signaling Technology (CST) #9308), phospho-RB S795 (Signalway
#11130), cyclin D1 (SCBT sc-20044), cyclin D1/D2 (Millipore Sigma ABE52), cyclin D2 (CST #3741), cyclin D3 (Abcam ab2823),
CDK4 (ThermoFisher AHZ0202), CDK6 (SCBT sc-177), cyclin E1 (CST #4129), CDK2 (SCBT sc-163), p27 (CST #3686), phospho-cyclin
D1 7286 (CST #3300), LC3B (Novus Biologicals #NB600-1384), Ubiquitin (SCBT sc-8017), CUL4A (CST #2699), CUL4B (Bethyl
Laboratories A303-864A), CUL7 (SCBT sc-53810), MYC (CST #5605), DDB1 (CST #6998), mTOR (CST #2983), phospho-mTOR
$2448 (CST #2971), 4E-BP1 (CST #9644), phospho-4E-BP1 T37/46 (CST #2855),PLK1 (CST #4513), AURKA (CST #14475), AURKB
(abcam ab45145), HA-tag (CST #3724), FLAG M2 (Millipore Sigma F1804), Myc-tag (Abcam ab9106), beta-Tubulin (DSHB E7),

>
Q
=
C
=
D
=
D
wv
Q)
eY)
=
(@)
>
=
D
°
©)
=
=
Q
(%2]
(-
3
)
Q
=
=

810¢ 4290120




HSP90 (CST #4877), beta-Actin (Millipore Sigma A5441), FITC-conjugated anti-BrdU antibody (BD Biosciences #347583), APC-
conjugated anti-Annexin V antibody (BD Pharmingen #550474), and Alexa Fluor 594 donkey anti-rabbit IgG (Invitrogen
AB2556547).

Validation The following antibodies were validated for immunoblot of human proteins by the manufacturer using gene knockout, gene
knockdown, transfection, or other biological manipulations: phospho-RB S807/811 (Cell Signaling Technology (CST) #9308),
phospho-RB S795 (Signalway #11130), cyclin D3 (Abcam ab2823), CDK4 (ThermoFisher AHZ0202), CDK2 (SCBT sc-163), p27 (CST
#3686), phospho-cyclin D1 T286 (CST #3300), LC3B (Novus Biologicals #NB600-1384), Ubiquitin (SCBT sc-8017), MYC (CST
#5605), DDB1 (CST #6998), mTOR (CST #2983), phospho-mTOR $2448 (CST #2971), 4E-BP1 (CST #9644), phospho-4E-BP1 T37/46
(CST #2855), AURKA (CST #14475), AURKB (abcam ab45145), HA-tag (CST #3724), Myc-tag (Abcam ab9106).

APC-conjugated anti-Annexin V antibody (BD Pharmingen #550474) was validated for flow cytometry of human cells by the
manufacturer.

The following antibodies were validated for immunoblot or Simple Western immunoassay of human proteins in this study by
gene knockout, gene knockdown, or transfection of epitope-tagged proteins: AMBRAL (Santa Cruz Biotechnology (SCBT)
sc-398204), AMBRA1 (ThermoFisher PA5-88053), RB (Developmental Studies Hybridoma Bank (DSHB), Rb 4.1), CUL4A (CST
#2699), CUL4B (Bethyl Laboratories A303-864A), CUL7 (SCBT sc-53810), FLAG M2 (Millipore Sigma F1804).

Other antibodies were not further validated.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) All cell lines (U937, NCI-H1792, NCI-H460, U20S, MCF7, A549, 293T, Sf9) were purchased from ATCC.
Authentication Cell lines were authenticated using Short Tandem Repeat (STR) profiling (Genetica).
Mycoplasma contamination All cell lines tested negative for mycoplasma.

Commonly misidentified lines No commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For tumor studies, Mus musculus, 129Sv:C57BL/6 mixed background, males and females were used. Tumors were initiated in
2-4-month-old mice, and mice were euthanized 3.5-4 months later. For xenograft studies, Mus musculus, NOD.Cg-Prkdcscid
112rgtm1Wijl/SzJ, males and females were used. Xenografts were injected in 8-11 week old mice, and mice were euthanized
before tumors reached maximum size of 1000 mm"3. For embryo studies, C57BL/6 mouse zygotes were implanted into CD1
foster mothers and embryos were collected at E13.5.

Wild animals This study did not involve wild animals
Field-collected samples This study did not involve field-collected samples.
Ethics oversight Mice were maintained at Stanford's Research Animal Facility according to practices prescribed by the NIH and by the

Institutional Animal Care and Use Committee (IACUC) at Stanford. Additional accreditation of the Stanford animal research
facility was provided by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). All animal
studies and procedures were performed under approval and compliance with the Stanford IACUC guidelines. The study protocol
was approved by the Administrative Panel on Laboratory Animal Care (APLAC) at Stanford (protocol #APLAC-32397).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Flow cytometry experiments were performed on cell lines. Cells were collected, washed in PBS, fixed in 70% ethanol if necessary,
and stained with antibodies according to standard procedures

Instrument Flow cytometry analysis was performed on either a BD LSRFortessa, a BD FACSAria Il (BD Biosciences), or a CytoFLEX flow
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Instrument cytometer (Beckman Coulter)

Software Data were collected using either BD FACSDiva software (BD Biosciences) or CytExpert software (Beckman Coulter). Data were
analyzed using FlowJo v10.

Cell population abundance  This study did not involve cell sorting.

Gating strategy For all experiments, all cells were gated by FSC area vs. SSC area, and singlets were gated by SSC height vs SSC width, followed by
FSC height vs. FSC width. For BrdU/PI analyses, all BrdU-positive cells were considered cells in S-phase. G1 cells were BrdU-
negative with 2N DNA content, and G2/M cells were BrdU-negative with 4N DNA content. For cell cycle analysis with Pl alone,
the cell cycle function on FlowJo was used to automatically gate G1, S, and G2/M cells. For apoptosis analyses, gates for Annexin
V+ and PI+ populations were determined using single stained samples that were killed by either etoposide treatment or boiling.
For competition assays, the boundary between GFP+ and GFP- cells was made by analyzing pure populations of GFP+ sgCtrl cells
and GFP- parental cells.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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