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Summary

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition characterized by the 

progressive deterioration of motor neurons in the cortex and spinal cord. Using an automated 

robotic microscope platform that enables the longitudinal tracking of thousands of single neurons, 

we examine the effects a large library of compounds on modulating the survival of primary 

neurons expressing a mutation known to cause ALS. The goal of our analysis is to identify the few 

potentially beneficial compounds among the many assayed, the vast majority of which do not 

extend neuronal survival. This resembles the large-scale simultaneous inference scenario familiar 

from microarray analysis, but transferred to the survival analysis setting due to the novel 

experimental setup. We apply a three component mixture model to censored survival times of 

thousands of individual neurons subjected to hundreds of different compounds. The shrinkage 

induced by our model significantly improves performance in simulations relative to performing 

treatment-wise survival analysis and subsequent multiple testing adjustment. Our analysis 

identified compounds that provide insight into potential novel therapeutic strategies for ALS.
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1. Introduction

The neurodegenerative condition amyotrophic lateral sclerosis (ALS) is characterized by the 

progressive deterioration of motor neurons in the cortex and spinal cord that leads to muscle 

atrophy and respiratory failure (Shook and Pioro, 2009). The need for an effective treatment 

is urgent, as very few treatments are currently available. One medication, Riluzole, a 

glutamate antagonist, slows deterioration by approximately two months (Miller et al., 2007), 

* bshaby@psu.edu. 

6. Supplementary Materials
The R and JAGS code used to run all simulations is available and may be accessed at the Biometrics website on Wiley Online Library. 
The JAGS code used for the data analysis is identical to that of the simulations.
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however no treatment stops the course of this disease that leaves patients with a median 

survival of approximately 3–4 years from onset of symptoms (Bäumer et al., 2014). In most 

cases of ALS, the RNA-binding protein TDP43 accumulates within the cytoplasm of 

neurons and glia (Arai et al., 2006; Neumann et al., 2006). Mutations in the gene that codes 

for TDP43 cause familial ALS and lead to changes in TDP43 localization and a reduction in 

neuronal health (Barmada et al., 2010).

To identify novel compounds that could mitigate neuron death caused by mutant TDP43, a 

library of FDA-approved compounds was screened in a neuronal model of mutant TDP43 

that recapitulates ALS pathology. Primary rodent neurons were cultured and induced to 

degenerate by the introduction and ectopic expression of TDP43 carrying the ALS-

associated mutation M337V. Using a robotic microscope platform invented by the 

Finkbeiner laboratory (Arrasate et al., 2004) thousands of individual neurons expressing 

mutant TDP43 were imaged at regular intervals, enabling them to be tracked over their 

lifetimes in a high-throughput and fully automated manner. In-house image processing 

software analyzed the images taken by the robotic microscope to determine, among other 

things, in which interval death occurred for each individual neuron. In comparison to 

conventional single snapshot approaches, the longitudinal tracking of individual neurons is 

substantially more sensitive at identifying the effects of disease associated phenotypes or 

small molecule therapeutics.

We wish to use the variation in survival times between groups of cells exposed to different 

compounds to quantify the role of each compound on modulating the survival of primary 

neurons expressing mutant TDP43. The key feature of the problem is that we wish to do 

simultaneous inference on hundreds or thousands of different treatments. The structure of 

the data is similar to the canonical genomics setup, where one tries to detect meaningful 

differences between experimental groups in some quantity associated with individual genes, 

with the assumption that only a few from among thousands of candidate genes manifest real 

changes.

The naive way to proceed would be to test each treatment against a control using, say, Cox 

proportional hazards regression, and declare treatments significantly different from the 

control using a standard p-value cutoff. A widely recognized problem with this approach is 

that it results in an enormous multiple comparison issue. The strategy for dealing with large 

numbers of comparisons that has become fairly standard, thanks to highly active microarray 

and other “omics” research, is to compute many test statistics, and adjust the resultant p-

values by controlling something like false discovery rate (Benjamini and Hochberg, 1995).

Post hoc adjustment of p-values has proven highly successful. However, recent studies have 

demonstrated that performing shrinkage when computing test statistics, i.e. before 

calculating p-values, can improve performance substantially. Various shrinkage strategies 

have been proposed in the statistical genomics context. Many employ James-Stein type 

forms or random effects to pool information in the mean component of the test statistic, the 

standard error component of the test statistic, or both (see Bar et al., 2010, for a taxonomy of 

such approaches).
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Like Bar et al. (2010), we take a completely model-based approach that uses random effects 

to induce shrinkage, expressing the distribution of the response as a mixture over treatment-

specific indicators. Inference is then based on the posterior probability of the indicators, 

thereby bypassing traditional hypothesis testing completely. Our setup is slightly different 

from the classical genomics setting considered in Bar et al. (2010) in that for us, the 

treatments take on the role traditionally played by genes. That is, each inference consists of 

determining whether one treatment shows a significant effect relative to a control, which is 

analogous to asking whether one gene shows a significant effect between treatments. In 

addition, Bar et al. (2010) consider normal responses that are measured without censoring, 

while our data, as is common in survival analysis, is non-normal and features both interval 

and right censoring. Hence, while our modeling approach inherits the key features found in 

Bar et al. (2010), the key differences described above in the structure of the data necessitate 

extensions to the Bar et al. (2010) model.

2. The Core Model

Conceptually, our model assumes that the treatments come from three distinct populations: 

those with no effect on survival (the null group), those that have a positive effect on survival 

(the beneficial group), and those that have a negative effect on survival (the deleterious 

group). Although the sharp divisions of the three-group structure may seem contrived, they 

need not literally hold for the shrinkage induced by the modeling conceit to prove effective 

(Efron, 2008).

Our three-groups scheme is generalization of the two-groups concept of Bar et al. (2010), 

which assumes that the positive and negative non-null groups are symmetric in their 

deviation from the null group. However, we expect this symmetry not to hold in our survival 

screens. Essentially, it is much easier to kill a cell than it is to prolong its life. Compounds 

that are detrimental can easily shorten the life of the neurons drastically, some of them 

killing almost instantly, but drugs that are beneficial, which we expect to be far fewer, cannot 

be expected to extend life very much. Put another way, a perfect drug would extend life to 

that of healthy cells, and the lifetimes of healthy cells are closer to those of un-treated 

diseased cells than they are to those killed instantly. Furthermore, there is no reason to 

expect the variance of the lifetimes of the cells treated with toxic compounds to be the same 

as the variance of the lifetimes of the cells treated with beneficial compounds. It is therefore 

important that the beneficial and deleterious groups not be considered mirror images of each 

other, as they are in a two-groups model.

Since our response variable is a collection of survival times, we may choose from a wealth 

of existing survival analysis models in which to embed our three-groups structure. While it 

is not conceptually difficult to build upon flexible nonparametric Bayesian models (e.g. 

Kottas, 2006) or Bayesian flavors of the classic proportional hazards model (Kalbfleisch, 

1978; Sinha et al., 1999), for simplicity and ease of implementation we work with 

parametric accelerated failure time (AFT) models. This class of models considers failure 

time distributions of the form log Y = μ + σW, where Y denotes time of death and W has 

some parametric form (see Kalbfleisch and Prentice, 2002, Chapter 2, e.g.). Different 

choices of W lead to different survival time distributions, but regardless of the specific 
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distribution of W , the location parameter μ and the scale parameter σ are convenient 

platforms for hierarchical model building. We will denote the generic class of distributions 

of log Y induced by the AFT form as fAFT(μ, σ).

The core component of the three-groups AFT model is the following. Let N be the total 

number of individual cells, and M be the number of treatments. The null, deleterious, and 

beneficial groups are labeled, respectively 1, 2, and 3. Let yij be the survival time of the ith 

individual cell, which was exposed to the jth treatment. Then

(1)

where p = (p1, p2, p3)T. The categorical variable Gj, j = 1, . . . , M, takes a value of either 1, 

2, or 3, and indicates membership of treatment j in either the null, deleterious, or beneficial 

group, respectively. It is the posterior distribution of the category assignments G1, . . . , GM 

that will ultimately be of primary interest.

The location parameter μij corresponding to cell i (which was exposed to treatment j) has 

three components: a group mean ωGj, which is constant across treatments with the same 

group assignment; a cell-specific covariate effect ; and a treatment-specific offset δj, 

which represents the systematic deviation of treatment j from the mean of the group to 

which it belongs. Each treatment j is assigned its own σj, rather than assuming a single 

shared σ, because assuming this form of homogeneity (i.e. that σj ≡ σ) is known to result in 

severe performance degradation when it does not hold (Bar et al., 2010). Our indexing 

scheme is unorthodox (each i is paired with only one j, so that the total number of calls is N 
rather than the more typical N M) to accommodate the lack of balance in the ALS data. The 

number of individual cells is not constant across treatments because the robotic microscope 

tracks as many cells as it can find in each experimental well, and that number varies from 

well to well.

As is typical of survival data, we need to account for right censoring that occurs when cells 

live beyond the monitoring period. In addition, because the robot revisits each cell at discrete 

time intervals rather than monitoring all cells continuously, each time of death is only known 

up to an interval that is fairly wide relative to the duration of the experiment. As a result, all 

data that is not right censored is interval censored. Both right and interval censoring are 

easily handled through straightforward modification of the data likelihood.

Continuing with the model, we parametrize the overall group means as

with prior distributions
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where the notation  denotes a mean-zero normal distribution with variance , 

truncated to have only positive support, and analogously for . This 

parametrization is minimally informative about ω1, ω2, and ω3, other than enforcing the 

ordering ω2 < ω1 < ω3 that characterizes the three groups as deleterious, null, and beneficial, 

respectively.

Sharing of information about the treatment-level scale parameters of the survival time 

distributions is accomplished by assigning them a common inverse-Gamma prior 

distribution whose parameters are assigned half Cauchy hyper-priors,

where TCauchy+(1) denotes the positive half of a standard Cauchy distribution. In this way, 

the scale parameters σ1, . . . , σM are shrunken towards each other but remain 

inhomogeneous.

The model is completed with the vague conjugate prior distributions

for some choice of hyperparameter α with , so that α reflects prior beliefs about 

the proportion of null, deleterious, and beneficial treatments in the screen, and the 

concentration parameter κ reflects confidence in that belief.

2.1 Details of the ALS Experiment

Additional model components are necessary to accommodate details of the survival screen 

that are particular to the ALS study, which we now describe in depth. To model ALS in 

cells, rat cortical neurons were obtained from rat embryos at 20–21 days gestation. The cells 

were grown in plates with 96 independent wells at a density of approximately 100,000 cells 

per well. After 4 days neurons were transfected to enable them to ectopically express either 

an inert GFP protein (via a pGW1-GFP plasmid) or the ALS causing protein, GFP-TPD43-

M337V (via a pGW1-GFP-TDP43 M337V plasmid). In order to visualize the cells by 

immunofluorescence, a red fluorescent protein was also ectopically expressed in the same 

cells (via a pGW1-mApple plasmid).
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Each 96-well plate contained a set of positive and negative controls. Negative controls were 

composed of 8 wells of neurons expressing the inert GFP protein, and positive controls were 

composed of 8 wells of neurons expressing the ALS causing GFP-TDP43-M337V protein. 

The negative controls were not analyzed, but the positive controls were extremely valuable 

and informative because they consist of a large number of replications for which the group 

classification (i.e. 1, the null group) is known a priori.

The experiment considered 8 distinct plate design configurations, each replicated 4 times, 

for a total of 32 plates. Each of the 8 designs contains 96 wells, 16 of which are, again, 

controls, and the remaining 80 of which are treated with one compound each. Thus the 

number of treatments under consideration is 640. The average number of cells per treatment 

is around 265, making the total number of neuron survival times analyzed just short of 

17,000.

A potential covariate that we considered including in the model is the initial concentration of 

TDP43, measured at the outset of the experiment, in each neuron. TDP43 is known to be 

toxic to neurons and clearly influences longevity (Barmada et al., 2010). However, the 

expression of TDP43 is highly confounded with any potential treatment effects because one 

way a drug could potentially improve survival is by lowering a cell's propensity to express 

TDP43, or conversely, a compound could shorten lifetimes by increasing the prevalence of 

TDP43. We therefore decided to omit measured concentration of TDP43 as a covariate, and 

in the end used no covariates at all. In future studies, TDP43 levels could be used to 

investigate how the drugs reduce TPD43 toxicity.

2.2 Additional Model Components

To accommodate between-plate variation described in Section 2.1, a plate-level random 

effect is defined as

(2)

where the sum-to-zero constraint is imposed to improve mixing. Furthermore, because the 8 

treatment designs were prepared on different days using potentially different biological 

material, an additional random effect

(3)

is needed to model between-treatment design variability. The random effects defined by (2) 

and (3) are integrated into the model (1) for the fAFT location parameter as
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The model was fit using MCMC, implemented with the JAGS package through its R 

interface (Plummer, 2014). To improve mixing, a hierarchically-centered equivalent 

parametrization (Gelfand et al., 1995) was used. A new parameter vector η was defined as 

, for j = 1, . . . , M, so that sampling was performed on η, which 

is “centered” at ω, instead of the vector δ.

3. Simulation

To test the performance of the three-groups random effects model relative to treatment-

specific analysis followed by multiple testing adjustment, we conducted a simulation study. 

Our simulation design closely mirrors that of Bar et al. (2010). For each simulation, we drew 

200 datasets of size N = 5, 000, M = 400 from the three-groups model with a single 

covariate drawn from N(0, 1), with fAFT chosen so that the survival times were Weibull. 

Random effects matching those described in Section 2.2 were added to the log survival 

times. The data was then right censored at the 0.85 empirical quantile, with the remaining 

data divided into seven equally-spaced bins and interval censored accordingly. This 

censoring setup is fairly extreme and closely mimics that of the data generated by the 

automatic microscope. Just as in Bar et al. (2010), we varied model parameters to study 

classification performance under different scenarios. We considered a 2 × 2 design where we 

simulated a high and low proportion of null treatments (90% and 75%) and a high and low 

degree of inhomogeneity of the variance parameters , . . . ,  (drawn from Inverse-

Gamma(6, 4) and Inverse-Gamma(11, 8)). The group mean vector for the null, deleterious, 

and beneficial groups was ω = (0.0, −1.0, 1.0)T. The covariate effect β was set at −0.5.

For each simulated dataset, we fit the three-groups model with a Weibull response and 

computed the posterior distributions of the group identification variables G1, . . . , GM, as 

well as the fraction of null, deleterious, and beneficial treatments p. Posterior quantities were 

computed from 25,000 MCMC iterations (after discarding 10,000 as burn-in), a sample size 

that was determined from examination of trace plots to be well beyond what was necessary 

to achieve good convergence. To test sensitivity to the choice of fAFT, we also fit the three-

groups model with a lognormal response to the Weibull data. In addition, for each treatment 

in each dataset, we fit a suite of survival models to each treatment, with a covariate to 

indicate treatment versus control. The estimated coefficient from each treatment indicator 

was divided by its associated estimated standard error, and the set of resultant z-scores was 

run through the locfdr function (Efron et al., 2011). Local fdr can be interpreted as a 

posterior probability of being null, given a z-score, so a comparison with our posterior 

probabilities is natural. Since local fdr is based on a two-groups model, where positive and 

negative non-null treatments are lumped together, we compared local fdr scores to our 

posterior probabilities of Gj = 1 for each j = 1, . . . , M.

The suite of survival models we fit consisted of a parametric Weibull survival model, using 

the R function survreg (Therneau, 2013), which included the random effect terms that were 

used to generate the data; a Cox proportional hazards model with interval censoring, using 

the R package intcox (Henschel and Mansmann, 2013), which does not support random 

effects; and a Cox proportional hazards model with random effects using the R package 
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coxme (Therneau, 2015), which does not support interval censoring and for this reason was 

run using survival times as the midpoint of the censoring intervals.

The treatment-wise parametric Weibull model with random effects is a perfect model setup 

in the sense that for each treatment, the model that is fit is the same as the data-generating 

model. The two Cox models have the ability to fit data-generating model because the 

Weibull is a special case of the proportional hazards model, although both versions of the 

proportional hazards model considered here are handicapped because neither can 

simultaneously accommodate interval censoring and random effects. In contrast, the three-

groups lognormal model cannot fit the data-generating model, so its success would reflect 

robustness to the choice fAFT.

The classification performance for the three-groups model and local fdr were evaluated 

using several criteria. First, for each simulated dataset, we computed the relative 

classification accuracy between the three groups Weibull model and each of the competing 

models. Classification requires specification of a threshold below which a treatment is 

declared null versus non-null, and classification accuracy depends on choice of this 

threshold. Relative classification accuracy is defined for dataset k and posterior probability 

threshold pt as (TP3-group + TN3-group)/(TPcompetitor + TPcompetitor), where TPC is the number 

of “true positives” (i.e., the number of correctly classified non-null treatments) under 

classifier C, and TN is the number of “true negatives” (i.e., the number of correctly classified 

null treatments) under classifier C.

Results for the high and low degree of inhomogeneity simulations were similar, so to avoid 

clutter we show only those from the high-inhomogeneity simulations. Figures 1(a) and 1(b) 

show accuracies, relative to the data-generating three-groups model, of a three-groups model 

with a mis-specified data likelihood fAFT, as well as several different treatment-wise survival 

models followed by applying local fdr. Mis-specifying fAFT seems to have little effect on 

accuracy. Compared to treatment-wise methods, the three-groups model resulted in gains in 

accuracy that were larger in the simulation with the smaller proportion of null treatments, 

although the improvements seen in the higher proportion simulation were still significant at 

smaller values of the threshold pt. The exception was the Cox mixed effect model in the 

simulation with the greater proportion of null treatments, which had similar accuracy to the 

three-groups model.

We also computed the false discovery rate (FDR) for each simulated dataset as function of 

threshold pt. FDR is defined as FPC/(TPC + FPC), where FPC denotes the number of “false 

positives” (i.e., the number of null treatments that were declared non-null) for classifier C. 

Figures 2(a) and 2(b) show false discovery rates of competing models (dashed lines, hatched 

confidence regions), each plotted on the same axes as the FDR from the correctly specified 

three-groups model (solid lines, gray confidence regions). The three groups model resulted 

in FDRs that were broadly similar to those of the competing models. The Cox mixed effects 

and the parametric Weibull models both yielded lower FDR in the simulation with the lower 

proportion of null treatments, but this effect disappeared in the simulation with the higher 

proportion of null treatments. For both simulations FDR for the three-groups model was 
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acceptably low for low to moderate probability thresholds, which are commonly used in 

practice, where the gains in accuracy (Figures 1(a) and 1(b)) were appreciable.

A more systematic way to evaluate the performance of probabilistic classifications is to use 

proper scoring rules (Gneiting and Raftery, 2007). The two proper scoring rules we report 

are the Brier score, defined as

and the logarithmic (or log) score, defined as

where  is the true group classification of treatment i. Neither scoring rule depends on a 

chosen threshold pt, but rather both more heavily reward correct classifications the more 

confident they are more severely penalize incorrect classifications the more confident they 

are. In both cases, higher scores are better.

Figure 3 compares Brier scores and log scores of the three-groups model and local fdr 

applied to treatment-wise z-scores. Each boxplot depicts scores for 200 simulated datasets. 

In panels 3(a) and 3(b), the left-hand set of boxplots show results for the simulation with the 

higher proportion of non-null treatments, and the right-hand set shows results for the 

simulation with the lower proportion. The pattern is the same for the Brier and log scores, as 

well as across simulations. In all cases, the three-groups model noticeably outperformed the 

procedure of applying local fdr after fitting M individual survival models, and was similar to 

the three-groups model with the mis-specified fAFT. The discrepancy is more pronounced for 

the log than the Brier score, and for the simulation with the smaller than the larger 

proportion of null treatments. The shrinkage induced by the random effects seems to be 

effective at improving discrimination between null and non-null treatments. Again, the best 

of the treatment-wise survival models was the Cox mixed effects model. It is rather puzzling 

that the parametric Weibull mixed effect model seemed to be the weakest model, whether 

evaluated using relative accuracy or proper scoring rules. Since the Weibull model is the 

data-generating model, we expected it to perform better. We speculate that the poor 

performance is due to a problematic fitting routine used in the implementation in survival 

package.

4. Results

Exploratory analysis suggested that a Weibull AFT model was appropriate for the ALS 

dataset, so fAFT was specified to yield a Weibull response for the survival times. The hyper-

parameters κ and α were specified as 2.0 and (0.5, 0.25, 0.25)T. We also ran the model with 

κ = 1 and κ = 4, which had no noticeable impact on the results. After discarding 10,000 

MCMC iterations as burn-in, an additional 25,000 samples were retained for inference. 
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Compute time was approximately 24 hours on a 20-core 2.5GHz Xeon node. As expected, 

the vast majority of the compounds under consideration were classified as null with 

probability indistinguishable from one. Also as expected, far more compounds were 

classified as deleterious with high probability than beneficial; it is much easier to shorten the 

life of a cell than it is to prolong it.

To assess model fit, we use a modification of the posterior predictive checks of Gelman et al. 

(1996). The Gelman et al. (1996) procedure is to draw many synthetic datasets from the 

posterior predictive distribution. Then, if summary statistics calculated from the observed 

dataset fall within a reasonable range of the same summary statistics calculated from the 

synthetic datasets, the model is deemed to fit the data. For us, because the censored 

likelihood necessarily leads to posterior predictive draws that fall within the observed 

censoring intervals, any statistics calculated from the observed data will exactly match those 

of the (censored) synthetic data, making any comparisons trivial. Therefore, we instead draw 

synthetic datasets of yij, j = 1, . . . , M, from Weibull distributions that are independent 

conditionally on posterior draws of μij and σj. The result is a stylized version of a set of 

draws from the posterior predictive distribution, but ignoring the censoring. We simulate 

1,000 such datasets, censor them, and compare them to the observed data according to three 

summary statistics of the left endpoints of the resulting intervals. The three statistics we 

consider are the overall mean survival time, the between plate sum of squares, and the 

between biological sample sum of squares. The first is meant to capture the marginal fit, and 

the sums of squares are meant to capture the fit of the random effects.

Table 1 displays the results of the model assessment. The two sum of squared statistics from 

the observed data both fall within the 0.025 and 0.0975 quantiles of the same statistics 

computed from the simulated datasets, indicating good fit. The overall mean statistic from 

the observed data falls slightly outside the 95% interval of simulated overall means, possibly 

indicating some lack of fit.

For the handful of compounds classified by the model as being in the beneficial group with 

non-negligible probability, we went back and examined the raw images taken by the robotic 

microscope. Several of them displayed visual artifacts that caused the image analysis 

algorithm to spuriously indicate that neurons were alive when in fact they had died and left 

brightly-colored clumps of debris. After removing the spurious hits, we were left with the 

compounds shown in Table 2.

For comparison, we also fit Weibull and Cox mixed effects models with frailties of the form 

(2) and (3) for each compound (where the entire suite of negative controls was included for 

identification of the coefficients in the frailties). We then ran the resulting z-scores through 

the local fdr procedure. The local fdr scores for the compounds detected by the three-groups 

model are also shown in Table 2. Of the compounds that the three-groups model estimated to 

have non-negligible probability of being beneficial, only Dextromethorphan would likely 

have been flagged using the Weibull model with local fdr, and only Leflunomide would have 

been flagged using the Cox mixed effects model with local fdr.
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To further explore the differences between the results from the three-groups model and those 

from applying local fdr to treatment-wise tests, we plot posterior probabilities of being in the 

null group against local fdr scores. Figure 4 shows the three-groups model posterior 

probability of being null on the x-axis and the local fdr score on the y-axis, for the Weibull 

(Panel (a)) and Cox mixed effects (Panel (b)) treatment-wise models. The dotted lines 

represent a hypothetical, arbitrary, cutoff at a value of 0.5. In each panel, the “x” symbols 

denote treatments that both models declare as non-null (there are many more than those 

listed in Table 2 because the plot includes deleterious, as well as beneficial, non-null 

treatments). The squares are those treatments that the three-groups model declares non-null 

but local fdr declares null, and the triangles are those that local fdr declares non-null but that 

the three-groups model declares null. Figure 4(a) shows some degree of of agreement 

between the two sets of inference, but also a noticeable degree of disagreement. Figure 4(b) 

shows little agreement.

The posterior probabilities shown in Table 2 are not impressively large. However, given that 

in simulations the model is most accurate when using a moderate probability cutoff, and 

given the very small number of positive hits, in this context we are willing to trade higher 

power in exchange for accepting a higher false discovery rate. Thus, all four compounds 

shown in Table 2 are considered candidates for followup study.

The compound with the highest posterior probability of being in the beneficial group, 

dextromethorphan, is particularly interesting. Dextromethorphan is the major metabolite of 

the cough suppressant drug dextrorphan. More importantly in our context, it is known to act 

as an N-Methyl-D-aspartate (NMDA) receptor antagonist. The effect of NMDA antagonists 

is to reduce glutamate accumulation, a known mechanism for neuron toxicity in 

neurodegeneration (Lipton and Rosenberg, 1994).

The list of hits also includes the breast cancer drug Formestane, a steroidal aromatase 

inhibitor. It blocks the synthesis of estrogen, starving the growth of estrogen receptor-

positive cancer cells (Winer et al., 2005). The other two hits are prednisone, the common 

synthetic corticosteroid, and leflunomide, which is a pyrimidine synthesis inhibitor that acts 

an immunosuppresive. The latter two compounds have an interesting connection in that they 

play a role in attenuating immune responses. One plausible hypothesis about their action in 

the ALS screen is that they act through a non cell autonomous role on the glia in the culture, 

rather than directly on the neurons. Dextromethorphan, Prednisone, and leflunomide are 

being followed up on in an independent dose-response experiment. If they show a dose-

dependent reduction in TDP43-M337V induced neuron cell death, they could be considered 

candidates for potential for therapeutic utility.

5. Discussion

The three-groups modeling conceit induces sharing of information that is beneficial in large-

scale simultaneous inference settings. In the high throughput survival analysis setting, our 

extension of the idea of Bar et al. (2010) to explicitly model the null treatments as coming 

from a distinct population seems to result in improved performance relative to the more 

standard practice of computing treatment-wise z-scores and subsequently applying a 
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multiple testing procedure. We have focused on the AFT family of models, but the three-

groups structure is conceptually simple to incorporate into alternative survival models if the 

AFT family should prove unsuitable. The drawback of our fully Bayesian approach is that 

MCMC computations are expensive to run. However, putting the compute time in context, a 

screen like the ALS experiment that we describe takes many months to plan and execute, 

and requires tremendous financial and personnel resources to run. Given the scale of the 

experiment, investing a few days to perform analysis that yields improved results is a 

worthwhile effort. Even so, an alternative to MCMC might be to explore a Laplace 

approximation scheme, which could potentially yield substantial improvements in 

computational speed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Panels (a) and (b) plot accuracy of four competitors relative to the correctly-specified three-

groups model, as a function of posterior probability threshold, for the simulations with low 

(Panel (a)) and high (Panel (b)) proportion of null treatments. The four competitors are, 

moving clockwise from the top left, the three-groups model with a mis-specified 

(lognormal) data likelihood, a parametric Weibull mixed effects model, a Cox mixed effects 

model that incorrectly assumes the data is right censored, and a Cox model with interval 

censoring and no random effects. In both scenarios, the incorrectly-specified three-groups 

model has similar accuracy to the correctly specified version. In the simulation with a higher 

proportion of null treatments, the Cox mixed effects also had a relative accuracy of close to 

one. In all other cases, the three-groups model showed greater accuracy, with differences 

more pronounced in the simulation with the lower proportion of null treatments. In all plots, 

the shaded areas represent pointwise 95% error bands. The analysis is based on 200 

simulated datasets drawn for both the low and high proportion of null treatment scenarios.
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Figure 2. 
Panels (a) and (b) show average false discovery rate, as a function of posterior probability 

threshold, for the simulations with low and high proportion of null treatments, respectively. 

In each plot, the average FDR from the correctly-specified three-groups model is drawn as a 

solid line, with a 95% pointwise confidence region shaded in gray. Drawn on top of each 

three-groups average FDR curve is the average FDR (drawn as a dashed line) from, moving 

clockwise from the top left, the three-groups model with a mis-specified (lognormal) data 

likelihood, a parametric Weibull mixed effects model, a Cox mixed effects model that 

incorrectly assumes the data is right censored, and a Cox model with interval censoring and 

no random effects. In all cases, a 95% pointwise confidence region is crosshatched. Broadly, 

the three-group model has a similar average false discovery rate to the four competitors. The 

Cox mixed effects model has a lower average FDR in the simulation with the low proportion 

of null treatments, especially at high thresholds. The analysis is based on 200 simulated 

datasets drawn for both the low and high proportion of null treatment scenarios.
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Figure 3. 
Classification results. Panels (a) and (b) compare Brier and log scores for classifying null vs. 

non-null treatments for the three-groups model and local fdr applied to treatment-wise z-

scores. Panel (a) shows results from the 200 datasets simulated with the higher percentage of 

non-null treatments, and panel (b) shows results from the 200 datasets simulated with the 

lower percentage of non-null treatments. In both panels, the performance of the three-groups 

model, as measured by the two proper scoring rules, appears significantly superior.
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Figure 4. 
Each point represents one compound in the ALS screen. The x-axis of each panel shows 

posterior probability of being null, as estimated by the three-groups model, and the y-axis 

shows the local fdr score from treatment-wise fitting of a Weibull frailty model (Panel (a)) 

and a Cox mixed effects model (Panel (b)). The dashed lines represent a hypothetical, 

arbitrary, cutuff value that might demark the boundary between declaring a compound as a 

hit vs. not a hit. Points in the lower left of each plot are compounds for which the three-

groups model and local fdr agree are hits.
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Table 1

Poster predictive assessment, similar to those advocated in Gelman et al. (1996). Observed statistics falling 

within the central 95% interval of statistics calculated from many synthetic draws from the model indicates 

good agreement with the data. The two variance statistics meet this criterion, while the mean survival time 

statistic falls slightly outside the interval.

Statistic q 0.025 q 0.975 observed

Mean censored time 61.6 63.8 60.6

B/T plate SS (×l, 000) 20.8 33.0 29.3

B/T bio sample SS (×1, 000) 76.9 128.6 110.7
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Table 2

Compounds that the three-groups model assigned non-negligible probability to membership in the beneficial 

group, after culling spurious hits due to visual artifacts. For each compound, the posterior probability of 

membership in the beneficial group is shown, as well as its associated local fdr score from the Weibull and 

Cox mixed effects models.

Compound name Three groups model (Post. prob. beneficial) Local fdr score Weibull model Local fdr score Cox ME model

Dextromethorphan 0.513 0.250 0.892

Formestane 0.326 0.464 0.465

Prednisone 0.384 0.782 0.693

Leflunomide 0.217 0.537 0.211
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