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ABSTRACT OF THE DISSERTATION

The Effects of Ocean Acidification on the Development, Behavior and Survival of
Marine Fish Eggs and Larvae Inferred from Laboratory and Natural Experiments

by

Sara Shen

Doctor of Philosophy in Oceanography

University of California, San Diego, 2016

Professor David Checkley, Jr., Chair

The physiology, development, behavior and survival of the early life history stages
of marine fish are challenged by increasing carbon dioxide concentrations in the ocean,
known as ocean acidification. A widespread effect of elevated pCO, on fish larvae is
increased otolith size. To understand the functional consequences of larger otoliths on the
vestibular system of fish larvae, Chapter 2 investigated the vestibulo-ocular reflex (VOR)
of white seabass (Atractoscion nobilis) larvae reared at ~2500 patm pCO;. The VOR is
an otolith-dependent response in fish that stabilizes vision during body movement. Larvae

reared at high pCO, possessed saccular and utricular otoliths that were ~ 17% and ~ 38%
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larger in size. Despite the increased otolith size, the gain of the VOR, which describes the
ratio of eye to head amplitude, was not statistically different between treatment (0.39 +
0.05, n = 28) and control (0.30 + 0.03, n = 20) larvae.

Fish spawning habitat and survival of offspring are greatly influenced by environ-
mental conditions. In Chapter 3, the effects of pCO, on the spawning habitat of Anchoveta
(Engraulis ringens) and mortality of eggs and early stage larvae were investigated. Eggs,
larvae, and oceanographic data, were collected across an onshore-offshore gradient in pCO,
that ranged from 167-1392 patm. pCO, was statistically significant in explaining egg pres-
ence. The abundance of eggs and relative absence of larvae at high pCO, suggests that
Anchoveta preferentially spawned at high pCO, (>800 patm) and that these eggs had lower
survival.

Fish living in a high-pCO, world may have to spend more energy on acid-base
balance. Chapter 4 explores the effects of elevated pCO; on the oxygen consumption rate
(OCR) and abundance of Na*-K*-ATPase (NKA) proteins in white seabass larvae reared at
~2000 patm pCO,. OCR, a proxy for aerobic metabolic rate, did not differ significantly
between larvae reared at present-day (0.18 % 0.03 uL O, individual™! h'!, n = 80) and future
(0.19 £ 0.03 uL Oy individual ! h'!, n = 80) pCO;. Consistent with this finding, the relative
abundance of NKA proteins that fuel important ion exchangers for acid-base balance did
not differ between control and treatment larvae in Western blot and immunohistochemistry
analyses. Mass and length were also unchanged at high pCO,, suggesting larvae were

physiologically robust in these variables to ocean acidification conditions.
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Chapter 1

Introduction

1.1 Ocean Acidification

Humans are altering the state of our planet in unprecedented ways through defor-
estation, fossil fuel burning, and other consumptive activities that add carbon dioxide (CO;)
to the atmosphere and cause significant climate change. Furthermore, because the ocean
constitutes approximately 70% of the Earth’s surface area, increasing atmospheric CO, acts
to increase the partial pressure of CO, (pCO,) and alter the inorganic carbon chemistry of
the ocean through a process known as ocean acidification (Orr ef al. 2005, Doney et al.
2009).

As CO; enters the ocean, it reacts with water (H,O) to form carbonic acid (H,CO3),
which dissociates into bicarbonate (HCO3") and hydrogen ions (H*). The increase in the
concentration of H* causes a reduction in pH, a measure of acidity, and gives rise to the
term ‘ocean acidification.” HCO3~ dissociates into H* and carbonate ions (CO32"), further
reducing pH and calcium carbonate saturation state (€2CaCO3), a thermodynamic property
that describes the degree of saturation of seawater with respect to the mineral calcium
carbonate (Doney et al. 2009).

Atmospheric CO; has increased from 278 to >400 parts per million (ppm) since



the industrial revolution (Orr et al. 2005, Doney et al. 2009) and is projected to exceed
1000 ppm by the end of the century and 1900 ppm by the year 2250 (IPCC 2013). The
ocean has absorbed approximately 30% of current anthropogenic carbon emissions (Sabine
et al. 2004) and the rate of absorption is outpacing that of the Earth’s natural buffering from
weathering and the preservation of seafloor CaCOssediments (Honish ef al. 2012). As a
result, ocean pH has already declined 0.1 units and is expected to decline 0.3-0.32 units by
2100 (IPCC 2013).

While it is true that the concentration of CO; in the atmosphere has been much
higher in the past than it is today, with estimates of 5000 patm during the Triassic-Jurassic
(T/J) boundary approximately 200 million years ago, it is the combination of the magnitude
of increase and rate at which we are adding CO» that is unparalleled in Earth history (Honish
et al. 2012). During the T/J mass extinction, atmospheric CO; doubled over 20 thousand
years, magnitudes slower than what is occurring presently (Honish et al. 2012). Therefore,
we are disrupting the equilibrium of the ocean carbon cycle in a way that has never occurred

over the past 300 million years of Earth history (Honish ef al. 2012).

1.1.1 Effects on Young Fish

The multitude of correlated changes that occur in the carbonate chemistry during
ocean acidification make it difficult to assess which variables are most severely affecting
biota. The reduction in © may be the culprit for the decline in growth, calcification,
abundance, and survival of many calcifying organisms (Kleypas et al. 1999, Kroeker et
al. 2010, BednarSek and Ohman 2015). Conversely, it is more likely that the increase in
pCO; is the largest contributing factor to the effects of ocean acidification on marine fish
because a reduced outward diffusion of CO, can lower the pH of internal fluids and disrupt
pH homoeostasis (Hayashi et al. 2004, Ishimatsu et al. 2008, Esbaugh et al. 2012, Heuer
and Grosell 2014).



Several physiological and behavioral differences between the early life history stages
(i.e., eggs and larvae) of marine fish and juveniles and adults may increase the susceptibility
of the former to ocean acidification. Briefly, this includes the lack of functional gills that are
important for ion regulation, reliance on cutaneous diffusion for gas exchange (Rombough
et al. 1988), and passive existence as plankton. The latter means that young larvae cannot
escape exposure to poor environmental conditions. Importantly, high and variable mortality
during the early life history stages, often related to environmental conditions, may be
decisive in generating recruitment variability (Houde 2009).

The effects of elevated pCO; on marine fish eggs and larvae are diverse and variable
(reviewed in Heuer and Grosell 2014). Elevated pCO,, ranging from 800 to 5000 patm
can result in developmental abnormalities of larvae, such as tissue and organ damage, and
changes to fatty acid composition (Chambers et al. 2013, Diaz-Gil ef al. 2015, Frommel ez
al. 2016, others reviewed in Heuer and Grosell 2014). Larvae of some species experience
an increase in size-at-hatch and growth rate (Munday et al. 2009a, Chambers et al. 2014,
Bignami et al. 2014), while others experience a reduction or no change. Perhaps one of the
most widespread developmental changes is the hypercalcification of otoliths (Checkley et
al. 2009, Munday et al. 2011b, Bignami et al. 2013, Maneja et al. 2013, Réveillac et al.
2015, Shen et al. 2016). All bony fish possess three pairs of CaCOj3 otoliths that play a vital
role in the auditory and vestibular systems, the latter providing vertebrates with information
about orientation and acceleration (Platt 1983, Goldberg et al. 2012). A 49% increase in
otolith size of larval cobia (Rachycentron canadum) reared at 2100 patm was predicted to
increase hearing range by 50% (Bignami et al. 2013). In Chapter 2, I explore the effects
of elevated pCO; and hypercalcification on the vestibular system of white seabass larvae
(Atractoscion nobilis).

The impairment of numerous sensory systems and general cognitive function of the

larvae and juveniles of several species of fish is indicative of an effect of pCO; on central



neural processing. Exposure to elevated pCO, reverses the attraction of young (mostly
tropical) fish to the odors and sounds of predators (Dixson et al. 2010, Simpson et al. 2011)
and favorable settlement habitats (Munday et al. 2009b, Devine et al. 2012, Rossi et al.
2015). The larvae of some species also demonstrate a reduction in anti-predator responses
(Ferrari et al. 2011), lateralization (Domenici ef al. 2012) and learning capacity (Ferrari et
al. 2012). The alteration of the y-aminobutyric acid (GABA ) neurotransmitter receptor
in the brain is thought to be the primary cause of the reversal of these sensory preferences
and behavioral changes (Nilsson ef al. 2012, Hamilton et al. 2014). However, there are also
many species of fish that do not experience any negative effects of elevated pCO; on growth,
development, behavior and survival during the egg and larvae stages (Munday et al. 2009a,
2011a, 2015, Franke and Clemmesen 2011, Frommel et al. 2013, Bignami et al. 2014 Hurst
et al. 2012).

The effects of high CO; on the mortality of the early life history stages and the con-
sequences for larger-scale population and ecosystem structure are hard to predict, especially
given the fact that some species of fish are affected by ocean acidification conditions more
than others. Settlement-stage damselfish (Pomacentrus wardi) larvae reared at elevated
pCO; (700-850 p) with a compromised olfactory system and reduced anti-predator response
behavior experienced 5-9 times higher mortality than control larvae (Munday et al. 2010,
Ferrari et al. 2011). On the contrary, attraction to predator odor, inability to differentiate
among odors of different habitats, and bold behavior observed for damselfish and cardi-
nalfish at natural CO; seeps did not result in any changes to fish abundance (Munday et
al. 2014). Furthermore, while elevated pCO, increases the mortality of eggs and larvae
of some species (Baumann et al. 2012, Forsgren et al. 2013, Chambers et al. 2013),
presumably through direct effects on physiology, it can also increase the reproductive output
(number of clutches and eggs per clutch) and survival of eggs for other (mostly benthic

spawning) species (Miller et al. 2013, Welch and Munday 2016). In Chapter 3, I investigate



whether high pCO, affects the spawning and mortality of pelagic eggs and young larvae of
Anchoveta (Engraulis ringens) off the coast of Peru.

Ocean acidification can present a physiological challenge for marine fish because
the reduced outward diffusion gradient of CO; from the body to the seawater can result in
higher CO; and lower pH in the blood plasma and intracellular fluids (Perry and Gilmour
2006). Much literature exists for freshwater fish documenting that juveniles and adults
compensate for this acid-base disruption through the uptake or retention of HCO3™ and
export of H* using a variety of ion-transporters that are fueled by ion gradients created by
Na*-K*-ATPase (NKA) in the mitochondria-rich cells of the gills (Perry and Gilmour 2006,
Melzner et al. 2009a). Mechanisms for saltwater fish are less understood but likely include
similar transporters in the exchange of acid-base equivalents. Maintaining pH homeostasis
is an energetically costly process, but an important one as changes in pH can impact cellular
function, metabolism, and eventually the growth and reproduction of fish (Putnam and Roos
1997, Portner et al. 2005). For example, NKA pumping for NaCl excretion can account
for as much as ~25% of the oxygen consumption of the gills in marine fish (Stagg and
Shuttleworth 1982, Morgan et al. 1997). The gradients generated by NKA are used in the
transport of acid-base equivalents. Therefore, the additional cost of maintaining ion and
acid-base regulation at elevated pCO, may be reflected in an increased oxygen consumption
rate (OCR), a proxy for the metabolic rate (Munday et al. 2009c, Enzor et al. 2013), as well
as increased abundance of NKA proteins (Deigweiher et al. 2008, Melzner et al. 2009b).
In Chapter 4, I investigate how the OCR and abundance of NKA proteins in larval white

seabass are affected by elevated pCO,.

1.2 Outline of the Dissertation

The research in this dissertation furthers our understanding of the effects of ocean

acidification on the early life history stages of marine fish through multiple experiments



performed at various scales, from an investigation of cellular to whole-animal behavioral
responses in laboratory experiments to that of a large fish population in a high-pCO,
upwelling system and natural experiment.

In Chapter 2, I focused on the effects of elevated pCO, on otolith morphology and
functionality in larval white seabass (Atractoscion nobilis). There are several studies that
have documented larger otoliths in larvae reared under acidified conditions (Checkley et
al. 2009, Munday et al. 2011b, Bignami et al. 2013, Réveillac et al. 2015, Shen et al.
2016), but the effects on the vestibular system have not been explored. I hypothesized that
elevated pCO, would increase the size of the utricular otoliths of white seabass larvae and
this would affect vestibular functioning. To test these hypotheses, I reared white seabass
eggs and larvae at 2500 atm pCO,, determined the area of the utricular otoliths, and tested an
otolith-dependent response, the vestibulo-ocular reflex (VOR). The VOR is a compensatory
eye rotation that is stimulated by otolith movement and allows fish and other vertebrates
to maintain their visual acuity during self-movement (Bianco et al. 2012, Goldberg et al.
2012). From these results, I made inferences about the potential effects of larger-sized
otoliths on the vestibular function and survival of marine fish larvae.

In Chapter 3, eggs and larvae of Anchoveta (Engraulis ringens) and oceanographic
data were collected off the coast of Peru during a cruise by the Instituto del Mar del Peru
(Imarpe) in August and September 2013. The cruise study area spanned 10° latitude (1,112
km) and occurred during the peak season for upwelling and Anchoveta spawning. In this
chapter, I used the natural onshore-offshore gradient in pCO; to investigate the relationship
of Anchoveta eggs and larvae to pCO,, and make inferences about the effects of ocean
acidification on coastal marine fish. Anchoveta are an ideal study organism because they
constitute the world’s largest single-species fishery (FAO 2015), live in one of the highest
pCO; regions in the world’s ocean (Takahashi et al. 2009), and have a similar life history to

other pelagic fish species. The relative importance of environmental variables in explaining



egg presence, an index of spawning, and larva abundance were explored using generalized
linear mixed models. Furthermore, the distributions of the largest egg and larva samples
were analyzed in pCO;-salinity space to investigate the potential mortality of eggs and
larvae in high pCO, waters.

In Chapter 4, the physiological effects of elevated pCO; on larval white seabass
(Atractoscion nobilis) were investigated to gain insight into the possible underlying causes
of the wide range of behavioral and developmental abnormalities in fish exposed to ocean
acidification conditions (reviewed in Heuer and Grosell 2014). Although the mechanisms
of acid-base regulation for larvae are unknown, they are assumed to be similar to those of
juveniles and adults (Rombough ef al. 1988). I hypothesized that white seabass larvae reared
at elevated pCO; would experience an increase in OCR and abundance of NKA proteins
to compensate for internal acid-base disruption. To test these hypotheses, I reared white
seabass eggs and larvae at 2000patm pCO,, measured the oxygen consumption of larvae at
5 days post-fertilization (dpf), and used Western Blot and immunohistochemistry analysis to
quantify the abundance of NKA proteins. These data provide insight into the energetic costs
of maintaining acid-base balance and the physiological resiliency of fish larvae to elevated

pCOs.
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ABSTRACT: We investigated vestibular function and otolith size (OS) in larvae of white seabass
Atractoscion nobilis exposed to high partial pressure of CO, (pCO,) The context for our study is
the increasing concentration of CO, in seawater that is causing ocean acidification (OA). The
utricular otoliths are aragonitic structures in the inner ear of fish that act to detect orientation and
acceleration. Stimulation of the utricular otoliths during head movement results in a behavioral
response called the vestibulo-ocular reflex (VOR). The VOR is a compensatory eye rotation that
serves to maintain a stable image during movement. VOR is characterized by gain (ratio of eye
amplitude to head amplitude) and phase shift (temporal synchrony). We hypothesized that ele-
vated pCO, would increase OS and affect the VOR. We found that the sagittae and lapilli of young
larvae reared at 2500 patm pCO, (treatment) were 14 to 20% and 37 to 39% larger in area,
respectively, than those of larvae reared at 400 patm pCO, (control). The mean gain of treatment
larvae (0.39 + 0.05, n = 28) was not statistically different from that of control larvae (0.30 + 0.03, n
= 20), although there was a tendency for treatment larvae to have a larger gain. Phase shift was
unchanged. Our lack of detection of a significant effect of elevated pCO, on the VOR may be a
result of the low turbulence conditions of the experiments, large natural variation in otolith size,

calibration of the VOR or mechanism of acid-base regulation of white seabass larvae.

KEY WORDS: Ocean acidification - Fish larvae - Otolith - Vestibulo-ocular reflex - pCO,

INTRODUCTION

Humans are disrupting the equilibrium of the
ocean carbon cycle at a greater magnitude and rate
than nature has achieved over the past 300 million
years of Earth history (Honisch et al. 2012). Ocean
acidification (OA) is the increase in surface seawater
partial pressure of CO, (pCO,) and decrease in pH
and calcium carbonate saturation state () caused by
the imbalance in the rates of addition to the ocean of
carbon by the burning of fossil fuels and alkalinity by
weathering (Doney et al. 2009, Honisch et al. 2012).
Humans have released 555 Pg of carbon into the at-
mosphere through fossil fuel burning since the Indus-
trial Revolution, increasing atmospheric pCO, from
278 to >400 ppm today and decreasing pH by 0.10
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units (Doney et al. 2009, IPCC 2013). Atmospheric
pCO, is projected to exceed 1000 ppm by the end of
the century and 1900 ppm by the year 2250 under the
Intergovernmental Panel o