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Abstract of the Dissertation

Disentangling Credit Spreads, Equity Volatility, and Leverage

by

Adrien des Enffans d’Avernas

Doctor of Philosophy in Economics

University of California, Los Angeles, 2017

Professor Andrew Granger Atkeson, Co-Chair

Professor Lee Ohanian, Co-Chair

This dissertation studies the aggregate dynamics of important financial indicators such as

corporate bond credit spreads, equity volatility, and firms’ leverage. Chapter 2 investigates

empirical regularities that relates theses indicators, both over the business cycle and in the

cross-section, to motivate the foundations of a structural model. I find that a time-varying

factor common to corporate bond credit spreads, equity volatility, and leverage drives the

dynamics of these indicators.

Chapter 3 develops a structural model to account quantitatively for and disentangle the

sources of these common dynamics in corporate bond credit spreads, firms’ leverage, and

equity volatility. In order to fit the data, I extend the framework of Chen, Cui, He, and

Milbradt (2016) to accommodate a large state space.

Chapter 4 addresses the estimation procedure of fundamental shocks to financial indica-

tors using this structural model together with a large firm-level panel dataset. The results

suggest that fluctuations in firms’ aggregate asset volatility are key for the transmission

channel that links the fundamental drivers of financial indicators to the real economy.
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Chapter 1

Introduction

Indicators of financial distress and uncertainty, such as corporate bond credit spreads and

equity volatility, are powerful predictors of real economic activity.1 Understanding what are

the fundamental drivers of these financial indicators is critical to comprehend the linkages

between financial markets and the real economy.

Yet, it remains difficult to assess empirically which shocks are important in accounting

for the dynamics of these financial indicators. The high degree of comovement compli-

cates the identification of fundamental shocks (see Stock and Watson, 2012, and Caldara,

Fuentes-Albero, Gilchrist, and Zakraǰsek, 2016). In Chapter 2, I present important em-

pirical regularities that relates theses indicators, both over the business cycle and in the

cross-section, to motivate the foundations of a structural model. I find that a time-varying

factor common to corporate bond credit spreads, equity volatility, and leverage drives the

dynamics of these indicators. Because all these factors are endogenous, further identifying

assumptions are necessary to understand what might be the fundamental driving forces of

these common dynamics.

In Chapter 3, I extend the framework off Chen, Cui, He, and Milbradt (2016) to ac-

1See Philippon (2009); Bloom (2009); Stock and Watson (2012); Gilchrist and Zakraǰsek (2012), Caldara,
Fuentes-Albero, Gilchrist, and Zakraǰsek (2016); Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016);
and many others.
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commodate a large set of exogenous shocks over a large state space. The model imposes

structural relationships between credit spreads, equity volatility, and firms’ leverage that

can be used to estimate fundamental exogenous processes driving these financial indicators.

There are two types of shocks in this economy: small and frequent shocks to firms’ as-

set values and large but infrequent shocks to macroeconomic conditions. Fluctuations in

macroeconomic conditions include shocks to bankruptcy costs, firms’ aggregate and idiosyn-

cratic asset volatility, and the market price of risk. Firms’ assets generate cash flows and are

financed through equity and debt. Firms’ asset, equity, and debt are priced by a common

stochastic discount factor. The optimal capital structure of firms is based on the trade-off

between tax benefits of debt and deadweight losses of default. Firms decide when to default

based on their cash flow level and macroeconomic conditions. The secondary market for

corporate bonds is subject to over-the-counter liquidity frictions.

In the model, over-the-counter market illiquidity—and consequently bid-ask spreads—

arise endogenously as in Chen, Cui, He, and Milbradt (2016). Investors face uninsurable

idiosyncratic liquidity shocks, which drive up their costs of holding corporate bonds. To

sell their bonds, investors must search for dealers to intermediate transactions with other

investors. In the meantime, they incur the cost of having to hold on to the bond. This cost is

affected by the bond price. Therefore, the liquidity discount of corporate bonds and bid-ask

spreads set by dealers fluctuates with bond prices. Hence, shocks that impact bond prices

also affect bid-ask spreads.

The model provides a structural mapping between the exogenous shocks and the endoge-

nous financial indicators. While the financial indicators functionally depend on all shocks,

some relationships are stronger than others. For example, bankruptcy costs are borne by

creditors and not by equity holders. Thus, equity volatility is not impacted much by shocks

to bankruptcy costs, but is very sensitive to shocks to firms’ asset values and firms’ asset

volatility. The default risk indicator embodies the probability that firms’ asset values hit

the boundary at which equity holders decide to default. Thus, default risk is sensitive to
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fluctuations in firms’ asset values, firms’ aggregate and idiosyncratic asset volatility, and the

market price of risk. Credit spreads compensate for the cost of bearing exposure to corporate

credit risk, which fluctuates with changes in default risk or bankruptcy costs. Shocks to the

market price of risk change the compensation required by investors for bearing aggregate

risk beyond expected losses

In Chapter 4, given the structure of the model, I identify the fundamental shocks with

a large firm-level panel dataset of U.S. public firms’ monthly observations of equity prices

and volatilities, accounting statements, and bond recovery ratios from 1973 to 2014. I fit the

levels of firms’ asset values each month to match observations on firms’ leverage, measured

as the book value of debt relative to the market value of equity. Thus, I uncover realized

shocks to firms’ asset values from observations on the market value of firms’ equity relative

to the level of their debt. As the model implies a tight link between firms’ asset volatility,

firms’ asset values, and equity volatility, I can retrieve monthly model-implied values for

shocks to firms’ aggregate and idiosyncratic asset volatility for each firm in my dataset. I

measure time-varying bankruptcy costs with bond recovery ratios from Moody’s corporate

default study. The stochastic discount factor is calibrated to match the average equity

premium. Finally, parameters driving over-the-counter liquidity frictions are calibrated to

target Edwards, Harris, and Piwowar’s (2007) cross-sectional measurement of average bid-

ask spreads from 2003 to 2005. With these measurements, the model generates levels and

fluctuations for each financial indicator that match accurately their empirical counterparts,

not only over the period from 1973 to 2014—including the unprecedented spike during the

2007–08 financial crisis—but also in the cross-section. In particular, the match between

model-implied and historical credit spreads substantiate the model’s assumptions, as data

on credit spreads is not used during the estimation of shocks and calibration of parameters.

The model accurately accounts for the historical levels and dynamics, both over time

and in the cross-section, of five financial indicators: (i) default risk, (ii) corporate bond

credit spreads, (iii) aggregate and (iv) idiosyncratic equity volatility, and (v) corporate bond

3



bid-ask spreads. A structural decomposition yields that shocks to firms’ asset values and ag-

gregate asset volatility are key to account for the joint dynamics of these financial indicators.

Moreover, fluctuations in firms’ aggregate asset volatility strongly predict future economic

activity.

Two results arise from a structural decomposition of economic channels and shocks to

macroeconomic conditions. First, holding constant observed default probabilities, the pricing

of the risk of shocks to macroeconomic conditions, i.e., the risk aversion of the representative

agent, accounts for 45% (32%) of investment-grade (speculative-grade) credit spreads’ levels

from 1973 to 2014.2 Thus, the compensation demanded by investors for bearing exposure

to corporate credit risk—beyond expected losses—is crucial to account for credit spreads’

levels. The components of pure default risk and liquidity frictions account for 27% and 30%

of investment-grade (52% and 16% of speculative-grade) credit spreads’ levels, respectively.

Second, during the financial crisis, a large negative shock to firms’ asset values and a large

increase in aggregate asset volatility were both key determinants of changes in default risk,

credit spreads, aggregate equity volatility, and bid-ask spreads. From January 2007 to Jan-

uary 2009, fluctuations in firms’ aggregate asset volatility were responsible for about 45%

(41%) of the total spike of investment-grade (speculative-grade) credit spreads explained by

the model.

These findings shed light on economic mechanisms at play during the 2008-09 financial

crisis. During that period, the large spike in aggregate firms’ asset volatility increased the

probability of default in two ways. First, holding asset values constant, it increased the

probability that a large negative shock pushes a firm into bankruptcy. Second, firms’ asset

values fell because aggregate volatility is priced adversely by the representative investor. A

quantitatively smaller surge in firms’ idiosyncratic asset volatility, which is not priced by the

representative investor, had a mild impact on default risk. Overall, the increase in firms’

2A firm that is speculative-grade has a rating lower than Baa from Moody’s Investors Service, a rating
lower than BBB from Standard & Poor’s or both. Firms with ratings of Baa, BBB or higher are termed
investment-grade.
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aggregate asset volatility, jointly with a large negative shock to firms’ asset values, raised

aggregate credit risk. In turn, this inflated the compensation demanded by investors for

bearing more aggregate risk and led to unprecedentedly high credit spreads. In addition, the

increase in firms’ aggregate asset volatility and a large negative shock to firms’ asset values

raised aggregate equity volatility. Thus, fluctuations in firms’ aggregate asset volatility and

firms’ asset values are powerful drivers of financial indicators—because it greatly influences

the quantity of credit risk that is priced by the representative investor.

When predicting real economic activity, fluctuations in firms’ aggregate asset volatil-

ity estimated from the model are as powerful and contain the same information as credit

spreads themselves. That is, using credit spreads to predict real GDP growth four quarters

ahead, as in Gilchrist and Zakraǰsek (2012), or using the estimated time series of firms’ ag-

gregate asset volatility yields similar standardized coefficients and adjusted R-squared. All

together, my results suggest that fluctuations in firms’ aggregate asset volatility are key for

the transmission channel that links the fundamental drivers of financial indicators to the

real economy. These results are consistent, for example, with the notion that an increase in

firms’ aggregate volatility induces a flight-to-quality across financial markets and depresses

future investments.

Related Literature In line with the work of Hackbarth, Miao, and Morellec (2006);

Almeida and Philippon (2007); David (2008); Chen, Collin-Dufresne, and Goldstein (2009);

and Bhamra, Kuehn, and Strebulaev (2010), I show that macroeconomic conditions and

time variations in the market price of risk have rich implications for firms’ credit spreads. I

contribute to this literature by structurally estimating the time series of shocks that drive

credit spreads and other financial indicators using a large firm-level panel dataset of U.S.

public firms. Chen, Cui, He, and Milbradt (2016) explore how the interactions between

default and liquidity affect corporate bond pricing. I find that shocks to firms’ asset values

and aggregate asset volatility generate variation in bid-ask spreads consistent with empirical

observations.
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A recent theoretical and empirical research aimed at understanding the 2008–2009 fi-

nancial crisis has pointed to financial and uncertainty shocks as main drivers of business

cycles. Stock and Watson (2012) and Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek

(2016) emphasize the difficulty to empirically distinguish these two types of shocks, because

increases in equity volatility—a widely used proxy for macroeconomic uncertainty—are fre-

quently associated with spikes in credit spreads—a widely used proxy for financial turmoil.

In parallel, Bloom (2009) emphasizes the importance of aggregate uncertainty shocks to ex-

plain sharp recessions. Atkeson, Eisfeldt, and Weill (2013) and Herskovic, Kelly, Lustig, and

Van Nieuwerburgh (2016) study the macro dynamics of firms’ aggregate and idiosyncratic

equity volatility and their association with macroeconomic fluctuations. Using a structural

approach, I find that shocks to firms’ asset value and aggregate asset volatility are the main

drivers of the dynamics of credit spreads and aggregate equity volatility.

Finally, a large literature, spurred by Harvey (1988) and Estrella and Hardouvelis (1991)

and furthered by Friedman and Kuttner (1993); Gertler and Lown (1999); Mody and Taylor

(2004); and King, Levin, and Perli (2007) links measures of credit risk and real activity.

More recently, Gilchrist, Yankov, and Zakraǰsek (2009); Gilchrist and Zakraǰsek (2012); and

Faust, Gilchrist, Wright, and Zakraǰsek (2013) find that corporate bond credit spreads have

considerable predictive power for economic activity, and significantly exceed that of widely

used default-risk indicators. I complement this literature by showing that the predictive

content of corporate bond credit spreads is captured by firms’ aggregate asset volatility.
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Chapter 2

Corporate Bond Credit Spreads,

Equity Volatility, and Leverage

Collin-Dufresne, Goldstein, and Martin (2001) first established that credit spreads, after

controlling for standard indicators of firms’ default risk, are mostly driven by a single common

factor. Gilchrist and Zakraǰsek (2012) find that this common component of credit spreads is

a powerful predictor of economic activity. Similarly, the cross-sectional distribution of firms’

equity volatilities is approximately log-normal, and a large portion of the dynamics of this

cross-sectional distribution is also accounted for by a single principal component (Atkeson,

Eisfeldt, and Weill, 2013; Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2016). Bloom

(2009) studies the extent to which these dynamics in firms’ equity volatilities predict GDP

growth. In the following section, I show that a single principal component drives the joint

dynamics of credit spreads, aggregate and idiosyncratic equity volatility, and firms’ leverage.

2.1 Panel Dataset

For a sample of U.S. firms covered by the S&P’s Compustat database and the Center for

Research in Security Prices (CRSP), I obtained month-end secondary market option adjusted

credit spreads of their outstanding senior unsecured bonds from the Lehman/Warga and

7
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Merrill Lynch databases. I matched these corporate securities with their issuers’ quarterly

income and balance sheet data from Compustat and daily data on equity valuations from

CRSP, which yielded a matched sample of 300,887 monthly credit spreads observations

from 2,355 firms for the period between January 1973 and October 2014. I use similar

restrictions as Gilchrist and Zakraǰsek (2012) to ensure that the results are not driven by a

small number of extreme observations. I discard all observations with credit spreads below

5 basis points and greater than 3,000 basis points. In addition, I drop very small corporate

issues (equity market value of less than $1 million) and all observations with a remaining

term to maturity of less than 6 months or more than 20 years. Some firms tend to have

many different corporate bond securities outstanding. To avoid overweighting firms that

issue a lot of different securities, when different prices were available for the same firm, I

keep only the security with time to maturity closest to 8 years (sample average). Utility and

public administration firms are also excluded from the sample. Restricting to unique credit

spreads’ monthly observations for each firm eliminates 45% of the dataset; other restrictions

affect less than 5% of the rest.

I construct monthly volatility of firm-level equity returns. Total equity volatility, which

is estimated using data from the CRSP daily stock file from 1973 to 2014, is defined as the

standard deviation of a stock’s daily returns from the last 63 days.1 Idiosyncratic returns

are constructed by estimating a factor model using all observations for that firm. The factor

model takes the form:

rEit − rFt = γi0 + Ftγi + εit,

where rEit is the equity return from day t− 1 to t, including dividends of firm i, and rFt is the

1-month treasury bill rate. I specify Ft as a 4-factor model—namely, the Fama and French

(1992) 3-factor model, augmented with the momentum risk factor proposed by Carhart

1It is standard to assume that financial markets have 21 open days on average in a month, and therefore
quarters consist of 63 days. The results are robust to alternative windows.
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(1997). The aggregate equity volatility σE,Ait and idiosyncratic equity volatility σE,Iit of firm

i in month t is then given by:

σE,Ait =

√√√√ 1

Kt

Lt∑
k=Lt−63

(Fkγ̂i)
2

σE,Iit =

√√√√ 1

Kt

Lt∑
k=Lt−63

(ε̂ik)
2,

where Lt is the last day in month t. In short, idiosyncratic equity volatility is the volatility

of residuals after a 4-factor model regression.

Following Strebulaev and Yang (2013), the market leverage ratio of firm i at time t is

defined as:

levit =
DLTTit + DLCit

DLTTit + DLCit + CSHOit × PRCCit

,

where DLTT and DLC are the Compustat long-term debt and debt in current liabilities,

CSHO is the number of shares outstanding, and PRCC is the stock price from CRSP. This

measure is often used in the empirical literature (e.g., Strebulaev and Yang, 2013, or Chen,

Cui, He, and Milbradt, 2016). One alternative is to use total liabilities (e.g., Rajan and Zin-

gales, 1995). However, a nontrivial portion of nondebt liabilities (such as accounts payable)

can reflect day-to-day business arrangements instead of financing considerations. Another

alternative is to use the sum of short-term liabilities and half of long-term liabilities (e.g.,

Gilchrist and Zakraǰsek, 2012, or Moody’s KMV framework) to capture the notion that

short-term debt requires a repayment of the principal relatively soon, whereas long-term

debt requires the firm to meet only the coupon payments. This adjustment is not pertinent

to my structural approach in which bond maturity is explicitly modeled.
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2.2 Common Factor

Table 2.1 shows regressions explaining the variation of credit spreads across firms and time.

Regression (3) shows that rating dummies and a time fixed effect goes a long way into

explaining the variation of credit spreads. Furthermore, aggregate equity volatility is not

significant when a time-fixed effect is included. Therefore, it is natural to study the dynamics

of the driving factors of credit spreads, market leverage, aggregate equity volatility, and

idiosyncratic equity volatility relate.
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(1) (2) (3) (4) (5) (6)
log(cs) log(cs) log(cs) log(cs) log(cs) log(cs)

log
(
σE,Ait

)
0.247∗∗∗ 0.382∗∗∗ -0.004∗∗∗ 0.459∗∗∗ 0.393∗∗∗ 0.033∗∗∗

(89.86) (168.77) (0.63) (45.23) (51.26) (1.53)

log
(
σE,Iit

)
0.962∗∗∗ 0.319∗∗∗ 0.407∗∗∗ 0.332∗∗∗ 0.274∗∗∗ 0.247∗∗∗

(321.13) (109.33) (50.74) (26.89) (29.11) (22.52)
levit 1.124∗∗∗ 0.918∗∗∗

(29.83) (23.27)
log (amount) -0.008∗∗∗ -0.001∗∗∗

(11.75) (0.83)
coupon 0.044∗∗∗ 0.066∗∗∗

(12.75) (14.62)
log (matm) 0.049∗∗∗ 0.077∗∗∗

(4.23) (6.09)
callability 0.178∗∗∗ 0.252∗∗∗

(9.78) (10.65)
rating dummy X X X X X
time fixed effect X X
firm fixed effect X X X

N 290,582 290,582 290,582 290,582 290,582 290,582
Adj R2 0.351 0.612 0.716 0.723 0.755 0.814

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.1: Regression of log(cs) on explanatory variables Asymptotic standard errors are clustered
in by firms for regressions (4), (5), and (6) and in time for regressions (3) and (6), according to Cameron,
Gelbach, and Miller (2011).

Figure 2.2 shows the arithmetic average log credit spread by rating class. The first

principal component of these time series explains 86% of the total variation. Another way

to capture the common variation is to regress log credit spreads on credit rating (21 rating

classes from Aaa to C) and a time fixed effect. This yields an adjusted R-squared of 72%.

The common factor structure also holds for aggregate and idiosyncratic equity volatility and

market leverage.

Figure 2.1 complements Figure 2.2 and displays firms’ leverage, firms’ aggregate equity

return volatility, and firms’ idiosyncratic equity return volatility averaged by rating class from

12
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Figure 2.2: Average Log Corporate Bond Credit Spread by Rating Class This figure shows the
arithmetic average of log bond credit spreads by rating class. See main text for details on the dataset.
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component log(cs) lev log
(
σE
)

log
(
σE,A

)
log
(
σE,I

)
1 85.89 71.26 94.38 97.24 93.67
2 7.87 19.53 2.58 2.00 2.65
3 4.36 6.00 1.29 0.56 1.96
4 1.23 1.79 1.26 0.14 1.30
5 0.66 1.42 0.05 0.06 0.49

Table 2.2: Percentage of the Total Variance Explained by each Principal Component with
5 Rating Classes This table displays the percentage of the total variance explained by the principal
components of each variable averaged within 5 rating classes: AAA/AA, A, BBB, BB, and B, where log(cs)
is log credit spread, lev is market leverage, log(σE) is log equity return total volatility, log(σE,A) is log equity
return aggregate volatility, and log(σE,I) is log equity return idiosyncratic volatility.

1973 to 2014. As one can observe from the fact that the times series move parallel to each

others, the first principal component can account for a lot of the total variation. Table 2.2

shows the percentage of the total variance explained by the principal components. The first

principal component of market leverage, log aggregate equity volatility, and log idiosyncratic

equity volatility accounts for 71%, 94%, and 97% of the total variation, respectively. Very

similar results arise when using more granular rating groups as shown in Table 2.3. Overall,

almost all the variation in the times series can be accounted for by the first two principal

components. From the principal component coefficients, it is easy to conclude that the first

component is an average of each series while the second component measure the dispersion

of the series (see the coefficient for credit spreads in Table 2.4).

Since all these series are driven by a single factor, it is natural to ask how they relate to

each others. Thus I measure the correlation between the first and second principal compo-

nents of each variables in Table 2.6 and 2.5. Note that to measure the correlation between

these objects, I first remove the linear trend from the components to have stationary series.

As shown in Figure 2.3, the first principal component of credit spreads is highly correlated

with the first principal components of leverage, aggregate equity volatility, and idiosyncratic

equity volatility (see Table 2.6). The first principal component of credit spreads, leverage,

and total equity volatility by rating classes (15 time series in total) explain 78% of total

variation. Therefore, a single factor can account for the joint macroeconomic dynamics of

14



component log(cs) lev log
(
σE
)

log
(
σE,A

)
log
(
σE,I

)
1 89.11 52.83 90.40 92.87 89.86
2 5.10 16.60 3.30 3.49 4.26
3 2.07 7.61 2.10 1.37 1.50
4 1.00 4.00 0.69 1.07 1.03
5 0.76 3.84 0.55 0.41 0.71

Table 2.3: Percentage of the Total Variance Explained by each Principal Component with
19 Rating Classes This table displays the percentage of the total variance explained by the principal
components of each variable averaged within 19 rating classes: AAA,AA+/−, A+/−, BBB+/−, BB+/−, and
B+/−, where log(cs) is log credit spread, lev is market leverage, log

(
σE
)

is log equity return total volatility,

log
(
σE,A

)
is log equity return aggregate volatility, and log

(
σE,I

)
is log equity return idiosyncratic volatility.

1 2

AAA/AA 0.45 -0.58
BBB 0.45 -0.43
BB 0.46 0.09
B 0.44 0.33
CCC 0.43 0.61

Table 2.4: First Two Principal Component Coefficients This table displays the first two principal
component coefficients of log credit spreads averaged within 5 rating classes: AAA/AA, BBB, BB, B, and
CCC.

firms’ credit spreads, leverage, and total equity volatility.

These empirical regularities motivate the use of fluctuations in macroeconomic conditions—

i.e., a factor common to all firms—to explain fluctuations in credit spreads, leverage, and

equity volatility over time and in the cross-section in Chapter 3.

2.3 Excess Bond Premium

In the previous sections, I show that a single common factor is driving credit spreads, lever-

age, and equity volatility. In this section, I discuss the estimation of this common factor and

show how it relates to the excess bond premium of Gilchrist and Zakraǰsek (2012), leverage,

and equity volatility.

Following Gilchrist and Zakraǰsek (2012), I decompose credit spreads into (1) a compo-

nent that captures the systematic movements in default risk of individual firms and (2) a

15



log(cs) lev log
(
σE
)

log
(
σE,A

)
log
(
σE,I

)
log(cs) 1.0000 0.2946 0.6178 0.4647 0.5903
lev 0.2946 1.0000 0.0823 -0.1613 0.2095
log
(
σE
)

0.6178 0.0823 1.0000 0.7074 0.8741
log
(
σE,A

)
0.4647 -0.1613 0.7074 1.0000 0.4316

log
(
σE,I

)
0.5903 0.2095 0.8741 0.4316 1.0000

Table 2.5: Second Principal Components Correlation Matrix This table displays the correlation
between the second principal components of each variable averaged within 5 rating classes: AAA/AA, BBB,
BB, B, and CCC where log(cs) is log credit spread, lev is market leverage, log

(
σE
)

is log equity return total

volatility, log
(
σE,A

)
is log equity return aggregate volatility, and log

(
σE,I

)
is log equity return idiosyncratic

volatility.

log(cs) lev log(σE) log(σE,A) log(σE,I)

log(cs) 1.00 0.72 0.75 0.74 0.72
lev 0.72 1.00 0.53 0.53 0.47
log(σE) 0.75 0.53 1.00 0.94 0.98
log(σE,A) 0.74 0.53 0.94 1.00 0.87
log(σE,I) 0.72 0.47 0.98 0.87 1.00

Table 2.6: First Principal Components Correlation Matrix This table displays the correlation be-
tween the first principal components of each variable, averaged within 5 rating classes: AAA/AA, BBB, BB,
B, and CCC where log(cs) is log credit spread, lev is market leverage, log(σE) is log total equity volatility,
log(σE,A) is log aggregate equity volatility, and log(σE,I) is log idiosyncratic equity volatility.

residual component – sometimes called the excess bond premium – that represents the time

variation in the average price of bearing exposure to US corporate credit risk, above and

beyond the compensation for expected defaults. However, if some variables that proxies for

credit risk are highly correlated with the excess bond premium, such an estimation cannot

be done consistently by taking the average of the error term of a panel regression of credits

spreads on credit risk variables. Indeed, in that case, the exogeneity condition of the error

term will be violated. Credit spreads are highly correlated with aggregate firm leverage and

aggregate equity return volatility, themselves important indicators of credit risk. Therefore,

I estimate the common factor in corporate bond credit spreads – the common time varying

fluctuations in credit spreads not explained by cross-sectional differences in credit risk vari-

ables – by using a time fixed effect. This time fixed effect will absorb any effect coming from

aggregate time varying changes, whether it comes from changes in aggregate firms’ credit

risk or from a bond risk premium.
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Figure 2.3: First Principal Components These series represents the first principal components of each
variable averaged within 5 rating classes: AAA/AA, BBB, BB, B, and CCC.

The log of the option adjusted credit spread issued by firm i at time t is assumed to

be related linearly to a vector of firm- and bond-specific characteristic xit that proxies for

default risk according to

log(csit) = ci + γt + xitβ + εit.

The time fixed-effect γt will capture time variations in the average credit spread. The

necessary assumption required for consistent estimation is strict exogeneity of the error with

the explanatory variables of all past, current and future time periods of all individuals, i.e.

E [εit|X,y] = 0.

I can estimate the model by double-demeaning the data:

ÿit = yit − ȳi − ȳt + ¯̄y,

ẍit = xit − x̄i − x̄t + ¯̄x,
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Figure 2.4: Predicted Monthly Average Credit Spread The average option adjusted credit spread cst
is constructed as 1

N

∑N
i=1 csit. The predicted monthly average credit spread ĉst is given by 1

N

∑N
i=1 exp(ĉi+

γ̂t + xitβ̂ + σ̂2/2), while the predicted monthly average credit spread ĉst without the time trend γt is given

by 1
N

∑N
i=1 exp(ĉi + xitβ̂ + σ̂2/2). Grey area represents U.S. recession as defined by National Bureau of

Economic Research.

where yit = log(csit) and

ȳi =
1

T

T∑
t=1

yit, ȳt =
1

N

N∑
i=1

yi, ¯̄y =
1

NT

T∑
t=1

N∑
i=1

yi.

Then I regress ÿit on ẍit to get β̂ as I now have

ÿit = ẍitβ + ε̈it.

I allow for the error term to be correlated over time for each individual and across individuals

for each time period by clustering by firm and month. Table 2.1 shows the results of different

specifications. The time fixed effect can then be retrieved as

γ̂t = ȳt − ¯̄y − (x̄t − ¯̄x)Tβ̂.

Assuming normally distributed disturbances, the predicted level of the spread for firm i at

time t is given by

ĉsit = exp
(
ĉi + γ̂t + xitβ̂ + σ̂2

x/2
)
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Figure 2.5: Biased and Non-Biased Credit Spreads Common Factor See text for the definition
of the non-biased common factor in credit spreads CSCF and the biased common factor in credit spread

C̃SCF . Grey area represents U.S. recession as defined by National Bureau of Economic Research.
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Figure 2.6: Excess Bond Premium and Biased Credit Spreads Common Factor with Treasury

Factors See text for the definition of the biased credit spread time trend C̃SCF with treasury factors. The
excess bond premium is taken directly from the website of Gilchrist. Grey area represents U.S. recession as
defined by National Bureau of Economic Research.

where σ̂2
x is the estimated variance of the disturbance term εit. The CSCF in period t is then

defined by the following linear decomposition2:

CSCFt =
1

N

N∑
i=1

csit −
1

N

N∑
i=1

ĉsit.

Figure 2.4 shows the actual and predicted credit spreads while Figure 2.5 shows the estimated

CSCF. In the same figure, I also show the excess bond premium estimated by Gilchrist

and Zakraǰsek (2012) and a time time fixed effect that would result from the biased OLS

2We could also estimate the CSCF with exp (γ̂t). The results are essentially the same with
corr(CSCFt, exp (γ̂t)) = 0.98.
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estimation of

log(csit) = xitβ̃ + ε̃it.

This specification suffer from an omitted variable bias with no time trend variable included

in the regression. It is easy to verify that the residuals from this regression are highly cross-

correlated, and principal components analysis implies that they are mostly driven by a single

common factor. The predicted level of the spread for firm i at time t is then given by

̂̃csit = exp

(
xit
̂̃
β + ̂̃σ2

x/2

)

where ̂̃σ2

x is the estimated variance of the disturbance term ε̃it. The biased CSCF can then

be constructed as

C̃SCF t =
1

N

N∑
i=1

csit −
1

N

N∑
i=1

̂̃csit.
By introducing factors controlling for the monetary stance3 in this biased OLS regression,

I obtain a time series very close to the excess bond premium estimated by Gilchrist and

Zakraǰsek (2012). The comparison can be see in Figure 2.6.

The CSCF can be decomposed into three components: (1) the first principal component

of median log equity return volatility by rating classes, (2) the first principal component of

median log quasi-market leverage by rating classes, and (3) Treasury yield curve level and

slope. The result is shown in Figure 2.7. More precisely I regress the estimated CSCF γ̂t on

3Gilchrist and Zakrasjek (2012) use thee factors: the level, slope, and curvature of the Treasury yield
curve.
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Figure 2.7: Predicted Credit Spreads Common Factor The predicted common factor in credit spreads
γ̂t is constructed by regressing CSCF on (1) the first component of median log idiosyncratic volatility by
rating classes, (2) the first component of median log quasi-market leverage by rating classes, and (3) Treasury
yield curve level and slope. Grey area represents U.S. recession as defined by National Bureau of Economic
Research.

these three components according to

γ̂t = α0 + α1FPC (lev)t + α2FPC (σ)t + α3TLEVt + α4TSLOt

+ α51 {t ≤ NOV 1982}TLEVt + α61 {t ≤ NOV 1982}TSLOt + νit, (2.1)

where FPC[lev]t is the first principal component of leverage by rating classes, FPC[σ]t is the

first principal component of monthly equity return volatility by rating classes, and TLEVt

and TSLOt are the level and the slope of the Treasury yield curve. The level and slope factors

correspond, respectively, to the first two principal components of nominal Treasury yields at

3-month, 6-month, and 1-, 2-, 3-, 5-, 7-, 10-, 15-, and 30-year maturities. 1 {t ≤ NOV 1982}

is a dummy variable equal to one if the date occurs before November 1982. The date of the

structural break for Treasury yields curve factors is chosen in order to maximize the Akaike

information criterion. This regression has an adjusted-R2 of 81%. The results are detailed

in Table 2.7. The predicted CSCF is then given by:

ĈSCF t = exp
(
ztα̂+ σ̂2

z/2
)
,

where zt is the vector of explanatory variables from (2.1) and σ̂2
z is the estimated variance
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Figure 2.8: Credit Spreads Common Factor Components Each graph shows the contribution of
different components combination. For example, the graphs “Treasury Factors” shows the CSCF predicted
with treasury factors only while holding the first principal components of leverage and equity volatility
constants at their means but using the coefficient from the full regression. Grey area represents U.S. recession
as defined by National Bureau of Economic Research.

of the disturbance term νit. Figure 2.7 shows the results of this decomposition, while Figure

2.8 illustrates the contribution of each component.
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csttt

(1) (2) (3) (4)

Treasury Factors X X X X
PCA(lev)t 0.330 0.168

(0.036) (0.013)
PCA(σ)t 0.086 0.045

(0.006) (0.005)

Adjusted R2 0.582 0.779 0.727 0.81

Table 2.7: Components of the Common Factor in Credit Spreads 502 monthly observations from
January 1973 to October 2014. PCA[lev]t is the first principal component of leverage by rating classes,
PCA[σ]t is the first principal component of monthly equity return idiosyncratic volatility by rating classes,
and Treasury Factors include the level and the slope of the Treasury yield curve. The level and slope factors
correspond, respectively, to the first two principal components of nominal Treasury yields at 3-month, 6-
month, and 1-, 2-, 3-, 5-, 7-, 10-, 15-, and 30-year maturities. I also included a dummy variables equal to
one if the date occurs before November 1982 that interact with the Treasury Factors only.
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Chapter 3

Macroeconomic Model of Credit Risk

In this chapter, I provide a structural model to explain the common macrodynamics of

credit spreads, leverage, idiosyncratic, and aggregate equity volatility uncovered in Chapter

2. I introduce secondary over-the-counter market search frictions (as in Duffie, Gârleanu,

and Pedersen, 2005) into a structural credit risk model with macroeconomic fluctuations (as

in Chen, 2010). My model is similar to Chen, Cui, He, and Milbradt (2016), except that

I assume different shocks to state-dependent parameters and provide a solution that allows

the estimation of a large number of Markov states.

3.1 Shocks and Technology

Shocks There are two types of shocks in this economy: small and frequent shocks to firms’

asset values and large but infrequent shocks to macroeconomic conditions. Shocks to macroe-

conomic conditions include shocks to bankruptcy costs, firms’ aggregate and idiosyncratic

asset volatility, and the market price of risk. Specifically, the small and frequent shocks

are represented by diffusions: namely, a standard Brownian motion ZA
t generates aggregate

shocks common to all firms, while a standard Brownian motion ZI
t provides idiosyncratic

shocks, on a complete probability space (Ω,F ,P). The large and infrequent shocks are

represented by a continuous time Markov chain: the aggregate state st follows an S-state
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time-homogeneous Markov chain, and takes values in the set {1, . . . , S}. The physical tran-

sition density between state s and state s′ is denoted by ζss
′

P . Equivalently, this Markov

chain can be expressed as a sum of Poisson processes,

dst =
∑
st 6=st−

(st − st−)dN
(st− ,st)
t ,

where N
(s,s′)
t are independent Poisson processes with intensity parameters ζss

′
P . Because

shocks to macroeconomic conditions are state-dependent, they comove together with the

Markov states. However their correlation structure is not restricted by the Markov chain.

Stochastic Discount Factor I assume an exogenous stochastic discount factor that fol-

lows a Markov-modulated jump-diffusion process:

dΛt

Λt

= −r(st)dt− η(st)dZ
A
t +

∑
st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t (3.1)

where r(s) is the risk-free rate, κ(s, s′) is the relative jump size of the discount factor when

the Markov chain switches from state s to s′, and Mt is a matrix of compensated processes

such that

dM
(s,s′)
t = dN

(s,s′)
t − ζss′P .

The risk price of aggregate shocks is given by η(s). Changes in the state of the economy

cause jumps in the discount factor. The relative jump sizes κ(s, s′) of the stochastic discount

factor are the risk prices for these shocks. Transition intensities are adjusted by the size of

the corresponding jump in the stochastic discounts factor κ(s, s′) such that

ζss
′

Q = eκ(s,s
′)ζss

′

P
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under the risk-neutral measure Q.

Firm’s Cash Flows Let yt be an individual firm’s cash flow level, which follows the process

dyt
yt

= µY,Fdt+ σY,A(st)dZ
A
t + σY,I(st)dZ

I
t , (3.2)

where σY,A(s) and σY,I(s) are the firm’s cash flow aggregate and idiosyncratic volatility,

respectively, which vary with the state variable s. Given the stochastic discount factor Λt,

the cash flow process under the risk-neutral measure Q becomes

dyt
yt

= µY,Q(st)dt+ σY,T (st)dZ
Q
t ,

where ZQt is a standard Brownian motion under Q. The state-dependent risk-neutral growth

rate and total volatility are given by

µY,Q(st) = µY,F − σY,Aη(st),

σY,T (st) =
√

(σY,A(st))2 + (σY,I(st))2.

Firm’s Asset Value Given the current cash flow level yt and the state of the economy st,

the value of the firm’s assets is

Vt = v(st)yt,

where the price-earnings ratio v(·) is given by a vector v = [v(1), . . . , v(S)]T solving

v =
(
r− µY,Q − ζQ

)−1
1. (3.3)

In equation (3.3), r is an S×S diagonal matrix with its i-th diagonal element given by r(i),

µY,Q is an S×S diagonal matrix with its i-th diagonal element given by µQ(i), the vector 1
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is an S×1 vector of ones, and ζQ is the generator of the Markov chain under the risk-neutral

measure:

[ζQ]
ss′

= ζss
′

Q , s 6= s′

[ζQ]
ss

= −
∑
s 6=s′

ζss
′

Q .

Therefore, the value of the firm’s assets inherits the drift and the volatility of the cash

flow process and follows a Markov-modulated jump-diffusion under the physical measure P

according to:

dVt
Vt

= µY,Fdt+ σY,A(st)dZ
A
t + σY,I(st)dZ

I
t +

∑
st 6=st−

(v(st)/v(st−)− 1) dN
(st− ,st)
t , (3.4)

where v(s′)/v(s) represents the jump in asset value from state s to state s′. Thus, I will refer

to σY,A(s) and σY,I(s) as the firms’ aggregate and idiosyncratic asset volatility, respectively.

Financing and Default Firms can issue two types of financial assets: debt and equity.

Firms make financing and default decisions with the objective of maximizing equity holders’

value. Because interest expenses are tax deductible, firms lever up with debt to exploit the

tax shield (e.g., Leland, 1994). As the amount of debt increases, so does the probability

of default, which raises the expected default losses. Thus, firms will lever up to a point at

which the net marginal benefit of debt is zero.

In each period, a levered firm first uses its asset returns to make interest payments, then

pays taxes, and distributes the rest to equity holders as dividends. The firm is able to

issue equity to cover the firm’s interest expenses when internally generated returns are not

sufficient. The firm defaults when equity holders are no longer willing to inject more capital.

Equity holders use the stochastic discount factor given in equation (3.1) to price the firm’s

continuation value.

The firm has a unit measure of bonds in place that are identical except for their time
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to maturity, with the individual bond coupon and face value being c and p. Equity holders

commit to keeping the aggregate coupon and outstanding face value constant before default,

and thus issue new bonds of the same average maturity as the bonds that are maturing.

Each bond matures with intensity m, and the maturity event is independent and identically

distributed across individual bonds. Thus, by the law of large numbers, over [t, t + dt) the

firm retires a fraction mdt of its bonds. This implies an expected average debt maturity of

1/m.

At the time of default, the absolute priority rule applies. Specifically, equity holders

receive nothing at default, whereas debt holders recover only a fraction α(s) of the value

of the firm’s assets due to bankruptcy costs. Thus, in the event of default in state s, bond

holders receive

α(s)v(s)d(s),

where d(s) is the asset return level at which equity holders decide to default and v(s) is

found in equation (3.3).

3.2 Liquidity Frictions

Liquidity frictions potentially account for a significant fraction of credit spreads. Adding

over-the-counter liquidity frictions to the model yields predictions for bid-ask spreads, an

important empirical measure of distress in market liquidity. All trades must be intermediated

through dealers. Bond investors use the stochastic discount factor given in equation (3.1)

to price bonds. They can hold either zero or one unit of the bond. They start in the H

state without any holding cost when purchasing corporate bonds in the primary market. As

time passes, H-type bond holders are hit by idiosyncratic liquidity shocks with intensity ξH .

These liquidity shocks lead them to become L-types, who bear a positive holding cost per

unit of time. L-type bond holders then look for a dealer to intermediate a transaction with
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an H-type bond holder. L-type investors leave the market forever after successfully selling

the bond. Following He and Milbradt (2014), the secondary market is a sellers’ market.

That is, the flow of H-type buyers contacting dealers is assumed to be greater than the flow

of L-type sellers contacting dealers.

Holding Costs and Equilibrium Prices Chen, Cui, He, and Milbradt (2016) provide

microfoundations for the functional form of holding costs. The core idea is that when an

agent is hit by a liquidity shock, he will need to raise an amount of cash that is large relative

to his financial asset holdings. This assumption implies that the agent will borrow at a high

uncollateralized rate, in addition to selling all of his liquid assets. The agent can reduce

the financing cost of uncollateralized borrowing by using the bond as collateral. Intuitively,

a more risky collateral asset will face a larger haircut, which lowers its marginal value for

an investor hit by liquidity shocks. This interaction between holding costs and bond prices

create an amplification mechanism between credit risk and liquidity frictions: Higher default

risk increases holding costs and reduces the bond price; A lower bond price increases the

cost of rolling over maturing debt, and therefore increases credit risk.

As in Chen, Cui, He, and Milbradt (2016), I specify holding costs hc that depend on

prevailing bond prices as follows:

hc(y, s) = χ(B(s) +N − P (y, s)) (3.5)

where N , χ are positive constants and P (y, s) is the endogenous market price of the bond

as a function of the log asset return y. B(s) is the value of a bond that delivers the same

interest payments but without the risk of default or illiquidity shocks. That is, B(s) is the

s-th value of the vector B given by

B = (r + diag(m)− ζQ)−1 (c1 +mp1).
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Thus, holding costs depend linearly on the bond price with an intercept of χ(B(s) +N) and

a slope of χ. When the bond becomes riskier, its price decreases. In turn, holding costs

increases. This effect feeds back into the bond price and leads to an amplification effect.

As in Duffie, Gârleanu, and Pedersen (2005), Nash-bargaining weights are assumed to

be constant across all dealer-investor pairs, β for the investor and 1− β for the dealer. The

observed bond prices are assumed to be mid-prices between the bid and ask prices in the

secondary market, i.e.,

P (y, s) =
(1 + β)DH(y, s) + (1− β)DL(y, s)

2
, (3.6)

where DH (DL) is the bond value of an H-type (L-type) bond investor. It is assumed that the

L-type is absorbing, i.e., those L-type investors leave the market forever after successfully

selling the bond. However, an L-type bond holder meets a dealer with intensity λ and sells

the bond for βDH(y, s) + (1 − β)DL(y, s). Thus the L-type intensity-modulated surplus

when meeting the dealer can be rewritten as

λβ(DH(y, s)−DL(y, s)).

3.3 Debt and Equity Valuation

When taking all the elements cited above together, the risky debt valuation DH
s (y) in state

s ∈ {1, . . . , S} must satisfy

r(s)DH(y, s) = µY,Q(s)
∂DH

s (y, s)

∂ log(y)
+ 0.5σ2

Y,T (s)
∂2DH(y, s)

∂ log(y)2
+ c+m(p−DH(y, s))

+
∑
s′ 6=s

ζss
′

Q (DH(y, s′)−DH(y, s)) + ξH(DL(y, s)−DH(y, s)),

where ζQss′ is the transition intensity from state s to state s′, ξH is the transition from type

H to type L, and m is the intensity of bonds maturing, upon which the bond holders receive
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the principal value of the bond p. Similarly, the risky debt valuation DL(y, s) in state

s ∈ {1, . . . , S} must satisfy

r(s)DL(y, s) = µY,Q(s)
∂DL(y, s)

∂ log(y)
+ 0.5σ2

Y,T (s)
∂2DL(y, s)

∂ log(y)2
+ c+m(p−DL(y, s))

+
∑
s′ 6=s

ζss
′

Q (DL(y, s′)−DL(y, s)) + λβ(DH(y, s)−DL(y, s))

− χ(B(s) +N − P (y, s)),

where λβ(DH(y, s)−DL(y, s)) is the intensity-modulated surplus when meeting the dealer.

The equity valuation E(y, s) in state s ∈ {1, . . . , S} must satisfy

r(s)E(y, s) = µY,Q(s)
∂E(y, s)

∂ log(y)
+ 0.5σ2

Y,T (s)
∂2E(y, s)

∂ log(y)2
+ y − (1− τ)c+m(DH(y, s)− p)

+
∑
s′ 6=s

ζssQ (E(y, s′)− E(y, s)), (3.7)

where c is the coupon, τ the tax benefits of debt. With intensity m, the firm refinances

maturing bonds at market vale DH(y, s). Finding equity and bond prices

{
E(y, s), DH(y, s), DL(y, s)

}
y∈R,s∈S

requires to solve a system of second order ordinary differential equations with endogenous

boundaries by the method of undertermined coefficients. Default boundaries d(s) are solved

numerically such that the following smooth-pasting conditions are satisfied:

∂Es(y)

∂y

∣∣∣∣
y=d(s)

= 0 for all s.
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3.4 Solution

The solution method presented in this section is based on Chen, Cui, He, and Milbradt

(2016) and extended to accommodate a large amount of shocks and Markov states.

Notation for Matrix Formulation I follow the Markov-modulated dynamics approach

of Jobert and Rogers (2006). Define x to be the log of the level of cash flows given by:

dx = µsdt+ σsdZt

where Zt is a Brownian motion and

µs = µY,Q(s)− 1/2σ2
Y,T (s).

The firm go bankrupt if x becomes lower than given bankruptcy boundaries in each state.

There are multiple possible bankruptcy boundaries, xbs , for each aggregate state s. Order

states s such that s > s′ implies that xbs > xbs′ and denote the intervals Is = [xbs, xbs+1]

where xbS+1 = ∞, so that Is ∩ Is+1 = xbs+1. Let xb = [xb1, ..., xbs]
T be the vector of

bankruptcy boundaries. Let’s use the following notation for the solution of debt functions

within each interval: Dj
s,i ≡ Dj

s(x), x ∈ Ii, that is Dj
s,i is the restriction of Dj

s(x) to the

interval Ii. Thus, Dj
s,i = recovery value for any i < s, as it would imply that the company

immediately defaults in interval Ii for state s. Let’s stack the alive functions along states s

but still restricted to interval i so that Di = [DH
1,i, D

L
1,i, D

H
2,i, D

L
2,i, . . . , D

H
i,i, D

L
i,i]

T. Let Ii be

the i-dimensional identity matrix, and let be 1i a column vector of ones of length i. Let’s
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define matrices of parameters Ri,Qi,Gi,bi,Ni, chii,Σi, and µi such that:

Ri =



ri +m+
∑

s 6=1 ζ
1s
Q 0 · · · −ζ1iQ 0

0 ri +m+
∑

s 6=1 ζ
1s
Q · · · 0 −ζ1iQ

...
...

. . .
...

...

−ζ i1Q 0 · · · ri +m+
∑

s 6=i ζ
is
Q 0

0 −ζi,1 · · · 0 ri +m+
∑

s 6=i ζ
is
Q


,

Qi =



ξH −ξH · · · 0 0

−ξL − χ(1 + β)/2 ξL − χ(1− β)/2 · · · 0 0

...
...

. . .
...

...

0 0 · · · ξH −ξH

0 0 · · · −ξL − χ(1 + β)/2 ξL − χ(1− β)/2


,

Gi =



ζ1i+1
Q 0 · · · ζ1SQ 0

0 ζ1i+1
Q · · · 0 ζ1SQ

...
...

. . .
...

...

ζ ii+1
Q 0 · · · ζ iSQ 0

0 ζ ii+1
Q · · · 0 ζ iSQ


, bi =



αHi+1vi+1

αHi+1vi+1

...

αHS vS

αLSvS


,

Ni = [0, N, · · · , 0, N ]T, χi = diag ([χ1, χ1, · · · , χi, χi]), Σi = diag ([σ2
1, σ

2
1, · · · , σ2

i , σ
2
i ]), and

µi = diag ([µ1, µ1, · · · , µi, µi]).
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3.4.1 Debt Value

Debt valuation follows the following differential equation on interval Ii:

(Ri + Qi)Di(x) = µiD
′
i(x) + 0.5ΣiD

′′
i (x) + (c+mp)12i − χiNi + 1{i < S}Gibi exp(x)

where Gibi exp(x) represents the intensity of jumping into default times the recovery in the

default state. We can rewrite the problem as a linear system of differential equations as

z′(x) =

 D′′i (x)

D′i(x)

 =

 −2Σ−1i µi 2Σ−1i (Ri + Qi)

I2i 02i


 D′i(x)

Di(x)

+ fi(x)

= Aizi(x) + fi(x)

where

fi(x) =

 −(c+mp)2Σ−1i 12i + 2Σ−1i χiNi − 1{i < S}2Σ−1i Gibi exp(x)

02i

 .
We know that the general solution zi(x) is given by the expression

zi(x) = zhi (x) + zpi (x).

The term zhi (x) is the general solution of the homogeneous equation z′i(x) = Aizi(x) in which

are to be found 4i arbitrary constants c1, . . . , c4i. The term zpi (y) is a particular solution of

z′i(x) = Azi(y) + fi(y). The general solution of the linear system z′i(x) = Azi(x) is given by

xi(x) = c1ih
1
i e
λ1i y + . . .+ c4ii h4i

i e
λ4ii x = HiΛi(y)ci.
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where (λ1i ,h
1
i ), . . ., (λ4ii ,h

4i
i ) are the eigenpairs of Ai with 4i independent eigenvectors, and

Hi = [h1
i , . . . ,h

4i
i ],

ci = [c1i , . . . , c
4i
i ]T,

Λi(x) = diag
([
eλ

1
i x, . . . , eλ

4i
i x
])
.

We can guess a solution of the kind k0
i +k1

i exp(x) for the particular solution zpi[1:2i](y) where

z[1:2i] selects the first 2i rows of vector z. Therefore, we can solve for the coefficients by

substituting in:

(Ri + Qi)
(
k0
i + k1

i exp(x)
)

= µik
1
i exp(x) + 0.5Σik

1
i exp(x)

+ (c+mp)12i − χiNi + 1{i < S}Gibi exp(x),

and solve for any value of x. This gives us

k0
i = (Ri + Qi)

−1 ((c+mp)12i − χiNi) ,

k1
i = (Ri + Qi − µi − 0.5Σi)

−1 1{i < S}Gibi.

Thus we have

Di(x) = H̃iΛi(x)ci + k0
i + k1

i exp(x)

where H̃i = Hi[1:2i] and

D′i(x) = H̃iλiΛi(x)ci + k1
i exp(x).
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where

λi = diag
([
λ1i , . . . , λ

4i
i

])
.

Boundary Conditions The different value functions Di for i ∈ {1, . . . , S} are linked at

the boundaries of their domains Ii. Note that Ii ∩ Ii+1 = xbi+1 for i < S.

For i = S , we can immediately rule out all positive solutions to λi as debt has to be

finite and bounded as x→∞, so that the entries of ci corresponding to positive eigenvalues

will be zero:

lim
x→∞
|DS(y)| <∞.

For i < S, we must have value matching of the value functions that are alive across the

boundary, and we must have value matching of the value functions that die across the

boundary:

Di+1(xbi+1) =

 Di(xbi+1)

di+1 exp(xbi+1)

 ,
where

di+1 =

 αHi+1vi+1

αLi+1vi+1

 .
For i < S, we must have smooth pasting of the value functions that are alive across the

boundary:

D′i+1(xbi+1)[1:2i] = D′i(xbi+1).
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Lastly, for i = 1, we must have

D1(xb1) = d1 exp(xb1).

Therefore, given xb the system of 2S2 + 2S equations to solve for ci ∀i ∈ 1, . . . , S can be

given by

H̃i[2i−1:2i]Λi(xbi)ci + k0
i[2i−1:2i] + k1

i[2i−1:2i] exp(xbi) = di exp(xbi) for i = 1, . . . , S

H̃i[1:2i−2]Λi(xbi)ci + k0
i[1:2i−2] + k1

i+1[1:2i−2] exp(xbi) = H̃i−1Λi−1(xbi)ci−1 + k0
i−1 + k1

i−1 exp(xbi)

H̃i[1:2i−2]λiΛi(xbi)ci + k1
i[1:2i−2] exp(xbi) = H̃i−1λi−1Λi−1(xbi)ci−1 + k1

i−1 exp(xbi)

for i = 2, . . . , S, and

lim
x→∞
|DS(x)| <∞.

We can define squared matrices Mi, M̃i, �Mi, Ki, K̃i , and sKi as

Mi(x) =

 H̃iΛi(x)

H̃iλiΛi(x)

 , Ki(x) =

 k0
i + k1

i exp(x)

k1
i exp(x)

 ,

M̃i(x) =

 H̃i[1:2i−2]Λi(x)

H̃i[1:2i−2]λiΛi(x)

 , K̃i(x) =

 k0
i[1:2i−2] + k1

i[1:2i−2] exp(x)

k1
i[1:2i−2] exp(x)

 ,

�Mi(x) = H̃i[2i−1:2i]Λi(x), sKi(x) = k0
i[2i−1:2i] + k1

i[1:2i−2] exp(x).

With this notation, we can express ci as a linear system of ci+1 with the smooth pasting
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conditions:

ci = Mi(xbi+1)
−1M̃i+1(xbi+1)ci+1 + Mi(xbi+1)

−1
(
K̃i+1(xbi+1)−Ki(xbi+1)

)
.

Going forward, we can express ci as a linear system of cS:

ci = MMicS + KKi,

where

MMi =

(
S−1∏
j=i

Mj(xbj+1)
−1M̃j+1(xbj+1)

)
,

KKi =
S−1∑
k=i

(
k−1∏
j=i

Mj(xbj+1)
−1M̃j+1(xbj+1)

)
Mk(xbk+1)

−1
(
K̃k+1(ybk+1)−Kk(xbk+1)

)
.

The default boundary conditions can then be expressed as a linear system of cS:

�Mi(xbi)MMicS = di exp(xbi)−�Mi(xbi)KKi − sKi(xbi).

Stacking all the default boundary conditions, we obtain a squared matrix which can be

inverted:

cS =



�M1(xb1)MM1

...

�MS−1(xbS−1)MMS−1

�MS(xbS)

LS



−1 

d1 exp(xb1)−�M1(xb1)KK1 − sK1(xb1)

...

dS−1 exp(xbS−1)−�MS−1(xbS−1)KKS−1 − sKS−1(xbS−1)

dS exp(xbS)− sKS(xbS)

02S×1


,

where LS is a 2S× 4S matrix such that LcS is the 2S× 1 row vector of ckS such that λkS > 0.
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Therefore, given xb, solving for bond valuations resorts to solve for 2S2− 2S eigenpairs and

inverse a 4S × 4S matrix.

Example with 2 States and No Search/Liquidity Frictions The first second order

differential to be satisfied is given by:

(r1 +m+ ζ1)D1(x) = µ1D
′
1(x) + 0.5σ2

1D
′′
1(x) + (c+mp) + ζ1α2v2 exp(y).

The solution will be of the form:

D1(x) = c11e
λ11x + c21e

λ21x + k01 + k11 exp(x).

We can solve for the eigenvalues as

A1 =

 −2σ−21 µ1 2σ−21 (r1 +m+ ζ1)

1 0

 ,

det


 −2σ−21 µ1 − λ 2σ−21 (r1 +m+ ζ1)

1 −λ


 = λ2 + 2σ−21 µ1λ− 2σ−21 (r1 +m+ ζ1),

λ1,21 =
−µ1 ±

√
µ2
1 + 2σ2

1(r1 +m+ ζ1)

σ2
1

.

The constant terms k01 and k11 need to satisfy

(r1 +m+ ζ1)
(
k01 + k11 exp(x)

)
= µ1k

1
1 exp(y) + 0.5σ2

1k
1
1 exp(x) + (c+mp) + ζ1α2v2 exp(x).
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Therefore,

k01 =
c+mp

r1 +m+ ζ1
,

k11 =
ζ1α2v2

r1 +m+ ζ1 − µ1 − 0.5σ2
1

.

The second differential to be satisfied is given by:

 r1 +m+ ζ1 −ζ1

−ζ2 r2 +m+ ζ2

D2(x) =

 µ1 0

0 µ2

D′2(x) + 0.5

 σ2
1 0

0 σ2
2

D′′2(x) +

 c+mp

c+mp

 .
The solution will be of the form:

D2(x) = c12h2[1:2]e
λ12x + c22h2[1:2]e

λ22x + k0
2,

where we already discarded the general solutions with positive eigenvalues. We have to solve

for the eigenvalues of

A2 =



−2σ−21 µ1 0 2σ−21 (r1 +m+ ζ1) −σ−21 ζ1

0 −2σ−22 µ2 −σ−22 ζ2 2σ−22 (r2 +m+ ζ2)

1 0 0 0

0 1 0 0


.

The presence of ζi’s make the analytical solution to this problem not feasible to write in this

document. The constant terms k01 and k11 need to satisfy

k0
2 =

 r1 +m+ ζ1 −ζ1

−ζ2 r2 +m+ ζ2


−1  c+mp

c+mp

 .

40



3.4.2 Equity Value

With regime switching and debt rollover, the equity valuation Es(·) in state s ∈ 1, . . . , S and

log cash flows x must satisfy

rsEs(x) = µsE
′
s(x) + 0.5σsE

′′
s (x) + exp(x)− (1− τ)c+m(Ds(x)− p)

+
∑
i 6=s

ζs,i(Ei(x)− Es(x)),

where c is the coupon, m the debt rollover rate, τ the tax benefits of debt, ζs,i the transition

intensity from state s to state i, and w the issuance cost. In matrix form, and using the

same interval notation as for the bond valuation, we have:

R̂iEi(x) = µ̂iE
′
i(x) + 0.5Σ̂iE

′′
i (x) + (exp(x)− (1− τ)c) 1i +m (SiDi(x)− p1i) .

Matrices specific to solving the equity valuations will be written with a hat. We define the

following matrices of parameters:

R̂i =


r1 + ζ1 · · · −ζ1,i

...
. . .

...

−ζi,1 · · · ri + ζi

 ,

Si =



1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 0


,
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and Σ̂i = diag ([σ2
1, · · · , σ2

i ]), µ̂i = diag ([µ1, · · · , µi]). Si is a i× 2i matrix that selects which

debt values the firm is able to issue. We can rewrite the problem as a linear system of

differential equations as

ẑ′(x) =

 E′′i (x)

E′i(x)

 =

 −2Σ̂−1i µ̂i 2Σ̂−1i R̂i

Ii 0i


 E′i(x)

Ei(x)

+ f̂i(x) = Âix̂i(x) + f̂i(x)

where

f̂i(x) =

 − (exp(x)− (1− τ)c) 1i −m (SiDi(x)− p1i)

0i

 .
We know that the general solution x̂i(y) is given by the expression

ẑi(x) = ẑhi (x) + ẑpi (x).

The term ẑhi (x) is the general solution of the homogeneous equation ẑ′i(x) = Âiẑi(x) and

ẑpi (x) is a particular solution. The general solution of the linear system ẑ′i(x) = Âẑi(x) is

given by

ẑi(x) = ĉ1i ĥ
1
i e
λ̂1i x + . . .+ ĉ2ii ĥ2i

i e
λ̂2ii x = ĤiΛ̂i(x)̂ci.

where (λ̂1i , ĥ
1
i ), . . ., (λ̂2ii , ĥ

2i
i ) are the eigenpairs of Âi with 2i independent eigenvectors, and

Ĥi = [ĥ1
i , . . . , ĥ

2i
i ],

ĉi = [ĉ1i , . . . , ĉ
2i
i ]T,

Λ̂i(y) = diag
([
eλ̂

1
i x, . . . , eλ̂

2i
i x
])
.
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I can guess a solution of the kind k̂0
i + k̂1

i exp(x) for the particular solution ẑpi[1:i](x) where

ẑ[1:i] selects the first i rows of vector ẑ generated by the constants and the term in exp(x).

Therefore, we can solve for the coefficients by substituting in and using the particular solution

of Di(x):

R̂i

(
k̂0
i + k̂1

i exp(x)
)

= µ̂ik̂
1
i exp(x) + 0.5Σ̂ik̂

1
i exp(x) + (exp(x)− (1− τ)c) 1i

+m
(
Sik

0
i + Sik

1
i exp(x)− p1i

)
,

and solve for any value of y. This gives us

k̂0
i = R̂−1i

(
−(1− τ)c1i +mSik

0
i −mp1i

)
,

k̂1
i =

(
R̂i − µ̂i − 0.5Σ̂i

)−1 (
1i +mSik

1
i

)
.

For the particular part stemming from the general solution of Di(x) = H̃iΛi(x)ci, we can

conjecture of non-constant part of the form ĜiΛi(x)ci which has to satisfy

R̂iĜiΛi(x)ci =
(
µ̂iĜiλi + 0.5Σ̂iĜiλ

2
i +mSiH̃i

)
Λi(x)ci

for any value of x. Therefore, the following systems have to hold

R̂iĜi[:,j] = µ̂iĜi[:,j]λ
j
i + 0.5Σ̂iĜi[:,j](λ

j
i )

2 +mSiH̃i[:,j]

for all j, where Xi[:,j] selects the jth column of matrix Xi and Xi[k,j] selects the scalar in the

kth row jth column of matrix Xi. Solving for Ĝi[:,j], we have

Ĝi[:,j] =
(
R̂i − µ̂iλ

j
i − 0.5Σ̂i(λ

j
i )

2
)−1

mSiH̃i[:,j].

43



Finally, the general solution is given by

Ei(x) =
̂̃
HiΛ̂i(x)̂ci + ĜiΛi(x)ci + k̂0

i + k̂1
i exp(x)

where
̂̃
Hi = Ĥi[1:i] and X[1:i] selects the first 2i rows of matrix X, and

E′i(x) =
̂̃
Hiλ̂iΛ̂i(x)̂ci + ĜiλiΛi(x)ci + k̂1

i exp(x)

where

λ̂i = diag
([
λ̂1i , . . . , λ̂

2i
i

])
.

Boundary Conditions The different value functions Ei for i ∈ {1, . . . , S} are linked at

the boundaries of their domains Ii. Note that Ii ∩ Ii+1 = xbi+1 for i < S.

For i = S , we can immediately rule out all solutions to λ̂i bigger than 1 as equity over

cash flow has to be finite and bounded as y →∞, so that the entries of ci corresponding to

eigenvalues larger than 1 will be zero:

lim
x→∞
|ES(x) exp(−x)| <∞.

For i < S, we must have value matching of the value functions that are alive across the

boundary, and we must have value matching of the value functions that die across the

boundary:

Ei+1(xbi+1) =

 Ei(xbi+1)

0

 .
For i < S, we must have smooth pasting of the value functions that are alive across the
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boundary:

E′i+1(xbi+1)[1:i] = E′i(xbi+1).

Lastly, for i = 1, we must have

E1(xb1) = 0.

Therefore, given xb the system of 2S(2S + 1)/2 equations to solve for ĉi ∀i ∈ 1, . . . , S

can be given by

̂̃
Hi[i]Λ̂i(xbi)̂ci + Ĝi[i]Λi(xbi)ci + k̂0

i[i] + k̂1
i[i] exp(xbi) = 0 for i = 1, . . . , S

̂̃
Hi[1:i−1]Λ̂i(xbi)̂ci + Ĝi[1:i−1]Λi(xbi)ci + k̂0

i[1:i−1] + k̂1
i[1:i−1] exp(xbi)

=
̂̃
Hi−1Λ̂i−1(xbi)̂ci−1 + Ĝi−1Λi−1(xbi)ci−1 + k̂0

i−1 + k̂1
i−1 exp(xbi)

̂̃
Hi[1:i−1]λ̂iΛ̂i(xbi)̂ci + Ĝi[1:i−1]λiΛi(xbi)ci + k̂1

i[1:i−1] exp(xbi)

=
̂̃
Hi−1λ̂iΛ̂i(xbi)̂ci + Ĝi−1λiΛi(xbi)ci + k̂1

i−1 exp(xbi)

for i = 2, . . . , S, and

lim
x→∞
|ES(x) exp(−x)| <∞.
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We can define squared matrices M̂i,
̂̃
Mi, �̂Mi, K̂i,

̂̃
Ki, and ŝKi as

M̂i(x) =

 ̂̃
HiΛ̂i(x)̂̃

Hiλ̂iΛ̂i(x)

 , K̂i(x) =

 ĜiΛi(xbi)ci + k̂0
i + k̂1

i exp(x)

ĜiλiΛi(xbi)ci + k̂1
i exp(x)

 ,

̂̃
Mi(x) =

 ̂̃
Hi[1:i−1]Λ̂i(x)̂̃

Hi[1:i−1]λ̂iΛ̂i(x)

 , ̂̃
Ki(x) =

 Ĝi[1:i−1]Λi(xbi)ci + k̂0
i[1:i−1] + k̂1

i[1:i−1] exp(x)

Ĝi[1:i−1]λiΛi(xbi)xi + k̂1
i[1:i−1] exp(x)

 ,

�̂Mi(x) =
̂̃
Hi[i]Λ̂i(x), ŝKi(x) = Ĝi[i]Λi(xbi)ci + k̂0

i[i] + k̂1
i[i] exp(x).

With this notation, we can express ĉi as a linear system of ĉi+1 with the smooth pasting

conditions:

ĉi = M̂i(xbi+1)
−1̂̃Mi+1(xbi+1)̂ci+1 + M̂i(xbi+1)

−1
( ̂̃

Ki+1(xbi+1)− K̂i(xbi+1)

)
.

Going forward, we can express ĉi as a linear system of ĉS:

ĉi = M̂MîcS + K̂Ki,

where

M̂Mi =

(
S−1∏
j=i

M̂j(xbj+1)
−1̂̃Mj+1(xbj+1)

)
,

K̂Ki =
S−1∑
k=i

(
k−1∏
j=i

M̂j(xbj+1)
−1̂̃Mj+1(xbj+1)

)
M̂k(xbk+1)

−1
( ̂̃

Kk+1(xbk+1)− K̂t(xbk+1)

)
.
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The default boundary conditions can then be expressed as a linear system of ĉS:

�̂Mi(xbi)M̂MîcS + �̂MiK̂Ki + K̂i = 0.

Stacking all the default boundary conditions, we obtain a squared matrix which can be

inverted:

ĉS =



�̂M1(xb1)M̂M1

...

�̂MS−1(xbS−1)M̂MS−1

�̂MS(xbS)

L̂S



−1 

−�̂M1K̂K1 − K̂1

...

−�̂MS−1K̂KS−1 − K̂S−1

−K̂S

0S


,

where L̂S is a S × 2S matrix such that L̂ĉS is the S × 1 row vector of ĉkS such that λ̂kS > 1.

Therefore, given xb, solving for equity valuations resorts to solve for 2S(2S+1)/2 eigenpairs

and inverse a 2S × 2S matrix.

Bankruptcy Boundaries The optimality conditions to solve for yb is given by

E′i[i](xbi) =
̂̃
Hi[i]λ̂iΛ̂i(xbi)̂ci + Ĝi[i]λiΛi(xbi)ci + k̂1

i[i] exp(xbi) = 0,

i.e., a smooth pasting condition at the boundaries at which default is declared.
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Chapter 4

Disentangling Driving Forces

This chapter is organized as follows. Section 4.1 estimates the shocks of the model.

Section 4.2 calibrates the parameters. Section 4.3 describes the model’s capability to replicate

levels and dynamics of financial indicators. Section 4.4 provides a structural decomposition

of economic channels and shocks to macroeconomic conditions. Finally, Section 4.5 examines

the predictive power of fluctuations in firms’ aggregate asset volatility for economic activity.

4.1 Estimation

In this section, I present the estimation of two types of shocks: small and frequent shocks

to firms’ asset values and large but infrequent shocks to macroeconomic conditions. Shocks

to macroeconomic conditions include shocks to bankruptcy costs α(s), firms’ aggregate and

idiosyncratic asset volatility σY,A(s) and σY,I(s), and the market price of risk η(s). These

shocks depend on the macroeconomic state that follows a Markov chain. All these objects

are estimated using the large panel dataset (see Section 2.1) of firm-level observations of

equity prices, aggregate and idiosyncratic equity volatilities, corporate debt book values,

and bond recovery ratios. The model provides a mapping between observables and model

variables (see Table 4.1). While I present each part of the estimation procedure separately,

I iterate through each step until convergence.
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observations model variables

leverage firms’ asset value V (y, s)
aggregate equity volatility aggregate asset volatility σY,A(s)
idiosyncratic equity volatility idiosyncratic asset volatility σY,I(s)
bond recovery ratio bankruptcy costs α(s)

Table 4.1: Mapping Between Observations and Model Variables

4.1.1 Shocks to Firms’ Asset Values

As is typical in structural corporate bond pricing models, model-implied variables are highly

convex in market leverage (default probability, credit spread, bid-ask spread). This convexity

implies that the variables’ averages are higher than those of variables at average market

leverage. Therefore, I follow David (2008) in computing model-implied aggregate moments.

I match the market leverage of each firm’s observation to its model counterpart. Then I can

compute model-implied moments according to the empirical distribution of leverage.

The model gives a direct mapping between market leverage lev and log cash flows y

conditional on being in state s according to

lev =
p

p+ E(y, s)
,

where p (principal) is the book value of outstanding debt. Therefore, for every firm-level

monthly observation of leverage in the dataset, I recover the model-implied level of log cash

flows y. Thus, once scaled by the book value of debt, model-implied and historical values

of equity are matched perfectly. Time series of model-implied levels of log cash flows y

implicitly measure firm-level shocks to asset values dZA
t and dZI

t from equation (3.4). In

Section 4.4, I discuss whether model-implied aggregate shocks to firms’ asset values dZA
t are

consistent with the model’s assumptions (independent and identically distributed according

to a standard normal distribution).
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4.1.2 Shocks to Macroeconomic Conditions

Aggregate and Idiosyncratic Asset Volatility The stochastic processes for firm’s asset

volatilities are estimated for two types of firms: investment- and speculative-grade firms.

This separation is useful to generate predictions for the financial indicators in the cross-

section. Estimating the stochastic process for each firm is unfeasible. Therefore, type-specific

volatilities drive the dynamics of each firm of that type, and the model is solved for each

firm’s type, not for each firm. A firm that is speculative-grade has a rating lower than Baa

from Moody’s Investors Service, a rating lower than BBB from Standard & Poor’s, or both.

Firms with ratings of Baa, BBB or higher are termed investment-grade. The relationship

between firm i’s aggregate asset volatility σiY,A(s) and its type j aggregate asset volatility

σjY,A(s) is given by:

log
(
σiY,A(s)

)
= log

(
σjY,A(s)

)
+ εi (4.1)

where εi is independent and identically distributed measurement noise. The same holds for

idiosyncratic volatility.

While in the dataset a firm might move across rating classes, the model assumes that

an investment-grade firm never becomes speculative-grade, and vice versa. Introducing this

feature is relatively unfeasible with Markov states, as it would exponentially increase the

amount of states required to solve the model.1 However, in the estimation procedure, if an

investment-grade firm in month t is downgraded to speculative-grade in month t + 1, its

observations contribute to the representative investment-grade firm in month t and to the

representative speculative-grade firm in month t+ 1.

1Currently, a firm of type j ∈ J can transition to S states in the next period. With this feature, a firm
of type j ∈ J could transition to J × S states in the next period.
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Using Ito’s Lemma, the model implies the following relationships:

σE,A(y, s)E(y, s) = E ′(y, s)σY,A(s),

σE,I(y, s)E(y, s) = E ′(y, s)σY,I(s),

where Es(y, s) is the solution to the system of ODEs in equation (3.7), and σE,A(y|s) and

σE,I(y|s) are the aggregate and idiosyncratic equity volatility of a firm with log asset return

y in state s. Thus, I can estimate firm i’s asset volatilities σ̂iY,A(t|st) and σ̂iY,I(t|st) given

observed values for equity volatilities σiE,A(t) and σiE,I(t) according to

σ̂iY,A(t|st) =
Ej(yit, st)σ

i
E,A(t)

Ej,′(yit, st)
,

σ̂iY,I(t|st) =
Ej(yit, st)σ

i
E,I(t)

Ej,′(yit, st)
,

for every firm i, type j, time t, and state s.2 Section 2.1 details how observations of aggre-

gate and idiosyncratic equity volatility are constructed. From equation (4.1) it follows that

σ̂jY,A(t|s) and σ̂jY,I(t|s) can be estimated according to

log
(
σ̂jY,A(t|s)

)
=

1

N j
t

∑
i∈I(j,t)

log
(
σ̂iY,A(t|s)

)
, (4.2)

log
(
σ̂jY,I(t|s)

)
=

1

N j
t

∑
i∈I(j,t)

log
(
σ̂iY,I(t|s)

)
, (4.3)

for every type j, time t, and state s, where N j
t is the amount of firms of type j at time t,

and I(j, t) is the set of firms of type j at time t.

2Note that the estimate of aggregate equity volatility from CRSP at time t must be adjusted for the size
of the jump in equity value from the transition between state st−1 to state st. More precisely,

σiE,A(t) =

√(
σE,Ait

)2
−
(
Est(y)/Est−1(y)− 1

)2
/21,

where σE,Ait is the equity return aggregate volatility of firm i at time t described in Section 2.1. This
adjustment turns out to be relatively insignificant.
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Volatility States The above estimates are conditional on being in a state s at each time

t. Given the insights from Chapter 2 that equity volatilities, credit spreads, and lever-

age comove, I use model-implied observations of asset volatilities to identify fluctuations in

macroeconomic states. This method identifies movements in the macroeconomic state, but

does not impose anything on the correlations between state-dependent variables. Markovian

states are estimated using the Baum-Welch algorithm for hidden Markov models:

1. Initiate with values for the Markov chain M =
{
σjY,A(s), σjY,I(s), ζP

}
.

2. Solve the structural model and estimate Y =
{
σ̂jY,A(t|s), σ̂jY,I(t|s)

}
.

3. Identify the state st at each time t by maximizing the likelihood of being in state s at

time t, given the whole dataset Y (see Appendix B).

4. Get new estimates of aggregate and idiosyncratic asset volatilities

log
(
σjY,A(s)

)
=

∑T
t=1 log

(
σ̂jY,A(t|s)

)
1 {st = s}∑T

t=1 1 {st = s}

log
(
σjY,I(s)

)
=

∑T
t=1 log

(
σ̂jY,I(t|s)

)
1 {st = s}∑T

t=1 1 {st = s}
.

5. Update transition intensities ζss
′

P with the empirical discrete transition probabilities

πss
′

given by

πss
′
=

∑T−1
t=1 1 {st = s}1 {st+1 = s′}∑T

t=1 1 {st = s}

for all s, s′. See Appendix C for more details.

6. Iterate on 2-5 until convergence.

This estimation procedure is dependent on initial guesses for M and the number of

states. However, it is easy to check how well the estimation procedure approximates the

continuous time series of estimated volatilities with the Markov chain by looking at the
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Figure 4.1: Aggregate Asset Volatility These graphs show the Markov estimates of aggregate asset
volatility σjY,A and model-implied aggregate asset volatility σ̂jY,A.
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Figure 4.2: Idiosyncratic Asset Volatility These graphs show the Markov estimates of idiosyncratic
asset volatility σjY,A and model-implied aggregate asset volatility σ̂jY,A.

difference between
{
σ̂jY,A(t|st), σ̂jY,I(t|st)

}T
t=1

and
{
σjY,A(st), σ

j
Y,I(st)

}T
t=1

in Figures 4.1 and

4.2. Increasing the number of states improves the fit, but at the cost of more transition

probabilities to estimate. Likelihood plateaus at 8 states.

Modeling large shocks with a continuous-time Markov chain not only provides closed-

form solutions for equity and bond prices, but also eases the exercise of estimating the

five-dimensional shock distribution. This exercise is similar to Tauchen’s (1986) method,

and therefore akin to discretizing a continuous process of macroeconomic fluctuations rather

than estimating macroeconomic regimes.

Stochastic Discount Factor With S states, the stochastic discount factor in equation

(3.1) requires 2S + (S2 − S)/2 parameters for r(s), η(s), and κ(s, s′). To alleviate the
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parametrization, I impose restrictions on the stochastic discount factor similar to Chen

(2010). First, the representative agent has stochastic differential utility, as developed by

Duffie and Epstein (1992). I define the utility of the marginal agent over his consumption

process C as

Ut = Et
(∫ ∞

t

f (Cs, Us) ds

)
.

Following Epstein and Zin (1989), the function f(c, u) is a normalized aggregator of con-

sumption and continuation value in each period defined as

f(c, u) =
ρ

1− 1/ψ

c1−1/ψ − ((1− γ)u)
1−1/ψ
1−γ

((1− γ)u)
1−1/ψ
1−γ −1

where ρ is the rate of time preference, γ is the coefficient of relative risk aversion, and ψ

determines the elasticity of intertemporal substitution.

Second, aggregate output follows

dYt
Yt

= µY (st)dt+ σY (st)dZ
A
t ,

which equals to the consumption process of the representative agent.

Third, aggregate output volatility σY (s) and the common factor in firms’ aggregate asset

volatility σA(s) are related according to

σY (s) = sσY + ϕ (σA(s)− sσA) , (4.4)

where sσY and sσA are long-run averages. The common factor in firms’ aggregate asset volatil-

ity σA(s) is defined as:

log
(
σjY,A(s)

)
= θj + log (σA(s)) , (4.5)
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state (1) (2) (3) (4) (5) (6) (7) (8) E(·)
µY (s) 2.48 1.70 1.66 2.04 2.50 1.22 0 -2.56 1.72
σY (s) 1.71 2.18 2.73 3.84 2.57 3.07 4.33 5.70 2.93
η(s) 0.13 0.16 0.21 0.29 0.19 0.23 0.33 0.43 0.19
exp(κ(3, s)) 0.86 0.92 1.00 1.13 1.92 2.14 2.58 3.34 1.31

Table 4.2: Pricing Kernel State-Dependent Parameters This table shows pricing kernel growth
µC(s), volatility σC(s), price of aggregate shocks η(s), and jump premium from the median state (state 3)
to the other states exp(κ(3, s)).

for every state s and firm type j where θ1 is normalized to 0. Atkeson, Eisfeldt, and Weill

(2013) provide evidence that the distribution of firm-level aggregate asset volatility is log-

normal with time-dependent mean. Chapter 2 presents evidence that the average of log

volatilities by rating class is indeed driven by a strong common factor. The coefficients θj

are found by minimizing

J∑
j=1

T∑
t=1

(
θj + log (σA(st))− log

(
σjY,A(st)

))2
.

I use real gross domestic product per capita from NIPA to estimate state-dependent

growth rates µY (s). The sensitivity of aggregate asset volatility to variation in aggregate

output volatility, ϕ, is set to target the average equity premium (see Table 4.10). I follow

Bansal and Yaron (2004) for the estimate of long-term systemic volatility (sσY = 0.0293).

Table 4.2 summarizes important state-dependent parameters of the Markov chain model

related to the pricing kernel. This specification yields countercyclical risk prices and sizable

jump-risk premia. For example, the risk-neutral probability of switching from the medium

state (state 3) to the financial crisis state (state 8) is about 3 times higher than its actual

probability.

With these parameters, one can solve for the stochastic discount factor as shown in

Appendix A

Bond Recovery Ratios Economic conditions greatly affect the cost of default. A large

literature on fire sales, starting with Shleifer and Vishny (1992), argues that liquidation
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of assets is particularly costly when many firms are in distress. Therefore, instead of as-

suming bankruptcy costs as a constant fraction of the value of assets at default, I estimate

state-dependent bankruptcy costs. I use Moody’s annual average defaulted corporate bond

recoveries series, which spans 1983 to 2015. As I identify the aggregate state in each month,

I estimate the recovery rate α(s) for each state s according to

α(s) =

∑T
t=1 rect × vb(st)1 {st = s}∑T

t=1 1 {st = s}
,

where rect is Moody’s defaulted corporate bond recovery ratio at time t and vb(s) is the value

of the unlevered firm at the endogenous bankruptcy level divided by the bond principal value

p in state s. Moody measures recovery ratios using post-default trading prices. Therefore,

assuming that post-default prices are the bid prices at which investors are selling, we have

that

α(s) = αL(s) + β
(
αH(s)− αL(s)

)
,

where αH(s) and αL(s) are the recovery rate in state s for bond investors of H- and L-

type, respectively. The estimated average recovery ratio over the whole sample E [α(s)] is

about 45%, in line with the estimate of bankruptcy recovery by Chen (2010). The lowest

α(s) is equal to 33% and corresponds to the state of the 2008–2009 financial crisis. Note

that this recovery ratio is different from the ultimate recovery of the bond after resolution

of bankruptcy. With an average resolution period of 1.37 years, according to the Moody’s

default and recovery database, and an excess return of 23% on a portfolio of all defaulted

bonds over 1987–2011 estimated by He and Milbradt (2014), the average ultimate recovery

rate is about 70%. Estimating separate recovery ratios for each firm’s type does not yield

significant differences.
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γ risk aversion 7.5 Bansal and Yaron (2004)
ψ intertemporal substitution 1.5 Bansal and Yaron (2004)
ρ time discount rate 0.02 risk-free interest rate
sσY long-run volatility 0.0293 Bansal and Yaron (2004)
ϕ sensitivity of σA(s) to σY (s) 6 average equity premium

τ tax shield 0.12 Graham (2000)
1/m average debt maturity 8 average maturity

β bargaining power 0.03 Feldhütter (2012)
λ meeting intensity 50 Chen, Cui, He, and Milbradt (2016)
ξ liquidity shock intensity 0.7 Chen, Cui, He, and Milbradt (2016)
N holding cost intercept 14.75 Edwards, Harris, and Piwowar (2007)
χ holding cost slope 0.055 Edwards, Harris, and Piwowar (2007)

Table 4.3: Calibrated Parameters

4.2 Calibration

I follow Bansal and Yaron (2004) for the parameters of risk aversion and intertemporal

substitution, with γ = 7.5 and ψ = 1.5. With a discount rate ρ equal to 0.02, I get an

average risk-free interest rate of 2%. Note that this is close to the lower bond for the firm’s

asset value vs in (3.3) to exist, as the risk-free discount rate must be high enough relative to

the drift of firms’ asset value µY of investment-grade firms. The calibration of µY is discussed

below.

I use the tax rate estimates of Graham (2000), which take into account the fact that

the tax benefits of debt at the corporate level are partially offset by the individual tax

disadvantages of interest income. The size of the debt is normalized with the bond’s principal

p = 100. I set the maturing intensity, m, to match the empirical average debt maturity (8

years).

Edwards, Harris, and Piwowar (2007) report that in normal times (2003–2005), the trans-

action cost for defaulted bonds of median-sized trades is about 200 basis points. Since the

transaction cost can be constructed as the intermediary’s profit (1−β)(DH(y, s)−DL(y, s))
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over the mid-price P (y, s) from (3.6), we have

2% =
2(1− β)(αH(s)− αL(s))

αH(s) + β(αH(s)− αL(s)) + αL(s)
. (4.6)

Given the estimation of α(s) = αL(s) + β
(
αH(s)− αL(s)

)
in Section 4.1, this pins down

αH(s) and αL(s).

I fix the meeting intensity, λ, as in Chen, Cui, He, and Milbradt (2016), so that it takes a

bond holder on average 1 week to find an intermediary and divest of all bond holdings. They

also report a value-weighted turnover of corporate bonds during NBER expansion periods

about 0.7 times per year (ξ = 0.7). For the bargaining power allocation between dealers and

investors, β, I follow Feldhütter (2012).

Edwards, Harris, and Piwowar (2007) use the Trade Reporting and Compliance Engine

bond price database from January 2003 to January 2005 to estimate reported bid-ask spreads

for different firm ratings and trading sizes. I calibrate χ and N to match the average implied

bid-ask spreads and their measurement of bid-ask spreads for investment- and speculative-

grade bonds for a transaction of median size during that period. See Figure 4.17 for model-

implied bid-ask spreads from 2002 to 2009.

The coupon payment c is set such that, on average, corporate bonds are issued at par

value. That is, the coupon payment c of firms of type j satisfies the following condition:

1

T

T∑
t=1

DH
j (ȳj, st) = p

where DH
j (ȳj, s) is the value of a bond of type j for the H-type investor in state s, ȳj is the

asset return level corresponding to the average leverage level of firms of type j, and st is the

state identified during the estimation procedure.

The drift of firms’ asset values under the physical measure essentially affects the overall

match between default rates, credit spreads, and leverage. While important for the quanti-

tative performance of a credit risk model, no consistent measurement has been agreed upon
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Figure 4.3: Average Data and Model Cumulative Default Rates from 1973 to 2014 Cumulative
default rates are taken from Moody’s 2015 Annual Default Study. Model default rates are the average of the
model-implied default rate computed for every firm in Compustat at different horizon from 1973 to 2014.
Model default probability for each firm depends on the firm’s asset return drift, asset volatility, leverage,
and default boundary in every month.

or consensus reached in the literature by which a wide range of values is used.3 Therefore,

I calibrate asset return drift by firm type to target Moody’s historical 8-year average cumu-

lative default rate (see Figure 4.3). Huang and Huang (2012) reveal that structural models

typically imply a much steeper term structure of cumulative default rates than reflected in

the data. Extensions of the model, such as introducing jumps in firms’ asset values, are

likely to help in that dimension, but accurately matching the term structure of cumulative

default rates is beyond the scope of this paper.

4.3 Results

This section details the model’s quantitative performance to match default risk, credit

spreads, aggregate and idiosyncratic equity volatility, and bid-ask spreads, and provide im-

plications for equity and debt premiums. Given model-implied log cash flows, bankruptcy

costs, firms’ aggregate and idiosyncratic asset volatility, and market price of risk estimated

in Section 4.1, each financial indicator is first computed at the firm level, then averaged each

month.

Levels and fluctuations in credit spreads and default rates, as well as fluctuations in bid-

3He and Milbradt (2014): 0.018; Bhamra, Kuehn, and Strebulaev (2010): -0.04 and 0.08, with 2 aggregate
states; Chen (2010): from -0.10 to 0.11, with 9 aggregate states; Leland (2006): 0.045.
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Figure 4.4: Model-Implied and Historical Default Rates This figure shows Moody’s Moody’s issuer-
weighted historical average default rates for all rating categories, the non-adjusted model-implied default
rates, and the adjusted model-implied default rates.

ask spreads, are not targeted during the estimation of shocks and calibration of parameters.

Therefore, the excellent match between model-implied and historical default rates, credit

spreads, and bid-ask spreads, over time and in the cross-section, is an important external

validation of the model’s assumptions.

Default Risk Figure 4.13 shows model-implied aggregate default rates and Moody’s issuer-

weighted historical average default rates. Model-implied default rates are estimated by

taking the average of model-implied expected default rates within 1 year for every firm-level

observation in the first quarter of every year. Model-implied fluctuations in default rates are

consistent with Moody’s observations, but the level is somewhat off—a known shortcoming

of structural models of credit risk. Indeed, the term structure of model-implied default rates

yields significantly lower short-term default rates than empirical observations (see Figure

4.3). However the model-implied default rate within 8 years is accurately targeted. Thus, I

use the following adjustment:

π̂t+1
t = 1−

(
1− πt+8

t

)1/8
, (4.7)

where πt+jt is the average expected default rate of firms at time t within the next j years.

Models with constant Poisson default probability are better at matching the historical default
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Figure 4.5: Average Credit Spreads by Rating Group These time series represent model-implied
credit spreads computed for every firm and averaged each month by rating category. Shaded areas distinguish
the 8 different Markov states estimated in Section 4.1.

R2(cst, ĉst) R2(∆cst,∆ĉst)

investment-grade firms 0.61 0.70
speculative-grade firms 0.71 0.74

Table 4.4: Goodness of Fit for Credit Spreads in Levels and First Differences The definition of
the goodness of fit measure R2(·, ·) is given in the main text. The variable cst is the average of credit spreads
within a rating class, while ĉst corresponds to the model prediction. When taking first differences, the series
are first averaged over each year.

term structure in the short term. Thus, because the term structure of model-implied default

rate matches the historical rate at 8 years, I use the model-implied default rate within 8

years to get the corresponding constant Poisson default probability and construct adjusted

model-implied default rates within 1 year. With this adjustment, the model predicts levels

and fluctuations of default rates consistent with Moody’s estimates.
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Credit Spreads Figure 4.14 shows average credit spreads for investment- and speculative-

grade firms compared to their empirical counterparts. The model succeeds in reproducing

not only the level, but also the fluctuations of credit spreads over time and in the cross-

section. Table 4.9 provides measures of goodness of fit in levels and first differences between

the model and the data. The goodness of fit in levels is defined as:

R2(cst, ĉst) = 1−
∑T

t=1 (cst − ĉst)2∑T
t=1(cs− scs)2t

where cst is the empirical monthly average credit spread and ĉst is the model-implied monthly

average credit spread. For the goodness of fit in first differences, I average first the series

over each year, that is:

R2(∆cst,∆ĉst) = 1−
∑T

t=1

(
∆ 1

12

∑12
i=1 csit −∆ 1

12

∑12
i=1 ĉsit

)2∑T
t=1

(
∆ 1

12

∑12
i=1 csit − scs

)2 ,

where ∆xt = xt − xt−1 and csit is the observation of month i in year t. Because the

number of Markov states limits the frequency of changes in macroeconomic fluctuations, the

model structure cannot address fluctuations of credit spreads at high frequency. Looking

at differences of yearly credit spreads series helps alleviate this issue.4 In Section 4.4, I

decompose the importance of each shocks to account for the levels and dynamics of credit

spreads.

Aggregate and Idiosyncratic Equity Volatility Figures 4.15 and 4.16 show the his-

torical model-implied time series for aggregate and idiosyncratic equity volatility averaged

within their respective rating class. Because shocks to firms’ asset values and macroeconomic

conditions are estimated using aggregate and idiosyncratic equity volatility, the match be-

tween the series is not surprising. Rather, it confirms that the Markov chain efficiently

approximates the continuous volatility processes.

4Not taking yearly averages first yields measures of goodness of fit in first differences of 0.07 and 0.19
for investment- and speculative-grade firms respectively.
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Figure 4.6: Aggregate Equity Volatility These graphs show the historical monthly average aggregate
equity volatility vE,A and the model-implied aggregate equity volatility σE,A.
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Figure 4.7: Idiosyncratic Equity Volatility These graphs show the historical monthly average idiosyn-
cratic equity volatility vE,I and the model-implied idiosyncratic equity volatility σE,I .

Bid-Ask Spreads Since holding costs increase as the value of the bond declines, average

model-implied bid-ask spreads vary with macroeconomic conditions that affect bond prices.

Figure 4.17 shows the average bid-ask spreads for investment- and speculative-grade firms.

The variation in model-implied bid-ask spreads is consistent with Bao, Pan, and Wang’s

(2011) measurement of corporate bonds illiquidity.5 Therefore, to replicate measured changes

5Bao, Pan, and Wang (2011) assume the following to measure the illiquidity of corporate bonds. Let pt
denote the log price of a bond at time t. They assume that pt consists of two components:

pt = ft + ut,

where ft represents its fundamental value and ut comes from the impact of illiquidity, which is transitory.
They extract the transitory component in the price pt with the measure γt given by

γt = −Cov(∆pt,∆pt+1).

Following Roll (1984), the implied bid-ask spread, in the simple case in which transitory price movements
arise from bid-ask bounce, is given by 2

√
γ.
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Figure 4.8: Average Bid-Ask Spreads by Rating Group Model average bid-ask spreads are the
average of the model-implied bid-ask spreads computed for every firm in Compustat by rating category.
The black line corresponds to the bid-ask spreads implied by Bao, Pan, and Wang (2011) measurement of
corporate bonds illiquidity from 2003 to 2005. The relative measure is scaled to match the level of the first
datapoint in June 2003. The red line shows the average level of bid-ask spreads estimated by Edwards,
Harris, and Piwowar (2007) for investment- and speculative-grade bonds’ transactions of median size.

in implied bid-ask spreads, additional shocks to parameters that drive over-the-counter liq-

uidity frictions are not necessary. This helps resolve what Bao, Pan, and Wang (2011) call an

intriguing result: Their aggregate illiquidity measure is closely connected to the VIX index.

Aggregate equity volatility, of which the VIX is a proxy, is mainly driven by shocks to firms’

asset values and aggregate asset volatility. These shocks greatly impact bond prices in two

ways. First, shocks to firms’ asset values and aggregate asset volatility affect the probability

of default. Second, holding default risk constant, shocks to aggregate asset volatility change

the compensation required by bond holders, because aggregate volatility is adversely priced

by the representative investor. Thus, the sources of fluctuations in aggregate equity volatility

impact bond prices and holding costs (cfr. equation 3.5), which trigger similar fluctuations

in bid-ask spreads.

Equity and Debt Premiums Table 4.10 shows the model-implied expected equity and

debt premiums. Firm-level monthly model-implied premiums are first averaged every month

within each rating class, then over the whole sample. To measure equity excess returns, I

look at the performance of Vanguard’s index fund on the Standard & Poor’s 500 Index. Since

1987, investors have earned annualized excess returns of 622 basis points on Vanguard 500
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equity premium bond premium
model model data model

1973–2014 1987–2014 1987–2014 1973–2014

investment-grade firms 524 bps 628 bps
622 bps

37 bps
speculative-grade firms 548 bps 655 bps 90 bps

Table 4.5: Equity Premium Firm-level monthly model-implied equity and bond premiums are first
averaged every month within each rating class, then over the whole sample. The empirical measurement of
equity excess returns corresponds to the cumulative annualized returns on Vanguard 500 Index Fund Investor
Class (VFINX) relative to Vanguard Long-Term Treasury Fund Investor Shares (VUSTX).

Index Fund Investor Class (VFINX) relative to Vanguard Long-Term Treasury Fund Investor

Shares (VUSTX). Over the same period, the model predicts average equity premiums of 628

and 655 basis points for investment- and speculative-grade firms, respectively. The model

predicts average bond premiums of 37 and 90 basis points for investment- and speculative-

grade firms, respectively.

4.4 Decomposition

In this section, I selectively shut down various features of the model to derive counterfactuals.

I simulate the model under alternative specifications to provide a decomposition of economic

channels and shocks to macroeconomic conditions that drive the financial indicators.

4.4.1 Economic Channels

A number of articles have studied the determinants of corporate bond credit spreads.6 These

papers aim to empirically identify what portion of credit spreads is directly attributable to

default risk or nondefault factors such as a risk premium or liquidity. In the context of

the structural model, I consider three potential sources of credit spreads: default risk, risk

aversion, and liquidity. The default risk spread csdef is the spread from the solution of

the model with a risk-neutral representative agent and without over-the-counter liquidity

6See Duffie and Singleton (1997); Duffee (1999); Elton, Gruber, Agrawal, and Mann (2001); Collin-
Dufresne, Goldstein, and Martin (2001); Longstaff, Mithal, and Neis (2005); Huang and Huang (2012); and
many others.
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Figure 4.9: Credit Spreads Decomposition The shaded area ∆ Default Risk corresponds to csdef/cs.
The shaded area ∆ Risk Aversion corresponds to (csγ−csdef )/cs. The shaded area ∆ Liquidity corresponds
to 100− csγ .

frictions. The risk aversion spread csγ is the spread from the solution of the model with

a risk averse agent and without over-the-counter liquidity frictions. The liquidity friction

spread is given by csliq = cs− csγ where cs is the credit spreads predicted by the full model.

Thus, the default risk spread csdef captures default risk; the risk aversion spread csγ captures

default risk and risk aversion; and the full model captures default risk, risk aversion, and

over-the-counter liquidity frictions. The components’ contribution to credit spreads are then

derived by taking differences:

∆csdef =
csdef
cs

, ∆csγ =
csγ − csdef

cs
, ∆csliq = 1− csγ

cs
.

For each alternative version of the model, I re-estimated the shocks from Section 4.1. Default

probabilities depend mostly on leverage and firms’ asset volatilities, which do not change
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investment-grade speculative-grade

∆csliq 30 16
∆csγ 43 32
∆csdef 27 52

Table 4.6: Average Percentage Explained by Each Component ∆csdef is the default risk component,
∆csγ is the risk aversion component, and ∆csliq is the liquidity component.

significantly across versions of the model. Figure 4.9 shows the decomposition of credit

spreads into default risk, risk aversion, and liquidity.

As illustrated in Table 4.6, liquidity frictions are more important for investment-grade

firms than speculative-grade firms. The composition of investment-grade credit spreads is

fairly stable over time, while the risk aversion component of speculative-grade credit spreads

increased from 27% in 1973 to 42% in 2014. The growing contribution of risk aversion is

consistent with Gilchrist and Zakraǰsek’s (2012) finding that the predictive content of the

excess bond premium for economic activity over the 1985–2010 period is greater than that

obtained for the full sample period. For both types of firms, the spike in credit spreads

during the 2008–09 financial crisis was characterized by a surge in default risk, but not by

the disruption in corporate bond liquidity.

Longstaff, Mithal, and Neis (2005) calculate that 53% (84%) of BB-rated (A-rated) bond

credit spreads can be explained by credit risk between March 2001 and October 2002.

They derive their estimates using credit default swap premiums, which include expected

default losses plus the credit risk premium. Over the same period, I find that 72% (84%) of

investment-grade (speculative-grade) bond credit spreads can be explained with the spread

csγ that captures default risk and risk aversion.

Chen, Cui, He, and Milbradt (2016) find that the fraction of credit spreads that can

be explained without liquidity frictions starts at only 20% for Aaa/Aa-rated bonds, and

monotonically increases to about 67% for Ba-rated bonds for the period starting in January

1994 and ending in June 2012. In contrast, I find that 71% (83%) of credit spreads can

be accounted for without liquidity friction for investment-grade (speculative-grade) bond
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Figure 4.10: Histograms of Estimated Aggregate Shocks to Firms’ Asset Values ∆ZAt This figure
presents two histograms of estimated aggregate shocks to firms’ asset values ∆ZAt to approximate dZAt from
equation (3.4). The “Without Macroeconomic Shocks” case sets α(s), σA(s), σI(s), µC(s), and σC(s) to their
sample average, i.e., the aggregate shocks to firms’ asset values dZAt are estimated without shocks to default
losses, firms’ aggregate and idiosyncratic asset volatility, or the market price of risk. Annotations show the
position of the aggregate shocks to firms’ asset values in October 1987, September 2008, March 2009, and
July 2011.

credit spreads over the same period. An important factor in these differences resides in the

measurement and inclusion of time-varying firms’ asset volatilities to explain the levels of

credit spreads and bid-ask spreads instead of time-varying parameters that drive over-the-

counter liquidity frictions.

4.4.2 Aggregate Shocks to Firms’ Asset Value

Before presenting the shocks decomposition, it is important to understand that without

shocks to macroeconomic conditions, the model generates aggregate shocks to firms’ asset

values inconsistent with the model’s assumptions. This can be shown by constructing a
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discrete approximation to aggregate shocks to firms’ asset volatility dZA
t from equation (3.4).

For a representative firm of type j, I retrieve model-implied levels of log cash flows yjt at

time t following:

yjt =
1

N j
t

∑
i∈I(j,t)

yit,

where N j
t is the amount of firms of type j at time t and I(j, t) is the set of firms of type j

at time t. The approximation to dZA
t is then given by:

∆ZA
t =

1

J

J∑
j=1

yjt − y
j
t−1 − µ

j
Y + 0.5σjY,A(st)

σjY,A(st)
,

where σjY,A(s) is the aggregate asset volatility of firms of type j in state s, and µjY is the

drift of asset values of firms of type j (see equations 3.2 and 3.4). According to the model,

∆ZA
t should be identically and independently distributed according to a standard normal

distribution. In Figure 4.10, two graphs represent histograms of ∆ZA
t estimated by two

versions of the model: one version of the model with shocks to macroeconomic conditions

(baseline) and another one without. The model without shocks to macroeconomic condi-

tions assumes that default losses, firms’ aggregate and idiosyncratic asset volatility, and

the market price of risk are held constant at their sample average. The histogram for the

model without macroeconomic shocks yields values that are highly improbable for key peri-

ods of macroeconomic fluctuations: October 1987, September 2008, March 2009, and July

2011. For example, the aggregate shock to asset values in September 2008 had a less than

0.0001 probability of occurring according to the model without macroeconomic shocks. The

model cannot successfully account for large aggregate shocks to firms’ equity values without

shocks to macroeconomic conditions or assumptions about extremely large shocks to firms’

asset values. Thus, shocks to macroeconomic conditions are necessary for the model to be

consistent with observations of leverage over time.
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Figure 4.11: Shocks Decomposition for Credit Spreads during the Financial Crisis Baseline
corresponds to credit spreads’ predictions of the full model. α(s) = α, σI(s) = σI , σA(s) = σA, and
η(s) = η correspond to the cases without shocks to default losses, firms’ idiosyncratic and aggregate asset
volatility, and the market price of risk, respectively. s = s shows credit spreads’ prediction without shocks
to macroeconomic conditions, only fluctuations in firms’ asset values.

4.4.3 Shocks to Macroeconomic Conditions

A recent theoretical and empirical research aimed at understanding the 2008–2009 financial

crisis has pointed to financial and uncertainty shocks as main drivers of economic fluctuations.

Stock and Watson (2012) and Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek (2016) em-

phasize the difficulty of empirically distinguishing these two types of shocks, because increases

in aggregate equity volatility—a widely used proxy for macroeconomic uncertainty—are fre-

quently associated with spikes in credit spreads—a widely used proxy for financial turmoil.

In this subsection, I show that the joint dynamics of aggregate equity volatility and credit

spreads is driven by shocks to firms’ asset values and firms’ aggregate asset volatility.

To illustrate the shocks decomposition strategy, I highlight the determinants of changes

in credit spreads and equity volatility during the 2008–09 financial crisis in Figures 4.11

and 4.12. The cases α(s) = α, σI(s) = σI , σA(s) = σA, and η(s) = η, correspond to

credit spreads’ predictions of the model without shocks to default losses, firms’ idiosyncratic
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asset volatility, firms’ aggregate asset volatility, and the market price of risk, respectively;

that is, their respective value is set at their sample average. The last case, s = s, shows

credit spreads’ predictions without shocks to macroeconomic conditions, only fluctuations

in firms’ asset values. Notice that shutting down shocks have two effects on credit spreads’

predictions. First, it diminishes the average level of credit spreads because the possibility of

a potential increase in credit risk is attenuated. Second, it reduces the increase from 2007

to 2009 because realized risk during the crisis is lowered.

Figure 4.11 exhibits the results of this decomposition for credit spreads during the Great

Recession. The blue line hints that fluctuations in default losses are too small to account

for large credit spreads’ variations. Liquidity frictions account for about 15% of the spike

in credit spreads. The increase in firms’ aggregate asset volatility dominates the other

shocks. While firms’ idiosyncratic asset volatility also increased, it had little impact on

credit spreads. Two mechanisms are involved when the idiosyncratic asset volatility of a

firm fluctuates. First, shareholders’ equity in a levered company can be seen as a call

option granted by creditors to shareholders on the firm’s assets. Therefore, as the firm’s

idiosyncratic asset volatility increases, conditional on the firm’s asset level, so does the value

of the call option. In fact, as the firm’s idiosyncratic asset volatility increases, shareholders

are willing to sustain lower asset returns before declaring bankruptcy. Second, when the

firm’s idiosyncratic asset volatility increases, the probability of hitting a given bankruptcy

level also increases. The latter effect attenuates the former, such that default risk is not

impacted much by shocks to the firm’s idiosyncratic volatility. However, the firm’s aggregate

asset volatility is adversely priced by the representative investor. Thus, when the firm’s

aggregate volatility increases, the value of equity decreases, shareholders declare bankruptcy

earlier, and default risk increases. Furthermore, the representative investor requires a higher

compensation for bearing more aggregate risk, which impacts credit spreads even more. This

effect also explains the importance of shocks to the market price of risk, which interacts with

firms’ aggregate asset volatility.
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A second disparity explains the difference between the impact on credit spreads of shocks

to firms’ aggregate asset volatility and shocks to firms’ idiosyncratic asset volatility. The

jump in firms’ aggregate asset volatility, as measured in Section 4.1, was quantitatively

unprecedented7 during the Great Recession. The estimate of investment-grade (speculative-

grade) firms’ aggregate volatility increased from 0.07 (0.08) in June 2007 to 0.27 (0.29) in

December 2009. In comparison, the estimate of investment-grade (speculative-grade) firms’

idiosyncratic volatility increased from 0.11 (0.15) in June 2007 to 0.24 (0.32) in December

2009.

As shown in Figure 4.11, shocks to firms’ aggregate asset predominate to explain the spike

in equity volatility during the Great Recession. The leverage effect only explains about a

third of the increase in volatility. This result is reminiscent of Schwert’s (1989) finding that

leverage alone cannot explain the historical movements in equity volatility during the Great

Depression.

Table 4.7 shows the ratios of RMSE(no shocks x) to RMSE(no shocks), a measure of

the relative importance of each shock to explain fluctuations in the financial indicators.

RMSE(no shocks x) is root mean squared errors between the full model and the model

without shocks to x, where x is either firms’ asset values, default losses, aggregate asset

volatility, idiosyncratic asset volatility, or the market price of risk. The “no liquidity” case

corresponds to the model predictions without liquidity frictions. RMSE(no shocks) is root

mean squared errors between the full model and the model without any macroeconomic

shocks.

Overall, this relative measure shows that during the Great Recession, fluctuations in

default risk, aggregate equity volatility, and credit spreads are mostly accounted for by

shocks to firms’ asset values and firms’ aggregate asset volatility. Bid-ask spreads are driven

by shocks to the market price of risk, firms’ aggregate asset volatility, and firms’ asset values.

7The surge in total equity volatility during the Great Recession is only comparable to the surge in total
equity volatility during the Great Depression according to the measurement of Atkeson, Eisfeldt, and Weill
(2013).
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Figure 4.12: Shocks Decomposition for Equity Volatility during the Financial Crisis Baseline
corresponds to credit spreads’ predictions of the full model. α(s) = α, σI(s) = σI , σA(s) = σA, and
η(s) = η correspond to the cases without shocks to default losses, firms’ idiosyncratic and aggregate asset
volatility, and the market price of risk, respectively. s = s shows credit spreads’ prediction without shocks
to macroeconomic conditions, only fluctuations in firms’ asset values.

FINANCIAL INDICATORS

σE,A σE,I credit bid-ask default

inv spe inv spe inv spe inv spe all

S
H

O
C

K
S

no liquidity 2 0 4 1 31 26 100 100 3
α(s) = α 0 0 1 0 2 1 0 0 1
η(s) = ηC 7 3 16 7 41 44 13 24 5
σA(s) = σA 101 103 18 25 55 55 17 26 51
σI(s) = σI 6 7 113 118 13 16 4 6 36
yt = y 55 33 117 74 62 47 20 15 63

Table 4.7: Shock Decomposition of Financial Indicators during the Financial Crisis This table
shows the ratios of root mean squared errors (RMSE) of different versions of the model multiplied by 100.
The numerator corresponds to the RMSE between the full model and the model without one of the shocks.
The denominator corresponds to the RMSE between the full model and the model without any shocks. The
sample period is restricted to be between January 2007 and January 2011. No liquidity corresponds to credit
spreads’ predictions without any liquidity frictions. α(s) = α, η(s) = η, σA(s) = σA, σI(s) = σI , and yt = y
correspond to the cases without shocks to default losses, market price of risk, aggregate asset volatility,
idiosyncratic asset volatility, or firms’ asset values, respectively. The financial indicators σE,A, σE,A, credit,
bid-ask, and default correspond to aggregate equity volatility, idiosyncratic equity volatility, credit spreads,
bid-ask spreads and default risk. The category inv (spe) corresponds to investment-grade (speculative-grade)
firms. Bold numbers highlight the two most important shocks for each financial indicator.
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FINANCIAL INDICATORS

σE,A σE,I credit bid-ask default

inv spe inv spe inv spe inv spe all
S
H

O
C

K
S

no liquidity 3 1 6 3 42 38 100 100 4
α(s) = α 1 1 2 3 3 4 1 1 6
σC(s) = σC 11 4 22 11 45 53 10 18 9
σA(s) = σA 101 102 28 17 49 53 11 18 43
σI(s) = σI 6 6 97 110 10 11 3 3 56
y = y 68 54 139 201 64 76 18 22 140

Table 4.8: Shock Decomposition of Financial Indicators This table shows the ratios of root mean
squared errors (RMSE) of different versions of the model multiplied by 100. The numerator corresponds to
the RMSE between the full model and the model without one of the shocks. The denominator corresponds
to the RMSE between the full model and the model without any shocks. The sample period comprises the
whole period from January 1973 to October 2014. No liquidity corresponds to credit spreads’ predictions
without any liquidity frictions. α(s) = α, η(s) = η, σA(s) = σA, σI(s) = σI , and yt = y correspond
to the cases without shocks to default losses, market price of risk, aggregate asset volatility, idiosyncratic
asset volatility, or firms’ asset values, respectively. The financial indicators σE,A, σE,A, credit, bid-ask,
and default correspond to aggregate equity volatility, idiosyncratic equity volatility, credit spreads, bid-ask
spreads and default risk. The category inv (spe) corresponds to investment-grade (speculative-grade) firms.
Bold numbers highlight the two most important shocks for each financial indicator.

The same conclusions hold for the period from 1973 to 2014 (see Table 4.8).

This section details the model’s quantitative performance to match default risk, credit

spreads, aggregate and idiosyncratic equity volatility, and bid-ask spreads, and provide im-

plications for equity and debt premiums. Given model-implied log cash flows, bankruptcy

costs, firms’ aggregate and idiosyncratic asset volatility, and market price of risk estimated

in Section 4.1, each financial indicator is first computed at the firm level, then averaged each

month.

Levels and fluctuations in credit spreads and default rates, as well as fluctuations in bid-

ask spreads, are not targeted during the estimation of shocks and calibration of parameters.

Therefore, the excellent match between model-implied and historical default rates, credit

spreads, and bid-ask spreads, over time and in the cross-section, is an important external

validation of the model’s assumptions.
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Figure 4.13: Model-Implied and Historical Default Rates This figure shows Moody’s Moody’s issuer-
weighted historical average default rates for all rating categories, the non-adjusted model-implied default
rates, and the adjusted model-implied default rates.

Default Risk Figure 4.13 shows model-implied aggregate default rates and Moody’s issuer-

weighted historical average default rates. Model-implied default rates are estimated by

taking the average of model-implied expected default rates within 1 year for every firm-level

observation in the first quarter of every year. Model-implied fluctuations in default rates are

consistent with Moody’s observations, but the level is somewhat off—a known shortcoming

of structural models of credit risk. Indeed, the term structure of model-implied default rates

yields significantly lower short-term default rates than empirical observations (see Figure

4.3). However the model-implied default rate within 8 years is accurately targeted. Thus, I

use the following adjustment:

π̂t+1
t = 1−

(
1− πt+8

t

)1/8
, (4.8)

where πt+jt is the average expected default rate of firms at time t within the next j years.

Models with constant Poisson default probability are better at matching the historical default

term structure in the short term. Thus, because the term structure of model-implied default

rate matches the historical rate at 8 years, I use the model-implied default rate within 8

years to get the corresponding constant Poisson default probability and construct adjusted

model-implied default rates within 1 year. With this adjustment, the model predicts levels
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Figure 4.14: Average Credit Spreads by Rating Group These time series represent model-implied
credit spreads computed for every firm and averaged each month by rating category. Shaded areas distinguish
the 8 different Markov states estimated in Section 4.1.

R2(cst, ĉst) R2(∆cst,∆ĉst)

investment-grade firms 0.61 0.70
speculative-grade firms 0.71 0.74

Table 4.9: Goodness of Fit for Credit Spreads in Levels and First Differences The definition of
the goodness of fit measure R2(·, ·) is given in the main text. The variable cst is the average of credit spreads
within a rating class, while ĉst corresponds to the model prediction. When taking first differences, the series
are first averaged over each year.

and fluctuations of default rates consistent with Moody’s estimates.

Credit Spreads Figure 4.14 shows average credit spreads for investment- and speculative-

grade firms compared to their empirical counterparts. The model succeeds in reproducing

not only the level, but also the fluctuations of credit spreads over time and in the cross-

section. Table 4.9 provides measures of goodness of fit in levels and first differences between
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Figure 4.15: Aggregate Equity Volatility These graphs show the historical monthly average aggregate
equity volatility vE,A and the model-implied aggregate equity volatility σE,A.

the model and the data. The goodness of fit in levels is defined as:

R2(cst, ĉst) = 1−
∑T

t=1 (cst − ĉst)2∑T
t=1(cs− scs)2t

where cst is the empirical monthly average credit spread and ĉst is the model-implied monthly

average credit spread. For the goodness of fit in first differences, I average first the series

over each year, that is:

R2(∆cst,∆ĉst) = 1−
∑T

t=1

(
∆ 1

12

∑12
i=1 csit −∆ 1

12

∑12
i=1 ĉsit

)2∑T
t=1

(
∆ 1

12

∑12
i=1 csit − scs

)2 ,

where ∆xt = xt − xt−1 and csit is the observation of month i in year t. Because the

number of Markov states limits the frequency of changes in macroeconomic fluctuations, the

model structure cannot address fluctuations of credit spreads at high frequency. Looking

at differences of yearly credit spreads series helps alleviate this issue.8 In Section 4.4, I

decompose the importance of each shocks to account for the levels and dynamics of credit

spreads.

Aggregate and Idiosyncratic Equity Volatility Figures 4.15 and 4.16 show the his-

torical model-implied time series for aggregate and idiosyncratic equity volatility averaged

8Not taking yearly averages first yields measures of goodness of fit in first differences of 0.07 and 0.19
for investment- and speculative-grade firms respectively.
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Figure 4.16: Idiosyncratic Equity Volatility These graphs show the historical monthly average idiosyn-
cratic equity volatility vE,I and the model-implied idiosyncratic equity volatility σE,I .

within their respective rating class. Because shocks to firms’ asset values and macroeconomic

conditions are estimated using aggregate and idiosyncratic equity volatility, the match be-

tween the series is not surprising. Rather, it confirms that the Markov chain efficiently

approximates the continuous volatility processes.

Bid-Ask Spreads Since holding costs increase as the value of the bond declines, average

model-implied bid-ask spreads vary with macroeconomic conditions that affect bond prices.

Figure 4.17 shows the average bid-ask spreads for investment- and speculative-grade firms.

The variation in model-implied bid-ask spreads is consistent with Bao, Pan, and Wang’s

(2011) measurement of corporate bonds illiquidity.9 Therefore, to replicate measured changes

in implied bid-ask spreads, additional shocks to parameters that drive over-the-counter liq-

uidity frictions are not necessary. This helps resolve what Bao, Pan, and Wang (2011) call an

intriguing result: Their aggregate illiquidity measure is closely connected to the VIX index.

9Bao, Pan, and Wang (2011) assume the following to measure the illiquidity of corporate bonds. Let pt
denote the log price of a bond at time t. They assume that pt consists of two components:

pt = ft + ut,

where ft represents its fundamental value and ut comes from the impact of illiquidity, which is transitory.
They extract the transitory component in the price pt with the measure γt given by

γt = −Cov(∆pt,∆pt+1).

Following Roll (1984), the implied bid-ask spread, in the simple case in which transitory price movements
arise from bid-ask bounce, is given by 2

√
γ.

78



01-2002 08-2003 03-2005 10-2006 05-2008 12-2009
30

40

50

60

70

80

90
ba

si
s 

po
in

ts
Investment-Grade Average Bid-Ask Spreads

Bao et al. (2011)
Edwards et al. (2007)

01-2002 08-2003 03-2005 10-2006 05-2008 12-2009
40

60

80

100

120

140

160

ba
si

s 
po

in
ts

Speculative-Grade Average Bid-Ask Spreads

Figure 4.17: Average Bid-Ask Spreads by Rating Group Model average bid-ask spreads are the
average of the model-implied bid-ask spreads computed for every firm in Compustat by rating category.
The black line corresponds to the bid-ask spreads implied by Bao, Pan, and Wang (2011) measurement of
corporate bonds illiquidity from 2003 to 2005. The relative measure is scaled to match the level of the first
datapoint in June 2003. The red line shows the average level of bid-ask spreads estimated by Edwards,
Harris, and Piwowar (2007) for investment- and speculative-grade bonds’ transactions of median size.

Aggregate equity volatility, of which the VIX is a proxy, is mainly driven by shocks to firms’

asset values and aggregate asset volatility. These shocks greatly impact bond prices in two

ways. First, shocks to firms’ asset values and aggregate asset volatility affect the probability

of default. Second, holding default risk constant, shocks to aggregate asset volatility change

the compensation required by bond holders, because aggregate volatility is adversely priced

by the representative investor. Thus, the sources of fluctuations in aggregate equity volatility

impact bond prices and holding costs (cfr. equation 3.5), which trigger similar fluctuations

in bid-ask spreads.

Equity and Debt Premiums Table 4.10 shows the model-implied expected equity and

debt premiums. Firm-level monthly model-implied premiums are first averaged every month

within each rating class, then over the whole sample. To measure equity excess returns, I

look at the performance of Vanguard’s index fund on the Standard & Poor’s 500 Index. Since

1987, investors have earned annualized excess returns of 622 basis points on Vanguard 500

Index Fund Investor Class (VFINX) relative to Vanguard Long-Term Treasury Fund Investor

Shares (VUSTX). Over the same period, the model predicts average equity premiums of 628

and 655 basis points for investment- and speculative-grade firms, respectively. The model
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equity premium bond premium
model model data model

1973–2014 1987–2014 1987–2014 1973–2014

investment-grade firms 524 bps 628 bps
622 bps

37 bps
speculative-grade firms 548 bps 655 bps 90 bps

Table 4.10: Equity Premium Firm-level monthly model-implied equity and bond premiums are first
averaged every month within each rating class, then over the whole sample. The empirical measurement of
equity excess returns corresponds to the cumulative annualized returns on Vanguard 500 Index Fund Investor
Class (VFINX) relative to Vanguard Long-Term Treasury Fund Investor Shares (VUSTX).

predicts average bond premiums of 37 and 90 basis points for investment- and speculative-

grade firms, respectively.

4.5 Forecast

To assess the predictive ability of different factors for economic activity, I use the following

univariate forecasting specification:

∆hYt+h = α +

p∑
i=1

βi∆Yt−i + γ1FEDt + γ2INFLt + γ3TSLOt + γ4Xt + εYt+h, (4.9)

where

∆hYt+h ≡
c

h+ 1
ln

(
Yt+h
Yt−1

)
,

h ≥ 0 is the forecast horizon, and c is a scaling constant that depends on the frequency of the

data (i.e., c = 1, 200 for monthly data and c = 400 for quarterly data). In the forecasting

regression (4.9), FEDt denotes the federal funds rate; INFLt denotes the inflation rate

from the personal consumption expenditure price index; TSLOt denotes the slope of the

Treasury yield curve, defined as the difference between the three-month constant-maturity

Treasury yield and the 10-year constant-maturity yield; Xt denotes a measure of economic

uncertainty; and εYt+h is the forecast error. Thus, I examine the marginal information content

of different measures of economic uncertainty conditional on key indicators of the stance on

monetary policy. The forecasting regressions are estimated by ordinary least squares, with
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Real GDP Growth 4-Quarters Forecast Horizon

(1) (2) (3) (4) (5) (6) (7)

FED 0.260** -0.045 -0.096*** 0.039 -0.110 -0.119 0.016
TSLO 0.491*** 0.405*** 0.938*** 0.412*** 0.349*** 0.331*** 0.396***

GZ -0.510*** -0.263**

EBP -0.336*** -0.144*

sigINV -0.356***

sigSPE -0.508*** -0.339*** -0.437***

Adj. R2 0.17 0.32 0.26 0.26 0.34 0.36 0.35

***p < 0.01, **p < 0.05, *p < 0.1

Table 4.11: Forecasting GDP Growth 164 quarterly observations from 1973:Q1 to 2014:Q4. The
dependent variable is ∆4Yt+4, where Yt denotes real GDP in quarter t and h is the forecast horizon. In
addition to the specified financial indicator in month t, each specification also includes a constant and p
lags of ∆Yt, where p is determined by the AIC. Entries in the table denote the standardized estimates of
the OLS coefficients associated with each financial indicator. FED is the federal funds rate, TSLO the
slope of the Treasury yield curve, GZ the GZ credit spread, EBP the excess bond premium, sigINV the
aggregate volatility estimate for investment-grade firms, and sigSPE the aggregate volatility estimate for
speculative-grade firms.

the lag length p of each specification determined by the Akaike Information Criterion. The

structure of the error term εYt+h induced by overlapping observations is taken into account

by computing standard errors according to Hansen and Hodrick (1980).

Gilchrist and Zakraǰsek (2012) show that the predictive ability of corporate bond credit

spreads for future economic activity significantly exceeds that of the other widely used

default-risk indicators such as the standard Baa-Aaa corporate bond credit spread and the

paper-bill spread. Therefore, I compare the performance of firms’ aggregate asset volatility

with the GZ credit spread, which is the monthly average of corporate bond credit spreads,

and the excess bond premium, which captures the cyclical changes in the relationship between

measured default risk and credit spreads (see Gilchrist and Zakraǰsek, 2012, for details).

In an environment consistent with Modigliani and Miller’s (1958) theorem, an approxi-

mation to the estimated aggregate volatility time series from Section 4.1 is given by:

log
(
sigjt
)

=
1

Njt

∑
i∈I(j,t)

[
log(1− levit) + log

(
viE,A(t)

)]
,
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where Njt is the amount of firms of type j at time t and I(j, t) is the set of firms of type j

at time t. Market leverage levit and equity return aggregate volatility viE,A(t) are described

in Section ??. Indeed, define yt to be the level of cash flows generated by firm’s assets:

dyt
yt

= µY,Fdt+ σY,AdZ
A
t .

where ZA
t is a Brownian motion representing aggregate shocks. Assume that corporate debt

is a perpetual bond with coupon rate c and that there is no option to default. Investors

assume that aggregate asset volatility and the risk-free rate are constant over time. The

valuation of equity by a risk-neutral investor is then given by

E =
yt

r − µ
−D

where the perpetual bond value is given by

D =
c

r
,

and aggregate equity volatility then satisfy

σE,A =
E +D

E
σY,A.

This approximation is more convenient to construct from a panel dataset of equity and

leverage, captures accurately the levels and fluctuations in the estimated aggregate asset

volatility, and does not significantly alter the forecasting results. Thus, recovering an accu-

rate measure of aggregate asset volatility does not depend on departures from Modigliani and

Miller’s (1958) assumptions. This provides an important guidance for future research. The

predictions of a mechanism that relates fluctuations in aggregate asset volatility to future

economic activity should satisfy this regularity.
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The second and third columns of Table 4.11 replicate the forecasting regressions of

Gilchrist and Zakraǰsek (2012) for the GZ credit spread and the excess bond premium,

which have considerable predictive power for economic activity over the 1973–2014 period.

As indicated in the fourth and fifth columns of Table 4.11, firms’ aggregate asset volatility

is both economically and statistically a highly significant predictor of output growth at the

year-ahead forecast horizon over the full sample period. Firms’ aggregate asset volatility

of speculative-grade firms is economically a stronger predictor of output growth than firms’

aggregate asset volatility of investment-grade firms. The coefficient estimate implies that

an increase in the investment-grade (speculative-grade) firms’ aggregate asset volatility of

10 volatility points in quarter t leads to a drop in real GDP growth of more than 2 (2.5)

percentage points over the subsequent 4 quarters.

The sixth and seventh columns show that the GZ credit spread and the excess bond

premium do not contain significant independent explanatory power on top of firms’ aggregate

asset volatility to predict output growth. In other words, the informational content of

corporate bond credit spreads for predicting output growth is captured by fluctuations in

firms’ aggregate asset volatility. For completeness, I replicated the forecast regressions of

Gilchrist and Zakraǰsek (2012) with payroll employment, unemployment rate, and industrial

production at 3- and 12-month forecast horizons. Overall, firms’ aggregate asset volatility

does not outperform the GZ credit spread for these components but captures at least 60%

of the credit spreads’ forecasting power for all of these indicators of real economic activity.10

Aggregate asset volatility significantly outperforms aggregate equity volatility to predict

economic activity.

10The percentage of credit spreads’ forecasting power captured by aggregate volatility is defined as:

R2
SIG −R2

0

R2
GZ −R2

0

.

R2
SIG is the adjusted goodness of fit of a regression with FED and TSLO. R2

SIG is the adjusted goodness
of fit of a regression with FED, TSLO, and sigINV or sigSPE . R2

GZ is the adjusted goodness of fit of a
regression with FED, TSLO, and GZ.
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Chapter 5

Conclusion

In this thesis, I show that a structural model estimated with a large firm-level database

can successfully account for the joint dynamics of important financial indicators of uncer-

tainty and financial distress. I uncover that fluctuations in firms’ asset values and firms’

aggregate asset volatility are the main drivers of these financial indicators. According to the

structure of the model, it occurs because firms’ aggregate volatility greatly influences the

quantity of credit risk priced by the representative investor. Furthermore, the informational

content of these financial indicators for predicting real economic activity can be captured

by fluctuations in firms’ aggregate asset volatility. All together, my results suggest that

fluctuations in aggregate firms’ asset volatility are key for the transmission channel that

links the fundamental drivers of financial indicators to the real economy. Further research

should aim at understanding the links between fundamental shocks, financial indicators, and

macroeconomic aggregates in a general equilibrium framework.
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Appendix A

The Marginal Investor Stochastic

Discount Factor

To obtain the stochastic discount factor, I first solve for the value function of the represen-

tative household as

J(Ct, st) = Et
[∫ ∞

0

f(Ct+s, Jt+s)ds

]
,

where the function f(c, v) is a normalized aggregator of consumption and continuation value

in each period defined as

f(C, J) =
ρ

1− 1/ψ

C1−1/ψ − ((1− γ)J)
1−1/ψ
1−γ

((1− γ)J)
1−1/ψ
1−γ −1

.

The consumption process of the marginal investor follows:

dCt
Ct

= µCdt+ σC(s)dZA
t .

86



The Hamilton-Jacoby-Bellman equation in state s (for s = 1, . . . , S) is

0 = f(C, J(C, s)) + JC(C, s)CµC +
1

2
JCC(C, s)C2σ2

C(s) +
∑
s′ 6=s

ζPss′(J(C, s′)− J(C, s)).

Conjecture that the solution for J is

J(C, s) =
(h(s)C)1−γ

1− γ
.

Note that

JC(C, s) = (h(s)C)−γ ,

JCC(C, s) = −γ (h(s)C)−γ−1 .

Substituting J into the differential equations above, we get the following system of nonlinear

equations for h:

0 =
ρ

1− 1/ψ

(
h(s)1/ψ−γ − h(s)1−γ

)
C1−γ + h(s)−γC1−γµC −

1

2
γ (h(s)C)1−γ σ2

C(s)

+
∑
s′ 6=s

ζPss′

(
(h(s′)C)1−γ

1− γ
− (h(s)C)1−γ

1− γ

)
.

This can be simplified as

0 = ρ
1− γ

1− 1/ψ
h(s)1/ψ−γ +

[
(1− γ)µC −

1

2
γ(1− γ)σ2

C(s)− ρ 1− γ
1− 1/ψ

]
h(s)1−γ

+
∑
s′ 6=s

ζPss′
(
h(s′)1−γ − h(s)1−γ

)
.

While no algebraic solution exists for this system of nonlinear equations, it is trivial to solve

numerically for h(s) ∀s ∈ {1, . . . , S}. Duffie and Skiadas (1994) show that the stochastic
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discount factor is equal to

Λt = exp

(∫ t

0

fJ(Cu, Ju)du

)
fC(Ct, Jt).

Thus we have

Λt = exp

(∫ t

0

ρ(1− γ)

1− 1/ψ

((
1/ψ − γ

1− γ

)
h(su)

1/ψ−1 − 1

)
du

)
ρH(s)1/ψ−γC−γ.

Applying Ito’s formula with jumps, we get

dΛt

Λt

= −r(s)dt− η(s)dZM
t +

∑
s′ 6=s

(
eκ(s,s

′) − 1
)
dM s,s′

t ,

where

r(s) = −ρ(1− γ)

1− 1/ψ

[
1/ψ − γ

1− γ
h(s)1/ψ−1 − 1

]
+ γµC(s)− 1

2
γ(1 + γ)σ2

C(s)−
∑
s′ 6=s

(eκ(s,s
′) − 1)

η(s) = γσC(s)

κ(s, s′) = (1/ψ − γ) log

(
h(j)

h(i)

)
.
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Appendix B

Baum-Welch Algorithm for hidden

Markov model

Let Xt be a discrete hidden random variable with N possible values. We assume that

P (Xt|Xt−1) is independent of time t, which leads to the definition of the time independent

stochastic transition matrix A = {aij} where aij = P (Xt = j|Xt−1 = i). The initial state

distribution is given by µ0. The observation variables Yt can take one of K possible values.

The probability of a certain observation at time t for state j is given by

`j(yt) = P (Yt = yt|Xt = j).

We will represent the observation density as follows: for every y ∈ F , we define the diagonal

matrix L(y) with nonzero elements {L(y)}ii = `i(y). An observation sequence is given by

Y = (Y0 = y0, Y2 = y2, ..., YT = yT ). Thus we can describe a hidden Markov chain by θ =

(A,L,µ0). The Baum-Welch algorithm finds a local maximum for θ∗ = arg maxθ P (Y |θ).

Initiation Set θ = (A,L,µ0) with random initial conditions.
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Forward procedure Let πi,t = P (Y0 = y0, ..., Yt = yt, Xt = i|θ) be the probability of

seeing the y0, y1, ..., yt and being in state i at time t. First, we get

c0 = 1′L(y0)µ0,

π0 = L(y0)µ0/c0.

Then for k = 1, . . . , N

π̃k = L(yk)A
′πk−1,

ck = 1′π̃k

πk = π̃k/ck

Backward procedure Let βi,t = P (Yt+1 = yt+1, ..., YT = yT |Xt = i,θ) that is the proba-

bility of the ending partial sequence yt+1, ..., yT given starting state i at time t. We calculate

βi,t as

βN |N = 1/cN

then or k = 1, . . . , N

βN−k|N = AL(yN−k+1)βN−k+1|N/cN−k,

πN−k,N−k+1|N = diag(πN−k)AL(yN−k+1)diag(βN−k+1|N),

πN−k|N = πN−k,N−k+1|N1,
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where πi,N−k|N = P (Xt = i|Y,θ) is the probability of being in state i at time t given the

observed sequence Y and the parameters θ. We can now update θ as

P ij =

∑n
k=1(πk−1,k|N)ij∑N
k=1(πk−1|N)i

,

µ0 = π0|N ,

and the parameters of L(·) as their empirical counterparts.

The algorithm applied to the General Electric Company Stock Price is shown in Figure

B.1. The algorithm detects three states: (1) high growth (0.16) high volatility (0.27), (2)

low growth (0.11) low volatility (0.15), and (3) negative growth (-0.36) very high volatility

(0.62).
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Figure B.1: General Electric Company Stock Price

91



Appendix C

Continuous- to Discrete-Time Poisson

Process

Define the probability of being in state i at time t as Pi(t). With the transition from state i

to j following an exponential distribution with parameter ζij, we can consider the first-order

system equations for the n-state system expressed in matrix form as

ζTP =



−ζ1 ζ12 · · · ζ1n

ζ21 −ζ2 · · · ζ2n
...

...
. . .

...

ζn1 ζn2 · · · −ζn



T 

P1

P2

...

PN


=



Ṗ1

Ṗ2

...

ṖN


= Ṗ

where

ζi =
∑
j 6=i

ζij.

The general solution to this homogeneous linear system with constant coefficients is

P(t) = h1e
λ1tc1 + . . .+ hne

λntcn = HΛ(t)c
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where (λ1,h1), . . ., (λn,hn) are the eigenpairs of ζT with n independent eigenvectors, and

H = [h1, . . . ,hn],

c = [c1, . . . , cn]T,

Λ(t) = diag
([
eλ1t, . . . , eλnt

])
.

We can find c with the initial condition P(0) solving

c = H−1P(0).

Thus we can get the discrete-time transition matrix Π according to

Π = (H−1)TΛ(1/12)HT.
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