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Abstract

The current paper studies the problem of minimizing a loss f(x) subject to constraints of the 

form Dx ∈ S, where S is a closed set, convex or not, and D is a matrix that fuses parameters. 

Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle 

this generic class of problems, we combine the Beltrami-Courant penalty method of optimization 

with the proximal distance principle. The latter is driven by minimization of penalized objectives 

f(x) + ρ
2dist(Dx, S)2 involving large tuning constants ρ and the squared Euclidean distance of Dx 

from S. The next iterate xn+1 of the corresponding proximal distance algorithm is constructed from 

the current iterate xn by minimizing the majorizing surrogate function f(x) + ρ
2 Dx − PS Dxn

2. 

For fixed ρ and a subanalytic loss f(x) and a subanalytic constraint set S, we prove convergence to 

a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate 

linear local convergence. We also construct a steepest descent (SD) variant to avoid costly 

linear system solves. To benchmark our algorithms, we compare their results to those delivered 

by the alternating direction method of multipliers (ADMM). Our extensive numerical tests 

include problems on metric projection, convex regression, convex clustering, total variation image 

denoising, and projection of a matrix to a good condition number. These experiments demonstrate 

the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems. 

Julia code to replicate all of our experiments can be found at https://github.com/alanderos91/

ProximalDistanceAlgorithms.jl

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/
papers/v23/20-964.html.
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1. Introduction

The generic problem of minimizing a continuous function f(x) over a closed set S of ℝp can 

be attacked by a combination of the penalty method and distance majorization. The classical 

penalty method seeks the solution of a penalized version hρ(x) = f(x) + ρq(x) of f(x), where 

the penalty q(x) is nonnegative and 0 precisely when x ∈ S. If one follows the solution 

vector xρ as ρ tends to ∞, then in the limit one recovers the constrained solution (Beltrami, 

1970; Courant, 1943). The function

q(x) = 1
2dist(x, S)2 = 1

2 min
y ∈ S

x − y
2
,

is one of the most fruitful penalties in this setting. Our previous research for solving 

this penalized minimization problem has focused on an MM (majorization-minimization) 

algorithm based on distance majorization (Chi et al., 2014; Keys et al., 2019). In distance 

majorization one constructs the surrogate function

gρ x ∣ xn = f(x) + ρ
2 x − P xn

2,

using the Euclidean projection (xn) of the current iterate xn onto S. The minimum of the 

surrogate occurs at the proximal point

xn + 1 = proxρ−1f P xn . (1)

According to the MM principle, this choice of xn+1 decreases gρ(x | xn) and hence the 

objective hρ(x) as well. As we note in our previous JMLR paper (Keys et al., 2019), the 

update (1) reduces to the classical proximal gradient method when S is convex (Parikh, 

2014).

We have named this iterative scheme the proximal distance algorithm (Keys et al., 2019; 

Lange, 2016). It enjoys several virtues. First, it allows one to exploit the extensive body of 

results on proximal maps and projections. Second, it does not demand that the constraint set 

S be convex. If S is merely closed, then the map (x) may be multivalued, and one must 

choose a representative element from the projection (xn). Third, the algorithm does not 

require the objective function f(x) to be differentiable. Fourth, the algorithm dispenses with 

the chore of choosing a step length. Fifth, if sparsity is desirable, then the sparsity level can 

be directly specified rather than implicitly determined by the tuning parameter of the lasso or 

other penalty.

Traditional penalty methods have been criticized for their numerical instability. This hazard 

is mitigated in the proximal distance algorithm by its reliance on proximal maps, which 
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are often highly accurate. The major defect of the proximal distance algorithm is slow 

convergence. This can be ameliorated by Nesterov acceleration (Nesterov, 2013). There is 

also the question of how fast one should send ρ to ∞. Although optimal schedules are rarely 

known, simple numerical experiments yield a good choice. Finally, soft constraints can be 

achieved by stopping the steady increase of ρ at a finite value.

1.1 Proposed Framework

Distance majorization can be generalized in various ways. For instance, it can be expanded 

to multiple constraint sets. In practice, at most two constraint sets usually suffice. Another 

generalization is to replace the constraint x ∈ S by the constraint Dx ∈ S, where D is a 

compatible matrix. Again, the original case D = I is allowed. By analogy with the fused 

lasso of Tibshirani et al. (2005), we will call the matrix D a fusion matrix. With these 

ideas in mind, we examine the general problem of minimizing a differentiable function f(x) 

subject to r fused constraints Dix ∈ Si. We approach this problem by extending the proximal 

distance method. For a fixed penalty constant ρ, the objective function and its MM surrogate 

now become

ℎρ(x) = f(x) + ρ
2 ∑

i = 1

r
dist Dix, Si

2,

gρ x ∣ xn = f(x) + ρ
2 ∑

i = 1

r
Dix − Pi Dixn

2,

where i(y) denotes the projection of y onto Si. Any or all of the fusion matrices Di can 

be the identity I. Our motivating premise posits that projection onto each set Si is more 

straightforward than projection onto its preimage Di
−1 Si . When the contrary is true, one 

should clearly favor projection onto the preimage.

Fortunately, we can simplify the problem by defining S to be the Cartesian product ∏i = 1
r Si

and D to be the stacked matrix

D =
D1

⋮
Dr

.

Our objective and surrogate then revert to the less complicated forms

ℎρ(x) = f(x) + ρ
2dist(Dx, S)2, (2)

gρ x ∣ xn = f(x) + ρ
2 Dx − P Dxn

2, (3)
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respectively, where (x) is the Cartesian product of the projections i(x). Note that all 

closed sets Si with simple projections, including sparsity sets, are fair game.

1.2 Our Contributions

In the framework described above, we summarize the contributions of the current paper.

a. Section 2 describes solution algorithms for minimizing the penalized loss hρ(x). 

Our first algorithm is based on Newton’s method applied to the surrogate gρ(x 
| xn). For some important problems, Newton’s method reduces to least squares. 

Our second method is a steepest descent algorithm on gρ(x | xn) tailored to high 

dimensional problems.

b. For a sufficiently large ρ, we show that when f(x) and S are convex and f(x) 

possesses a unique minimum point in the preimage of S under D, y ∈ D−1(S), the 

penalized loss hρ(x) attains its minimum value. This is the content of Proposition 

3.1. Similarly, Proposition 3.2 shows that the surrogate gρ(x | xn) also attains its 

minimum.

c. If in addition f(x) is differentiable, then Proposition 3.3 demonstrates that the 

MM iterates xn for minimizing hρ(x) satisfy

ℎρ xn − ℎρ zρ = O ρ
n ,

where zρ minimizes hρ(x). If f(x) is also L-smooth and μ-strongly convex, then 

Proposition 3.4 shows that zρ is unique and the iterates xn converge to zρ at a 

linear rate.

d. More generally, Proposition 4.1 proves that the iterates xn of a generic MM 

algorithm converge to a stationary point of a coercive subanalytic function 

h(x) with a good surrogate. Our objectives and their surrogates fall into this 

category. Proposition 4.2 specializes the results of Proposition 4.1 to proximal 

distance algorithms. Propositions 4.3 and 4.4 further specialize to proximal 

distance algorithms with sparsity constraints and demonstrate a linear rate of 

convergence. Sparsity sets appear in model selection.

e. Finally, we discuss a competing alternating direction method of multipliers 

(ADMM) algorithm and note its constituent updates. Our extensive numerical 

experiments compare the two proximal distance algorithms to ADMM. We find 

that proximal distance algorithms are competitive with and often superior to 

ADMM in terms of accuracy and running time.

1.3 Notation

The symbols x and y and their decorated variants are typically reserved for optimization 

variables. Fusion operators D are problem specific but understood as real matrices. 

Generally, D is neither injective nor surjective; the inverse image of S is denoted D−1(S). 

The function f(x) represents the loss in the constrained minimization problem
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min
x

f(x) such that Dx ∈ S,

whereas ℎρ(x) = f(x) + ρ
2dist(Dx, S)2 is the the penalized loss. Our point to set distance 

functions are based on the Euclidean norm via

dist(y, S) = inf
z ∈ S

y − z
2

and dist(Dx, S) = inf
z ∈ S

Dx − z
2
.

Finally, the notation S(y) indicates the unique Euclidean projection of y onto the closed 

convex set S. If S is merely closed, then S(y) may be set-valued. Depending on the context, 

S(y) also denotes a particular representative of this set.

2. Different Solution Algorithms

Unless f(x) is a convex quadratic, exact minimization of the surrogate gρ(x | xn) is likely 

infeasible. As we have already mentioned, to reduce the objective hρ(x) in (2), it suffices 

to reduce the surrogate (3). For the latter task, we recommend Newton’s method on small 

and intermediate-sized problems and steepest descent on large problems. The exact nature of 

these generic methods are problem dependent. The following section provides a high-level 

overview of each strategy and we defer details on our later numerical experiments to the 

appendices.

2.1 Newton’s Method and Least Squares

Unfortunately, the proximal operator proxρ−1f(y) is no longer relevant in calculating the MM 

update xn+1. When f(x) is smooth, Newton’s method for the surrogate gρ(x | xn) defined in 

Equation (3) employs the update

xn + 1 = xn − Hn + ρDtD −1 ∇f xn + ρDt Dxn − P Dxn ,

where Hn = d2f(xn) is the Hessian. To enforce the descent property, it is often prudent 

to substitute a positive definite approximation Hn for d2f(xn). In statistical applications, 

the expected information matrix is a natural substitute. It is also crucial to retain as much 

curvature information on f(x) as possible. Newton’s method has two drawbacks. First, it is 

necessary to compute and store d2f(xn). This is mitigated in statistical applications by the 

substitution just mentioned. Second, there is the necessity of solving a large linear system. 

Fortunately, the matrix Hn + ρDtD is often well-conditioned relative to Hn, for example, 

when D has full column rank and DtD is positive definite. The method of conjugate 

gradients can be called on to solve the linear system in this ideal circumstance.

To reduce the condition number of the matrix Hn + ρDtD even further, one can sometimes 

rephrase the Newton step as iteratively reweighted least squares. For instance, in a 

generalized linear model, the gradient ∇f(x) and the expected information H can be written 

as

Landeros et al. Page 5

J Mach Learn Res. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∇f(x) = − ZtW 1/2r and H = ZtW Z,

where r is a vector of standardized residuals, Z is a design matrix, and W is a diagonal 

matrix of case weights (Lange, 2010; Nelder and Wedderburn, 1972). The Newton step is 

now equivalent to minimizing the least squares criterion

1
2x*Hnx − ∇f xn *x = W n

1/2Zx − W n
−1/2 ∇f xn

2

= W n
1/2Z
ρD

x −
W n

1/2Zxn + rn

ρP Dxn

2
.

In this context a version of the conjugate gradient algorithm adapted to least squares 

is attractive. The algorithms LSQR (Paige and Saunders, 1982) and LSMR (Fong and 

Saunders, 2011) perform well when the design is sparse or ill conditioning is an issue. Given 

the numerical stability of the iteratively reweighted least squares updates, we favor them 

over the explicit Newton steps in implementing proximal distance algorithms.

2.2 Proximal Distance by Steepest Descent

In high-dimensional optimization problems, gradient descent is typically employed to avoid 

matrix inversion. Determination of an appropriate step length is now a primary concern. In 

the presence of fusion constraints Dx ∈ S and a convex quadratic loss f(x) = 1
2xtAx + btx, 

the gradient of the proximal distance objective at xn amounts to

vn = Anx + b + ρDt Dxn − P Dxn .

For the steepest descent update xn+1 = xn − tnvn, one can show that the optimal step length is

tn = vn
2

vn
tAvn + ρ Dvn

2 .

This update obeys the descent property and avoids matrix inversion. One can also substitute 

a local convex quadratic approximation around xn for f(x). If the approximation majorizes 

f(x), then the descent property is preserved. In the failure of majorization, the safeguard of 

step halving is trivial to implement.

In addition to Nesterov acceleration, gradient descent can be accelerated by the subspace 

MM technique (Chouzenoux et al., 2010). Let Gn be the matrix with k columns determined 

by the k most current gradients of the objective hρ(x), including ∇hρ(xn). Generalizing our 

previous assumption, suppose f(x) has a quadratic surrogate with Hessian Hn at xn. Overall 

we get the quadratic surrogate

qρ x ∣ xn = gρ xn ∣ xn + ∇gρ xn ∣ xn
t x − xn + 1

2 x − xn
t Hn + ρDtD x − xn .
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of gρ(x | xn). We now seek the best linear perturbation xn + Gnβ of xn by minimizing qρ(xn + 

Gnβ | xn) with respect to the coefficient vector β. To achieve this end, we solve the stationary 

equation

0 = Gn
t ∇gρ xn ∣ xn + Gn

t Hn + ρDtD Gnβ,

and find β = − Gn
t Hn + ρDtD Gn

−1Gn
t ∇gρ xn ∣ xn , where the gradient is

∇gρ xn ∣ xn = ∇ℎρ xn = ∇f xn + ρDt Dxn − P Dxn .

The indicated matrix inverse is just k × k.

2.3 ADMM

ADMM (alternating direction method of multipliers) is a natural competitor to the proximal 

distance algorithms just described (Hong et al., 2016). ADMM is designed to minimize 

functions of the form f(x) + g(Dx) subject to x ∈ C, where C is closed and convex. Splitting 

variables leads to the revised objective f(x) + g(y) subject to x ∈ C and y = Dx. ADMM 

invokes the augmented Lagrangian

Aμ(x, y, λ) = f(x) + g(y) + λt(Dx − y) + μ
2 Dx − y 2,

with Lagrange multiplier λ and step length μ > 0. At iteration n + 1 of ADMM one 

calculates successively

xn + 1 = argminx ∈ C f(x) + μ
2 Dx − yn + λn

2 , (4)

yn + 1 = argminy g(y) + μ
2 Dxn + 1 − y + λn

2 , and (5)

λn + 1 = λn + μ Dxn + 1 − yn + 1 . (6)

Update (4) succumbs to Newton’s method when f(x) is smooth and C = ℝp, and update (5) 

reduces to a proximal map of g(y). Update (6) of the Lagrange multiplier λ amounts to 

steepest ascent on the dual function. A standard extension to the scheme in (4) through (6) 

is to vary the step length μ by considering the magnitude of residuals (Boyd et al., 2011). 

For example, letting rn = Dx − y and sn = μDt(yn−1 − yn) denote primal and dual residuals at 

iteration n, we make use of the heuristic

μn + 1 =
2μn, if rn / sn > 10
μn/2, if rn / sn < 10
μn, otherwise

,
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which (a) keeps the primal and dual residuals within an order of magnitude of each other, (b) 

makes ADMM less sensitive to the choice of step length, and (c) improves convergence.

Our problem conforms to the ADMM paradigm when S is equal to the Cartesian product 

∏i = 1
r Si and g(y) = ρ

2dist(y, S)2. Fortunately, the y update (5) reduces to a simple formula 

(Bauschke and Combettes, 2017). To derive this formula, note that the proximal map y = 

proxαg(z) satisfies the stationary condition

0 = y − z + α[y − P(y)],

for any z, including z = Dxn+1 + λn, and any α, including α = ρ/μ. Since the projection map 

(y) has the constant value (z) on the line segment [z, (z)], the value

proxαg(z) = α
1 + αP(z) + 1

1 + αz,

satisfies the stationary condition. Because the explicit update (5) for y decreases the 

Lagrangian even when S is nonconvex, we will employ it generally.

The x update (4) is given by the proximal map proxμ−1f λn − yn  when S = ℝp and D = I. 

Otherwise, the update of x is more problematic. Assuming f(x) is smooth and S = ℝp, 

Newton’s method gives the approximate update

xn + 1 = xn − d2f xn + μDtD −1 ∇f xn + μDt Dxn − yn + λn .

Our earlier suggestion of replacing d2f(xn) by a positive definite approximation also applies 

here. Let us emphasize that ADMM eliminates the need for distance majorization. Although 

distance majorization is convenient, it is not necessarily a tight majorization. Thus, one can 

hope to see gains in rates of convergence. Balanced against this positive is the fact that 

ADMM is often slow to converge to high accuracy.

2.4 Proximal Distance Iteration

We conclude this section by describing proximal distance algorithms in pseudocode. As 

our theoretical results will soon illustrate, the choice of penalty parameter ρ is tied to the 

convergence rate of any proximal distance algorithm. Unfortunately, a large value for ρ is 

necessary for the iterates to converge to the constraint set S. We ameliorate this issue by 

slowly sending ρ → ∞ according to annealing schedules from the family of geometric 

progressions ρ(t) = rt−1 with t ≥ 1. Here we parameterize the family by an initial value ρ = 

1 and a multiplier r > 1. Thus, our methods approximate solutions to min f(x) subject to Dx 
∈ S by solving a sequence of increasingly penalized subproblems, min xhρ(t)(x). Algorithm 1 

gives a high-level sketch of proximal distance iteration.
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In practice we can only solve a finite number of subproblems so we prescribe the following 

convergence criteria

∇ℎρ(t) xn ≤ δℎ, (7)

dist Dxt, S ≤ δd, or (8)

dist Dxt, S − dist Dxt − 1, S ≤ δq dist Dxt − 1, S + 1 . (9)

Condition (7) is a guarantee that a solution estimate xn is close to a stationary point after 

n inner iterations for the fixed value of ρ = ρ(t). In conditions (8) and (9), the vector 

xt denotes the δh-optimal solution estimate once condition (7) is satisfied for a particular 

subproblem along the annealing path. Condition (8) is a guarantee that solutions along the 

annealing path adhere to the fusion constraints at level δd. In general, condition (8) can 

only be satisfied for large values of ρ(t). Finally, condition (9) is used to terminate the 

annealing process if the relative progress made in decreasing the distance penalty becomes 

too small as measured by δq. Algorithm 2 describes the flow of proximal distance iteration 

in practice. Nesterov acceleration in inner iterations is a key ingredient. Warm starts in 

solving subsequent subproblems are implicit in our formulation.

3. Convergence Analysis: Convex Case

In this section we summarize convergence results for proximal distance algorithms on 

convex problems. Proofs of all propositions appear in Section 7. We begin our discussion by 

recalling the definition of the next iterate

xn + 1 ∈ argmingρ x ∣ xn ≡ ∪
zn ∈ P Dxn

argmin
x

f(x) + ρ
2 Dx − zn

2 , (10)

and the descent property

ℎρ xn + 1 ≤
domination

gρ xn + 1 ∣ xn ≤
definition

gρ xn ∣ xn =tangency ℎρ xn ,

enjoyed by all MM algorithms. As noted earlier, we can assume a single fusion matrix D 
and a single closed convex constraint set S. With these ideas firmly in mind, we state a 

sufficient condition for the existence of a minimum point of the penalized loss hρ(x). Further 

constraints on x beyond those imposed in the distance penalties are rolled into the essential 

domain of the convex loss f(x). This is particularly beneficial for a quadratic loss with an 

affine constraint (Keys et al., 2019; Lange, 2016).

Landeros et al. Page 9

J Mach Learn Res. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proposition 3.1 Suppose the convex function f(x) on ℝp possesses a unique minimum point 

y on the closed convex set T = D−1(S). Then for all sufficiently large ρ, the objective 

ℎρ(x) = f(x) + ρ
2dist(Dx, S)2 is coercive and therefore attains its minimum value.

Next we show that the surrogate function gρ(x | xn+1) defined in equation (3) attains its 

minimum value for large enough ρ. This ensures that the algorithm map (10) is well-defined.

Proposition 3.2 Under the conditions of Proposition 3.1, for sufficiently large ρ, every 

surrogate gρ x ∣ xn = f(x) + ρ
2 Dx − P Dxn

2 is coercive and therefore attains its minimum 

value. If

f(x) ≥ f xn + vn
t x − xn + 1

2 x − xn
tA x − xn ,

for all x and some positive semidefinite matrix A and subgradient vn at xn, and if the 
inequality utAu > 0 holds whenever ∥Du∥ = 0 and u ≠ 0, then for ρ sufficiently large, gρ(x | 

xn) is strongly convex and hence coercive.

As an illustration of Proposition 3.2, suppose that D is the forward difference operator with 

unit spacing. By virtue of our convexity assumption, it suffices to prove that the surrogate 

gρ(x | xn+1) is coercive along all rays emanating from the origin. The only vectors with Dv 
= 0 are multiples of 1. Thus, we only need the map t ↦ f(t1) to tend to ∞ as |t| does. 

This is much weaker condition than the strong convexity of f(x). In other words f(x) must 

compensate for the penalty where the penalty is not coercive. Uniqueness of xn+1 holds 

whenever gρ(x | xn) is strictly convex regardless of whether the conditions imposed by the 

proposition are true.

In our ideal convex setting we have a first convergence result for fixed ρ.

Proposition 3.3 Supposes (a) that S is closed and convex, (b) that the loss f(x) is convex and 
differentiable, and (c) that the constrained problem possesses a unique minimum point. For 
ρ sufficiently large, let zρ denote a minimal point of the objective hρ(x) defined by equation 

(2). Then the MM iterates (10) satisfy
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0 ≤ ℎρ xn − ℎρ zρ ≤ ρ
2(n + 1) D zρ − x0

2 .

Furthermore, the iterate values hρ(xn) systematically decrease.

In even more restricted circumstances, one can prove linear convergence of function values 

in the framework of Karimi et al. (2016). Specifically, our result hinges on deriving a 

Polyak-Łojasiewicz inequality for (sub)gradients of hρ(x), from which linear convergence 

follows almost immediately.

Proposition 3.4 Suppose that S is a closed and convex set and that the loss f(x) is L-smooth 

and μ-strongly convex. Then the objective ℎρ(x) = f(x) + ρ
2dist(Dx, S)2 possesses a unique 

minimum point zρ, and the proximal distance iterates xn satisfy

0 ≤ ℎρ xn − ℎρ zρ ≤ 1 − μ2

2 L + ρ D 2 2

n

ℎρ x0 − ℎρ zρ .

Convergence of ADMM is well studied in the optimization literature (Beck, 2017). 

Appendix B summarizes the main findings as they apply to the ADMM algorithms of 

Section 2.3.

4. Convergence Analysis: General Case

We now depart the comfortable confines of convexity. Our analysis relies on the Fréchet 

subdifferential (Kruger, 2003) and the theory of semialgebraic sets and functions. Readers 

unfamiliar with these topics are encouraged to read Appendix A for a brief review of the 

relevant theory.

The presentation of our results relies on the prior chain of reasoning established by Keys 

et al. (2019). Specifically, our arguments invoke Zangwill’s global convergence theorem 

for algorithm maps (Luenberger et al., 1984, Chapter 7, Section 7). The key ingredients of 

the theory are (i) a solution set (for instance a set of stationary points), (ii) an algorithm 

map that is closed outside the solution set, (iii) a compact set containing the iterates xn 

generated by the map, and (iv) a Lyapunov function that decreases along the iterates. Keys 

et al. (2019) set the stage in their Propositions 5 through 8 by showing that proximal 

distance algorithms with D = I satisfy the restrictions (i)-(iv) imposed by Zangwill’s global 

convergence theorem. Note that our algorithm maps inherit their multivalent nature from 

multivalent Euclidean projections onto nonconvex sets. In any event, the main hurdles to 

overcome in proving convergence with fixed ρ > 0 are

a. establishing coercivity of hρ(x),

b. demonstrating strong convexity of gρ(x | xn), and

c. showing hρ(x) satisfies a Polyak-Łojasiewicz inequality.
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In the present case with D ≠ I, the coercivity assumption (a) is tied to requirement (iii) 

in Zangwill’s theorem as stated above. The strong convexity assumption (b) is fortunately 

imposed on the surrogate rather than the objective. It is also crucial that the Euclidean 

distance dist(x, S) to a semialgebraic set S is a semialgebraic function. In view of the closure 

properties of such functions, the function ρ
2dist(Dx, S)2 is also semialgebraic. Semialgebraic 

theory is quite general, and many common set constraints fall within its purview. For 

example, the nonnegative orthant ℝ+
p  and the unit sphere p−1 are semialgebraic.

The next proposition considers the convergence of the iterates of a generic MM algorithm 

to a stationary point. Readers seeking a proof may consult Section A.10 in the appendix of 

Keys et al. (2019).

Proposition 4.1 In an MM algorithm suppose the objective h(x) is coercive, continuous, and 
subanalytic and all surrogates g(x | xn) are continuous, μ-strongly convex, and satisfy the 
Lipschitz condition

∇g a ∣ xn − ∇g b ∣ xn , ≤ L a − b

on the compact set {x : h(x) ≤ h(x0)}. Then the MM iterates xn+1 = argminx g(x | xn) 

converge to a stationary point.

This result builds on theoretical contributions extending Kurdyka’s, Łojasiewicz’s, and 

Polyak’s inequalities to nonsmooth analysis, the generic setting of semialgebraic sets and 

functions, and proximal algorithms (Bolte et al., 2007; Attouch et al., 2010; Kang et al., 

2015; Cui et al., 2018; Le Thi et al., 2018). Note that the stationary point may represent a 

local minimum or even a saddle point rather than a global minimum.

Before stating a precise result for our proposed proximal distance algorithms, let us clarify 

the nature of the Fréchet subdifferential in the current setting. This entity is determined by 

the identity

1
2dist(Dx, S)2 = 1

2 min
z ∈ S

Dx − z
2
,

for which Danskin’s theorem yields the directional derivative

dv
1
2dist(Dx, S)2 = min

z ∈ S(x)
(Dx − z)tDv .

Here S(x) is the solution set where the minimum is attained. The Fréchet differential

∂F ℎρ(x) = ∇f(x) + ρ u: (Dx − z)tDv ≥ utv, z ∈ S(x) andallv

= ∇f(x) + ρ u:u = Dt(Dx − z), z ∈ S(x) ,
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holds owing to Corollary 1.12.2 and Proposition 1.17 of Kruger (2003) since dist(Dx, S)2 is 

locally Lipschitz. The latter fact follows from the identity a2 − b2 = (a + b)(a − b) with a = 

dist(Dy, S)2 and b = dist(Dx, S)2, given that dist(w, S) is Lipschitz and bounded on bounded 

sets.

In any event, a stationary point x satisfies 0 = ∇f(x) + ρDt(Dx − z) for all z ∈ S(x). As we 

expect, the stationary condition is necessary for x to furnish a global minimum. Indeed, if 

it fails, take z ∈ S(x) with surrogate satisfying ∇gρ(x | x) ≠ 0. Then the negative gradient 

−∇gρ(x | x) is a descent direction for gρ(x | x), which majorizes hρ(x). Hence, −∇gρ(x | x) 

is also a descent direction for hρ(x). This conclusion is inconsistent with x being a local 

minimum of the objective.

Having clarified Proposition 4.1 in our context, we state a convergence result on hρ(x).

Proposition 4.2 Suppose in our proximal distance setting that ρ is sufficiently large, the 
closed constraint sets Si and the loss f(x) are semialgebraic, and f(x) is differentiable with 
a locally Lipschitz gradient. Under the coercive assumption made in Proposition 3.2, the 
proximal distance iterates xn converge to a stationary point of the objective hρ(x).

The coercivity assumption requires that hρ(x) be coercive for sufficiently large ρ. This is not 

as restrictive as it sounds. If S is compact and f(x) is convex or bounded below, then the 

primary hindrances are the directions v where Dv = 0. Unless D is the trivial matrix 0, this 

null space has Lebesgue measure 0.

We conclude this section by communicating two results involving the set Sk ⊂ Rp whose 

members have at most k nonzero components. The sparsity constraint defining Sk is usually 

expressed as ∥x∥0 ≤ k for all feasible vectors x. Projection of x onto Sk preserves the top 

k components of x in absolute value but sends all other components to 0. Sparsity sets can 

be extended to matrix-valued variables X with the sparsity constraint applying to the entries, 

rows, or columns. Projection in the second case ranks rows by their norms and replaces the 

lowest ranked rows by the 0 vector. The next proposition establishes that Sk is semialgebraic 

in a general setting.

Proposition 4.3 The order statistics of a finite set fi(x) i = 1
n  of semialgebraic functions are 

semialgebraic. Hence, sparsity sets are semialgebraic.

For sparsity constrained problems, one can establish a linear rate of convergence under the 

right hypotheses. The next proposition proves convergence for a wide class of fused models.

Proposition 4.4 Suppose in our proximal distance setting that ρ is sufficiently large, the 
constraint set is a sparsity set Sk, and the loss f(x) is semialgebraic, strongly convex, and 
has a Lipschitz gradient. Then the proximal distance iterates xn converge to a stationary 
point x∞. Convergence occurs at a linear rate provided Dx∞ has k unambiguous largest 
components in magnitude. When the rows of D are unique, the complementary set of points 
x where Dx has k ambiguous largest components in magnitude has Lebesgue measure 0.
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5. Numerical Examples

This section considers five concrete examples of constrained optimization amenable to 

distance majorization with fusion constraints, with D denoting the fusion matrix in each 

problem. In each case, the loss function is both strongly convex and differentiable. The 

specific examples that we consider are the metric projection problem, convex regression, 

convex clustering, image denoising with a total variation penalty, and projection of a 

matrix to one with a better condition number. Each example is notable for the large 

number of fusion constraints and projections to convex constraint sets, except in convex 

clustering. In convex clustering we encounter a sparsity constraint set. Quadratic loss models 

feature prominently in our examples. Interested readers may consult our previous work for 

nonconvex examples with D = I (Keys et al., 2019; Xu et al., 2017).

5.1 Mathematical Descriptions

Here we provide the mathematical details for each example.

5.1.1 Metric Projection—Solutions to the metric projection problem restore the triangle 

inequality to noisy distance data represented as m nodes of a graph (Brickell et al., 2008; 

Sra et al., 2005). Specifically, data are encoded in an m × m dissimilarity matrix Y = (yij) 

with nonnegative weights in the matrix W = (wij). Metric projection requires finding the 

symmetric semi-metric X = (xij) minimizing

f(X) = ∑
i > j

wij xij − yij
2,

subject to all 
m
2  nonnegativity constraints xij ≥ 0 and all 3 m

3  triangle inequality constraints 

xij − xik − xkj ≤ 0. The diagonal entries of Y, W, and X are zero by definition. The fusion 

matrix D has 
m
2 + 3 m

3  rows, and the projected value of DX must fall in the set S of 

symmetric matrices satisfying all pertinent constraints.

One can simplify the required projection by stacking the nonredundant entries along each 

successive column of X to create a vector x with 
m
2  entries. This captures the lower triangle 

of X. The sparse matrix D is correspondingly redefined to be 
m
2 + 3 m

3 × m
2 . These 

maneuvers simplify constraints to Dx ≥ 0, and projection involves sending each entry u of 

Dx to max{0, u}. Putting everything together, the objective to minimize is

ℎρ(x) = 1
2 W 1/2(x − y) 2

2
+ ρ

2dist T x, ℝ+
p1 2 + ρ

2dist x, ℝ+
p2 2,

where D consists of blocks T and Ip2 and p1 and p2 count the number of triangle inequality 

and nonnegativity constraints, respectively. The linear system (I + ρDtD)x = b appears 

in both the MM and ADMM updates for xn. Application of the Woodbury and Sherman-
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Morrison formulas yield an exact solution to the linear system and allow one to forgo 

iterative methods. The interested reader may consult Appendix C for further details.

5.1.2 Convex Regression—Convex regression is a nonparametric method for 

estimating a regression function under shape constraints. Given m responses yi and 

corresponding predictors xi ∈ ℝd, the goal is to find the convex function ψ(x) minimizing 

the sum of squares 1
2 ∑i = 1

m yi − ψ xi
2. Asymptotic and finite sample properties of this convex 

estimator have been described in detail by Seijo and Sen (2011). In practice, a convex 

regression program can be restated as a finite dimensional problem of finding the value 

θi and subgradient ξi ∈ ℝd of ψ(x) at each sample point (yi, xi). Convexity imposes the 

supporting hyperplane constraint θj + ξj
t xi − xj ≤ θi for each pair i ≠ j. Thus, the problem 

becomes one of minimizing 1
2 y − θ 2

 subject to these m(m − 1) inequality constraints. In 

the proximal distance framework, we must minimize

ℎρ(θ, Ξ) = 1
2 y − θ

2
+ ρ

2dist Aθ + BΞ, ℝ−
m(m − 1) 2,

where D = [A B] encodes the required fusion matrix. The reader may consult Appendix D 

for a description of each algorithm map.

5.1.3 Convex Clustering—Convex clustering of m samples based on d features can be 

formulated in terms of the regularized objective

Fγ(U) = 1
2 ∑

i = 1

m
ui − xi

2 + γ ∑
i > j

wij ui − uj ,

based on columns xi and ui of X ∈ ℝd × m and U ∈ ℝd × m, respectively. Here each xi ∈ ℝd

is a sample feature vector and the corresponding ui represents its centroid assignment. The 

predetermined weights wij have a graphical interpretation under which similar samples have 

positive edge weights wij and distant samples have 0 edge weights. The edge weights are 

chosen by the user to guide the clustering process. In general, minimization of Fγ(U) 

separates over the connected components of the graph. To allow all sample points to 

coalesce into a single cluster, we assume that the underlying graph is connected. The 

regularization parameter γ > 0 tunes the number of clusters in a nonlinear fashion and 

potentially captures hierarchical information. Previous work establishes that the solution 

path U(γ) varies continuously with respect to γ (Chi and Lange, 2015). Unfortunately, there 

is no explicit way to determine the number of clusters entailed by a particular value of γ 
prior to fitting U(γ).

Alternatively, we can attack the problem using sparsity and distance majorization. Consider 

the penalized objective
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ℎρ, k(U) = 1
2 U − X

F

2
+ ρ

2dist UD, Sk
2 .

The fusion matrix D has 
m
2  columns wij(ei − ej) and serves to map the centroid matrix U 

to a d × m
2  matrix V encoding the weighted differences wij(ui − uj). The members of the 

sparsity set Sk are d × m
2  matrices with at most k non-zero columns. Projection of UD onto 

the closed set Sk forces some centroid assignments to coalesce, and is straightforward to 

implement by sorting the Euclidean lengths of the columns of UD and sending to 0 all but 

the k most dominant columns. Ties are broken arbitrarily.

Our sparsity-based method trades the continuous penalty parameter γ > 0 in the previous 

formulation for an integer sparsity index k ∈ 0, 1, 2, …, m
2 . For example with k = 0, all 

differences ui − uj are coerced to 0, and all sample points cluster together. The other extreme 

k = m
2  assigns each point to its own cluster. The size of the matrices D and UD can be 

reduced by discarding column pairs corresponding to 0 weights. Appendix E describes the 

projection onto sparsity sets and provides further details.

5.1.4 Total Variation Image Denoising—To approximate an image U from a noisy 

input W matrix, Rudin et al. (1992) regularize a loss function f(U) by a total variation (TV) 

penalty. After discretizing the problem, the least squares loss leads to the objective

Fγ(U) = ∑
i, j

Ui, j − W i, j
2 + γ∑

i, j
Ui + 1, j − Ui, j

2 + Ui, j + 1 − Ui, j
2,

where U, W ∈ ℝm × p are rectangular monochromatic images and γ controls the strength of 

regularization. The anisotropic norm

TV1(U) = ∑
i, j

Ui + 1, j − Ui, j + Ui, j + 1 − Ui, j = DmU 1 + UDp
t

1,

is often preferred because it induces sparsity in the differences. Here Dp is a forward 

difference operator on p data points. Stacking the columns of U into a vector u = vec(U) 

allows one to identify a fusion matrix D and write TV1(U) compactly as TV1(u) = ∥Du∥1. 

We append a row with a single 1 in the last component to make D full rank. In this context 

we reformulate the denoising problem as minimizing f(u) subject to the set constraint ∥Du∥1 

≤ γ. This revised formulation directly quantifies the quality of a solution in terms of its total 

variation and brings into play fast pivot-based algorithms for projecting onto multiples of the 

ℓ1 unit ball (Condat, 2016). Appendix F provides descriptions of each algorithm.
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5.1.5 Projection of a Matrix to a Good Condition Number—Consider an m × 

p matrix M with m ≥ p and full singular value decomposition M = UΣVt. The condition 

number of M is the ratio σmax/σmin of the largest to the smallest singular value of M. We 

denote the diagonal of Σ as σ. Owing to the von Neumann-Fan inequality, the closest matrix 

N to M in the Frobenius norm has the singular value decomposition N = UXV t, where the 

diagonal x of X satisfies inequalities pertinent to a decent condition number (Borwein and 

Lewis, 2010). Suppose c ≥ 1 is the maximum condition number. Then every pair (xi, xj) 

satisfies xi − cxj ≤ 0. Note that xi − cxi > 0 if and only if xi < 0. Thus, nonnegativity of the 

entries of x is enforced. The proximal distance approach to the condition number projection 

problem invokes the objective and majorization

ℎρ(x) = 1
2 σ − x

2
+ ρ

2 ∑
(i, j)

dist xi − cxj, ℝ 2

= 1
2 σ − x

2
+ ρ

2 ∑
(i, j)

xi − cxj +
2

≤ 1
2 σ − x

2
+ ρ

2 ∑
(i, j)

xi − cxj − qnij
2,

at iteration n, where qnij = min{xni − cxnj,0}. We can write the majorization more concisely 

as

ℎρ(x) ≤ 1
2 Aρx − rn

2, Aρ =
Ip

ρD
, rn =

σ
ρ vecQn

,

where vecQn stacks the columns of Qn = (qnij) and the p2 × p fusion matrix D satisfies 

(Dx)k = xi − cxj for each component k. The minimum of the surrogate occurs at the 

point xn + 1 = Aρ
tAρ

−1Aρ
trn. This linear system can be solved exactly. Appendix G provides 

additional details.

5.2 Numerical Results

Our numerical experiments compare various strategies for implementing Algorithm 2. We 

consider two variants of proximal distance algorithms. The first directly minimizes the 

majorizing surrogate (MM), while the second performs steepest descent (SD) on it. In 

addition to the aforementioned methods, we tried the subspace MM algorithm described 

in Section 2.2. Unfortunately, this method was outperformed in both time and accuracy 

comparisons by Nesterov accelerated MM; the MM subspace results are therefore omitted. 

We also compare our proximal distance approach to ADMM as described in Section 

2.3. In many cases updates require solving a large linear system; we found that the 

method of conjugate gradients sacrificed little accuracy and largely outperformed LSQR 

and therefore omit comparisons. The clustering and denoising examples are exceptional in 

that the associated matrices DtD are sufficiently ill-conditioned to cause failures in conjugate 

gradients. Table 1 summarizes choices in control parameters across each example.

We now explain example by example the implementation details behind our efforts to 

benchmark the three strategies (MM, SD, and ADMM) in implementing Algorithm 2. In 
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each case we initialize the algorithm with the solution of the corresponding unconstrained 

problem. Performance is assessed in terms of speed in seconds or milliseconds, number 

of iterations until convergence, the converged value of the loss f(x), and the converged 

distance to the constraint set dist(Dx, S), as described in Algorithm 2. Additional metrics are 

highlighted where applicable. The term inner iterations refers to the number of iterations to 

solve a penalized subproblem argmin hρ(x) for a given ρ whereas outer iterations count the 

total number of subproblems solved. Lastly, we remind readers that the approximate solution 

to argmin hρ(t)(x) is used as a warm start in solving argmin hρ(t+1)(x).

5.2.1 Metric Projection.—In our comparisons, we use input matrices Y ∈ ℝm × m whose 

iid entries yij are drawn uniformly from the interval [0, 10] and set weights wij = 1. Each 

algorithm is allotted a maximum of 200 outer and 105 inner iterations, respectively, to 

achieve a gradient norm of δh = 10−3 and distance to feasibility of δd = 10−2. The relative 

change parameter is set to δq = 0 and the annealing schedule is set to ρ(t) = min{108, 

1.2t−1} for the proximal distance methods. Table 2 summarizes the performance of the 

three algorithms. Best values appear in boldface. All three algorithms converge to a similar 

solution as indicated by the final loss ∥y − x∥2 and distance values. It is clear that SD 

matches or outperforms MM and ADMM approaches on this example. Notably, the linear 

system appearing in the MM update admits an exact solution (see Appendix C.5), yet SD 

has a faster time to solution with fewer iterations taken. The selected convergence metrics 

in Figure 1 vividly illustrate stability of solutions xρ = argmin hρ(x) along an annealing 

path from ρ = 1 to ρ = 1.240 ≈ 1470. Specifically, solving each penalized subproblem along 

the sequence results in marginal increase in the loss term with appreciable decrease in the 

distance penalty. Except for the first outer iteration, there is minimal decrease of the loss, 

distance penalty, or penalized objective within a given outer iteration even as the gradient 

norm vanishes. The observed tradeoff between minimizing a loss model and minimizing 

a nonnegative penalty is well-known in penalized optimization literature (Beltrami, 1970; 

Lange, 2016, see Proposition 7.6.1 on p. 183).

5.2.2 Convex Regression.—In our numerical examples the observed functional values 

yi are independent Gaussian deviates with means ψ(xi) and common variance σ2 = 0.1. The 

predictors are iid deviates sampled from the uniform distribution on [−1, 1]d. We choose 

the simple convex function ψ(xi) = ∥xi∥2 for our benchmarks for ease in interpretation; the 

interested reader may consult the work of Mazumder et al. (2019) for a detailed account of 

the applicability of the technique in general. Each algorithm is allotted a maximum of 200 

outer and 104 inner iterations, respectively, to converge with δh = 10−3, δd = 10−2, and δq = 

10−6. The annealing schedule is set to ρ(t) = min{108, 1.2t−1}.

Table 3 demonstrates that although the SD approach is appreciably faster than both MM 

and ADMM, the latter appear to converge on solutions with marginal improvements in 

minimizing the loss ∥y − θ∥2, distance, and mean squared error (MSE) measured using 

ground truth functional values ψ(xi) and estimates θi. Interestingly, increasing both the 

number of features and samples does not necessarily increase the amount of required 

computational time in using a proximal distance approach; for example, see results with 

d = 2 and d = 20 features. This may be explained by sensitivity to the annealing schedule.

Landeros et al. Page 18

J Mach Learn Res. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.2.3 Convex Clustering.—To evaluate the performance of the different methods on 

convex clustering, we consider a mixture of simulated data and discriminant analysis data 

from the UCI Machine Learning Repository (Dua and Graff, 2019). The simulated data in 

gaussian300 consists of 3 Gaussian clusters generated from bivariate normal distributions 

with means μ = (0.0, 0.0)t, (2.0, 2.0)t, and (1.8, 0.5)t, standard deviation σ = 0.1, and class 

sizes n1 = 150, n2 = 50, n3 = 100. This easy dataset is included to validate Algorithm 

3 described later as a reasonable solution path heuristic. The data in iris and zoo are 

representative of clustering with purely continuous or purely discrete data, respectively. In 

these two datasets, samples with same class label form a cluster. Finally, the simulated data 

spiral500 is a classic example that thwarts k-means clustering. Each algorithm is allotted 

a maximum of 104 inner iterations to solve a ρ-penalized subproblem at level δh = 10−2. The 

annealing schedule is set to ρ(t) = min{108, 1.2t−1} over 100 outer iterations with δd = 10−5 

and δq = 10−6.

Because the number of clusters is usually unknown, we implement the search heuristic 

outlined in Algorithm 3. The idea behind the heuristic is to gradually coerce clustering 

without exploring the full range of the hyperparameter k. As one decreases the number 

of admissible nonzero centroid differences k from kmax to 0, sparsity (1 − k/kmax) in the 

columns of UD increases to reflect coalescing centroid assignments. Thus, Algorithm 1 

generates a list of candidate clusters that can be evaluated by various measures of similarity 

(Vinh et al., 2010). For example, the adjusted Rand index (ARI) provides a reasonable 

measure of the distance to the ground truth in our examples as it accounts for both the 

number of identified clusters and cluster assignments. We also report the related normed 

Mutual Information (NMI). The ARI takes values on [−1, 1] whereas NMI appears on a [0, 

1] scale.

ADMM, as implemented here, is not remotely competitive on these examples given its 

extremely long compute times and failure to converge in some instances. These times are 

only exacerbated by the search heuristic and therefore omit ADMM from this example. The 

findings reported in Table 4 indicate the same accuracy for MM (using LSQR) and SD 

as measured by loss and distance to feasibility. Here we see that the combination of the 

proximal distance algorithms and the overall search heuristic (Algorithm 3) yields perfect 

clusters in the gaussian300 example on the basis of ARI and NMI. To its disadvantage, the 

search heuristic is greedy and generally requires tuning. Both MM and SD achieve similar 

clusters as indicated by ARI and NMI. Notably, SD generates candidate clusters faster than 

MM.
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5.2.4 Total Variation Image Denoising.—To evaluate our denoising algorithm, we 

consider two standard test images, cameraman and peppers_gray. White noise with σ = 

0.2 is applied to an image and then reconstructed using our proximal distance algorithms. 

Only MM and SD are tested with a maximum of 100 outer and 104 inner iterations, 

respectively, and convergence thresholds δh = 10−1, δd = 10−1, and δq = 10−6. A moderate 

schedule ρ(t) = {108, 1.5t−1} performs well even with such lax convergence criteria. Table 

5 reports convergence metrics and image quality indices, MSE and Peak Signal-to-Noise 

Ratio (PSNR). Timings reflect the total time spent generating solutions, starting from a 0% 

reduction in the total variation of the input image U up to 90% reduction in increments of 

10%. Explicitly, we take γ0 = TV1(U) and vary the control parameter γ = (1 − s)γ0 with s ∈ 
[0, 1] to control the strength of denoising. Figure 5.2.4 depicts the original and reconstructed 

images along the solution path.

5.2.5 Projection of a Matrix to a Good Condition Number.—We generate base 

matrices M ∈ ℝp × p as random correlation matrices using MatrixDepot.jl (Zhang and 

Higham, 2016), which relies on Davies’ and Higham’s refinement (Davies and Higham, 

2000) of the Bendel-Mickey algorithm (Bendel and Mickey, 1978). Simulations generate 

matrices with condition numbers c(M) in the set {119, 1920, 690}. Our subsequent analyses 

target condition number decreases by a factor a such a ∈ {2, 4, 16, 32}. Each algorithm 

is allotted a maximum of 200 outer and 104 inner iterations, respectively with choices δh 

= 10−3, δd = 10−2, δq = 10−6, and ρ(t) = 1.2t−1. Table 6 summarizes the performance of 

the three algorithms. The quality of approximate solutions is similar across MM, SD, and 

ADMM in terms of loss, distance, and final condition number metrics. Interestingly, the MM 

approach requires less time to deliver solutions of comparable quality to SD solutions as the 

size p of the input matrix M ∈ ℝp × p increases.

6. Discussion

We now recapitulate the main findings of our numerical experiments. Tables 2 through 6 

show a consistent pattern of superior speed by the steepest descent (SD) version of the 

proximal distance algorithm. This is hardly surprising since unlike ADMM and MM, SD 

avoids solving a linear system at each iteration. SD’s speed advantage tends to persist even 

when the linear system can be solved exactly. The condition number example summarized 

in Table 6 is an exception to this rule. Here the MM updates leverage a very simple matrix 

inverse. MM is usually faster than ADMM. We attribute MM’s performance edge to the 

extra matrix-vector multiplications involving the fusion matrix D required by ADMM. In 

fairness, ADMM closes the speed gap and matches MM on convex regression.

The choice of annealing schedule can strongly impact the quality of solutions. Intuitively, 

driving the gradient norm ∥∇hρ(x)∥ to nearly 0 for a given ρ keeps the proximal distance 

methods on the correct annealing path and yields better approximations. Provided the 

penalized objective is sufficiently smooth, one expects the solution xρ ≈ argmin hρ(x) to 

be close to the solution xρ′ ≈ argmin hρ′(x) when the ratio ρ′/ρ > 1 is not too large. Thus, 

choosing a conservative δh for the convergence criterion ∥∇hρ(x)∥ ≤ δh may guard against 

a poorly specified annealing schedule. Quantifying sensitivity of intermediate solutions 
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xρ with respect to ρ is key in avoiding an increase in inner iterations per subproblem; 

for example, as observed in Figure 1. Given the success of our practical annealing 

recommendation to overcome the unfortunate coefficients in Propositions 3.3 and 3.4, this 

topic merits further consideration in future work.

In practice, it is sometimes unnecessary to impose strict convergence criteria on the proximal 

distance iterates. It is apparent that the convergence criteria on convex clustering and image 

denoising are quite lax compared to choices in other examples, specifically in terms of δh. 

Figure 1 suggests that most of the work in metric projection involves driving the distance 

penalty downhill rather than in fitting the loss. Surprisingly, Table 4 shows that our strict 

distance criterion δd = 10−5 in clustering is achieved. This implies dist(Dx, S)2 ≤ 10−10 

on the selected solutions with ρ ≤ 108, yet we only required ∥∇hρ(x)∥ ≤ 10−2 on each 

subproblem. Indeed, not every problem may benefit from precise solution estimates. The 

image processing example underscores this point as we are able to recover denoised images 

with the choices δh = δd = 10−1. Problems where patterns or structure in solutions are of 

primary interest may stand to benefit from relaxed convergence criteria.

Our proximal distance method, as described in Algorithm 2, enjoys several advantages. 

First, fusion constraints fit naturally in the proximal distance framework. Second, proximal 

distances enjoy the descent property. Third, there is a nearly optimal step size for gradient 

descent when second-order information is available on the loss. Fourth, proximal distance 

algorithms are competitive if not superior to ADMM on many problems. Fifth, proximal 

distance algorithms like iterative hard thresholding rely on set projection and are therefore 

helpful in dealing with hard sparsity constraints. The main disadvantages of the proximal 

distance methods are (a) the overall slow convergence due to the loss of curvature 

information on the distance penalty and (b) the need for a reasonable annealing schedule. 

In practice, a little experimentation can yield a reasonable schedule for an entire class 

of problems. Many competing methods are only capable of dealing with soft constraints 

imposed by the lasso and other convex penalties. To their detriment, soft constraints often 

entail severe parameter shrinkage and lead to an excess of false positives in model selection.

Throughout this manuscript we have stressed the flexibility of the proximal distance 

framework in dealing with a wide range of constraints as a major strength. From our point of 

view, proximal distance iteration adequately approximates feasible, locally optimal solutions 

to constrained optimization problems for well behaved constraint sets, for instance convex 

sets or semialgebraic sets. Combinatorially complex constraints or erratic loss functions 

can cause difficulties for the proximal distance methods. The quadratic distance penalty 

dist(Dx, S)2 is usually not an issue, and projection onto the constraint should be fast. Poor 

loss functions may either lack second derivatives or may possess a prohibitively expensive 

and potentially ill-conditioned Hessian d2f(x). In this setting techniques such as coordinate 

descent and regularized and quasi-Newton methods are viable alternatives for minimizing 

the surrogate gρ(x | xn) generated by distance majorization. In any event, it is crucial to 

design a surrogate that renders each subproblem along the annealing path easy to solve. This 

may entail applying additional majorizations in f(x). Balanced against this possibility is the 

sacrifice of curvature information with each additional majorization.
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We readily acknowledge that other algorithms may perform better than MM and proximal 

distance algorithms on specific problems. The triangle fixing algorithm for metric projection 

is a case in point (Brickell et al., 2008), as are the numerous denoising algorithms based on 

the ℓ1 norm. This objection obscures the generic utility of the proximal distance principle. 

ADMM can certainly be beat on many specific problems, but nobody seriously suggests 

that it be rejected across the board. Optimization, particularly constrained optimization, is a 

fragmented subject, with no clear winner across problem domains. Generic methods serve as 

workhorses, benchmarks, and backstops.

As an aside, let us briefly note that ADMM can be motivated by the MM principle, which is 

the same idea driving proximal distance algorithms. The optimal pair (x, y) and λ furnishes 

a stationary point of the Lagrangian. Because the Lagrangian is linear in λ, its maximum 

for fixed (x, y) is ∞. To correct this defect, one can add a viscosity minorization to the 

Lagrangian. This produces the modified Lagrangian

ℒμ(x, y, λ) = f(x) + g(y) + μλt(Dx − y) + μ
2 Dx − y 2 − α

2 λ − λn
2 .

The penalty term has no impact on the x and y updates. However, the MM update for λ is 

determined by the stationary condition

0 = μ Dxn + 1 − yn + 1 − α λ − λn ,

so that

λn + 1 = λn + μ
α Dxn + 1 − yn + 1 .

The choice α = 1 gives the standard ADMM update. Thus, the ADMM algorithm alternates 

decreasing and increasing the Lagrangian in a search for the saddlepoint represented by the 

optimal trio (x, y, λ).

In closing we would like to draw the reader’s attention to some generalizations of the MM 

principle and connections to other well-studied algorithm classes. For instance, a linear 

fusion constraint Dx ∈ S can in principle by replaced by a nonlinear fusion constraint M(x) 

∈ S. The objective and majorizer are then

ℎρ(x) = f(x) + ρ
2dist[M(x), S]2

g x ∣ xn = f(x) + ρ
2 M(x) − PS M xn

2 .

The objective has gradient g = ∇f(x) + ρdM(x)t{M(x)− S[M(x)]}. The second differential 

of the majorizer is approximately d2f(x) + ρdM(x)tdM(x) for M(x) close to S[M(x)]. Thus, 

gradient descent can be implemented with step size
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γ = gn
2

gn
td2f xn gn + ρ dM xn gn

2,

assuming the denominator is positive.

Algebraic penalties such as ∥g(x)∥2 reduce to distance penalties with constraint set {0}. 

The corresponding projection operator sends any vector y to 0 so that the algebraic penalty 

∥g(x)∥2 = dist[g(x), {0}]2. This observation is pertinent to constrained least squares with g(x) 

= d − Cx (Golub and Van Loan, 1996). The proximal distance surrogate can be expressed as

1
2 y − Ax

2
+ ρ

2 d − Cx
2

= 1
2

y
ρd

−
A
ρC

x
2
,

and minimized by standard least squares algorithms. No annealing is necessary. Inequality 

constraints g(x) ≤ 0 behave somewhat differently. The proximal distance majorization 

dist g(x), ℝ−
m 2 ≤ g(x) − Pℝ−m g xn

2 is not the same as the Beltrami quadratic penalty g(x)+
2

(Beltrami, 1970). However, the standard majorization (Lange, 2016)

g(x)+
2 ≤ g(x) − Pℝ−m g xn

2,

brings them back into alignment.

7. Proofs

In this section we provide proofs for the convergence results discussed in Section 3 and 

Section 4 for the convex and nonconvex cases, respectively.

7.1 Proposition 3.1

Proof Without loss of generality we can translate the coordinates so that y = 0. Let B be the 

unit sphere {x: ∥x∥ = 1}. Our first aim is to show that hρ(x) > f(0) throughout B. Consider 

the set B ∩ T, which is possibly empty. On this set the infimum b of f(x) is attained, so b 
> f(0) by assumption. The set B\T will be divided into two regions, a narrow zone adjacent 

to T and the remainder. Now let us show that there exists a δ > 0 such that hρ(x) ≥ f(x) ≥ 

f(0) + δ for all x ∈ B with dist(Dx, S) ≤ δ. If this is not so, then there exists a sequence 

xn ∈ B with f xn < f(0) + 1
k  and dist Dxn, S ≤ 1

k . By compactness, some subsequence of xn 

converges to z ∈ B ∩ T with f(z) ≤ f(0), contradicting the uniqueness of y. Finally, let a = 

minx∈B f(x). To deal with the remaining region take ρ large enough so that a + ρ
2δ2 > f(0). 

For such ρ, hρ(x) > f(0) everywhere on B. It follows that on the unit ball {x : ∥x∥ ≤ 1}, hρ(x) 

is minimized at an interior point. Because hρ(x) is convex, a local minimum is necessarily a 

global minimum.
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To show that the objective hρ(x) is coercive, it suffices to show that it is coercive along 

every ray {tv: t ≥ 0, ∥v∥ = 1} (Lange, 2016). The convex function r(t) = hρ(tv) satisfies 

r(t) ≥ r(1) + r+
′ (1)(t − 1). Because r(0) < r(1), the point 1 is on the upward slope of r(t), and the 

one-sided derivative r+
′ (1) > 0. Coerciveness follows from this observation. ■

7.2 Proposition 3.2

Proof The first assertion follows from the bound gρ(x | xn) ≥ hρ(x). To prove the second 

assertion, we note that it suffices to prove the existence of some constant ρ > 0 such that the 

matrix A + ρDtD is positive definite (Debreu, 1952). If no choice of ρ renders A + ρDtD 
positive definite, then there is a sequence of unit vectors um and a sequence of scalars ρm 

tending to ∞ such that

um
t Aum + ρmum

t DtDum ≤ 0. (11)

By passing to a subsequence if needed, we may assume that the sequence um converges 

to a unit vector u. On the one hand, because DtD is positive semidefinite, inequality (11) 

compels the conclusions um
t Aum ≤ 0, which must carry over to the limit. On the other hand, 

dividing inequality (11) by ρm and taking limits imply utDtDu ≤ 0 and therefore ∥Du∥ = 0. 

Because the limit vector u violates the condition utAu > 0, the required ρ > 0 exists. ■

7.3 Proposition 3.3

Proof Systematic decrease of the iterate values hρ(xn) is a consequence of the MM principle. 

The existence of zρ follows from Proposition 3.1. To prove the stated bound, first observe 

that the function gρ x ∣ xn − ρ
2 Dx 2 is convex, being the sum of the convex function f(x) 

and a linear function. Because ∇gρ(xn+1 | xn)t(x − xn+1) ≥ 0 for any x in S, the supporting 

hyperplane inequality implies that

gρ x ∣ xn − ρ
2 Dx 2 ≥ gρ xn + 1 ∣ xn − ρ

2 Dxn + 1
2 − ρxn + 1

t DtD x − xn + 1 ,

or equivalently

gρ x ∣ xn ≥ gρ xn + 1 ∣ xn + ρ
2 D x − xn + 1

2 . (12)

Now note that the difference

d(x ∣ y) = 1
2 x − P(y)

2
− 1

2 x − P(x)
2
,

has gradient

∇d(x ∣ y) = P(x) − P(y) .
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Because (x) is non-expansive, the gradient ∇d(x | y) is Lipschitz with constant 1. The 

tangency conditions d(y | y) = 0 and ∇d(y | y) = 0 therefore yield

d(x ∣ y) ≤ d(y ∣ y) + ∇d(y ∣ y)t(x − y) + 1
2 x − y

2

= 1
2 x − y

2
,

(13)

for all x. At a minimum zρ of hρ(x), combining inequalities (12) and (13) gives

ℎρ xn + 1 + ρ
2 D zρ − xn + 1

2

≤ gρ xn + 1 ∣ xn + ρ
2 D zρ − xn + 1

2

≤ gρ zρ ∣ xn

= ℎρ zρ − ρ
2 Dzρ − P Dzρ

2 + ρ
2 Dzρ − P Dxn

2

= ℎρ zρ + ρd Dzρ ∣ Dxn

≤ ℎρ zρ + ρ
2 Dzρ − Dxn

2 .

Adding the result

ℎρ xn + 1 − ℎρ zρ ≤ ρ
2 D zρ − xn

2 − D zρ − xn + 1
2 , 

over n and invoking the descent property hρ(xn+1) ≤ hρ(xn), telescoping produces the desired 

error bound

ℎρ xn + 1 − ℎρ zρ ≤ ρ
2(n + 1) D zρ − x0

2 − D zρ − xn + 1
2

≤ ρ
2(n + 1) D zρ − x0

2 .

This is precisely the asserted bound. ■

7.4 Proposition 3.4

Proof The existence and uniqueness of zρ are obvious. The remainder of the proof hinges on 

the facts that hρ(x) is μ-strongly convex and the surrogate gρ(x | w) is L + ρ∥D∥2-smooth for 

all w. The latter assertion follows from

∇gρ(x ∣ w) − ∇gρ(y ∣ w) = ∇f(x) − ∇f(y) + ρDtD(x − y) .

These facts together with ∇gρ(zρ | zρ) = ∇hρ(zρ) = 0 imply
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ℎρ(x) − ℎρ zρ ≤ gρ x ∣ zρ − gρ zρ ∣ zρ

≤ ∇gρ zρ ∣ zρ
t x − zρ + L + ρ D 2

2 x − zρ
2

= L + ρ D 2

2 x − zρ
2 .

(14)

The strong convexity condition

0 ≥ ℎρ zρ − ℎρ(x) ≥ ∇ℎρ(x)t zρ − x + μ
2 zρ − x 2

entails

∇ℎρ(x) ⋅ zρ − x ≥ − ∇ℎρ(x)t zρ − x ≥ μ
2 zρ − x 2 .

It follows that ∇ℎρ(x) ≥ μ
2 x − zρ . This last inequality and inequality (14) produce the 

Polyak-Łojasiewicz bound

1
2 ∇ℎρ(x) 2 ≥ μ2

2 L + ρ D 2 ℎρ(x) − ℎρ zρ .

Taking c = L + ρ∥D∥2 and

x = xn − c−1∇gρ xn ∣ xn = xn − c−1∇ℎρ xn ,

the Polyak-Łojasiewicz bound gives

ℎρ xn + 1 − ℎρ xn ≤ gρ xn + 1 ∣ xn − gρ xn ∣ xn

≤ gρ x ∣ xn − gρ xn ∣ xn

≤ − c−1∇gρ xn ∣ xn
t∇ℎρ xn + c

2 c−1∇ℎρ xn
2

= − 1
2c ∇ℎρ xn

2

≤ − μ2
2c2 ℎρ xn − ℎρ zρ .

Rearranging this inequality yields

ℎρ xn + 1 − ℎρ zρ ≤ 1 − μ2
2c2 ℎρ xn − ℎρ zρ ,

which can be iterated to give the stated bound. ■
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7.5 Proposition 4.2

Proof To validate the subanalytic premise of Proposition 4.1, first note that semialgebraic 

functions and sets are automatically subanalytic. The penalized loss

ℎρ(x) = f(x) + ρ
2dist(x, S)2,

is semialgebraic by the sum rule. Under the assumption stated in Proposition 3.2, gρ(x | 

xn) is strongly convex and coercive for ρ sufficiently large. Continuity of gρ(x | xn) is a 

consequence of the continuity of f(x). The Lipschitz condition follows from the fact that the 

sum of two Lipschitz functions is Lipschitz. Under these conditions and regardless of which 

projected point PS(x) is chosen, the MM iterates are guaranteed to converge to a stationary 

point. ■

7.6 Proposition 4.3

Proof The first claim is true owing to the inclusion-exclusion formula

f(k)(x) = ∑
j = k

n
∑

S = j
( − 1)j − k j − 1

k − 1 max
i ∈ S

fi(x),

and the previously stated closure properties. For n = 3 and k = 2 the inclusion-exclusion 

formula reads f(2) = max{f1, f2} + max{f1, f3} + max{f2, f3}−2max{f1, f2, f3}. To prove 

the second claim, note that a sparsity set in ℝp with at most k nontrivial coordinates can 

be expressed as the zero set {x: y(p−k) = 0}, where yi = |xi|. Thus, the sparsity set is 

semialgebraic. ■

7.7 Proposition 4.4

Proof Proposition 4.2 proves that the proximal distance iterates xn converge to x∞. Suppose 

that Dx∞ has k unambiguous largest components in magnitude. Then Dxn shares this 

property for large n. It follows that all pn = PSk Dxn  occur in the same k-dimensional 

subspace S for large n. Thus, we can replace the sparsity set Sk by the subspace S 
in minimization from some n onward. Convergence at a linear rate now follows from 

Proposition 3.4.

To prove that the set A of points x such that Dx has k ambiguous largest components in 

magnitude has measure 0, observe that it is contained in the set T where two or more 

coordinates tie. Suppose x satisfies the tie condition di
tx = dj

tx for two rows di
t and dj

t of D. If 

the rows of D are unique, then the equality (di − dj)tx = 0 defines a hyperplane in x space 

and consequently has measure 0. Because there are a finite number of row pairs, T as a 

union has measure 0. ■
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Appendix A.: Relevant Theory for Nonconvex Analysis

Let us first review the notion of a Fréchet subdifferential (Kruger, 2003). If h(x) is a function 

mapping ℝp into ℝ ∪ + ∞ , then its Fréchet subdifferential at x ∈ dom f is defined as

∂F ℎ(x) = v: lim inf
y x

ℎ(y) − ℎ(x) − vt(y − x)
y − x ≥ 0 .

The set ∂Fh(x) is closed, convex, and possibly empty. If h(x) is convex, then ∂Fh(x) reduces 

to its convex subdifferential. If h(x) is differentiable, then ∂Fh(x) reduces to its ordinary 

differential. At a local minimum x, Fermat’s rule 0 ∈ ∂Fh(x) holds. For a locally Lipschitz 

and directionally differentiable function, the Fréchet subdifferential becomes

∂F ℎ(x) = v:duℎ(x) ≥ vtu for all directions u .

Here duh(x) is the directional derivative of h(x) at x in the direction u. This result makes it 

clear that at a critical point, all directional derivatives are flat or point uphill.

We will also need some notions from algebraic geometry (Bochnak et al., 2013). For 

simplicity we focus on the class of semialgebraic functions and the corresponding class of 

semialgebraic subsets of ℝp. The latter is the smallest class that:

a. contains all sets of the form {x: q(x) > 0} for a polynomial q(x) in p variables, 

and

b. is closed under the formation of finite unions, finite intersections, set 

complements, and Cartesian products.

A function a:ℝp ℝr is said to be semialgebraic if its graph is a semialgebraic set of 

ℝp + r. The class of real-valued semialgebraic functions contains all polynomials p(x) and 

all 0/1 indicators of algebraic sets. It is closed under the formation of sums and products 

and therefore constitutes a commutative ring with identity. The class is also closed under 

the formation of absolute values, reciprocals when a(x) ≠ 0, nth roots when a(x) ≥ 0, 

and maxima max{a(x), b(x)} and minima min{a(x), b(x)}. Finally, the composition of two 

semialgebraic functions is semialgebraic.

Appendix B.: Convergence Properties of ADMM

To avail ourselves of the known results, we define three functions

Hρ(x, y) = f(x) + ρ
2dist(y, S)2,

ℒρ(x, y, λ) = Hρ(x, y) + λt(Dx − y),  and
q(λ) = min

x, y
ℒρ(x, y, λ),
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the second and third being the Lagrangian and dual function. This notation leads to 

following result; see Beck (2017) for an accessible proof.

Proposition B.1 Suppose that S is closed and convex and that the loss f(x) is proper, 
closed, and convex with domain whose relative interior is nonempty. Also assume the dual 

function q(λ) achieves its maximum value. If the objective f(x) + ρ
2 Dx 2 + atx achieves its 

minimum value for all a ≠ 0, then the ADMM running averages

xn = 1
n ∑

k = 1

n
xk and yn = 1

n ∑
k = 1

n
yk,

satisfy

Hρ xn, yn − ℎρ xρ = O ρ
n ,  and 

Dxn − yn = O 1
k .

Note that Proposition 3.2 furnishes a sufficient condition under which the functions 

f(x)+ρ
2 Dx 2 + atx achieve their minima. Linear convergence holds under stronger 

assumptions.

Proposition B.2 Suppose that S is closed and convex, that the loss f(x) is L-smooth and 
μ-strongly convex, and that the map determined by D is onto. Then the ADMM iterates 
converge at a linear rate.

Giselsson and Boyd (2016) proved Proposition B.2 by operator methods. A range of 

convergence rates is specified there.

Appendix C.: Additional Details for Metric Projection Example

Given a n × n dissimilarity matrix C = (cij) with non-negative weights wij, our goal is to 

find a semi-metric X = (xij). We start by denoting trivec an operation that maps a symmetric 

matrix X to a vector x, x = trivec(X) (Figure 3). Then we write the metric projection 

objective as

ℎρ(x) = 1
2 W 1/2(x − c) 2

2
+ ρ

2dist T x, ℝ+
m1 2 + ρ

2dist x, ℝ+
m2 2,

where c = trivec(C). Here T encodes triangle inequalities and the mi count the number of 

constraints of each type. The usual distance majorization furnishes a surrogate

gρ x ∣ xn = 1
2 W 1/2(x − c) 2

2
+ ρ

2 T x − P T xn, ℝ+
m1

2
2 + ρ

2 x − P xn, ℝ+
m2

2
2

= 1
2 W 1/2(x − c) 2

2
+ ρ

2 Dx − P Dxn 2
2 .
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The notation (·, S) denotes projection onto a set S. The fusion matrix D = [T ; I] stacks the 

two operators; the joint projection operates in a block-wise fashion.

Figure 3: 
Example of a symmetric matrix X and its minimal representation x = trivec(X).

C.1 MM

We rewrite the surrogate explicitly as a least squares problem minimizing Ax − bn 2
2:

xn + 1 = argmin
x

1
2

W 1/2

ρD
x −

c
ρP Dxn 2

2

,

where c ≡ y from the main text. Updating the RHS bn in the linear system reduces 

to evaluating the projection and copy operations. It is worth noting that triangle fixing 

algorithms that solve the metric nearness problem operate in the same fashion, except they 

work one triangle a time. That is, each iteration solves 
n
3  least squares problems compared 

to 1 in this formulation. A conjugate gradient type of algorithm solves the normal equations 

directly using AtA, whereas LSQR type methods use only A and At.
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C.2 Steepest Descent

The updates xn+1 = xn − tn∇hρ(xn) admit an exact solution for the line search parameter tn. 

Recall the generic formula from the main text:

tn = vn
2

vn
tAvn + ρ Dvn

2 .

Identifying vn with ∇hρ(xn) we have

∇ℎρ xn = W xn − c + ρDt Dxn − P Dxn

= W xn − c + ρ I + T tT xn − ρ T tP T xn, ℝ+
m1 + P xn, ℝ+

m1 ,

tn = vn
2

W 1/2vn
2 + ρ Dvn

2
.

C.3 ADMM

Taking y as the dual variable and λ as scaled multipliers, the updates for each ADMM block 

are

xn + 1 = argmin
x

W 1/2

μD
x −

c
μ yn − λn 2

2

,

yn + 1 = α
1 + αP zn + 1

1 + αzn; zn = Dxn + 1 + λn, α = ρ/μ .

Finally, the Multipliers follow the standard update.

C.4 Properties of the Triangle Inequality Matrix

These results have been documented before and are useful in designing fast subroutines for 

Dx and DtDx. Recall that m counts the number of nodes in the problem and p = m
2  is the 

number of parameters. In this notation D = T
Ip

 and DtD = TtT + Ip.

Proposition C.1 The matrix T has 3 m
3  rows and 

m
2  columns.

Proof Interpret X as the adjacency matrix for a complete directed graph on m nodes without 

self-edges. When X is symmetric the number of free parameters is therefore 
m
2 . An oriented 

3-cycle is formed by fixing 3 nodes so there are 
m
3  such cycles. Now fix the orientation 

of the 3-cycles and note that each triangle encodes 3 metric constraints. The number of 

constraints is therefore 3 m
3 . ■
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Proposition C.2 Each column of T has 3(m − 2) nonzero entries.

Proof In view of the previous result, the entries Tij encode whether edge j participates in 

constraint i. We proceed by induction on the number of nodes m. The base case m = 3 

involves one triangle and is trivial. Note that a triangle encodes 3 inequalities.

Now consider a complete graph on m nodes and suppose the claim holds. Without loss of 

generality, consider the collection of 3-cycles oriented clockwise and fix an edge j. Adding 

a node to the graph yields 2m new edges, two for each of the existing m nodes. This action 

also creates one new triangle for each existing edge. Thus, edge j appears in 3(m − 2)+3 = 

3[(m + 1)−2] triangle inequality constraints based on the induction hypothesis. ■

Proposition C.3 Each column of T has m − 2 +1s and 2(m − 2) −1s.

Proof Interpret the inequality xij ≤ xik + xkj with i > k > j as the ordered triple xij, xik, xkj. 

The statement is equivalent to counting

a(N) = number of timesxij appears inposition1, and,

b(N) = number of timesxij appears inposition2, or 3,

where N denotes the number of constraints. In view of the previous proposition, it is enough 

to prove a(N) = m − 2. Note that a(3) = 1, meaning that xij appears in position 1 exactly once 

within a given triangle. Given that an edge (i, j) appears in 3(m−2) constraints, divide this 

quantity by the number of constraints per triangle to arrive at the stated result. ■

Proposition C.4 The matrix T has full column rank.

Proof It is enough to show that A = TtT is full rank. The first two propositions imply

aii = T i, T i = ∑ ( ± 1)2 = 3(m − 2) .

To compute the off-diagonal entries, fix a triangle and note that two edges i and j appear in 

all three of its constraints of the form xi ≤ xj + xk. There are three possibilities for a given 

constraint c:

T c, iT c, j =
−1,  if i LHS, j RHS or vice‐versa 
1,  if i and j both appear on RHS 
0, if one of i or j is missing .

It follows that

aij = T i, T j = −1,  if edges i and j overlap in constraints 
0,  otherwise.
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By Proposition C.2, an edge i appears in 3(m − 2) constraints. Imposing the condition that 

edge j also appears reduces this number by m − 2, the number of remaining nodes that can 

contribute edges in our accounting. The calculation

∑
j ≠ i

aij = 2(m − 2) < 3(m − 2) = aii ,

establishes that A is strictly diagonally dominant and hence full rank. ■

Proposition C.5 The matrix TtT has at most 3 distinct eigenvalues of the form m − 2, 2m − 

2, and 3m − 4 with multiplicities 1, m − 1, and 1
2m(m − 3), respectively.

Proof Let M ∈ 0, 1
m
2 × m be the incidence matrix of a complete graph with m vertices. 

That is M has entry me,v = 1 if vertex v occurs in edge e and 0 otherwise. Each row of M has 

two entries equal to 1; each column of M has m−1 entries equal to 1. It is easy to see

T tT = (3m − 4)I
m
2

− MMt .

The Gram matrices MtM and MMt share the same positive eigenvalues. Since 

MtM = (m − 2)Im + m 1m/ m 1m/ m t has eigenvalue 2m−2 with multiplicity 1 and 

eigenvalue m−2 with multiplicity m − 1, MMt has eigenvalue 2m − 2 with multiplicity 

1, eigenvalue m − 2 with multiplicity m − 1, and eigenvalue 0 with multiplicity m(m − 3)/2. 

Therefore the eigenvalues of TtT are m − 2, 2m − 2, and 3m − 4 with multiplicities 1, m − 1, 

and m(m − 3)/2 respectively. ■

In general, it is easy to check that the matrix m × m matrix aI + b11t has the eigenvector 1 
with eigenvalue a + mb and m − 1 orthogonal eigenvectors

ui = 1
i − 1 ∑

j = 1

i − 1
ej − ei, i = 2, …, m

with eigenvalue a. Note that each ui is perpendicular to 1. None of these eigenvectors is 

normalized to have length 1. Although the eigenvectors ui are certainly convenient, they are 

not unique.

To recover the eigenvectors of TtT, and hence those DtD, we can leverage the eigenvectors 

of MtM, which we know. The following generic observations are pertinent. If a matrix A 
has full SVD USV t, then its transpose has full SVD At = VSUt. As mentioned AAt and 

AtA share the same nontrivial eigenvalues. These can be recovered as the nontrivial diagonal 

entries of S2. Suppose we know the eigenvectors U of AAt = US2Ut. Since AtU = VS, then 

presumably we can recover some of the eigenvectors V as AtUS+, where S+ is the diagonal 

pseudo-inverse of S.
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C.5 Fast Subroutines for Solving Linear Systems

Using the Woodbury formula, the inverse of TtT can be expressed as

T tT −1

= (3m − 4)I
m
2

− MMt
−1

= (3m − 4)−1I
m
2

− (3m − 4)−2M −Im + (3m − 4)−1MtM −1Mt

= (3m − 4)−1I
m
2

− (3m − 4)−1M −(2m − 2)Im + 1m1m
t −1Mt

= (3m − 4)−1I
m
2

− (3m − 4)−1M −(2m − 2)−1Im − (2m − 2)−1(m − 2)−11m1m
t Mt

= 1
3m − 4I

m
2

+ 2
(3m − 4)(m − 1)(m − 2)1

m
2

1 m
2

t + 1
2(3m − 4)(m − 1)MMt .

Solving linear system TtT invokes two matrix vector multiplications involving the incidence 

matrix M. Mv corresponds to taking pairwise sums of the components of a vector v of length 

m. Mtw corresponds to taking a combination of column and row sums of a lower triangular 

matrix with the lower triangular part populated by the components of a vector w with length 
m
2 . Both operations cost O(m2) flops. This result can be extended to the full fusion matrix 

DtD that incorporates non-negativity constraints and, more importantly, to the linear system 

I + ρDtD:

I
m
2

+ ρDtD
−1

= I
m
2

+ ρ T tT + I
m
2

−1
a = [3(m − 1)ρ + 1]−1

= a I
m
2

+ abρMMt + 4abcρ21
m
2

1 m
2

t ; b = [(2m − 1)ρ + 1]−1

c = [(m − 1)ρ + 1]−1 .

Appendix D.: Additional Details for Convex Regression Example

We start by formulating the proximal distance version of the problem:

ℎρ(v) = 1
2 Mv − y

2

2
+ ρ

2dist Dv, ℝ−
m 2,

where v = [θ; vec(Ξ)] stacks each optimization variable into a vector of length n(1 + d). This 

maneuver introduces matrices

M = In × n 0n × nd , D = A B ,

where [Aθ]k = θj − θi and [B vec(Ξ)]k = 〈xi − xj, ξj〉 according to the ordering i > j.
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D.1 MM

We rewrite the surrogate explicitly a least squares problem minimizing Mv − bn 2
2
:

vn + 1 = argmin
v

1
2

M
ρD

v −
b

ρP Dvn 2

2

,

where b ≡ y to avoid clashing with notation in ADMM below. In this case it seems better to 

store D explicitly in order to avoid computing xi − xj each time one applies D, Dt, or DtD.

D.2 Steepest Descent

The updates vn+1 = vn − tn∇hρ(vn) admit an exact solution for the line search parameter tn. 

Taking qn = ∇hρ(vn) as the gradient we have

qn = AtA vn − b + ρDt Dvn − P Dvn ,

tn = qn
2

Aqn
2 + ρ Dqn

2 .

Note that Aqn = ∇θhρ(vn), the gradient with respect to function values θ.

D.3 ADMM

Take y as the dual variable and λ as scaled multipliers. Then the ADMM updates are

vn + 1 = argmin
v

1
2

A
μD

v −
b

μ yn − λn 2

2

,

yn + 1 = α
1 + αP zn + 1

1 + αzn; zn = Dvn + 1 + λn, α = ρ/μ,

and with the update for the multipliers being standard.

Appendix E.: Additional Details for Convex Clustering Example

We write u = vec(U) and x = vec(X), so the surrogate becomes

gρ u ∣ un = 1
2 u − x

2

2
+ ρ

2 Du − PSk Dun
2 .

E.1 MM

Rewrite the surrogate explicitly a least squares problem minimizing Au − bn 2
2:
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un + 1 = argmin
u

1
2

I
ρD

u −
x

ρPSk Dun 2

2

.

E.2 Steepest Descent

The updates un+1 = un − tn∇hρ(un) admit an exact solution for the line search parameter tn. 

Taking qn = ∇hρ(un) as the gradient we have

qn = un − x + ρDt Dun − PSk Dun ,

tn = qn
2

qn
2 + ρ Dqn

2 .

Note that blocks in Dun − PSk Dun ℓ are equal to 0 whenever the projection of block [Dun]ℓ 

is non-zero.

E.3 ADMM

Take y as the dual variable and λ as scaled multipliers. Minimizing the u block involves 

solving a single linear system:

un + 1 = argmin
u

1
2

I
μD

u −
x

μ yn − λn 2

2

,

yn + 1 = α
1 + αPSk zn + 1

1 + αzn; zn = Dun + 1 + λn, α = ρ/μ .

Multipliers follow the standard update.

E.4 Blockwise Sparse Projection

The projection PSk maps a matrix to a sparse representation with k non-zero columns (or 

blocks in the case of the vectorized version). In the context of clustering, imposing sparsity 

permits a maximum of k violations in consensus of centroid assignments, ui = uj. Letting 

Δℓ ≡ Δij = ∥ui − uj∥ denote pairwise distances and M = m
2  denote the number of unique 

pairwise distances, we define the projection along blocks vℓ = ui − uj for each pair as

PSk vℓ = vℓ,  if Δℓ ∈ Δ(M), Δ(M − 1), …Δ(M − k + 1)

0,  otherwise.

Here the notation x(i) represents the i-th element in an ascending list. Concretely, the 

magnitude of a difference vℓ must be within the top k distances. An alternative, helpful 

definition is based on the smallest distances
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PSk vℓ =
0,  if Δk ∈ Δ(1), Δ(2), …Δ(k)

vℓ,  otherwise 

Thus, it is enough to find a pivot Δ(M−k+1) or Δ(k) that splits the list into the top k elements. 

Because the hyperparameter k has a finite range in 0, 1, 2, …, m
2  one can exploit symmetry 

to reduce the best/average computational complexity in a search procedure. We implement 

this projection using a partial sorting algorithm based on quicksort, and note that it is 

set-valued in general.

Appendix F.: Additional Details for Image Denoising Example

Here we restate the total variation denoising problem to take advantage of proximal 

operators in the proximal distance framework. We minimize the penalized objective

ℎρ(U) = 1
2 u − w

F

2
+ ρ

2dist Du, Sγ
2,

where w = vec(W) is a noisy input image and Sγ is the ℓ1 ball with radius γ. Thus, γ may 

be interpreted as the target total variation of the reconstructed image. Distance majorization 

yields the surrogate

gρ u ∣ un = 1
2 u − w

2

2
+ ρ

2 Du − Pγ Dun
2 .

Here γ(Du) enforces sparsity in all derivatives through projection onto the ℓ1 ball with 

radius γ. Because D is ill-conditioned, we append an additional row with zeros everywhere 

except the last entry; that is, D = [Dn, Dp, ep] with u ∈ ℝp. In this case, the sparse projection 

applies to all but the last component of Du.

F.1 MM

Rewrite the surrogate explicitly as a least squares problem:

un + 1 = argmin
x

1
2

I
ρD

u −
w

ρPγ Dun 2

2

.

F.2 Steepest Descent

The updates un+1 = un − tn∇hρ(un) admit an exact solution for the line search parameter tn. 

Taking qn = ∇hρ(un) as the gradient we have

qn = un − w + ρDt Dun − Pγ Dun ,

tn = qn
2

qn
2 + ρ Dqn

2 .
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F.3 ADMM

We denote by y the dual variable and λ the scaled multipliers. Minimizing the u block 

involves solving a single linear system:

un + 1 = argmin
x

1
2

I
μD

u −
w

μ yn − λn 2

2

,

yn + 1 = α
1 + αPγ zn + 1

1 + αzn; zn = Dun + 1 + λn, α = ρ/μ .

Multipliers follow the standard update.

Appendix G.: Additional Details for Condition Number Example

Given a matrix M = UΣV−1 with singular values σ1 ≥ σ2 ≥ … ≥ σp, we seek a new matrix N 
= UXV−1 such that cond(B) = x1/xp ≤ c. We minimize the penalized objective

ℎρ(x) = 1
2 x − σ

2
+ ρ

2dist Dx, ℝ−
p2 2,

as suggested by the Von Neumann-Fan inequality. The fusion matrix D = C + S encodes the 

constraints xi − cxj ≤ 0. Distance majorization yields the surrogate

gρ x ∣ xn = 1
2 x − w

2

2
+ ρ

2 Dx − P− Dxn
2 .

To be specific, the matrix C = − c1p ⊗ Ip scales the p × p identity matrix by −c and stacks 

it p times. Similarly, the matrix S = Ip ⊗ 1p stacks p matrices of dimension p × p. Each of 

these stacked matrices has (p−1) 0p columns and one shifted 1p column. For example, for p 
= 2

S =

1 0
1 0
0 1
0 1

.

G.1 MM

Rewrite the surrogate explicitly a least squares problem minimizing Ax − bn 2
2:

xn + 1 = argmin
x

1
2

I
ρD

x −
σ

ρP Dxn 2

2

.

Applying the matrix inverse from before yields an explicit formula (with a and b defined as 

before):
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xn + 1 = 1
a zn − 1tzn

p − (a/b)1 ; zn = σ + ρDtP Dxn , a = 1 + ρp c2 + 1 , b = 2ρc .

G.2 Steepest Descent

The updates xn+1 = xn − tn∇hρ(xn) admit an exact solution for the line search parameter tn. 

Taking qn = ∇hρ(xn) as the gradient we have

qn = xn − u + ρDt Dxn − Pν Dxn ,

tn = qn
2

qn
2 + ρ Dqn

2 .

G.3 ADMM

Take y as the dual variable and λ as scaled multipliers. The formula for the MM algorithm 

applies in updating xn, except we replace ρ with μ and (Dxn) with yn − λn:

xn + 1 = 1
a zn

1 − 1tzn
1

p − (a/b)1 ; zn
1 = σ + μDt yn − λn , a = 1 + μp c2 + 1 , b = 2μc

yn + 1 = α
1 + αP zn

2 + 1
1 + αzn

2; zn
2 = Dxn + 1 + λn, α = ρ/μ .

Multipliers follow the standard update.

G.4 Explicit Matrix Inverse

Both ADMM and MM reduce to solving a linear system. Fortunately, the Hessian for 

hρ(x) reduces to a Householder-like matrix. First we note that it is trivial to multiply 

either Ct or St by a p2-vector. The more interesting problem is calculating Aρ
tAρ

−1, where 

∇ℎρ
2 = Aρ

tAρ = Ip + ρDtD. The reader can check the identities

CtC = c2pIp andCtS = − c1p1p
t ,

StC = − c1p1p
t andStS = pIp .

It follows that Aρ
tAρ = 1 + ρp c2 + 1 Ip − 2cρ1p1p

t . Applying the Sherman-Morrison formula to 

results in

Ip + ρDtD −1 = aIp − b1p1p
t −1

= − b−1 −(b/a)Ip − (b/a)21p1p
t

1 − (a/b)1p
t 1p

= 1
a Ip − 1p1p

t

p − a/b ,
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where a = 1 + ρp(c2 + 1) and b = 2ρc. These simplifications make the exact proximal 

distance updates easy to compute.

Table 7:

Performance of MM on convex regression using CG and LSQR. Both inner and outer 

iterations are reported with the latter in parentheses.

Time (s) Loss ×106 Distance ×106 Iterations

features samples CG LSQR CG LSQR CG LSQR CG LSQR

20 50 0.39
(0.00132)

0.68
(0.00607)

0.991 0.991 2.7 2.65 104
(2)

104
(2)

20 100 1.46
(0.000164)

2.67
(0.00555)

0.995 0.994 3.08 3.16 190
(2)

190
(2)

20 200 7.7
(0.166)

14.7
(0.00913)

0.984 0.984 25.1 25.1 298
(2)

298
(2)

20 400 30.2
(0.0275)

63
(0.268)

0.997 0.997 9.21 8.89 412
(2)

412
(2)

Table 8:

Performance of ADMM on convex regression using CG and LSQR. Both inner and outer 

iterations are reported with the latter in parentheses.

Time (s) Loss ×106 Distance ×106 Iterations

features samples CG LSQR CG LSQR CG LSQR CG LSQR

20 50 0.399
(0.00193)

0.677
(0.00507)

0.91 0.91 6.96 6.96 98
(2)

98
(2)

20 100 1.58
(0.0329)

2.83
(0.00398)

0.996 0.996 0 0 194
(2)

194
(2)

20 200 7.78
(0.0105)

15
(0.0386)

0.961 0.961 43.8 44 296
(2)

296
(2)

20 400 30
(0.0157)

60.4
(0.0841)

1.42 1.45 64.6 67.8 377
(2)

376
(2)

Appendix H.: Choice of Linear Solver

Updating parameters using MM or ADMM requires solving large-scale linear systems 

of the form (I + ctDtD)x = b. Here ct is a scalar that depends on the outer iteration 

number t, in general, and the matrix on the LHS is square, symmetric, and often reasonably 

well-conditioned. Standard factorization methods like Cholesky and spectral decompositions 

cannot be applied without efficient update rules based on ct. Instead, we turn to iterative 

methods, specifically conjugate gradients (CG) and LSQR, and use a linear map approach 

to adequately address sparsity, structure, and computational efficiency in matrix-vector 

multiplication. Tables 7 and 8 summarize performance metrics for MM and ADMM using 

both iterative linear solvers on instances of the convex regression problem. Times are 

averages taken over 3 replicates with standard deviations in parentheses, and iteration counts 

reflect the total number of inner iterations with outer counts in parentheses. We find no 

appreciable difference between CG and LSQR except on timing, and therefore favor CG in 

all our benchmarks.
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Appendix I.: Software & Computing Environment

Code for our implementations and numerical experiments is available at https://github.com/

alanderos91/ProximalDistanceAlgorithms.jl and is based on the Julia language (Bezanson et 

al., 2017). Additional packages used include Plots.jl (Breloff, 2021), GR.jl (Heinen et al., 

2021), and (Udell et al., 2014). Numerical experiments were carried out on a Manjaro Linux 

5.10.89–1 desktop environment using 8 cores on an Intel 10900KF at 4.9 GHz and 32 GB 

RAM.
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Figure 1: 
Loss, distance, penalized objective, and gradient norm for SD on metric projection problem 

with 32 nodes, labeled by outer iteration.
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Figure 2: 
Sample images along the solution path of the search heuristic. Images are arranged from left 

to right as follows: reference, noisy input, and 90% reduction.
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Table 1:

Summary of control parameters used in each example.

δ h δ d δ q ρ(t) = rt

Metric Projection 10−3 10−2 10−6 min{108, 1.2t−1}

Convex Regression 10−3 10−2 10−6 min{108, 1.2t−1}

Convex Clustering 10−2 10−5 10−6 min{108, 1.2t−1}

Image Denoising 10−1 10−1 10−6 min{108, 1.5t−1}

Condition Numbers 10−3 10−2 10−6 min{108, 1.2t−1}
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Table 2:

Metric projection. Times are averaged over 3 replicates with standard deviations in parentheses. Reported 

iteration counts reflect the total inner iterations taken with outer iterations in parentheses.

Time (s) Loss ×10−3 Distance ×103 Iterations

m MM SD ADMM MM SD ADMM MM SD ADMM MM SD ADMM

16 0.0429
(0:000709)

0.0338 (0:000137) 0.107
(0.000858)

0.237 0.237 0.237 9.24 9.24 9.24 4980
(37)

3920
(37)

7030
(37)

32 1.24
(0.00309)

1:28
(0.00617)

2.6
(0.0149)

1.14 1.14 1.14 9.13 9.13 9.13 16000
(41)

15400
(41)

17300
(41)

64 19.5
(0.00835)

16.7
(0.0148)

43.9
(0.0616)

4.69 4.69 4.69 8.7 8.7 8.7 30100
(44)

24200
(44)

33700
(44)

128 171
(0.613)

150
(0.28)

725
(0.772)

18.4 18.4 18.4 9.44 9.44 9.44 29900
(44)

23700
(44)

51900
(44)

256 1670
(0.702)

1570
(5.63)

9110
(75.4)

75.3 75.3 75.3 8.68 8.68 8.68 32500
(46)

26700
(46)

76100
(46)
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Table 3:

Convex regression. Times are reported as averages over 3 replicates.

Time (s) Loss ×103 Distance ×104 MSE ×102

d m MM SD ADMM MM SD ADMM MM SD ADMM MM SD ADMM

1 50 0.015
(0.00477)

0.0109
(0.00162)

0.0171
(0.0033)

454 454 454 87.3 87.4 87.5 70.1 70.1 70.1

100 0.0382
(0.002)

0.0311
(0.000301)

0.0578
(0.00179)

510 510 510 94.3 94.4 94.5 75.3 75.3 75.3

200 0.138
(0.00662)

0.0991
(0.00138)

0.205
(0.00213)

471 471 471 92.2 92.2 92.2 71 71 71

400 0.565
(0.012)

0.464
(0.000493)

0.862
(0.0184)

501 501 501 96.9 97 97 79.1 79.1 79.1

2 50 1.71
(0.00334)

0.693
(0.00341)

16
(0.00511)

122 126 118 85.9 85.3 85.5 72.2 73.1 70.8

100 11.8
(0.0189)

3.33
(0.00704)

66.6
(0.0844)

162 163 162 99.4 98 98.4 95.4 95.8 95.1

200 51.4
(0.0701)

14.1
(0.00805)

230
(0.273)

233 234 233 98.1 94.2 96.8 123 123 122

400 200
(1.06)

50.3
(0.299)

917
(1.48)

239 239 238 94.3 90.8 91.9 140 140 140

10 50 0.19
(0.00281)

0.00722
(9.99 × 
10−5)

0.196
(0.00743)

0.000891 0.00109 0.000838 0.821 2.23 0.488 8.59 8.63 8.61

100 0.854
(0.0002)

0.0644
(0.000503)

0.873
(0.00191)

0.000937 0.00097 0.000943 0.154 0 0.11 10.3 10.2 10.3

200 3.77
(0.00486)

0.398
(0.00888)

3.89
(0.0132)

0.000883 0.00099 0.00101 0.281 0 0.292 9.64 9.63 9.65

400 26.8
(0.405)

3.17
(0.0183)

27.6
(0.0488)

0.000992 0.000997 0.000999 0.185 0.288 0.176 9.41 9.42 9.39

20 50 0.39
(0.00132)

0.00791
(2.6 × 
10−5)

0.399
(0.00193)

0.000991 0.00542 0.00091 0.027 7.06 0.0696 9.77 9.34 9.57

100 1.46
(0.000164)

0.0684
(0.000174)

1.58
(0.0329)

0.000995 0.000965 0.000996 0.0308 0 0 9.13 9.22 9

200 7.7
(0.166)

0.414
(0.00109)

7.78
(0.0105)

0.000984 0.00113 0.000961 0.251 1.74 0.438 9.6 9.61 9.6

400 30.2
(0.0275)

3.03
(0.00605)

30
(0.0157)

0.000997 0.00105 0.00142 0.0921 1.68 0.646 10 10.2 10.2
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Table 4:

Convex clustering. Times reflect the total time spent generating candidate clusterings using Algorithm 3. 

Additional metrics correspond to the optimal clustering on the basis of maximal ARI. Time and clustering 

indices are averaged over 3 replicates with standard deviations reported in parentheses.

Time (s) Loss
Distance 

×105 ARI NMI

dataset features samples classes MM SD MM SD MM SD MM SD MM SD

zoo 16 101 7 95.6
(0.268)

77.1
(2.02)

1600 1600 8.62 8.62 0.841
(0)

0.848
(0.0118)

0.853
(0)

0.856
(0.00256)

iris 4 150 3 76.4
(0.129)

62.8
(2)

596 596 8.8 8.8 0.575
(0)

0.575
(0)

0.734
(0)

0.734
(0)

gaussian300 2 300 3 190
(0.173)

155
(0.177)

598 598 8.98 8.98 1
(0)

1
(0)

1
(0)

1
(0)

spiral500 2 500 2 715
(18.5)

561
(0.501)

998 998 8.98 8.98 0.133
(0)

0.133
(0)

0.366
(0)

0.366
(0)

J Mach Learn Res. Author manuscript; available in PMC 2023 May 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landeros et al. Page 50

Table 5:

Image denoising. Times reflect the total time spent generating candidate images, averaged over 3 replicates, 

ultimately achieving 90% reduction in total variation

Time (s) Loss Distance ×103 MSE ×105 PSNR

image width height MM SD MM SD MM SD MM SD MM SD

cameraman 512 512 557
(5.01)

181
(0.906)

8090 8090 93.1 93.1 284 284 25.5 25.5

peppers_gray 512 512 553
(6.28)

183
(2.11)

8020 8020 92.6 92.5 290 290 25.4 25.4
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Table 6:

Condition number experiments. Here c(M) is the condition number of the input matrix, a is the decrease factor, 

and c(X) is the condition number of the solution.

Time (ms) Loss ×103 Distance ×105 c(X)

p c(M) a MM SD ADMM MM SD ADMM MM SD ADMM MM SD ADMM

10 119 2 0.576
(0.104)

0.391
(0.00629)

0.582
(0.172)

0.549 0.548 0.549 41.1 41.1 40.6 59.4 59.4 59.4

4 0.413
(0.00321)

0.359
(0.00129)

0.543
(0.101)

4.92 4.92 4.92 236 234 236 29.7 29.7 29.7

16 0. 439
(0.00319)

0.424
(0.00427)

0.535
(0.00395)

130 130 130 926 929 927 7.44 7.44 7.44

32 0.662
(0.00336)

0.496
(0.00357)

0.824
(0.00459)

821 821 821 984 983 983 3.72 3.72 3.72

100 1920 2 37.7
(2.89)

51.1
(3.77)

149
(0.972)

0.00119 0.00119 0.00119 0.208 0.208 0.204 960 960 960

4 17.1
(0.164)

26.5
(2.8)

66.4
(0.485)

0.0107 0.0107 0.0107 0.845 0.845 0.877 480 480 480

16 10.1
(0.301)

11.
(0.0472)

35.3
(0.437)

0.436 0.436 0.436 17.8 17.9 17.9 120 120 120

32 26
(2.23)

33.4
(0.49)

74
(0.893)

3.26 3.26 3.26 95.2 95.2 95.2 60 60 60

1000 59400 2 60.3
(0.83)

75.3
(1.35)

157
(3.98)

1.15 × 
10−6

1.15 × 
10−6

1.15 × 
10−6

0 0 0 29700 29700 29600

4 57.4
(3.37)

71.8
(0.882)

131
(8.44)

1.04 × 
10−5

1.04 × 
10−5

1.04 × 
10−5

0 0 0 14800 14800 14800

16 55.6
(3.3)

71.9
(2.05)

152
(38.8)

0.000258 0.000258 0.000261 0 0 0 3710 3710 3690

32 23200
(855)

30000
(337)

87400
(1340)

0.0011 0.0011 0.00111 0.11 0.11 0 1860 1860 1850
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