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Introduction
A good deal of demographic research is justified on the grounds that it may lead to 
improved population forecasts. However, most researchers have never made a forecast, 
and actual projections are usually done by some form of trend extrapolation with little 
mention of theory. I believe that most demographers view forecasting as a mechanical 
and boring exercise, with little intellectual content. And indeed much forecasting, 
including good forecasts, and my own forecasts, could be fairly characterized in this way. 
But nonetheless forecasting is one of the most important tasks demographers perform, 
and it is important that it be done well and to high professional standards. We need 
forecasts to anticipate population aging, for example, and as inputs for economic, fiscal, 
environmental, and social service planning. And we need forecasts simply to be able to 
visualize our collective future. Some kinds of planning depend on demographic patterns 
many decades in the future, and because of the long term demographic consequences of 
current population age distribution, demographers can sometimes make useful predictions 
of these. However, like most kinds of forecasts, population forecasts often turn out to be 
quite mistaken. It is also a task of demographic forecasters to provide indications of the 
kinds of errors they may make, and the probabilities of these. 

Demographers use accounting identities to translate assumptions about the time path of 
age specific fertility, mortality and migration into the future population sizes and age 
distributions they imply. However, demographic rates are only probabilities at the 
individual level. If a fertility rate for 27 year old women is .5 per year, that means there is 
a 50% probability that a particular woman will give birth within a year, and a 50% 
chance that she will not, and similarly for probabilities of death and survival, and 
migration. This intrinsic uncertainty at the individual level is diminished when we talk 
about larger groups of women, because it tends to average out, but it never disappears 
completely. Even if the true rates were known with certainty ex ante, the outcomes could 
not be predicted with certainty. Early researchers looked here for the source of 
uncertainty in population forecasts. However, simple calculations showed that this source 
of uncertainty became vanishingly small in the larger populations of nations, yet forecasts 
for large populations were little more successful than for small ones. Then it was 
recognized that the main source of uncertainty was that the vital rates (that is, the 
probabilities) themselves change over time, and that we make errors in forecasting these 
changes (Sykes 1969). 

Unfortunately, the analytic tools of pure demography are of little use for the task of 
forecasting changes in vital rates. The principle analytic technique available is to place 
current rates in a longer run context through skilled disaggregation – for example, by 
parity and length of open interval for fertility, or by cause of death for mortality. But 
disaggregations of this kind are useful mainly when the underlying, disaggregated 
probabilities are in fact unchanging, and the changes in outcomes are due to changing 
structures, that is to changing distributions of the population across the different relevant 
disaggregated categories of risk. However, there is an underlying weakness with this 
approach: If the distributions are not changing, then the disaggregation is not helpful. On 
the other hand, if the distributions are irregular and changing, this must reflect past 
variations in the disaggregated rates. But if the rates have been changing in the past, then 
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they are likely to change in the future, and we are back to the problem of trying to
forecast their changes. Faced with the need to forecast the disaggregated rates, 
demographers tend to extrapolate their most recently observed levels. Thus for the most 
part, classic demographic methods are of limited use in a changing world. 

For the past 35 years, I have been working on the problem of demographic forecasting 
under uncertainty. My goal has been partly intellectual, to figure out how to think about 
the processes at work. But it has also been to develop new forecasting methods that 
would be more than illustrative, and that might be good enough to inform real world 
planning.

In this paper, I will explain how this work developed over the years, what directions I 
tried, and why some failed and some succeeded. In short, I will describe my voyage of 
discovery. I will not try to provide a comprehensive overview of this large topic, which I 
attempted to do in Lee (1999) and Lee and Tuljapurkar (2000). However, I will give 
some indication of the contributions of others, and the directions they have taken. 

Fundamental Issues
As a graduate student, my interest in forecasting stemmed from an attempt to understand 
how and why populations grew and declined, and how the process was related to 
economic change, age distribution, and accident. In thinking about these questions, I was 
troubled by a number of questions:

1) Theories of Malthus, Easterlin, environmentalists and others tell us that 
population size and age distribution should themselves have an influence on 
current vital rates, which implies that population processes should be subject to 
negative feedback. Yet in practice this is generally ignored in projections. What 
should we make of this?

2) Some analysts have viewed population change as an independent force, itself 
explaining economic and social changes. Others have viewed population change 
as endogenous, responding passively to economic change. How can we reconcile 
the interplay of random and systematic influences on vital rates and population 
growth? 

3) How can variations over age and time in vital rates such as fertility or mortality be 
represented parsimoniously yet realistically?

However forecasting is actually carried out, it explicitly or implicitly involves deep 
theoretical and empirical assumptions and judgments. Can we ignore feedback? Do more 
people in the reproductive ages mean more births or fewer births? Will environmental 
pressures be increased by population growth, and in turn retard that growth? Will 
mortality rise as population density increases? Does a larger population lead to more
rapid technological progress, or to poverty? If, in the end, most population forecasts say 
nothing about these questions, that reflects an assumption on the part of the forecasters 
that demographic trends can continue without encountering such feedback, not proof that 
such economic and environmental interactions with population don’t matter. The 
potential role of such factors is discussed in Lee (1990) and Cohen (1995). 
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Modeling Variation in Demographic Rates Over Age and 
Time
There is a tradition in mathematical demography of modeling variation over age and 
time, closely related to the demographic tradition of constructing families of model age 
schedules for fertility, nuptiality and mortality. One approach involves fitting nonlinear 
parametric functions to the observed age schedules, and then letting some or all of the 
parameters vary over time. For example, Gompertz or gamma functions have been used 
for fertility, and the Heligman-Pollard nine parameter function has been used to 
extrapolate mortality rates (McNown and Rogers 1989). Another approach generates new 
age schedules by transforming an existing one, or a standard; this is sometimes called a 
relational approach. For example, one simple model assumes an equal additive change to 
mortality at every age, which is the simplest and most tractable model of all, but which 
fits actual change only poorly. Another example, this time more realistic but less 
tractable, assumes that mortality at every age changes by the same proportion. Still more 
realistic is Brass’s logit transform.

The approach I developed was still very simple, but like the logit, both flexible and 
realistic. It lets each age specific rate have its own additive or multiplicative pattern of 
change, with the relative sizes of these changes fixed across age:

m(x,k) = a(x) + k*b(x)

Here m(x,k) can represent either a vital rate at age x for parameter value k, or the 
logarithm of the rate for the multiplicative version. As k varies, the model generates a 
family of age schedules of the vital rates m or exp(m). The model can be fit to a matrix of 
historical rates varying over age and time, resulting in estimates of the a(x), b(x) 
schedules, and a time series of the parameter k, call it k(t). We can hold a(x) and b(x) 
fixed, and then focus attention on analyzing, modeling, and forecasting k(t) without 
having to worry about all the age specific details. The model has been used mainly for 
mortality, but also for fertility and migration. 

This model also makes it easy to incorporate stochastic disturbances in a natural way, by 
treating k as a random variable. Then k, for fertility or mortality, can be projected using 
standard statistical methods, together with its probability distributions. From these, 
probability distributions for age specific fertility and mortality can be calculated. Other 
sources of uncertainty, resulting from imperfect fit of the model give above, or from 
uncertainty about the parameters of the time series models used to forecast k, can also be 
incorporated.

The Framework
Figure 1 gives a very large scale map of this voyage of discovery, showing fertility and 
mortality as processes to be modeled, then showing them as inputs to a stochastic 
population forecast, and finally the use of the stochastic population forecast as an input to 
stochastic fiscal projections of various kinds. The remainder of the paper takes a close 
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look at each of these legs of the journey, showing the blind alleys as well as the final 
route. 

Forecasting Mortality: Development of the Lee-Carter 
Model
Since US life expectancy was widely believed to have reached its natural upper limit in 
the mid-1960s while I was a graduate student in Demography, I didn’t pay much 
attention to it at the time. Subsequently, mortality began to decline rapidly, and mortality 
caused larger errors in Census Bureau projections in the 1970s than fertility, so the 
picture changed. In the late 1980s, Larry Carter spent a semester visiting at Berkeley. We 
had collaborated earlier on a model of population renewal based on birth-marriage and 
marriage-birth transitions. This time, we decided to try to use the simple age-time model I 
had developed for historical work to model and forecast mortality. The single parameter 
k(t) indexed the intensity of mortality, and we estimated it for the US 1900 to 1989, as 
shown in Figure 2. Remarkably, the trajectory of k(t) was quite linear, unlike life 
expectancy which rose at a slowing pace throughout the century. This linearity was 
striking, because it persisted through important changes like the development of 
antibiotics and the emergence of the AIDS epidemic. We modeled k(t) as a random walk 
with drift, and forecasted it along with its probability distribution. From this, we derived 
the forecasts and probability distributions of age specific death rates and life expectancy. 
While we were developing this method, Rogers and McKnown (1989, 1992) were 
developing an approach based on fitting the Heligman-Pollard model mentioned above to 
the historical mortality data, and then using time series methods to forecast a subset of the 
estimated parameters. There were lively debates about the relative merits of the two 
methods. Figure 3 charts this and subsequent efforts to model and forecast mortality. The 
path ultimately followed is shown by the continuing main line, while the spurs branching 
off to the sides represent paths tried but abandoned. 

Even before the article was published, Statistics Canada invited us to apply it to Canadian 
data, at Nathan Keyfitz’s suggestion (Lee and Nault 1993), and they began to use it
partially in their projections. Since then, the model has gradually gained acceptance, and 
is now also used in some respects by the US Census Bureau, Japan, and the United 
Nations. Tuljapurkar, Boe and Li (2001) applied it to the G7 countries, and found that as 
for the US, it predicted life expectancy gains by 2050 that were 2 to 4 years greater than 
the official projections, and for Japan, 8 or 9 years greater. Lee and Miller (2001) 
investigated hypothetically how the method would have worked, had it been applied in 
earlier years. We found that the forecasting errors would have been quite well described 
by the probability distributions generated by the method. We also found that longer term 
forecasts tended to understate the future gains in life expectancy, here and in a number of 
other countries. Recently, Li and Lee (in press) have extended the method for use in 
countries with mortality data available for only a few irregularly spaced periods. 

Forecasting Fertility
For fertility forecasts, I reasoned that once the fertility transition was over, we really had 
no clue about which way fertility would move, and the best we could do was to model its 
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level as a trendless (covariance stationary) stochastic process (Lee 1974). I then modeled 
births as an autoregressive time series, with net maternity rates as the autoregressive 
parameters, and derived the variance of the best linear forecast of the number of births in 
relation to the uncertainty of the fertility process by analyzing the renewal equation. From 
this I saw that the uncertainty in the forecast of births grew linearly with time to a good 
approximation, and that it was a moving average of past fertility shocks with weights 
equal to the progeny of a birth cohort at each lag. This work was my first presentation at 
the Michigan brown bag seminar series as a starting Assistant Professor there, and it was 
not well received, to say the least. The sociologists thought it was blasphemous to model 
fertility as a random process. Twenty years later, I got a very similar reaction when I 
submitted a related paper to Demography, which was rejected. The work appeared 
elsewhere (Lee 1993) and is a key component of the full scale stochastic population 
forecasts. 

In between my first paper, and this elaborated model twenty years later, I had tried many 
other approaches to forecasting fertility. One line of work modeled an Easterlin-style
effect of population age distribution on fertility (Lee 1974b and 1976). In this approach, 
the same kind of autoregressive birth equation was used, but now fertility was a function 
of the numbers of earlier births at each lag – that is, it depended on the contemporary 
population age distribution. Unfortunately, the future did not oblige by conforming to the 
predictions of the model; no new baby boom occurred, although a brief upswing between 
1988 and 1992 looked promising. I also wrote a series of papers on the use of birth 
expectations data from surveys for forecasting (Lee 1981), which led to a paper on 
Aiming at a Moving Target (Lee 1980), but in the end proved of little use for forecasting. 
In other work, I considered using New Home Economics type fertility models for 
forecasting, but did not see how that approach could lead to useful predictions, since it 
seemed to imply decline without limit as income and female wages rose. Finally, with 
Larry Carter (1986), I developed a time series model of the joint evolution of births and 
marriages, each feeding into the other. It was an elegant paper, but marriage waned as a 
fundamental force driving fertility, and that approach was abandoned. It was a defeat to 
come back to treating fertility as a stochastic process, with model forecasts heavily 
conditioned by imposed assumptions for central tendency and, perhaps, for upper and 
lower bounds (e.g. TFR between 0 and 4). But sometimes it is best to acknowledge 
defeat, and make peace on the best available terms; that was what I did in Lee (1993). 
This long journey of discovery for fertility modeling is portrayed in Figure 4. 

Figure 5 shows a fertility forecast for the US using this approach. The probability fan 
seems too wide, with the 95% probability bounds ranging from a TFR of .8 to 3.0. 
However, those bounds are intended to cover annual ups and downs. If we instead ask for 
central tendencies, by computing the probability interval for the average TFR along 
stochastic trajectories up to each horizon, we get a narrower 95% bound ranging from 1.4 
to 2.6 for long run forecasts. 
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The Traditional Treatment of Uncertainty in Population 
Forecasts
The traditional approach to estimating and communicating the uncertainty of population 
forecasts is through the construction of scenarios. First, the analyst constructs high, 
medium and low projections for each of the rates, typically fertility, mortality and net 
immigration. The high and low trajectories do not have any probabilistic interpretation, 
but are chosen to span a range which the analyst believes to be plausible. The next step is 
to bundle these trajectories together to form high, medium and low scenarios. This is 
done in different ways, depending on the purpose of the projections. For example, in the 
US, the Census Bureau bundles together high fertility and low mortality (and high 
immigration) to form the high scenario, yielding the highest rate of population growth, 
and similarly for the low scenario. But the Social Security Administration bundles 
together high fertility with high mortality (and immigration), because these generate the 
lowest old age dependency ratio (OADR), which is the key demographic variable for 
their financial projections. The Census choice of bundles minimizes the high-low range 
of the OADR, because the high fertility tends to make the population young, while the 
low mortality tends to make the population old, and these effects cancel. The Social 
Security bundles minimize variations in the population growth rate, because high fertility 
makes the growth rate high, while high mortality makes it low, and these effects cancel. 

This problem is illustrated by the 1992 Social Security population projections (Office of the 
Actuary 1992). For 2970, the High-Low range for the population age 0-19 is ±34 percent; for the 
population 20-64, the range is ±20 percent; and for 65+ it is ±9 percent. Yet for the total 
dependency ratio, which is the sum of the first and the third divided by the second, the range is 
only ±5 percent, whereas we would expect it to be many times this large. The scenario method 
inevitably gives probabilistically inconsistent indications of uncertainty for different population 
variables in the same forecast.

The arbitrariness of the choice of bundles is one of the problems with the scenario 
approach. Another is that no probabilities can be attached to the high-low range of the 
projections. Still another is along the scenario trajectories, fertility is always high, 
medium or low, and mortality likewise. It is therefore implicitly assumed that forecasting 
errors for fertility and mortality are perfectly correlated over time, so that fluctuations 
like the baby boom are ruled out by assumption. In addition, errors in fertility and 
mortality are also implicitly assumed to be perfectly correlated with one another, in the 
sense that high fertility is always associated with low mortality (or always with high 
mortality). A final problem is that the high-low bounds cannot have any consistent 
probabilistic interpretation across different measures, since true uncertainties tend to 
cancel in larger aggregates like total population, relative to their constituent parts like 
numbers of births in certain years, or the sizes of particular age groups. In the scenario 
approach, no such cancellation can take place.

From this point, I will focus on the main direction taken in the research, with less 
attention to the side routes that turned out to be deadends. 
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Stochastic Population Forecasts
As a graduate student, I wanted to develop more genuinely probabilistic population 
forecasts. I realized that most population forecasting errors derived from errors in 
forecasting the vital rates rather than from individual level uncertainty, as discussed 
earlier. At first I thought that the answer lay in formulating stochastic models of fertility 
and mortality, and then using the probability intervals from their fertility and mortality 
forecasts to set the upper and lower 95% probability bounds for the projection scenarios. 
However, it soon became clear that this would not do, for all the reasons given above: 
scenarios do not and cannot work probabilistically. Probabilistic projections required a 
population projection matrix with stochastic rates which could vary every after every 
projection step, and from it to derive the probability distribution of the projected 
population. 

I could write down the equations for the stochastic vital rates, perhaps, but I did not know 
how to derive their implications. A few years later, I began seeing a series of papers by 
Shripad Tuljapurkar (Tulja), on population renewal in random environments. He was 
interested in the population dynamics of all species, and he explicitly developed the 
probability distributions of population variables when reproduction and survival were 
disturbed by climate, predation, and other partially natural influences (Tuljapurkar 1990). 
Later, Tulja spent some time at Berkeley and we joined forces to tackle the problem of 
stochastic population forecasts, combining my work on modeling the vital rates as 
stochastic processes, and his work on population renewal in random environments. 

After several years of work, and improvements due to referees, the results were published 
in Lee and Tuljapurkar (1994). The paper contained analytic approximations for the 
actual probability distributions, derived at great cost. In order to check on these analytic 
results, Tulja also carried out stochastic simulations, which confirmed their accuracy. 
This exercise taught us that while the explicit mathematical solutions were intellectually 
satisfying and yielded some insights, the stochastic simulations were far simpler and 
could be used to estimate probability distributions for any desired functions of the age 
distributions. We reluctantly abandoned the analytic solutions in our subsequent work. 
This work, finally brought to a successful resolution, drew on earlier deep theoretical 
research by Tulja in mathematical population biology, and by me in historical 
demography. 

Figure 6 shows forecasts from 1999 to 2080 of the old age dependency ratio, here defined 
as (population 65+)/(population 20-64), with 95% probability intervals and comparisons 
to the Census and Social Security projections and ranges. The central forecasts of all 
three are quite similar, although ours are slightly higher due to our forecast of more rapid 
mortality decline. Our 95% interval is much broader than the High-Low interval of Social 
Security, which is in turn substantially broader than that of Census, due to the bundling 
choices for defining their trajectories, as discussed earlier. We find that the High Social 
Security trajectory is just above the 75th probability bound, and far below the 97.5% 
probability bound. According to our forecasts, there is a considerable possibility that 
population aging may be much more severe than that considered by Social Security and 
Census. 
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I have emphasized the contributions of Tuljapurkar and myself, but at the same time Juha 
Alho and his collaborators (1985, 1990, 2001) were working along similar lines and 
making important contributions. Keyfitz, in unpublished work, suggested a different 
approach: randomly sampling rates of mortality change from the past, and independently 
the levels of fertility, as a basis for developing a stochastic forecast. Stoto (1983) and 
Keyfitz (1981) developed methods for attaching probability intervals to forecasts of 
population growth rates and population size by analyzing ex post forecasting errors, an 
approach extensively developed and discussed in National Research Council (2000).
Pflaumer (1988) made stochastic population forecasts by randomly sampling vital rates 
from the high-low range in official forecasts. Lutz, Sanderson and Scherbov (1996) have 
elaborated on this approach in a series of papers, an approach criticized by Lee (1999) 
and Tuljapurkar, Lee and Li (in press). Vigorous debates at several international meetings 
explored the relative merits of these approaches.

But What Are These Good For? Stochastic Social 
Security Forecasts
We had achieved an important goal, one I had started working on 27 years earlier. But we 
soon realized that nobody really understood these new projections, or what they were 
good for. Yes, we could now provide a probability distribution for the forecast of any 
demographic quantity, simply by examining our stochastic simulation results. But how 
did, say, the 95% probability bounds differ from the standard High, Medium and Low 
scenarios? In fact they differed profoundly, but this was difficult to convey. 

After trying to explain all this to smart people who were accustomed to the traditional 
scenarios, and failing to get the point across, we decided that we would need to work out 
an application ourselves, to illustrate the power of the new stochastic population 
forecasts. Social Security finances seemed the best place to start, because the Trustees 
projected over a 75 year horizon every year, and because demography and population 
aging played key roles in these projections. Furthermore, the Social Security trust fund 
was the cumulation of net surpluses, and so it should depend on the sum of functions of 
the demography. Along any stochastic trajectory, there should tend to be some degree of 
cancellation of errors in our projections, but not in the traditional high-low scenarios used 
by the Actuaries. 

Tulja and I initially developed simulations of the trust fund, with only the demography 
stochastic. Michael Anderson, who at the time was a graduate student in demography and 
statistics at Berkeley, programmed the stochastic simulations. Soon, however, we moved 
on to model productivity growth rates and real interest rates as stochastic processes, and 
for some purposes, we similarly modeled stock market returns. Our stochastic forecasts 
for the Trust Fund typically reflected four stochastic inputs out of the eight or ten that 
were usually viewed as uncertain. The inputs we did not treat as stochastic included 
inflation, disability, and immigration. We believed that the four we included were the 
most important sources of uncertainty, and would capture most of the overall uncertainty. 
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Figure 7 shows histograms for the date of exhaustion of the Social Security Trust Fund
assuming no change in the payroll tax rate, no investment of the fund in equities, and no 
change in the currently legislated increase in the normal age of retirement to 67, based on 
the central assumptions contained in the Trustees Report of 1998 (somewhat more 
pessimistic than the more recent Trustees assumptions). The median date of exhaustion 
was then 2032, with 2.5% probability of exhaustion by 2022 and 97.5% by 2072. We 
consistently find that even the most favorable 2.5% bound shows exhaustion in less than 
75 years, in contrast to the Trustees’ “Low Cost” forecasts, which suggested that if we 
were lucky the system would be able to continue robustly in the future. 

At the same time we were developing our stochastic forecasts for Social Security, the 
Congressional Budget Office (CBO) had noted our 1994 paper on stochastic population 
forecasts, and asked if they could use our stochastic population trajectories as the basis 
for stochastic Social Security projections of their own. We sent them a set of a thousand 
stochastic population simulations, and they did indeed develop stochastic forecasts which 
they published annually for a number of years. In 2001 they published a more elaborate 
stochastic forecast for Social Security, this time developing their own stochastic 
population model from scratch. I believe that this effort benefited from the short class we 
taught in Washington DC for three summers, which I will describe later. 

In 1999-2000, I served on the Technical Advisory Panel for Social Security, and I 
presented our results there. The Trustees and Actuaries had already been advised by 
earlier committees that they should do stochastic forecasting, so our efforts fit well with 
those recommendations. Although nothing happened at the time, in 2003 Social Security 
did develop and publish its own stochastic forecasts for the first time, using methods 
closely related to ours. They also published comparisons of their stochastic projections to 
ours and also to a set developed by CBO. The three were remarkably consistent. 

Stochastic Fiscal Projections
When President Bush was arguing for tax cuts, the Congressional Budget Office was 
projecting large surpluses over the next decade, and Greenspan was worrying about what 
we would do once we had paid back all the government debt. A probabilistic forecast 
would have shown that not much confidence should have been placed in those 
projections, and indeed CBO had included probability intervals based on its own analysis 
of the past performance of its projections, and these showed that it was quite possible that 
the surpluses would turn to deficits within a few years. I was invited to testify to the 
Senate Budget Committee about the uncertainties in the fiscal outlook, and the impact of 
population aging on the Federal budget. My testimony was received with interest, but I 
doubt that it had much impact. Here is the story of how the probabilistic fiscal forecasts 
were developed. 

Back in 1995, I served on a panel organized by the Committee on Population of the 
National Academy of Sciences, and Chaired by Jim Smith, to assess the economic and 
demographic consequences of immigration to the US, for a special bipartisan 
Congressional Commission. My task was to estimate the fiscal impact of immigrants
using a longitudinal design which required that I prepare long run projections of US 



10

government budgets at the federal, state and local levels. I had developed relevant 
methods during earlier work on estimating the externalities to childbearing, involving the 
estimation of age profiles of government benefits and taxation, and shifting these over 
time with productivity growth. Figure 8 illustrates cross-sectional age profiles of this sort 
for the year 2000, showing the dominating importance of public education, Social 
Security benefits, Medicare, and institutional Medicaid. Similar age profiles were 
estimated for various kinds of taxes. 

I got advice on modeling government budgets from Alan Auerbach and Robert Inman, 
two leading Public Finance economists also on the Immigration Panel. I hired Ryan 
Edwards, then a graduate student in Economics, to work on the budgetary side of these 
projections. Tim Miller, a demographic researcher at Berkeley, did most of the necessary 
estimation. With NIA support, this research team worked flat-out for a year, and brought 
the project to an interesting and successful conclusion. As a byproduct, we had developed 
the expertise to make long-run deterministic budget projections for all levels of 
government. If we could do it for one set of demographic and economic assumptions, 
then we could do it for others, so we had the machinery in place to construct stochastic 
budget forecasts for all government programs and total taxes and expenditures, exploiting 
detailed population age distributions and schedules of benefits and costs by age, as driven 
by productivity growth rates. We were able to draw on both the stochastic population 
projection methods and the methods for stochastic projections of Social Security. It 
seemed only natural to take advantage of the situation to construct probabilistic forecasts 
of federal, state and local taxes and expenditures. We did this, based on seven kinds of 
taxes and twenty five different age-specific government programs. The results were 
published in Lee and Edwards, 2002a and b.

Figure 9 shows probabilistic forecasts of government spe nding as a share of GDP at all 
levels (Federal, State and Local) combined, but disaggregated by age group in the first 
three panels and in total in the last panel. These forecasts are conditional on the 
assumption that current program structures remain constant or vary only according to 
currently legislated plans such as the increase in the normal retirement age. Panel C 
shows that no change is projected for the share of age neutral programs, consisting 
mainly of such items as defense expenditures, police, fire, research: expenditures that 
cannot be assigned to recipients of any particular age. The flat line with no probability 
dispersion reflects the assumption made, following CBO assumptions, that such 
expenditures will be a constant share of GDP in the future. Panel B shows that 
expenditures on the Young are also expected to be flat over the coming decades, although 
in this case there is substantial uncertainty, reflecting uncertainty about fertility and 
therefore the share of children in the population. Panel A shows that expenditures on the 
elderly are expected to rise strongly, nearly tripling in eighty years, due primarily to the 
effect of population aging on Social Security, Medicare, and institutional Medicaid (that 
is, for long term care). The probability distribution is narrow for the first twenty five 
years or so, reflecting mainly uncertainty about mortality and survival. After this point, 
however, the much greater uncertainty about fertility begins to affect the projected size of 
the working age population, which drives projections of GDP, and therefore strongly 
influences expenditures on the elderly as a share of GDP. Panel D shows the forecast for 
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expenditures for all age groups combined. Note that we would expect a negative 
correlation between expenditures on children and the elderly as a share of GDP, since 
variations in fertility would affect these in opposite directions. This correlation is 
implicitly taken into account in the probability intervals in Panel D. The central forecast 
shows that total governmental expenditures as a share of GDP would rise by more than 
50% over the next 75 years, which we have seen is due entirely to expenditures on the 
elderly. The 95% probability interval extends from about 28% of GDP to about 48% of 
GDP, with uncertainty in the upward direction being greater than downward. 

Health Care Costs: The Joker in the Deck 
Medicare expenditures were one piece of the federal projections reported above about 
which we had reservations. However, based on earlier research by HCFA actuaries, Tim 
Miller (2001) published a paper showing how data on Medicare costs by time until death 
could be used in projections of Medicare costs. In these projections, as mortality falls, 
there are two effects on costs. First, there are more old people at every age, so costs tend 
to rise. Second, at any given age a smaller proportion of people is near death, so costs 
tend to fall. These two effects largely cancel, as it happens, so it makes little difference to 
costs whether mortality declines rapidly or slowly. Miller’s work paved the way for a 
subsequent paper on stochastic forecasts of Medicare expenditures (Lee and Miller 2002). 
In these forecasts, we estimated a stochastic time series model for the growth in Medicare 
expenditures per enrollee in excess of per capita income growth. This was used as a 
multiplicative shifter for a schedule relating Medicare costs to years until death. Along 
each stochastic trajectory, we knew the distribution of deaths by age, so we could apply 
this schedule to the distribution of deaths to find the Medicare costs implied. 

Figure 10 contrasts our probabilistic time until death based forecasts of Medicare costs to 
the official government projections. Here, probability deciles are indicated by the 
darkness of the fan. It turns out that probabilistic projections are not always more gloomy 
than deterministic ones! First, taking time until death into account leads to projections of 
Medicare costs that are substantially lower than the official projections by the Medicare 
Trustees, because our forecasts implicitly forecast improving health at every age as 
mortality falls. Second, we see that while our lower probability decile corresponds 
closely to their low projection, their high projection is far more pessimistic than our
upper 97.5% bound: we find it very unlikely that their high scenario will come to pass.

Population and Fiscal Projections for California
In 2001, I was asked to prepare projections of population aging in California for the state 
legislature, and I took advantage of the opportunity to enlist Tim Miller and Ryan 
Edwards in the effort, and to prepare stochastic projections for the population of 
California and for its budget, through 2050. Tim Miller developed stochastic immigration 
and internal migration which we incorporated in the demographic the forecasts. Figure 11
shows our projections of the state budget, again assuming current program structure. In 
contrast to the Federal and general government projections, we find almost no systematic 
tendency for expenditures to rise relative to state GDP, because for the most part the state 
does not provide benefits targeted to the elderly, and therefore is not affected by the 
projected population aging. Revenues are almost flat with almost no uncertainty, since 
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they are expressed as a share of GDP, and are not much affected by population age 
distribution. These projections attracted considerable interest in Sacramento, and point 
towards the application of these methods at the state and local level.

Proselytizing and Training
In the summers of 1998 to 2001, Tulja, Edwards, Anderson and I taught a short intensive 
class in Washington D.C. on our new methods for stochastic forecasting, with funding 
from the Social Security Adminstration. We pitched it to professional government 
forecasters, and people attended from many government agencies, including Social 
Security, Census, CBO, OMB, GAO, and Veterans Affairs. Some graduate students and 
academics, and government forecasters from other countries, attended as well. The 
lectures seemed to generate a great deal of interest. It is difficult for us to assess the 
impact of these classes, but in 2001, CBO published its own stochastic forecast for Social 
Security, and in 2003, Social Security published its own version, as discussed earlier.

Where Next for Stochastic Forecasting? 
These general methods for making stochastic forecasts of mortality, fertility, population, 
Pay-As-You-Go pension systems, health care costs, and full government budgets appear 
to be reasonably well established, although there is plenty of room for improving each, 
and for trying completely different strategies. Many questions remain about the best way 
to handle various details, and work on these questions is ongoing. Doubtless problems 
will be discovered and the methods will evolve. For example, a book by Tabeau, Jeths 
and Heathcoate (2001) discusses many approaches to forecasting mortality including
Lee-Carter, and a book manuscript by Girosi and King (2003) contains a searching 
critical analysis of the Lee-Carter method and develops an alternative approach based on 
covariates and smoothness priors. Denton and Spencer in Canada, and CBO and the 
Social Security Actuaries are all exploring alternative approaches. Li Nan and I are 
working on modifying and extending Lee -Carter for use by the United Nations in the 
mortality component of their global population projections. 

I would like to see government agencies develop and use stochastic long run budget 
projections. This seems particularly important, given the great stresses that population 
aging will put on the budgets of the industrial world through public pension programs, 
health care, and long term care. Policy changes today should be taken in light of this 
sobering long term outlook, but also with a full appreciation of the degree of uncertainty 
about these pressures. In recent years, both the tax cuts and the Iraq war illustrate the 
importance for good decision making of taking into account not only the best guess 
forecast, but also a careful assessment of the degree of uncertainty about that guess, and 
the expected cost of errors. 

One of the most challenging questions in this area is just how policy makers should take 
uncertainty into account: by acting quickly to build up buffer funds or to contain a 
situation that might deteriorate if no action is taken, or by postponing action until we 
have a clearer idea of which direction the cat is going to jump. A useful start has been 
made on this question by Auerbach and Hassett (2000). But posing the problem as I just 
did suggests that once the cat jumps, we will know how the future will unfold—rapid 
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versus slow gains in life expectancy, deficits versus surpluses, and so on. In reality it is 
much more likely that the future will be no more certain in ten years or twenty or fifty 
than it is now. The world is not going to choose a direction and then adhere to it 
thereafter. There is uncertainty about big changes and small every step of the way, 
without end. We must live and act in the face of this uncertainty as we have always done, 
but understanding it better should lead to better decisions.
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Figure 1.
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Figure 2.  Lee-Carter mortality index k(t), fitted (1990-96) and forecasted (1997-2096)

Source:  Lee and Tuljapurkar (2000).
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Figure 3.



20

Figure 4.
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Figure 5.  Total Fertility Rate, historical values (1917-1996) and forecasted (1997-2096), 
with 95% probability intervals for annual values and for the cumulative average up to each horizon

Source: Lee and Tuljapurkar (2000).
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Figure 6.  Old-age dependency ratio forecasts: 1999 to 2080

Source:  Lee and Edwards (2001).
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Figure 7.  Histograms of 1,000 dates of exhaustion for social security Trust Funds

Year

Source: Lee and Tuljapurkar (2000).
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Figure 8.  Benefits by program and age

Source:  Lee and Edwards (2001).
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Figure 9.  Fiscal Projections for Spending by Age

Source:  Lee and Tuljapurkar (2000).
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Figure 10.  Medicare Hospital Insurance Program as Percent of GDP:  Lee-Miller Probability Deciles 
and Trustees Scenarios (Excludes Medicare’s Supplementary Medical Insurance Program)

Source: Lee and Miller (2002).
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Figure 11.  Projections of California’s General Fund Revenues and Expenditures as Shares of GSP

Source:  Lee, Miller, and Edwards (2003).




