
UC Riverside
UC Riverside Previously Published Works

Title
Translating Preclinical Research for Exercise Oncology: Take It to the VO2max.

Permalink
https://escholarship.org/uc/item/5mm8w6m6

Authors
Lamkin, Donald
Garland, Theodore

Publication Date
2020

DOI
10.3389/fonc.2020.575657

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mm8w6m6
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


PERSPECTIVE
published: 02 October 2020

doi: 10.3389/fonc.2020.575657

Frontiers in Oncology | www.frontiersin.org 1 October 2020 | Volume 10 | Article 575657

Edited by:

Imtiaz Ahmad Siddiqui,

University of Colorado Anschutz

Medical Campus, United States

Reviewed by:

Neetika Khurana,

Northern Illinois University,

United States

Abhishek Roy,

Virginia Commonwealth University,

United States

*Correspondence:

Donald M. Lamkin

dlamkin@ucla.edu

Specialty section:

This article was submitted to

Cancer Epidemiology and Prevention,

a section of the journal

Frontiers in Oncology

Received: 24 June 2020

Accepted: 21 August 2020

Published: 02 October 2020

Citation:

Lamkin DM and Garland T Jr (2020)

Translating Preclinical Research for

Exercise Oncology: Take It to the

VO2max. Front. Oncol. 10:575657.

doi: 10.3389/fonc.2020.575657

Translating Preclinical Research for
Exercise Oncology: Take It to the
VO2max

Donald M. Lamkin 1,2,3* and Theodore Garland Jr. 4

1Norman Cousins Center for PNI, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles,

CA, United States, 2Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los

Angeles, CA, United States, 3 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA,

United States, 4Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA,

United States

Several observational studies have found that the risk for breast cancer is significantly

reduced in persons who engage in greater amounts of physical activity. Additional

observational studies of breast cancer survivors indicate that greater physical activity

before or after diagnosis associates with reduced disease-specific mortality. However, no

large randomized controlled trials have examined the effect of structured exercise training

on disease outcomes in breast cancer. Among the many hurdles in designing such

trials lies the challenge of determining how a given regimen of exercise from efficacious

preclinical studies can be extrapolated to an equivalent “dose” in humans to guide

decisions around treatment regimen in early-phase studies. We argue that preclinical

researchers in exercise oncology could better facilitate this endeavor by routinely

measuring changes in exercise capacity in the subjects of their breast cancer models.

VO2max, the maximal rate of whole-organism oxygen consumption during a progressive

exercise test, is emphasized here because it has become a standard measure of

cardiorespiratory fitness, is well-integrated in clinical settings, and scales allometrically

among nonhuman animals in preclinical research and breast cancer patients/survivors in

the clinic. We also conduct secondary analyses of existing whole-transcriptome datasets

to highlight how greater uptake and delivery of oxygen during exercise may reverse the

typically hypoxic microenvironment of breast tumors, which often associates with more

aggressive disease and worse prognosis.

Keywords: breast cancer, exercise dose, exercise oncology, physical activity, preclinical research, translational

science, tumor hypoxia, VO2max

INTRODUCTION

Over the past 30 years, exercise therapists and other clinical investigators have conducted
randomized controlled trials (RCTs) with cancer patients to examine the effect of structured
exercise training on a variety of dependent variables. Although breast cancer has received the
most attention, other cancer types studied include prostate, lung, colorectal, gastrointestinal,
gynecologic, testicular, bladder, lymphoma, leukemia, and brain (1). The first such RCT was
conducted in the late 1980s and found that a structured exercise intervention involving
thrice-weekly supervised aerobic activity with breast cancer patients significantly reduced
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treatment- related nausea, reduced body fat, and increased
physical fitness (2–4). However, spurred by emerging
observational evidence that physically active women had a
lower risk of developing breast cancer, clinical investigators
soon began conducting RCTs to examine the effect of exercise
on biomarkers that associate with breast cancer prognosis (e.g.,
serum insulin, C-reactive protein, immune cell activity), doing so
during and/or after initial adjuvant treatment (i.e., radiotherapy
and/or chemotherapy) (5, 6). Although informative, such
studies have not led to any firm conclusions about the ability
of structured exercise training to modulate disease outcomes in
breast cancer patients (i.e., disease-free survival, cancer-specific
mortality, overall mortality). More recently, a “window of
opportunity” RCT examined the effect of pre-surgery exercise
training on specific tumor biology parameters in excised tumors
(e.g., cell proliferation, apoptosis) (7). Although informative
and quite novel in its collection of pre- and post-exercise
whole-genome gene expression (8), again, this study was unable
to provide any firm conclusions about the ability of structured
exercise training to alter the course of breast cancer disease.

Definitive conclusions about any treatment effect come from
the successful completion of large phase III RCTs (9). However,
as outlined by those working in exercise oncology, the path
that leads to successful design of such trials contains several
unique obstacles for those who wish to determine the effects of
a non-pharmacological treatment, such as exercise, on cancer
outcomes (10, 11). Among those obstacles lies the challenge of
determining how a given regimen of exercise from preclinical
studies, whichmay have been found to be efficacious at inhibiting
a given type of tumor, can be extrapolated to an equivalent
“dose” in humans to guide decisions around treatment regimen
in early phase I/II studies. In conventional drug development,
investigators may rely on several established approaches (derived
from pharmacokinetics) to estimate an efficacious dose for
humans from doses found to work in animals (12, 13). These
approaches aim to achieve a pharmacodynamic response in
humans that is similar to what was measured in prior supportive
animal studies by accounting for known interspecies differences
in the pharmacokinetics of the drug class (e.g., absorption,
distribution, metabolism, excretion) and applying appropriate
scaling factors related to differences in body size (12, 13).
In contrast, for a behavioral treatment like exercise, such
pharmacological approaches do not seem to readily apply.

Interspecies scaling factors utilized in conventional drug
development have their origin in a long history of studies that
have empirically determined allometric scaling equations for
translating several normal physiological parameters between
nonhuman animals and humans. Moreover, changes in
such physiological parameters likely associate with exercise’s
mechanism(s) of action on cancer inhibition in both animal
models and humans alike (14). Among the several physiological
parameters known to associate with exercise is resting heart
rate (HR), which varies allometrically with body mass (BM)
among land-dwelling mammals as HR = 212 • BM−0.22 beats
per min (BM in kg) (15). During restful periods, the operation
of HR in conjunction with other parameters—including cardiac
output and respiratory minute volume—results in approximately

the same percentage of oxygen being extracted from ventilated
air and delivered to the body regardless of the mammal’s size
(16). However, the dynamics surrounding oxygen consumption
change during exercise, and the overall result can be measured
by another physiological parameter—the maximal rate of whole-
organism oxygen consumption during a progressive exercise
test (VO2max).

TRANSLATING EXERCISE DOSE: FOCUS
ON THE RESPONSE

VO2max, the maximal rate of whole-organism oxygen
consumption (typically over 1min) during a progressive exercise
test, has become the standard measure of cardiorespiratory
fitness and a robust indicator of exposure to routine
aerobic/endurance activity (17). Investigators have long
utilized VO2max to investigate the effect of exercise training on
cardiorespiratory fitness and other risk factors for cardiovascular
disease (CVD) [e.g., (18)]. Not surprisingly, exercise oncologists
have also commonly used this measure (or the related VO2peak)
to determine the effects of structured exercise interventions in
numerous RCTs. A recent meta-analysis of 48 such RCTs (the
most prevalent being for breast cancer) found that VO2peak in
cancer patients was significantly increased by exercise therapy in
comparison to cancer patients in the control group (1), consistent
with many other studies of unaffected individuals (19).

Given that it serves as a robust indicator of exposure
to routine aerobic/endurance activity (19), pre–post changes
in measures of cardiorespiratory fitness like VO2max have
been thought of as the “pharmacokinetic equivalent” for
an exercise trial or as a manipulation check wherein the
exercise regimen is shown to have done its job (8). This
is prudent because it is becoming increasingly clear that
a given regimen of exercise does not induce the same
training effect across all subjects who equally complete the
same regimen (be they human or animal model) (20).
Individual variations in both baseline and acquired VO2max

following exercise exposure have a substantial genetic component
(21). However, this issue is not unique to VO2max, as
several other measures of training effect show heterogeneity
[e.g., running capacity, submaximal heart rate, submaximal
systolic blood pressure, fasting high-density lipoprotein (HDL)
cholesterol levels] (20, 22). Thus, given the supposition that
global physiological alteration from greater physical activity
contains the likely mediator(s) between exercise and cancer
inhibition, perhaps it is less important to attempt extrapolation
of the exercise regimen per se from preclinical studies
and more important to extrapolate the measure of global
physiological alteration.

Preclinical research in exercise oncology could better
inform clinical investigation if the former began to routinely
measure pre- and post-intervention exercise capacity. VO2max

is emphasized here because, as noted above, it is a gold
standard and has become well-integrated into clinical settings,
including oncology. Exercise physiologists and clinicians alike
note the power of VO2max to noninvasively and objectively
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determine the efficacy of aerobic, endurance-exercise training
programs in clinical settings (23, 24). If more preclinical
research in the exercise oncology realm did the same, then
such exercise data could be analyzed in relation to a plethora
of mechanistic tumor biology data that can be captured in
a well-controlled preclinical experiment. More pertinent to
the point at hand, the connections that are discovered with
VO2max could be more readily translated for consideration at
the clinical level, as VO2max cuts across all orders of the class
Mammalia (25).

As with the exercise-related physiological parameters
noted above, VO2max scales allometrically across mammals.
The most recent large-scale empirical determination utilized
phylogenetically informed statistics when analyzing a total of
77 species, including humans, and determined the relationship
to be VO2max = 0.303 • BM0.837 ml/min (excepting bat,
horse, and pronghorn, which have unusually high values)
(BM in g) (25). The VO2max of a 35-g adult mouse is
predicted to be, on average, about 5.94 ml/min, which falls
within the measured range for sedentary laboratory mice of
this size [e.g., (26)]. But because of the fractional exponent
for BM in this equation (i.e., as the species gets larger,
VO2max gets larger, though less than proportionately), the
VO2max of an average adult human (62 kg) is predicted
to be around 3,109 ml/min, which also falls within the
measured range for adult men and women in national reference
standards (17).

Differences between animals in pre-intervention exercise
capacity (i.e., baseline VO2max) or in the relative change at
post-intervention (i.e., within-subject % increase in VO2max)
could be used to test for association with tumor inhibition
and/or mechanistic variables in the tumor microenvironment.
For example, for one given cancer model with specific tumor
biology features, it may be found that a certain minimum
amount of exercise capacity, measured by VO2max (i.e., a
threshold), needs to be reached by the subject in order to
achieve a monolithic inhibitory effect. Conversely, a different
cancer model with a different tumor biology may show that the
relative increase in VO2max from baseline has tumor-inhibitory
effects in a dose-response manner, or, after a certain threshold
is achieved, the relative increase exerts greater amounts of
tumor inhibition in a dose-response manner. In either case,
the amount of VO2max found to serve as a threshold in the
efficacious preclinical study may be more translatable (and
relevant) than the animal exercise regimen that was used to
derive the VO2max. Suppose a given tumor model is found to
exhibit a threshold VO2max value that is 10% above the predicted
average value for the animals in the study, given their BM. Such
a finding may then suggest that future clinical investigations
consider a phase I/II trial where cancer survivors (with similar
residual tumor biology to that of the model) are exposed to a
structured exercise regimen in the intervention arm that aims
to increase (and maintain) a VO2max that is 10% above the
predicted average value for each person based on each person’s
specific BM.

VO2MAX: DIRECT EFFECTS ON TUMOR
BIOLOGY?

Exercise-induced changes in cardiorespiratory fitness may not
always correlate with other exercise-induced changes that might
have more direct bearing for the tumor biology of a given
model. Exercise oncologists, focusing on cancer treatment-
induced cardiovascular toxicity, have pointed to research that
finds slightly different exercise regimens can have essentially the
same augmenting effect on peak oxygen consumption but differ
in their salutary effects on plasma lipoproteins (27, 28). Similar
divergence across different regimens for VO2max and breast
cancer risk covariates (e.g., insulin, adipocytokines, inflammatory
proteins, etc.) (29) may also exist.

Notwithstanding possible dissociations with VO2max, it seems
appropriate to note that the primary constituent of VO2max, i.e.,
greater whole-body oxygen consumption, may in itself have direct
effects on breast tumor biology that become substantial in the
course of increasing and maintaining a relatively higher VO2max.
Tumors tend to be hypoxic microenvironments, and greater
tumor hypoxia is associated with poorer response to radiation
treatment, poorer response to chemotherapy, greater likelihood
of metastasis, and worse survival (30–32). However, in preclinical
models of breast cancer, voluntary wheel running has been found
to reduce tumor hypoxia (33, 34). Thus, it would appear that, in
the course of blood flow alteration and greater tissue oxygenation
for working muscles during physical exercise (35), there is a
collateral increase in oxygenation of mammary tissue and/or the
tumors that inhabit this area.

Preclinical evidence suggests that tumor vessel normalization
is a key mechanism by which exercise is able to reduce
hypoxia and greatly improve the antitumor effectiveness of
chemotherapy in breast cancer (33). Such evidence is consistent
with other research that finds tumor vessel normalization with
the drug bevacizumab can improve the direct antitumor effect
of chemotherapy in both early- and late-stage breast cancer
(36, 37). However, the effect of bevacizumab is short-lived as
drug resistance develops (38), whereas the effect of exercise may
endure (33), at least if the exercise regimen is maintained. We
emphasize, though, that there has been no direct comparison of
exercise vs. bevacizumab on tumor vessel normalization and the
effects of antitumor chemotherapy.

Other research suggests that normalizing the tumor
vasculature and increasing tissue oxygenation may improve
immunosurveillance and immunotherapy (39, 40). Given the
less than ideal response of breast cancer to checkpoint blockade
immunotherapy, which antagonizes negative feedback signaling
to antitumor immune cells, investigators have speculated
that greater benefit may be achieved by combining such
checkpoint blockade drugs with other treatments (41). To
this end, it is argued that the next generation of preclinical
exercise studies in cancer should evaluate the interaction
between exercise and novel immunotherapies (42). Breast
cancer has long been thought of as a non-immunogenic or
“immunologically cold” malignancy (43), which may be due,
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FIGURE 1 | Effects of greater routine physical activity on hypoxia in mammary tissue. (A) Mean ± SEM fold-change for hypoxia genes from tumors of breast cancer

patients randomized to exercise vs. control conditions in Ligibel et al. (7) on log2 scale. Reference hypoxia gene set from Buffa et al. (46). Distinct data points given for

each gene in plot. Heatmap of mean fold-changes for distinct hypoxia genes in exercise group vs. control group on log2 scale. P-value indicates significance of

difference between groups in mean change scores from transcriptome representation analysis (TRA). (B) Mean ± SEM and heatmap as in (A) but for breast cancer

patients with grade 3 tumors. (C) Mean ± SEM fold-change for same reference hypoxia gene set in mammary tissues of mice randomized to exercise vs. control in

NCBI GEO accession number GSE150620 on log2 scale. Heatmap of mean fold-changes for distinct hypoxia genes in exercise vs. control group on log2 scale. TRA

P-value indicates significance of difference between groups in mean expression scores of genes. (D) Representative image of activity paradigm for mice in (C).

in part, to the high propensity of myeloid cells in breast
tumors to exhibit an immunosuppressive role (44). However,
emerging evidence shows that such cells may become less
immunosuppressive in tissue environments that are less
hypoxic as a result of greater physical activity [reviewed in
(14, 45)].

We examined the effect of a structured exercise regimen for
breast cancer patients on tumor hypoxia by analyzing whole
transcriptome data from the innovative RCT by Ligibel et
al. (7) (NCBI GEO accession number GSE129508). Patients
randomized to the exercise condition completed two 60–
90-min trainer-supervised exercise sessions per week over a
median period of about 4 weeks and completed additional
aerobic exercise on their own between supervised sessions

with a pedometer to track activity amounts. Using a hypoxia
gene expression signature that was developed in part from
analysis of several breast cancer studies (46) (see Supplementary

Data File 1), transcriptome representation analysis (TRA) (47)
indicated that pre- to post-intervention change in hypoxia was
more reduced in tumors of exercising patients than in the
tumors of control patients, though the effect was marginal
(P = 0.06) (Figure 1A). Given the meta-analytic finding that
high tumor grade significantly correlates with tumor hypoxia
in breast cancer patients (32), we analyzed patients with
low-grade (1/2) and high-grade (3) tumors separately and
found that the effect of exercise on hypoxia was significantly
stronger for patients with high-grade tumor (P = 0.004)
(Figure 1B).
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We then determined whether this same hypoxia gene
expression signature would indicate less hypoxia in the
mammary tissues of mice after being randomized to voluntary
wheel running for 2 weeks prior to mammary cancer cell
engraftment (NCBI GEO accession number GSE150620).
Compared to sedentary control mice that also received
mammary cancer, wheel-running mice had less hypoxia
gene expression (P = 0.003) (Figures 1C,D). Together,
the results suggest that greater routine physical activity
can reduce hypoxia in breast tumors and surrounding
mammary tissue in both humans and mice. Although
VO2max was not measured in either of these studies, we
speculate that it would likely correlate with tissue hypoxia in an
inverse manner.

CONCLUSIONS

The evidence of a beneficial link between physical activity and
breast cancer has been around for a long time. Thus, it may
be somewhat surprising that a large phase III RCT for the
effect of structured exercise training on disease outcomes has
not been launched. By now, multiple observational studies have
found that the risk for breast cancer is significantly reduced
in persons who engage in greater amounts of physical activity
(48), and several more observational studies of breast cancer
survivors indicate that greater physical activity either before or
after diagnosis associates with reduced disease-specific mortality
(49, 50). Likewise, meta-analysis of preclinical exercise studies
in rodent models of breast cancer (i.e., mice and rats) finds
an overall inhibitory effect in this cancer type (51), even
though not all preclinical exercise studies in rodents have shown
efficacy across all tumor types examined thus far [see review
by (42)]. Thus, it is important to note that exercise may not
be as beneficial for other cancer types. Nevertheless, given
the enormity of the epidemiological findings for breast cancer,
the World Health Organization’s IARC (International Agency
for Research on Cancer) has assigned its strongest evidence
designation to physical activity as a preventative factor in breast
cancer (52).

However, as noted at the beginning of this Perspective article,
we face several challenges to determining the effects of a non-
pharmacological treatment like exercise on cancer outcomes
in the clinical setting. We have focused specifically on one—
the challenge of extrapolating the overall exercise dose from
efficacious preclinical studies to help inform clinical treatment
regimens. Currently, the basic exercise dose that is recommended
for cancer survivors largely follows general physical activity
guidelines for adults with chronic conditions, which aims for
at least 150min per week of aerobic activity, with two or
more days per week of resistance training (53). Although
VO2max may be an imperfect indicator of exercise exposure
(given the heterogeneity of all physiological training effects
noted above, with likely genetic contributions), we contend
that its reliability, validity, and translatability make its use a
highly worthy endeavor. We also think that greater use of
an objective measure of exercise exposure at the preclinical

level will facilitate identification of the essential biology that
is at work in the effect between physical activity and cancer
inhibition (for those cancer types that are responsive to exercise).
Exercise oncologists presciently understand that this is another
challenge facing successful clinical trial development for the
effect of structured exercise training on cancer outcomes. Most
large definitive trials of “nonregulated” therapies for cancer (i.e.,
non-pharmaceutical) have failed to show any benefit, which
may likely be due to a lack of prior studies (preclinical or
otherwise) successfully identifying doses and scheduling that
effectively altered the relevant underlying biology (11). Thus,
investigators in exercise oncology do not want to go down that
same fruitless path.

To conduct a rational, optimal trial design for a given
tumor type, clinical investigators will benefit from knowing
what downstream biological endpoint(s) to aim for with a
structured exercise regimen. They will also benefit from knowing
how much downstream biological endpoint is needed to induce
inhibition of the given tumor type and, then, how much
exercise is needed to bring about an efficacious amount of
the downstream biological endpoint. Preclinical researchers can
make great contributions to this venture by measuring the effect
of exercise on tumor biology in their cancer models. They
can make greater contributions by also measuring the dose of
exercise in their cancer models in a way that is reliable, valid,
and translatable.
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