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ABSTRACT 

Deformation potentials are calculated for electron-hole 

droplets in Ge and compared to the values for degenerate n-

or p-doped Ge. Due to the conduction band anisotropy and 

the presence of an equal number of electrons and holes, it 

is found that screening effects are substantially reduced, 

but that there are strong anisotropies in coupling to 

various phonon modes • 
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Deformationspotentiale fUr Elektron-Loch Tropfen in 

Germanium wurden errechnet und mit den Werten fur 

degeneriertes n-und p-Ge vergleichen. Wir finden, dass 

wegen der Leitungsbandanisotropie und der Anwesenheit einer 

gleichen Zahl in Elektronen und Lochen die Abschirmeffekte 

stark abgeschwacht werden, dass aber starke Anisotropien in 

der Kopplung zu den verschiedenen Phononzweigen bestehen. 
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There has been much recent interest in 'the interaction between 

electron-hole droplets (EHD) [1] and lattice vibrations in Ge. Both the 

interactions with acoustic phonons [2,3] and with ultrasonic waves 

[4,5,6] have been studied. Furthermore, it has recently been shown 

that an intense stream of phonons can move EHD over macroscopic dis-

tances !7,8]. It is thought that such a "phonon wind" may be 

responsible for producing the cloud of EHD observed in unstressed 

Ge [7,9]. 

Keldysh [10] has calculated the electron-phonon deformation 

potential scattering rate, treating the drop as a metal, but ignoring 

any effect of the carriers on the deformation potentials. However, a 

simple estimate using a single isotropic carrier type would suggest that 

the deformation potential should be screened, reducing the electron-

phonon collision rate by orders of magnitude. 

This paper presents a calculation of the screened deformation 

potential inside an EHD, incorporating the band structure of Ce. It is 

found that, due to the multivalley structure of the conduction band, and 

the presence of both holes and electrons, only a fraction of the deforma-

tion potential is screened. For the holes, the deformation potential is 

actually significantly enhanced. In addition, new effects arise because 

the drop is a liquid. These effects include a bunching of charge at 

twice the frequency of the sound wave, although it is likely that such 

effects could only be observed in larger drops than can presently be 

formed. 

The present calculation describes the correct deformation potentials 

inside an EHD. From these potentials, it is straightforward to calculate 
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the average electron-phonon collision rate for a particular phonon 

mode [10], and from this to estimate the net acoustic phonon scattering 

time [11] for the drop. 

For a simple metal (single carrier type with isotropic mass) the 

treatment of screening effects is standard [12,13], and is here briefly 

summarized for completeness. A phonon, with sinusoidally varying stress 
-+-+ 

# # iq•r 
field E = E

0
e , locally alters the energy of an electron in the state 

-+ 
k by an amount 

ct::. (1) 

# 

where /::,. = Trace (E) is the local lattice dilation, and C is a deforma-

-+ 
tion potential, which can be considered independent of wave number k. 

If the electrons were frozen in place, this strain would produce a local 

change in the electronic Fermi level by an amount 

(2) 

where n is the electronic density and DF is the density of states at the 

Fermi energy. The first term is an average of Eq. (1) over the Fermi 

surface, while the second is due to the change in density of the posi-

tive ions. The electrons flow to regions of lower Fermi level, creating 

a negative electrical potential which repels other electrons, and 

equalizes the Fermi level throughout the drop. An electronic density 
-+-+ 

iq•r 
variation on e produces a 

q 

equation 

-+ -+ 
iq•r potential U e , 

___9. 
e 

where, by Poisson's 
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(£ is the dielectric constant of bulk Ge). 
0 

Thus the total variation of Fermi level in the crystal is 

LBL-6212 

(3) 

(4) 

the second term being the direct change in Fermi level due to the charge 

bunching, and the last term due ~o the induced potential. Eq. (4) must 

be constant throughout the metal [14], and if the wave is many cycles 

in length, the constant value will average to zero. Thus 

u 
q 

-oE 
F 

1 2/ 2 +q KFT 
(5) 

where KFT=I4TIDFe2 /£
0 

isthe Fermi-Thomas screening wave number. Now the 

total energy change seen by a single electron is 

oE;. 
k net 

(6a) 

In calculating the electron-phonon scattering rate, the net deformation 

potential, Eq. (6), must be substituted into the electron-phonon matrix 

element. In a metal, q << KFT' and the lattice deformation potential is 

completely screened, and replaced by + ~ = + ; EF for a spherical band. 
DF 
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For an electron-hole drop in Ge, we have q ~2~ - 2 X 10 6cm-1 , KFT = 

4 X 10 6 cm- 1 , and EF = 2.4 meV (electrons). Thus the scattering rate, 

proportional to the square of the matrix element, is reduced by a factor 

of (KFT/q)~ = 16 for even the most energetic phonons. Since C- 5 eV 

(see below), the term; EF is negligible [15]. 

The complicated band structure of Ge, and the fact that there are 

equal numbers of electrons and holes inside the EHD, both combine to 

reduce the importance of screening effects. The electrons in an EHD are 

distributed among four equivalent conduction band minima located at the 

edge of the Brillouin zone along ( 111 ) -directions (the L-points). For 

any particular valley (labelled i), the deformation potential is not 

merely a scalar multiple of the dilation, but is represented by: 

(7) 

where ~d and ~u are the deformation potentials introduced by Herring and 

Vogt [11] (Table 1) d A i • • • 1 h .th an a. s a un1t vector po1nt1ng a ong t e 1 
1 

( 111 ) -conduction valley. At any point in space, the Fermi energy will 

change by the average of Eq. (7) over all four Fermi surfaces. Thus 

(8) 

In repeating the analysis leading to Eq. (6), it is clear that only the 

dilational part (~ E
1

) of the deformation potential is screened, while 

shear deformations are not. Thus transverse phonons (for which the 

lattice dilation vanishes) are not screened [16]. Table 2 lists the 
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unscreened deformation potentials in Ge (col. 1); for comparison, 

column 2 gives the screened values which would occur in a heavily doped 

n-type Ge sample (electrons degenerate). 

A similar situation holds in the valence band, which has a two-fold 

degenerate maximum (ignoring spin) at the center of the Brillouin zone 

(f-point). Because of the degeneracy, the deformation energy explicitly 

+ 
depends on k: 

(9) 

where ± refer to the two degenerate bands, A, B, and C are the inverse 

mass parameters [17], a, b, and d the deformation potentials introduced 

by Picus.and Bir [18] (Table 1), and c.p. means cyclic permutation of 

the indices x, y, and z (which refer to crystalline ( 100 ) -directions). 

For small strains, the average deformation energy due to the b- and d-

terms vanishes for each band. Thus: 

h 
oEF± = a~ (10) 

and again, only dilational deformations are screened. Table 3 lists the 

unscreened and screened hole deformation potentials in a sample of 
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metallic p-doped Ge. An average hole deformation potential is defined 

in Table 3 as the root mean square average over all possible directions 

of hole momentum. (The number actually calculated is an approximation 

to this, averaged only over the principal symmetry directions - < 100 ) , 

( 110 ) , and ( 111 ) • ) 

Inside an EHD, we must consider the simultaneous presence of both 

. electrons arid holes--in particular, there can be simultaneous bunching 

of both carriers with no net charge buildup, and screening will be 

reduced even more. However, since an EHD is a liquid, with strong cor-

relations between particles, a density fluctuation will set up a 

pressure gradient which tends to keep the density uniform. 

In an EHD the chemical potential, ~ = ~e + ~h' must be constant 

throughout the drop. The chemical potential may be Written as 

n~ = G = nE + p 

E = E + .!_ E" (n-n ) 2 
0 2 0 0 

n2 dE n2E" (n-n ) p = an = 0 0 

(11) 

(12) 

(13) 

where E is the energy, G the Gibbs free energy per unit volume, and p 

the pressure inside the drop, and n and E are the equilibrium values 
0 0 

of the pair density and energy. The total change in chemical potential 

under uniaxial stress is 

' 
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OJl = (E + a) 11 
1 . 

+ 
A spatial variation in O]l, caused by a phonon of wave-vector q, 

will cause the electrons and holes to bunch up. This bunching will 

further modify the chemical potential due to compressional effects: 

OJl = .QE. = l n E" (one+onh) 
p n 2 o o 

and to electrostatic effects: 

In order to split o]l into separate electron and hole terms, we 
p 

follow the ansatz of Rice [19], and divide the part of O]l due to 
p 

exchange and correlation equally between electrons and holes. Thus 

(14) 

(15) 

(16) 

o]lp = ~ n0E~ 2 ) (one+o~) + one/D; + onh/D~, where E~ 2 ) can be calculated 

from the theoretical value of E" by setting on 6 o e nh. 

The net electron and hole chemical potentials must both be spati-

ally constant inside the drop, so that 

E 11 +! n E( 2 )(6n +6~) 41re 2 

(one-onh) 
one . 

0 +-- + -- = 
1 o o e qzeo De 

F 

(17) 

a/1 + ~ n E( 2 )(6n +onh) 47Te 2 

(6ne-6nh) 
6nh 

0 --- +-- = · o o e qze Dh 
0 F 

(18) 

., ... 
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These equations may easily be solved in general, but simplify in 

the limit of perfect screening (q 2 ~ o, u finite; thus one= onh): 

on 
e --= 

n 
0 

2 
These results use the relation n/DF = 3 EF and the definition 

Ec :: Z n~E~ 2 ). For unstrained Ge, E; = 2.4 meV, E~ = 3. 7 meV, 

(19) 

(20) 

E = -2.3 meV [20], so that, using Table 1, on 
c e 

9500 n ~. U = 5.3~ eV. 
0 

Since the change in compressional energy is quadratic in on, then 

to first order, the net energy change experienced by a carrier will, as 

in a metal, be given by: 

oE(e) (21) 

oE(h) (22) 

In Tables 2 and 3, the resulting screened deformation potentials for 

electrons and holes in EHD (col. 3) are compared to the unscreened 

values (col. 1) and to the screened values in highly doped Ge (col. 2). 

When both electrons and holes are present, both cannot be screened 

simultaneously. In unstrained Ge it is primarily the electrons which 

are screened (compare cols. 2 and 3). Under a ( 111) -stress, electrons 
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and holes are about equally screened (see col. 5 and the discussion 

below). 

Several additional comments should be made in regard to the above 

calculation. First, the calculation explicitly assumes that there are 

many phonon wavelengths inside the drop. If the wavelength is large 

compared to the drop, then the chemical potential will be essentially 

constant throughout the drop, and there will be no charge bunching or 

induced electric fields. In Eqs. (17)-(18), o~ should be replaced by 

o~ ~ o~, where 6~ is the average value of o~ inside the drop. As qa ~ 0 

(where a is the drop radius), o~ ~ 6~, and there are no screening 

effects. In unstressed Ge the drops are smal~ a - 1-10 ~m, so that the 

drop diameter is less than the sound wavelength for w ~ 2TIC /a ~ 
s 

1.5 x l010 sec- 1 (if a= 2 ~m, and C = 5 x 10 5cm/sec). This frequency 
s 

is within the range presently studied by ultrasonic attenuation [4]. It 

is an order of magnitude lower than typical thermal phonon frequencies 

kBT/h at 2K, and ~o these screening effects should be taken into account 

in calculating the lattice scattering rate. In inhomogeneously stressed 

Ge it is possible to make drops much larger [21], up to a- 400~, so 

that screening effects could be observed for ultrasonic frequencies as 

low as 20 MHz. However, in this case the deformation potentials will 

have different values, as discussed below. 

There is an additional contribution to the deformation energy of an 

EHD which has so far been overlooked. The binding energy of the EHD is 

enhanced by the multivalley structure of the conduction band and the 

degeneracy of the valence band, which allow extra electrons and holes to 

be accomodated in low kinetic energy states without violating the 
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Pauli principle. A strain which splits the valley degeneracy will 

therefore decrease the drop binding energy, adding an extra component 

to the (homogeneous) deformation energy. This effect is quite large for 

a static deformation: for small uniaxial stresses, the EHD energy does 

not shift parallel to the bulk Ge band edges !22]. These carrier re-

populations could have quite unusual effects in a sound wave. For 

example, a compression along a crystalline ( 110 ) -direction will raise 

two bands in energy with respect to the other two, while a tension would 

lower these same bands. Thus for a longitudinal ( 110 ) -phonon, either 

a rarefaction or compression would tend to lower the drop binding energy, 

so that ~ would change at twice the frequency of the phonon. Further-

more, transverse waves could also induce a spatially varying ~. However, 

at low temperatures, the electron intervalley scattering rate is so low 

that repopulation effects should be observable only in very low 

frequency waves. But for these waves, the wavelength will be large 

compared to the EHD radius, and consequently no screening should be 

observed (see the Appendix). 

There will be similar changes due to interband transfer between the 

two degenerate hole bands. In this case the interband transitions 

should be rapid enough to affect the deformation energy. While it is 

clear [22] that the strain-induced splitting of the holes has a large 

effect on the EHD binding energy, it is not clear how this energy change 

varies with stress in different directions. The simplest assumption is 

that the energy lowering is proportional to the splitting of the two 

hole band edges !23]: +2E a with a 
EE: V V 

= 1.24 !21]. The cor-

rected deformation potentials (Tables 2 and 3, col. 4) can now be 
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calculated by adding ~~ib to a~ in Eq. (19). Note that now the trans-

verse deformation potentials are also screened. 

It should further be pointed out that the Fermi-Thomas screening 

length is modified inside an EHD. Thus for finite q, Eq. (19) should be 

replaced byU = U0 /(l+q
2 /K~~), where U

0 
is given by Eq. (19), and 

(23) 

Finally, the presence of a large (static) uniaxial stress will 

further modify the above results. For example, a compressional stress 

along a ( 111 ) -axis IT I > 3 kg/mm2 will lower the corresponding con-

duction band valley enough to completely depopulate the other three 

valleys. In this case the averaging over the four bands which led to 

e Eq. (8) will clearly not occur, and oEF will be given by the full 

Eq. (7). The resulting deformation energies in this case are again 

listed in Tables 2 and 3 (col. 5) [24]. 

The above results should be susceptible to experimental verifica-

tion. For example, a longitudinal ultrasonic wave propagated along a 

( 100 )-axis would be perfectly screened (and hence suffer little 

attenuation) in either n-doped or p-doped metallic Ge. But inside an 

EHD, with equal numbers of mobile electrons and holes, the wave is 

attenuated as strongly in this as in any other direction [4], in accord 

with the results of Tables 2 and 3. Also, the large difference between 

the screened (cols. 3 or 4 of Tables 2, 3) and unscreened (col. 1) 

deformation potential scattering can be studied by varying the .. ,. 
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frequency of the ultrasonic wave. If the sound wavelength is large 

compared to the drop radius~ the deformation potential will be 

unscreened whereas the screened potential should be used in the 

opposite limit (qa + 00), Recent experiments [8] using heat pulses to 

study the phonon wind effect show great promise of actually measuring 

the deformation potentials for the various phonon propagation modes. 
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Appendix: Intervalley Electron Scattering 

At low temperatures, the electron intervalley scattering rate is 

dominated by electron-electron collisions involving carriers in bands 

with opposite momenta l25]. In Ref. [25], it is shown that if the 

( lll ) -valley is raised in energy with respect to another valley by an 

energy ~E >> EF' then the population n - will decrease according to 
111 

= -4Tin -n-- N(~E)I 2 

lll lll 

[n -(t)] 2 

111 

Tn -(o) 
111 

where I is a matrix element, N(~E) oc (~E) 1 / 2 is the density of final 

states, and T is estimated to be 2.5 x 10-9sec,· for ~E = 20 meV. 

For a small strain splitting ~E << ~' the excess population 

on .;..(~E) will relax according to 
ll1 

8on -(LlE) 
---;~t1~1~-- = -4non -(~E)on-- (~E+kT)N(EF)I 2 

0 111 111 

where we have assumed LlE 

6.8 X 10-8 sec at T = 2K. 

<< kT, 

For a 

on _(~E) 
111 

and estimate 

longitudinal 

T 
I 4.7 X 10- 9 _! T = sec = T 

wave (C = 5 X 10 5cm/sec) 
s 

of frequency w = 1/T' , the wavelength A = 2.1 mm, which is larger than 

the largest EHD observed. 
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Table 1. Deformation potentials in bulk Ge. 

M = -12.3 eVa 
~d 

M = +19.3 eVa 
u 

\ 

a = (-3 eV)b,c 

b -2.1 eVb 

d = -4.6 eVb 

a. K. Murase, K. Enjouji, and E. Otsuka, J. Phys. Soc. Japan~' 1248 

(1970). . 

b. H. Fujiyasu, K. Murase, and E. Otsuka, J. Phys. Soc. Japan 29, 685 

(1970). 

c. The value of a is not well known. See the discussion in Ref. b, 

especially Tables 5-l and 5-2. 
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Table 2. Screened deformation potentials for electrons in EHD in Ge. 

Column (1) lists the unscreened deformation potentials for various 

polarizations and propagation directions of lattice vibration. Column 

(2) shows the perfectly screened (q + 0) deformation potentials in a 

metallic n-doped Ge sample (i.e.: same electron density as in an EHD, 

but no holes). Columns (3) and (4) show the perfectly screened deforma­

tion potentials inside an unstressed EHD: column (3) represents Eq. (21); 

column (4) includes the correction for hole interband scattering. 

Column (5) corresponds to column (3), but in the presence of a suffi­

ciently large ( 111 ) stress that all electrons are in a single conduction 

band. Note that electrons in different valleys may experience different 

deformation potentials for a given phonon. The valleys are labelled: 

1 = ( 111 ) ' 2 = ( lll ) ' 3 = ( lll ) ' 4 = ( lll ) • 



.. 

Longitudinal Waves 
< . 

deformation potential = ~/!1 

propagation non-zero (1) (2) (3) (4) (5) electron 
direction strains one electron n-doped unstrained EHD strained EHD valleys 

( 100 ) £ = /1 E = -5.9 eV 0 -0.6 -1.0 -4.4 
XX 1 

( 110 ) e: =e: =e: =M2 E. + l ~ = I +0.5 6.4 +5.8 +5.4 -1.3 1,2 
XX YY xy 1 - 3 -u -12.3 -6.4 -7.0 -7.4 -7.6 3,4 r +1 = = +6.9 . 12.8 +12.2 +11.7 1.9 1 

1 3 u 
( 111 >" e: .. = M3 

2 -l.J 
El - 9 =u = -10.1 -4.3 -4.8 -5.3 -6.5 2-4 

Transverse Waves I 
N ...... 
I 

propagation electron 
direction po].ari~ation strains (1) - (3) (4) (5) valleys 

( 100 ) ( 010 ) £ = /1 + l ~ = ±12.8 12.0 ±6.4 1,2 
xy - 3 -u 

-13.6 3,4 

( 110 ) < llO > £ = -e: = /1 0 -0.6 0 
XX yy 

( 001 ) e: =e: = 11/2 0 -0.6 0 3,4 xz yz 
+ l ~ = ±12.8 12.2 ±6.4 1 - 3 -u 

-13.4 2 

( 111 ) < llO > £ = -e: 0 -0.8 0 1,2 1:"" 
xx· yy 0;1 

+I~ 
1:"" 

= 2£ =·-2e: = /1 = ±12.8 12.0 ±6.4 3 
I 
(j\ 

xz yz - 3 -u 
-13.6 4 

N ...... 
N 
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Table 3. Screened deformation potentials for holes in EHD in Ge. 

The columns have the same interpretation as in Table 2. Because 

the deformation potential is a root-mean-square average over directions 

~ 

in k-space, the signs are all taken as positive. Note that when only 

one electron ellipsoid is occupied (column 5), the hole deformation 

potential depends on the relative orientation of the sound propagation 

direction and the major axis of the occupied ellipsoid. 

\ 



Longitudinal Waves 

deformation potential = o~/~ 

0 
propagation (1) (2) (3) (4) (5) electron 
direction one electron p-doped. unstrained EHD strained EHD valleys c 

(100 ) 3.2 1.2 8.4 8.7 4.6 

( 110 ) 3.8 2.4 8.6 9.0 2.6 
c 

1,2 
7.9 3,4 ~~' 

( 111 ) 3.9 2.6 8.7 9.1 3.2 1 '-1 
7.0 2-4 -

I C' 
N 

Transverse Waves 
w 
I U'~ 

propagation electron 
.. _ 

direction polarization (1)-(3) (4) (5) valleys Vl 

( 100 ) < 010 ) 4.4 4.5 7.8 

( 110 ) < fio > 3.2 3.3 3.2 

( 001 ) 3.1 3.2 3.1 3,4 
7.1 1,2 

( 111 ) ( llO ) 4.5 4.6 4.5 1,2 
7.8 3,4 

1:'"' 
td 
1:'"' 
I 

0"\ 
N ...... 
N. 
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