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Abstract Behavioral observations using a remotely oper-
ated vehicle (ROV) in the Gulf of California in March,
2003, provided insights into the vertical distribution,
feeding and anatomy of the rare and delicate ctenophore
Thalassocalyce inconstans. Additional archived ROV
video records from the Monterey Bay Aquarium Research
Institute of 288 sightings of 7. inconstans and 2,437 indi-
vidual observations of euphausiids in the Gulf of California
and Monterey Canyon between 1989 and 2005 were exam-
ined to determine ctenophore and euphausiid prey depth
distributions with respect to temperature and dissolved oxy-
gen concentration [dO]. In the Gulf of California most cte-
nophores (96.9%) were above 350 m, the top of the oxygen
minimum layer. In Monterey Canyon the ctenophores were
more widely distributed throughout the water column,
including the hypoxic zone, to depths as great as 3,500 m.
Computer-aided behavioral analysis of two video records
of the capture of euphausiids by 7. inconstans showed that
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the ctenophore contracted its bell almost instantly (0.5 s),
transforming its flattened, hemispherical resting shape into
a closed bi-lobed globe in which seawater and prey were
engulfed. Euphausiids entrapped within the globe displayed
a previously undescribed escape response for krill (‘prob-
ing behavior’), in which they hovered and gently probed
the inner surfaces of the globe with antennae without stimu-
lating further contraction by the ctenophore. Such rapid bell
contraction could be effected only by a peripheral sphincter
muscle even though the presence of circumferential ring
musculature was unknown for the Phylum Ctenophora.
Thereafter, several live T. inconstans were collected by
hand off Barbados and microscopic observations confirmed
that assumption.

Introduction

Ctenophores are exceptionally fragile, easily fragmented by
nets and trawls, but knowledge of the phylum has increased
greatly due to individual collection of undamaged speci-
mens in containers by scuba divers, submersibles and
remotely operated vehicles (ROVs) (Swanberg 1974; Ham-
ner 1975; Hamner et al. 1975; Harbison et al. 1978; Madin
1990; Robison 1999; Youngbluth and Bamstedt 2001;
Gasca and Haddock 2004). Further, submersibles and
ROVs collect and record video below scuba diving depths,
essential for behavioral research on midwater and deep-sea
animals (Hamner 1985).

Thalassocalyce inconstans is a particularly delicate
ctenophore, with thin, flaccid tissues; it is the sole member
of the order Thalassocalycida (Madin and Harbison 1978).
No new information on this ctenophore has been published
since the original description, although it had been assumed
to be a cosmopolitan midwater species. The Monterey Bay
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Aquarium Research Institute (MBARI) has been using
ROVs since 1988 for midwater research to depths of
4,000 m (Robison et al. 2003, 2005b), and its library of
archived observations can be searched for relevant informa-
tion. New observations from scuba divers, the MBARI
ROVs, and from archived information from ROV records
have provided us with new insights about the behavior and
anatomy of 7. inconstans.

Comprehensive data sets and annotated video footage
are invaluable for investigations of rare and delicate
species like 7. inconstans (Madin and Harbison 1978).
T. inconstans has no tentacles hanging outside the bell,
nor does it have muscular, thickened lobes with which to
capture food (Fig. 1). It was first described as having a
hemispherical medusoid shape when fully expanded but
a bi-radial shape when partially contracted into a “two-
globe form” (Fig. 1b) (Madin and Harbison 1978). It
apparently feeds by relatively slow contraction of its
medusa-like “bell,” catching small crustaceans on the
mucus-covered inner surface of the thin and flaccid bell,
which, despite substantial differences in morphology,
“functions analogously to the oral lobes” in many lobate

Fig. 1 a Thalassocalyce
inconstans in the open “bell”
form; b “two globe” form; ¢ oral
view in the “two globe” form.

c canals, cr ctene rows, e edge of
bell, g gut, m mouth, s statocyst,
r ring muscle
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ctenophore species (Harbison et al. 1978; Madin and
Harbison 1978).

This paper is in three parts: (1) analysis of 288 behav-
ioral and distributional records of T. inconstans from the
MBARI archives, (2) analysis of a long video sequence
recorded from an ROV in the Gulf of California showing
T. inconstans feeding and the escape behavior of a trapped
euphausiid, as well as a shorter, similar video sequence
from Monterey Canyon, both analyzed via a behavioral
analysis program and (3) reexamination of the morphology
of live, hand-collected specimens of 7. inconstans.

Methods

We queried the MBARI archives through the MBARI soft-
ware “VARS” for midwater dives with “Thalassocalycida”
or any lower taxonomic nomenclature, and the same for
“Euphausiacea.” Data were constrained to midwater dives
in which the two midwater biologists at MBARI were chief
scientists, in order to avoid misidentification. The query
returned 725 entries for 7. inconstans from 1989 to 2005,
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from several locations, although only individuals from the
Gulf of California and Monterey Canyon are included
herein. Multiple entries for one individual were eliminated,
as were sightings that did not have associated hydrographic
data. After culling the data, we had video records of 288
individual T. inconstans: 64 from the Gulf of California
and 224 from Monterey Canyon, as well as 2,437 euphau-
siid records: 25 from the Gulf of California and 2,412 from
Monterey Canyon. Observational data were corrected for
the amount of time spent at each depth bin of 50 m. CTD
data for every midwater dive from 1989 to 2005 were con-
verted into time-at-depth based on the frequency of CTD
recording, giving an expected distribution if 7. inconstans
or euphausiid distribution was uniform within depth bins.
Times at depth were converted into expected distributions
for each location and species, and a Chi-Squared test with a
Yates continuity correction was performed. Observational
data were divided by time to create an encounter rate, or
number of observations per minute. The data violated tests
of normality, even using the usual transformations, so non-
parametric statistical tests were employed. The weighted-
mean depth for each species and location was calculated
and a Spearman Rank test with a correction for tied ranks
was used to correlate the ctenophore and euphausiid distri-
butions in each location.

Most sightings were brief as the ROV drove by, but some
lasted for several minutes. From these observations we used
two video sequences for analysis of T. inconstans feeding
behavior. The video sequence for our primary behavioral
analysis was obtained from a broadcast quality, color video
camera on the ROV Tiburon, deployed off the R/V Western
Flyer in the Gulf of California in late March, 2003 (Robison
1992, 1999). T. inconstans was taped without disturbance at
250 m for about an hour. A second, 25 s video sequence of
T. inconstans was recorded at 250 m depth over the Monte-
rey Canyon on 29 March 2003. The behaviors observed in
these clips prompted us to re-investigate the muscular con-
trol of the bell. We subsequently examined several live
specimens captured by hand while blue-water diving east of
Barbados in April, 2006. We videotaped bell contraction in
the laboratory aboard ship in high-definition, either in small
aquarium tanks or in a glass dish over a dark-field light
table. Photomicrographs of the edge of the bell and circular
muscle band were made with a Wild stereomicroscope
equipped with a Nikon digital camera.

The Noldus Observer behavioral analysis program (Nol-
dus Information Technology, http://www.noldus.com) was
used to code the behavior and interactions of the euphausiid
and the ctenophore, and to obtain temporal sequence statis-
tics. Descriptors were either coded as Events, which were
transient and lasted for only one frame (1/30s), or as
States, which lasted for an extended, identifiable duration
of time. Euphausiid behavior during the five minutes prior

to the start of ingestion was encoded using descriptors:
“null” (State—hovers at a sixty degree angle and stays in
one place, swimming neither forward or backward),
“swim” (State—swims horizontally either forward or back-
ward), “probe” (Event—slight contact with intra-globe wall
by euphausiid antennae), “tail-flip” (Event—Ilobstering
away), “contact” (Event—any euphausiid body contact
with ctenophore tissue lasting one frame in duration) and
“darting” (State—erratic swimming often punctuated by
repeated tail flips or contact with ctenophore tissues). Lag
sequential analysis was used to determine the statistical sig-
nificance of various euphausiid behaviors.

Results

We plotted archived data for T. inconstans to assess depth
distributions in Monterey Canyon and the Gulf of Califor-
nia. In Monterey Canyon, T. inconstans was found as deep
as 3,512 m, although most individuals occurred above
500 m, with the 25th and 75th percentiles being 222 and
371.3 m, respectively (Fig. 2a). In the Gulf of California,
however, this ctenophore was only twice found deeper than
220 m (25th=219.75m, 75th =276 m) (Fig.2b). The
weighted-mean depth in Monterey Canyon was 443 m,
which was deeper than in the Gulf of California at 238 m,
even though both locations had the highest encounter rates
between 200 and 300 m.

In the Gulf of California 65.6% of the individuals found
were above or in the oxygen minimum layer (OML), in
water with 0.1 m1 17! [dO] or less and many were found in
completely anoxic water (Fig. 2b). Although the oxygen
minimum off Monterey rarely reaches anoxia, 28.9% of the
specimens were in water with <1 ml 17! [dO], with the low-
est being 0.17 ml 17",

In Monterey Canyon various species of krill occurred
down to 2,300 m (Fig. 2a); distribution of krill in the Gulf
of California, however, was quite different, with a fairly
sharp cut off at 400 m and with 96% of individuals found in
waters with oxygen levels <0.5 ml 17!, right above the oxy-
gen minimum layer (Fig. 2b). The weighted-mean depths
for euphausiids in Monterey Canyon and the Gulf of Cali-
fornia were very similar, at 272 and 274 m, respectively
(without outliers in the Gulf of California, the weighted-
mean depth was 232 m).

The Chi-Squared test showed that both species in both
locations had distributions that were highly different from
the expected distributions (P < 0.001 for all). Additionally,
the Spearman Rank test showed that the distribution of
T. inconstans and euphausiids were highly correlated in
both Monterey Canyon and the Gulf of California
(P <0.0001). The distribution of euphausiids was also cor-
related with the oxygen profile in the Gulf of California
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Fig. 2 Depth distribution of Thalassocalyce inconstans encounter rate
(right side in dark grey) and euphausiids (left side in light grey) for a
Monterey Canyon and b the Gulf of California. All depth distributions
were significantly different from an expected uniform distribution

(P =0.0224) and Monterey Canyon (P < 0.0001), as well
as with the temperature profile, with warm water yielding
higher numbers of euphausiids (P < 0.0001, both locations)
(Fig. 3). The occurrence of T. inconstans was not signifi-
cantly correlated with oxygen in either location. A subset of
these data, using dives in which T. inconstans and eup-
hausiids were seen, showed that the weighted-mean depths
were exceedingly close to the full dataset.

The 25 s video feeding sequence from Monterey Canyon
showed T. inconstans fully extended into an almost per-
fectly flattened plate (Fig. la). Then suddenly (after an
unidentified stimulus), the ctenophore rapidly contracted its
bell, enclosing and entrapping a substantial volume of sea-
water, forming two globes (Fig. 1b, c¢). The two globes
were pressed tightly together, sealing in the entrapped
water and prey. Complete contraction of the bell occurred
in slightly <0.5 s. This behavior was not only unusual but
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Fig. 3 Average temperature (solid) and oxygen (dashed) profiles for
Monterey Canyon (black) and the Gulf of California (grey). Shading
indicates 100 m with the most Thalassocalyce inconstans (grey) and
euphausiids (dotted) and is the same for both locations

envelopment appeared to occur far too rapidly for normal
ctenophore muscles, and we predicted that they probably
had a peripheral ring muscle that mediated this behavior.

The observations made in April 2006 at sea off Bermuda
with ctenophores in the lab aboard ship showed similar
results. T. inconstans in the expanded hemispherical form
responded to very mild stimulus from a fine needle on the
inner surface of the lobe by rapidly contracting in 0.8 s into
the 2-globe form, and tightly closing off the bell opening.
Microscope observations confirmed the presence of a
peripheral ring muscle.

The specimen of T. inconstans we recorded in the Gulf
of California was first seen after it had already entrapped a
euphausiid within its bell, but had not yet captured it in the
mouth. The captured euphausiid (probably Euphausia dio-
media) hovered upright at a 60° angle inside the globe, in
contrast to the free-swimming, active euphausiids visible in
the background, but the euphausiid then swam to the inside
surface of the globe and lightly touched the intra-globe wall
with its antenna. This behavior was repeated again and



Mar Biol (2009) 156:1049-1056

1053

Table 1 Observations on number, rate, and duration of behavioral States and Events in a euphausiid trapped by 7. inconstans (Gulf of California

video sequence)

Euphausiid T. inconstans
Swim Null Darting Tail-flip Contact Probe Null Contracts
Total number 8 5 6 4 39 6 6
Rate (#/min) 1.4 0.9 1.1 22 0.7 7.0 1.1 1.1
Total duration (s) 240.5 81.5 12.0 - - 309.0 25.0
Total duration (%) 72.0 24.4 3.6 - - 92.5 7.5
Mean duration (s) 30.1 16.3 2.0 - - 51.5 11.8
Euphausiid
Swim 0-0 0-0 0-0 0-15 0-0 0-54 - -
Null 0-50 0-0 0-0 0-0 0-0 0-17 - -
Darting 33-36 0-18 0-0 17-18 17-9 0-18 - -
Tail-flip 17-24 8-14 0-10 0-14 8-5 0-19 - -
Contact 40-57 0-0 0-0 0-0 20-14 0-14 - -
Probe 04 0-3 0-6 2-14 2-5 22-59 - -

Second part of the table shows incidence of this behavior (%) within 1-5 s of the lefthand behavior

again, a behavior previously undescribed for any euphau-
siid (Hamner and Hamner 2000), which we term “probing.”

The euphausiid probed 39 times in <5 min. It tail-flipped
12 times and darted 6 times for a total of 12's, 4% of the
total observation time. The euphausiid swam slowly, for-
ward or backward, 72% of the time (Table 1). The euphau-
siid’s only activity besides swimming within the first two
and a half minutes was probing. The frequency of probing
increased with time, from 0.03 to 0.1 probes s7! to
0.3 probes s~! each minute, then decreased slightly in the
fourth minute (0.2 probes s~!'). Other behaviors which
caused ctenophore contraction increased with time, but
these had much lower frequencies. Tail-flips, the general
euphausiid escape response, caused ctenophore contraction
3 times (25%). In contrast, 3 of the 5 times (60%) body con-
tact initiated ctenophore contraction. The ctenophore did not
always contract when the euphausiid darted (30%) but it did
respond when darting behavior lasted several seconds. The
probability of risky behavior (darting, tail-flip, contact) was
low, while the probability of probing was high: 1s after
probing, the euphausiid would probably probe again (22%
likelihood) with probing more likely than any other activity
(0—2%; Table 1) and the likelihood of probing within 5s
after any other behavior was high (Table 1).

Discussion

The OML imposes limits for vertical daytime depth distribu-
tions of zooplankton, and although this layer can be pene-
trated by some species, it acts as a barrier to vertical
distribution for many others (Brinton et al. 1986; Sameoto
et al. 1987; Escribano et al. 2000; Vinogradov and Shushkina

2002; Giesecke and Gonzélez 2004; Vinogradov et al. 2004).
Almost all euphausiids encountered in the Gulf of California
were concentrated between 200 and 400 m, which is also the
depth range where [dO] falls below 0.1 ml 1~! until it reaches
zero; in stark contrast, euphausiids in Monterey Canyon were
found throughout the water column and [dO] never fell to
these concentrations. In the Gulf of California, the euphausi-
ids encountered by the ROV were all in <0.5 ml 17! [dO],
with the majority below 0.1 ml1~! [dO]. Euphausiids may
remain as deep as possible to avoid predators, but their ability
to reach dark waters is also limited by their own oxygen
requirements (De Robertis et al. 2001).

Thalassocalyce inconstans was also most abundant at
300 m; all individuals in the Gulf of California were above
700 m, despite repeated video surveys at greater depths.
Most of the ctenophores in the Gulf of California were in
waters depleted of oxygen (<0.15 ml 17! [dO]), above the
strong oxygen minimum layer between 250 and 320 m. In
contrast, there is apparently no depth limitation for this spe-
cies in Monterey Canyon, since 7. inconstans was occa-
sionally found at depths of over 3,500 m. This is further
supported by the shallower weighted-mean depth for
T. inconstans in the Gulf of California (238 m) than in
Monterey Canyon (443 m). The Chi-Squared goodness-of-
fit test indicated that the distributions of euphausiids and
T. inconstans were significantly different from expected
based on a uniform distribution, varying only by diving
time of the ROV at depth (P < 0.001 in all cases) and there-
fore were not sampling artifacts. The high correlation
between 7. inconstans and euphausiids at each location
suggests further that 7. inconstans is concentrated where
prey are most abundant, while the high correlation between
euphausiids and the oxygen profile, in combination with the
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weighted-mean depth being just above the OML, suggests
that euphausiids avoid the lowest oxygen concentrations.
Based on our knowledge of ctenophore and euphausiid
physiology and behavior, this hypothesis seems the most
plausible, but cannot be verified given current evidence.

It is clear that oxygen-deficient waters in the Gulf pro-
vide a barrier limiting the vertical distribution of organ-
isms. Below the OML, oxygen levels eventually increase
with depth due to lateral advection, allowing deep-living
organisms to survive. However, the OML is hypoxic
enough and thick enough that vertical migration is effec-
tively diminished, as night and day distributions for zoo-
plankton are not significantly different (Jimenez-Perez and
Lara-Lara 1988). Apparently, normally vertically migrating
euphausiids gather during the day at the deepest point in
which they can still survive, between 200 and 400 m, where
oxygen levels are very low (Fig. 3). Many gelatinous preda-
tors, including 7. inconstans, can withstand extreme
hypoxia, and they can perform as effective predators at very
low oxygen levels (Decker et al. 2004; Shoji et al. 2005;
Thuesen et al. 2005a, b).

Euphausiids exhibit tail-flipping escape responses to
most predators, but in order to survive, euphausiids also
must develop specific escape responses for specialized pre-
dators. Generic escape responses (rapid tail-flipping) may
help them escape visual predators, such as penguins and
fish (Kils 1979; Hamner 1984; O’Brien 1987), but generic
escape behaviors may not provide protection from preda-
tors that have specialized modes of fishing, as do tentacu-
late medusae and ctenophores (Hamner et al. 1983; Hamner
and Hamner 2000). A different suite of sequential behaviors
is exhibited by euphausiids when they attempt to escape
from cydippid ctenophores (for specifics, see Hamner and
Hamner 2000).

The body plan of thalassocalycid predators is different
from that of all other ctenophores, presenting euphausiids
with a different set of predator-specific problems. 7. incon-
stans encloses its prey, and the generalized euphausiid dart-
ing or tail-flipping escape behavior is then maladaptive
because these behaviors will cause the euphausiid to
encounter the inner walls of the bell, which are coated with
sticky mucus. Accordingly, when captured by 7. incon-
stans, the euphausiid initially hovers in place, a behavior
which has only been recorded for euphausiids in enclosed
spaces, demonstrating that the euphausiid is aware it has
been trapped (Miyashita et al. 1996). It then begins to care-
fully search for an opening in the lobe-like folds by repeat-
edly probing the walls, which does not stimulate the
ctenophore to contract. Probing was simultaneous with
ctenophore contraction only once, when the euphausiid
probed at the location of a potential exit (the seam between
the two still inflated globes), after which the ctenophore
pressed its lobes more tightly together, sealing both

@ Springer

compartments. Although enclosed within the folds of the
predator for five minutes, the euphausiid only darted
6 times, mostly later in the observation sequence. The
euphausiid returned to probing immediately after each dart-
ing episode. All other contractions by the ctenophore were
stimulated within one second of hard contact by the
euphausiid with the ctenophore wall, either by contact, tail-
flipping, darting, or a combination of the three.

When feeding by 7. inconstans was initially described
by Harbison et al. (1978), it was observed catching small
copepods on its inner surface. It did so by floating motion-
less in an outstretched discoidal shape. When copepods
touched the flattened surface, they adhered to the mucus
coating, and were subsequently transported to the mouth
via cilia on the ctenophore’s inner surface. In this process
T. inconstans never contracted from the fully expanded dis-
coidal shape, acting like a “passive trap” (Harbison et al.
1978). This feeding mechanism, however, cannot explain
how larger and faster prey, like euphausiids, could be cap-
tured.

Thalassocalyce inconstans can contract within 0.466 s in
response to external stimuli, explaining how free-swimming
euphausiids are captured by the feeding disc. The rapid
contraction of the bell changes its shape from an open, flat
configuration to a sphere, enclosing a volume of water and
prey like a purse seine around a school of fish. From this, the
configuration slowly changes to resemble the two lobes of a
lobate ctenophore. The biradial globes press together, and
slow contractions of the bell expel water while remaining
sufficiently closed to prevent escape of the prey.

Our video sequences showed that 7. inconstans could
close its lobes in less than half a second, and it was clear
that the musculature of the lobes of the order Thalassocaly-
cida needed to be re-examined since no unusual muscles
had been described previously for the feeding disc. We pos-
tulated that such rapid closure could be effected best via a
circumferential sphincter or ring muscle. One of us (LM)
subsequently examined two specimens of freshly captured
T. inconstans and confirmed that there is indeed a relatively
large ring muscle around the outermost edge of the cteno-
phore lobes (Fig. 1). When this muscle contracts it draws
the lobes of the ctenophore closed like a purse string.
T. inconstans has thin, flaccid tissues, which stretch to
envelop a large volume of water when the ring muscle con-
tracts, thus producing the two-globed compartment. No
previous record of this type of muscle or feeding mecha-
nism has been recorded in Ctenophora, but entrapment of
water and prey prior to ingestion has been observed for the
scyphomedusa Deepstaria sp. (Larson et al. 1988), the mol-
lusc Melibe leonina (Hurst 1968), an anemone, Amplexidis-
cus fenestrafer (Hamner and Dunn 1980), the squid
Grimpoteuthis sp. (Hunt 1999), and is analogous to the
feeding behavior of pelicans and baleen whales. A similar
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adaptation can be seen in the carnivorous doliolid, Pseu-
dusa bostigrinus (Robison et al. 2005a). This muscle band
makes it possible for T. inconstans, a slow swimmer, to
contract rapidly enough to capture relatively large, rapidly
swimming euphausiids.

The rapid closure of the bell may also help explain why
the peculiar morphology of Thalassocalycida evolved.
Gelatinous species have a greater diversity of different mus-
cle fibers than land animals (Bone 2005). Although typical
in hydromedusae, ring muscles are not known in other
orders of ctenophores. Lobate ctenophores have muscular
lobes, but they are unlike the muscle discovered in Thalas-
socalycida (Bilbaut etal. 1988; Tamm and Tamm 1989;
Seipel and Schmid 2005). This remarkable adaptation
allowed thalassocalycids to evolve a much different body
plan from ctenophores in the Order Lobata, one that per-
mits it to quickly engulf relatively large volumes of water
and capture fast prey. Initially, only the ring muscle con-
tracts, so that the ctenophore encloses both prey and seawa-
ter surrounding it. Subsequent contractions of the bell along
the tentacular plane divide the globe into two connected
compartments that are closed to the outside. Thus the
euphausiid in our observation sequence was able to swim
freely from one hemisphere into the other. Eventually the
opening between the two spheres closed fully, and the two
globes contracted somewhat independently. This body plan
and behavior enable thalassocalycids to initially trap prey
by closing off all openings quickly, and thereafter to sepa-
rate the prey from the entrapped seawater.
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