
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Research on Polynomial and Tensor Optimization

Permalink
https://escholarship.org/uc/item/5mg1z4kj

Author
Yang, Zi

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mg1z4kj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Research on Polynomial and Tensor Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Zi Yang

Committee in charge:

Professor Jiawang Nie, Chair
Professor Alexander Cloninger
Professor Sonia Mart́ınez
Professor Yixiao Sun
Professor Danna Zhang

2021

Copyright

Zi Yang, 2021

All rights reserved.

The dissertation of Zi Yang is approved, and it is

acceptable in quality and form for publication on

microfilm and electronically.

University of California San Diego

2021

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 Polynomial optimization . 1
1.2 Tensors . 4

Chapter 2 Detection of Copositive Tensors . 7
2.1 Copositive tensors . 7
2.2 A complete semidefinite algorithm 9
2.3 Numerical examples . 14

Chapter 3 The Saddle Point Problem . 20
3.1 Saddle point problems . 20
3.2 Optimality conditions . 21
3.3 An algorithm for solving SPPPs 24
3.4 Solving optimization problems . 28
3.5 Some proofs . 36
3.6 Numerical examples . 41

Chapter 4 Hermitian Tensors . 49
4.1 Hermitian decompositions . 49
4.2 Basis Hermitian tensors . 51
4.3 Real Hermitian tensors . 57
4.4 Matrix flattenings . 62
4.5 PSD Hermitian tensors . 66
4.6 Separable Hermitian tensors . 69
4.7 Detecting separability . 72

Chapter 5 Learning Gaussian Mixture Models . 83
5.1 Gaussian mixture models . 83
5.2 Incomplete tensor decompositions 86
5.3 Tensor approximations . 94

iv

5.4 Learning diagonal GMMs . 100
5.5 Numerical examples . 104

Bibliography . 109

v

LIST OF FIGURES

Figure 5.1: Textures from VisTex . 107

vi

LIST OF TABLES

Table 2.1: Computational results for matrices in Example 2.3 15
Table 2.2: Stability numbers for graphs Gℓ. 16
Table 2.3: Computational results for tensors in Example 2.5 16
Table 2.4: Coclqiue numbers of hypergraphs Gn . 18
Table 2.5: Computational time (in seconds) for random cubic tensors 18
Table 2.6: Computational results by SDPA-GMP . 19

Table 5.1: The performance of Algorithm 5.6 . 105
Table 5.2: Comparison between Algorithm 5.9 and EM for simulations 107
Table 5.3: Classification results on 8 textures . 108

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep and sincere gratitude to my

supervisor, Professor Jiawang Nie, for invaluable advice, encouragement, and continuous

support during my five years of Ph.D. studies. His immense knowledge, patient guidance,

and plentiful experience helped me go through lots of difficult time in completing the Ph.D.

and this dissertation. I am extremely grateful for what he has offered me. Without his

tremendous supervision and encouragement, it would be impossible for me to complete the

doctoral degree and the dissertation.

I am also grateful to other members of my dissertation committee, Professor Alexander

Cloninger, Professor Sonia Mart́ınez, Professor Yixiao Sun, and Professor Danna Zhang. It

is a great honor for me to have these outstanding professors from many fields serve on my

dissertation committee. Their knowledge and experience are really beneficial in completing

my dissertation. The Department of Mathematics at UC San Diego provided fertile ground

and an unsurpassable research environment to complete my Ph.D. study. Its fantastic faculty

and excellent staff gave generous support to my graduate life.

Moreover, I would like to give my appreciation to my family and friends. Especially,

I want to express my deepest gratitude with all my heart to my fiancée Chenyang Duan, for

her endless support and love.

In this dissertation, some materials have been published, or been submitted for

publication.

The Chapter 2, in full, is a reprint of the material as it appears in SIAM Journal on

Optimization 2018 [119]. The dissertation author coauthored this paper with Nie, Jiawang

and Zhang, Xinzhen.

The Chapter 3, in full, is a reprint of the material as it appears in Foundations of

Computational Mathematics 2021 [118]. The dissertation author coauthored this paper with

Nie, Jiawang and Zhou, Guangming.

The Sections 4.1-4.6 of the Chapter 4 are a reprint of the material as it appears in

SIAM Journal on Matrix Analysis and Applications 2020 [110]. The dissertation author

coauthored this paper with Nie, Jiawang. The Section 4.7 of the Chapter 4 is part of

the publication that has been accepted for publication in Linear and Multilinear Algebra

2021 [49]. The dissertation author coauthored this paper with Dressler, Mareike and Nie,

Jiawang.

viii

The Chapter 5, in full, has been accepted for publication in Vietnam Journal of

Mathematics 2021 [59]. The dissertation author coauthored this paper with Guo, Bingni

and Nie, Jiawang.

ix

VITA

2016 B. S. in Mathematics, University of Science and Technology of
China

2021 Ph. D. in Mathematics, University of California San Diego

PUBLICATIONS

B. Guo, J. Nie, and Z. Yang, “Learning Diagonal Gaussian Mixture Models and Incomplete
Tensor Decompositions”, accepted by Vietnam Journal of Mathematics, 2021.

M. Dressler, J. Nie, and Z. Yang, “Separability of Hermitian Tensors and PSD Decom-
positions”, accepted by Linear and Multilinear Linear Algebra, 2021.

J. Nie, Z. Yang, and G. Zhou, “The Saddle Point Problem of Polynomials”, Foundations of
Computational Mathematics, pp. 1-37, 2021.

J. Nie, and Z. Yang, “Hermitian Tensor Decompositions”, SIAM Journal on Matrix Analysis
and Applications, Vol. 41, pp. 1115-1144, 2020.

J. Nie, Z. Yang, and X. Zhang, “A Complete Semidefinite Algorithm for Detecting Copositive
Matrices and Tensors”, SIAM Journal on Optimization, Vol. 28, pp. 2902-2921, 2018.

B. Chen, Z. Yang, and Z.W. Yang, “An Algorithm for Low-rank Matrix Factorization and
Its Applications”, Neurocomputing, Vol. 275, pp. 1012-1020, 2018.

x

ABSTRACT OF THE DISSERTATION

Research on Polynomial and Tensor Optimization

by

Zi Yang

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Jiawang Nie, Chair

Polynomial optimization considers optimization problems defined by polynomials. In

contrast to classical nonlinear optimization, it aims at finding global optimizers. Tensors

are natural higher-order generalizations of matrices and are closely related to polynomials

and moments. They are powerful tools in studying tensors. Many tensor problems can be

formulated as polynomial optimization problems.

We propose a complete semidefinite relaxation algorithm for detecting the copositivity

of a symmetric tensor. We show that the detection can be done by solving a finite number

of semidefinite relaxations for all tensors.

For the saddle point problem of polynomials, we give an algorithm for computing

saddle points. We show that: i) if there exists a saddle point, our algorithm can get one

by solving a finite number of Lasserre type semidefinite relaxations; ii) if there is no saddle

point, our algorithm can detect its nonexistence.

Hermitian tensors are generalizations of Hermitian matrices, but they have very

different properties. Canonical basis Hermitian tensors, real Hermitian tensors, special

matrix flattenings, positive semidefiniteness, and separability are studied. We further study

xi

how to detect separability of Hermitian tensors. We formulate this as a truncated moment

problem and then provide a semidefinite relaxation algorithm to solve it.

The problem of learning diagonal Gaussian mixture models can be formulated as

computing incomplete symmetric tensor decompositions. We use generating polynomials

to compute incomplete symmetric tensor decompositions and approximations. Then the

tensor approximation is used to learn diagonal Gaussian mixture models. When the first

and third order moments are sufficiently accurate, we show that the obtained parameters for

the Gaussian mixture models are also highly accurate.

xii

Chapter 1

Introduction

1.1 Polynomial optimization

In this section, we review some basics about positive polynoimals, localizing matrices,

and polynomial optimization.

Denote by R[x] the ring of polynomials in x with real coefficients in R. The R[x]d is
the set of polynomials whose degrees ≤ d. For α := (α1, . . . , αn) ∈ Nn with an integer n > 0,

denote |α| := α1 + · · · + αn. For an integer d > 0, denote Nn
d := {α ∈ Nn | |α| ≤ d}. For

x = (x1, . . . , xn) and α = (α1, . . . , αn), denote

xα := xα1
1 · · ·xαn

n , [x]d :=
[
1 x1 · · · xn x21 x1x2 · · · xdn

]T
.

An ideal I of R[x] is a subset such that I · R[x] ⊆ I and I + I ⊆ I. For a tuple

p = (p1, . . . , pk) of polynomials in R[x], Ideal(p) denotes the smallest ideal containing all pi,

which is the set p1 · R[x] + · · · + pk · R[x]. In computation, we often need to work with the

truncation:

Ideal(p)2k := p1 · R[x]2k−deg(p1) + · · ·+ pk · R[x]2k−deg(pk).

A polynomial σ is said to be a sum of squares (SOS) if σ = s21 + · · · + s2k for some

polynomials s1, . . . , sk. Checking if a polynomial is SOS can be done by solving a semidefinite

program (SDP) [81]. If a polynomial is SOS, then it is nonnegative everywhere. But, the

reverse may not be true. The set of all SOS polynomials in x is denoted by Σ[x], and its dth

truncation is Σ[x]d := Σ[x] ∩ R[x]d. For a tuple q = (q1, . . . , qt) of polynomials its quadratic

module is

Qmod(q) := Σ[x] + q1 · Σ[x] + · · ·+ qt · Σ[x].

1

We often need to work with the truncation

Qmod(q)2k := Σ[x]2k + q1 · Σ[x]2k−deg(g1) + · · ·+ qt · Σ[x]2k−deg(qt).

A subset A ⊆ R[x] is said to be archimedean if there exists σ ∈ A such that σ(x) ≥ 0

defines a compact set in Rn. If Ideal(p)+Qmod(q) is archimedean, then the setK := {p(x) =
0, q(x) ≥ 0} must be compact. The reverse is not always true. When Ideal(p) + Qmod(q)

is archimedean, every polynomial that is positive on K must belong to Ideal(p) +Qmod(q).

This is the so-called Putinar’s Positivstellensatz [124]. Interestingly, under some optimality

conditions, if a polynomial is nonnegative (but not strictly positive) over K, then it belongs

to Ideal(p) +Qmod(q). This is shown in [103].

The set RNn
d is the space of all real vectors that are labeled by α ∈ Nn

d . That is, every

y ∈ RNn
d can be labeled as

y = (yα)α∈Nn
d
.

Such y is called a truncated multi-sequence (tms) of degree d [115]. The tms y is said to

admit a Borel measure µ if it satisfies that yα =
∫
xαdµ, ∀α ∈ Nn

d . If it exists, such a µ is

called a representing measure for y, and y is said to admit the measure µ.

For a polynomial f ∈ R[x]r that is written as

f =
∑

|α|≤Nn
r

fαx
α,

with r ≤ d, we define the operation

⟨f, y⟩ =
∑

|α|≤Nn
r

fαyα. (1.1)

Note that ⟨f, y⟩ is linear in y for fixed f , and is linear in f for fixed y. For a polynomial

q ∈ R[x]2k and the integer t = k− ⌈deg(q)/2⌉, the outer product q(x)[x]t[x]Tt is a symmetric

matrix of length
(
n+t
t

)
. It can be expanded as

q(x)[x]t[x]
T
t =

∑
α∈Nn

2k

xαQα,

for constant symmetric matrices Qα. For y ∈ RNn
2k , denote the symmetric matrix

L(k)
q [y] :=

∑
α∈Nn

2k

yαQα. (1.2)

2

It is called the kth localizing matrix of q and generated by y. For given q, L
(k)
q [y] is linear in

y. Clearly, if q(u) ≥ 0 and y = [u]2k, then L
(k)
q [y] = q(u)[u]t[u]

T
t ⪰ 0. (X ⪰ 0 means that X

is positive semidefinite.) For instance, if n = k = 2 and q = 1− x1 − x1x2, then

L(2)
q [y] =


y00 − y10 − y11 y10 − y20 − y21 y01 − y11 − y12

y10 − y20 − y21 y20 − y30 − y31 y11 − y21 − y22

y01 − y11 − y12 y11 − y21 − y22 y02 − y12 − y13

 .
When q = 1 (the constant one polynomial), the localizing matrix L

(k)
1 [y] reduces to a

moment matrix, which we denote as

Mk[y] := L
(k)
1 [y].

For instance, when n = 2, k = 3, the matrix M3[y] is

M3[y] =



y00 y10 y01 y20 y11 y02 y30 y21 y12 y03

y10 y20 y11 y30 y21 y12 y40 y31 y22 y13

y01 y11 y02 y21 y12 y03 y31 y22 y13 y04

y20 y30 y21 y40 y31 y22 y50 y41 y32 y23

y11 y21 y12 y31 y22 y13 y41 y32 y23 y14

y02 y12 y03 y22 y13 y04 y32 y23 y14 y05

y30 y40 y31 y50 y41 y32 y60 y51 y42 y33

y21 y31 y22 y41 y32 y23 y51 y42 y33 y24

y12 y22 y13 y32 y23 y14 y42 y33 y24 y15

y30 y13 y04 y23 y14 y05 y33 y24 y15 y06



.

Moment and localizing matrices can be used to construct semidefinite relaxations for

polynomial optimization problems. We refer to [141] for a survey on semidefinite programs.

Consider the polynomial optimization problem
f ∗ := min f(x)

s.t. hi(x) = 0 (i = 1, . . . ,m1),

gj(x) ≥ 0 (j = 1, . . . ,m2),

(1.3)

where f and gi, hj are all real polynoimals in x ∈ Rn. A standard approach to solve (1.3) is

Lasserre’s hierarchy of sum of squares (SOS) relaxations [81]. Let

d0 := max{⌈deg(f)⌉/2, ⌈deg(gi)⌉/2, ⌈deg(hj)⌉/2}i=1,...,m1,j=1,...,m2 .

3

For k0 ≥ d0, the kth order relaxation is
fk := min ⟨f, y⟩

s .t . L
(k)
hi
[y] = 0 (i = 1, . . . ,m1)

L
(k)
gj [y] ⪰ 0 (j = 1, . . . ,m2),

y0 = 1, Mk[y] ⪰ 0, y ∈ RNn
2k .

(1.4)

It always holds that fk ≤ f ∗ and the sequence {fk} is monotonically increasing. Under the

archimedean condition, the relaxations have asymptotic convergence, i.e., limk→∞ fk = f ∗.

When fk = f ∗ for some k, we say the relaxation has finite convergence. A common criterion

to check finite convergence is the flat extension [32]. Let y ∈ RNn
2k be a minimizer of the kth

order relaxation. We say y satisfies flat extension if the following rank condition

rankMk−dc [z] = rankMk[z] (1.5)

is satisfied, where

dc := max{⌈deg(gi)⌉/2, ⌈deg(hj)⌉/2}i=1,...,m1,j=1,...,m2 .

Then, we can extract r = rankMk minimizers for (1.3). It is implemented in the software

GloptiPoly3 [66]. When the rank condition (1.5) is satisfied for some k, the semidefinite

relaxations have finite convergence. In polynomial optimization, a more appropriate condition

than flat extension is the flat truncation [102].

We refer to [54,65,81,113] for more work about solving polynoimal optimization.

1.2 Tensors

Let F = C (the complex field) or R (the real field) and V1, . . . , Vm be finitely

dimensional vector spaces over F. The dual space of Vi is the set of all linear functionals

on Vi. Denote by V ∗
i the dual space of Vi. For each vi ∈ Vi, let v1 ⊗ · · · ⊗ vm be the linear

functional on V ∗
1 × · · · × V ∗

m such that

(v1 ⊗ · · · ⊗ vm)(s1, . . . , sm) = s1(v1) · · · sm(vm),

for all si ∈ V ∗
i . The span of all such linear functionals v1 ⊗ · · · ⊗ vm is called the tensor

product space of V1, . . . , Vm, denoted by V1 ⊗ · · · ⊗ Vm.

4

The tensor space Fn1 ⊗ · · · ⊗ Fnm is isomorphic to Fn1×···×nm . Thus, a tensor A ∈
Fn1 ⊗ · · · ⊗ Fnm can be represented as a multi-array in Fn1×···×nm , i.e., A = (Ai1...im), with

ik ∈ {1, ..., nk} for k = 1, . . . ,m. For convenience, we also call Fn1×···×nm the tensor space

of order m and dimension n1, . . . , nm. When m = 3 (resp., 4), they are called cubic (resp.,

quartic) tensors. For vectors uk ∈ Fnk , k = 1, . . . ,m, the u1 ⊗ · · · ⊗ um denotes their tensor

product, i.e., (u1 ⊗ · · · ⊗ um)i1...im = (u1)i1 · · · (um)im for all i1, . . . , im in the range. Tensors

like u1 ⊗ · · · ⊗ um are called rank-1 tensors. The cp rank of A, denoted as rank(A), is the

smallest r such that

A =
∑r

i=1
u1i ⊗ · · · ⊗ umi , uji ∈ Cnj . (1.6)

In the literature, the decomposition (1.6) is often called a candecomp-parafac or canonical

polyadic (CP) decomposition. We refer to [37, 76, 79, 88, 142] for tensor decompositions,

and refer to [16, 37, 38, 137] for tensor decomposition methods. For uniqueness of tensor

decompostions, we refer to the work [27,48,57,78,133].

Symmetric tensors are natural generalizations of symmetric matrices. A tensor A ∈
Fn×···×n of orderm is symmetric if Ai1...im is invariant for all permutations of (i1, . . . , im). The

entries of the form Ajj...j are called diagonal, while the other entries are called off-diagonal.

Rank-1 symmetric tensors are multiples of

u⊗m := u⊗ · · · ⊗ u (repeated m times).

For every symmetric tensor, there exist some ui ∈ Cn and λi ∈ C such that

A =
∑r

i=1
λiu

⊗m
i .

The smallest number r is called the symmetric rank of A, denoted by rankS(A). We refer

to [15,28,109,120] for the work on symmetric tensor decompositions. Symmetric tensors can

be generalized to partial symmetric tensors [79] and conjugate partial symmetric tensors [56].

A class of interesting symmetric tensors are Hankel tensors [117]. More work about tensor

ranks can be found in [29,144].

For two tensors A,B ∈ C[n1,...,nm], their inner product is defined as

⟨A,B⟩ :=
∑

i1,...,im,j1,...,jm
Ai1...imj1...jmBi1...imj1...jm , (1.7)

where ā denotes the conjugate of the complex number a. The Hilbert-Schmidt norm of A is

accordingly defined as ||A|| :=
√

⟨A,A⟩.

5

For convenience of operations, we define multilinear matrix multiplications for tensors

(see [88]). For matrices Mk ∈ Cpk×qk , k = 1, . . . ,m, define the matrix-tensor product

(M1, . . . ,Mm) × T for T ∈ Cq1×···×qm such that it gives a linear map from Cq1×···×qm to

Cp1×···×pm and it satisfies

(M1, . . . ,Mm)× (u1 ⊗ · · · ⊗ um) = (M1u1)⊗ · · · ⊗ (Mmum),

for all rank-1 tensors u1⊗· · ·⊗um. The product (M1, . . . ,Mm)×T is a tensor in Cp1×···×pm .

For two tensors T1, T2 of compatible dimensions, it holds that

⟨(M1, . . . ,Mm)× T1, T2⟩ = ⟨T1, (M
∗
1 , . . . ,M

∗
m)× T2⟩,

where the superscript ∗ denotes the conjugate transpose.

Notation

The symbol N denotes the set of nonnegative integers. For k = 1, . . . ,m, the xk

denotes the complex vector variable in Cnk . The tuple of all such complex variables is

denoted as x := (x1, . . . , xm). For F = R or C, denote by F[x] the ring of polynomials in x

with coefficients in F, while F[x, x] denotes the ring of conjugate polynomials in x and x with

coefficients in F. In the Euclidean space Fn, denote by ei the ith standard unit vector, i.e.,

the ith entry of ei is one and all others are zeros, while e stands for the vector of all ones. The

Ik denotes the k-by-k identity matrix. For a vector u in Rn or Cn, ∥u∥ denotes its standard

Euclidean norm. For a matrix or vector a, the a∗ denotes its conjugate transpose, aT denotes

its transpose, while a denotes its conjugate entrywisely; we use Re(a) and Im(a) to denote

its real and complex part respectively. For a complex scalar or vector z, denote |z| :=
√
z∗z.

The int(S) denotes the interior of a set S, under the Euclidean topology. The Mn denotes

the set of n-by-n Hermitian matrices, while Sn denotes the set of n-by-n real symmetric

matrices. If a Hermitian matrix X is positive semidefinite (resp., positive definite), we write

that X ⪰ 0 (resp., X ≻ 0). The symbol ⊗ denotes the tensor product, while ⊠ denotes the

classical Kronecker product. For a tensor product u⊗ v⊗· · · , we denote by vec(u⊗ v⊗· · ·)
the column vector of its coefficients in its representation in terms of the basis tensors. For an

integer k > 0, denote the set [k] := {1, . . . , k}. For a real number t, the ceiling ⌈t⌉ denotes

the smallest integer that is greater than or equal to t.

6

Chapter 2

Detection of Copositive Tensors

2.1 Copositive tensors

A real symmetric matrix A ∈ Rn×n is said to be copositive if

xTAx ≥ 0 ∀x ∈ Rn
+,

where Rn
+ is the nonnegative orthant (i.e., the set of nonnegative vectors). If xTAx > 0 for all

0 ̸= x ∈ Rn
+, then A is said to be strictly copositive. The set of all n× n copositive matrices

is a cone in Rn×n, which is denoted as COPn. Copositive matrices were introduced in

[93]. They have broad applications, e.g., in quadratic programming [20], dynamical systems

and control theory [72,91], graph theory [36,50], complementarity problems and variational

inequalities [53]. We refer to [6, 51] for surveys on copositive optimization.

A basic problem in optimization is the detection of copositive matrices. Let Sn+ be

the cone of n × n real symmetric positive semidefinite (psd) matrices, and N n
+ be the cone

of n× n real symmetric matrices whose entries are all nonnegative. Clearly, it holds that

Sn+ +N n
+ ⊆ COPn. (2.1)

For n ≤ 4, the above inclusion is an equality; for n ≥ 5, the equality does not hold any

more [43]. For instance, the Horn matrix [60] is copositive, but it is not a sum of psd and

nonnegative matrices. Checking membership of the cone COPn is NP-hard [45, 96]. As

shown in [75], a matrix A is copositive if and only if it does not have a principal submatrix

that has a negative eigenvalue with a positive eigenvector. To apply this testing, one needs to

check eigenvalues for all principal submatrices, which grows exponentially in the dimension.

7

For the case n = 5, when the diagonal entries are all ones, A is copositive if and only if

the polynomial ∥x∥2(
∑5

i,j=1Aijx
2
ix

2
j) is a sum of squares [44]. When off-diagonal entries are

nonpositive, A is copositive if and only if A is positive semidefinite [69]. When a matrix

is tridiagonal or acyclic, its copositivity can be detected in linear time [5, 71]. For testing

copositivity for general matrices, there exist methods based on simplicial partition [19,138].

Another approach for testing copositivity is to use the difference of convexity [7, 52]. A

survey about existing results and open problems for copositive matrices can be found in [3].

The concept of copositivity can be naturally generalized to tensors, as in Qi [125].

Let Sm(Rn) be the space of symmetric tensors of order m over the vector space Rn. For

A ∈ Sm(Rn), its associated polynomial is

A(x) :=
∑

1≤i1,i2,··· ,im≤n

Ai1i2···imxi1xi2 · · ·xim . (2.2)

If A(x) ≥ 0 for all x ∈ Rn, A is said to be positive semidefinite (psd). If A(x) ≥ 0 for all

x ∈ Rn
+, A is said to be copositive. Similarly, if A(x) > 0 for all 0 ̸= x ∈ Rn

+, A is said

to be strictly copositive. Denote by COPm,n the cone of all copositive tensors in Sm(Rn).

Clearly, when the order m = 2, positive semidefinite (resp., copositive) tensors are the same

as positive semidefinite (resp., copositive) matrices. To be psd, a tensor must have even

order. An odd order nonzero tensor can never be psd, but it is possibly copositive. For

instance, every nonzero tensor with zero diagonal entries and nonnegative off-diagonal ones

is copositive, but not psd.

Copositive tensors have broad applications. For instance, some complementarity

problems can be formulated by using copositive tensors [23, 135, 136]. The coclique number

of a hypergraph can be bounded by tensor copositivity [24]; see Example 2.6. Copositive

tensors are useful in vacuum stability [74]. Moreover, some polynomial optimization problems

can be formulated as linear conic programs about copositive tensors [122]. We refer to

[25,125,134,135] for more applications of copositive tensors.

Detecting tensor copositivity is also a mathematically challenging question. It is also

NP-hard, because testing matrix copositivity is a special case. If the off-diagonal entries of

a symmetric tensor A are nonpositive, then A is copositive if and only if A is psd [125].

There also exists a characterization of copositive tensors by the eigenpairs of its principal

subtensors [134]. Like the matrix case, tensor copositivity can also be tested by algorithms

based on simplicial partition. Typically, when a tensor lies in the interior of the copositive

cone, the copositivity can be detected by this kind of algorithms. However, if it lies on the

8

boundary, they usually have difficulties. We refer to [19,24,25,138] for related work.

2.2 A complete semidefinite algorithm

We discuss how to detect copositivity of a given tensor. For a symmetric tensor

A ∈ Sm(Rn), let A(x) be the homogeneous polynomial defined as in (2.2). Clearly, A is

copositive if and only if A(x) ≥ 0 for all x belonging to the standard simplex

∆ = {x ∈ Rn : eTx = 1, x ≥ 0}.

Consider the optimization problem{
v∗ := min A(x)

s.t. eTx = 1, (x1, . . . , xn) ≥ 0.
(2.3)

Clearly, A is copositive if and only if the minimum value v∗ ≥ 0. Therefore, testing the

copositivity of A is the same as determining the sign of v∗. The problem (2.3) is a polynomial

optimization problem. A standard approach for solving it is to apply classical Lasserre

relaxations [81]. Since the feasible set is compact and the archimedean condition holds, its

asymptotic convergence is always guaranteed.

As proposed in [108], there exist tight relaxations for solving polynomial optimization,

whose constructions are based on optimality conditions and Lagrange multiplier expressions.

Since its feasible set is compact and nonempty, problem (2.3) must have a global minimizer,

say, u. The constraints of (2.3) are all affine linear functions. One can see that the

linear independence constraint qualification condition holds at u. So we have the following

optimality conditions (the notation ∇ denotes the gradient):{
∇A(u) = λ0e+

∑n
i=1 λiei,

λ1u1 = · · · = λnun = 0, λ1 ≥ 0, . . . , λn ≥ 0,
(2.4)

where λ0, λ1, . . . , λn are the Lagrange multipliers. By a simple algebraic computation (also

see [108]), one can show that (note that xT∇f(x) = mf(x) for all homogeneous polynomials

f(x) of degree m, because xT∇xα = |α|xα){
λ0 = uT∇A(u) = mA(u),

λi = ∂A(u)
∂xi

−mA(u) (i = 1, 2, . . . , n).
(2.5)

9

Because of the above expressions, we define new polynomials:

pi :=
∂A(x)

∂xi
−mA(x) (i = 1, 2, . . . , n). (2.6)

Since every optimizer u must satisfy (2.4) and its norm ∥u∥ ≤ 1, the optimization problem

(2.3) is equivalent to
min A(x)

s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

1− ∥x∥2 ≥ 0, xi ≥ 0, pi(x) ≥ 0 (i = 1, . . . , n).

(2.7)

Then we apply Lasserre’s relaxations to solve (2.7). For the orders k = 1, 2, . . ., solve the

semidefinite relaxation problem:
vk := min ⟨A(x), y⟩

s.t y0 = 1, L
(k)

eT x−1
[y] = 0, L

(k)
xipi [y] = 0 (i = 1, . . . , n),

L
(k)
xi [y] ⪰ 0, L

(k)
pi [y] ⪰ 0 (i = 1, . . . , n),

L
(k)

1−∥x∥2 [y] ⪰ 0, Mk[y] ⪰ 0, y ∈ RNn
2k .

(2.8)

The ball constraint 1 − ∥x∥2 ≥ 0 is redundant in (2.7). There are two major advantages

for using it: i) Adding the ball constraint results in tighter relaxations, i.e., (2.8) is stronger

than the one without using 1−∥x∥2 ≥ 0. ii) If 1−∥x∥2 ≥ 0 is not used, there exist numerical

difficulties for solving the semidefinite relaxation (2.8).

Note that v∗ is also the optimal value of (2.7). The feasible set of (2.7) is contained

in the projection of that of (2.8), so the optimal value vk of (2.8) satisfies

v1 ≤ v2 ≤ · · · ≤ v∗.

Clearly, if vk ≥ 0 for some k, then A is copositive. Combining the above, we can get the

following algorithm.

Algorithm 2.1. For a given tensor A ∈ Sm(Rn), let m0 := ⌈m/2⌉ and k := m0. Choose a

generic vector ξ ∈ RNn
m. Test the copositivity of A as follows:

Step 1: Solve the semidefinite relaxation (2.8). If its optimal value vk ≥ 0, then A is

copositive and stop. If vk < 0, go to Step 2.

10

Step 2: Solve the following semidefinite program
min ⟨ξT [x]m, y⟩
s.t L

(k)

eT x−1
[y] = 0, L

(k)
xi [y] ⪰ 0, (i ∈ [n]),

L
(k)

1−∥x∥2 [y] ⪰ 0, L
(k)
vk−A(x)[y] ⪰ 0,

y0 = 1,Mk[y] ⪰ 0, y ∈ RNn
2k .

(2.9)

If it is feasible, compute an optimizer ŷ. If it is infeasible, let k := k + 1 and go to

Step 1.

Step 3: Let u =
(
(ŷ)e1 , . . . , (ŷ)en

)
. If A(u) < 0, then A is not copositive and stop; otherwise,

let k := k + 1 and go to Step 1.

In Algorithm 2.1, the vector ξ can be chosen as a random vector obeying normal

distribution. In MATLAB, we can use the function randn to generate each entry of ξ. In

Step 2, the copositivity of A is justified by the relationship v∗ ≥ vk, for all k ≥ m0. In Step 3,

the point u must belong to the simplex ∆. This is because of the constraints L
(k)

eT x−1
[y] = 0

and L
(k)
xi [y] ⪰ 0.

In the following, we show that Algorithm 2.1 must terminate within finitely many

iterations, for all tensors A. In other words, the copositivity of every A can be detected

correctly by solving finitely many semidefinite relaxations. This is why we call Algorithm 2.1

a complete semidefinte algorithm for detecting tensor copositivity.

Theorem 2.2 ([119]). For all symmetric tensors A ∈ Sm(Rn), Algorithm 2.1 has the

following properties:

(i) For all k ≥ m0, the semidefinite relaxation (2.8) is feasible and achieves its optimal

value vk; moreover, vk = v∗ for all k sufficiently large.

(ii) For all k ≥ m0, the semidefinite program (2.9) has an optimizer if it is feasible.

(iii) If A is copositive, then Algorithm 2.1 must stop with vk ≥ 0, when k is sufficiently

large.

(iv) If A is not copositive, then, for almost all ξ ∈ RNn
m (i.e., ξ ∈ RNn

m\Θ for a subset

Θ ⊆ RNn
m of zero Lebesgue measure), Algorithm 2.1 must return a point u ∈ ∆ with

f(u) < 0, when k is sufficiently large.

11

Proof. (i) The feasible set of (2.3) is compact, so it must have a minimizer, say, u∗. Then,

u∗ satisfies (2.4), and hence u∗ is a feasible point for (2.7). So, the feasible set of (2.7) is

nonempty. This implies that the semidefinite relaxation (2.8) is always feasible. By the

constraint L
(k)

1−∥x∥2 [y] ⪰ 0, we can show that the feasible set of (2.8) is compact, as follows.

First, we can see that

1 = y0 ≥ y2e1 + · · ·+ y2en .

So, 0 ≤ y2ei ≤ 1 since each y2ei ≥ 0 (because Mk[y] ⪰ 0). Second, for all 0 < |α| ≤ k − 1,

the (α, α)th diagonal entry of L
(k)

1−∥x∥2 [y] is nonnegative, so

y2α ≥ y2α+2e1 + · · ·+ y2α+2en . (2.10)

By choosing α = e1, . . . , en, the same argument can show that 0 ≤ y2β ≤ 1 for all |β| ≤ 2.

By repeatedly applying (2.10), one can further get that 0 ≤ y2β ≤ 1 for all |β| ≤ k. Third,

note that the diagonal entries of Mk[y] are precisely y2β with |β| ≤ k. Since Mk[y] ⪰ 0, all

the entries of Mk[y] must be between −1 and 1. This means that y is bounded, hence the

feasible set of (2.8) is compact. Therefore, (2.8) must achieve its optimal value vk.

To prove vk = v∗ for all k sufficiently large, note that (2.7) is the same as the

optimization 
min A(x)

s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

xi ≥ 0, pi(x) ≥ 0, i = 1, . . . , n.

(2.11)

Its corresponding Lasserre’s relaxations are
v′k := min ⟨A(x), y⟩

s.t L
(k)

eT x−1
[y] = 0, L

(k)
xipi [y] = 0 (1 ≤ i ≤ n),

L
(k)
xi [y] ⪰ 0, L

(k)
pi [y] ⪰ 0 (1 ≤ i ≤ n),

y0 = 1,Mk[y] ⪰ 0, y ∈ RNn
2k ,

(2.12)

for the orders k = 1, 2, The optimal value of (2.11) is also v∗. The feasible set of (2.8) is

contained in that of (2.12), so

v′k ≤ vk ≤ v∗, k = m0,m0 + 1, (2.13)

Next, we show that the set of polynomials

F :=

{
(1− eTx)ϕ+

n∑
j=1

xj
(∑

ℓ

s2j,ℓ
)
: ϕ ∈ R[x], sj,ℓ ∈ R[x]

}

12

is archimedean, i.e., there exists f ∈ F such that the inequality f(x) ≥ 0 defines a compact

set in Rn. This is true for f = 1− ∥x∥2, because of the identity

1− ∥x∥2 = (1− eTx)(1 + ∥x∥2) +
n∑
i=1

xi(1− xi)
2 +

∑
i ̸=j

x2ixj. (2.14)

By Theorem 3.3 of [108], we know that v′k = v∗ when k is sufficiently large. Hence, the

relation (2.13) implies that vk = v∗ for all k sufficiently large.

(ii) The semidefinite program (2.9) also has the constraint L
(k)

1−∥x∥2 [y] ⪰ 0. By the

same argument as in (i), we know that the feasible set of (2.9) is compact. So, it must have

an optimizer if it is feasible.

(iii) Clearly, A is copositive if and only if v∗ ≥ 0. By the item (i), vk = v∗ for all k

big enough. Therefore, if A is copositive, we must have vk ≥ 0 for all k large enough.

(iv) If A is not copositive, then v∗ < 0. By the item (i), there exists k1 ∈ N such that

vk = v∗ for all k ≥ k1. Hence, for all k ≥ k1, (2.9) is the same as
min ⟨ξT [x]m, y⟩
s.t L

(k)

eT x−1
[y] = 0, L

(k)
xi [y] ⪰ 0, (i ∈ [n]),

L
(k)

1−∥x∥2 [y] ⪰ 0, L
(k)
v∗−A(x)[y] ⪰ 0,

(y)0 = 1,Mk[y] ⪰ 0, y ∈ RNn
2k .

(2.15)

It is the kth Lasserre’s relaxation for the polynomial optimization{
min ξT [x]m

s.t eTx− 1 = 0, x ≥ 0, v∗ −A(x) ≥ 0.
(2.16)

The feasible set of (2.16) is clearly compact. There exists a subset Θ ⊆ RNn
m of zero Lebesgue

measure [130, §2.2], such that for all ξ ∈ RNn
m\Θ the problem (2.16) has a unique optimizer,

say, u∗. Hence, for almost all ξ ∈ RNn
m , u∗ is the unique optimizer. For notation convenience,

denote by ŷk the optimizer of (2.9) with the relaxation order k. Let uk =
(
(ŷk)e1 , . . . , (ŷ

k)en
)
.

By Corollary 3.5 of [131] or Theorem 3.3 of [102], the sequence {uk}∞k=m0
must converge to

u∗, the unique optimizer of (2.16). Since A(u∗) ≤ v∗ < 0, we must have A(uk) < 0 when k is

sufficiently large. Moreover, the constraints L
(k)
xi [y] ⪰ 0 imply that uk ≥ 0, and L

(k)

eT x−1
[y] = 0

implies that eTuk = 1. Therefore, uk ∈ ∆.

In Step 1 of Algorithm 2.1, we need to test whether or not vk ≥ 0. When the

absolute value of vk is big, this testing is easy. However, if its absolute value is very small,

13

then testing its sign might be difficult. Note that the semidefinite relaxation (2.8) is often

solved numerically, i.e., vk is accurate up to a tiny round-off error. This difficulty is not

because of theoretical properties of Algorithm 2.1, but due to round-off errors, which occur

in all numerical methods. In practice, if vk is positive or close to zero (say, vk > −10−6),

then it is reasonably well to claim the copositivity of A.

2.3 Numerical examples

This section presents numerical experiments of applying Algorithm 2.1 to detect

matrix and tensor copositivity. The computation is implemented in MATLAB R2016b, on a

Lenovo Laptop with CPU@2.90GHz and RAM 16.0G. Algorithm 2.1 can be implemented by

using the software Gloptipoly 3 [66], which calls the semidefinite program solver SeDuMi

[139]. For cleanness, we only display 4 decimal digits. The computational time is reported

in seconds (s). Recall that vk is the optimal value of (2.8).

First, we consider some copositive matrices that are not a sum of psd and nonnegative

matrices.

Example 2.3. Consider the Horn’s matrix [60]

1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


, (2.17)

the Hoffman-Pereira matrix [70]

1 −1 1 0 0 1 −1

−1 1 −1 1 0 0 1

1 −1 1 −1 1 0 0

0 1 −1 1 −1 1 0

0 0 1 −1 1 −1 1

1 0 0 1 −1 1 −1

−1 1 0 0 1 −1 1


, (2.18)

14

and the Hildebrand matrix [68]

1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ1 + ψ5) cos(ψ3 + ψ4)

cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)

cos(ψ2 + ψ3) cos(ψ1 + ψ5) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1


, (2.19)

where each ψi ≥ 0 and
∑5

i=1 ψi < π. Here, we choose the values

ψ1 = ψ2 = ψ3 = ψ4 = ψ5 = π/6.

All these matrices are copositive but are not a sum of psd and nonnegative matrices. We

apply Algorithm 2.1 to test its copositivity. The lower bounds vk and computational time are

shown in Table 2.1. Their copositivity are all confirmed at k = 3, up to tiny round-off errors.

Table 2.1: Computational results for matrices in Example 2.3

Horn Hoffman-Pereira Hildebrand
k vk time(s) vk time(s) vk time(s)
1 −0.7889 0.59 −0.4503 0.58 −0.2218 0.61
2 −0.0472 0.35 −0.0250 0.60 −0.0153 0.32
3 −7.0× 10−8 1.68 −2.2× 10−7 24.85 −1.2× 10−8 1.11

Copositive matrices have applications in graph theory. Let G = (V,E) be a graph,

with V the set of vertices and E the set of edges. Its stability number α(G) is the maximum

number of pairwise disjoint vertices. As shown in [36,94], it holds that

α(G)−1 = min
x∈∆

xT (AG + I)x,

where AG is the adjacency matrix of G. To determine α(G), it is enough to compute the

minimum value v∗ of (2.3) for the matrix A := AG + I.

Example 2.4. For each integer ℓ > 0, construct a graph Gℓ as in [47, §4.2.2], as follows. Let

Kℓ+1,ℓ+1 be the complete bipartite graph with the vertex set {(−1, i), (1, i) : i = 0, 1, . . . , ℓ}. Its
edges are

(
(−1, i), (1, j)

)
, for i, j = 0, 1, . . . , ℓ. For each i = 1, . . . , ℓ, add a vertex to the edge

of the form
(
(−1, i), (1, i)

)
, which we denote as (0, i); then delete the old edge

(
(−1, i), (1, i)

)

15

from the graph and add two new ones
(
(−1, i), (0, i)

)
,
(
(0, i), (1, i)

)
. The resulting graph is

Gℓ. As mentioned in [47], α(Gℓ) = ℓ+ 1. For the matrix A := AG + I, the optimal value v∗

of (2.3) is 1
ℓ+1

. We apply the semidefinite relaxation (2.8) to compute α(Gℓ)
−1. For k = 2,

the lower bound v2 is quite accurate. The computational results are reported in Table 2.2.

Table 2.2: Stability numbers for graphs Gℓ.

ℓ n = |Gℓ| v2 |v2 − 1
ℓ+1

| time(s)

1 5 0.5000 9.2× 10−8 0.53
2 8 0.3333 1.3× 10−7 1.77
3 11 0.2500 1.5× 10−6 10.47
4 14 0.2000 2.4× 10−6 119.25

Example 2.5. Consider three tensors A ∈ S3(R3) whose polynomials A(x) are respectively

given as 
Motzkin: A(x) := x21x2 + x1x

2
2 + x33 − 3x1x2x3,

Robinson: A(x) := x31 + x32 + x33 − x21x2 − x1x
2
2 − x21x3

−x1x23 − x22x3 − x2x
2
3 + 3x1x2x3,

Choi-Lam: A(x) := x21x2 + x22x3 + x23x1 − 3x1x2x3.

(2.20)

When each xi is replaced by x2i , the polynomials A(x) are respectively the Motzkin, Robinson

and Choi-Lam polynomials (they are all nonnegative but not sum of squares [128]). Hence,

these tensors are all copositive. We detect their copositivity by Algorithm 2.1. The computational

results are shown in Table 2.3. For all these tensors, the copositivity is confirmed for k = 3,

up to tiny round-off errors.

Table 2.3: Computational results for tensors in Example 2.5

A(x) Motzkin Robinson Choi-Lam
k vk time(s) vk time(s) vk time(s)
2 −0.0045 0.78 −0.0208 0.76 −0.0129 0.77
3 −4.3× 10−8 0.45 −4.9× 10−8 0.23 −2.1× 10−8 0.37

Copositive tensors have applications in hypergraph theory [24]. A hypergraph G =

(V,E) has a vertex set V = {1, . . . , n} and an edge set E, such that each edge in E is an

16

unordered tuple (i1, . . . , iℓ), with i1, . . . , iℓ ∈ V . It is m-uniform if each edge is an unordered

m-tuple (i1, . . . , im), for distinct i1, . . . , im. Tensor copositivity can be used to bound coclique

numbers for hypergraphs.

Example 2.6. A coclique of a m-uniform hypergraph G is a subset K ⊆ V such that K

any subset of K with cardinality m does not give an edge of G. The largest cardinality of a

coclique of G is called the coclique number of G, which we denote by ω(G) [24]. Computing

ω(G) is typically a challenging question. However, we can get a good upper bound for it by

using tensor copositivity, as shown in [24]. The adjacency tensor of a m-uniform hypergraph

G = (V,E) is the symmetric tensor C ∈ Sm(Rn) such that

Ci1...im =

1/(m− 1)! (i1, . . . , im) ∈ E,

0 otherwise.

Let I be the identity tensor (i.e., Ii1...im = 1 if i1 = · · · = im = 1 and Ii1...im = 0 otherwise),

and let E be the tensor of all ones. It is shown in [24] that ω(G)m−1 ≤ ρ for all ρ such that

ρ(I + C) − E is copositive. To get such smallest such ρ, we need to compute the largest γ

such that (I + C) − γE is copositive. Such largest γ equals the minimum value v∗ of (2.3)

for the tensor A := I + C. Let vk be the lower bound given by (2.8), then

ω(G) ≤ (1/v∗)1/(m−1) ≤ (1/vk)
1/(m−1).

Since ω(G) is an integer, the above implies that

ω(G) ≤ ⌊(1/vk)1/(m−1)⌋ (2.21)

for all k = m0,m0 + 1, We test the above bounds for a class of 3-uniform hypergraphs.

Let Gn = (Vn, En) be the hypergraph such that Vn = {1, . . . , n} and

En =
{
(i, i+ 1, i+ 2)

}n−2

i=1
.

For these hypergraphs Gn, we solve the relaxation (2.8) for k = 2 and get v2, which gives an

upper bound for ω(Gn) by (2.21). The computational results are shown in Table 2.4. For Gn

in the table, the upper bounds given by (2.21) are tight. Indeed, for n ≥ 3, one can verify

that ω(Gn) = n− ⌊n/3⌋. A coclique with maximum cardinality for Gn (n ≥ 3) is the subset

{1 ≤ i ≤ n : mod (i, 3) ̸= 0}.

17

Table 2.4: Coclqiue numbers of hypergraphs Gn

n ω(Gn) (1/v2)
1

m−1 ⌊(1/v2)
1

m−1 ⌋ time(s)
3 2 2.1381 2 0.12
4 3 3.0000 3 0.13
5 4 4.0000 4 0.16
6 4 4.1631 4 0.26
7 5 5.0000 5 0.37
8 6 6.0000 6 0.63
9 6 6.2140 6 1.41
10 7 7.0041 7 3.07
11 8 8.0000 8 5.39
12 8 8.2657 8 15.61
13 9 9.0370 9 31.57
14 10 10.0000 10 72.08
15 10 10.3254 10 213.15
16 11 11.0836 11 282.55
17 12 12.0000 12 487.77

Example 2.7. For every tensor A ∈ Sm(Rn), there always exists a number γ such that

A + γe⊗m is copositive. The smallest such γ, which we denote γmin, is the negative of the

optimal value v∗ of (2.3) for the tensor A. Clearly, A is copositive if and only if γmin ≤ 0.

This example explores the computational cost for computing γmin for randomly generated

cubic tensors A ∈ S3(Rn) for various n. Here, we generate each Ai1i2i3 randomly, obeying

normal distribution (this can be done as Ai1i2i3 = randn in MATLAB). For all generated

instances, we got −γmin = v2, i.e., the relaxation (2.8) is tight for the order k = 2 (this is

because rankM2[ŷ] = 1 for the optimal solution ŷ). The computational time is reported in

Table 2.5.

Table 2.5: Computational time (in seconds) for random cubic tensors

n 9 11 13 15 17 19
time(s) 0.97 4.38 23.79 116.89 327.72 1109.81
n 10 12 14 16 18 20

time(s) 1.82 10.93 50.44 229.32 633.40 2748.65

Generally, SeDuMi can solve SDPs accurately in the computational environment of

double precision. However, if SDPs need to be solved highly accurately, we might use high-

18

accuracy solvers, e.g., SDPA-GMP [97]. Here, we report the experiment of using SDPA-GMP

in Algorithm 2.1 to solve the SDP relaxations. The matrices/tensors in Examples 2.3 and

2.5 are tested. The results are shown in Table 2.6. For k = 2, SDPA-GMP gets similar lower

bounds as SeDuMi does. However, for k = 3, SDPA-GMP obtains highly accurate lower bounds,

compared to those in Tables 2.1,2.3. For the Hildebrand matrix, we got v3 ≈ −1.2× 10−17;

for other matrices/tensors, we got v3 in the magnitude of order 10−30. We do not know

why the accuracy for the Hildebrand matrix is relatively lower. A possible reason is that

the Hildebrand matrix is given by cosine values, which might cause extra round-off errors

in the computation. The comparison also shows that SDPA-GMP takes much more time for

solving the SDPs. For Motzkin/Robinson/Choi-Lam tensors, the time is much less than

that for others. This is because the sizes of their SDP relaxations are smaller. In some

applications, if the copositivity testing needs to be highly accurate, a high-accuracy SDP

solver like SDPA-GMP might be useful.

Table 2.6: Computational results by SDPA-GMP

matrix/tensor
k = 2 k = 3

v2 time(s) v3 time(s)
Horn -0.0472 7.28 −6.0× 10−29 303.33

Hoffman-Pereira -0.0250 76.83 −4.6× 10−29 12437.55
Hildebrand -0.0153 8.25 −1.2× 10−17 297.41
Motzkin -0.0448 0.34 −7.6× 10−31 4.94
Robinson -0.0208 0.37 −1.4× 10−30 3.90
Choi-Lam -0.0129 0.40 −7.7× 10−31 4.42

Acknowledgement. The Chapter 2, in full, is a reprint of the material as it appears

in SIAM Journal on Optimization 2018 [119]. The dissertation author coauthored this paper

with Nie, Jiawang and Zhang, Xinzhen.

19

Chapter 3

The Saddle Point Problem

3.1 Saddle point problems

Let X ⊆ Rn, Y ⊆ Rm be two sets (for dimensions n,m > 0), and let F (x, y) be a

continuous function in (x, y) ∈ X × Y . A pair (x∗, y∗) ∈ X × Y is said to be a saddle point

of F (x, y) over X × Y if

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) ∀x ∈ X, ∀ y ∈ Y. (3.1)

The above implies that

F (x∗, y∗) = min
x∈X

F (x, y∗) ≤ max
y∈Y

min
x∈X

F (x, y),

F (x∗, y∗) = max
y∈Y

F (x∗, y) ≥ min
x∈X

max
y∈Y

F (x, y).

On the other hand, it always holds that

max
y∈Y

min
x∈X

F (x, y) ≤ min
x∈X

max
y∈Y

F (x, y).

Therefore, if (x∗, y∗) is a saddle point, then

min
x∈X

max
y∈Y

F (x, y) = F (x∗, y∗) = max
y∈Y

min
x∈X

F (x, y). (3.2)

All saddle points share the same objective value, although there may exist different saddle

points. The definition of saddle points in (3.1) requires the inequalities to hold for all points

in the feasible sets X, Y . That is, when y is fixed to y∗, x∗ is a global minimizer of F (x, y∗)

over X; when x is fixed to x∗, y∗ is a global maximizer of F (x∗, y) over Y . Certainly, x∗

20

must also be a local minimizer of F (x, y∗) and y∗ must be a local maximizer of F (x∗, y). So,

the local optimality conditions can be applied at (x∗, y∗). However, they are not sufficient

for guaranteeing (x∗, y∗) to be a saddle point, since (3.1) needs to be satisfied for all feasible

points.

The saddle point problem of polynomials (SPPP) is for cases that F (x, y) is a

polynomial function in (x, y) and X, Y are semialgebraic sets, i.e., they are described by

polynomial equalities and/or inequalities. The SPPP concerns the existence of saddle points

and the computation of them if they exist. When F is convex-concave in (x, y) and X, Y

are nonempty compact convex sets, there exists a saddle point. We refer to [10, §2.6]

for the classical theory for convex-concave type saddle point problems. The SPPPs have

broad applications. They are of fundamental importance in duality theory for constrained

optimization, min-max optimization and game theory [10,80,132].

For convex-concave type saddle point problems, most existing methods are based

on gradients, subgradients, variational inequalities, or other related techniques. For these

classical methods, we refer to the work by Chen, Lan and Ouyang [26], Cox, Juditsky and

Nemirovski [30], He and Yuan [63], He and Monteiro [64], Korpelevich [77], Maistroskii [89],

Monteiro and Svaiter [92], Nemirovski [99], Nedić and Ozdaglar [98], and Zabotin [146]. For

more general cases of non convex-concave type saddle point problems (i.e., F is not convex-

concave, and/or one of the setsX, Y is nonconvex), the computational task for solving SPPPs

is much harder. A saddle point may, or may not, exist. There is very little work for solving

non convex-concave saddle point problems [34,121].

3.2 Optimality conditions

Throughout the paper, a property is said to hold generically in a space if it is true

everywhere except a subset of zero Lebesgue measure. We refer to [62] for the notion of

genericity in algebraic geometry. Assume X, Y are basic closed semialgebraic sets that are

given as

X = {x ∈ Rn | gi(x) = 0 (i ∈ EX1), gi(x) ≥ 0 (i ∈ EX2)}, (3.3)

Y = {y ∈ Rm | hj(y) = 0 (i ∈ EY1), hj(y) ≥ 0 (i ∈ EY2)}. (3.4)

Here, each gi is a polynomial in x := (x1, . . . , xn) and each hj is a polynomial in y :=

(y1, . . . , ym). The EX1 , EX2 , EY1 , EY2 are disjoint labeling sets of finite cardinalities. To distinguish

21

equality and inequality constraints, denote the tuples

geq := (gi)i∈EX
1
, heq := (hj)j∈EY

1
,

gin := (gi)i∈EX
2
, hin := (hj)j∈EY

2
.

(3.5)

When EX1 = ∅ (resp., EX2 = ∅), there is no equality (resp., inequality) constraint for X. The

same holds for Y . For convenience, denote the labeling sets

EX := EX1 ∪ EX2 , EY := EY1 ∪ EY2 .

Suppose (x∗, y∗) is a saddle point. Then, x∗ is a minimizer of
min
x∈Rn

F (x, y∗)

subject to gi(x) = 0 (i ∈ EX1),

gi(x) ≥ 0 (i ∈ EX2),

(3.6)

and y∗ is a maximizer of 
max
y∈Rm

F (x∗, y)

subject to hj(y) = 0 (j ∈ EY1),
hj(y) ≥ 0 (j ∈ EY2).

(3.7)

Under the linear independence constraint qualification (LICQ), or other kinds of constraint

qualifications (see [9, §3.3]), there exist Lagrange multipliers λi, µj such that

∇xF (x
∗, y∗) =

∑
i∈EX

λi∇xgi(x
∗), 0 ≤ λi ⊥ gi(x

∗) ≥ 0 (i ∈ EX2), (3.8)

∇yF (x
∗, y∗) =

∑
j∈EY

µj∇yhj(y
∗), 0 ≥ µj ⊥ hj(y

∗) ≥ 0 (j ∈ EY2). (3.9)

In the above, a ⊥ b means the product a · b = 0 and ∇xF (resp., ∇yF) denotes the gradient

of F (x, y) with respect to x (resp., y). When g, h are nonsingular (see the below for the

definition), we can get explicit expressions for λi, µj in terms of x∗, y∗ (see [108]). For

convenience, write the labeling sets as

EX = {1, . . . , ℓ1}, EY = {1, . . . , ℓ2}.

Then, the constraining polynomial tuples can be written as

g = (g1, . . . , gℓ1), h = (h1, . . . , hℓ2).

22

The Lagrange multipliers can be written as vectors

λ = (λ1, . . . , λℓ1), µ = (µ1, . . . , µℓ2).

Denote the matrices

G(x) :=



∇xg1(x) ∇xg2(x) · · · ∇xgℓ1(x)

g1(x) 0 · · · 0

0 g2(x) · · · 0
...

...
. . .

...

0 0 · · · gℓ1(x)


, (3.10)

H(y) :=



∇yh1(y) ∇yh2(y) · · · ∇yhℓ2(y)

h1(y) 0 · · · 0

0 h2(y) · · · 0
...

...
. . .

...

0 0 · · · hℓ2(y)


. (3.11)

The tuple g is said to be nonsingular if rankG(x) = ℓ1 for all x ∈ Cn. Similarly, h is

nonsingular if rankH(y) = ℓ2 for all y ∈ Cm. Note that if g is nonsingular, then LICQ must

hold at x∗. Similarly, the LICQ holds at y∗ if h is nonsingular. When g, h have generic

coefficients (i.e., g, h are generic), the tuples g, h are nonsingular. The nonsingularity is a

property that holds generically. We refer to the work [108] for more details.

We assume that the sets X, Y are given as in (3.3)-(3.4) and the defining polynomial

tuples g, h are nonsingular, i.e., the matrices G(x), H(y) have full column rank everywhere.

Then, as shown in [108], there exist matrix polynomials G1(x), H1(y) such that (Iℓ denotes

the ℓ× ℓ identity matrix)

G1(x)G(x) = Iℓ1 , H1(y)H(y) = Iℓ2 . (3.12)

When g, h have generic coefficients, they are nonsingular. Clearly, the above and (3.8)-(3.9)

imply that

λi = G1(x
∗)i,1:n∇xF (x

∗, y∗), µj = H1(y
∗)j,1:m∇yF (x

∗, y∗).

(For a matrix A, the notation Ai,1:n denotes its ith row with column indices from 1 to n.)

Denote the Lagrange polynomial tuples

λ(x, y) := G1(x):,1:n∇xF (x, y), (3.13)

23

µ(x, y) := H1(y):,1:m∇yF (x, y). (3.14)

(The notation A:,1:n denotes the submatrix of A consisting of its first n columns.) At each

saddle point (x∗, y∗), the Lagrange multiplier vectors λ, µ in (3.8)-(3.9) can be expressed as

λ = λ(x∗, y∗), µ = µ(x∗, y∗).

Therefore, (x∗, y∗) is a solution to the polynomial system

gi(x) = 0 (i ∈ EX1), hj(y) = 0 (j ∈ EY1),
∇xF (x, y) =

∑
i∈EX

λi(x, y)∇xgi(x),

∇yF (x, y) =
∑
j∈EY

µj(x, y)∇yhj(y),

0 ≤ λi(x, y) ⊥ gi(x) ≥ 0 (i ∈ EX2),

0 ≥ µj(x, y) ⊥ hj(y) ≥ 0 (j ∈ EY2).

(3.15)

However, not every solution (x∗, y∗) to (3.15) is a saddle point. This is because x∗ might not

be a minimizer of (3.6), and/or y∗ might not be a maximizer of (3.7).

3.3 An algorithm for solving SPPPs

Let F, g, h be the polynomial tuples for the saddle point problem (3.1). Assume g, h

are nonsingular. So the Lagrange multiplier vectors λ(x, y), µ(x, y) can be expressed as in

(3.13)-(3.14). We have seen that each saddle point (x∗, y∗) must satisfy (3.15). This leads

us to consider the optimization problem

min
x∈X,y∈Y

F (x, y)

subject to ∇xF (x, y)−
∑

i∈EX λi(x, y)∇xgi(x) = 0,

∇yF (x, y)−
∑

j∈EY µj(x, y)∇yhj(y) = 0,

0 ≤ λi(x, y) ⊥ gi(x) ≥ 0 (i ∈ EX2),

0 ≥ µj(x, y) ⊥ hj(y) ≥ 0(j ∈ EY2),

(3.16)

where λi(x, y) and µj(x, y) are Lagrange polynomials given as in (3.13)-(3.14). The saddle

point problem (3.1) is not equivalent to (3.16). However, the optimization problem (3.16)

can be used to get a candidate saddle point. Suppose (x∗, y∗) is a minimizer of (3.16). If x∗

is a minimizer of F (x, y∗) over X and y∗ is a maximizer of F (x∗, y) over Y , then (x∗, y∗) is

24

a saddle point; otherwise, such (x∗, y∗) is not a saddle point, i.e., there exists u ∈ X and/or

there exists v ∈ Y such that

F (u, y∗)− F (x∗, y∗) < 0 and/or F (x∗, v)− F (x∗, y∗) > 0.

The points u, v can be used to give new constraints

F (u, y)− F (x, y) ≥ 0 and/or F (x, y)− F (x, v) ≥ 0. (3.17)

Every saddle point (x, y) must satisfy (3.17), so (3.17) can be added to the optimization

problem (3.16) without excluding any true saddle points. For generic polynomials F, g, h,

the problem (3.16) has only finitely many feasible points (see Theorem 3.3). Therefore, by

repeatedly adding new inequalities like (3.17), we can eventually get a saddle point or detect

nonexistence of saddle points. This results in the following algorithm.

Algorithm 3.1. (An algorithm for solving saddle point problems.)

Input: The polynomials F, g, h as in (3.1), (3.3), (3.4) and Lagrange multiplier expressions

as in (3.13)-(3.14).

Step 0: Let K1 = K2 = Sa := ∅ be empty sets.

Step 1: If the problem (3.16) is infeasible, then (3.1) does not have a saddle point and stop;

otherwise, solve (3.16) for a set K0 of minimizers. Let k := 0.

Step 2: For each (x∗, y∗) ∈ Kk, do the following:

(a): (Lower level minimization) Solve the problem
ϑ1(y

∗) := min
x∈X

F (x, y∗)

subject to ∇xF (x, y
∗)−

∑
i∈EX λi(x, y

∗)∇xgi(x) = 0,

0 ≤ λi(x, y
∗) ⊥ gi(x) ≥ 0 (i ∈ EX2),

(3.18)

and get a set of minimizers S1(y
∗). If F (x∗, y∗) > ϑ1(y

∗), update

K1 := K1 ∪ S1(y
∗).

(b): (Lower level maximization) Solve the problem
ϑ2(x

∗) := max
y∈Y

F (x∗, y)

subject to ∇yF (x
∗, y)−

∑
j∈EY µj(x

∗, y)∇yhj(y) = 0,

0 ≥ µj(x
∗, y) ⊥ hj(y) ≥ 0(j ∈ EY2)

(3.19)

25

and get a set of maximizers S2(x
∗). If F (x∗, y∗) < ϑ2(x

∗), update

K2 := K2 ∪ S2(x
∗).

(c): If ϑ1(y
∗) = F (x∗, y∗) = ϑ2(x

∗), update:

Sa := Sa ∪ {(x∗, y∗)}.

Step 3: If Sa ̸= ∅, then each point in Sa is a saddle point and stop; otherwise go to Step 4.

Step 4: (Upper level minimization) Solve the optimization problem

min
x∈X,y∈Y

F (x, y)

subject to ∇xF (x, y)−
∑

i∈EX λi(x, y)∇xgi(x) = 0,

∇yF (x, y)−
∑

j∈EY µj(x, y)∇yhj(y) = 0,

0 ≤ λi(x, y) ⊥ gi(x) ≥ 0 (i ∈ EX2),

0 ≥ µj(x, y) ⊥ hj(y) ≥ 0(j ∈ EY2),
F (u, y)− F (x, y) ≥ 0 (u ∈ K1),

F (x, v)− F (x, y) ≤ 0 (v ∈ K2).

(3.20)

If (3.20) is infeasible, then (3.1) has no saddle points and stop; otherwise, compute a

set Kk+1 of optimizers for (3.20). Let k := k + 1 and go to Step 2.

Output: If Sa is nonempty, every point in Sa is a saddle point; otherwise, output that there

is no saddle point.

For generic polynomials, the feasible set K0 of (3.16) and each Kk in Algorithm 3.1

is finite. The convergence of Algorithm 3.1 is shown as follows.

Theorem 3.2 ([118]). Let K0 be the feasible set of (3.16) and let Sa be the set of saddle

points for (3.1). If the complement set of Sa in K0 (i.e., the set K0 \ Sa) is finite, then

Algorithm 3.1 must terminate after finitely many iterations. Moreover, if Sa ̸= ∅, then each

(x∗, y∗) ∈ Sa is a saddle point; if Sa = ∅, then there is no saddle point.

Proof. At an iteration, if Sa ̸= ∅, then Algorithm 3.1 terminates. For each iteration with

Sa = ∅, each point (x∗, y∗) ∈ Kk is not feasible for (3.20). When the kth iteration goes to

the (k + 1)th one, the nonempty sets

K0, K1, K2, K3, . . . , Kk

26

are disjoint from each other. All the points in Ki are not saddle points, so

k⋃
i=0

Ki ⊆ K0 \ Sa.

Therefore, when the set K0 \ Sa is finite, Algorithm 3.1 must terminate after finitely many

iterations.

When Sa ̸= ∅, each point (x∗, y∗) ∈ Sa is verified as a saddle point in Step 2. When

Sa = ∅, Algorithm 3.1 stops in Step 4 at some iteration, with the case that (3.20) is infeasible.

Since every saddle point is feasible for both (3.16) and (3.20), there does not exist a saddle

point if Sa = ∅.

The number of iterations required by Algorithm 3.1 to terminate is bounded above

by the cardinality of the complement set K0 \ Sa, which is always less than or equal to

the cardinality |K0| of the feasible set of (3.16). Generally, it is hard to count |K0 \ Sa| or
|K0| accurately. When the polynomials F, g, h are generic, we can prove that the number of

solutions for equality constraints in (3.16) is finite. For degrees a0, b0 > 0, denote the set

product C[x, y]a0,b0 := C[x]a0 · C[y]b0 .

Theorem 3.3 ([118]). Let a0, b0 and ai, bj > 0 be positive degrees, for i ∈ EX and j ∈ EY .
If F (x, y) ∈ C[x, y]a0,b0, gi ∈ C[x]ai, hj ∈ C[y]bj are generic polynomials, then the polynomial

system 
∇xF (x, y) =

∑
i∈EX λi(x, y)∇xgi(x),

gi(x) = 0 (i ∈ EX1), λi(x, y)gi(x) = 0 (i ∈ EX2),

∇yF (x, y) =
∑

j∈EY µj(x, y)∇yhj(y),

hj(y) = 0 (j ∈ EY1), µj(x, y)hj(y) = 0 (j ∈ EY2)

(3.21)

has only finitely many complex solutions in Cn × Cm.

The proof for Theorem 3.3 will be given in Section 3.5. One would like to know what

is the number of complex solutions to the polynomial system (3.21) for generic polynomials

F, g, h. That number is an upper bound for |K0| and so is also an upper bound for the

number of iterations required by Algorithm 3.1 to terminate. The following theorem gives

an upper bound for |K0|.

Theorem 3.4 ([118]). For the degrees ai, bj as in Theorem 3.3, let

M :=
∑

{i1,...,ir1}⊆[ℓ1],0≤r1≤n
{j1,...,jr2}⊆[ℓ2],0≤r2≤m

ai1 · · · air1 bj1 · · · bjr2 · s (3.22)

27

where in the above the number s is given as

s =
∑

k0+···+kr1+r2=n+m−r1−r2
k0,...,kr1+r2∈N

(a0 + b0)
k0(ai1)

k1 · · · (air1)
kr1 (bj1)

kr1+1 · · · (bjr2)
kr1+r2 .

If F (x, y), gi, hj are generic, then (3.21) has at most M complex solutions, and hence

Algorithm 3.1 must terminate within M iterations.

The proof for Theorem 3.4 will be given in Section 3.5. We remark that the upper

boundM given in (3.22) is not sharp. In our computational practice, Algorithm 3.1 typically

terminates after a few iterations. It is an interesting question to obtain accurate upper

bounds for the number of iterations required by Algorithm 3.1 to terminate.

3.4 Solving optimization problems

We discuss how to solve the optimization problems that appear in Algorithm 3.1.

Under some genericity assumptions on F, g, h, we show that their optimizers can be computed

by solving Lasserre type semidefinite relaxations. Let X, Y be feasible sets given as in (3.3)-

(3.4). Assume g, h are nonsingular, so λ(x, y), µ(x, y) can be expressed as in (3.13)-(3.14).

The optimization problem (3.16) is a special case of (3.20), with K1 = K2 = ∅. It

suffices to discuss how to solve (3.20) with finite sets K1, K2. For convenience, we rewrite

(3.20) explicitly as

min
(x,y)

F (x, y)

subject to ∇xF (x, y)−
∑

i∈EX λi(x, y)∇xgi(x) = 0,

∇yF (x, y)−
∑

j∈EY µj(x, y)∇yhj(y) = 0,

gi(x) = 0, hj(y) = 0 (i ∈ EX1 , j ∈ EY1),
λi(x, y)gi(x) = 0, µj(x, y)hj(y) = 0 (i ∈ EX2 , j ∈ EY2),
gi(x) ≥ 0, λi(x, y) ≥ 0 (i ∈ EX2),

hj(y) ≥ 0, −µj(x, y) ≥ 0 (j ∈ EY2),
F (u, y)− F (x, y) ≥ 0 (∀u ∈ K1),

F (x, y)− F (x, v) ≥ 0 (∀ v ∈ K2).

(3.23)

Recall that λi(x, y), µj(x, y) are Lagrange polynomials as in (3.13)-(3.14). Denote by ϕ the

28

tuple of equality constraining polynomials

ϕ :=
{
∇xF −

∑
i∈EX

λi(x, y)∇xgi

}
∪
{
∇yF −

∑
j∈EY

µj(x, y)∇yhj

}
∪
{
gi, hj

}
i∈EX

1 ,j∈EY
1

∪
{
λi(x, y)gi, µj(x, y)hj

}
i∈EX

2 ,j∈EY
2

, (3.24)

and denote by ψ the tuple of inequality constraining ones

ψ :=
{
gi, hj, λi(x, y), −µj(x, y)

}
i∈EX

2 ,j∈EY
2

∪{
F (u, y)− F (x, y), F (x, y)− F (x, v)

}
u∈K1, v∈K2

. (3.25)

They are polynomials in (x, y). Let

d0 :=
⌈1
2
max{degF (x, y), deg(ϕ), deg(ψ)}

⌉
. (3.26)

Then, the optimization problem (3.23) can be simply written as{
f∗ := min F (x, y)

subject to ϕ(x, y) = 0, ψ(x, y) ≥ 0.
(3.27)

We apply Lasserre’s hierarchy of semidefinite relaxations to solve (3.27). For integers k =

d0, d0 + 1, · · · , the kth order semidefinite relaxation is
Fk := min ⟨F,w⟩
subject to (w)0 = 1, Mk(w) ⪰ 0,

L
(k)
ϕ (w) = 0, L

(k)
ψ (w) ⪰ 0, w ∈ RNn+m

2k .

(3.28)

The number k is called a relaxation order.

Algorithm 3.5. (An algorithm for solving the optimization (3.23).)

Input: Polynomials F, ϕ, ψ as in (3.24)-(3.25).

Step 0: Let k := d0.

Step 1: Solve the semidefinite relaxation (3.28).

Step 2: If the relaxation (3.28) is infeasible, then (3.1) has no saddle points and stop;

otherwise, solve it for a minimizer w∗. Let t := d0.

Step 3 Check whether or not w∗ satisfies the rank condition

rankMt(w
∗) = rankMt−d0(w

∗). (3.29)

29

Step 4 If (3.29) holds, extract r := rankMt(w
∗) minimizers for (3.23) and stop.

Step 5 If t < k, let t := t+ 1 and go to Step 3; otherwise, let k := k + 1 and go to Step 1.

Output: Minimizers of the optimization problem (3.23) or a certificate for the infeasibility

of (3.23).

The conclusions in the Steps 2 and 3 are justified by the following Proposition 3.6. The

rank condition (3.29) is called flat extension or flat truncation [32,102]. It is a sufficient and

also almost necessary criterion for checking convergence of Lasserre type relaxations [102].

When it is satisfied, the method in [67] can be applied to extract minimizers in Step 4. It

was implemented in the software GloptiPoly 3 [66].

Proposition 3.6 ([118]). Suppose g, h are nonsingular polynomial tuples. For the hierarchy

of relaxations (3.28), we have the properties:

i) If (3.28) is infeasible for some k, then (3.23) is infeasible and (3.1) has no saddle

points.

ii) If (3.28) has a minimizer w∗ satisfying (3.29), then Fk = f∗ and there are r :=

rankMt(w
∗) minimizers for (3.23).

Proof. Since g, h are nonsingular, every saddle point must be a critical point, and Lagrange

multipliers can be expressed as in (3.13)-(3.14).

i) For each (u, v) that is feasible for (3.23), [(u, v)]2k satisfies all the constraints of

(3.28), for all k. Therefore, if (3.28) is infeasible for some k, then (3.23) is infeasible.

ii) The conclusion follows from the classical results in [32,67,83,102].

The notation IQ is the sum of an ideal and a quadratic module. The polynomial

tuples ϕ, ψ are from (3.24)-(3.25). Algorithm 3.5 is able to solve (3.23) successfully after

finitely many iterations, under the following genericity conditions.

Condition 3.7. The polynomial tuples g, h are nonsingular and F, g, h satisfy one (not

necessarily all) of the following:

(1) IQ(geq, gin) + IQ(heq, hin) is archimedean;

(2) the equation ϕ(x, y) = 0 has finitely many real solutions;

30

(3) IQ(ϕ, ψ) is archimedean.

In the above, the item (1) is almost the same as that X, Y are compact sets; the

item (2) is the same as that (3.21) has only finitely many real solutions. Also note that the

item (1) or (2) implies (3). In Theorem 3.3, we have shown that (3.21) has only finitely

many complex solutions when F, g, h are generic. Therefore, Condition 3.7 holds generically.

Under Condition 3.7, Algorithm 3.5 can be shown to have finite convergence.

Theorem 3.8 ([118]). Under Condition 3.7, we have that:

i) If the problem (3.23) is infeasible, then the semidefinite relaxation (3.28) must be

infeasible for all k big enough.

ii) Suppose (3.23) is feasible. If (3.23) has only finitely many minimizers and each of

them is an isolated critical point (i.e., an isolated real solution of (3.21)), then, for

all k big enough, (3.28) has a minimizer and each minimizer must satisfy the rank

condition (3.29).

We would like to remark that when F, g, h are generic, every minimizer of (3.23) is

an isolated real solution of (3.21). This is because (3.21) has only finitely many complex

solutions for generic F, g, h. Therefore, Algorithm 3.5 has finite convergence for generic cases.

For a given pair (x∗, y∗) that is feasible for (3.16) or (3.20), we need to check whether

or not x∗ is a minimizer of F (x, y∗) over X. This requires us to solve the minimization

problem 
min
x∈Rn

F (x, y∗)

subject to gi(x) = 0 (i ∈ EX1),

gi(x) ≥ 0 (i ∈ EX2).

(3.30)

When g is nonsingular, if it has a minimizer, the optimization (3.30) is equivalent to (by

adding necessary optimality conditions)

min
x∈Rn

F (x, y∗)

subject to ∇xF (x, y
∗)−

∑
i∈EX

λi(x, y
∗)∇xgi(x) = 0,

gi(x) = 0 (i ∈ EX1), λi(x, y
∗)gi(x) = 0 (i ∈ EX2),

gi(x) ≥ 0, λi(x, y
∗) ≥ 0 (i ∈ EX2).

(3.31)

31

Denote the tuple of equality constraining polynomials

ϕy∗ :=
{
∇xF (x, y

∗)−
∑

i∈EX
λi(x, y

∗)∇xgi

}
∪
{
gi
}
i∈EX

1
∪
{
λi(x, y

∗) · gi
}
i∈EX

2
, (3.32)

and denote the tuple of inequality ones

ψy∗ :=
{
gi, λi(x, y

∗)
}
i∈EX

2

. (3.33)

They are polynomials in x but not in y, depending on the value of y∗. Let

d1 :=
⌈1
2
max{degF (x, y∗), deg(ϕy∗), deg(ψy∗)}

⌉
. (3.34)

We can rewrite (3.31) equivalently as min
x∈Rn

F (x, y∗)

subject to ϕy∗(x) = 0, ψy∗(x) ≥ 0.
(3.35)

Lasserre’s hierarchy of semidefinite relaxations for solving (3.35) is
min
z

⟨F (x, y∗), z⟩

subject to (z)0 = 1, Mk(z) ⪰ 0,

L
(k)
ϕy∗

(z) = 0, L
(k)
ψy∗

(z) ⪰ 0, z ∈ RNn
2k ,

(3.36)

for relaxation orders k = d1, d1 + 1, Since (x∗, y∗) is a feasible pair for (3.16) or (3.20),

the problems (3.30) and (3.35) are also feasible, hence (3.36) is also feasible. A standard

algorithm for solving (3.35) is as follows.

Algorithm 3.9. (An algorithm for solving the problem (3.35).)

Input: The point y∗ and polynomials F (x, y∗), ϕy∗ , ψy∗ as in (3.32)-(3.33).

Step 0: Let k := d1.

Step 1: Solve the semidefinite relaxation (3.36) for a minimizer z∗. Let t := d1.

Step 2: Check whether or not z∗ satisfies the rank condition

rankMt(z
∗) = rankMt−d1(z

∗). (3.37)

Step 3: If (3.37) holds, extract r := rankMt(z
∗) minimizers and stop.

32

Step 4: If t < k, let t := t+ 1 and go to Step 3; otherwise, let k := k + 1 and go to Step 1.

Output: Minimizers of the optimization problem (3.35).

Similar conclusions as in Proposition 3.6 hold for Algorithm 3.9. For cleanness of the

paper, we do not state them again. The method in [67] can be applied to extract minimizers

in the Step 3. Moreover, Algorithm 3.9 also terminates within finitely many iterations, under

some genericity conditions.

Condition 3.10. The polynomial tuple g is nonsingular and the point y∗ satisfies one (not

necessarily all) of the following:

(1) IQ(geq, gin) is archimedean;

(2) the equation ϕy∗(x) = 0 has finitely many real solutions;

(3) IQ(ϕy∗ , ψy∗) is archimedean.

Since (x∗, y∗) is feasible for (3.16) or (3.20), Condition 3.7 implies Condition 3.10,

which also holds generically. The finite convergence of Algorithm 3.9 is summarized as

follows.

Theorem 3.11 ([118]). Assume the optimization problem (3.30) has a minimizer and

Condition 3.10 holds. If each minimizer of (3.30) is an isolated critical point, then, for all

k big enough, (3.36) has a minimizer and each of them must satisfy (3.37).

The proof of Theorem 3.11 will be given in Section 3.5. We would like to remark that

every minimizer of (3.35) is an isolated critical point of (3.30), when F, g, h are generic. This

is implied by Theorem 3.3.

For a given pair (x∗, y∗) that is feasible for (3.16) or (3.20), we need to check whether

or not y∗ is a maximizer of F (x∗, y) over Y . This requires us to solve the maximization

problem  max
y∈Rm

F (x∗, y)

subject to hj(y) = 0 (j ∈ EY1), hj(y) ≥ 0 (j ∈ EY2).
(3.38)

33

When h is nonsingular, if it has a minimizer, the optimization (3.38) is equivalent to (by

adding necessary optimality conditions) the problem

max
y∈Rm

F (x∗, y)

subject to ∇yF (x
∗, y)−

∑
j∈EY µj(x

∗, y)∇yhj(y) = 0,

hj(y) = 0 (j ∈ EY1), µj(x∗, y) · hj(y) = 0 (j ∈ EY2),
hj(y) ≥ 0, −µj(x∗, y) ≥ 0 (j ∈ EY2).

(3.39)

Denote the tuple of equality constraining polynomials

ϕx∗ :=
{
∇yF (x

∗, y)−
∑
j∈EY

µj(x
∗, y)∇yhj

}
∪
{
hj
}
j∈EY

1
∪
{
µj(x

∗, y)hj
}
j∈EY

2
, (3.40)

and denote the tuple of inequality ones

ψx∗ :=
{
hj, −µj(x∗, y)

}
j∈EY

2

. (3.41)

They are polynomials in y but not in x, depending on the value of x∗. Let

d2 :=
⌈1
2
max{degF (x∗, y), deg(ϕx∗), deg(ψx∗)}

⌉
. (3.42)

Hence, (3.39) can be simply expressed as max
y∈Rm

F (x∗, y)

subject to ϕx∗(y) = 0, ψx∗(y) ≥ 0.
(3.43)

Lasserre’s hierarchy of semidefinite relaxations for solving (3.43) is
max
z

⟨F (x∗, y), z⟩

subject to (z)0 = 1, Mk(z) ⪰ 0,

L
(k)
ϕx∗

(z) = 0, L
(k)
ψx∗

(z) ⪰ 0,

z ∈ RNm
2k ,

(3.44)

for relaxation orders k = d2, d2 + 1, · · · . Since (x∗, y∗) is feasible for (3.16) or (3.20), the

problems (3.38) and (3.43) must also be feasible. Hence, the relaxation (3.44) is always

feasible. Similarly, an algorithm for solving (3.43) is as follows.

Algorithm 3.12. (An algorithm for solving the problem (3.43).)

34

Input: The point x∗ and polynomials F (x∗, y), ϕx∗ , ψx∗ as in (3.40)-(3.41).

Step 0: Let k := d2.

Step 1: Solve the semidefinite relaxation (3.44) for a maximizer z∗. Let t := d2.

Step 2: Check whether or not z∗ satisfies the rank condition

rankMt(z
∗) = rankMt−d2(z

∗). (3.45)

Step 3: If (3.45) holds, extract r := rankMt(z
∗) maximizers for (3.43) and stop.

Step 4: If t < k, let t := t+ 1 and go to Step 3; otherwise, let k := k + 1 and go to Step 1.

Output: Maximizers of the optimization problem (3.43).

The same kind of conclusions like in Proposition 3.6 hold for Algorithm 3.12. The

method in [67] can be applied to extract maximizers in Step 3. We can show that it must

also terminate within finitely many iterations, under some genericity conditions.

Condition 3.13. The polynomial tuple h is nonsingular and the point x∗ satisfies one (not

necessarily all) of the following:

(1) IQ(heq, hin) is archimedean;

(2) the equation ϕx∗(y) = 0 has finitely many real solutions;

(3) IQ(ϕx∗ , ψx∗) is archimedean.

By the same argument as for Condition 3.10, we can also see that Condition 3.13

holds generically. Similarly, Algorithm 3.12 also terminates within finitely many iterations

under some genericity conditions.

Theorem 3.14 ([118]). Assume that (3.38) has a maximizer and Condition 3.13 holds. If

each maximizer of (3.38) is an isolated critical point, then, for all k big enough, (3.44) has

a maximizer and each of them must satisfy (3.45).

The proof of Theorem 3.14 will be given in Section 3.5. Similarly, when F, g, h are

generic, each maximizer of (3.38) is an isolated critical point of (3.38).

35

3.5 Some proofs

This section gives the proofs for some theorems in the previous sections.

Proof of Theorem 3.3. Under the genericity assumption, the tuples g, h are nonsingular, so

the Lagrange multipliers in (3.8)-(3.9) can be expressed as in (3.13)-(3.14). Hence, (3.21) is

equivalent to the polynomial system in (x, y, λ, µ):
∇xF (x, y) =

∑
i∈EX λi∇xgi(x),

∇yF (x, y) =
∑

j∈EY µj∇yhj(y),

gi(x) = 0 (i ∈ EX1), λigi(x) = 0 (i ∈ EX2),

hj(y) = 0 (j ∈ EY1), µjhj(y) = 0 (j ∈ EY2).

(3.46)

Due to the complementarity conditions, gi(x) = 0 or λi = 0 for each i ∈ EX2 , and hj(x) = 0 or

µj = 0 for each j ∈ EY2 . Note that if gi(x) ̸= 0 then λi = 0 and if hj(x) ̸= 0 then µj = 0. Since

EX2 , EY2 are finite labeling sets, there are only finitely many cases of gi(x) = 0 or gi(x) ̸= 0,

hj(x) = 0 or hj(x) ̸= 0. We prove the conclusion is true for every case. Moreover, if gi(x) = 0

for i ∈ EX2 , then the inequality gi(x) ≥ 0 can be counted as an equality constraint. The same

is true for hj(x) = 0 with j ∈ EY2 . Therefore, we only need to prove the conclusion is true for

the case that has only equality constraints. Without loss of generality, assume EX2 = EY2 = ∅
and write the labeling sets as

EX1 = {1, . . . , ℓ1}, EY1 = {1, . . . , ℓ2}.

When all gi are generic polynomials, the equations gi(x) = 0 (i ∈ EX1) have no solutions if

ℓ1 > n. Similarly, the equations hj(x) = 0 (j ∈ EY1) have no solutions if ℓ2 > m and all hj

are generic. Therefore, we only consider the case that ℓ1 ≤ n and ℓ2 ≤ m. When F, g, h are

generic, we show that (3.46) cannot have infinitely many solutions. The system (3.46) is the

same as {
∇xF (x, y) =

∑ℓ1
i=1 λi∇xgi(x), g1(x) = · · · = gℓ1(x) = 0,

∇yF (x, y) =
∑ℓ2

j=1 µj∇yhj(y), h1(y) = · · · = hℓ2(y) = 0.
(3.47)

Let x̃ = (x0, x1, . . . , xn) and ỹ = (y0, y1, . . . , ym). We denote the homogenization of gi(x)

(resp., hj(y)) by g̃i(x̃) (resp., h̃j(ỹ)). Let Pn denote the n-dimensional complex projective

space. Consider the projective variety

U :=
{
(x̃, ỹ) ∈ Pn × Pm : g̃i(x̃) = 0 (i ∈ EX), h̃j(ỹ) = 0 (j ∈ EY)

}
.

36

It is smooth, by Bertini’s theorem [62], under the genericity assumption on gi, hj. Denote

the bi-homogenization of F (x, y)

F̃ (x̃, ỹ) := xa00 y
b0
0 F̃ (x/x0, y/y0).

When F (x, y) is generic, the projective variety

V := U ∩ {F̃ (x̃, ỹ) = 0}

is also smooth. One can directly verify that (for homogeneous polynomials)

xT∇xF̃ (x̃, ỹ) + x0∂x0F̃ (x̃, ỹ) = a0F̃ (x̃, ỹ),

xT∇xg̃i(x̃) + x0∂x0 g̃i(x̃) = aig̃i(x̃),

yT∇yF̃ (x̃, ỹ) + y0∂y0F̃ (x̃, ỹ) = b0F̃ (x̃, ỹ),

yT∇yh̃j(ỹ) + y0∂y0h̃j(ỹ) = bih̃j(ỹ).

(They are called Euler’s identities.) Consider the determinantal variety

W :=

(x, y) ∈ Cn × Cm

∣∣∣∣∣∣ rank
[
∇xF (x, y) ∇xg1(x) · · · ∇xgℓ1(x)

]
≤ ℓ1

rank
[
∇yF (x, y) ∇yh1(y) · · · ∇yhℓ2(y)

]
≤ ℓ2

 .

Its homogenization is

W̃ :=

(x̃, ỹ) ∈ Pn × Pm
∣∣∣∣∣∣ rank

[
∇xF̃ (x̃, ỹ) ∇xg̃1(x̃) · · · ∇xg̃ℓ1(x̃)

]
≤ ℓ1

rank
[
∇yF̃ (x̃, ỹ) ∇yh̃1(ỹ) · · · ∇yh̃ℓ2(ỹ)

]
≤ ℓ2

 .

The projectivization of (3.47) is the intersection

W̃ ∩ U .

If (3.21) has infinitely many complex solutions, so does (3.47). Then, W̃ ∩ U must intersect

the hypersurface {F̃ (x̃, ỹ) = 0}. This means that there exists (x̄, ȳ) ∈ V such that

∇xF̃ (x̄, ȳ) =

ℓ1∑
i=1

λi∇xg̃i(x̄), ∇yF̃ (x̄, ȳ) =

ℓ2∑
j=1

µj∇yh̃j(ȳ),

for some λi, µj. Also note g̃i(x̄) = h̃j(ȳ) = F̃ (x̄, ȳ) = 0. Write

x̄ = (x̄0, x̄1, . . . , x̄n), ȳ = (ȳ0, ȳ1, . . . , ȳm).

37

• If x̄0 ̸= 0 and ȳ0 ̸= 0, by Euler’s identities, we can further get

∂x0F̃ (x̄, ȳ) =

ℓ1∑
i=1

λi∂x0 g̃i(x̄), ∂y0F̃ (x̄, ȳ) =

ℓ2∑
j=1

µj∂y0h̃j(ȳ).

This implies that V is singular, which is a contradiction.

• If x0 = 0 but y0 ̸= 0, by Euler’s identities, we can also get

∂y0F̃ (x̄, ȳ) =

ℓ2∑
j=1

µj∂y0h̃j(ȳ).

This means the linear section V ∩ {x0 = 0} is singular, which is a contradiction again,

by the genericity assumption on F, g, h.

• If x0 ̸= 0 but y0 = 0, then we can have

∂x0F̃ (x̄, ȳ) =

ℓ1∑
i=1

λi∂x0 g̃i(x̄).

So the linear section V ∩ {y0 = 0} is singular, which is again a contradiction.

• If x0 = y0 = 0, then V ∩ {x0 = 0, y0 = 0} is singular. It is also a contradiction, under

the genericity assumption on F, g, h.

For every case, we obtain a contradiction. Therefore, the polynomial system (3.21) must

have only finitely many complex solutions, when F, g, h are generic.

Proof of Theorem 3.4. Each solution of (3.21) is a critical point of F (x, y) over the setX×Y .

We count the number of critical points by enumerating all possibilities of active constraints.

For an active labeling set {i1, . . . , ir1} ⊆ [ℓ1] (for X) and an active labeling set {j1, . . . , jr2} ⊆
[ℓ2] (for Y), an upper bound for the number is critical points is ai1 · · · air1 bj1 · · · bjr2 ·s, which is

given by Theorem 2.2 of [116]. Summing this upper bound for all possible active constraints,

we eventually get the boundM . Since K0 is a subset of (3.21), Algorithm 3.1 must terminate

within M iterations, for generic polynomials.

Proof of Theorem 3.8. In Condition 3.7, the item (1) or (2) implies (3). Note that the dual

optimization problem of (3.28) is{
max γ

subject to F − γ ∈ IQ(ϕ, ψ)2k.
(3.48)

38

i) When (3.23) is infeasible, the set {ϕ(x, y) = 0, ψ(x, y) ≥ 0} is empty. Since IQ(ϕ, ψ)

is archimedean, by the classical Positivstellensatz [13] and Putinar’s Positivstellensatz [124],

we have −1 ∈ IQ(ϕ, ψ). So, −1 ∈ IQ(ϕ, ψ)2k for all such k big enough. Hence, (3.48) is

unbounded from above for all big k. By weak duality, we know (3.28) must be infeasible.

ii) When (3.23) is feasible, every feasible point is a critical point. By Lemma 3.3

of [41], F (x, y) achieves finitely many values on ϕ(x, y) = 0, say,

c1 < c2 < · · · < cN .

Recall that f∗ is the minimum value of (3.27). So, f∗ is one of the ci, say, cℓ = f∗. Since

(3.23) has only finitely many minimizers, we can list them as the set

O := {(u1, v1), . . . , (uB, vB)}.

If (x, y) is a feasible point of (3.23), then either F (x, y) = ck with k > ℓ, or (x, y) is one of

(u1, v1), . . . , (uB, vB). Define the polynomial

P (x, y) :=
(N∏
i=ℓ+1

(F (x, y)− ci)
2
)
·

(∏
(uj ,vj)∈O

(
∥x− uj∥2 + ∥y − vj∥2

))
.

We partition the set {ϕ(x, y) = 0} into four disjoint ones:

U1 := {ϕ(x, y) = 0, c1 ≤ F (x, y) ≤ cℓ−1} ,
U2 := {ϕ(x, y) = 0, F (x, y) = cℓ, (x, y) ̸∈ O} ,
U3 := {ϕ(x, y) = 0, F (x, y) = cℓ, (x, y) ∈ O} ,
U4 := {ϕ(x, y) = 0, cℓ+1 ≤ F (x, y) ≤ cN} .

Note that U3 is the set of minimizers for (3.27).

• For all (x, y) ∈ U1 and i = ℓ+ 1, . . . , N ,

(F (x, y)− ci)
2 ≥ (cℓ−1 − cℓ+1)

2.

The set U1 is closed and each (uj, vj) ̸∈ U1. The distance from (uj, vj) to U1 is positive.

Hence, there exists ϵ1 > 0 such that P (x, y) > ϵ1 for all (x, y) ∈ U1.

• For all (x, y) ∈ U2, (F (x, y)− ci)
2 = (cℓ− ci)

2. For each (uj, vj) ∈ O, its distance to U2

is positive. This is because each (ui, vi) ∈ O is an isolated real critical point. So, there

exists ϵ2 > 0 such that P (x, y) > ϵ2 for all (x, y) ∈ U2.

39

Denote the new polynomial

q(x, y) := min(ϵ1, ϵ2)− P (x, y).

On the set {ϕ(x, y) = 0}, the inequality q(x, y) ≥ 0 implies (x, y) ∈ U3 ∪ U4. Therefore,

(3.23) is equivalent to the optimization problem min
x,y

F (x, y)

subject to ϕ(x, y) = 0, q(x, y) ≥ 0.
(3.49)

Note that q(x, y) > 0 on the feasible set of (3.23).
(
This is because if (x, y) is a feasible

point of (3.23), then F (x, y) ≥ f∗ = cℓ, so (x, y) ̸∈ U1. If F (x, y) = cℓ, then (x, y) ∈ O and

P (x, y) = 0, so q(x, y) = min(ϵ1, ϵ2) > 0. If F (x, y) > cℓ, then P (x, y) = 0 and we also have

q(x, y) = min(ϵ1, ϵ2) > 0.
)
By Condition 3.7 and Putinar’s Positivstellensatz, it holds that

q ∈ IQ(ϕ, ψ). Now, we consider the hierarchy of Lasserre’s relaxations for solving (3.49):
f ′
k := min ⟨F,w⟩

subject to (w)0 = 1,Mk(w) ⪰ 0,

L
(k)
ϕ (w) = 0, L

(k)
q (w) ⪰ 0.

(3.50)

Its dual optimization problem is{
fk := max γ

subject to F − γ ∈ IQ(ϕ, q)2k.
(3.51)

Claim: For all k big enough, it holds that fk = f ′
k = f∗.

Proof. The possible objective values of (3.49) are cℓ, . . . , cN . Let p1, . . . , pN be real univariate

polynomials such that pi(cj) = 0 for i ̸= j and pi(cj) = 1 for i = j. Let

si := (ci − f∗)
(
pi(F)

)2
, i = ℓ, . . . , N.

Then s := sℓ + · · ·+ sN ∈ Σ[x]2k1 for some order k1 > 0. Let

F̂ := F − f∗ − s.

Note that F̂ (x) ≡ 0 on the set

K2 := {ϕ(x, y) = 0, q(x, y) ≥ 0}.

40

It has a single inequality. By the Positivstellensatz [13, Corollary 4.1.8], there exist 0 < t ∈ N
and Q = b0 + qb1 (b0, b1 ∈ Σ[x]) such that F̂ 2t +Q ∈ Ideal(ϕ). Note that Q ∈ Qmod(q). For

all ϵ > 0 and τ > 0, we have F̂ + ϵ = ϕϵ + θϵ where

ϕϵ = −τϵ1−2t
(
F̂ 2t +Q

)
,

θϵ = ϵ
(
1 + F̂ /ϵ+ τ(F̂ /ϵ)2t

)
+ τϵ1−2tQ.

By Lemma 2.1 of [114], when τ ≥ 1
2t
, there exists k2 such that, for all ϵ > 0,

ϕϵ ∈ Ideal(ϕ)2k2 , θϵ ∈ Qmod(q)2k2 .

Hence, we can get

F − (f∗ − ϵ) = ϕϵ + σϵ,

where σϵ = θϵ + s ∈ Qmod(q)2k2 for all ϵ > 0. For all ϵ > 0, γ = f∗ − ϵ is feasible in (3.51)

for the order k2, so fk2 ≥ f∗. Because fk ≤ fk+1 ≤ · · · ≤ f∗, we have fk = f ′
k = f∗ for all

k ≥ k2.

Because q ∈ Qmod(ψ), each w, which is feasible for (3.28), is also feasible for (3.50).

This can be implied by [102, Lemma 2.5]. So, when k is big, each w is also a minimizer of

(3.50). The problem (3.49) also has only finitely many minimizers. By Theorem 2.6 of [102],

the condition (3.29) must be satisfied for some t ∈ [d0, k], when k is big enough.

Proof of Theorem 3.11. The proof is the same as the one for Theorem 3.8. This is because

the Lasserre’s relaxations (3.36) are constructed by using optimality conditions of (3.30),

which is the same as for Theorem 3.8. In other words, Theorem 3.11 can be thought of a

special version of Theorem 3.8 with K1 = K2 = ∅, without variable y. The assumptions are

the same. Therefore, the same proof can be used.

Proof of Theorem 3.14. The proof is the same as the one for Theorem 3.11.

3.6 Numerical examples

This section presents numerical examples of applying Algorithm 3.1 to solve saddle

point problems. The computation is implemented in MATLAB R2012a, on a Lenovo Laptop

with CPU@2.90GHz and RAM 16.0G. The Lasserre type moment semidefinite relaxations

41

are solved by the software GloptiPoly 3 [66], which calls the semidefinite program solver

SeDuMi [139]. For cleanness, only four decimal digits are displayed for computational results.

In prior existing references, there are very few examples of non convex-concave type

SPPPs. We construct various examples, with different types of functions and constraints.

When g, h are nonsingular tuples, the Lagrange multipliers λ(x, y), µ(x, y) can be expressed

by polynomials as in (3.13)-(3.14). Here we give some expressions for λ(x, y) that will be

frequently used in the examples. The expressions are similar for µ(x, y). Let F (x, y) be the

objective.

• For the simplex ∆n = {x ∈ Rn : eTx = 1, x ≥ 0}, g = (eTx − 1, x1, . . . , xn) and we

have

λ(x, y) = (xT∇xF, Fx1 − xT∇xF, . . . , Fxn − xT∇xF). (3.52)

• For the hypercube set [−1, 1]n, g = (1− x21, . . . , 1− x2n) and

λ(x, y) = −1

2
(x1Fx1 , . . . , xnFxn). (3.53)

• For the box constraint [0, 1]n, g = (x1, . . . , xn, 1− x1, . . . , 1− xn) and

λ(x, y) = ((1− x1)Fx1 , . . . , (1− xn)Fxn ,−x1Fx1 , . . . ,−xnFxn). (3.54)

• For the ball Bn(0, 1) = {x ∈ Rn : ∥x∥ ≤ 1} or sphere Sn−1 = {x ∈ Rn : ∥x∥ = 1},
g = 1− xTx and we have

λ(x, y) = −1

2
xT∇xF. (3.55)

• For the nonnegative orthant Rn
+, g = (x1, . . . , xn) and we have

λ(x, y) = (Fx1 , . . . , Fxn). (3.56)

We refer to [108] for more details about Lagrange multiplier expressions.

Example 3.15. Consider the simplex feasible sets X = ∆n, Y = ∆m. The Lagrange

multipliers can be expressed as in (3.52).

(i) Let n = m = 3 and

F (x, y) = x1x2 + x2x3 + x3y1 + x1y3 + y1y2 + y2y3.

42

This function is neither convex in x nor concave in y. After 1 iteration by Algorithm 3.1,

we got the saddle point:

x∗ = (0.0000, 1.0000, 0.0000), y∗ = (0.2500, 0.5000, 0.2500).

It took about 2 seconds.

(ii) Let n = m = 3 and

F (x, y) := x1x2y1y2 + x2x3y2y3 + x3x1y3y1 − x21y
2
3 − x22y

2
1 − x23y

2
2.

This function is neither convex in x nor concave in y. After 4 iterations by Algorithm 3.1,

we got that there is no saddle point. It took about 32 seconds.

Example 3.16. Consider the box constraints X = [0, 1]n and Y = [0, 1]m. The Lagrange

multipliers can be expressed as in (3.54).

(i) Consider n = m = 2 and

F (x, y) := (x1 + x2 + y1 + y2 + 1)2 − 4(x1x2 + x2y1 + y1y2 + y2 + x1).

This function is convex in x but not concave in y. After 2 iterations by Algorithm 3.1, we

got the saddle point

x∗ = (0.3249, 0.3249), y∗ = (1.0000, 0.0000).

It took about 3.7 seconds.

(ii) Let n = m = 3 and

F (x, y) :=
∑n

i=1
(xi + yi) +

∑
i<j

(x2i y
2
j − y2i x

2
j).

This function is neither convex in x nor concave in y. After 3 iterations by Algorithm 3.1,

we got that there is no saddle point. It took about 12.8 seconds.

Example 3.17. Consider the cube constraints X = Y = [−1, 1]3. The Lagrange multipliers

can be expressed as in (3.53).

(i) Consider the function

F (x, y) :=
∑3

i=1
(xi + yi)−

∏3

i=1
(xi − yi).

This function is neither convex in x nor concave in y. After 1 iteration by Algorithm 3.1,

we got 3 saddle points:

x∗ = (−1.0000,−1.0000, 1.0000), y∗ = (1.0000, 1.0000, 1.0000),

43

x∗ = (−1.0000, 1.0000,−1.0000), y∗ = (1.0000, 1.0000, 1.0000),

x∗ = (1.0000,−1.0000,−1.0000), y∗ = (1.0000, 1.0000, 1.0000).

It took about 75 seconds.

(ii) Consider the function

F (x, y) := yTy − xTx+
∑

1≤i<j≤3
(xiyj − xjyi).

This function is neither convex in x nor concave in y. After 4 iterations by Algorithm 3.1,

we got the saddle point

x∗ = (−1.0000, 1.0000,−1.0000), y∗ = (−1.0000, 1.0000,−1.0000).

It took about 6 seconds.

Example 3.18. Consider the sphere constraints X = S2 and Y = S2. They are not convex.

The Lagrange multipliers can be expressed as in (3.55).

(i) Let F (x, y) be the function

x31 + x32 + x33 + y31 + y32 + y33 + 2(x1x2y1y2 + x1x3y1y3 + x2x3y2y3).

After 2 iterations by Algorithm 3.1, we got 9 saddle points (−ei, ej), with i, j = 1, 2, 3. It

took about 64 seconds.

(ii) Let F (x, y) be the function

x21y
2
1 + x22y

2
2 + x23y

2
3 + x21y2y3 + x22y1y3 + x23y1y2 + y21x2x3 + y22x1x3 + y23x1x2.

After 4 iterations by Algorithm 3.1, we got that there is no saddle point. It took about 127

seconds.

Example 3.19. Let X = Y = B3(0, 1) be the ball constraints and

F (x, y) := x21y1 + 2x22y2 + 3x23y3 − x1 − x2 − x3.

The Lagrange multipliers can be expressed as in (3.55). The function F is not convex in x

but is concave in y. After 1 iteration by Algorithm 3.1, we got the saddle point:

x∗ = (0.7264, 0.4576, 0.3492), y∗ = (0.6883, 0.5463, 0.4772).

It took about 3.3 seconds.

44

Example 3.20. Consider the function

F (x, y) := x21y2y3 + y21x2x3 + x22y1y3 + y22x1x3 + x23y1y2 + y23x1x2

and the sets

X := {x ∈ R3 : xTx− 1 = 0, x ≥ 0}, Y := {y ∈ R3 : yTy − 1 = 0, y ≥ 0}.

They are nonnegative portions of spheres. The feasible sets X, Y are non-convex. The

Lagrange multipliers are expressed as

λ(x, y) = (
1

2
xT∇xF, Fx1 − x1x

T∇xF, Fx2 − x2x
T∇xF, Fx3 − x3x

T∇xF),

µ(x, y) = (
1

2
yT∇yF, Fy1 − y1y

T∇yF, Fy2 − y2y
T∇yF, Fy3 − y3y

T∇yF).

After 3 iterations by Algorithm 3.1, we got that there is no saddle point. It took about 37.3

seconds.

Example 3.21. Let X = Y = R4
+ be the nonnegative orthant and F (x, y) be

y1(x2 + x3 + x4 − 1)2 + y2(x1 + x3 + x4 − 2)2 + y3(x1 + x2 + x4 − 3)2

− y4(x1 + x2 + x3 − 4)2 −
(
x1(y2 + y3 + y4 − 1)2 + x2(y1 + y3 + y4 − 2)2

− x3(y1 + y2 + y4 − 3)2 + x4(y1 + y2 + y3 − 4)2
)
.

The Lagrange multipliers can be expressed as in (3.56). The function F is neither convex in

x nor concave in y. After 1 iteration by Algorithm 3.1, we got the saddle point

x∗ = (1.5075, 0.5337, 0.0000, 0.5018), y∗ = (2.4143, 1.1463, 0.0000, 0.0000).

It took about 4.8 seconds.

Example 3.22. Let X = Y = R3 be the entire space, i.e., there are no constraints. There

are no needs for Lagrange multiplier expressions. Consider the function

F (x, y) =
3∑
i=1

(x4i − y4i + xi + yi) +
∑
i ̸=j

x3i y
3
j .

It is neither convex in x nor concave in y. After 1 iteration by Algorithm 3.1, we got the

saddle point

x∗ = −(0.6981, 0.6981, 0.6981), y∗ = (0.4979, 0.4979, 0.4979).

It took about 113 seconds.

45

Example 3.23. Consider the sets and the function

X := {x ∈ R3 : x1 ≥ 0, x1x2 ≥ 1, x2x3 ≥ 1},

Y := {y ∈ R3 : y1 ≥ 0, y1y2 ≥ 1, y2y3 ≥ 1},

F (x, y) := x31y1 + x32y2 + x33y3 − 3x1x2x3 − y21 − 2y22 − 3y23.

The function F (x, y) is not convex in x but is concave in y. The Lagrange multipliers can

be expressed as

λ1 = (1− x1x2)Fx1 , λ2 = x1Fx1 , λ3 = −x1Fx1 + x2Fx2 .

The same expressions are for µj(x, y). After 9 iterations by Algorithm 3.1, we get the saddle

point:

x∗ = (1.2599, 1.2181, 1.3032), y∗ = (1.0000, 1.1067, 0.9036).

It took about 64 seconds.

Example 3.24. We consider the saddle point problem arising from zero sum games with

two players. Suppose x ∈ Rn is the strategy for the first player and y ∈ Rm is the strategy for

the second one. The usual constraints for strategies are given by simplices, which represent

probability measures on finite sets. So we consider feasible sets X = ∆n, Y = ∆m. Suppose

the profit function of the first player is

f1(x, y) = xTA1x+ yTA2y + xTBy,

for matrices A1 ∈ Rn×n, A2 ∈ Rm×m, B ∈ Rn×m. For the zero sum game, the profit function

for the second player is f2(x, y) := −f1(x, y). Each player wants to maximize the profit,

for the given strategy of the other player. The Nash equilibrium is a point (x∗, y∗) such that

the maximum of f1(x, y
∗) over ∆n is achieved at x∗, while the maximum of f2(x

∗, y) over

∆m is achieved at y∗. This is equivalent to that (x∗, y∗) is a saddle point of the function

F := −f1(x, y) over X, Y . For instance, we consider the matrices

A1 =



−4 4 0 3 −4

3 4 3 −4 −5

−3 0 −2 0 4

−4 −4 −1 3 −5

4 1 −3 0 −5


, A2 =



−4 4 1 0 1

−2 −4 2 −3 1

−3 1 1 4 4

3 −4 0 1 −2

−1 −3 −1 3 −2


,

46

B =



−2 −4 −2 −5 3

0 0 2 4 2

0 −4 −1 −5 3

1 −3 −4 0 −3

3 −1 −5 4 −4


.

The resulting saddle point problem is of the non convex-concave type. After 2 iterations by

Algorithm 3.1, we get two Nash equilibria

x∗ = (0, 1, 0, 0, 0), y∗ = (1, 0, 0, 0, 0),

x∗ = (0, 1, 0, 0, 0), y∗ = (0, 1, 0, 0, 0).

It took about 7 seconds.

Example 3.25. Consider the portfolio optimization problem [61,147]

min
x∈X

−µTx+ xTQx,

where Q is a covariance matrix and µ is the estimation of some parameters. There often

exists a perturbation (δµ, δQ) for (µ,Q). This results in two types of robust optimization

problems

min
x∈X

max
(δµ,δQ)∈Y

−(µ+ δµ)Tx+ xT (Q+ δQ)x,

max
(δµ,δQ)∈Y

min
x∈X

−(µ+ δµ)Tx+ xT (Q+ δQ)x.

We look for x∗ and (δµ∗, δQ∗) that can solve the above two robust optimization problems

simultaneously. This is equivalent to the saddle point problem with F = −(µ + δµ)Tx +

xT (Q+ δQ)x. For instance, consider the case that

Q =


5 −4 −2

−4 13 10

−2 10 8

 , µ =


0

−1

3

 ,

with the feasible sets

X := {x ∈ R3 | −0.5 ≤ xi ≤ 0.5, i = 1, . . . , n},

Y :=

{
(δµ, δQ) ∈ R3 × SR3×3

∣∣∣ −0.1 ≤ (δµ)k, (δQ)ij ≤ 0.1,

1 ≤ k ≤ 3, 1 ≤ i, j ≤ 3

}
.

47

In the above, SR3×3 denotes the space of real symmetric 3-by-3 matrices. The Lagrange

multipliers can be similarly expressed as in (3.54). After 1 iteration by Algorithm 3.1, we

got the saddle point

x∗ =


−0.1289

−0.4506

0.5000

 , δQ∗ =


0.1 0.1 −0.1

0.1 0.1 −0.1

−0.1 −0.1 0.1

 , δµ∗ =


0.1

0.1

−0.1

 .

It took about 32 seconds. The above two min-max and max-min optimization problems are

solved simultaneously by them.

Acknowledgement. The Chapter 3, in full, is a reprint of the material as it

appears in Foundations of Computational Mathematics 2021 [118]. The dissertation author

coauthored this paper with Nie, Jiawang and Zhou, Guangming.

48

Chapter 4

Hermitian Tensors

4.1 Hermitian decompositions

Recall that a tensor H ∈ Cn1×···×nm×n1×···×nm is called Hermitian if

Hi1...imj1...jm = Hj1...jmi1...im .

The notion C[n1,...,nm] denotes the set of all Hermitian tensors in Cn1×···×nm×n1×···×nm . For

vectors vi ∈ Cni , i = 1, . . . ,m, we denote

[v1, v2, . . . , vm]⊗h := v1 ⊗ v2 · · · ⊗ vm ⊗ v1 ⊗ v2 · · · ⊗ vm. (4.1)

Every rank-1 Hermitian tensor must be in the form of λ · [v1, v2, . . . , vm]⊗h, for a real scalar

λ ∈ R. For every H ∈ C[n1,...,nm], there exists a Hermitian decomposition [101]

H =
∑r

i=1
λi [u

1
i , . . . , u

m
i]⊗h

. (4.2)

where uji ∈ Cnj and real scalars λi ∈ R. The smallest r in (4.2) is called the Hermitian rank

of H, for which we denote hrank(H). When r is minimum, (4.2) is called a Hermitian rank

decomposition for H. Hermitian decompositions can be equivalently expressed by conjugate

polynomials. For complex vector variables xk ∈ Cnk , k = 1, . . . ,m, denote x := (x1, . . . , xm).

The inner product

H(x, x) := ⟨H, [x1, . . . , xm]⊗h⟩

is a conjugate symmetric polynomial in x, i.e., H(x, x) = H(x, x). It only achieves real values

[73, 101]. The decomposition H =
∑r

i=1 λi[u
1
i , . . . , u

m
i]⊗h is equivalent to the polynomial

decomposition

H(x, x) =
∑r

i=1
λi|(u1i)∗x1|2 · · · |(umi)∗xm|2. (4.3)

49

Therefore, a Hermitian decomposition of H can be equivalently expressed as a real linear

combination of conjugate squares like |(u1i)∗x1|2 · · · |(umi)∗xm|2.
For square matrices Qk ∈ Cnk×nk , k = 1, . . . ,m, we define the multilinear congruent

transformation for A ∈ C[n1,...,nm] such that

(Q1, . . . , Qm)×cong A := (Q1, . . . , Qm, Q1, . . . , Qm)×A. (4.4)

If each Qk is unitary, then B := (Q1, . . . , Qm) ×cong A is said to be a unitary congruent

transformation of A and B is said to be unitarily congruent to A. It holds that

(Q∗
1, . . . , Q

∗
m)×cong

(
(Q1, . . . , Qm)×cong A

)
= A.

If each Qk is real and orthogonal, the tensor B is said to be orthogonally congruent to A.

Unitary and orthogonal congruent transformations preserve norms of Hermitian tensors [101].

Hermitian tensors have important applications in quantum physics [101]. An m-

partite pure state |ψ⟩ of a quantum system can be represented by a tensor in Cn1×···×nm .

The complex conjugate of |ψ⟩ represents another pure state ⟨ψ|. The conjugate product

|ψ⟩⟨ψ| represents a 2m-partite pure state in the Hermitian tensor space C[n1,...,nm]. A mixed

quantum state can be represented by a Hermitian tensor. The state is called unentangled (or

separable) if it can be expressed as a sum of rank-1 pure state products like |ψ⟩⟨ψ|; otherwise,
the state is called entangled (or not separable). Equivalently, a mixed state ρ ∈ C[n1,...,nm] is

unentangled if and only if

ρ =
k∑
i=1

|ψi⟩⟨ψi|

for some rank-1 pure sates |ψi⟩. Mathematically, the above is equivalent to the Hermitian

decomposition

ρ =
k∑
i=1

(u1i ⊗ · · · ⊗ umi)⊗ (u1i ⊗ · · · ⊗ umi) =
k∑
i=1

[u1i , . . . , u
m
i]⊗h,

for complex vectors u1i ∈ Cn1 , . . . , umi ∈ Cnm . Hermitian tensors, which can be decomposed

as above, are called separable tensors. Hermitian tensors representing mixed states are also

called density matrices. In view of algebra, Hermitian tensors can also be regarded as real

valued complex conjugate polynomials. Detection of unentangled mixed states is related

to separability of Hermitian tensors. We refer to [1, 12, 21, 33] for applications of density

matrices. Quantum information theory is closely related to tensors [42, 86, 100, 101, 127].

The separability issue will be studied in section 4.6.

50

4.2 Basis Hermitian tensors

For convenience, denote

N := n1 · · ·nm, S :=
{
(i1, . . . , im) : i1 ∈ [n1], . . . , im ∈ [nm]

}
.

The cardinality of the label set S is N . For two labelling tuples I := (i1, . . . , im) and

J := (j1, . . . , jm) in S, define the ordering I < J if the first nonzero entry of I − J is

negative. For a scalar c ∈ C, denote by EIJ(c) the Hermtian tensor in C[n1,...,nm] such that(
EIJ(c)

)
i1···imj1···jm

=
(
EJI(c)

)
j1···jmi1···im

= c

and all other entries are zeros. We adopt the standard scalar multiplication and addition for

C[n1,...,nm], so C[n1,...,nm] is a vector space over R. The set

E :=
{
EII(1)

}
I∈S

⋃{
EIJ(1), EIJ(

√
−1)

}
I,J∈S,I<J

(4.5)

is the canonical basis for C[n1,...,nm]. Its dimension is

dimC[n1,...,nm] = N +N(N − 1) = N2.

For these basis tensors, we determine their Hermitian ranks as well as the rank decompositions.

For a basis tensor EIJ(c), we are interested in c = 1 or
√
−1. Its Hermitian rank can be

determined by reduction to the 2-dimensional case.

Lemma 4.1 ([110]). Suppose the dimensions n1, . . . , nm ≥ 2, I = (i1, . . . , im), and J =

(j1, . . . , jm). For each k = 1, . . . ,m, let

(i′k, j
′
k) := (1, 1) if ik = jk, (i′k, j

′
k) := (1, 2) if ik ̸= jk.

Let I ′ := (i′1, . . . , i
′
m), J

′ := (j′1, . . . , j
′
m). Then, EI

′J ′
(c) ∈ C[2,...,2] and

hrank EIJ(c) = hrank EI′J ′
(c).

Proof. For each k, if ik = jk, let Pk be the permutation matrix that switches the 1st and

ikth rows; if ik ̸= jk, let Pk be the permutation matrix that switches ikth row and jkth row

to 1st row and 2nd row respectively. Consider the orthogonal congruent transformation

F := (P1, . . . , Pm)×cong EIJ(c).

51

Then F is the Hermitian tensor such that FI′J ′ = FJ ′I′ = c and all other entries are zeros, so

F is a canonical basis tensor. Note that EI′J ′
(c) is the subtensor of F , consisting of the first

two labels for each dimension, hence EI′J ′
(c) and F have the same rank. Since nonsingular

congruent transformations preserve Hermitian ranks (see Proposition 4.7), hrank EIJ(c) =
hrank EI′J ′

(c).

In the following, for n1 = · · · = nm = 2 and I = (1 . . . 1), J = (2 . . . 2), we determine

the Hermitian rank of the basis tensor EIJ(c). First, we consider c = 1. For each k =

0, 1, . . . ,m, let

θk := kπ/m, uk := (1, exp
(
θk
√
−1)

)
. (4.6)

The following Hermitian tensor

Ak :=
1

2

(
[uk, uk, . . . , uk]⊗h + [uk, uk, . . . , uk]⊗h

)
(4.7)

has rank 1 or 2. For each s = 0, 1, . . . ,m, let Js := (1, . . . , 1, 2, . . . , 2) where 2 appears s

times. The tensor Ak has only m+ 1 distinct entries, which are

(Ak)IJs = Re
(
(uk)

s
2

)
= Re

(
exp(sθk

√
−1)

)
= cos(sθk), s = 0, 1, . . . ,m.

For each k, consider the vector

wk :=
(
cos(0 · θk), cos(1 · θk), . . . , cos(m · θk)

)
.

Let λk := 2(−1)k for 1 ≤ k ≤ m− 1, λk := (−1)k for k = 0,m, and

u := λ0w0 + λ1w1 + · · ·+ λmwm. (4.8)

For p = 0, 1, . . . ,m, the (p+ 1)th entry of u is

(u)p+1 =
∑m

k=0
λk cos(pθk) =

∑m

k=0
λk cos(

pk

m
π) = Re

(∑m

k=0
λk exp(

pk

m
π
√
−1)

)
.

For each p = 0, 1, . . . ,m− 1, one can check that (let α := p
m
π)∑m

k=0
λk exp(kα

√
−1) = 2

∑m

k=0
(−1)k exp(kα

√
−1)− 1− (−1)m exp(pπ

√
−1)

= 2
1− (− exp((m+ 1)α

√
−1)

1 + exp(α
√
−1)

− 1− (−1)m+p

=

0 if m+ p is even,

−4 sinα
(1+cosα)2+(sinα)2

√
−1 if m+ p is odd.

52

Hence, (u)p+1 = 0 for 0 ≤ p ≤ m− 1. Moreover,

(u)m+1 =
∑m

k=0
λk cos(mθk) =

∑m

k=0
λk cos(kπ) =

∑m

k=0
λk(−1)k = 2m.

Therefore, we have∑m

k=0

λk
2m

wk = (0, . . . , 0, 1), EIJ(1) =
∑m

k=0

λk
2m

Ak.

This gives the Hermitian decomposition of length 2m:

EIJ(1) = 1

2m

(
[u0, u0, . . . , u0]⊗h + (−1)m[um, um, . . . , um]⊗h

+
∑m−1

k=1
(−1)k([uk, uk, . . . , uk]⊗h + [uk, uk, . . . , uk]⊗h)

)
, (4.9)

where uk is given as in (4.6). For the case c ̸= 0, one can verify that

EIJ(c) = (

(
c 0

0 1

)
,

(
1 0

0 1

)
, . . . ,

(
1 0

0 1

)
)×cong EIJ(1).

Then, the decomposition (4.9) implies that

EIJ(c) = 1

2m

(
[ũ0, u0, . . . , u0]⊗h + (−1)m[ũm, um, . . . , um]⊗h

+
∑m−1

k=1
(−1)k([ũk, uk, . . . , uk]⊗h + [ṽk, uk, . . . , uk]⊗h)

)
, (4.10)

where ũk =
(
c, exp(k

m
π
√
−1)

)
and ṽk =

(
c, exp(− k

m
π
√
−1)

)
.

Proposition 4.2 ([110]). Assume n1 = · · · = nm = 2, I = (1 . . . 1), J = (2 . . . 2), and

c ̸= 0. Then, hrank(E(c)) = 2m and (4.10) is a Hermitian rank decomposition.

Proof. The decomposition (4.10) implies hrank(EIJ(c)) ≤ 2m, so we only need to show

hrank(EIJ(c)) ≥ 2m. We prove it by induction on m.

When m = 1, E (12)(c) is a Hermitian matrix of rank 2 and the conclusion is clearly

true. Suppose the conclusion holds for m = 1, 2, . . . , k. Assume to the contrary that for

m = k+1, r := hrank(EIJ(c)) ≤ 2m−1 = 2k+1 and EIJ(c) has the Hermitian decomposition

(for nonzero vectors uji):

EIJ(c) =
∑r

i=1
λi[u

1
i , . . . , u

k+1
i]⊗h.

Let Ai = λi[u
1
i , . . . , u

k
i]⊗h, Ui = uk+1

i ⊗ uk+1
i , then EIJ(c) can be rewritten as (after a

reordering of tensor products)

EIJ(c) =
∑r

i=1
Ai ⊗ Ui.

53

Let p be the dimension of span{U1, . . . , Ur} and one can generally assume {U1, . . . , Up} is

linearly independent. Then Uj =
∑p

s=1 α
j
sUs, j > p, for some real coefficients αjs, since each

Ui can be viewed as a Hermitian matrix. So we can rewrite that

EIJ(c) =
∑p

i=1
Bi ⊗ Ui where Bi := Ai +

∑r

j=p+1
αjiAj.

Each Bi is a Hermitian tensor of order 2k, and hrank(Bi) ≤ r − p + 1. For two labels

I ′, J ′ ∈ Nk, consider the matrix

M I′J ′
:=

[
(EIJ(c))(I′,1)(J ′,1) (EIJ(c))(I′,1)(J ′,2)

(EIJ(c))(I′,2)(J ′,1) (EIJ(c))(I′,2)(J ′,2)

]
=

p∑
i=1

(Bi)I′J ′Ui.

Note that M I′J ′ ̸= 0 if and only if I ′ = (1 · · · 1), J ′ = (2 · · · 2) or I ′ = (2 · · · 2), J ′ = (1 · · · 1).
Since U1, . . . , Up are linearly independent, ((B1)I′J ′ , . . . , (Bp)I′J ′) ̸= 0 if and only if I ′ =

(1 · · · 1), J ′ = (2 · · · 2) or I ′ = (2 · · · 2), J ′ = (1 · · · 1). So each nonzero Bi is also a canonical

basis tensor in C[2,...,2]. By induction, we have

r − p+ 1 ≥ hrank(Bi) ≥ 2k, p ≤ r + 1− 2k ≤ 2.

By the same argument, we can show that the rank of the set Vj :=
{
uji ⊗ uji

}r
i=1

is

at most 2, for all j = 1, . . . ,m. If the rank of Vj is 2, then there exists tj ∈ [r] such that

{uj1⊗u
j
1, u

j
tj ⊗u

j
tj} is linearly independent. If the rank of Vj is 1, we let tj := 1. Thus uji = uj1

or uji = ujtj for each i = 1, . . . , r. For each j, there exists wj such that (wj)Tuj1 = 1, and

(wj)Tujtj = 0 if tj > 1. Then, consider the multilinear matrix-tensor product

T := (I2, . . . , I2, (w
1)T , . . . , (wk+1)T)× EIJ(c) = λ1u

1
1 ⊗ · · · ⊗ uk+1

1 ∈ C2×···×2.

When (s1 · · · sk+1) ̸= (1, . . . , 1) or (2, . . . , 2), we have

Ts1···sk+1
=

∑
j1,...,jk+1=1,2

(w1)j1 · · · (wk+1)jk+1
(EIJ(c))s1...sk+1j1...jk+1

= 0.

So T has at most two nonzero entries, which must be T1···1 and/or T2···2:

T1···1 = (EIJ(c))(1···1)(2···2)(w1)2 · · · (wk+1)2 = c(w1)2 · · · (wk+1)2,

T2···2 = (EIJ(c))(2···2)(1···1)(w1)1 · · · (wk+1)1 = c(w1)1 · · · (wk+1)1.

Since T is rank 1, only one of T1···1, T2···2 is nonzero, which is also the unique nonzero entry

of T . Without loss of generality, assume T1···1 ̸= 0, T2···2 = 0. The fact that (T)1···1 is the

only one nonzero entry implies uj1 = µje1, j = 1 · · · k+ 1 for some 0 ̸= µj ∈ C. The equation
(wj)Tuj1 = µj(w

j)1 = 1 implies that (wj)1 ̸= 0, so T2···2 = c(w1)1 · · · (wk+1)1 ̸= 0. But this

contradicts T2...2 = 0, hence hrank(EIJ(c)) ≥ 2m.

54

Ranks of basis tensors EIJ(c) for general dimensions are given as follows.

Theorem 4.3 ([110]). Assume n1, . . . , nm ≥ 2, I = (i1, . . . , im), J = (j1, . . . , jm), and c ̸= 0.

If I = J , then hrank EIJ(c) = 1; if I ̸= J , then hrank EIJ(c) = 2d where d is the number of

nonzero entries of I − J .

Proof. When I = J , EIJ(c) is a Hermitian tensor only if c is real, and EII(c) = c[ei1 , . . . , eim]⊗h.

So, hrank EII(c) = 1. When I ̸= J , we can generally assume ik ̸= jk for k = 1, . . . , d, and

ik = jk for k = d + 1, . . . ,m. By Lemma 4.1, EIJ(c) has the same Hermitian rank as

EI′J ′
(c), for I ′ = (1, . . . , 1) and J ′ = (2, . . . , 2, 1, . . . , 1) (the first d entries of J ′ are 2’s). Let

I1 = (1, . . . , 1), I2 = (2, . . . , 2), where 1, 2 are repeated for d times. Then hrank EI′J ′
(c) =

hrank EI1J1(c). By Proposition 4.2, we know hrank EIJ(c) = hrank EI1J1(c) = 2d.

The following is an example of Hermitian rank decompositions for basis tensors.

Example 4.4. For I = (1, 2), J = (3, 4) and c ̸= 0, the basis tensor E (12)(34)(c) ∈ C[4,4]

has the Hermitian rank 4, with the following Hermitian rank decomposition (in the following
i :=

√
−1)

1

4



c

0

1

0

 ,


0

1

0

1



⊗h

+
1

4



c

0

−1

0

 ,


0

1

0

−1



⊗h

−
1

4



c

0

i

0

 ,


0

1

0

i



⊗h

−
1

4



c

0

−i
0

 ,


0

1

0

−i



⊗h

.

In some occasions, a Hermitian tensor may be given by a Hermitian decomposition.

One wonders whether that is a rank decomposition or not. This question is related to the

classical Kruskal theorem [78, 133]. For a set S of vectors, its Kruskal rank, denoted as kS,

is the maximum number k such that every subset of k vectors in S is linearly independent.

Proposition 4.5 ([110]). Let H =
∑r

j=1 λj[u
1
j , . . . , u

m
j]⊗h be a Hermitian tensor, with

0 ̸= λj ∈ R and m > 1. For each i = 1, . . . ,m, let Ui := {ui1, . . . , uir}. If

kU1 + · · ·+ kUm ≥ r +m, (4.11)

then hrank(H) = r and the Hermitian rank decomposition of H is essentially unique, i.e., it

is unique up to permutation and scaling of decomposing vectors.

Proof. Note that kUi
= kUi

, where Ui := {uij, . . . , uij}. The rank condition (4.11) is equivalent

to that

kU1 + · · ·+ kUm + kU1
+ · · ·+ kUm

≥ 2r + 2m− 1.

The conclusion is then implied by the classical Kruskal type theorem [78, 133] (or see

Theorems 12.5.3.1 and 12.5.3.2 in [79]).

55

For instance, for the following vectors

u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 1), u4 = (0, 1, 1),

the sum
∑4

i=1[ui, ui, ui]⊗h has Hermitian rank 4, by Proposition 4.5. This is because, for

U = {u1, u2, u3, u4}, the Kruskal rank kU = 3, m = 3 and 3kU = 9 ≥ 4 +m = 7.

A basic question is how to compute Hermitian rank decompositions. This is generally

a challenge. When Hermitian ranks are small, we can apply the existing methods for

canonical polyadic decompositions (CPDs) for cubic tensors. For convenience, let

N1 := n1 · · ·nm, N3 := min{n1, . . . , nm}, N2 = N1/N3. (4.12)

Up to a permutation of dimensions, we can assume nm is the smallest, i.e., N3 = nm. A

Hermitian tensor can be flattened to a cubic tensor. Define the linear flattening mapping

ψ : C[n1,...,nm] → CN1×N2×N3 such that

ψ([u1, . . . , um]⊗h) = (u1 ⊗ · · · ⊗ um)⊗ (u1 ⊗ · · · ⊗ um−1)⊗ um. (4.13)

Then H =
∑r

j=1 λj[u
1
j , . . . , u

m
j]⊗h if and only if

ψ(H) =
∑r

j=1
λj aj ⊗ bj ⊗ cj (4.14)

where aj = u1j ⊗ · · · ⊗ umj , bj = u1j ⊗ · · ·um−1
j , cj = umj . The decomposition (4.14) can be

obtained by computing the CPD for ψ(H), if the rank decomposition of ψ(H) is unique. We

refer to [4, 16,37,38,142] for computing CPDs.

Example 4.6. Consider the tensor A ∈ C[3,3] such that Ai1i2j1j2 = i1j1 + i2j2 for all

i1, i2, j1, j2 in the range. A Hermitian decomposition for A is

A =



1

2

3

 ,


1

1

1




⊗h

+



1

1

1

 ,


1

2

3




⊗h

.

By Proposition 4.5, the Hermitian rank is 2.

The rank of a Hermitian matrix does not change after a nonsingular congruent

transformation. The same conclusion holds for Hermitian tensors. We refer to (4.4) for

multi-linear congruent transformations.

56

Proposition 4.7. Let Qk ∈ Cnk×nk be nonsingular matrices, for k = 1, . . . ,m. Then,

for each H ∈ C[n1,...,nm], the congruent transformation (Q1, . . . , Qm) ×cong H has the same

Hermitian rank as H does.

Proof. Let F := (Q1, . . . , Qm)×cong H, then H =
∑r

i=1λi[u
1
i , . . . , u

m
i]⊗h if and only if

F =
∑r

i=1
λi[Q1u

1
i , . . . , Qmu

m
i]⊗h,

because each Qi is nonsingular. So hrank(H) = hrank(F).

4.3 Real Hermitian tensors

This section discusses real Hermitian tensors, i.e., their entries are all real. The

subspace of real Hermitian tensors in C[n1,...,nm] is denoted as

R[n1,...,nm] := C[n1,...,nm] ∩ Rn1×···×nm×n1×···×nm .

For real Hermitian tensors, we are interested in their real decompositions.

Definition 4.8. A tensor H ∈ R[n1,...,nm] is called R-Hermitian decomposable if

H =
∑r

i=1
λi[u

1
i , . . . , u

m
i]⊗h (4.15)

for real vectors uji ∈ Rnj and real scalars λi ∈ R. The smallest such r is called the

R-Hermitian rank of H, for which we denote hrankR(H). The subspace of R-Hermitian

decomposable tensors in R[n1,...,nm] is denoted as R[n1,...,nm]
D .

When it exists, (4.15) is called a R-Hermitian decomposition; if r is minimum, (4.15)

is called a R-Hermitian rank decomposition. Clearly, for all H ∈ R[n1,n2]
D ,

hrankR(H) ≥ hrank(H). (4.16)

Not every real Hermitian tensor is R-Hermitian decomposable. This is very different from

the complex case. We characterize when a tensor is R-Hermitian decomposable.

Theorem 4.9 ([110]). A tensor A ∈ R[n1,...,nm] is R-Hermitian decomposable, i.e., A ∈
R[n1,...,nm]
D , if and only if

Ai1...imj1...jm = Ak1...kml1...lm (4.17)

for all labels such that {is, js} = {ks, ls}, s = 1, . . . ,m.

57

Proof. For convenience, denote the labeling tuples:

ı = (i1, . . . , im, j1, . . . , jm), ȷ = (k1, . . . , km, l1, . . . , lm).

“ ⇒ ” : If A has a R-Hermitian decomposition as in (4.15), then

Aı =
r∑
i=1

λi

m∏
s=1

(usi)is(u
s
i)js =

r∑
i=1

λi

m∏
s=1

(usi)ks(u
s
i)ls = Aȷ

when {is, js} = {ks, ls} for all s = 1, . . . ,m.

“ ⇐ ” : Assume (4.17) holds. We prove the conclusion by induction on m. For m = 2, i.e.,

the matrix case, the conclusion is clearly true because every real symmetric matrix has a

real spectral decomposition. Suppose the conclusion is true for m, then we show that it is

also true for m+ 1. For s, t ∈ [nm+1], let Bs,t be the tensor in R[n1,...,nm] such that

(Bs,t)i1...imj1...jm = (A)i1...imsj1...jmt

for all i1, . . . , imj1, . . . , jm in the range. The condition (4.17) implies that Bs,t = Bt,s and

each Bs,t is a real Hermitian tensor. For s < t, define the linear map

ρs,t : R[n1,...,nm] → R[n1,...,nm,nm+1],

[x1, . . . , xm]⊗h 7→
1

2
[x1, . . . , xm, es + et]⊗h −

1

2
[x1, . . . , xm, es − et]⊗h.

For s = t, the linear map ρs,s is then defined such that

ρs,s([x1, . . . , xm]⊗h) = [x1, . . . , xm, es]⊗h.

One can verify that A =
∑

1≤s≤t≤nm+1
ρs,t(Bs,t). By induction, each Bs,t is R-Hermitian

decomposable, so each ρs,t(Bs,t), as well as A, is also R-Hermitian decomposable.

Example 4.10. Consider the real Hermitian tensor A ∈ R[2,2] such that

Aijkl = i+ j + k + l

for all 1 ≤ i, j, k, l ≤ 2. It is a Hankel tensor [117]. By Theorem 4.9, it is R-Hermitian

decomposable. In fact, it has the decomposition

A =
40− 13

√
10

20

(
[u1, e]⊗h + [e, u1]⊗h

)
+

40 + 13
√
10

20

(
[u2, e]⊗h + [e, u2]⊗h

)
,

58

for u1 = (−
√
10−1
3

, 1), u2 = (
√
10−1
3

, 1). Clearly, hrankR(A) ≤ 4. Moreover, A can be expressed

as the limit

A = lim
ϵ→0

ϵ−1
[
(e+ ϵf)⊗4 − e⊗4

]
,

for f := (1, 2). For this kind of tensors, the cp rank is 4 (see [28, §5], [39, §4.7]). Therefore,

hrankR(A) ≥ rank(A) = 4 and hence hrankR(A) = 4.

Not every basis tensor EIJ(c) is R-Hermitian decomposable. For instance, the basis

tensor A = E1122(1) is not, because A1122 = 1 ̸= 0 = A1221.

Corollary 4.11 ([110]). For I = (i1, . . . , im) and J = (j1, . . . , jm), the basis tensor EIJ(1) is
R-Hermitian decomposable if and only if I−J has at most one nonzero entry. In particular, if

I = J , then hrankR EIJ(1) = 1; if I and J differs for only one entry, then hrankR EIJ(1) = 2.

Proof. The necessity direction is a direct consequence of Theorem 4.9. This is because if

there are two distinct k such that ik ̸= jk, then the condition (4.17) cannot be satisfied.

We prove the sufficiency direction by constructing R-Hermitian decompositions explicitly. If

I = J , then E = [ei1 , ei2 , . . . , eim]⊗h and hrankR EIJ(1) = 1. If I and J differs for only one

entry, say, ik ̸= jk, then

E =
1

2
[ei1 , ei2 , . . . , eik + ejk , · · · eim]⊗h −

1

2
[ei1 , ei2 , . . . , eik − ejk , · · · eim]⊗h

and hence hrankR EIJ(1) ≤ 2. Since hrankR EIJ(1) ≥ hrank EIJ(1) = 2, we must have

hrankR EIJ(1) = 2.

The major reason for not all real Hermitian tensors are R-Hermitian decomposable is

because of the dimensional difference. That is, the dimension of R[n1,...,nm]
D is less than that

of R[n1,...,nm]. By Theorem 4.9, the dimension of R[n1,...,nm]
D is equal to the cardinality of the

set {(i1, . . . , im, j1, . . . , jm) : 1 ≤ ik ≤ jk ≤ nk}. Thus

dimR[n1,...,nm]
D =

m∏
k=1

(
nk + 1

2

)
=

m∏
k=1

nk(nk + 1)

2
. (4.18)

However, the dimension of R[n1,...,nm] is

dimR[n1,...,nm] =

(
N + 1

2

)
, N = n1 · · ·nm. (4.19)

The dimension of R[n1,...,nm] equals the dimension of SN , the space of N -by-N real symmetric

matrices. The dimension of R[n1,...,nm]
D equals the dimension of the tensor product space

59

Sn1 ⊗ · · · ⊗ Snm . If m > 1 and all ni > 1, then

dimR[n1,...,nm]
D < dimR[n1,...,nm]. (4.20)

Real Hermitian decompositions can also be equivalently expressed in terms of real

polynomials. Let each xi ∈ Rni be a real vector variable. The real decomposition (4.15)

implies that

H(x, x) =
∑r

i=1
λi
(
(u1i)

Tx1
)2 · · · ((umi)Txm)2. (4.21)

When H is R-Hermitian decomposable, (4.21) also implies (4.15).

Lemma 4.12 ([110]). For real vectors uji , a tensor H ∈ R[n1,...,nm]
D has the decomposition

(4.21) if and only if the R-Hermitian decomposition (4.15) holds.

Proof. The “if” direction is obvious. We prove the “only if” direction. Let

U =
∑r

i=1
λi[u

1
i , . . . , u

m
i]⊗h.

Then ⟨H−U , [x1, . . . , xm]⊗h⟩ = 0 for all real xi ∈ Rni . Since H−U ∈ R[n1,...,nm]
D , ⟨H−U ,H−

U⟩ = 0, so H = U and (4.15) holds.

In the following, we study the relationship between real and complex Hermitian

decompositions.

Lemma 4.13 ([110]). Suppose H ∈ R[n1,...,nm]
D has the decomposition

H =
∑r

j=1
λj[u

1
j , u

2
j , . . . , u

m
j]⊗h,

with complex uij ∈ Cni , 0 ̸= λj ∈ R. Let

U :=
[
(u11 ⊠ u11 ⊠ · · ·um−1

1 ⊠ um−1
1), · · · , (u1r ⊠ u1r ⊠ · · ·um−1

r ⊠ um−1
r)

]
.

If k := rank(U) ∈ {1, 2, r}, then

H =
∑r

j=1
βj[u

1
j , u

2
j , . . . , u

m−1
j , smj]⊗h (4.22)

for real vectors smj ∈ Rnm and real scalars βj ∈ R.

Proof. Let κϕ be the canonical Kronecker flattening map in (4.29), then

H := κϕ(H) =
∑r

j=1
λjUj(u

m
j ⊠ umj)

T =
∑r

j=1
λjUj(umj ⊠ umj)

T ,

where Uj denotes the jth column of U . The second equality holds, since H is R-Hermitian

decomposable. Thus,
∑r

j=1 λjUj(u
m
j ⊠ umj − umj ⊠ umj)

T = 0.

60

• If k = r, then {U1, . . . , Ur} is linearly independent, which implies umj ⊠u
m
j −umj ⊠umj = 0

for all j. So umj ⊠ umj is real. There exists smj ∈ Rnm such that umj ⊠ umj = smj ⊠ smj . It

gives a desired decomposition as in (4.22).

• If k = 1, then there exists αj ∈ R such that Uj = αjU1 for 1 ≤ j ≤ r. Thus

H = U1V
T
1 = U1V1

T
where V1 :=

∑r

j=1
αjλju

m
j ⊠ umj .

Since U1(V1 − V1)
T = 0, V1 is the vectorization of a real symmetric matrix, then there

exist smj ∈ Rnm and βj ∈ R such that V1 =
∑r

j=1βjs
m
j ⊠ smj . It also gives a desired

decomposition as in (4.22).

• If k = 2, we can generally assume that U1, Up are linearly independent. For each

i ̸∈ {1, p}, Ui is a linear combination of U1, Up. Since each Ui is the vectorization

of a rank-1 Hermitian matrix, Ui must be a multiple of U1 or Up, say, Ui = U1 for

1 ≤ i ≤ p− 1 and Ui = Up for p ≤ i ≤ r, up to scaling of λi. Thus,

H = U1X
T
1 + UpX

T
2 = U1X1

T
+ UpX2

T
,

where X1 :=
∑p−1

i=1 λiu
m
i ⊠umi , X2 :=

∑r
j=p λju

m
j ⊠umj . Since U1(X1−X1)

T +Up(X2−
X2)

T = 0, we have X1 = X1 and X2 = X2, so X1, X2 are vectorizations of real

symmetric matrices. There exist smj ∈ Rnm , βj ∈ R such that X1 =
∑p−1

i=1βis
m
i ⊠ smi ,

X2 =
∑r

j=pβjs
m
j ⊠ smj . This also gives a desired decomposition as in (4.22).

For every case of k = 1, 2, r, we get a decomposition like (4.22).

Based on the above lemma, we can get the following conclusion.

Proposition 4.14 ([110]). For H ∈ R[n1,...,nm]
D , if hrank(H) ≤ 3, then hrank(H) =

hrankR(H). Furthermore, if hrankR(H) ≤ 4, then hrank(H) = hrankR(H).

Proof. Let r := hrank(H). We consider r > 0 (the case r = 0 is trivial). If r ≤ 3, we

can apply Lemma 4.13 to H. Note that k := rankU ∈ {1, 2, r}, since r ≤ 3. For each

i = 1, . . . ,m, the set {uij}rj=1 can be changed to a set of real vectors while the length of

decomposition does not change. As a result, we get a R-Hermitian decomposition for H
with length r, so hrankR(H) = hrank(H).

If hrankR(H) ≤ 4, then hrank(H) ≤ 4. If hrank(H) ≤ 3, then the previous argument

proves hrank(H) = hrankR(H). If hrank(H) = 4, then hrankR(H) ≥ 4, and hence hrankR(H) =

hrank(H) = 4.

61

4.4 Matrix flattenings

All classical matrix flattenings are applicable to Hermitian tensors. In particular,

Hermitian and Kronecker flattenings are special for Hermitian tensors.

Hermitian flattening

Define the linear map m : C[n1,...,nm] → MN (N = n1 · · ·nm) such that for all vi ∈ Cni ,

i = 1, . . . ,m,

m
(
[v1, v2, . . . , vm]⊗h

)
= (v1v

∗
1)⊠ (v2v

∗
2)⊠ · · ·⊠ (vmv

∗
m), (4.23)

where⊠ denotes the classical Kronecker product. The map m is a bijection between C[n1,...,nm]

and MN ∼= Mn1 ⊗ · · · ⊗ Mnm . The Hermitian decomposition H =
∑r

i=1 λi[u
1
i , . . . , u

m
i]⊗h is

equivalent to that{
m(H) =

∑r
i=1λi (u

1
i (u

1
i)

∗)⊠ · · ·⊠ (umi (u
m
i)

∗)

=
∑r

i=1λi (u
1
i ⊠ · · ·⊠ umi)(u

1
i ⊠ · · ·⊠ umi)

∗.
(4.24)

The matrix H := m(H) is called the Hermitian flattening matrix of H. It can be labelled by

I = (i1, . . . , im) and J = (j1, . . . , jm) such that

(H)IJ = Hi1...imj1...jm . (4.25)

The following is a basic result about flattening and ranks.

Lemma 4.15 ([110]). If H = m(H), then hrank(H) ≥ hbrank(H) ≥ rank(H).

Proof. The first inequality is obvious. We prove the second one. Let r := hbrank(H),

then there is a sequence {Hk} ⊆ C[n1,...,nm] such that Hk → H and hrankHk = r. Let

Hk := m(Hk), then Hk → H and rankHk ≤ r, so rank (H) ≤ r.

It is possible that hrank(H) > rank(H). For instance, consider the basis tensor

E (11)(22)(1). Its Hermitian flattening matrix has rank 2 while the Hermitian rank is 4 (see

Example 4.4).

For each H ∈ R[2,2]
D , its Hermitian flattening matrix is in the form

m(H) =

(
A C

C B

)
, where A,B,C ∈ S2. (4.26)

62

Proposition 4.16 ([110]). For each H ∈ R[2,2]
D as above, there exist invertible matrices

P,Q ∈ R2×2 such that H̃ := (P,Q)×cong H has the flattening

m(H̃) =

(
sI2 D

D sB̃

)
− s

(
uuT 0

0 0

)
, (4.27)

where s ∈ {0, 1,−1}, D is real diagonal, u ∈ R2 and B̃ ∈ S2 . In particular, u = 0 if one of

A,B is positive (or negative) definite, and s = 0 if A = B = 0.

Proof. Case I: Assume one of A,B is nonzero, say, A ̸= 0. If A is not negative semidefinite,

there is v ∈ R2 such that A+ vvT ≻ 0. Then there is U ∈ R2×2 such that U(A+ vvT)UT =

I2. There exists an orthogonal matrix V such that D := V (UCUT)V T is diagonal. Let

H̃ := (I2, V U)×cong H, then

m(H̃) =

(
V (U(A+ vvT)UT)V T V (UCUT)V T

V (UCUT)V T V (UBUT)V T

)
−

(
V (UvvTUT)V T 0

0 0

)

=

(
sI2 D

D sB̃

)
− s

(
uuT 0

0 0

)
.

So, the decomposition 4.27 holds for s = 1, B̃ := V (UBUT)V T , u := V Uv. If A is negative

semidefinite, then −A is not negative semidefinite. We do the same thing for −H and can

get 4.27 with s = −1. In particular, if either A or B is positive (or negative) definite, we

can choose v = 0 and thus u = V Uv = 0.

Case II: Assume A = B = 0. Since C is real symmetric, there exists a matrix U such

that D := UCUT is diagonal. Let H̃ := (I2, U)×cong H, then

H̃ =

(
0 UCUT

UCUT 0

)
=

(
0 D

D 0

)
.

For this case, s = 0.

Suppose the diagonal matrix D in (4.27) is D = diag(d1, d2). When s = 0, the tensor

H̃ has the Hermitian decomposition:

1

2
d1

(
[

(
1

1

)
,

(
1

0

)
]⊗h − [

(
1

−1

)
,

(
1

0

)
]⊗h

)
+

1

2
d2

(
[

(
1

1

)
,

(
0

1

)
]⊗h − [

(
1

−1

)
,

(
0

1

)
]⊗h

)
.

63

Thus, hrankR(H̃) ≤ 4. When s = 1 or −1, let E := sB̃ − s · diag(d21, d22). Suppose E =

λ1v1v
T
1 + λ2v2v

T
2 is an orthogonal eigenvalue decomposition. Then, (note that s2 = 1),

m(H̃) = s

(
1 sd1

sd1 s2d21

)
⊠

(
1 0

0 0

)
+ s

(
1 sd2

sd2 s2d22

)
⊠

(
0 0

0 1

)
+

(
0 0

0 1

)
⊠ (λ1v1v

T
1 + λ2v2v

T
2)− s

(
1 0

0 0

)
⊠ (uuT).

The above gives the real Hermitian decomposition for H̃:

H̃ = s[

(
1

sd1

)
,

(
1

0

)
]⊗h + s[

(
1

sd2

)
,

(
0

1

)
]⊗h + λ1[

(
0

1

)
, v1]⊗h+

λ2[

(
0

1

)
, v2]⊗h − s[

(
1

0

)
, u]⊗h.

For all cases, we have hrankR(H̃) ≤ 5. Since H̃ = (P,Q) ×cong H and P,Q are invertible,

hrankR(H) = hrankR(H̃). Therefore, we get the following conclusion.

Theorem 4.17 ([110]). For every H ∈ R[2,2]
D , with the flattening as in (4.26), we have

hrankR(H) ≤ 5. In particular, we have hrank(H) = hrankR(H) ≤ 4 if one of A,B is positive

(or negative) definite, or if A = B = 0.

Proof. The inequality hrankR(H) ≤ 5 is implied by

hrankR(H̃) ≤ 5, hrankR(H) = hrankR(H̃).

If one of A,B is positive (or negative) definite, then u = 0 by Proposition 4.16 and hence

hrankR(H) = hrankR(H̃) ≤ 4. If A = B = 0, we already have hrankR(H) = hrankR(H̃) ≤ 4.

By Proposition 4.14, hrank(H) = hrankR(H) ≤ 4 if one of A,B is positive (or negative)

definite, or if A = B = 0.

Kronecker flattening

Every matrix flattening map ϕ on the tensor space Cn1×...×nm can be used to define a

new flattening map κϕ on C[n1,...,nm]. Suppose ϕ flattens tensors in Cn1×...×nm to matrices of

the size D1-by-D2. Then we can define the linear map κϕ : C[n1,...,nm] → CD2
1×D2

2 such that

κϕ
(
[u1, . . . , um]⊗h

)
= ϕ(u1 ⊗ · · · ⊗ um)⊠ ϕ(u1 ⊗ · · · ⊗ um) (4.28)

64

for all ui ∈ Cni . The map κϕ is called the ϕ-Kronecker flattening generated by ϕ. When ϕ

is the standard flattening such that ϕ(a1 ⊗ · · · am−1 ⊗ am) = (a1 ⊠ · · · am−1)(am)
T , then κϕ

is the linear map such that

κϕ

(∑
i
λi[u

1
i , . . . , u

m
i]⊗h

)
=
∑

i
λiZi ⊠ Zi (4.29)

where Zi := (u1i ⊠ · · ·⊠um−1
i)(umi)

T . The map κϕ in (4.29) is called the canonical Kronecker

flattening.

Lemma 4.18 ([110]). Let ϕ be a flattening map on Cn1×···nm and κϕ be the corresponding

ϕ-Kronecker flattening. Then, for each H ∈ C[n1,...,nm],

hrank(H) ≥ hbrank(H) ≥ rankκϕ(H). (4.30)

The above is an analogue of Lemma 4.15. We omit its proof for cleanness of the paper.

The Hermitian and Kronecker flattening may give different lower bounds for Hermitian ranks,

as shown below.

Example 4.19. For m = 2 and n > 1, consider the Hermitian tensor in R[n,n]

H =
∑n

i,j=1
ei ⊗ ei ⊗ ej ⊗ ej =

(∑n

i=1
ei ⊗ ei

)
⊗
(∑n

i=1
ei ⊗ ei

)
.

Let κϕ be the canonical Kronecker flattening as in (4.29), then

m(H) =
(∑n

i=1
ei ⊠ ei

)(∑n

i=1
ei ⊠ ei

)T
, κϕ(H) =

(∑n

i=1
eie

T
i

)
⊠
(∑n

i=1
eie

T
i

)
= In2 .

For instance, when n = 2, we have

m(H) =


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 , κϕ(H) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

By Lemma 4.18, hrank(H) ≥ rankκϕ(H) = n2 while rankm(H) = 1 . Indeed, we further

have a sharper lower bound

hrank(H) ≥ n2 + 1.

Suppose otherwise that hrank(H) = n2, say, H =
∑n2

i=1λi[ui, vi]⊗h for λi ∈ R and ui, vi ∈ Cn,

then

κϕ(H) = In2 =
∑n2

i=1
λi(ui · vTi)⊠ (ui · viT) =

∑n2

i=1
λi(ui ⊠ ui)(vi ⊠ vi)

T .

65

Let

U = [λ1u1 ⊠ u1, . . . , λn2un2 ⊠ un2], V = [v1 ⊠ v1, . . . , vn2 ⊠ vn2].

Then U, V are square matrices of length n2 and

UV T = In2 ⇒ V TU = In2 ⇒ λj(vi ⊠ vi)
T (uj ⊠ uj) =

{
1 i = j,

0 i ̸= j.

For i ̸= j, we have

(vi ⊠ vi)
T (uj ⊠ uj) = (vTi uj)⊠ (vi

Tuj) = |vTi uj|2 = 0 ⇒ vTi uj = 0.

Thus, u2, . . . , un2 ∈ v⊥1 and

r := dim(span{u2, . . . , un2}) ≤ n− 1.

Let {s1, . . . , sr} be a basis for span{u2, . . . , un2}. For each i = 2, 3, . . . n2, ui ⊠ ui belongs to

the span of the set {sp ⊠ sq}1≤p,q≤r, so

dim
(
span{ui ⊠ ui}n

2

i=2

)
≤ dim

(
span{sp ⊠ sq}1≤p,q≤r

)
= r2.

This implies that

n2 = rank(U) ≤ 1 + dim
(
span{ui ⊠ ui}n

2

i=2

)
≤ r2 + 1 ≤ (n− 1)2 + 1.

However, n2 > (n− 1)2 +1 when n ≥ 2. This is a contradiction, so hrank(H) ≥ n2 +1. For

the case n = 2, hrank(H) = n2 + 1, because we have a Hermitian decomposition of length 5

(in the following c :=
√
1 +

√
2):

1

2c4 − 2

([(
c

1

)
,

(
c

1

)]
⊗h

+

[(
c

−1

)
,

(
c

−1

)]
⊗h

−

[(
1

c
√
−1

)
,

(
1

c
√
−1

)]
⊗h

−

[(
1

−c
√
−1

)
,

(
1

−c
√
−1

)]
⊗h

)
+ 2

[(
0

1

)
,

(
0

1

)]
⊗h

.

When n > 2, the true value of hrank(H) is not known to the authors.

4.5 PSD Hermitian tensors

A Hermitian tensor H can be uniquely determined by the multi-quadratic conjugate

polynomial H(x, x) := ⟨H, [x1, . . . , xm]⊗h
⟩, in the tuple x := (x1, . . . , xm) of complex vector

variables xi ∈ Cni . Like the matrix case, positive semidefinite Hermitian tensors can be

naturally defined [101].

66

Definition 4.20. Let F = C or R. A Hermitian tensor H ∈ F[n1,...,nm] is called F-positive
semidefinite (F-psd) if H(x, x) ≥ 0 for all xi ∈ Fni. Moreover, if H(x, x) > 0 for all

0 ̸= xi ∈ Fni, then H is called F-positive definite (F-pd).

For convenience, a complex (resp., real) Hermitian tensor is called psd if it is C-psd
(resp., R-psd). Denote the cone of F-psd Hermitian tensors

P [n1,...,nm]
F :=

{
H ∈ F[n1,...,nm] : H(x, x) ≥ 0 ∀xi ∈ Fni

}
. (4.31)

Example 4.21. (i) Consider H ∈ C[3,3] such that H(x, y) = ⟨H, [x, y]⊗h⟩ is the following

conjugate polynomial (for cleanness of display, the variable x1 is changed to x := (x1, x2, x3)

and x2 is changed to y := (y1, y2, y3)):

|x1|2|y1|2 + |x2|2|y2|2 + |x3|2|y3|2 + 2(|x1|2|y2|2 + |x2|2|y3|2 + |x3|2|y1|2)

−(x1x2y1y2 + x1x2y1y2 + x1x3y1y3 + x1x3y1y3 + x2x3y2y3 + x2x3y2y3).

Since H(x, y) ≥ 0 for all real x, y (see [112]), the tensor H is R-psd. In fact, it is also C-psd,
because

H(x, y)

= |x1|2|y1|2 + |x2|2|y2|2 + |x3|2|y3|2 + 2(|x1|2|y2|2 + |x2|2|y3|2 + |x3|2|y1|2)
−2
(
Re(x1x2y1y2) + Re(x1x3y1y3) + Re(x2x3y2y3)

)
≥ |x1|2|y1|2 + |x2|2|y2|2 + |x3|2|y3|2 + 2(|x1|2|y2|2 + |x2|2|y3|2 + |x3|2|y1|2))

−2(|x1x2y1y2|+ |x1x3y1y3|+ |x2x3y2y3|)
= H(x̂, ŷ) ≥ 0,

where x̂ := (|x1|, |x2|, |x3|) and ŷ := (|y1|, |y2|, |y3|) are real.

(ii) Consider H ∈ C[2,2] such that

H1111 = H1122 = H2211 = 1, H1221 = H2112 = −1

and all other entries are zeros, so (for cleanness, the variable x1 is changed to x := (x1, x2)

and x2 is changed to y := (y1, y2)):

H(x, y) = |x1|2|y1|2 + x1x2y1y2 + x1x2y1y2 − x1x2y1y2 − x1x2y1y2.

When x, y are real, H(x, y) = x21y
2
1 ≥ 0. This tensor is R-psd but not C-psd, because for

x = y = (
√
−1, 1), H(x, y) = 1− 1− 1− 1− 1 = −3 < 0.

67

A R-psd Hermitian tensor is not necessarily C-psd. However, they are equivalent for

R-Hermitian decomposable tensors.

Proposition 4.22 ([110]). For H ∈ R[n1,...,nm]
D , H is R-psd if and only if H is C-psd.

Proof. The “if” direction is obvious. We prove the “only if” direction. For vi ∈ Cni , write

vj = xj +
√
−1yj with xj, yj ∈ Rnj . Then, we have

⟨[u1, . . . , um]⊗h, [v1, . . . , vm]⊗h⟩ = Πm
j=1(u

j)Tvj · (uj)Tvj = Πm
j=1|(uj)Tvj|2

= Πm
j=1(|(uj)Txj|2 + |(uj)Tyj|2) =

∑
zj∈{xj ,yj}

⟨[u1, . . . , um]⊗h, [z1, . . . , zm]⊗h⟩.

Since H ∈ R[n1,...,nm]
D , it is a sum of real rank-1 real Hermitian tensors, so〈

H, [v1, . . . , vm]⊗h
〉
=

∑
zj∈{xj ,yj}

〈
H, [z1, . . . , zm]⊗h

〉
≥ 0.

If H is R-psd, then H is also C-psd.

Clearly, P [n1,...,nm]
F is a closed convex cone. As in [14], a cone is said to be solid if it

has nonempty interior; it is said to be pointed if it does not contain any line through origin;

a closed convex cone is said to be proper if it is both solid and pointed. The complex cone

P [n1,...,nm]
C is proper, as mentioned in [101]. However, the real cone P [n1,...,nm]

R is not proper.

In fact, it is solid but not pointed.

Proposition 4.23 ([110]). For m > 1 and n1, . . . , nm > 1, the cone Pn1,...,nm

C is proper,

while P [n1,...,nm]
R is solid but not pointed.

Proof. Let I ∈ F[n1,...,nm] be the identity tensor, i.e., I(x, x) = (x∗1x1) · · · (x∗mxm). The
conjugate polynomial I(x, x) is positive definite on the spheres ∥xi∥ = 1. Thus, for ϵ > 0

sufficiently small, all Hermitian tensors H ∈ F[n1,...,nm] with ∥H − I∥ < ϵ belong to the cone

P [n1,...,nm]
F , for both F = C,R. That is, I is an interior point, and hence P [n1,...,nm]

F is solid.

The complex cone Pn1,...,nm

C is pointed. For each H ∈ Pn1,...,nm

C ∩−Pn1,...,nm

C , H(x, x)

must be identically zero for all complex xi. The conjugate polynomial

H(x, x) =
∑

i1...imj1...jm
Hi1...imj1...jmx1,i1 · · ·xm,imx1,j1 · · · xm,jm

is identically zero if and only all its coefficients are zero, i.e., H = 0. This implies that

Pn1,...,nm

C does not contain any line through origin, i.e., it is pointed.

68

The real cone Pn1,...,nm

R is not pointed. For m > 1 and n1, . . . , nm > 1, the set

R[n1,...,nm]
D is a proper subspace of R[n1,...,nm]. Let C be the orthogonal complement of R[n1,...,nm]

D

in R[n1,...,nm]. Then, for all 0 ̸= X ∈ C and for all xj ∈ Rnj , ⟨X , [x1, . . . , xm]⊗h⟩ = 0 because

[x1, . . . , xm]⊗h ∈ R[n1,...,nm]
D . This implies C ⊆ Pn1,...,nm

R . So, Pn1,...,nm

R contains a line through

the origin and hence it is not pointed.

4.6 Separable Hermitian tensors

A basic topic in quantum physics is tensor entanglement. It requires to decide whether

or not a given Hermitian tensor can be written as a sum of rank-1 Hermitian tensors with

positive coefficients. This leads to the concept of separable tensors.

Definition 4.24. [101] A Hermitian tensor H ∈ C[n1,...,nm] is called separable if

H = [u11, . . . , u
m
1]⊗h + · · ·+ [u1r, . . . , u

m
r]⊗h (4.32)

for some vectors uji ∈ Cnj . When such decomposition exists, (4.32) is called a positive C-
Hermitian decomposition and H is called C-separable. Moreover, if each uji in (4.32) is real,

then H is called R-separable and (4.32) is called a positive R-Hermitian decomposition.

Let F = C or R. The set of F-separable tensors in F[n1,...,nm] is denoted as S [n1,...,nm]
F .

The decomposition (4.32) is equivalent to that

H(x, x) =
∑r

i=1
|(u1i)∗x1|2 · · · |(umi)∗xm|2.

All F-separable tensors must be HSOS. To be R-separable, a tensor must be R-Hermitian

decomposable. The following is the relationship between C-separability and R-separability.

Lemma 4.25 ([110]). For H ∈ R[n1,...,nm]
D , H is R-separable if and only if it is C-separable.

Proof. The “only if” direction is obvious. We prove the “if” direction. Assume H is C-
separable, then (4.32) holds for some complex vectors uji . Let s

j
i := Re(uji) and t

j
i := Im(uji).

For all real vector variables xi ∈ Rni , the inner product ⟨[u1i , . . . , umi]⊗h, [x1, . . . , xm]⊗h⟩ =∏m
j=1 |(u

j
i)

∗xj|2, which can be expanded as

m∏
j=1

(
|(sji)Txj|2 + |(tji)Txj|2

)
=

∑
zji∈{s

j
i ,t

j
i}

⟨[z1i , . . . , zmi]⊗h, [x1, . . . , xm]⊗h⟩.

69

The equation (4.32) implies that, for all real vectors xi,

⟨H, [x1, . . . , xm]⊗h⟩ =
r∑
i=1

∑
zji∈{s

j
i ,t

j
i}

⟨[z1i , . . . , zmi]⊗h, [x1, . . . , xm]⊗h⟩.

Since H is R-separable, by Lemma 4.12, H =
∑r

i=1

∑
zji∈{s

j
i ,t

j
i}
[z1i , . . . , z

m
i]⊗h. Hence, H is

also R-separable.

The complex separable tensor cone S [n1,...,nm]
C is dual to P [n1,...,nm]

C , as noted in [101].

The duality also holds for the real case. Let F = C or R. By the definition (see [8]), the

dual cone of S [n1,...,nm]
F is the set(
S [n1,...,nm]

F

)⋆
:=
{
X ∈ F[n1,...,nm] : ⟨X, Y ⟩ ≥ 0 ∀Y ∈ S [n1,...,nm]

F

}
.

Recall that a closed convex cone is proper if it is solid (has nonempty interior) and pointed

(does not contain any line through the origin). The complex cone S [n1,...,nm]
C is proper [101],

but S [n1,...,nm]
R is not.

Theorem 4.26 ([110]). For F = R,C, the cone S [n1,...,nm]
F is dual to P [n1,...,nm]

F , i.e.,(
S [n1,...,nm]

F

)⋆
= P [n1,...,nm]

F ,
(
P [n1,...,nm]

F

)⋆
= S [n1,...,nm]

F . (4.33)

Moreover, the complex cone S [n1,...,nm]
C is proper, while the real one S [n1,...,nm]

R is not proper.

In fact, S [n1,...,nm]
R is pointed but not solid.

Proof. Observe that S [n1,...,nm]
F equals the conic hull of the compact set

U :=
(
[u1, . . . , um]⊗h : ui ∈ Fni , ∥ui∥ = 1

)
, (4.34)

so it is a closed convex cone [8]. A tensorX ∈ F[n1,...,nm] belongs to the dual cone of S [n1,...,nm]
F

if and only if ⟨X, [u1, . . . , um]⊗h⟩ ≥ 0 for all ui ∈ Fni , which is equivalent to that X is F-psd.
Therefore, the dual cone of S [n1,...,nm]

F is P [n1,...,nm]
F . Since S [n1,...,nm]

F and P [n1,...,nm]
F are

both closed convex cones, the dual cone of P [n1,...,nm]
F is also equal to S [n1,...,nm]

F , by the bi-

duality theorem [8]. Hence, the dual relationship (4.33) holds. By Proposition 4.23, the cone

P [n1,...,nm]
C is proper, while P [n1,...,nm]

R is solid but not pointed. By the duality, S [n1,...,nm]
C is

also proper, while S [n1,...,nm]
R is pointed but not solid [2].

Theorem 4.26 tells that a Hermitian tensor is F-separable if and only if it belongs to

the dual cone of P [n1,...,nm]
F . Therefore, for A ∈ F[n1,...,nm], if there exists B ∈ F[n1,...,nm] such

70

that B(x, x) ∈ Σ[x, x] and ⟨A,B⟩ < 0, then A is not F-separable. For instance, consider the
Hankel tensor A ∈ C[2,2] such that Aijkl = i+j+k+ l for all i, j, k, l. Let B be the Hermitian

tensor such that

⟨B, [x1, x2]⊗h⟩ = |x11x21 −
5

6
x11x22|2.

Since B(x) ∈ Σ[x] and ⟨A,B⟩ = −1
6
< 0, A is not F-separable for F = C,R.

An important computational task is to determine whether or not a Hermitian tensor

is separable. If it is, we need a positive Hermitian decomposition. This is an interesting

future work.

Let F = C,R. In the proof of Theorem 4.26, we have seen that the F-separable
Hermitian tensor cone S [n1,...,nm]

F equals the conic hull of the compact set U , that is, (cone

denotes the conic hull)

S [n1,...,nm]
F = cone

(
[u1, . . . , ur]⊗h : ui ∈ Fni , ∥ui∥ = 1

)
. (4.35)

Equivalently, we have A ∈ S [n1,...,nm]
F if and only if there exist positive scalars λi > 0 and

unit length vectors uji ∈ Fnj such that

A =
∑r

i=1
λi[u

1
i , . . . , u

m
i]⊗h. (4.36)

If we let µ :=
∑r

i=1λiδ(u1i ,...,umi) be the weighted sum of Dirac measures, then (4.36) is

equivalent to

A =

∫
[x1, . . . , xm]⊗hdµ. (4.37)

The support supp(µ) of the measure µ is contained in the multi-sphere

Sn1,...,nm

F := {(x1, . . . , xm) ∈ Fn1 × · · ·Fnm : ∥x1∥ = · · · ∥xm∥ = 1}.

Interestingly, if there is a Borel measure µ supported in Sn1,...,nm

F , then there must exist λi > 0

and unit length vectors uji satisfying (4.36). This can be implied by the proof of Theorem 5.9

of [84]. Therefore, we have the following theorem.

Theorem 4.27 ([110]). For F = C or R, a tensor A ∈ F[n1,...,nm] is F-separable if and only

if there exists a Borel measure µ such that (4.37) holds and supp(µ) ⊆ Sn1,...,nm

F .

The task of checking existence of µ in Theorem 4.27 is a truncated moment problem.

We refer to [82,84,112,113,115] for related work. Interestingly, separable Hermitian tensors

71

can also be characterized by the Hermitian flattening map m. As in (4.24), the decomposition

(4.36) is equivalent to that

m(A) =
∑r

i=1
λi
(
u1i (u

1
i)

∗)⊠ · · ·⊠
(
umi (u

m
i)

∗). (4.38)

The Theorem 4.27 immediately implies the following.

Theorem 4.28 ([110]). For F = C or R, a tensor A ∈ F[n1,...,nm] is F-separable if and only

if there exist Hermitian psd matrices 0 ⪯ Bij ∈ Fnj×nj , for i = 1, . . . , s and j = 1, . . . ,m,

such that

m(A) =
∑s

i=1
Bi1 ⊠ · · ·⊠Bim. (4.39)

The smallest integer s in (4.39) is called the F-psd rank for the tensor A. How to

determine F-psd ranks is mostly an open question.

Example 4.29. Consider the tensor A ∈ C[2,2] with the Hermitian flattening

m(A) =


5 −4 1 −5

−4 21 −5 7

1 −5 3 −3

−5 7 −3 13

 .

It is R-separable, because

m(A) =

(
2 −1

−1 1

)
⊠

(
1 1

1 3

)
+

(
3 2

2 2

)
⊠

(
1 −2

−2 5

)
.

The R-psd rank is 2, since A does not have a decomposition like (4.39) for s = 1.

4.7 Detecting separability

The separability of Hermitian tensors can be detected by solving moment optimization

problems, which then can be solved by Lasserre type semidefinite relaxations. This is done

by Li and Ni [87], based on the results in [104, 105]. In this section, we review this method

and provide an improved formulation of the moment optimization. Furthermore, we prove

stronger convergence results.

Recall that a Hermitian tensor H ∈ C[n1,...,nm] is separable if and only if there exist

vectors uji ∈ Cnj such that

H = [u11, . . . , u
m
1]⊗h + · · ·+ [u1r, . . . , u

m
r]⊗h. (4.40)

72

A complex vector can be written as a sum of its real and imaginary parts. For uj :=

((uj)1, . . . , (u
j)nj

) ∈ Cnj , one can write that

uj = xRe
j +

√
−1xImj , xRe

j ∈ Rnj , xImj ∈ Rnj .

The coordinates of xRe
j , x

Im
j can be labelled as

xRe
j =

(
(xRe

j)1, . . . , (x
Re
j)nj

)
, xImj =

(
(xImj)1, . . . , (x

Im
j)nj

)
.

It is interesting to note that, for all unitary scalars τ ji (i.e., |τ
j
i | = 1), the above decomposition

for H is the same as

H = [τ 11u
1
1, . . . , τ

m
1 u

m
1]⊗h + · · ·+ [τ 1r u

1
r, . . . , τ

m
r u

m
r]⊗h.

For each uji , there exists a unitary scalar τ ji such that the first entry of τ ji u
j
i is real and

nonnegative, i.e., (xRe
j)1 ≥ 0, (xImj)1 = 0. By Theorem 4.27, a Hermitian tensor H ∈

C[n1,...,nm] is separable if and only if

H =

∫
z1 ⊗ · · · ⊗ zm ⊗ z1 ⊗ · · · ⊗ zmdµ,

for a Borel measure µ supported in the multi-sphere Sn1,...,nm

C . In view of the above observation,

such a measure µ can be further chosen to be supported in the set

Sn1,...,nm

C,+ :=
{
(u1, . . . , um) : uj ∈ Cnj , ∥uj∥ = 1, (xRe

j)1 ≥ 0, (xImj)1 = 0
}
.

For convenience of notation, for each j = 1, . . . ,m, we denote that

xj := (xRe
j , x

Im
j) =

(
(xRe

j)1, . . . , (x
Re
j)nj

, (xImj)2, . . . , (x
Im
j)nj

)
∈ R2nj−1.

For neatness of labelling, we also write that

xj :=
(
(xj)1, . . . , (xj)nj

, (xj)nj+1, . . . , (xj)2nj−1

)
.

Then Sn1,...,nm

C,+ can be equivalently written as the semialgebraic set

K :=
{
(x1, . . . , xm) : xj ∈ R2nj−1, ∥xj∥ = 1, (xj)1 ≥ 0.

}
. (4.41)

Let B(K) denote the set of all Borel measures supported in K and

x := (x1, . . . , xm) ∈ R2N−m, (4.42)

73

with N :=
∑m

j=1 nj. The set K can be equivalently given as

K = {x ∈ R2N−m : h(x) = 0, g(x) ≥ 0},

where h :=
(
∥x1∥2 − 1, . . . , ∥xm∥2 − 1

)
and g(x) :=

(
(x1)1, . . . , (xm)1

)
.

Next, we consider the label set

S := {(i1, . . . , im) : i1 ∈ [n1], . . . , im ∈ [nm]}. (4.43)

Its cardinality is M = n1 · · ·nm. For two labeling tuples in S

I := (i1, . . . , im), J := (j1, . . . , jm),

we define the ordering I < J if the first nonzero entry of I − J is negative. For I < J , let

PIJ denote the polynomial

PIJ(x) :=
m∏
s=1

(
xRe
s +

√
−1xIms

)
is
·
(
xRe
s −

√
−1xIms

)
js
. (4.44)

Therefore, the positive Hermitian decomposition (4.40) is equivalent to that

HIJ =

∫
K

PIJ(x)dµ, for all I, J ∈ S, (4.45)

for a Borel measure µ supported in K. Then Theorem 4.27 implies the following.

Corollary 4.30. A tensor H ∈ C[n1,...,nm] is separable if and only if there exists a measure

µ ∈ B(K) such that (4.45) is satisfied.

Next, we formulate the above as a moment optimization problem, following similar

ideas in [87] adapted to our new formulation of the moment problem. We write each PIJ as

a sum of real and imaginary parts

PIJ(x) = RIJ(x) +
√
−1TIJ(x)

for real polynomials RIJ , TIJ ∈ R[x] = R[x1, . . . , xm]. Likewise, the tensor entries HIJ of H
can be written as

HIJ = HRe
IJ +

√
−1HIm

IJ , (4.46)

for real entries HRe
IJ ,HIm

IJ . Since H is Hermitian, it holds that

HRe
IJ = HRe

JI , HIm
IJ = −HIm

JI , HIm
II = 0.

74

Therefore, it suffices to consider HRe
IJ with I ≤ J and HIm

IJ with I < J . For a polynomial

F (x) ∈ R[x], we consider the moment optimization problem

min
µ

∫
K
F (x)dµ

s.t. HRe
IJ =

∫
K
RIJ(x)dµ, (I ≤ J),

HIm
IJ =

∫
K
TIJ(x)dµ, (I < J),

µ ∈ B(K).

(4.47)

To ensure that (4.47) has a unique minimizer, one can choose F (x) to be a generic polynomial

in Σ[x]2m. We introduce the moment cone

R2m(K) :=

{
y = (yα) :

∃µ ∈ B(K), such that

(y)α =
∫
xαdµ, ∀α ∈ N2N−m

2m

}
. (4.48)

Then, (4.47) is equivalent to the following optimization

min
y

⟨F, y⟩

s.t. HRe
IJ = ⟨RIJ , y⟩, (I ≤ J),

HIm
IJ = ⟨TIJ , y⟩, (I < J),

y ∈ R2m(K).

(4.49)

For the coefficient vector f := (fRe, f Im) with

fRe :=
(
fRe
IJ

)
I≤J , f Im :=

(
f Im
IJ

)
I<J

,

denote the polynomials

G(f) := F (x)−
∑
I≤J

fRe
IJ ·RIJ(x)−

∑
I<J

fℑ
IJ · TIJ(x).

Then the optimization problem dual to (4.49) is max
f

∑
I≤J f

Re
IJHRe

IJ +
∑

I<J f
Im
IJ HIm

IJ

s.t. G(f) ∈ P2m(K),
(4.50)

where P2m(K) denotes the cone of polynomials in R[x]2m that are nonnegative on K.

75

The moment cone R2m(K) can be approximated well by semidefinite relaxations.

Select a generic F (x) ∈ Σ[x]2m. Consider the hierarchy of semidefinite relaxations

min
w

⟨F,w⟩

s.t. ⟨RIJ , w⟩ = HRe
IJ , I, J ∈ S, I ≤ J

⟨TIJ , w⟩ = HIm
IJ , I, J ∈ S, I < J

L
(k)
h (w) = 0,Mk(w) ⪰ 0, L

(k)
g ⪰ 0,

w ∈ RN2N−m
2k ,

(4.51)

for relaxation orders k = m,m+ 1, · · · . The dual optimization of the above ismax
f

∑
I≤J f

Re
IJHRe

IJ +
∑

I<J f
Im
IJ HIm

IJ

s.t. G(f) ∈ I2k(h) +Qk(g).
(4.52)

This yields the following algorithm.

Algorithm 4.31. Detecting separability for Hermitian tensors.

Input: A Hermitian tensor H ∈ C[n1,...,nm].

Output: Either a positive C-Hermitian decomposition of H, particularly affirming membership

in S [n1,...,nm]
C , or an answer that H is not separable.

Step 0: Let k = m. Choose a generic F (x) ∈ Σ[x]2m.

Step 1: Solve the semidefinite optimization (4.51). If it is infeasible, output that H is not

separable, and stop; otherwise, solve it for a minimizer w⋆,k and let t := 1.

Step 2: Let w := w⋆,k|2t. Check whether or not the rank condition

rankMt−1(w) = rankMt(w) (4.53)

holds. If it does, go to Step 4; otherwise, go to Step 3.

Step 3: If t < k, set t = t+ 1 and go to Step 2; otherwise, set k = k + 1 and go to Step 1.

Step 4: Let r := rankMt(w). Compute the weights λ1 > 0, . . . , λr > 0 and v(1), . . . , v(r) ∈ K

such that

w = λ1[v
(1)]2t + · · ·+ λr[v

(r)]2t. (4.54)

76

For each i = 1, . . . , r, write that v(i) = (v
(i)
1 , . . . , v

(i)
m) with each v

(i)
j ∈ R2nj−1 and for

j = 1, . . . ,m, let

uji :=
(
(v

(i)
j)1, . . . , (v

(i)
j)nj

)
+
√
−1
(
0, (v

(i)
j)nj+1, . . . , (v

(i)
j)2nj−1

)
.

Output the positive decomposition H =
∑r

i=1 λi[u
1
i , . . . , u

m
i]⊗h.

In the Step 0, we can choose the generic polynomial F ∈ Σ[x]2m as F = [x]Tm(G
TG)[x]m

with a random square matrix G of length
(
2N−m+d/2

d/2

)
, i.e., each entry of G is a real random

variable fulfilling normal (Gaussian) distribution. The Step 1 is justified by Theorem 4.32.

The Step 2 requires to check if w satisfies the rank condition (4.53). When the rank

condition (4.53) is satisfied, one can use the method in [67] to get a positive C-Hermitian

decomposition in (4.54). This method is implemented in the software GloptiPoly3 [66].

We point out that the vectors uji must belong to the set Sn1,...,nm

C,+ if (4.53) holds (see [102]).

Therefore, Algorithm 4.31 can be conveniently programmed in GloptiPoly3.

Now we study the convergence of Algorithm 4.31. In [87, Theorem 2], Li and Ni

proved the subsequent properties for their semidefinite relaxations: (I) If the semidefinite

relaxation is infeasible for some order k, then the Hermitian tensor H is not separable.

(II) If H is separable, then their relaxations can asymptotically get a positive Hermitian

decomposition. Their proof uses the results in [104]. We prove stronger convergence results

for Algorithm 4.31. In fact, if H is not separable, we show that the semidefinite relaxation

(4.51) must be infeasible for all k large enough. Furthermore, we prove the finite convergence

for Algorithm 4.31 under some conditions.

First, we show that non-separability of a Hermitian tensor is equivalent to infeasibility

of the semidefinite relaxation (4.51) for some order k.

Theorem 4.32 ([49]). Let H, HRe
IJ , HIm

IJ be as in (4.46). Then, H is not separable (i.e.,

H /∈ S [n1,...,nm]
C) if and only if the semidefinite relaxation (4.51) is infeasible for some k.

Proof. “if” direction: Note that (4.51) is a relaxation of (4.49). If (4.51) is infeasible, then

(4.49) must be infeasible and hence H is not separable.

“only if” direction: Recall that P [n1,...,nm]
C is the dual cone of S [n1,...,nm]

C , by Theorem 4.26.

If H is not C-separable, there exists a psd tensor A1 ∈ P [n1,...,nm]
C such that ⟨A1,H⟩ < 0.

For ϵ > 0, let A be the Hermitian tensor such that

A(z, z) = A1(z, z) + ϵ(z∗1z1) · · · (z∗mzm).

77

If ϵ > 0 is sufficiently small, ⟨A,H⟩ < 0 and A is C-positive definite. Write that A =

ARe +
√
−1AIm, where ARe,AIm are both real tensors. Since A is positive definite, for the

variable x, we have that

A(x) := ⟨A, [xRe
1 +

√
−1xIm1 , . . . , xRe

m +
√
−1xImm]⊗h⟩ =∑

I,J∈S

ARe
IJRIJ +

∑
I,J∈S

AIm
IJTIJ > 0, for all x ∈ K.

Select f = (fRe, f Im) as follows

fRe
IJ =

{
−ARe

IJ if I = J

−2ARe
IJ if I < j

, f Im
IJ = −2AIm

IJ for I < J.

Thus, G(f) = F (x) +A(x). By Putinar’s Positivstellensatz [124], we have A(x) ∈ I2k0(h) +

Qk0(g) for some k0. Since F (x) ∈ Σ[x]2m, we have

F (x) + τA(x) ∈ I2k0(h) +Qk0(g)

for all τ > 0. This implies that τ f is feasible for (4.52) for all τ > 0. Moreover, for the above

choice of f, the objective value in (4.52) is such that∑
I≤J

τfRe
IJHRe

IJ +
∑
I<J

τf Im
IJ HIm

IJ = τ⟨−A,H⟩ → +∞,

as τ → +∞. Therefore, the dual problem (4.52) is unbounded from above and hence, by

duality, the primal problem (4.51) must be infeasible for all k ≥ k0.

Second, we prove the asymptotic convergence of Algorithm 4.31. For the minimizer

w⋆,k, recall that the notation w⋆,k|2m denotes the subvector of entries (w⋆,k)α with |α| ≤ 2m.

The w⋆,k|2m is called the truncation of w⋆,k with degree 2m. The asymptotic convergence for

Algorithm 4.31 means that the truncated sequence {w⋆,k|2m}∞k=m of minimizers is bounded

and all its accumulation points are optimizers of the moment optimization (4.47).

Theorem 4.33 ([49]). Let H be a separable Hermitian tensor and let HRe
IJ ,HIm

IJ be as in

(4.46). If F (x) is a generic polynomial in Σ[x]2m, then we have the following properties:

(i) For all k ≥ m, the semidefinite relaxation (4.51) has an optimizer w⋆,k.

(ii) The truncated sequence {w⋆,k|2m}∞k=m is bounded and all its accumulation points are

optimizers of the moment optimization problem (4.47).

78

Proof. Since the Hermitian tensorH is separable (i.e., H ∈ S [n1,...,nm]
C), there is a satisfactory

measure µ for (4.47), by Corollary 4.30. Hence the problem (4.49) is feasible.

(i) Since (4.49) is feasible, the problem (4.51) is feasible as well. The genericity of

F (x) implies that F lies in the interior of Σ[x]2m. Therefore, (4.51) is bounded from below

and (fRe, f Im) = (0, 0) is an interior point of the dual optimization (4.52). Therefore, the

strong duality holds and the semidefinite relaxation (4.51) must have an optimizer w⋆,k.

(ii) The set K satisfies the ball condition

∥x∥2 =
m∑
j=1

∥xRe
j ∥2 + ∥xImj ∥2 ≤ m,

so the archimedeanness holds for the constraining polynomials of K. The conclusion then

follows from [105, Theorem 4.3(ii)].

Last, we study the finite convergence property of Algorithm 4.31, i.e., we investigate

conditions for it to terminate within finitely many loops. The finite convergence can occur

under some assumptions on the optimizer of (4.50).

Assumption 4.34. Suppose f∗ is a maximizer of the optimization (4.50) and the polynomial

F ∗ := G(f∗) satisfies the conditions:

i) There exists a k1 such that F ∗ ∈ I2k1(h) +Qk1(g);

ii) The optimization problem

min F ∗(x) s.t. h(x) = 0, g(x) ≥ 0

has finitely many KKT points u for which F ∗(u) = 0.

We refer to [102] for the notion of KKT points. Assumption 4.34 holds if F ∗ is a

generic point on the boundary of P2m(K) (see [103]). The following is the finite convergence

result.

Theorem 4.35 ([49]). Let H ∈ S [n1,...,nm]
C and HRe

IJ ,HIm
IJ be as in (4.46). Suppose F (x) ∈

int(Σ[x]2m), Assumption 4.34 holds, and w⋆,k is a minimizer of (4.51) for the relaxation

order k. Then, for all k > t sufficiently large, the rank condition (4.53) must be satisfied.

Proof. The conclusion follows from Theorem 4.6 of [105].

79

We present examples for detecting separability of Hermitian tensors by Algorithm

4.31. The algorithm can be implemented in the software GloptiPoly3 [66], which calls the

SDP solver SeDuMi [67]. Since the semidefinite programs are solved numerically, we display

only four decimal digits for the computational results. The computation is implemented in

MATLAB R2019b, on an Intel(R) Core(TM) i7-8550U CPU with 3.79 GHz and 16 GB of

RAM.

Example 4.36. Consider the Hankel tensor H ∈ C[2,2] in [111] such that

Hi1i2j1j2 = i1 + i2 + j1 + j2

for all 1 ≤ i1, i2, j1, j2 ≤ 2. The tensor H is not separable, detected by Algorithm 4.31, since

the semidefinite relaxation (4.51) is infeasible for k = 2. The computation took around 0.8

second.

Example 4.37. Consider the tensor H ∈ C[3,3] such that

Hi1i2j1j2 = i1j1 + i2j2

for all i1, i2, j1, j2 in the range. It is separable, detected by Algorithm 4.31 for k = 2. We

got the positive Hermitian decomposition H = λ1[u
1
1, u

2
1]⊗h + λ2[u

1
2, u

2
2]⊗h, with weights λ1 =

λ2 = 42 and

u11 =


√
14/14

√
14/7

3/
√
14

 , u21 =


√
3/3

√
3/3

√
3/3

 , u12 =


√
3/3

√
3/3

√
3/3

 , u22 =


√
14/14

√
14/7

3/
√
14

 .

The computation took around 2.7 seconds.

Example 4.38. Consider the Hermitian tensor H = 1
2
ψ1 ⊗ ψ1 +

1
2
ψ2 ⊗ ψ2, where

ψ1 :=
1√
3
(e1 ⊗ e1 + e1 ⊗ e2 +

√
−1e2 ⊗ e2),

ψ2 :=
1

3
√
2
(e1 ⊗ e1 − e1 ⊗ e2 + 4

√
−1e2 ⊗ e1),

for e1 := (1, 0), e2 := (0, 1). In terms of the eigenvalue decomposition of the Hermitian

flattening matrix, it was shown in [101, Example 6.1] that this state is not separable. The

semidefinite relaxation (4.51) is infeasible for k = 2, so we know H /∈ S [2,2]
C not separable.

The computation took around 0.8 second.

80

In what follows, we consider more general Hermitian tensors. For neatness, the

weights λi are set to be one by scaling the vectors uji accordingly. That is, we display

the positive Hermitian decomposition as H =
∑r

i=1[u
1
i , . . . , u

m
i]⊗h. Moreover, we use the

notation i :=
√
−1. Note that a Hermitian tensor H can be equivalently represented by its

Hermitian flattening matrix m(H).

Example 4.39. Consider H ∈ S [3,3]
C whose flattening matrix m(H) is

10 −2− 2i 1 + 1i 7− i −2− 4i 2i −4− 6i 0 −2

−2 + 2i 10 −6 + 1i −2 5 + 3i −5 + 1i −4− 4i −4 + 2i 3 + 1i

1− i −6− i 12 2 + 4i −5− i 8 + 1i 4 + 6i −3− i −4− 2i

7 + 1i −2 2− 4i 9 −1− 3i −1− i 1− 7i −2 −4 + 2i

−2 + 4i 5− 3i −5 + 1i −1 + 3i 8 −5− i −2i 4 2i

−2i −5− i 8− i −1 + 1i −5 + 1i 11 2 + 4i −2 + 4i 3− 5i

−4 + 6i −4 + 4i 4− 6i 1 + 7i 2i 2− 4i 20 −3− i 2

0 −4− 2i −3 + 1i −2 4 −2− 4i −3 + 1i 17 −9 + 1i

−2 3− i −4 + 2i −4− 2i −2i 3 + 5i 2 −9− i 22



.

By Algorithm 4.31 with relaxation order k = 2, we got the positive Hermitian decomposition
H =

∑9
i=1[u

1
i , u

2
i]⊗h, where U1 := [u11, . . . , u

1
9]
T , U2 := [u21, . . . , u

2
9]
T are given as follows

U1 =



0.0000 −1.1632− 0.5687i −0.2972− 0.8659i

−0.0000 −1.1309 + 0.5564i −0.8436− 0.2873i

1.3161 0.6580− 0.6580i −0.6580− 0.6580i

1.0000 −1.0000 + 1.0000i 1.0000− 1.0000i

1.4142 0.7071 + 0.7071i −1.4142 + 0.0000i

0.8691 −0.4346− 0.4345i 0.8691− 0.0000i

1.3375 −0.6687− 0.6687i 0.0000 + 1.3375i

1.3375 −0.6687 + 0.6687i 1.3375 + 0.0000i

0.6921 −0.3460− 0.3461i 0.6921 + 0.0000i



,

U2 =



0.7928 0.0000− 0.7928i −0.7928− 0.7929i

0.7718 −0.0000− 0.7718i −0.7718− 0.7718i

1.0746 0.0000− 0.0000i −1.0746 + 1.0746i

1.4142 0.7071− 0.7071i −0.0000− 1.4142i

1.0000 1.0000 + 1.0000i −1.0000 + 1.0000i

0.0000 0.0000 + 0.0000i −0.5884 + 1.2419i

1.0574 1.0574− 0.0000i 1.0574 + 1.0574i

1.0574 1.0574− 0.0000i −1.0574 + 1.0574i

0.0000 0.0000− 0.0000i 0.8382 + 0.7034i



.

The computation took around 4.2 seconds. This Hermitian tensor is separable.

81

Example 4.40. Consider the tensor H ∈ S [2,2,2]
C with m(H) being the matrix



18 −2 + 8i −16− 8i 4− 4i −2− 4i 2 + 16i 2− 2i −4− 12i

−2− 8i 50 16i −34− 26i −10 + 20i 2 + 32i 8− 16i 30− 30i

−16 + 8i −16i 32 −18 + 18i 10 + 6i −8− 16i −2− 6i 6 + 14i

4 + 4i −34 + 26i −18− 18i 78 4− 28i 2 + 2i −14 + 30i −4 + 22i

−2 + 4i −10− 20i 10− 6i 4 + 28i 22 12 + 6i −18− 8i −12

2− 16i 2− 32i −8 + 16i 2− 2i 12− 6i 70 −16 + 12i −50− 26i

2 + 2i 8 + 16i −2 + 6i −14− 30i −18 + 8i −16− 12i 30 2 + 10i

−4 + 12i 30 + 30i 6− 14i −4− 22i −12 −50 + 26i 2− 10i 86


.

By Algorithm 4.31 with relaxation order k = 3, we got the positive Hermitian decomposition

H =
∑6

i=1[u
1
i , u

2
i , u

3
i]⊗h, where

U1 := [u11, . . . , u
1
6]
T , U2 := [u21, . . . , u

2
6]
T , U3 := [u31, . . . , u

3
6]
T

are shown as follows

U1 =



1.0191 2.0381− 0.0000i

1.2222 −1.2222− 1.2222i

−0.0000 −1.2100− 1.6470i

−0.0001 1.2959− 0.4964i

1.4837 −0.7419− 0.7418i

1.3077 −1.3077 + 0.0000i


, U2 =



1.6113 −1.6113 + 0.0000i

0.9467 −1.8935 + 0.0000i

1.4451 0.0000 + 1.4451i

0.9812 0.0000 + 0.9812i

1.4836 −0.7418 + 0.7418i

0.8270 0.0000 + 1.6541i


,

U3 =



1.2181 −0.6090− 1.8270i

1.7285 −0.8642 + 0.8642i

1.4451 0.8671− 1.1561i

0.9812 0.5888− 0.7851i

1.2848 −0.0000 + 1.2850i

1.3077 1.3077− 0.0000i


.

The computation took around 5 minutes. This Hermitian tensor is separable.

Acknowledgement. The Sections 4.1-4.6 of the Chapter 4 are a reprint of the

material as it appears in SIAM Journal on Matrix Analysis and Applications 2020 [110].

The dissertation author coauthored this paper with Nie, Jiawang. The Section 4.7 of the

Chapter 4 is part of the publication that has been accepted for publication in Linear and

Multilinear Algebra 2021 [49]. The dissertation author coauthored this paper with Dressler,

Mareike and Nie, Jiawang.

82

Chapter 5

Learning Gaussian Mixture Models

5.1 Gaussian mixture models

A Gaussian mixture model consists of several component Gaussian distributions. For

given samples of a Gaussian mixture model, people often need to estimate parameters for

each component Gaussian distribution [58, 85]. Consider a Gaussian mixture model with

r components. For each i ∈ [r] := {1, . . . , r}, let ωi be the positive probability for the ith

component Gaussian to appear in the mixture model. We have each ωi > 0 and
∑r

i=1 ωi = 1.

Suppose the ith Gaussian distribution is N (µi,Σi), where µi ∈ Rd is the expectation (or

mean) and Σi ∈ Rd×d is the covariance matrix. Let y ∈ Rd be the random vector for

the Gaussian mixture model and let y1, . . . , yN be identically independent distributed (i.i.d)

samples from the mixture model. Each yj is sampled from one of the r component Gaussian

distributions, associated with a label Zj ∈ [r] indicating the component that it is sampled

from. The probability that a sample comes from the ith component is ωi. When people

observe only samples without labels, the Zj’s are called latent variables. The density function

for the random variable y is

f(y) :=
r∑
i=1

ωi
1√

(2π)d detΣi

exp
{
− 1

2
(y − µi)

TΣ−1
i (y − µi)

}
,

where µi is the mean and Σi is the covariance matrix for the ith component.

Learning a Gaussian mixture model is to estimate the parameters ωi, µi,Σi for each

i ∈ [r], from given samples of y. The number of parameters in a covariance matrix

grows quadratically with respect to the dimension. Due to the curse of dimensionality, the

computation becomes very expensive for large d [90]. Hence, diagonal covariance matrices

83

are preferable in applications. In this paper, we focus on learning Gaussian mixture models

with diagonal covariance matrices, i.e.,

Σi = diag
(
σ2
i1, . . . , σ

2
id

)
, i = 1, . . . , r.

A natural approach for recovering the unknown parameters ωi, µi,Σi is the method of

moments. It estimates parameters by solving a system of multivariate polynomial equations,

from moments of the random vector y. Directly solving polynomial systems may encounter

non-existence or non-uniqueness of statistically meaningful solutions [143]. However, for

diagonal Gaussians, the third order moment tensor can help us avoid these troubles.

Let M3 := E(y ⊗ y ⊗ y) be the third order tensor of moments for y. One can write

that y = η(z) + ζ(z), where z is a discrete random variable such that Prob(z = i) = ωi,

η(i) = µi ∈ Rd and ζ(i) is the random variable ζi obeying the Gaussian distribution N (0,Σi).

Assume all Σi are diagonal, then

M3 =
r∑
i=1

ωiE[(η(i) + ζi)
⊗3] =

r∑
i=1

ωi

(
µi ⊗ µi ⊗ µi + E[µi ⊗ ζi ⊗ ζi]+

E[ζi ⊗ µi ⊗ ζi] + E[ζi ⊗ ζi ⊗ µi]
)
. (5.1)

The second equality holds because ζi has zero mean and

E[ζi ⊗ ζi ⊗ ζi] = E[µi ⊗ µi ⊗ ζi] = E[ζi ⊗ µi ⊗ µi] = E[µi ⊗ ζi ⊗ µi] = 0.

The random variable ζi has diagonal covariance matrix, so E[(ζi)j(ζi)l] = 0 for j ̸= l.

Therefore,

r∑
i=1

ωiE[µi ⊗ ζi ⊗ ζi] =
r∑
i=1

d∑
j=1

ωiσ
2
ijµi ⊗ ej ⊗ ej =

d∑
j=1

aj ⊗ ej ⊗ ej,

where the vectors aj are given by

aj :=
r∑
i=1

ωiσ
2
ijµi, j = 1, . . . , d. (5.2)

Similarly, we have

r∑
i=1

ωiE[ζi ⊗ µi ⊗ ζi] =
d∑
j=1

ej ⊗ aj ⊗ ej,
r∑
i=1

ωiE[ζi ⊗ ζi ⊗ µi] =
d∑
j=1

ej ⊗ ej ⊗ aj.

84

Therefore, we can express M3 in terms of ωi, µi,Σi as

M3 =
r∑
i=1

ωiµi ⊗ µi ⊗ µi +
d∑
j=1

(
aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj

)
. (5.3)

We are particularly interested in the following third order symmetric tensor

F :=
r∑
i=1

ωiµi ⊗ µi ⊗ µi. (5.4)

When the labels i1, i2, i3 are distinct from each other, we have

(M3)i1i2i3 = (F)i1i2i3 for i1 ̸= i2 ̸= i3 ̸= i1.

Denote the label set

I = {(i1, i2, i3) : i1 ̸= i2 ̸= i3 ̸= i1, i1, i2, i3 are labels forM3}. (5.5)

The tensor M3 can be estimated from the samplings for y, so the entries Fi1i2i3 with

(i1, i2, i3) ∈ I can also be obtained from the estimation of M3. To recover the parameters

ωi, µi, we first find the tensor decomposition for F , from the partially given entries Fi1i2i3

with (i1, i2, i3) ∈ I. Once the parameters ωi, µi are known, we can determine Σi from the

expressions of aj as in (5.2).

The above observation leads to the incomplete tensor decomposition problem. For a

third order symmetric tensor F whose partial entries Fi1i2i3 with (i1, i2, i3) ∈ I are known,

we are looking for vectors p1, . . . , pr such that

Fi1i2i3 =
(
p⊗3
1 + · · ·+ p⊗3

r

)
i1i2i3

, for all (i1, i2, i3) ∈ I. (5.6)

The above is called an incomplete tensor decomposition for F . To find such a tensor

decomposition for F , a straightforward approach is to do tensor completion: first find

unknown tensor entries Fi1i2i3 with (i1, i2, i3) ̸∈ I such that the completed F has low rank,

and then compute the tensor decomposition for F . However, there are serious disadvantages

for this approach. The theory for tensor completion or recovery, especially for symmetric

tensors, is premature. Low rank tensor completion or recovery is typically not guaranteed

by the currently existing methodology. Most methods for tensor completion are based on

convex relaxations, e.g., the nuclear norm or trace minimization [55,95,107,140,145]. These

convex relaxations may not produce low rank completions [129].

85

5.2 Incomplete tensor decompositions

This section discusses how to compute an incomplete tensor decomposition for a

symmetric tensor F ∈ S3(Cd) when only its subtensor FΩ is given, for the label set Ω in

(5.5). For convenience of notation, the labels for F begin with zeros while a vector u ∈ Cd

is still labelled as u := (u1, . . . , ud). We set

n := d− 1, x = (x1, . . . , xn), x0 := 1.

For a given rank r, denote the monomial sets

B0 := {x1, · · · , xr}, B1 = {xixj : i ∈ [r], j ∈ [r + 1, n]}. (5.7)

For a monomial power α ∈ Nn, by writing α ∈ B1, we mean that xα ∈ B1. For each α ∈ B1,

one can write α = ei+ej with i ∈ [r], j ∈ [r+1, n]. Let C[r]×B1 denote the space of matrices

labelled by the pair (k, α) ∈ [r] × B1. For each α = ei + ej ∈ B1 and G ∈ C[r]×B1 , denote

the quadratic polynomial in x

φij[G](x) :=
r∑

k=1

G(k, ei + ej)xk − xixj. (5.8)

Suppose r is the symmetric rank of F . A matrix G ∈ C[r]×B1 is called a generating

matrix of F if each φij[G](x), with α = ei + ej ∈ B1, is a generating polynomial of F .

Equivalently, G is a generating matrix of F if and only if

⟨xtφij[G](x),F⟩ =
r∑

k=1

G(k, ei + ej)F0kt −Fijt = 0, t = 0, 1, . . . , n, (5.9)

for all i ∈ [r], j ∈ [r + 1, n]. The notion generating matrix is motivated from that the

entire tensor F can be recursively determined by G and its first r entries (see [109]). The

existence and uniqueness of the generating matrix G is shown as follows.

Theorem 5.1 ([59]). Suppose F has the decomposition

F = λ1

[
1

u1

]⊗3

+ · · ·+ λr

[
1

ur

]⊗3

, (5.10)

for vectors ui ∈ Cn and scalars 0 ̸= λi ∈ C. If the subvectors (u1)1:r, . . . , (ur)1:r are linearly

independent, then there exists a unique generating matrix G ∈ C[r]×B1 satisfying (5.9) for

the tensor F .

86

Proof. We first prove the existence. For each i = 1, . . . , r, denote the vectors vi = (ui)1:r.

Under the given assumption, V := [v1 . . . vr] is an invertible matrix. For each l = r+1, . . . , n,

let

Nl := V · diag
(
(u1)l, . . . , (ur)l

)
· V −1. (5.11)

ThenNlvi = (ui)lvi for i = 1, . . . , r, i.e., Nl has eigenvalues (u1)l, . . . , (ur)l with corresponding

eigenvectors (u1)1:r, . . . , (ur)1:r. We select G ∈ C[r]×B1 to be the matrix such that

Nl =


G(1, e1 + el) · · · G(r, e1 + el)

...
. . .

...

G(1, er + el) · · · G(r, er + el)

 , l = r + 1, . . . , n. (5.12)

For each s = 1, . . . , r and α = ei + ej ∈ B1 with i ∈ [r], j ∈ [r + 1, n],

φij[G](us) =
r∑

k=1

G(k, ei + ej)(us)k − (us)i(us)j = 0.

For each t = 1, . . . , n, it holds that

⟨xtφij[G](x),F⟩ =

〈
r∑

k=1

G(k, ei + ej)xtxk − xtxixj,F

〉

=

〈
r∑

k=1

G(k, ei + ej)xtxk − xtxixj,
r∑
s=1

λs

[
1

us

]⊗3〉

=
r∑

k=1

G(k, ei + ej)
r∑
s=1

λs(us)t(us)k −
r∑
s=1

λs(us)t(us)i(us)j

=
r∑
s=1

λs(us)t

(
r∑

k=1

G(k, ei + ej)(us)k − (us)i(us)j

)
= 0.

When t = 0, we can similarly get

⟨φij[G](x),F⟩ =

〈
r∑

k=1

G(k, ei + ej)xk − xixj,F

〉

=
r∑
s=1

λs

(
r∑

k=1

G(k, ei + ej)(us)k − (us)i(us)j

)
= 0.

Therefore, the matrix G satisfies (5.9) and it is a generating matrix for F .

87

Second, we prove the uniqueness of such G. For each α = ei + ej ∈ B1, let

F :=


F011 · · · F0r1

...
. . .

...

F01n · · · F0rn

 , gij :=

F1ij

...

Fnij

 .
Since G satisfies (5.9), we have F ·G(:, ei+ ej) = gij. The decomposition (5.10) implies that

F =
[
u1 · · · ur

]
· diag(λ1, . . . , λr) ·

[
v1 · · · vr

]T
.

The sets {v1, . . . , vr} and {u1, . . . , ur} are both linearly independent. Since each λi ̸= 0, the

matrix F has full column rank. Hence, the generating matrixG satisfying F ·G(:, ei+ej) = gij

for all i ∈ [r], j ∈ [r + 1, n] is unique.

The following is an example of generating matrices.

Example 5.2. Consider the tensor F ∈ S3(C6) that is given as

F = 0.4 · (1, 1, 1, 1, 1, 1)⊗3 + 0.6 · (1,−1, 2,−1, 2, 3)⊗3.

The rank r = 2, B0 = {x1, x2} and B1 = {x1x3, x1x4, x1x5, x2x3, x2x4, x2x5}. We have the

vectors

u1 = (1, 1, 1, 1, 1), u2 = (−1, 2,−1, 2, 3), v1 = (1, 1), v2 = (−1, 2).

The matrices N3, N4, N5 as in (5.11) are

N3 =

[
1 −1

1 2

][
1 0

0 −1

][
1 −1

1 2

]−1

=

[
1/3 2/3

4/3 −1/3

]
,

N4 =

[
1 −1

1 2

][
1 0

0 2

][
1 −1

1 2

]−1

=

[
4/3 −1/3

−2/3 5/3

]
,

N5 =

[
1 −1

1 2

][
1 0

0 3

][
1 −1

1 2

]−1

=

[
5/3 −2/3

−4/3 7/3

]
.

The entries of the generating matrix G are listed as below:

k\(i, j) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5)

1 1/3 4/3 5/3 4/3 −2/3 −4/3

2 2/3 −1/3 −2/3 −1/3 5/3 7/3

. (5.13)

88

The generating polynomials in (5.8) are

φ13[G](x) =
1

3
x1 +

2

3
x2 − x1x3,

φ14[G](x) =
4

3
x1 −

1

3
x2 − x1x4,

φ15[G](x) =
5

3
x1 −

2

3
x2 − x1x5,

φ23[G](x) =
4

3
x1 −

1

3
x2 − x2x3,

φ24[G](x) = −2

3
x1 +

5

3
x2 − x2x4,

φ25[G](x) = −4

3
x1 +

7

3
x2 − x2x5.

Above generating polynomials can be written in the following form[
φ1j[G](x)

φ2j[G](x)

]
= Nj

[
x1

x2

]
− xj

[
x1

x2

]
, for j = 3, 4, 5.

For x to be a common zero of φ1j[G](x) and φ2j[G](x), it requires that (x1, x2) is an

eigenvector of Nj with the corresponding eigenvalue xj.

We show how to find an incomplete tensor decomposition (5.10) for F when only its

subtensor FΩ is given, where the label set Ω is as in (5.5). Suppose that there exists the

decomposition (5.10) for F , for vectors ui ∈ Cn and nonzero scalars λi ∈ C. Assume the

subvectors (u1)1:r, . . . , (ur)1:r are linearly independent, so there is a unique generating matrix

G for F , by Theorem 5.1.

For each α = ei + ej ∈ B1 with i ∈ [r], j ∈ [r + 1, n] and for each

l = r + 1, . . . , j − 1, j + 1, . . . , n,

the generating matrix G satisfies the equations〈
xl

(
r∑

k=1

G(k, ei + ej)xk − xixj

)
,F

〉
=

r∑
k=1

G(k, ei + ej)F0kl −Fijl = 0. (5.14)

Let the matrix Aij[F] ∈ C(n−r−1)×r and the vector bij[F] ∈ Cn−r−1 be such that

Aij[F] :=



F0,1,r+1 · · · F0,r,r+1

...
. . .

...

F0,1,j−1 · · · F0,r,j−1

F0,1,j+1 · · · F0,r,j+1

...
. . .

...

F0,1,n · · · F0,r,n


, bij[F] :=



Fi,j,r+1

...

Fi,j,j−1

Fi,j,j+1

...

Fi,j,n


. (5.15)

To distinguish changes in the labels of tensor entries of F , the commas are inserted to

separate labeling numbers.

89

The equations in (5.14) can be equivalently written as

Aij[F] ·G(:, ei + ej) = bij[F]. (5.16)

If the rank r ≤ d
2
−1, then n−r−1 = d−r−2 ≥ r. Thus, the number of rows is not less than

the number of columns for matrices Aij[F]. If Aij[F] has linearly independent columns, then

(5.16) uniquely determines G(:, α). For such a case, the matrix G can be fully determined

by the linear system (5.16). Let Nr+1(G), . . . , Nm(G) ∈ Cr×r be the matrices given as

Nl(G) =


G(1, e1 + el) · · · G(r, e1 + el)

...
. . .

...

G(1, er + el) · · · G(r, er + el)

 , l = r + 1, . . . , n. (5.17)

As in the proof of Theorem 5.1, one can see that

Nl(G)


(ui)1
...

(ui)r

 = (ui)l ·


(ui)1
...

(ui)r

 , l = r + 1, . . . , n. (5.18)

The above is equivalent to the equations

Nl(G)vi = (wi)l−r · vi, l = r + 1, . . . , n,

for the vectors (i = 1, . . . , r)

vi := (ui)1:r, wi := (ui)r+1:n. (5.19)

Each vi is a common eigenvector of the matrices Nr+1(G), . . . , Nn(G) and (wi)l−r is the

associated eigenvalue of Nl(G). These matrices may or may not have repeated eigenvalues.

Therefore, we select a generic vector ξ := (ξr+1, · · · , ξn) and let

N(ξ) := ξr+1Nr+1 + · · ·+ ξnNn. (5.20)

The eigenvalues of N(ξ) are ξTw1, . . . , ξ
Twr. When w1, . . . , wr are distinct from each other

and ξ is generic, the matrix N(ξ) does not have a repeated eigenvalue and hence it has

unique eigenvectors v1, . . . , vr, up to scaling. Let ṽ1, . . . , ṽr be unit length eigenvectors of

N(ξ). They are also common eigenvectors of Nr+1(G), . . ., Nn(G). For each i = 1, . . . , r, let

w̃i be the vector such that its jth entry (w̃i)j is the eigenvalue of Nj+r(G), associated to the

eigenvector ṽi, or equivalently,

w̃i = (ṽHi Nr+1(G)ṽi, · · · , ṽHi Nn(G)ṽi) i = 1, . . . , r. (5.21)

90

Up to a permutation of (ṽ1, . . . , ṽr), there exist scalars γi such that

vi = γiṽi, wi = w̃i. (5.22)

The tensor decomposition of F can also be written as

F = λ1


1

γ1ṽ1

w̃1


⊗3

+ · · ·+ λr


1

γrṽr

w̃r


⊗3

.

The scalars λ1, · · · , λr and γ1, · · · , γr satisfy the linear equations

λ1γ1ṽ1 ⊗ w̃1 + · · ·+ λrγrṽr ⊗ w̃r = F[0,1:r,r+1:n],

λ1γ
2
1 ṽ1 ⊗ ṽ1 ⊗ w̃1 + · · ·+ λrγ

2
r ṽr ⊗ ṽr ⊗ w̃r = F[1:r,1:r,r+1:n].

Denote the label sets

J1 :=
{
(0, i1, i2) : i1 ∈ [r], i2 ∈ [r + 1, n]

}
,

J2 :=
{
(i1, i2, i3) : i1 ̸= i2, i1, i2 ∈ [r], i3 ∈ [r + 1, n]

}
.

(5.23)

To determine the scalars λi, γi, we can solve the linear least squares

min
(β1,...,βr)

∥∥∥∥∥FJ1 −
r∑
i=1

βi · ṽi ⊗ w̃i

∥∥∥∥∥
2

, (5.24)

min
(θ1,...,θr)

∥∥∥∥∥FJ2 −
r∑

k=1

θk · (ṽk ⊗ ṽk ⊗ w̃i)J2

∥∥∥∥∥
2

. (5.25)

Let (β∗
1 , . . . , β

∗
r), (θ

∗
1, . . . , θ

∗
r) be minimizers of (5.24) and (5.25) respectively. Then, for each

i = 1, . . . , r, let

λi := (β∗
i)

2/θ∗i , γi := θ∗i /β
∗
i . (5.26)

For the vectors (i = 1, . . . , r)

pi :=
3
√
λi(1, γiṽi, w̃i),

the sum p⊗3
1 + · · · + p⊗3

r is a tensor decomposition for F . This is justified in the following

theorem.

Theorem 5.3 ([59]). Suppose the tensor F has the decomposition as in (5.10). Assume

that the vectors v1, . . . , vr are linearly independent and the vectors w1, . . . , wr are distinct

from each other, where v1, . . . , vr, w1, . . . , wr are defined as in (5.19). Let ξ be a generically

chosen coefficient vector and let p1, . . . , pr be the vectors produced as above. Then, the

tensor decomposition F = p⊗3
1 + · · ·+ p⊗3

r is unique.

91

Proof. Since v1, . . . , vr are linearly independent, the tensor decomposition (5.10) is unique,

up to scalings and permutations. By Theorem 5.1, there is a unique generating matrix G for

F satisfying (5.9). Under the given assumptions, the equation (5.16) uniquely determines G.

Note that ξTw1, . . . , ξ
Twr are the eigenvalues of N(ξ) and v1, . . . , vr are the corresponding

eigenvectors. When the vector ξ is generically chosen, the values of ξTw1, . . . , ξ
Twr are

distinct eigenvalues of N(ξ). So N(ξ) has unique eigenvalue decompositions, and hence

(5.22) must hold, up to a permutation of (v1, . . . , vr). Since the coefficient matrices have

full column ranks, the linear least squares problems have unique optimal solutions. Up to a

permutation of p1, . . . , pr, it holds that pi =
3
√
λi

[
1

ui

]
. Then, the conclusion follows readily.

The following is the algorithm for computing an incomplete tensor decomposition for

F when only its subtensor FΩ is given.

Algorithm 5.4. (Incomplete symmetric tensor decompositions.)

Input: A third order symmetric subtensor FI and a rank r= rankS(F) ≤ d
2
− 1.

1. Determine the matrix G by solving (5.16) for each α = ei + ej ∈ B1.

2. Let N(ξ) be the matrix as in (5.20), for a randomly selected vector ξ. Compute the

unit length eigenvectors ṽ1, . . . , ṽr of N(ξ) and choose w̃i as in (5.21).

3. Solve the linear least squares (5.24) and (5.25) to get the coefficients λi, γi as in (5.26).

4. For each i = 1, . . . , r, let pi :=
3
√
λi(1, γiṽi, w̃i).

Output: The tensor decomposition F = (p1)
⊗3 + · · ·+ (pr)

⊗3.

The following is an example of applying Algorithm 5.4.

Example 5.5. Consider the same tensor F as in Example 5.2. The monomial sets B0, B1

are the same. The matrices Aij[F] and vectors bij[F] are

A13[F] = A23[F] =

[
−0.8 2.8

−1.4 4

]
, b13[F] =

[
1.6

2.2

]
, b23[F] =

[
−2

−3.2

]
,

A14[F] = A24[F] =

[
1 −0.8

−1.4 4

]
, b14[F] =

[
1.6

−3.2

]
, b24[F] =

[
−2

7.6

]
,

92

A15[F] = A25[F] =

[
1 −0.8

−0.8 2.8

]
, b15[F] =

[
2.2

−3.2

]
, b25[F] =

[
−3.2

7.6

]
.

Solve (5.16) to obtain G, which is same as in (5.13). The matrices N3(G), N4(G), N5(G)

are

N3(G) =

[
1/3 2/3

4/3 −1/3

]
, N4(G) =

[
4/3 −1/3

−2/3 5/3

]
, N5(G) =

[
5/3 −2/3

−4/3 7/3

]
.

Choose a generic ξ, say, ξ = (3, 4, 5), then

N(ξ) =

[
1/
√
2 −1/

√
5

1/
√
2 2/

√
5

][
12 0

0 20

][
1/
√
2 −1/

√
5

1/
√
2 2/

√
5

]−1

.

The unit length eigenvectors are

ṽ1 = (1/
√
2, 1/

√
2), ṽ2 = (−1/

√
5, 2/

√
5).

As in (5.21), we get the vectors

w1 = (1, 1, 1), w2 = (−1, 2, 3).

Solving (5.24) and (5.25), we get the scalars

γ1 =
√
2, γ2 =

√
5, λ1 = 0.4, λ2 = 0.6.

This produces the decomposition F = λ1u
⊗3
1 + λ2u

⊗3
2 for the vectors

u1 = (1, γ1v1, w1) = (1, 1, 1, 1, 1, 1), u2 = (1, γ2v2, w2) = (1,−1, 2,−1, 2, 3).

Remark. Algorithm 5.4 requires the value of r. This is generally a hard question. In

computational practice, one can estimate the value of r as follows. Let Flat(F) ∈ C(n+1)×(n+1)2

be the flattening matrix, labelled by (i, (j, k)) such that

Flat(F)i,(j,k) = Fijk

for all i, j, k = 0, 1, . . . , n. The rank of Flat(F) equals the rank of F when the vectors

p1, . . . , pr are linearly independent. The rank of Flat(F) is not available since only the

subtensor (F)Ω is known. However, we can calculate the ranks of submatrices of (F)Ω whose

entries are known. If the tensor F as in (5.10) is such that both the sets {v1, . . . , vr} and

{w1, . . . , wr} are linearly independent, one can see that
∑r

i=1 λiviw
T
i is a known submatrix

93

of Flat(F) whose rank is r. This is generally the case if r ≤ d
2
− 1, since vi has the length

r and wi has length d − 1 − r ≥ r. Therefore, the known submatrices of Flat(F) are

generally sufficient to estimate rankS(F). For instance, we consider the case F ∈ S3(C7).

The flattening matrix Flat(F) is

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ F120 F130 F140 F150 F160

∗ F210 ∗ F230 F240 F250 F260

∗ F310 F320 ∗ F340 F350 F360

∗ F410 F420 F430 ∗ F450 F460

∗ F510 F520 F530 F540 ∗ F560

∗ F610 F620 F630 F640 F650 ∗


, (5.27)

where each ∗ means that entry is not given. The largest submatrices with known entries are
F410 F420 F430

F510 F520 F530

F610 F620 F630

 ,

F140 F150 F160

F240 F250 F260

F340 F350 F360

 .
The rank of above matrices generally equals rankS(F) if r ≤ d

2
− 1 = 2.5.

5.3 Tensor approximations

In some applications, we do not have the subtensor FΩ exactly but only have an

approximation F̂Ω for it. The Algorithm 5.4 can still provide a good rank-r approximation

for F when it is applied to F̂Ω. We define the matrix Aij[F̂] and the vector bij[F̂] in the

same way as in (5.15), for each α = ei + ej ∈ B1. The generating matrix G for F can be

approximated by solving the linear least squares

min
g∈Cr

∥Aij[F̂] · g − bij[F̂]∥2, (5.28)

for each α = ei + ej ∈ B1. Let Ĝ(:, ei + ej) be the optimizer of the above and Ĝ be the

matrix consisting of all such Ĝ(:, ei + ej). Then Ĝ is an approximation for G. For each

l = r + 1, . . . , n, define the matrix Nl(Ĝ) similarly as in (5.17). Choose a generic vector

ξ = (ξr+1, . . . , ξn) and let

N̂(ξ) := ξr+1Nr+1(Ĝ) + · · ·+ ξnNn(Ĝ). (5.29)

94

The matrix N̂(ξ) is an approximation for N(ξ). Let v̂1, . . . , v̂r be unit length eigenvectors of

N̂(ξ). For k = 1, . . . , r, let

ŵk :=
(
(v̂k)

HNr+1(Ĝ)v̂k, . . . , (v̂k)
HNn(Ĝ)v̂k

)
. (5.30)

For the label sets J1, J2 as in (5.23), the subtensors F̂J1 , F̂J2 are similarly defined like FJ1 ,FJ2 .

Consider the following linear least square problems

min
(β1,...,βr)

∥∥∥∥∥F̂J1 −
r∑

k=1

βk · v̂k ⊗ ŵk

∥∥∥∥∥
2

, (5.31)

min
(θ1,...,θr)

∥∥∥∥∥F̂J2 −
r∑

k=1

θi · (v̂k ⊗ v̂k ⊗ ŵk)J2

∥∥∥∥∥
2

. (5.32)

Let (β̂1, . . . , β̂r) and (θ̂1, . . . , θ̂r) be their optimizers respectively. For each k = 1, . . . , r, let

λ̂k := (β̂k)
2/θ̂k, γ̂k := θ̂k/β̂k. (5.33)

This results in the tensor approximation

F ≈ (p̂1)
⊗3 + · · ·+ (p̂r)

⊗3,

for the vectors p̂k :=
3
√
λ̂k(1, γ̂kv̂k, ŵk).

The above may not give an optimal tensor approximation. To get an improved one,

we can use p̂1, . . . , p̂r as starting points to solve the following nonlinear optimization

min
(q1,...,qr)

∥∥∥∥∥
(

r∑
k=1

(qk)
⊗3 − F̂

)
I

∥∥∥∥∥
2

. (5.34)

The minimizer of the optimization (5.34) is denoted as (p∗1, . . . , p
∗
r).

Summarizing the above, we have the following algorithm for computing a tensor

approximation.

Algorithm 5.6. (Incomplete symmetric tensor approximations.)

Input: A third order symmetric subtensor F̂I and a rank r ≤ d
2
− 1.

1. Find the matrix Ĝ by solving (5.28) for each α = ei + ej ∈ B1.

2. Choose a generic vector and let N̂(ξ) be the matrix as in (5.29). Compute unit length

eigenvectors v̂1, . . . , v̂r for N̂(ξ) and define ŵi in (5.30).

95

3. Solve the linear least squares (5.31), (5.32) to get the coefficients λ̂i, γ̂i.

4. For each i = 1, . . . , r, let p̂i :=
3
√
λ̂i(1, γ̂iv̂i, ŵi). Then (p̂1)

⊗3 + · · ·+ (p̂r)
⊗3 is a tensor

approximation for F̂ .

5. Use p̂1, . . . , p̂r as starting points to solve the nonlinear optimization (5.34) for an

optimizer (p∗1, . . . , p
∗
r).

Output: The tensor approximation (p∗1)
⊗3 + · · ·+ (p∗r)

⊗3 for F̂ .

When F̂ is close to F , Algorithm 5.6 also produces a good rank-r tensor approximation

for F . This is shown in the following.

Theorem 5.7 ([59]). Suppose the tensor F = (p1)
⊗3+ · · ·+(pr)

⊗3, with r ≤ d
2
−1, satisfies

the following conditions:

(i) The leading entry of each pi is nonzero;

(ii) the subvectors (p1)2:r+1, . . . , (pr)2:r+1 are linearly independent;

(iii) the subvectors (p1)[r+2:j,j+2:d], . . . , (pr)[r+2:j,j+2:d] are linearly independent for each j ∈
[r + 1, n];

(iv) the eigenvalues of the matrix N(ξ) in (5.20) are distinct from each other.

Let p̂i, p
∗
i be the vectors produced by Algorithm 5.6. If the distance ϵ := ∥(F̂ − F)I∥ is small

enough, then there exist scalars τ̂i, τ
∗
i such that

(τ̂i)
3 = (τ ∗i)

3 = 1, ∥τ̂ip̂i − pi∥ = O(ϵ), ∥τ ∗i p∗i − pi∥ = O(ϵ),

up to a permutation of (p1, . . . , pr), where the constants inside O(·) only depend on F and

the choice of ξ in Algorithm 5.6.

Proof. The conditions (i)-(ii), by Theorem 5.1, imply that there is a unique generating matrix

G for F . The matrix G can be approximated by solving the linear least square problems

(5.28). Note that

∥Aij[F̂]− Aij[F]∥ ≤ ϵ, ∥bij[F̂]− bij[F]∥ ≤ ϵ,

for all α = ei + ej ∈ B1. The matrix Aij[F] can be written as

Aij[F] = [(p1)[r+2:j,j+2:d], . . . , (pr)[r+2:j,j+2:d]] · [(p1)2:r+1, . . . , (pr)2:r+1]
T .

96

By the conditions (ii)-(iii), the matrix Aij[F] has full column rank for each j ∈ [r+1, n] and

hence the matrix Aij[F̂] has full column rank when ϵ is small enough. Therefore, the linear

least problems (5.28) have unique solutions and the solution Ĝ satisfies that

∥Ĝ−G∥ = O(ϵ),

where O(ϵ) depends on F (see [40, Theorem 3.4]). For each j = r + 1, . . . , n, Nj(Ĝ) is part

of the generating matrix Ĝ, so

∥Nj(Ĝ)−Nj(G)∥ ≤ ∥Ĝ−G∥ = O(ϵ), j = r + 1, . . . , n.

This implies that ∥N̂(ξ) − N(ξ)∥ = O(ϵ). When ϵ is small enough, the matrix N̂(ξ) does

not have repeated eigenvalues, due to the condition (iv). Thus, the matrix N(ξ) has a set

of unit length eigenvectors ṽ1, . . . , ṽr with eigenvalues w̃1, . . . , w̃r respectively, such that

∥v̂i − ṽi∥ = O(ϵ), ∥ŵi − w̃i∥ = O(ϵ).

This follows from Proposition 4.2.1 in [22]. The constants inside the above O(·) depend

only on F and ξ. The w̃1, . . . , w̃r are scalar multiples of linearly independent vectors

(p1)r+2:d, . . . , (pr)r+2:d respectively, so w̃1, . . . , w̃r are linearly independent. When ϵ is small,

ŵ1, . . . , ŵr are linearly independent as well. The scalars λ̂iγ̂i and λ̂i(γ̂i)
2 are optimizers for

the linear least square problems (5.31) and (5.32). By Theorem 3.4 in [40], we have

∥λ̂iγ̂i − λiγi∥ = O(ϵ), ∥λ̂i(γ̂i)2 − λiγ
2
i ∥ = O(ϵ).

The vector pi can be written as pi =
3
√
λi(1, γiṽi, w̃i), so we must have λi, γi ̸= 0 due to the

condition (ii). Thus, it holds that

∥λ̂i − λi∥ = O(ϵ), ∥γ̂i − γi∥ = O(ϵ),

where constants inside O(·) depend only on F and ξ. For the vectors p̃i :=
3
√
λi(1, γiṽi, w̃i),

we have F =
∑r

i=1 p̃
⊗3
i , by Theorem 5.3. Since p1, . . . , pr are linearly independent by the

assumption, the rank decomposition of F is unique up to scaling and permutation. There

exist scalars τ̂i such that (τ̂i)
3 = 1 and τ̂ip̃i = pi, up to a permutation of p1, . . . , pr. For

p̂i =
3
√
λ̂i(1, γ̂iv̂i, ŵi), we have ∥τ̂ip̂i − pi∥ = O(ϵ), where the constants in O(·) only depend

on F and ξ.

97

Since ∥τ̂ip̂i − pi∥ = O(ϵ), we have ∥(
∑r

i=1(p̂i)
⊗3 −F)I∥ = O(ϵ). The (p∗1, . . . , p

∗
r) is a

minimizer of (5.34), so∥∥∥∥∥
(

r∑
i=1

(p∗i)
⊗3 − F̂

)
I

∥∥∥∥∥ ≤

∥∥∥∥∥
(

r∑
i=1

(p̂i)
⊗3 − F̂

)
I

∥∥∥∥∥ = O(ϵ).

For the tensor F∗ :=
∑r

i=1(p
∗
i)

⊗3, we get

∥(F∗ −F)I∥ ≤ ∥(F∗ − F̂)I∥+ ∥(F̂ − F)I∥ = O(ϵ).

When Algorithm 5.6 is applied to (F∗)Ω, the Step 4 will give the exact decomposition F∗ =∑r
i=1(p

∗
i)

⊗3. By repeating the previous argument, we can similarly show that ∥pi − τ ∗i p
∗
i ∥ =

O(ϵ) for some τ ∗i such that (τ ∗i)
3 = 1, where the constants in O(·) only depend on F and

ξ.

Remark. For the special case that ϵ = 0, Algorithm 5.6 is the same as Algorithm 5.4, which

produces the exact rank decomposition for F . The conditions in Theorem 5.7 are satisfied

for generic vectors p1, . . . , pr, since r ≤ d
2
− 1. The constant in O(·) is not explicitly given

in the proof. It is related to the condition number κ(F) for tensor decomposition. It was

shown by Breiding and Vannieuwenhoven [17] that√√√√ r∑
i=1

∥p⊗3
i − p̂⊗3

i ∥2 ≤ κ(F)∥F − F̂∥+ cϵ2

for some constant c. The continuity of Ĝ in F̂ is implicitly impled by the proof. Eigenvalues

and unit eigenvectors of N̂(ξ) are continuous in Ĝ. Furthermore, λ̂i, γ̂i are continuous in the

eigenvalues and unit eigenvectors. All these functions are locally Lipschitz continuous. The

p̂i is Lipschitz continuous with respect to F̂ , in a neighborhood of F , which also implies an

error bound for p̂i. The tensors (p∗i)
⊗3 are also locally Lipschitz continuous in F̂ illustrated

by [18]. This also gives error bounds for decomposing vectors p∗i . We refer to [17, 18] for

more details about condition numbers of tensor decompositions.

Example 5.8. We consider the same tensor F as in Example 5.2. The subtensor (F)Ω is

perturbed to (F̂)Ω. The perturbation is randomly generated from the Gaussian distribution

N (0, 0.01). For neatness of the paper, we do not display (F̂)Ω here. We use Algorithm 5.6

to compute the incomplete tensor approximation. The matrices Aij[F̂] and vectors bij[F̂] are

98

given as follows:

A13[F̂] = A23[F̂] =

−0.8135 2.7988

−1.3697 4.0149

 , b13[F̂] =

1.5980
2.1879

 , b23[F̂] =

−2.0047

−3.2027

 ,

A14[F̂] = A24[F̂] =

 1.0277 −0.8020

−1.3697 4.0149

 , b14[F̂] =

 1.5920

−3.2013

 , b24[F̂] =

−2.0059

7.5915

 ,

A15[F̂] = A25[F̂] =

 1.0277 −0.8020

−0.8135 2.7988

 , b15[F̂] =

 2.1993

−3.2020

 , b25[F̂] =

−3.1917

7.6153

 .

The linear least square problems (5.28) are solved to obtain Ĝ and N3(Ĝ), N4(Ĝ), N5(Ĝ),

which are

N3(Ĝ) =

[
0.5156 0.7208

1.6132 −0.2474

]
, N4(Ĝ) =

[
1.2631 −0.3665

−0.6489 1.6695

]
,

N5(Ĝ) =

[
1.6131 −0.6752

−1.2704 2.3517

]
.

For ξ = (3, 4, 5), the eigendecomposition of the matrix N̂(ξ) in (5.29) is

N̂(ξ) =

[
−0.7078 0.4470

−0.7064 −0.8945

][
12.0343 0

0 20.0786

][
−0.7524 0.4499

−0.6588 −0.8931

]−1

.

It has eigenvectors v̂1 = (−0.7078,−0.7064), v̂2 = (0.4470,−0.8945). The vectors ŵ1, ŵ2

obtained as in (5.30) are

ŵ1 = (1.2021, 0.9918, 0.9899), ŵ2 = (−1.0389, 2.0145, 3.0016).

By solving (5.31) and (5.32), we got the scalars

γ̂1 = −1.1990, γ̂2 = −2.1458, λ̂1 = 0.4521, λ̂2 = 0.6232.

Finally, we got the decomposition λ̂1û
⊗3
1 + λ̂2û

⊗3
2 with

û1 = (1, γ̂1v̂1, ŵ1) = (1, 0.8477, 0.8479, 1.2021, 0.9918, 0.9899),

û2 = (1, γ̂2v̂2, ŵ2) = (1,−0.9776, 1.9102,−1.0389, 2.0145, 3.0016).

They are pretty close to the decomposition of F .

99

5.4 Learning diagonal GMMs

We use the incomplete tensor decomposition or approximation method to recover

parameters for Gaussian mixture models. The Algorithms 5.4 and 5.6 can be applied to do

that.

Let y be the random variable of dimension d for a Gaussian mixture model, with r

components of Gaussian distribution parameters (ωi, µi,Σi), i = 1, . . . , r. We consider the

case that r ≤ d
2
− 1. Let y1, . . . , yN be samples drawn from the Gaussian mixture model.

The sample average

M̂1 :=
1

N
(y1 + · · ·+ yN)

is an estimation for the mean M1 := E[y] = ω1µ1 + · · ·+ ωrµr. The symmetric tensor

M̂3 :=
1

N
(y⊗3

1 + · · ·+ y⊗3
N)

is an estimation for the third order moment tensor M3 := E[y⊗3]. Recall that F =∑r
i=1 ωiµ

⊗3
i . When all the covariance matrices Σi are diagonal, we have shown in (5.3) that

M3 = F +
d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj).

If the labels i1, i2, i3 are distinct from each other, (M3)i1i2i3 = (F)i1i2i3 . Recall the label set

I in (5.5). It holds that

(M3)Ω = (F)Ω.

Note that (M̂3)Ω is only an approximation for (M3)Ω and (F)Ω, due to sampling errors. If

the rank r ≤ d
2
− 1, we can apply Algorithm 5.6 with the input (M̂3)Ω, to compute a rank-r

tensor approximation for F . Suppose the tensor approximation produced by Algorithm 5.6

is

F ≈ (p∗1)
⊗3 + · · ·+ (p∗r)

⊗3.

The computed p∗1, . . . , p
∗
r may not be real vectors, even if F is real. When the error ϵ :=

∥(F − M̂3)Ω∥ is small, by Theorem 5.7, we know

∥τ ∗i p∗i − 3
√
ωiµi∥ = O(ϵ)

where (τ ∗i)
3 = 1. In computation, we can choose τ ∗i such that (τ ∗i)

3 = 1 and the imaginary

part vector Im(τ ∗i p
∗
i) has the smallest norm. It can be done by checking the imaginary part

100

of τ ∗i p
∗
i one by one for

τ ∗i = 1, −1

2
+

√
−3

2
, −1

2
−

√
−3

2
.

Then we get the real vector

q̂i := Re(τ ∗i p
∗
i).

It is expected that q̂i ≈ 3
√
ωiµi. Since

M1 = ω1µ1 + · · ·+ ωrµr ≈ ω
2/3
1 q̂1 + · · ·+ ω2/3

r q̂r,

the scalars ω
2/3
1 , . . . , ω

2/3
r can be obtained by solving the linear least squares

min
(β1,...,βr)∈Rr

+

∥∥∥∥∥M̂1 −
r∑
i=1

βiq̂i

∥∥∥∥∥
2

. (5.35)

Let (β∗
1 , . . . , β

∗
r) be an optimizer for the above, then ω̂i := (β∗

i)
3/2 is a good approximation

for ωi and the vector

µ̂i := q̂i/
3
√
ω̂i

is a good approximation for µi. We may use

µ̂i,
(r∑
j=1

ω̂j
)−1

ω̂i, i = 1, . . . , r

as starting points to solve the nonlinear optimization min
(ω1,...,ωr,µ1,...,µr)

∥
∑r

i=1 ωiµi − M̂1∥2 + ∥
∑r

i=1 ωi(µ
⊗3
i)I − (M̂3)I∥2

subject to ω1 + · · ·+ ωr = 1, ω1, . . . , ωr ≥ 0,
(5.36)

for getting improved approximations. Suppose an optimizer of the above is

(ω∗
1, . . . , ω

∗
r , µ

∗
1, . . . , µ

∗
r).

Now we discuss how to estimate the diagonal covariance matrices Σi. Let

A :=M3 −F , Â := M̂3 − (q̂1)
⊗3 − · · · − (q̂r)

⊗3. (5.37)

By (5.3), we know that

A =
d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj), (5.38)

101

where aj =
r∑
i=1

ωiσ
2
ijµi for j = 1, · · · , d. The equation (5.38) implies that

(aj)j =
1

3
Ajjj, (aj)i = Ajij, (5.39)

for i, j = 1, · · · , d and i ̸= j. So we choose vectors âj ∈ Rd such that

(âj)j =
1

3
Âjjj, (âj)i = Âjij for i ̸= j. (5.40)

Since âj ≈
r∑
i=1

ωiσ
2
ijµi, the covariance matrices Σi = diag(σ2

i1, . . . , σ
2
id) can be estimated by

solving the nonnegative linear least squares (j = 1, . . . , d) min
(β1j ,...,βrj)

∥∥∥∥âj − r∑
i=1

ω∗
i µ

∗
iβij

∥∥∥∥2
subject to β1j ≥ 0, . . . , βrj ≥ 0.

(5.41)

For each j, let (β∗
1j, . . . , β

∗
rj) be the optimizer for the above. When (M̂3)Ω is close to (M3)Ω,

it is expected that β∗
ij is close to (σij)

2. Therefore, we can estimate the covariance matrices

Σi as follows

Σ∗
i := diag(β∗

i1, . . . , β
∗
id), (σ∗

ij)
2 := β∗

ij. (5.42)

The following is the algorithm for learning Gaussian mixture models.

Algorithm 5.9. (Learning diagonal Gaussian mixture models.)

Input: Samples {y1, . . ., yN} ⊆ Rd drawn from a Gaussian mixture model and the number r

of component Gaussian distributions.

Step 1. Compute the sample averages M̂1 :=
1
N

∑N
i=1 yi and M̂3 :=

1

N

N∑
i=1

y⊗3
i .

Step 2. Apply Algorithm 5.6 to the subtensor (F̂)Ω := (M̂3)Ω. Let (p
∗
1)

⊗3+ · · ·+(p∗r)
⊗3 be the

obtained rank-r tensor approximation for F̂ . For each i = 1, . . . , r, let q̂i := Re(τip
∗
i)

where τi is the cube root of 1 that minimizes the imaginary part vector norm ∥Im(τip
∗
i)∥.

Step 3. Solve (5.35) to get ω̂1, . . . , ω̂r and µ̂i = qi/
3
√
ω̂i, i = 1, . . . , r.

Step 4. Use the above ω̂i, q̂i as initial points to solve the nonlinear optimization (5.36) for

the optimal ω∗
i , µ

∗
i , i = 1, . . . , r.

Step 5. Get vectors â1, . . . , âd as in (5.40). Solve the optimization (5.41) to get optimizers

β∗
ij and then choose Σ∗

i as in (5.42).

102

Output: Component Gaussian distribution parameters (µ∗
i ,Σ

∗
i , ω

∗
i), i = 1, . . . , r.

The sample averages M̂1, M̂3 can typically be used as good estimates for the true

momentsM1,M3. When the value of r is not known, it can be determined as in Remark 5.2.

The performance of Algorithm 5.9 is analyzed as follows.

Theorem 5.10 ([59]). Consider the d-dimensional diagonal Gaussian mixture model with

parameters {(ωi, µi,Σi) : i ∈ [r]} and r ≤ d
2
− 1. Let {(ω∗

i , µ
∗
i ,Σ

∗
i) : i ∈ [r]} be produced by

Algorithm 5.9. If the distance ϵ := max(∥M3 − M̂3∥, ∥M1 − M̂1∥) is small enough and the

tensor F =
∑r

i=1 ωiµ
⊗3
i satisfies conditions of Theorem 5.7, then

∥µi − µ∗
i ∥ = O(ϵ), ∥ωi − ω∗

i ∥ = O(ϵ), ∥Σi − Σ∗
i ∥ = O(ϵ),

where the above constants inside O(·) only depend on parameters {(ωi, µi,Σi) : i ∈ [r]} and

the choice of ξ in Algorithm 5.9.

Proof. For the vectors pi := 3
√
ωiµi, we have F =

∑r
i=1 p

⊗3
i . Since

∥(F − F̂)I∥ = ∥(M3 − M̂3)I∥ ≤ ϵ

and F satisfies conditions of Theorem 5.7, we know ∥τ ∗i p∗i − pi∥ = O(ϵ) for some (τ ∗i)
3 = 1,

by Theorem 5.7. The constants inside O(ϵ) depend on parameters of the Gaussian model

and ξ. Then, we have ∥Im(τ ∗i p
∗
i)∥ = O(ϵ) since the vectors pi are real. When ϵ is small

enough, such τ ∗i is the τ in Step 2 of Algorithm 5.9 that minimizes ∥Im(τip
∗
i)∥, so we have

∥q̂i − pi∥ ≤ ∥τip∗i − pi∥ = O(ϵ)

where q̂i = Re(τip
∗
i) is from the Step 2. The vectors q̂1, . . . , q̂r are linearly independent when

ϵ is small. Thus, the problem (5.35) has a unique solution and the weights ω̂i can be found by

solving (5.35). Since ∥M1−M̂1∥ ≤ ϵ and ∥q̂i−pi∥ = O(ϵ), we have ∥ωi− ω̂i∥ = O(ϵ) (see [40,

Theorem 3.4]). The mean vectors µ̂i are obtained by µ̂i = q̂i/
3
√
ω̂i, so the approximation

error is

∥µi − µ̂i∥ = ∥pi/ 3
√
ωi − q̂i/

3
√
ω̂i∥ = O(ϵ).

The constants inside the above O(ϵ) depend on parameters of the Gaussian mixture model

and ξ.

The problem (5.36) is solved to obtain ω∗
i and µ∗

i , so∥∥∥∥∥M̂1 −
r∑
i=3

ω∗
i µ

∗
i

∥∥∥∥∥+
∥∥∥∥∥F̂ −

r∑
i=1

ω∗
i (µ

∗
i)

⊗3

∥∥∥∥∥ = O(ϵ).

103

Let F∗ :=
∑r

i=1 ω
∗
i (µ

∗
i)

⊗3 =
∑r

i=1(
3
√
ω∗
i µ

∗
i)

⊗3, then

∥F − F∗∥ ≤ ∥F − F̂∥+ ∥F̂ − F∗∥ = O(ϵ).

Theorem 5.7 implies ∥pi − 3
√
ω∗
i µ

∗
i ∥ = O(ϵ). In addition, we have∥∥∥∥∥M̂1 −

r∑
i=1

ω∗
i µ

∗
i

∥∥∥∥∥ =

∥∥∥∥∥M̂1 −
r∑
i=1

(ω∗
i)

2/3 3
√
ω∗
i µ

∗
i

∥∥∥∥∥ = O(ϵ).

The first order moment isM1 =
∑r

i=1(ωi)
2/3pi. Since ∥M1−M̂1∥ = O(ϵ) and ∥pi− 3

√
ω∗
i µ

∗
i ∥ =

O(ϵ), it holds that ∥ω2/3
i −(ω∗

i)
2/3∥ = O(ϵ) by [40, Theorem 3.4]. This implies that ∥ωi−ω∗

i ∥ =

O(ϵ), so

∥µi − µ∗
i ∥ = ∥pi/ 3

√
ωi − (3

√
ω∗
i µ

∗
i)/

3
√
ω∗
i ∥ = O(ϵ).

The constants inside the above O(·) only depend on parameters {(ωi, µi,Σi) : i ∈ [r]} and ξ.

The covariance matrices Σi are recovered by solving the linear least squares (5.41).

In the least square problems, it holds that ∥ωiµi − ω∗
i µ

∗
i ∥ = O(ϵ) and

∥A − Â∥ ≤ ∥M3 − M̂3∥+ ∥F −
r∑
i=1

q̂⊗3
i ∥ = O(ϵ),

where tensorsA, Â are defined in (5.37). When the error ϵ is small, the vectors ω∗
i µ

∗
1, . . . , ω

∗
i µ

∗
r

are linearly independent and hence (5.41) has a unique solution for each j. According

to [40, Theorem 3.4], we have

∥(σij)2 − (σ∗
ij)

2∥ = O(ϵ).

It implies that ∥Σi−Σ∗
i ∥ = O(ϵ), where the constants inside O(·) only depend on parameters

{(ωi, µi,Σi) : i ∈ [r]} and ξ.

5.5 Numerical examples

First, we show the performance of Algorithm 5.6 for computing incomplete symmetric

tensor approximations. For a range of dimension d and rank r, we get the tensor F = (p1)
⊗3+

· · · + (pr)
⊗3, where each pi is randomly generated according to the Gaussian distribution

in MATLAB. Then, we apply the perturbation (F̂)Ω = (F)Ω + EΩ, where E is a randomly

generated tensor, also according to the Gaussian distribution in MATLAB, with the norm

∥Eω∥Ω = ϵ. After that, Algorithm 5.6 is applied to the subtensor (F̂)Ω to find the rank-r

104

tensor approximation. The approximation quality is measured by the absolute error and the

relative error

abs-error := ∥(F∗ −F)Ω∥, rel-error :=
∥(F∗ − F̂)Ω∥
∥(F − F̂)Ω∥

,

where F∗ is the output of Algorithm 5.6. For each case of (d, r, ϵ), we generate 100 random

instances. The min, average, and max relative errors for each dimension d and rank r

are reported in the Table 5.1. The results show that Algorithm 5.6 performs very well for

computing tensor approximations.

Table 5.1: The performance of Algorithm 5.6

rel-error abs-error

d r ϵ min average max min average max time

20

3 0.1 0.9610 0.9731 0.9835 0.0141 0.0268 0.0556 0.2687

5 0.01 0.9634 0.9700 0.9742 0.0019 0.0032 0.0068 0.2392

7 0.001 0.9148 0.9373 0.9525 2.3 · 10−4 3.8 · 10−4 6.6 · 10−4 0.2638

30

4 0.1 0.9816 0.9854 0.9890 0.0094 0.0174 0.0533 0.4386

8 0.01 0.9634 0.9700 0.9742 0.0015 0.0024 0.0060 0.7957

11 0.001 0.9501 0.9587 0.9667 1.8 · 10−4 3.0 · 10−4 5.7 · 10−4 0.8954

40

6 0.1 0.9853 0.9877 0.9904 0.0099 0.0146 0.0359 1.7779

10 0.01 0.9761 0.9795 0.9820 0.0013 0.0020 0.0045 2.6454

15 0.001 0.9653 0.9690 0.9734 1.7 · 10−4 2.6 · 10−4 4.8 · 10−4 3.6785

50

7 0.1 0.9887 0.9911 0.9925 0.0081 0.0128 0.0294 4.9774

13 0.01 0.9812 0.9831 0.9854 0.0011 0.0018 0.0045 8.7655

18 0.001 0.9739 0.9767 0.9792 1.5 · 10−4 2.2 · 10−4 4.1 · 10−4 11.6248

Second, we explore the performance of Algorithm 5.9 for learning diagonal Gaussian

mixture models. We compare it with the classical EM algorithm, for which the MATLAB

function fitgmdist is used (MaxIter is set to be 100 and RegularizationValue is set to

be 0.0001). The dimensions d = 20, 30, 40, 50, 60 are tested. Three values of r are tested

for each case of d. We generate 100 random instances of {(ωi, µi,Σi) : i = 1, · · · , r} for

d ∈ {20, 30, 40}, and 20 random instances for d ∈ {50, 60}, because of the relatively more

computational time for the latter case. For each instance, 10000 samples are generated. To

generate the weights ω1, . . . , ωr, we first use the MATLAB function randi to generate a

105

random 10000−dimensional integer vector of entries from [r], then the occurring frequency

of i in [r] is used as the weight ωi. For each diagonal covariance matrix Σi, its diagonal vector

is set to be the square of a random vector generated by the MATLAB function randn. Each

sample is generated from one of r component Gaussian distributions, so they are naturally

separated into r groups. Algorithm 5.9 and the EM algorithm are applied to fit the Gaussian

mixture model to the 10000 samples for each instance. For each sample, we calculate the

likelihood of the sample to each component Gaussian distribution in the estimated Gaussian

mixture model. A sample is classified to the ith group if its likelihood for the ith component

is maximum. The classification accuracy is the rate that samples are classified to the correct

group. In Table 5.2, for each pair (d, r), we report the accuracy of Algorithm 5.9 in the first

row and the accuracy of the EM algorithm in the second row. As one can see, Algorithm 5.9

performs better than EM algorithm, and its accuracy isn’t affected when the dimensions and

ranks increase. Indeed, as the difference between the dimension d and the rank r increases,

Algorithm 5.9 becomes more and more accurate. This is opposite to the EM algorithm.

The reason is that the difference between the number of rows and the number of columns of

Aij[F] in (5.15) increases as d− r becomes bigger, which makes Algorithm 5.9 more robust.

Last, we apply Algorithm 5.9 to do texture classifications. We select 8 textured

images of 512×512 pixels from the VisTex database, which are shown in Figure 5.1. We use

the MATLAB function rgb2gray to convert them into grayscale version since we only need

their structure and texture information. Each image is divided into subimages of 32 × 32

pixels. We perform the discrete cosine transformation(DCT) on each block of size 16 × 16

pixels with overlap of 8 pixels. Each component of ’Wavelet-like’ DCT feature is the sum of

the absolute value of the DCT coefficients in the corresponding sub-block. So the dimension

d of the feature vector extracted from each subimage is 13. We use blocks extracted from the

first 160 subimages for training and those from the rest 96 subimages for testing. We refer

to [123] for more details. For each image, we apply Algorithm 5.9 and the EM algorithm to fit

a Gaussian mixture model to the image. We choose the number of components r according

to Remark 5.2. To classify the test data, we follow the Bayes decision rule that assigns

each block to the texture which maximizes the posteriori probability, where we assume a

uniform prior over all classes [46]. The classification accuracy is the rate that a subimage

is correctly classified, which is shown in Table 5.3. Algorithm 5.9 outperforms the classical

EM algorithm for the accuracy rates for six of the images.

106

Table 5.2: Comparison between Algorithm 5.9 and EM for simulations

accuracy time

d r Algorithm 5.9 EM Algorithm 5.9 EM

20

3 0.9861 0.9763 0.8745 0.1649

5 0.9740 0.9400 2.3476 0.3852

7 0.9659 0.9252 3.4352 0.6777

30

4 0.9965 0.9684 4.5266 0.2959

8 0.9923 0.9277 8.5494 0.8525

11 0.9895 0.9219 17.2091 1.4106

40

6 0.9990 0.9117 18.9160 0.6273

10 0.9981 0.8931 28.4161 1.2617

15 0.9971 0.9111 69.8013 2.0627

50

7 0.9997 0.8997 40.6810 0.8314

13 0.9995 0.9073 104.7927 1.7867

18 0.9993 0.9038 163.2711 2.6862

60

8 0.9999 0.8874 93.9836 1.1266

15 0.9998 0.8632 234.0331 2.6435

22 0.9995 0.8929 497.9371 3.5527

Bark.0000 Bark.0009 Flowers.0001 Tile.0000

Paintings.11.0001 Grass.0001 Brick.0004 Fabric.0013

Figure 5.1: Textures from VisTex

107

Table 5.3: Classification results on 8 textures

Accuracy Algorithm 5.9 EM

Bark.0000 0.5376 0.8413
Bark.0009 0.5107 0.7150

Flowers.0001 0.8137 0.6315
Tile.0000 0.8219 0.7239

Paintings.11.0001 0.8047 0.7350
Grass.0001 0.9841 0.9068
Brick.0004 0.9406 0.8854
Fabric.0013 0.9220 0.9048

Acknowledgement. The Chapter 5, in full, has been accepted for publication in

Vietnam Journal of Mathematics 2021 [59]. The dissertation author coauthored this paper

with Guo, Bingni and Nie, Jiawang.

108

Bibliography

[1] L. Ardila, M. Heyl and A. Eckardt, Measuring the single-particle density matrix for
fermions and hard-core bosons in an optical lattice, Physical review letters, 121 (2018),
no. 26, pp. 260–401.

[2] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications, MPS-SIAM Series on Optimization, SIAM,
Philadelphia, 2001.

[3] A. Berman, M. Dür, and N. Shaked-Monderer. Open problems in the theory of completely
positive and copositive matrices. Electronic Journal of Linear Algebra 29 (2015), 46-58.

[4] A. Bernardi, J. Brachat, P. Comon, and B. Mourrain, General tensor decomposition,
moment matrices and applications, J. Symbolic Comput., 52 (2013), pp. 51–71.

[5] I. Bomze. Linear-time detection of copositivity for tridiagonal matrices and extension
to block-tridiagonality. SIAM J. Matrix Anal. Appl. 21 (2000), 840-848.

[6] I. Bomze. Copositive optimization - recent developments and applications. European
Journal of Operational Research 216 (2012), 509–520.

[7] I. Bomze and G. Eichfelder. Copositivity detection by difference-of-convex decomposition
and ω-subdivision. Math. Program., pages 1–36, 2013.

[8] D. Bertsekas, Convex Optimization Theory, Athena Scientific, 2009.

[9] D. Bertsekas, Nonlinear programming, second edition, Athena Scientific, 1995.

[10] D. Bertsekas, A. Nedić and A. Ozdaglar, Convex Analysis and Optimization, Athena
Scientific, Belmont, 2003.

[11] G. Blekherman, P. Parrilo and R. Thomas (eds.), Semidefinite optimization and convex
algebraic geometry, MOS-SIAM series on Optimization, SIAM, Philadelphia, PA, 2013.

[12] K. Blum, Density matrix theory and applications, Springer Science & Business Media,
2012.

[13] J. Bochnak, M. Coste and M-F. Roy, Real Algebraic Geometry, Springer, 1998.

[14] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

109

[15] J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition,
Linear Algebra Appl., 433 (2010), no. 11–12, pp. 1851–1872.

[16] P. Breiding and N. Vannieuwenhoven, A Riemannian trust region method for the
canonical tensor rank approximation problem, SIAM J. Optim., 28 (2018), no. 3,
pp. 2435–2465.

[17] P. Breiding and N. Vannieuwenhoven. The condition number of join decompositions.
SIAM Journal on Matrix Analysis and Applications, 39(1):287–309, 2018.

[18] P. Breiding and N. Vannieuwenhoven. The condition number of Riemannian
approximation problems. SIAM Journal on Optimization, 31(1):1049–1077, 2021.

[19] S. Bundfuss and M. Dür. Algorithmic copositivity detection by simplicial partition.
Linear Algebra and its Applications, 428(7):1511–1523, 2008.

[20] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic
programs. Math. Program., 120(2):479–495, 2009.

[21] L. Calderaro, G. Foletto, D. Dequal, P. Villoresi and G. Vallone, Direct reconstruction
of the quantum density matrix by strong measurements, Physical review letters, 121
(2018), no. 23, pp. 230–501.

[22] F. Chatelin, Eigenvalues of matrices: revised edition, SIAM, 2012.

[23] M. Che, L. Qi, and Y. Wei. Positive-definite tensors to nonlinear complementarity
problems. Journal of Optimization Theory and Applications, 168(2):475–487, 2016.

[24] H. Chen, Z. Huang, and L. Qi. Copositive tensor detection and its applications in physics
and hypergraphs. arXiv preprint arXiv:1609.07919, 2016.

[25] H. Chen, Z. Huang and L. Qi. Copositivity detection of tensors: theory and algorithm.
J. Optimization Theory and Applications 174(3): 746-761 (2017).

[26] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle
point problems. SIAM J. Optim. 24(2014), no. 4, 1779–1814.

[27] L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, Effective criteria for specific
identifiability of tensors and forms, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 656–681.

[28] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, Symmetric tensors and symmetric
tensor rank, SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1254–1279.

[29] P. Comon, L.-H. Lim, Y. Qi and K. Ye, Topology of tensor ranks, Advances in
Mathematics, vol. 367, pp. 107-128, 2020.

[30] B. Cox, A. Juditsky, and A. Nemirovski, Decomposition techniques for bilinear saddle
point problems and variational inequalities with affine monotone operators, J. Optim.
Theory Appl. 172(2017), no. 2, 402–435.

110

[31] C. Cui, Y. Dai and J. Nie. All real eigenvalues of symmetric tensors. SIAM J. Matrix
Anal. Appl., 35 (2014), pp. 1582–1601.

[32] R. Curto and L. Fialkow. Truncated K-moment problems in several variables. J.
Operator Theory, 54(2005), pp. 189-226.

[33] G. Dahl, J. M. Leinaas, J. Myrheim, and E. Ovrum, A tensor product matrix
approximation problem in quantum physics, Linear Algebra and its Applications, 420
(2007), pp. 711–725.

[34] Y. Dauphin, R. Pascanu, C. Gülçehre, K. Cho, S. Ganguli and Y. Bengio, Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization,
Advances in Neural Information Processing Systems 27 (NIPS 2014), 2933–2941, Curran
Associates, Inc., 2014.

[35] E. de Klerk and D. V. Pasechnik. A linear programming reformulation of the standard
quadratic optimization problem J. Global Optim., 37 (2007), 75–84

[36] E. de Klerk and D. Pasechnik. Approximation of the stability number of a graph via
copositive programming. SIAM J. Optim., 12(4):875–892, 2002.

[37] L. De Lathauwer, B. De Moor, and J. Vandewalle, Computation of the canonical
decomposition by means of a simultaneous generalized Schur decomposition, SIAM J.
Matrix Anal. Appl., 26 (2004), no. 2, pp. 295–327.

[38] L. De Lathauwer, A link between the canonical decomposition in multilinear algebra and
simultaneous matrix diagonalization, SIAM J. Matrix Anal. Appl., 28 (2006), no. 3,
pp. 642–666.

[39] V. De Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank
approximation problem, SIAM. J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084–1127.

[40] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

[41] J. Demmel, J.Nie and V. Powers, Representations of positive polynomials on non-
compact semialgebraic sets via KKT ideals, J. Pure Appl. Algebra 209(2007), no. 1,
pp. 189–200.

[42] H. Derksen, S. Friedland, L.-H. Lim and L. Wang, Theoretical and computational aspects
of entanglement, arXiv:1705.07160, preprint, 2017.

[43] P. Diananda. On non-negative forms in real variables some or all of which are non-
negative. Proceedings of the Cambridge Philosophical Society, 58 (1962), 17–25.

[44] P. Dickinson, M. Dür, L. Gijben and R. Hildebrand. Scaling relationship between the
copositive cone and Parrilo’s first level approximation. Optimization Letters, 7 (2013),
1669-1679.

[45] P. Dickinson and L. Gijben. On the computational complexity of membership problems
for the completely positive cone and its dual. Comput. Optim. Appl., 57 (2014), 403–415.

111

[46] M. Dixit, N. Rasiwasia, and N. Vasconcelos, Adapted Gaussian models for image
classification. CVPR 2011, pages 937–943, 2011.

[47] C. Dobre and J. Vera. Exploiting symmetry in copositive programs via semidefinite
hierarchies. Math. Program., 151(2):659-680, 2015.

[48] I. Domanov, and L. De Lathauwer, Generic uniqueness conditions for the canonical
polyadic decomposition and INDSCAL, SIAM J. Matrix Anal. Appl., 36 (2015), no. 4,
pp. 1567–1589.

[49] M. Dressler, J. Nie, and Z. Yang, Separability of Hermitian Tensors and PSD
Decompositions, Linear and Multilinear Linear Algebra, 2021.

[50] I. Dukanovic and . Rendl. Copositive programming motivated bounds on the stability
and the chromatic numbers. Math. Program., 121(2):249–268, 2010.

[51] M. Dür. Copositive Programming - a survey. In: M. Diehl, F. Glineur, E. Jarlebring,
W. Michiels (Eds.), Recent Advances in Optimization and its Applications in
Engineering, Springer 2010, pp. 3-20.

[52] M. Dür and J. Hiriart-Urruty. Testing copositivity with the help of difference-of-convex
optimization Math. Program., Vol. 140, No. 1, 31-43, 2013.

[53] F. Facchinei and J. Pang. Finite-dimensional variational inequalities and
complementarity problems. Springer Science & Business Media, 2007.

[54] L. Fialkow and J. Nie, The truncated moment problem via homogenization and flat
extensions, J. Funct. Anal. 263 (6), 1682–1700, 2012.

[55] S. Friedland and L.-H. Lim, Nuclear norm of higher-order tensors, Mathematics of
Computation, 87(311), 1255–1281, 2018.

[56] T. Fu, B. Jiang and Z. Li, On decompositions and approximations of conjugate partial-
symmetric complex tensors, arXiv:1802.09013, preprint, 2018.

[57] F. Galuppi and M. Mella, Identifiability of homogeneous polynomials and Cremona
Transformations, J. Reine Angew. Math., 757 (2019), pp. 279–308.

[58] F. Ge, Y. Ju, Z. Qi, and Y. Lin, Parameter estimation of a gaussian mixture model for
wind power forecast error by riemann l-bfgs optimization. IEEE Access, 6:38892–38899,
2018.

[59] B. Guo, J. Nie, and Z. Yang, Learning Diagonal Gaussian Mixture Models and
Incomplete Tensor Decompositions, Vietnam Journal of Mathematics, 2021.

[60] M. Hall and M. Newman. Copositive and completely positive quadratic forms.
Proceedings of the Cambridge Philosophical Society, 59 (1963), 329–33.

[61] B. Halldórsson and R. Tütüncü, An interior-point method for a class of saddle-point
problems, J. Optim. Theory Appl. 116(2003), no. 3, 559–590.

112

[62] J. Harris, Algebraic Geometry, A First Course, Springer Verlag, 1992.

[63] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point
problem: from contraction perspective, SIAM J. Imaging Sci. 5(2012), no. 1, 119–149.

[64] Y. He and R. Monteiro, Accelerating block-decomposition first-order methods for solving
composite saddle-point and two-player nash equilibrium problems, SIAM J. Optim.
25(2015), no. 4, 2182–2211.

[65] J.W. Helon and J. Nie, A semidefinite approach for truncated K-moment problems,
§Found. Comput. Math. 12 (6), 851–881, 2012.

[66] D. Henrion, J. Lasserre and J. Loefberg. GloptiPoly 3: moments, optimization and
semidefinite programming. Optim. Methods Softw., 24 (2009), pp. 761–779.

[67] D. Henrion and J. B. Lasserre, Detecting global optimality and extracting solutions in
GloptiPoly, Positive polynomials in control, Lect. Notes Control Inf. Sci., vol. 312,
Springer, Berlin, 2005, pp. 293–310.

[68] R. Hildebrand. The extreme rays of the 5 × 5 copositive cone. Linear Algebra Appl.,
437(7):1538–1547, 2012.

[69] J. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM
Review, 52 (2010), 593–629.

[70] A. Hoffman and F. Pereira. On copositive matrices with −1, 0, 1 entries. Journal of
Combinatorial Theory, Series A, 14(3):302–309, 1973.

[71] K. Ikramov. Linear-time algorithm for verifying the copositivity of an acyclic matrix.
Computational mathematics and mathematical physics, 42(12):1701–1703, 2002.

[72] D. Jacobson. Extensions of linear-quadratic control, optimization and matrix theory,
volume 133. Academic press, 2000.

[73] B. Jiang, Z. Li, and S. Zhang, Characterizing real-valued multivariate complex
polynomials and their symmetric tensor representations, SIAM J. Matrix Anal. Appl.,
37 (2016), no. 1, pp. 381–408.

[74] K. Kannike. Vacuum stability of a general scalar potential of a few fields. The European
Physical Journal C, 76(6):1–16, 2016.

[75] W. Kaplan. A test for copositive matrices. Linear Algebra Appl., 313 (2000), 203-206.

[76] T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009),
no. 3, pp. 455–500.

[77] G.M. Korpelevič, An extragradient method for finding saddle points and other problems,
Èkonom. i Mat. Metody 12(1976), no. 4, 747–756.

113

[78] J. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics, Lin. Alg. Appl., 18 (1977), no. 2,
pp. 95–138.

[79] J. Landsberg, Tensors: Geometry and Applications, Grad. Stud. Math., Providence,
2012.

[80] R. Laraki and J. Lasserre, Semidefinite programming for min-max problems and games,
Math. Program. 131(2012), 305–332.

[81] J. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
J. Optim., 11(3):796–817, 2001.

[82] J.B. Lasserre, Introduction to Polynomial And Semi-Algebraic Optimization, Cambridge
University Press, Cambridge, 2015.

[83] M. Laurent, Revisiting two theorems of Curto and Fialkow on moment matrices,
Proceedings of the AMS 133(2005), no. 10, 2965–2976.

[84] M. Laurent, Sums of squares, moment matrices and optimization over polynomials,
Emerging Applications of Algebraic Geometry of IMA Volumes in Mathematics and its
Applications, 149 (2009), pp. 157–270.

[85] D. -S. Lee, Effective Gaussian mixture learning for video background subtraction, IEEE
transactions on pattern analysis and machine intelligence, 27(5):827–832, 2005.

[86] Z. Li, Y. Nakatsukasa, T. Soma and A. Uschmajew, On orthogonal tensors and best
rank-one approximation ratio, SIAM J. Matrix Anal. Appl., 39 (2018), no. 1, pp. 400–
425.

[87] Y. Li and G. Ni, Separability discrimination and decomposition of m-partite quantum
mixed states, Phys. Rev. A 102 (2020), 012402.

[88] L.-H. Lim, Tensors and hypermatrices, in: L. Hogben (Ed.), Handbook of linear algebra,
2nd Ed., CRC Press, Boca Raton, 2013.

[89] D. Maistroskii, Gradient methods for finding saddle points, Matekon 13 (1977), 3–22.

[90] M. Magdon-Ismail and J. T. Purnell, Approximating the covariance matrix of gmms
with low-rank perturbations, International Conference on Intelligent Data Engineering
and Automated Learning, pages 300–307, 2010.

[91] O. Mason and R. Shorten. On linear copositive lyapunov functions and the stability of
switched positive linear systems. IEEE Transactions on Automatic Control, 52 (2007),
1346–1349.

[92] R. Monteiro and B. Svaiter, Complexity of variants of Tseng’s modified F-B splitting and
Korpelevich’s methods for hemivariational inequalities with applications to saddle-point
and convex optimization problems, SIAM J. Optim. 21(2011), no. 4, 1688–1720.

114

[93] T. Motzkin. Copositive quadratic forms. National Bureau of Standards Report, 1952:11–
22, 1818.

[94] T. Motzkin and E. Straus. Maxima for graphs and a new proof of a theorem of Turán.
Canadian J. Math., 17(1965): 533-540.

[95] C. Mu, B. Huang, J. Wright, and D. Goldfarb, Square deal: lower bounds and improved
relaxations for tensor recovery, Proceeding of the International Conference on Machine
Learning (PMLR), 32(2),73-81, 2014.

[96] K. Murty and S. Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Math. Program., 39(2):117–129, 1987.

[97] M. Nakata. A numerical evaluation of highly accurate multiple-precision arithmetic
version of semidefinite programming solver:SDPA-GMP, -QD and -DD. The
proceedings of 2010 IEEE Multi-Conference on Systems and Control, 29-34, 2010.
http://sdpa.sourceforge.net/download.html#sdpa-gmp

[98] A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point problems, J. Optim.
Theory Appl. 142(2009), no. 1, 205–228.

[99] A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequalities
with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems, SIAM J. Optim. 15 (2004), no. 1, 229–251.

[100] G. Ni, L. Qi, and M. Bai, Geometric measure of entanglement and U-eigenvalues of
tensors, SIAM J. Matrix Anal. Appl., 35 (2014), no. 1, pp. 73–87.

[101] G. Ni, Hermitian tensor and quantum mixed state, arXiv:1902.02640[quant-ph],
preprint, 2019.

[102] J. Nie. Certifying convergence of lasserre’s hierarchy via flat truncation. Math.
Program., Ser. A, 142 (2013), no. 1-2, 485–510.

[103] J. Nie, Optimality conditions and finite convergence of Lasserre’s hierarchy,
Mathematical Programming 146 (2014), no. 1-2, Ser. A, 97–121.

[104] J. Nie, The A-truncated K-moment problem, Foundations of Computational
Mathematics 14 (2014), no. 6, 1243–1276.

[105] J. Nie, Linear optimization with cones of moments and nonnegative polynomials,
Mathematical Programming 153 (2015), no. 1, 247–274.

[106] J. Nie. Low rank symmetric tensor approximations. SIAM J. Matrix Anal. Appl.,
38(4):1517–1540, 2017.

[107] J. Nie, Symmetric tensor nuclear norms, SIAM J. Appl. Algebra Geometry, 1(1), 599–
625, 2017.

115

[108] J. Nie. Tight relaxations for polynomial optimization and lagrange multiplier
expressions. Mathematical Programming, 178(1), pp. 1–37, 2019.

[109] J. Nie, Generating polynomials and symmetric tensor decompositions, Found. Comput.
Math., 17 (2017), no. 2, pp. 423–465.

[110] J. Nie and Z. Yang, Hermitian Tensor Decompositions, SIAM J. Matrix Anal. Appl.
41 (2020), no. 3, 1115-1144.

[111] J. Nie and K. Ye, Hankel tensor decompositions and ranks, SIAM J. Matrix Anal.
Appl. 40 (2019), no. 2, 486–516.

[112] J. Nie and X. Zhang, Positive maps and separable matrices, SIAM J. Optim., 26 (2016),
no. 2, pp. 1236–1256.

[113] J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math.
Program., 153 (2015), pp. 247–274.

[114] J. Nie, Polynomial optimization with real varieties, SIAM J. Optim. 23(2013), no. 3,
1634–1646.

[115] J. Nie, The A-truncated K-moment problem, Found. Comput. Math., 14 (2014), no. 6,
pp. 1243–1276.

[116] J. Nie and K. Ranestad, Algebraic degree of polynomial optimization, SIAM J. Optim.
20(2009), no. 1, 485–502.

[117] J. Nie and K. Ye, Hankel tensor decompositions and ranks, SIAM J. Matrix Anal.
Appl., 40 (2019), no. 2, pp. 486–516.

[118] J. Nie, Z. Yang, and G. Zhou, The Saddle Point Problem of Polynomials, Foundations
of Computational Mathematics, pp. 1-37, 2021.

[119] J. Nie, Z. Yang, and X. Zhang, A Complete Semidefinite Algorithm for Detecting
Copositive Matrices and Tensors, SIAM Journal on Optimization, Vol. 28, pp. 2902-
2921, 2018.

[120] L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for waring
decomposition, J. Symbolic Comput., 54 (2013), pp. 9–35.

[121] R. Pascanu, Y. Dauphin, S. Ganguli and Y. Bengio, On the saddle point problem for
non-convex optimization, Preprint, 2014. arXiv:1405.4604[cs.LG]

[122] J. Peña, J. Vera, and L. Zuluaga. Completely positive reformulations for polynomial
optimization. Math. Program., 151(2):405-431, 2014.

[123] H. Permuter, J. Francos, and I. Jermyn, A study of Gaussian mixture models of color
and texture features for image classification and segmentation. Pattern Recognition,
39(4), 695–706, 2006.

116

[124] M. Putinar, Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J.,
42 (1993), pp. 203–206.

[125] L. Qi. Symmetric nonnegative tensors and copositive tensors. Linear Algebra and its
Applications, 439(1):228–238, 2013.

[126] L. Qi and Z. Luo, Tensor analysis: Spectral theory and special tensors, SIAM,
Philadelphia, 2017.

[127] L. Qi, G. Zhang, and G. Ni, How entangled can a multi-party system possibly be?,
Physics Letters A, 382 (2018), no. 22, pp. 1465-1471.

[128] B. Reznick, Some concrete aspects of Hilbert’s 17th problem, Contemp. Math., 253
(2000), pp. 251–272.

[129] B. Romera-Paredes and M. Pontil, A New Convex Relaxation for Tensor Completion,
Advances in Neural Information Processing Systems 26, 2967–2975, 2013.

[130] R. Schneider. Convex bodies: the Brunn-Minkowski theory. Encyclopedia of
Mathematics and its Applications, Vol. 44. Cambridge University Press, Cambridge,
1993.

[131] M. Schweighofer. Optimization of polynomials on compact semialgebraic sets. SIAM
J. Optim., 15(3), 805-825, 2005.

[132] P. Shah and P. Parrilo, Polynomial stochastic games via sum of squares optimization,
Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA,
USA, Dec. 12-14, 2007.

[133] N. Sidiropoulos and R. Bro, On the uniqueness of multilinear decomposition of N-way
arrays, J. Chemometrics, 14 (2000), no, 3, pp. 229–239.

[134] Y. Song and L. Qi. Necessary and sufficient conditions for copositive tensors. Linear
and Multilinear Algebra, 63 (2015), 120-131.

[135] Y. Song and L. Qi. Properties of tensor complementarity problem and some classes of
structured tensors. arXiv preprint arXiv:1412.0113, 2014.

[136] Y. Song and L. Qi. Tensor complementarity problem and semi-positive tensors. J.
Optim. Theory Appl., 169(3):1069–1078, 2016.

[137] L. Sorber, M. Van Barel, and L. De Lathauwer, Optimization-based algorithms
for tensor decompositions: canonical polyadic decomposition, decomposition in rank-
(Lr, Lr, 1) terms and a new generalization, SIAM J. Optim., 23 (2013), no. 2, pp. 695–
720.

[138] J. Sponsel, S. Bundfuss, and M. Dür. An improved algorithm to test copositivity. J.
Global Optim., 52(3):537–551, 2012.

117

[139] J. Sturm. SeDuMi 1.02: A MATLAB toolbox for optimization over symmetric cones.
Optim. Methods Softw., 11 & 12 (1999), pp. 625–653. http://sedumi.ie.lehigh.edu

[140] G. Tang and P. Shah, Guaranteed tensor decomposition: a moment approach,
Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pp. 1491-1500, 2015. Journal of Machine Learning Research: W&CP volume 37.

[141] M. Todd. Semidefinite Optimization. Acta Numerica, 10: 515–560, 2001.

[142] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab 3.0,
March 2016, http://www.tensorlab.net.

[143] Y. Wu, P. Yang, Optimal estimation of Gaussian mixtures via denoised method of
moments, Annals of Statistics, 48(4), pp. 1981–2007, 2020.

[144] K. Ye and L.-H. Lim, Tensor network ranks, arXiv:1801.02662, preprint, 2018

[145] M. Yuan and C.-H. Zhang, On tensor completion via nuclear norm minimization.
Found. Comput. Math., 16(4), 1031–1068, 2016.

[146] I. Zabotin, A subgradient method for finding a saddle point of a convex-concave
function, Issled. Prikl. Mat. 15(1988), 6–12.

[147] L. Zhu, T. Coleman and Y. Li, Min-max robust CVaR robust mean-variance portfolios,
Journal of Risk 11(2009), no. 3, 55.

118

