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ABSTRACT OF THE DISSERTATION

Research on Polynomial and Tensor Optimization
by

Zi Yang
Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Jiawang Nie, Chair

Polynomial optimization considers optimization problems defined by polynomials. In
contrast to classical nonlinear optimization, it aims at finding global optimizers. Tensors
are natural higher-order generalizations of matrices and are closely related to polynomials
and moments. They are powerful tools in studying tensors. Many tensor problems can be
formulated as polynomial optimization problems.

We propose a complete semidefinite relaxation algorithm for detecting the copositivity
of a symmetric tensor. We show that the detection can be done by solving a finite number
of semidefinite relaxations for all tensors.

For the saddle point problem of polynomials, we give an algorithm for computing
saddle points. We show that: i) if there exists a saddle point, our algorithm can get one
by solving a finite number of Lasserre type semidefinite relaxations; ii) if there is no saddle
point, our algorithm can detect its nonexistence.

Hermitian tensors are generalizations of Hermitian matrices, but they have very
different properties. Canonical basis Hermitian tensors, real Hermitian tensors, special

matrix flattenings, positive semidefiniteness, and separability are studied. We further study

x1



how to detect separability of Hermitian tensors. We formulate this as a truncated moment
problem and then provide a semidefinite relaxation algorithm to solve it.

The problem of learning diagonal Gaussian mixture models can be formulated as
computing incomplete symmetric tensor decompositions. We use generating polynomials
to compute incomplete symmetric tensor decompositions and approximations. Then the
tensor approximation is used to learn diagonal Gaussian mixture models. When the first
and third order moments are sufficiently accurate, we show that the obtained parameters for

the Gaussian mixture models are also highly accurate.
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Chapter 1

Introduction

1.1 Polynomial optimization

In this section, we review some basics about positive polynoimals, localizing matrices,
and polynomial optimization.

Denote by R[z] the ring of polynomials in = with real coefficients in R. The R[z]4 is
the set of polynomials whose degrees < d. For o := (ay, ..., a,) € N" with an integer n > 0,

denote |a| :== ay + -+ + a,,. For an integer d > 0, denote NI := {a € N" | |a| < d}. For

x=(x1,...,7,) and a = (o, ..., a,), denote
T
xa = I?l .. .xgn’ [x]d = 1 €Ty v Tn l’% X1y - xrdl

An ideal I of R[z| is a subset such that I -R[z] C [ and [ + 1 C I. For a tuple
p = (p1,...,pxr) of polynomials in R[z], Ideal(p) denotes the smallest ideal containing all p;,
which is the set p; - R[z] + -+ + pr - R[z]. In computation, we often need to work with the
truncation:

Ideal(p)ar, := p1 - Rlz]ok—deg(pr) + + Pk - R[Z]ok—deg(pn)-

A polynomial o is said to be a sum of squares (SOS) if 0 = s + -+ + s7 for some
polynomials sy, ..., s,. Checking if a polynomial is SOS can be done by solving a semidefinite
program (SDP) [81]. If a polynomial is SOS, then it is nonnegative everywhere. But, the
reverse may not be true. The set of all SOS polynomials in x is denoted by X[z], and its dth
truncation is X[z]; := X[z] N R|x]4. For a tuple ¢ = (¢, ..., q:) of polynomials its quadratic
module is

Qmod(q) = X[r] +q - X[z] + - + ¢ - X[z].



We often need to work with the truncation

Qm0d<Q)2k = E[l’]gk +q1- E[-73']2kfdeg(gl) +o g E[x]Zkfdeg(qt)-

A subset A C R[z] is said to be archimedean if there exists o € A such that o(x) > 0
defines a compact set in R™. If Ideal(p)+ @mod(q) is archimedean, then the set K := {p(z) =
0, g(x) > 0} must be compact. The reverse is not always true. When Ideal(p) + Qmod(q)
is archimedean, every polynomial that is positive on K must belong to Ideal(p) + Qmod(q).
This is the so-called Putinar’s Positivstellensatz [124]. Interestingly, under some optimality
conditions, if a polynomial is nonnegative (but not strictly positive) over K, then it belongs
to Ideal(p) + @mod(q). This is shown in [103].

The set R4 is the space of all real vectors that are labeled by o € N%. That is, every
y € RNd can be labeled as

Yy = (ya)aGNg-

Such y is called a truncated multi-sequence (tms) of degree d [115]. The tms y is said to
admit a Borel measure p if it satisfies that yo, = [ 2*du, Va € Nj. If it exists, such a p is
called a representing measure for y, and y is said to admit the measure pu.

For a polynomial f € R[z|, that is written as

f=> far®

o] <Np

with r < d, we define the operation

(Fy) =Y fala (1.1)

o] <N7

Note that (f,y) is linear in y for fixed f, and is linear in f for fixed y. For a polynomial

q € R[z]or and the integer t = k — [deg(q)/2], the outer product q(x)[z]:[x]] is a symmetric

n+t

. ) It can be expanded as

matrix of length (

@ellall = 3 Q..

aeNg,

for constant symmetric matrices Q.. For y € RY2x, denote the symmetric matrix

Lgk)[y] = Z Yala- (1'2>

aeNG,



It is called the kth localizing matriz of ¢ and generated by y. For given ¢, L((Ik) [y] is linear in
y. Clearly, if ¢(u) > 0 and y = [u]ay, then LY [y] = q(w)[u];[u]” = 0. (X = 0 means that X

is positive semidefinite.) For instance, if n = k =2 and ¢ = 1 — x; — z129, then

Yoo — Y10 — Y11 Y10 — Y20 — Y21 Yo1 — Y11 — Y12
ng) [y] = |Y10 — Y20 — Y21 Y20 — Y30 — Y31 Y11 — Y21 — Y22
Yor — Y11 — Y12 Y11 — Y21 — Y22 Yo2 — Y12 — Y13

When ¢ = 1 (the constant one polynomial), the localizing matrix Lgk) [y] reduces to a

moment matrix, which we denote as
k
Mly) = L[y,

For instance, when n = 2, k = 3, the matrix Ms[y] is

Yoo Yio Yo1 Y20 Y11 Yo2 Yso Y21 Y12 Yo3
Yo Y20 Y11 Yo Y21 Y12 Yo Y1 Y22 Y13
Yor Y11 Yoz Y21 Y12 Yo3 Ys1 Y22 Y13 Yoa
Y20 Y30 Y21 Ya0 Y31 Y22 Yso Ya Y32 Y23
Y11 Y21 Y1z Y31 Y22 Y13 Ya1 Y32 Y23 Y14
Yo2 Y12 Yo3 Y22 Y13 Yo4a Y32 Y23 Yi4a Yos
Yso Y40 Y31 Yso Ya1 Y32 Yeo Ys1 Ya2 Y33
Y21 Ys1 Y22 Ya1 Y32 Y23 Ys1 Ya2 Y33 Y24
Y12 Y22 Y13 Y32 Y23 Y14 Y2 Y33 Y24 Y15
| Y30 Y13 Yoa Y23 Y14 Yos Y33 Y24 Yi5 Yos |

Moment and localizing matrices can be used to construct semidefinite relaxations for
polynomial optimization problems. We refer to [141] for a survey on semidefinite programs.

Consider the polynomial optimization problem

ff:=min f(z)
st. hi(z)=0(0G=1,...,my), (1.3)
g](l’) > 0(] = 17 “7m2>7

where f and g;, h; are all real polynoimals in x € R”. A standard approach to solve (1.3) is

Lasserre’s hierarchy of sum of squares (SOS) relaxations [81]. Let

do := max{[deg(f)]/2, [deg(g:)]/2, [deg(h;)/2}i=1, maj=1,...ms-



For kg > dy, the kth order relaxation is

4
fe:=min (f,y)
s.t. Lﬁf [y =03G=1,...,m)
L) =00 =1,...,my),
Yo =1, Mily] = 0, y € RNz,

(1.4)

3
It always holds that fi < f* and the sequence {fx} is monotonically increasing. Under the
archimedean condition, the relaxations have asymptotic convergence, i.e., limy_, fr = f*.
When f;, = f* for some k, we say the relaxation has finite convergence. A common criterion
to check finite convergence is the flat extension [32]. Let y € R"2+ be a minimizer of the kth

order relaxation. We say y satisfies flat extension if the following rank condition
rank My g4 [z] = rank M |z] (1.5)

is satisfied, where

d. := max{[deg(g:)]/2, [deg(h;)]/2}i=1,..maj=1,..ms-

Then, we can extract r = rankM;, minimizers for (1.3). It is implemented in the software
GloptiPoly3 [66]. When the rank condition (1.5) is satisfied for some k, the semidefinite
relaxations have finite convergence. In polynomial optimization, a more appropriate condition
than flat extension is the flat truncation [102].

We refer to [54,65,81,113] for more work about solving polynoimal optimization.

1.2 Tensors

Let F = C (the complex field) or R (the real field) and Vi,...,V,, be finitely
dimensional vector spaces over F. The dual space of V; is the set of all linear functionals
on V;. Denote by V* the dual space of V;. For each v; € V,, let v; ® - - - ® v,,, be the linear

functional on V{* x --- x V* such that

(V1 ® - @Un) (81, 8m) = s1(v1) -+ S (Vi)

for all s; € V*. The span of all such linear functionals v; ® - - - ® v, is called the tensor

product space of Vi,...,V,,, denoted by V; ® --- ® V,,,.



The tensor space F™ & --- ® F" is isomorphic to F™"**"m_ Thus, a tensor A €

F" & ... @ F" can be represented as a multi-array in F" < >mm je. A = (A; ;. ), with

i, € {1,...,n%} for k = 1,...,m. For convenience, we also call F"***"n the tensor space
of order m and dimension ny,...,n,,. When m = 3 (resp., 4), they are called cubic (resp.,
quartic) tensors. For vectors u, € ™ k=1,...,m, the u; ® - -+ ® u,, denotes their tensor
product, i.e., (U3 & -+ @ U )iy 4, = (U1)i, -+ (W), for all iy, ..., iy in the range. Tensors

like u; ® - -+ ® u,, are called rank-1 tensors. The cp rank of A, denoted as rank(.A), is the

smallest 7 such that
T 1 . m J n;
A= E . 1ui® ®u", w € C". (1.6)

In the literature, the decomposition (1.6) is often called a candecomp-parafac or canonical
polyadic (CP) decomposition. We refer to [37, 76,79, 88, 142] for tensor decompositions,
and refer to [16,37,38,137] for tensor decomposition methods. For uniqueness of tensor
decompostions, we refer to the work [27,48,57,78,133].

Symmetric tensors are natural generalizations of symmetric matrices. A tensor A €

Frxxn of order m is symmetric if A is invariant for all permutations of (i1, ..., 4y). The

i1
entries of the form A;; ; are called diagonal, while the other entries are called off-diagonal.

Rank-1 symmetric tensors are multiples of
u" =u®---®@u (repeated m times).

For every symmetric tensor, there exist some u; € C" and \; € C such that

A = Z:Zl)\ZUS@m

The smallest number r is called the symmetric rank of A, denoted by rankg(A). We refer
to [15,28,109,120] for the work on symmetric tensor decompositions. Symmetric tensors can
be generalized to partial symmetric tensors [79] and conjugate partial symmetric tensors [56].
A class of interesting symmetric tensors are Hankel tensors [117]. More work about tensor
ranks can be found in [29,144].

For two tensors A, B € Cl*tmml their inner product is defined as

(A, B) = Z

where a denotes the conjugate of the complex number a. The Hilbert-Schmidt norm of A is

accordingly defined as || A|| := /(A, A).

Ail---inljl---ijil---imjl---jm’ (17)

U1y bimsJ1seesJm



For convenience of operations, we define multilinear matrix multiplications for tensors
(see [88]). For matrices M) € CPe*% k = 1,... m, define the matrix-tensor product
(My,...,M,) x T for T € C* "> guch that it gives a linear map from CZ*"*%n to

CpPr>xxPm and it satisfies
(M, ..., Mp) X (U1 @+ @ up) = (Miug) @ -+ @ (M),

for all rank-1 tensors u; ® - - - @ u,,. The product (M, ..., M,,) x T is a tensor in CP1*"*Pm,

For two tensors 71,75 of compatible dimensions, it holds that
(My,...,Mp) xT1,T2) = (T1, (M7, ..., M) X T3),

where the superscript * denotes the conjugate transpose.

Notation

The symbol N denotes the set of nonnegative integers. For k = 1,...,m, the x;
denotes the complex vector variable in C™. The tuple of all such complex variables is
denoted as x := (x1,...,x,). For F =R or C, denote by F[z] the ring of polynomials in «
with coefficients in F, while F[z, Z] denotes the ring of conjugate polynomials in = and T with
coefficients in F. In the Euclidean space F", denote by e; the ith standard unit vector, i.e.,
the ith entry of e; is one and all others are zeros, while e stands for the vector of all ones. The
I}, denotes the k-by-k identity matrix. For a vector u in R™ or C", ||u|| denotes its standard
Euclidean norm. For a matrix or vector a, the a* denotes its conjugate transpose, a’ denotes
its transpose, while @ denotes its conjugate entrywisely; we use Re(a) and Im(a) to denote
its real and complex part respectively. For a complex scalar or vector z, denote |z| := v/z*z.
The int(S) denotes the interior of a set S, under the Euclidean topology. The M" denotes
the set of n-by-n Hermitian matrices, while §™ denotes the set of n-by-n real symmetric
matrices. If a Hermitian matrix X is positive semidefinite (resp., positive definite), we write
that X > 0 (resp., X > 0). The symbol ® denotes the tensor product, while X denotes the
classical Kronecker product. For a tensor product u ®@ v ® - - -, we denote by vec(u@v®---)
the column vector of its coefficients in its representation in terms of the basis tensors. For an
integer k > 0, denote the set [k] := {1,...,k}. For a real number ¢, the ceiling [¢] denotes

the smallest integer that is greater than or equal to t.



Chapter 2

Detection of Copositive Tensors

2.1 Copositive tensors
A real symmetric matrix A € R™*" is said to be copositive if
2TAr >0 Vze R%,

where R is the nonnegative orthant (i.e., the set of nonnegative vectors). If 7 Az > 0 for all
0 # x € RY, then A is said to be strictly copositive. The set of all n X n copositive matrices
is a cone in R™ ™, which is denoted as COP,. Copositive matrices were introduced in
[93]. They have broad applications, e.g., in quadratic programming [20], dynamical systems
and control theory [72,91], graph theory [36,50], complementarity problems and variational
inequalities [53]. We refer to [6,51] for surveys on copositive optimization.

A basic problem in optimization is the detection of copositive matrices. Let S} be
the cone of n x n real symmetric positive semidefinite (psd) matrices, and N} be the cone

of n x n real symmetric matrices whose entries are all nonnegative. Clearly, it holds that
St + N} C COP,. (2.1)

For n < 4, the above inclusion is an equality; for n > 5, the equality does not hold any
more [43]. For instance, the Horn matrix [60] is copositive, but it is not a sum of psd and
nonnegative matrices. Checking membership of the cone COP,, is NP-hard [45,96]. As
shown in [75], a matrix A is copositive if and only if it does not have a principal submatrix
that has a negative eigenvalue with a positive eigenvector. To apply this testing, one needs to

check eigenvalues for all principal submatrices, which grows exponentially in the dimension.



For the case n = 5, when the diagonal entries are all ones, A is copositive if and only if

the polynomial HxH?(ZfFl

Agjzix?) is a sum of squares [44]. When off-diagonal entries are
nonpositive, A is copositive if and only if A is positive semidefinite [69]. When a matrix
is tridiagonal or acyclic, its copositivity can be detected in linear time [5,71]. For testing
copositivity for general matrices, there exist methods based on simplicial partition [19,138].
Another approach for testing copositivity is to use the difference of convexity [7,52]. A
survey about existing results and open problems for copositive matrices can be found in [3].

The concept of copositivity can be naturally generalized to tensors, as in Qi [125].
Let S™(R™) be the space of symmetric tensors of order m over the vector space R™. For
A € 3™(R"), its associated polynomial is

A(x) = Z Aiigein, Tiy Tiy =+ T, (2.2)

1<i1 i, sim<n

If A(x) > 0 for all x € R™, A is said to be positive semidefinite (psd). If A(x) > 0 for all
r € R}, Ais said to be copositive. Similarly, if A(z) > 0 for all 0 # = € R}, A is said
to be strictly copositive. Denote by COP,,,, the cone of all copositive tensors in 8™ (R").
Clearly, when the order m = 2, positive semidefinite (resp., copositive) tensors are the same
as positive semidefinite (resp., copositive) matrices. To be psd, a tensor must have even
order. An odd order nonzero tensor can never be psd, but it is possibly copositive. For
instance, every nonzero tensor with zero diagonal entries and nonnegative off-diagonal ones
is copositive, but not psd.

Copositive tensors have broad applications. For instance, some complementarity
problems can be formulated by using copositive tensors [23,135,136]. The coclique number
of a hypergraph can be bounded by tensor copositivity [24]; see Example 2.6. Copositive
tensors are useful in vacuum stability [74]. Moreover, some polynomial optimization problems
can be formulated as linear conic programs about copositive tensors [122]. We refer to
(25,125,134, 135] for more applications of copositive tensors.

Detecting tensor copositivity is also a mathematically challenging question. It is also
NP-hard, because testing matrix copositivity is a special case. If the off-diagonal entries of
a symmetric tensor A4 are nonpositive, then A is copositive if and only if A is psd [125].
There also exists a characterization of copositive tensors by the eigenpairs of its principal
subtensors [134]. Like the matrix case, tensor copositivity can also be tested by algorithms
based on simplicial partition. Typically, when a tensor lies in the interior of the copositive

cone, the copositivity can be detected by this kind of algorithms. However, if it lies on the



boundary, they usually have difficulties. We refer to [19,24,25,138] for related work.

2.2 A complete semidefinite algorithm

We discuss how to detect copositivity of a given tensor. For a symmetric tensor
A € 8"(R"), let A(x) be the homogeneous polynomial defined as in (2.2). Clearly, A is
copositive if and only if A(x) > 0 for all  belonging to the standard simplex

A={zeR": fv=12>0}.

Consider the optimization problem

{ v* := min A(x)

st efe =1, (z1,...,2,) > 0.

(2.3)

Clearly, A is copositive if and only if the minimum value v* > 0. Therefore, testing the
copositivity of A is the same as determining the sign of v*. The problem (2.3) is a polynomial
optimization problem. A standard approach for solving it is to apply classical Lasserre
relaxations [81]. Since the feasible set is compact and the archimedean condition holds, its
asymptotic convergence is always guaranteed.

As proposed in [108], there exist tight relaxations for solving polynomial optimization,
whose constructions are based on optimality conditions and Lagrange multiplier expressions.
Since its feasible set is compact and nonempty, problem (2.3) must have a global minimizer,
say, u. The constraints of (2.3) are all affine linear functions. Omne can see that the
linear independence constraint qualification condition holds at u. So we have the following

optimality conditions (the notation V denotes the gradient):

VA(U) = )\06 + Z:-L:l )\iei, (2 4)
Mty == Aty =0, Ay >0,..., A, >0, '
where Ao, A, ..., A, are the Lagrange multipliers. By a simple algebraic computation (also

see [108]), one can show that (note that 7V f(z) = mf(z) for all homogeneous polynomials

f(z) of degree m, because 27 V™ = |a|z®)

{)\0 = uI'VA®) =mA), (25)

A= ZU_mA) (i=1,2,...,n).



Because of the above expressions, we define new polynomials:

P = a’;;? —mA(x) (i=1,2,...,n). (2.6)

Since every optimizer v must satisfy (2.4) and its norm |lu|| < 1, the optimization problem

(2.3) is equivalent to

min A(z)
st efx—1=p(2)r; = = pu(2)r, =0, (2.7)
L el 20,02 0, pila) 20 = 1...,n).

Then we apply Lasserre’s relaxations to solve (2.7). For the orders k = 1,2, ..., solve the

semidefinite relaxation problem:

( v = min (A(z),y)
t yo=1,L% =0, L[yl =0(@ =1
st Yo ) eTx—l[y] y Hripg [y] (2 y 7n)?

LW =0, L[yl = 0(i=1,....,n),
L™ Lyl = 0, Myl = 0, y € RNk,

\ 1=[«]?

(2.8)

The ball constraint 1 — |[z]|> > 0 is redundant in (2.7). There are two major advantages
for using it: i) Adding the ball constraint results in tighter relaxations, i.e., (2.8) is stronger
than the one without using 1 —||z||* > 0. ii) If 1 —||z]|> > 0 is not used, there exist numerical
difficulties for solving the semidefinite relaxation (2.8).

Note that v* is also the optimal value of (2.7). The feasible set of (2.7) is contained
in the projection of that of (2.8), so the optimal value vy of (2.8) satisfies

v Svg <-es <t

Clearly, if vy > 0 for some k, then A is copositive. Combining the above, we can get the

following algorithm.

Algorithm 2.1. For a given tensor A € S™(R"), let mg := [m/2] and k := mqy. Choose a
generic vector £ € RNm . Test the copositivity of A as follows:

Step 1: Solve the semidefinite relaxation (2.8). If its optimal value vy > 0, then A is
copositive and stop. If v, <0, go to Step 2.
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Step 2: Solve the following semidefinite program

(win (€7 (2], y)

st LS [y =0, L[y = 0, (i € [n)), (2.9
*) (k) '
L el =20, Ly a8l = 0,

Yo =1, Miply] = 0, y € RNz,

\
If it is feasible, compute an optimizer y. If it is infeasible, let k := k + 1 and go to
Step 1.

Step 3: Letu = ((gj)el, . (?])en) If A(u) < 0, then A is not copositive and stop; otherwise,
let k:=k+1 and go to Step 1.

In Algorithm 2.1, the vector ¢ can be chosen as a random vector obeying normal
distribution. In MATLAB, we can use the function randn to generate each entry of £. In
Step 2, the copositivity of A is justified by the relationship v* > vy, for all & > myq. In Step 3,
the point u must belong to the simplex A. This is because of the constraints Li’;)mfl[y] =0
and L ly] = 0.

In the following, we show that Algorithm 2.1 must terminate within finitely many
iterations, for all tensors A. In other words, the copositivity of every A can be detected
correctly by solving finitely many semidefinite relaxations. This is why we call Algorithm 2.1

a complete semidefinte algorithm for detecting tensor copositivity.

Theorem 2.2 ( [119]). For all symmetric tensors A € S™(R"™), Algorithm 2.1 has the

following properties:

(i) For all k > myg, the semidefinite relazation (2.8) is feasible and achieves its optimal

value vy; moreover, vy = v* for all k sufficiently large.
(i1) For all k > my, the semidefinite program (2.9) has an optimizer if it is feasible.

(111) If A is copositive, then Algorithm 2.1 must stop with vy, > 0, when k is sufficiently

large.

(iv) If A is not copositive, then, for almost all ¢ € RNm (i.e., &€ € RN=\O for a subset
© C RY» of zero Lebesgue measure), Algorithm 2.1 must return a point u € A with

f(u) <0, when k is sufficiently large.
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Proof. (i) The feasible set of (2.3) is compact, so it must have a minimizer, say, u*. Then,
u* satisfies (2.4), and hence u* is a feasible point for (2.7). So, the feasible set of (2.7) is
nonempty. This implies that the semidefinite relaxation (2.8) is always feasible. By the
constraint Lgk_)Hx”Q[y] = 0, we can show that the feasible set of (2.8) is compact, as follows.
First, we can see that

L =902 Yae, + -+ Yae,-

S0, 0 < y9, < 1 since each yae, > 0 (because My[y] > 0). Second, for all 0 < |a] < k — 1,

the (o, @)th diagonal entry of Lgk_)Hz”z[y} is nonnegative, so

Yo Z y2a+261 + -+ Y2a+2e, - (210)

By choosing o = ey, ..., ey, the same argument can show that 0 < yys < 1 for all |B] < 2.
By repeatedly applying (2.10), one can further get that 0 < ys3 <1 for all || < k. Third,
note that the diagonal entries of Myly| are precisely yop with |5| < k. Since Mgly] > 0, all
the entries of My[y] must be between —1 and 1. This means that y is bounded, hence the
feasible set of (2.8) is compact. Therefore, (2.8) must achieve its optimal value vg.
To prove vy = v* for all k sufficiently large, note that (2.7) is the same as the
optimization
min A(z)
st elz—1=p(x)r, = =pu(2)2, =0, (2.11)
z; >0, pi(x) >0,i=1,...,n.

Its corresponding Lasserre’s relaxations are

4
vy, = min (A(x),y)
st L =0, LW =001 <i<n),

LPW =0, LYyl = 0(1 <i <n),
Yo =1, Myly] = 0, y € RNz,

(2.12)

\

for the orders k = 1,2, .... The optimal value of (2.11) is also v*. The feasible set of (2.8) is
contained in that of (2.12), so

v, <o <0, k=mg,mo+1,.... (2.13)
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is archimedean, i.e., there exists f € F such that the inequality f(x) > 0 defines a compact
set in R™. This is true for f = 1 — ||z||?, because of the identity

1= lz|® = (1= e"a)(1+ [lz]®) + Y il —2:)* + > 2l (2.14)
i=1 i#j
By Theorem 3.3 of [108], we know that v}, = v* when k is sufficiently large. Hence, the
relation (2.13) implies that vy = v* for all k sufficiently large.

(ii) The semidefinite program (2.9) also has the constraint Lgk_)”mllg[y] = 0. By the
same argument as in (i), we know that the feasible set of (2.9) is compact. So, it must have
an optimizer if it is feasible.

(iii) Clearly, A is copositive if and only if v* > 0. By the item (i), vy = v* for all k
big enough. Therefore, if A is copositive, we must have v, > 0 for all k large enough.

(iv) If A is not copositive, then v* < 0. By the item (i), there exists k; € N such that
vp = v* for all k > k;. Hence, for all k£ > kq, (2.9) is the same as

( . T
min  (¢" [2]m, y)
st L%, Iyl =0, L[] = 0, (i € [n)), 015
(k) (k) '
Llf\\;p”z[y} = 0, LU*_A(JC) [3/] = 0,
\ (y)O = ]-aMk[y] t 07 Yy e RN;k
It is the kth Lasserre’s relaxation for the polynomial optimization
min &7z,
¢ [a] (2.16)
st eflx—1=0,2>0,v"— A(z) > 0.

The feasible set of (2.16) is clearly compact. There exists a subset © C R¥m of zero Lebesgue
measure [130, §2.2], such that for all £ € RN»\© the problem (2.16) has a unique optimizer,
say, u*. Hence, for almost all £ € RVm_ u* is the unique optimizer. For notation convenience,
denote by §* the optimizer of (2.9) with the relaxation order k. Let u* = ((§%)e,, ..., (9")e,)-
By Corollary 3.5 of [131] or Theorem 3.3 of [102], the sequence {u"}72, ~must converge to
u*, the unique optimizer of (2.16). Since A(u*) < v* < 0, we must have A(u*) < 0 when k is
sufficiently large. Moreover, the constraints ngj) [y] = 0 imply that u* > 0, and Lg;)xq[y] =0

implies that eTu* = 1. Therefore, u* € A. O

In Step 1 of Algorithm 2.1, we need to test whether or not vy > 0. When the

absolute value of vy is big, this testing is easy. However, if its absolute value is very small,
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then testing its sign might be difficult. Note that the semidefinite relaxation (2.8) is often
solved numerically, i.e., v, is accurate up to a tiny round-off error. This difficulty is not
because of theoretical properties of Algorithm 2.1, but due to round-off errors, which occur
in all numerical methods. In practice, if vy, is positive or close to zero (say, vy > —1079),

then it is reasonably well to claim the copositivity of A.

2.3 Numerical examples

This section presents numerical experiments of applying Algorithm 2.1 to detect
matrix and tensor copositivity. The computation is implemented in MATLAB R2016b, on a
Lenovo Laptop with CPU@2.90GHz and RAM 16.0G. Algorithm 2.1 can be implemented by
using the software Gloptipoly 3 [66], which calls the semidefinite program solver SeDuMi
[139]. For cleanness, we only display 4 decimal digits. The computational time is reported
in seconds (s). Recall that vy is the optimal value of (2.8).

First, we consider some copositive matrices that are not a sum of psd and nonnegative

matrices.
Example 2.3. Consider the Horn’s matriz [60]

1 -1 1 1 -1

1 -1 1 -1 1]/}, (2.17)

the Hoffman-Pereira matriz [70]

1 -1 1 0 0 1

-1 1 -1 1 0 0 1

1 -1 1 -1 1 0
1 0|, (2.18)
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and the Hildebrand matriz [68]

1 —costyy  cos(ty +1s) cos(ihe +1h3)  —cosis
— cos 1y 1 —costs  cos(iy + 1s)  cos(hs + 1hy)
cos(¢g +¢5)  —cosys 1 —costy  cos(Py + o) | (2.19)
cos(hg +1b3) cos(¥y +1b5)  —cosihy 1 — €08 g
—costpy  cos(thy +1hy) cos(Phr +1h)  —cosihy 1

where each 1; > 0 and Z?:1 v; < m. Here, we choose the values

Y1 = thg = Py =Py = 95 = /6.

All these matrices are copositive but are not a sum of psd and nonnegative matrices. We
apply Algorithm 2.1 to test its copositivity. The lower bounds v, and computational time are

shown in Table 2.1. Their copositivity are all confirmed at k = 3, up to tiny round-off errors.

Table 2.1: Computational results for matrices in Example 2.3

Horn Hoffman-Pereira Hildebrand
k Uk time(s) Uk time(s) Uk time(s)
1 —0.7889 0.59 —0.4503 0.58 —0.2218 0.61
2 —0.0472 0.35 —0.0250 0.60 —0.0153 0.32
3| —-70x10"°% 1.68 —22x 1077 ] 24.85 | —1.2x107® 1.11

Copositive matrices have applications in graph theory. Let G = (V, E) be a graph,
with V' the set of vertices and F the set of edges. Its stability number «(G) is the maximum
number of pairwise disjoint vertices. As shown in [36,94], it holds that

a(G)t =min 2T (Ag + ),

TEA

where Ag is the adjacency matrix of G. To determine a(G), it is enough to compute the

minimum value v* of (2.3) for the matrix A := Ag + I.

Example 2.4. For each integer { > 0, construct a graph Gy as in [47, §4.2.2], as follows. Let
K141 be the complete bipartite graph with the vertex set {(—1,4), (1,4) : ¢ =0,1,...,¢}. Its
edges are ((—1, i), (1,j)), fori,j=0,1,...,¢. Foreachi=1,...,¢, add a vertex to the edge
of the form ((—1, i), (1,2’)), which we denote as (0,1); then delete the old edge ((—1,@'), (1, 7,))
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from the graph and add two new ones ((—1,1),(0,1)),((0,), (1,7)). The resulting graph is
Gy. As mentioned in [47], a(Gy) = €+ 1. For the matriz A := Ag + I, the optimal value v*
of (2.3) is 5. We apply the semidefinite relazation (2.8) to compute a(G,)™". Fork =2,
the lower bound vy is quite accurate. The computational results are reported in Table 2.2.

Table 2.2: Stability numbers for graphs G,.

n = |Gy Vg vy — HLI| time(s)
) 0.5000 | 9.2 x 10~® 0.53
8 0.3333 | 1.3 x 1077 1.77
11 0.2500 | 1.5 x 107° 10.47
14 0.2000 | 2.4 x 107° | 119.25

B W N RS

Example 2.5. Consider three tensors A € S3(R?) whose polynomials A(x) are respectively
given as

Motzkin:  A(x) := 23xy + 2123 + 25 — 3w17973,
Robinson:  A(x) := a3 + a3 + 23 — 222y — 1123 — 2323 (2.20)

2 2 2
—X1T5 — T3T3 — LT3 + 3T1T223,

| Choi-Lam: A(z) := 23z9 + 2373 + 2301 — 3317973,

When each w; is replaced by 2, the polynomials A(z) are respectively the Motzkin, Robinson
and Choi-Lam polynomials (they are all nonnegative but not sum of squares [128]). Hence,
these tensors are all copositive. We detect their copositivity by Algorithm 2.1. The computational
results are shown in Table 2.3. For all these tensors, the copositivity is confirmed for k = 3,

up to tiny round-off errors.

Table 2.3: Computational results for tensors in Example 2.5

A(z) Motzkin Robinson Choi-Lam
k Vg time(s) Uy, time(s) Vg time(s)
2 —0.0045 0.78 —0.0208 0.76 —0.0129 0.77
3 —43x 1078 | 045 | —-49x107°| 023 | -21x10"%| 0.37

Copositive tensors have applications in hypergraph theory [24]. A hypergraph G =
(V,E) has a vertex set V = {1,...,n} and an edge set F, such that each edge in E is an
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unordered tuple (i1, ...,4), with 4y,...,4, € V. It is m-uniform if each edge is an unordered
m-tuple (i1, ..., iy), for distinct iy, . .., i,. Tensor copositivity can be used to bound coclique

numbers for hypergraphs.

Example 2.6. A coclique of a m-uniform hypergraph G is a subset K C V' such that K
any subset of K with cardinality m does not give an edge of G. The largest cardinality of a
coclique of G is called the coclique number of G, which we denote by w(G) [24]. Computing
w(G) is typically a challenging question. However, we can get a good upper bound for it by
using tensor copositivity, as shown in [24]. The adjacency tensor of a m-uniform hypergraph
G = (V, E) is the symmetric tensor C € S™(R™) such that

. 1/(m—1)! (i1,....in) € E,

1...0m

0 otherwise.

Let T be the identity tensor (i.e., Z; =lifiy==ip=1andZ; ;,
and let € be the tensor of all ones. It is shown in [24] that w(G)™ ' < p for all p such that

= 0 otherwise),

1..%m

p(Z 4+ C) — & is copositive. To get such smallest such p, we need to compute the largest
such that (Z + C) — v& s copositive. Such largest v equals the minimum value v* of (2.3)
for the tensor A =7 + C. Let vy, be the lower bound given by (2.8), then

w(G) < (1/v)mD < (1/v) Y,

Since w(G) 1is an integer, the above implies that

W(G) < [(1/v)V Y] (2.21)
for all k = mg,mg + 1,.... We test the above bounds for a class of 3-uniform hypergraphs.
Let G,, = (V,,, E,,) be the hypergraph such that V,, = {1,...,n} and

n—2

E, = {(i,i+1,i+2)}

=1

For these hypergraphs G,,, we solve the relazation (2.8) for k = 2 and get vy, which gives an
upper bound for w(G,) by (2.21). The computational results are shown in Table 2.4. For G,
in the table, the upper bounds given by (2.21) are tight. Indeed, for n > 3, one can verify
that w(Gp) =n — |n/3]. A coclique with mazimum cardinality for G, (n > 3) is the subset

{1<i<n: mod (i,3) # 0}.
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Table 2.4: Coclgiue numbers of hypergraphs G,

‘ —

n | w(Ga) | (/)71 | [(1/vg) 7] | time(s)
3 2 2.1381 2 0.12
4 3 3.0000 3 0.13
5 4 4.0000 4 0.16
6 4 4.1631 4 0.26
7 5 5.0000 5 0.37
8 6 6.0000 6 0.63
9 6 6.2140 6 1.41
10 7 7.0041 7 3.07
11 8 8.0000 8 5.39
12 8 8.2657 8 15.61
13 9 9.0370 9 31.57
14 10 10.0000 10 72.08
15 10 10.3254 10 213.15
16 11 11.0836 11 282.55
17 12 12.0000 12 487.77

Example 2.7. For every tensor A € S™(R™), there always exists a number v such that
A + 7e®™ s copositive. The smallest such v, which we denote Yy, is the negative of the
optimal value v* of (2.3) for the tensor A. Clearly, A is copositive if and only if Ymin < 0.
This example explores the computational cost for computing ymim for randomly generated
cubic tensors A € S3(R") for various n. Here, we generate each A i,i, randomly, obeying
normal distribution (this can be done as A iy, = randn in MATLAB). For all generated
instances, we got —"Ymin = Vo, i.e., the relaxation (2.8) is tight for the order k = 2 (this is
because rank Myly] = 1 for the optimal solution ). The computational time is reported in

Table 2.5.

Table 2.5: Computational time (in seconds) for random cubic tensors

n 9 11 13 15 17 19
time(s) | 0.97 | 4.38 | 23.79 | 116.89 | 327.72 | 1109.81
n 10 12 14 16 18 20
time(s) | 1.82 | 10.93 | 50.44 | 229.32 | 633.40 | 2748.65

Generally, SeDuMi can solve SDPs accurately in the computational environment of

double precision. However, if SDPs need to be solved highly accurately, we might use high-
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accuracy solvers, e.g., SDPA-GMP [97]. Here, we report the experiment of using SDPA-GMP
in Algorithm 2.1 to solve the SDP relaxations. The matrices/tensors in Examples 2.3 and
2.5 are tested. The results are shown in Table 2.6. For k = 2, SDPA-GMP gets similar lower
bounds as SeDuMi does. However, for k& = 3, SDPA-GMP obtains highly accurate lower bounds,
compared to those in Tables 2.1,2.3. For the Hildebrand matrix, we got v3 ~ —1.2 x 10717;
for other matrices/tensors, we got vs in the magnitude of order 1073°. We do not know
why the accuracy for the Hildebrand matrix is relatively lower. A possible reason is that
the Hildebrand matrix is given by cosine values, which might cause extra round-off errors
in the computation. The comparison also shows that SDPA-GMP takes much more time for
solving the SDPs. For Motzkin/Robinson/Choi-Lam tensors, the time is much less than
that for others. This is because the sizes of their SDP relaxations are smaller. In some
applications, if the copositivity testing needs to be highly accurate, a high-accuracy SDP
solver like SDPA-GMP might be useful.

Table 2.6: Computational results by SDPA-GMP

k=2 k=3
Vg time(s) U3 time(s)
Horn -0.0472 7.28 | —6.0 x 10727 303.33
Hoffman-Pereira | -0.0250 76.83 | —4.6 x 107%Y | 12437.55
Hildebrand -0.0153 825 | —1.2 x 10717 | 297.41

matrix/tensor

Motzkin -0.0448 0.34 | —=7.6 x 1073¢ 4.94
Robinson -0.0208 0.37 | —1.4 x 1073V 3.90
Choi-Lam -0.0129 0.40 | —7.7 x 10731 4.42

Acknowledgement. The Chapter 2, in full, is a reprint of the material as it appears
in SIAM Journal on Optimization 2018 [119]. The dissertation author coauthored this paper
with Nie, Jiawang and Zhang, Xinzhen.
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Chapter 3

The Saddle Point Problem

3.1 Saddle point problems

Let X C R"Y C R™ be two sets (for dimensions n,m > 0), and let F(z,y) be a
continuous function in (z,y) € X x Y. A pair (z*,y*) € X X Y is said to be a saddle point
of F(x,y) over X x Y if

F(z*,y) < F(z*,y") < F(z,y") Vze X, VyeY. (3.1)
The above implies that

F(z*,y") = min F(z,y") < maxmin F(z,y),

rzeX yeY zeX

F(z*,y") = max F(z*,y) > mi F(z,y).
(2%,y") = max F(z",y) > min max F(z, y)

On the other hand, it always holds that

. o |
DA IR ) = g rar Fy)

Therefore, if (z*,y*) is a saddle point, then

i F = F(z*,y") = in F(z,y). 3.2
min max F'(z, y) (z%,y") = maxmin F(z,y) (3.2)

All saddle points share the same objective value, although there may exist different saddle
points. The definition of saddle points in (3.1) requires the inequalities to hold for all points
in the feasible sets X, Y. That is, when y is fixed to y*, z* is a global minimizer of F'(x, y*)

over X; when z is fixed to z*, y* is a global maximizer of F(x*,y) over Y. Certainly, z*
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must also be a local minimizer of F(z,y*) and y* must be a local maximizer of F'(z*,y). So,
the local optimality conditions can be applied at (z*,y*). However, they are not sufficient
for guaranteeing (z*, y*) to be a saddle point, since (3.1) needs to be satisfied for all feasible
points.

The saddle point problem of polynomials (SPPP) is for cases that F(z,y) is a
polynomial function in (z,y) and X,Y are semialgebraic sets, i.e., they are described by
polynomial equalities and/or inequalities. The SPPP concerns the existence of saddle points
and the computation of them if they exist. When F' is convex-concave in (z,y) and X,Y
are nonempty compact convex sets, there exists a saddle point. We refer to [10, §2.6]
for the classical theory for convex-concave type saddle point problems. The SPPPs have
broad applications. They are of fundamental importance in duality theory for constrained
optimization, min-max optimization and game theory [10,80,132].

For convex-concave type saddle point problems, most existing methods are based
on gradients, subgradients, variational inequalities, or other related techniques. For these
classical methods, we refer to the work by Chen, Lan and Ouyang [26], Cox, Juditsky and
Nemirovski [30], He and Yuan [63], He and Monteiro [64], Korpelevich [77], Maistroskii [89],
Monteiro and Svaiter [92], Nemirovski [99], Nedi¢ and Ozdaglar [98], and Zabotin [146]. For
more general cases of non convex-concave type saddle point problems (i.e., F' is not convex-
concave, and /or one of the sets X, Y is nonconvex), the computational task for solving SPPPs
is much harder. A saddle point may, or may not, exist. There is very little work for solving

non convex-concave saddle point problems [34,121].

3.2 Optimality conditions

Throughout the paper, a property is said to hold generically in a space if it is true
everywhere except a subset of zero Lebesgue measure. We refer to [62] for the notion of

genericity in algebraic geometry. Assume X,Y are basic closed semialgebraic sets that are

given as
X={zeR"|gx)=0(i€&), gi(z) > 0(i € &)}, (3.3)
Y ={yeR"| hj(y):O(ieé'lY), h;(y) >0(i€&)} (3.4)
Here, each g¢; is a polynomial in = := (xy,...,z,) and each h; is a polynomial in y :=

(Y1, -, Ym). The &K, EX EY EY are disjoint labeling sets of finite cardinalities. To distinguish
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equality and inequality constraints, denote the tuples

Jeq ‘= (gi>i€51X7 heq = (hj)jggf’

(3.5)
Gin = (9i)icexs hin = (h))jeer-

When &Y = 0 (resp., £ = 0), there is no equality (resp., inequality) constraint for X. The

same holds for Y. For convenience, denote the labeling sets
X =&ugS, Y =& UE).

Suppose (z*,y*) is a saddle point. Then, x* is a minimizer of

min - F(z,y7)
subject to gi(x) =0(i € &), (3.6)
gi(x) = 0(i € &),
and y* is a maximizer of
max  F(a",y)
subject to h;(y) =0(j € &), (3.7)

hyly) = 0(j € ).

Under the linear independence constraint qualification (LICQ), or other kinds of constraint

qualifications (see [9, §3.3]), there exist Lagrange multipliers \;, y1; such that

VLE(@'y") = Y AiVagi(@®), 0< A Lgi(a®) >0(i € &), (38)
iegX

VyF(a,y") = > i Vyhi(y™), 0> p; Lhi(y") >0(j € &)). (3.9)
je&Y

In the above, a L b means the product a-b =0 and V,F (resp., V,F') denotes the gradient
of F(x,y) with respect to x (resp., y). When g, h are nonsingular (see the below for the
definition), we can get explicit expressions for A;, p; in terms of x*,y* (see [108]). For

convenience, write the labeling sets as
(C/’X:{l,“.’gl}’ SY:{l,...,EQ}.
Then, the constraining polynomial tuples can be written as

g=(91,---,904), h = (hy,... hg,).
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The Lagrange multipliers can be written as vectors

A= (A, A), = (s o)

Denote the matrices

vwgl (ZE) VmQQ(:E) o vl’g& (JZ)
pl) 0 0
G(z) = 0 g2(z) .- 0 : (3.10)
I 0 0 .. 9o, (ZL‘) |
V,hi(y) Viha(y) - Vb ()]
H(y) = 0 haoly) -~ 0 . (3.11)
0 0 b

The tuple g is said to be nonsingular if rank G(x) = ¢; for all z € C™. Similarly, h is
nonsingular if rank H(y) = ¢ for all y € C™. Note that if g is nonsingular, then LICQ must
hold at z*. Similarly, the LICQ holds at y* if A is nonsingular. When g, h have generic
coefficients (i.e., g, h are generic), the tuples g, h are nonsingular. The nonsingularity is a
property that holds generically. We refer to the work [108] for more details.

We assume that the sets X, Y are given as in (3.3)-(3.4) and the defining polynomial
tuples g, h are nonsingular, i.e., the matrices G(z), H(y) have full column rank everywhere.
Then, as shown in [108], there exist matrix polynomials G1(x), Hy(y) such that (I, denotes
the ¢ x ¢ identity matrix)

Gi(2)G(x) = I, Hi(y)H(y) = I,. (3.12)

When g, h have generic coefficients, they are nonsingular. Clearly, the above and (3.8)-(3.9)
imply that
Ai = GU(@")inn Ve F (2" y"), = Hi(Y)jam Vy F (27, y7).

(For a matrix A, the notation A;;., denotes its ith row with column indices from 1 to n.)

Denote the Lagrange polynomial tuples

ANz, y) = Gi(2). 10V F (2, ), (3.13)
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pw(z,y) = Hi(y).1.m Vo F (2, y). (3.14)

(The notation A.;., denotes the submatrix of A consisting of its first n columns.) At each

saddle point (z*,y*), the Lagrange multiplier vectors A, p in (3.8)-(3.9) can be expressed as

A=Ay, p=platyr).

Therefore, (z*,y*) is a solution to the polynomial system

([ gi(a) = 0(i € £5), hyy) = 0(j € &),
vxF(xay) = ~§X )‘z(‘r’y)vxgz(‘r)a

VyF(z,y) = > pi(x,y)Vyhi(y), (3.15)

jeeYy

0 < Ni(z,y) L gi(z) >0(i € &),
| 02 () L hy(y) 20(j € &)

However, not every solution (z*,y*) to (3.15) is a saddle point. This is because z* might not

be a minimizer of (3.6), and/or y* might not be a maximizer of (3.7).

3.3 An algorithm for solving SPPPs

Let F, g, h be the polynomial tuples for the saddle point problem (3.1). Assume g,h
are nonsingular. So the Lagrange multiplier vectors A(z,y), u(x,y) can be expressed as in
(3.13)-(3.14). We have seen that each saddle point (z*,y*) must satisfy (3.15). This leads
us to consider the optimization problem

(

i F
er}(l}yréY (557 y)
subject to Vo F(x,y) — > icex Ni(@,y)Vagi(z) = 0,

Vo F(2,y) = ¥ jeer 113(2.9)Vyhy(y) =0, (3.16)
0 < Ni(z,y) L gi(x) >0(i € &),
0> p;(x,y) L hi(y) > 0(j € &),

\

where \;(z,y) and p;(x,y) are Lagrange polynomials given as in (3.13)-(3.14). The saddle
point problem (3.1) is not equivalent to (3.16). However, the optimization problem (3.16)
can be used to get a candidate saddle point. Suppose (z*,y*) is a minimizer of (3.16). If z*

is a minimizer of F(z,y*) over X and y* is a maximizer of F(z*,y) over Y, then (z*,y*) is
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a saddle point; otherwise, such (z*,3*) is not a saddle point, i.e., there exists u € X and/or
there exists v € Y such that

F(u,y*) — F(z*,y*) <0 and/or F(z*,v)— F(z*,y") > 0.
The points u, v can be used to give new constraints

F(u,y) — F(z,y) >0 and/or F(x,y)— F(x,v) >0 (3.17)

Every saddle point (x,y) must satisfy (3.17), so (3.17) can be added to the optimization
problem (3.16) without excluding any true saddle points. For generic polynomials F' g, h,
the problem (3.16) has only finitely many feasible points (see Theorem 3.3). Therefore, by
repeatedly adding new inequalities like (3.17), we can eventually get a saddle point or detect

nonexistence of saddle points. This results in the following algorithm.

Algorithm 3.1. (An algorithm for solving saddle point problems.)

Input: The polynomials F,g,h asin (3.1), (3.3), (3.4) and Lagrange multiplier expressions
as in (3.13)-(5.14).

Step 0: Let K1 = Ky =S, := () be empty sets.

Step 1: If the problem (3.16) is infeasible, then (3.1) does not have a saddle point and stop;

otherwise, solve (3.16) for a set K° of minimizers. Let k := 0.
Step 2: For each (z*,y*) € K*, do the following:

(a): (Lower level minimization) Solve the problem

Diy) = min F(a,y)

subject to Vo F(z,y*) — > ;cex Ni(2,y*)Vagi(x) = 0, (3.18)
0 < Nz, ) L gi(x) > 0(i € &),

and get a set of minimizers Sy(y*). If F(x*,y*) > 91(y*), update

Kl = Kl U Sl(y*)

(b): (Lower level maximization) Solve the problem

Ya(2%) =max Fla”,y)

subject to VyF(x*,y) — > icev (2", y)Vyh;(y) = 0, (3.19)
0> (%, y) L hy(y) = 0(j € &)
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and get a set of mazimizers So(z*). If F(z*,y*) < ¥o(2*), update
Ky = Ky U Sy(z").
(c): If V1 (y*) = F(z*,y*) = Jo(z*), update:
Sa =S, U{(z",y")}-
Step 3: If S, # 0, then each point in S, is a saddle point and stop; otherwise go to Step 4.

Step 4: (Upper level minimization) Solve the optimization problem

)
i F
,Juin (z,y)

subject to Vo F(x,y) — > icex Mi(z,y)Vagi(x) = 0,
V,F(z,y) — Zjng 1 (@, y)Vyh;(y) =0,

0> pj(z,y) L hi(y) > 0(j € &),

(u7y F(IE,y)ZO(UGKl),

F(u,y) —
F(z,v) — F(z,y) <0 (v € K3).

\

If (3.20) is infeasible, then (3.1) has no saddle points and stop; otherwise, compute a
set KFtL of optimizers for (3.20). Let k :=k + 1 and go to Step 2.

Output: If S, is nonempty, every point in S, s a saddle point; otherwise, output that there

1$ no saddle point.

For generic polynomials, the feasible set Ky of (3.16) and each K* in Algorithm 3.1

is finite. The convergence of Algorithm 3.1 is shown as follows.

Theorem 3.2 ( [118]). Let Ky be the feasible set of (3.16) and let S, be the set of saddle
points for (3.1). If the complement set of S, in Ko (i.e., the set Ko\ Sa) is finite, then
Algorithm 3.1 must terminate after finitely many iterations. Moreover, if S, # (), then each

(x*,y*) € S, is a saddle point; if S, = 0, then there is no saddle point.

Proof. At an iteration, if S, # ), then Algorithm 3.1 terminates. For each iteration with
S, = 0, each point (z*,y*) € K* is not feasible for (3.20). When the kth iteration goes to
the (k + 1)th one, the nonempty sets

K’ K'|! K? K3.. K
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are disjoint from each other. All the points in K* are not saddle points, so

k
UK C Ko\ S

i=0
Therefore, when the set Ky \ S, is finite, Algorithm 3.1 must terminate after finitely many
iterations.
When S, # 0, each point (x*,y*) € S, is verified as a saddle point in Step 2. When
S, = 0, Algorithm 3.1 stops in Step 4 at some iteration, with the case that (3.20) is infeasible.
Since every saddle point is feasible for both (3.16) and (3.20), there does not exist a saddle
point if S, = 0. O O

The number of iterations required by Algorithm 3.1 to terminate is bounded above
by the cardinality of the complement set Iy \ S,, which is always less than or equal to
the cardinality |ICo| of the feasible set of (3.16). Generally, it is hard to count |Ky \ S| or
|ICo| accurately. When the polynomials F g, h are generic, we can prove that the number of
solutions for equality constraints in (3.16) is finite. For degrees ag, by > 0, denote the set

product Clz, ylayp, := C[z]ay - Clylp, -

Theorem 3.3 ( [118]). Let ag, by and a;,b; > 0 be positive degrees, for i € EX and j € EY.
If F(z,y) € Clz,ylagpo, 9i € Clz]a,, hy € Clyly, are generic polynomials, then the polynomial

system
.

VaF(2,y) = 3 icex Mi(2, y)Vagi(x),
gi(x) = 0(i € &), Nz, y)gi(x) = 0 (i € &),
VyF(2,y) = 3 eev 1i(@,y)Vyhi(y),

L hi(y) =00 € &), pya,y)hyly) =0(j € &)

has only finitely many complex solutions in C™ x C™.

(3.21)

The proof for Theorem 3.3 will be given in Section 3.5. One would like to know what
is the number of complex solutions to the polynomial system (3.21) for generic polynomials
F,g,h. That number is an upper bound for |Ky| and so is also an upper bound for the
number of iterations required by Algorithm 3.1 to terminate. The following theorem gives

an upper bound for |Ko|.

Theorem 3.4 ( [118]). For the degrees a;,b; as in Theorem 3.3, let

M = Z iy = CLiTl bj1 cee bsz - S (322)
{i1,.y8ry JC[41],0<m1 <0
{J155Jrg yC[€2],0<r2<m
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where in the above the number s is given as

s = Z ((10 + bo)k’o (ail)kl .. (airl )kr1 (bjl)krl-l—l . (bjTQ)kT1+T2-

ko+-+kr) 4ro=n+m—r1—72
koy-eeskory 474 EN

If F(z,y), gi, hj are generic, then (3.21) has at most M complex solutions, and hence

Algorithm 3.1 must terminate within M iterations.

The proof for Theorem 3.4 will be given in Section 3.5. We remark that the upper
bound M given in (3.22) is not sharp. In our computational practice, Algorithm 3.1 typically
terminates after a few iterations. It is an interesting question to obtain accurate upper

bounds for the number of iterations required by Algorithm 3.1 to terminate.

3.4 Solving optimization problems

We discuss how to solve the optimization problems that appear in Algorithm 3.1.
Under some genericity assumptions on F| g, h, we show that their optimizers can be computed
by solving Lasserre type semidefinite relaxations. Let X, Y be feasible sets given as in (3.3)-
(3.4). Assume g, h are nonsingular, so A(z,y), u(x,y) can be expressed as in (3.13)-(3.14).

The optimization problem (3.16) is a special case of (3.20), with K; = Ky = . Tt
suffices to discuss how to solve (3.20) with finite sets K, Ky. For convenience, we rewrite
(3.20) explicitly as
(

min F(z,y)
(zy)

subject to Vo F'(x,y) — > icex i@, y)Vagi(z) = 0,
VyF(x,y) = 2 jeev i, y)Vyh;(y) = 0,
gi(x) =0, hj(y) =0(i € &, j € &),
N, y)gi(w) = 0, i, y)hi(y) = 0(i € EX,j € £)), (3.23)
gi(x) =0, Ni(w,y) > 0(i € &),
hi(y) > 0, —py(z,y) > 0(j € &),
F(u,y) — F(z,y) > 0(Vu € K3),
F(z,y) — F(z,v) > 0 (Vv € K).

\

Recall that \;(z,y), p;(z,y) are Lagrange polynomials as in (3.13)-(3.14). Denote by ¢ the
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tuple of equality constraining polynomials

b= {VxF =3 e y)ngi} U {va -3 il y)vyhj}

U h} U{)\i Vg, (T, h-} (324
{9t} n o DM@ et} (320
and denote by 1 the tuple of inequality constraining ones
= 79 h’v )"L ) P Y AT } U
V=g by M) @)
{Flwy) = Pla.y), Fla.y) - Fle,v)} . (3.25)
ueEK1,vEK2
They are polynomials in (z,y). Let
1
do += [ max{deg F(z,y), dea(0), deg()} . (3.26)
Then, the optimization problem (3.23) can be simply written as
« = min Fl(z,
/ min F(z,y) (3.27)
subject to 6(z,y) = 0, (z,y) > 0.

We apply Lasserre’s hierarchy of semidefinite relaxations to solve (3.27). For integers k =

do,dy + 1,---, the kth order semidefinite relaxation is

Fi:=min (F,w)
(w)o = 1. My(w) = 0, (3.25)
LY (w) =0, LP (w) = 0, w € RN

subject to

The number £ is called a relaxation order.

Algorithm 3.5. (An algorithm for solving the optimization (3.23).)
Input: Polynomials F, ¢, as in (3.24)-(3.25).

Step 0: Let k := d,.

Step 1: Solve the semidefinite relazation (3.28).

Step 2: If the relaxation (3.28) is infeasible, then (3.1) has no saddle points and stop;

otherwise, solve it for a minimizer w*. Let t := dy.
Step 3 Check whether or not w* satisfies the rank condition

rank My(w*) = rank My_g,(w™). (3.29)
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Step 4 If (3.29) holds, extract r := rank My(w*) minimizers for (3.23) and stop.
Step 5 Ift <k, lett:=t+ 1 and go to Step 3; otherwise, let k .=k + 1 and go to Step 1.

Output: Minimizers of the optimization problem (8.23) or a certificate for the infeasibility
of (3.23).

The conclusions in the Steps 2 and 3 are justified by the following Proposition 3.6. The
rank condition (3.29) is called flat extension or flat truncation [32,102]. It is a sufficient and
also almost necessary criterion for checking convergence of Lasserre type relaxations [102].
When it is satisfied, the method in [67] can be applied to extract minimizers in Step 4. It
was implemented in the software GloptiPoly 3 [66].

Proposition 3.6 ( [118]). Suppose g, h are nonsingular polynomial tuples. For the hierarchy

of relaxations (3.28), we have the properties:

i) If (3.28) is infeasible for some k, then (3.23) is infeasible and (3.1) has no saddle

points.

ii) If (3.28) has a minimizer w* satisfying (3.29), then F, = f. and there are r :=
rank M(w*) minimizers for (3.23).

Proof. Since g, h are nonsingular, every saddle point must be a critical point, and Lagrange
multipliers can be expressed as in (3.13)-(3.14).

i) For each (u,v) that is feasible for (3.23), [(u,v)]s satisfies all the constraints of
(3.28), for all k. Therefore, if (3.28) is infeasible for some k, then (3.23) is infeasible.

ii) The conclusion follows from the classical results in [32,67,83,102]. O

The notation IQ is the sum of an ideal and a quadratic module. The polynomial
tuples ¢, are from (3.24)-(3.25). Algorithm 3.5 is able to solve (3.23) successfully after

finitely many iterations, under the following genericity conditions.

Condition 3.7. The polynomial tuples g,h are nonsingular and F,g,h satisfy one (not

necessarily all) of the following:
(1) 1Q(geq, gin) + 1Q(heg, hin) is archimedean;

(2) the equation ¢(x,y) = 0 has finitely many real solutions;
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(8) 1Q(¢, 1) is archimedean.

In the above, the item (1) is almost the same as that X,Y are compact sets; the
item (2) is the same as that (3.21) has only finitely many real solutions. Also note that the
item (1) or (2) implies (3). In Theorem 3.3, we have shown that (3.21) has only finitely
many complex solutions when F| g, h are generic. Therefore, Condition 3.7 holds generically.

Under Condition 3.7, Algorithm 3.5 can be shown to have finite convergence.
Theorem 3.8 ( [118]). Under Condition 3.7, we have that:

i) If the problem (3.23) is infeasible, then the semidefinite relazation (3.28) must be
infeasible for all k big enough.

ii) Suppose (3.23) is feasible. If (3.23) has only finitely many minimizers and each of
them is an isolated critical point (i.e., an isolated real solution of (3.21)), then, for
all k big enough, (3.28) has a minimizer and each minimizer must satisfy the rank

condition (3.29).

We would like to remark that when F, g, h are generic, every minimizer of (3.23) is
an isolated real solution of (3.21). This is because (3.21) has only finitely many complex
solutions for generic F’, g, h. Therefore, Algorithm 3.5 has finite convergence for generic cases.

For a given pair (z*, y*) that is feasible for (3.16) or (3.20), we need to check whether
or not z* is a minimizer of F(x,y*) over X. This requires us to solve the minimization

problem
min - F(z,y7)
subject to gi(z) = 0(i € &), (3.30)
gi(z) > 0(i € &).
When g is nonsingular, if it has a minimizer, the optimization (3.30) is equivalent to (by

adding necessary optimality conditions)

;

min - F(z,y7)
subject to V,.F(x,y*) — > Ni(z,y*)V.g:i(z) =0,
ieeX (3.31)
gi(x) = 0(i € &F), Xz, y")gi(x) = 0(i € &),
\ gi(x) >0, \i(z,y*) > 0(i € &F).
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Denote the tuple of equality constraining polynomials

b = {VeF (o)=Y M@y )Vag:}

i€eEX

U{9:}icex UM (@ 07) - 0} cexs (3:32)

and denote the tuple of inequality ones

by = {o My )}ie%x. (3.33)
They are polynomials in x but not in y, depending on the value of y*. Let
1 *
dy = (5 max{deg F(z,y*), deg(¢,-), deg(1y)}]. (3.34)

We can rewrite (3.31) equivalently as

min F(x,y*
seR™ ) (3.35)
subject to ¢y« () = 0, 1y« () > 0.
Lasserre’s hierarchy of semidefinite relaxations for solving (3.35) is

min (F(x,y%), 2)

z

subject to (2)o =1, Mg(z) = (3.36)

0,
L) (2) = 0,L%) (2) = 0, 2 € RN,

for relaxation orders k = dy,d; + 1,.... Since (z*,y*) is a feasible pair for (3.16) or (3.20),
the problems (3.30) and (3.35) are also feasible, hence (3.36) is also feasible. A standard

algorithm for solving (3.35) is as follows.

Algorithm 3.9. (An algorithm for solving the problem (5.35).)

Input: The point y* and polynomials F(z,y*), gy, Py as in (3.32)-(5.33).
Step 0: Let k = d;.

Step 1: Solve the semidefinite relaxation (3.36) for a minimizer z*. Let t := d.
Step 2: Check whether or not z* satisfies the rank condition

rank My(2*) = rank M;_q4,(2"). (3.37)

Step 3: If (3.37) holds, extract r := rank M(z*) minimizers and stop.

32



Step 4: Ift <k, lett: =1+ 1 and go to Step 3; otherwise, let k := k+ 1 and go to Step 1.

Output: Minimizers of the optimization problem (3.35).

Similar conclusions as in Proposition 3.6 hold for Algorithm 3.9. For cleanness of the
paper, we do not state them again. The method in [67] can be applied to extract minimizers
in the Step 3. Moreover, Algorithm 3.9 also terminates within finitely many iterations, under

some genericity conditions.

Condition 3.10. The polynomial tuple g is nonsingular and the point y* satisfies one (not

necessarily all) of the following:

(1) 1Q(geq, gin) is archimedean;
(2) the equation ¢+ (x) = 0 has finitely many real solutions;

(3) 1Q(¢y~, Vy) is archimedean.

Since (z*,y*) is feasible for (3.16) or (3.20), Condition 3.7 implies Condition 3.10,
which also holds generically. The finite convergence of Algorithm 3.9 is summarized as

follows.

Theorem 3.11 ( [118]). Assume the optimization problem (3.30) has a minimizer and
Condition 3.10 holds. If each minimizer of (3.30) is an isolated critical point, then, for all
k big enough, (3.36) has a minimizer and each of them must satisfy (3.87).

The proof of Theorem 3.11 will be given in Section 3.5. We would like to remark that
every minimizer of (3.35) is an isolated critical point of (3.30), when F, g, h are generic. This
is implied by Theorem 3.3.

For a given pair (z*, y*) that is feasible for (3.16) or (3.20), we need to check whether
or not y* is a maximizer of F'(z*,y) over Y. This requires us to solve the maximization

problem

max F(z*,y)
yeRr (3.38)
subject to h;(y) =0(j € &), h(y) = 0(j € &)
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When h is nonsingular, if it has a minimizer, the optimization (3.38) is equivalent to (by

adding necessary optimality conditions) the problem

max - F(z%y)
subject to  V, F(z*,y) — > icev pi (2", y)Vyhi(y) =0, (3.39)
hi(y) =0(j € &), p(x*,y) - hy(y) =0(j € &),
x hi(y) =0, —p;(a*,y) > 0(j € &).

Denote the tuple of equality constraining polynomials

Qo 1= { Z,u] ,yVh}

jEEY

U {hi}jeer U@ )by} ceys (3.40)

and denote the tuple of inequality ones

oo = {hj, —Mj(x*,y)}jeg;. (3.41)

They are polynomials in ¢ but not in z, depending on the value of x*. Let

1 *
dy = b max{deg F'(z*,y), deg(¢z), deg(@bw*)}] (3.42)
Hence, (3.39) can be simply expressed as

max F(z*,y)
yerm™ (3.43)

SubjeCt to ¢:1:* (y) = 07 %* (y) 2 0

Lasserre’s hierarchy of semidefinite relaxations for solving (3.43) is

i

max (F(x*,y),2)

z

subject to (2)o = 1, Mg(z ) 0,

o (3.44)
Ly (2) =0, L ( ) =
z € RNsk,
for relaxation orders k = dy,dy + 1,---. Since (x*,y*) is feasible for (3.16) or (3.20), the

problems (3.38) and (3.43) must also be feasible. Hence, the relaxation (3.44) is always

feasible. Similarly, an algorithm for solving (3.43) is as follows.

Algorithm 3.12. (An algorithm for solving the problem (3.43).)
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Input: The point x* and polynomials F(x*,y), ppr, Uur as in (3.40)-(3.41).
Step 0: Let k :=ds.
Step 1: Solve the semidefinite relaxation (3.44) for a maximizer z*. Let t := ds.

Step 2: Check whether or not z* satisfies the rank condition

rank My (2*) = rank M;_q4,(Z"). (3.45)

Step 3: If (3.45) holds, extract v := rank M(z*) mazimizers for (3.43) and stop.
Step 4: Ift <k, lett:=t+1 and go to Step 3; otherwise, let k := k+ 1 and go to Step 1.
Output: Mazimizers of the optimization problem (5.43).

The same kind of conclusions like in Proposition 3.6 hold for Algorithm 3.12. The
method in [67] can be applied to extract maximizers in Step 3. We can show that it must

also terminate within finitely many iterations, under some genericity conditions.

Condition 3.13. The polynomial tuple h is nonsingular and the point x* satisfies one (not

necessarily all) of the following:
(1) 1Q(hey, hin) is archimedean;
(2) the equation ¢.(y) = 0 has finitely many real solutions;
(3) 1Q(¢z,1px) is archimedean.

By the same argument as for Condition 3.10, we can also see that Condition 3.13
holds generically. Similarly, Algorithm 3.12 also terminates within finitely many iterations

under some genericity conditions.

Theorem 3.14 ( [118]). Assume that (3.38) has a mazimizer and Condition 3.13 holds. If
each mazimizer of (3.38) is an isolated critical point, then, for all k big enough, (3.44) has

a mazximizer and each of them must satisfy (3.45).

The proof of Theorem 3.14 will be given in Section 3.5. Similarly, when F, g, h are

generic, each maximizer of (3.38) is an isolated critical point of (3.38).
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3.5 Some proofs

This section gives the proofs for some theorems in the previous sections.

Proof of Theorem 3.3. Under the genericity assumption, the tuples g, h are nonsingular, so
the Lagrange multipliers in (3.8)-(3.9) can be expressed as in (3.13)-(3.14). Hence, (3.21) is

equivalent to the polynomial system in (z,y, A, p):

VoF(2,y) =3 cex AiVagi(@),
VyF(xv y) = Zjeé‘y :ujvyhj(y>’ (346)
| Ri(y) =00 € &), wihi(y) =0(j € &).

Due to the complementarity conditions, g;(z) = 0 or A; = 0 for each i € &, and h;(z) = 0 or
p; = 0 foreach j € &Y. Note that if g;(z) # 0 then \; = 0 and if hj(x) # 0 then p; = 0. Since
EX,EY are finite labeling sets, there are only finitely many cases of g;(x) = 0 or g;(z) # 0,
h;(z) = 0 or h;(z) # 0. We prove the conclusion is true for every case. Moreover, if g;(z) = 0
for i € £, then the inequality g;(z) > 0 can be counted as an equality constraint. The same
is true for hj(x) = 0 with j € £)". Therefore, we only need to prove the conclusion is true for
the case that has only equality constraints. Without loss of generality, assume & = £ = ()

and write the labeling sets as
EX={1,...,0}, L =1{1,... 6}

When all g; are generic polynomials, the equations g;(z) = 0 (i € £Y) have no solutions if
1 > n. Similarly, the equations h;(x) = 0 (j € &) have no solutions if 5 > m and all h;
are generic. Therefore, we only consider the case that ¢; < n and ¢ < m. When F, g, h are
generic, we show that (3.46) cannot have infinitely many solutions. The system (3.46) is the

salme as

{ VoF(z,y) = 30 AiVagi(2), gi(z) = -+ = gi, (2) = 0, (3.47)

VyF(z.y) = S5 15 Vyhi(y), aly) = - = he(y) = 0.

Let & = (zg,x1,...,2,) and § = (Yo,Y1,---,Ym). We denote the homogenization of g;(z)
(resp., h;(y)) by §i(Z) (vesp., h;(§)). Let P denote the n-dimensional complex projective

space. Consider the projective variety

U= {(7,9) eP"xP":5i(z) =03 € EX), hj(5) =0(j € EN)}.
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It is smooth, by Bertini’s theorem [62], under the genericity assumption on g;, h;. Denote

the bi-homogenization of F'(z,y)

F(#,9) = a5y F(x/0,y/y0)-
When F(x,y) is generic, the projective variety
V.=UN{F(&7§) =0}
is also smooth. One can directly verify that (for homogeneous polynomials)
2N EF (2, 9) + 2004, F(,9) = aoF (%, ),
2"V Gi(2) + 2005,0i(T) = a;3i(Z),
vV F(,9) + 900y, F (2, 9) = boF (3, 5),
YV (§) + yoDuh (5) = bil; (7).

(They are called Euler’s identities.) Consider the determinantal variety

rank |V, F(z, Vegi(z) -+ Vage(x)| <4
W = (f]f,y) cC" x C™ ( y) gl( ) e ( ) 1
rank VyF(xa y) Vyhl (y) T Vyhéz (y) S 62

Its homogenization is
— rank |V, F(%,9) Vagi(Z) - Vagn (@) <L
= L (5.5) e P x P ~( J) ~gl( ) ?e( )| =h
rank va(ja g) vyhl (g) T vthQ (g) < EQ

The projectivization of (3.47) is the intersection

wnu.

If (3.21) has infinitely many complex solutions, so does (3.47). Then, W NI/ must intersect
the hypersurface {F(Z, ) = 0}. This means that there exists (Z,7) € V such that

él 62
VoE(Z,9) =Y ANVeii(®), VuF(E,9) =Y 1 V,hi(0),
i=1 Jj=1

for some \;, ;. Also note §;(%) = h;(7) = F(z,7) = 0. Write

f:(j()ajla"'?j:n)? g:(g()vgla"'?ym)-
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o If 7y # 0 and gy # 0, by Euler’s identities, we can further get
~ El ~ ZQ ~
0 F(2,9) = Y Mi0n3i(®@), Oy F(@.7) = D 11305 5(9):
i=1 j=1
This implies that V is singular, which is a contradiction.

o If xo = 0 but yy # 0, by Euler’s identities, we can also get
3y0F(j},g) = Zlujayohj(g)'
j=1

This means the linear section ¥V N {x¢ = 0} is singular, which is a contradiction again,

by the genericity assumption on F' g, h.

o If x5 # 0 but yg = 0, then we can have
~ el
Ory (T, 9) = Y Nii (7).
i=1
So the linear section V N {yo = 0} is singular, which is again a contradiction.

o If 9 =yo =0, then VN {zy =0,y = 0} is singular. It is also a contradiction, under

the genericity assumption on F) g, h.

For every case, we obtain a contradiction. Therefore, the polynomial system (3.21) must

have only finitely many complex solutions, when F| g, h are generic. O O

Proof of Theorem 3.4. Each solution of (3.21) is a critical point of F'(x,y) over the set X x Y.
We count the number of critical points by enumerating all possibilities of active constraints.
For an active labeling set {i1,...,4,,} C [¢1] (for X) and an active labeling set {j1,...,7,} C
[(2] (for Y), an upper bound for the number is critical points is a;, - - - a;, bj, - - - b, -s, which is
given by Theorem 2.2 of [116]. Summing this upper bound for all possible active constraints,
we eventually get the bound M. Since Ky is a subset of (3.21), Algorithm 3.1 must terminate

within M iterations, for generic polynomials. O] O]

Proof of Theorem 3.8. In Condition 3.7, the item (1) or (2) implies (3). Note that the dual
optimization problem of (3.28) is

{ max (3.48)
subject to F' — v € 1Q(¢, ).
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i) When (3.23) is infeasible, the set {¢(z,y) = 0, ¥ (x,y) > 0} is empty. Since IQ(¢, 1))
is archimedean, by the classical Positivstellensatz [13] and Putinar’s Positivstellensatz [124],
we have —1 € 1Q(¢,¢). So, —1 € 1Q(¢, )9 for all such k big enough. Hence, (3.48) is
unbounded from above for all big k. By weak duality, we know (3.28) must be infeasible.

ii) When (3.23) is feasible, every feasible point is a critical point. By Lemma 3.3
of [41], F(x,y) achieves finitely many values on ¢(z,y) = 0, say,

1 < Cp<:---<cCN-

Recall that f, is the minimum value of (3.27). So, f,. is one of the ¢;, say, ¢, = f.. Since

(3.23) has only finitely many minimizers, we can list them as the set

O :={(uy,vn),...,(up,vp)}

If (x,y) is a feasible point of (3.23), then either F(z,y) = ¢, with k > ¢, or (z,y) is one of

(ug,v1),..., (up,vp). Define the polynomial
N
Pley) = ( I (Fley) - e)?) - ( IT (e —wl®+ ||y_v,.|;2)>.
i=l+1 (ug,v5)€0

We partition the set {¢(z,y) = 0} into four disjoint ones:

Uy :={¢(x,y) =0,c1 < F(z,y) < o1},
Uy :={¢(z,y) =0, F(z,y) = ¢, (z,y) € O},
Us :={o(x,y) = 0, F(z,y) = ¢, (z,y) € O},
Uy :={p(z,y) = 0,ce01 < F(x,y) < en}

Note that U; is the set of minimizers for (3.27).
e Forall (z,y)eUyandi=/¢+1,...,N,
(F(x,y) = ci)® > (cr1 — copn)®.

The set U; is closed and each (u;,v;) ¢ U;. The distance from (u;,v;) to U is positive.

Hence, there exists ¢; > 0 such that P(z,y) > ¢ for all (z,y) € U;.

e For all (z,y) € Us, (F(x,y) —¢;)* = (ce — ¢;)?. For each (u;,v;) € O, its distance to Us
is positive. This is because each (u;,v;) € O is an isolated real critical point. So, there

exists € > 0 such that P(z,y) > € for all (z,y) € U,.

39



Denote the new polynomial

q(z,y) := min(ey, €2) — P(z,y).

On the set {¢(x,y) = 0}, the inequality ¢(z,y) > 0 implies (x,y) € Us U Uy. Therefore,
(3.23) is equivalent to the optimization problem

min F(z,y)

zy (3.49)

subject to  ¢(z,y) =0, q(x,y) > 0.

Note that g(z,y) > 0 on the feasible set of (3.23). (This is because if (z,y) is a feasible
point of (3.23), then F(z,y) > f. = ¢, so (z,y) & Uy. If F(z,y) = ¢, then (z,y) € O and
P(z,y) =0, so q(x,y) = min(ey, e2) > 0. If F(x,y) > ¢4, then P(x,y) = 0 and we also have
q(z,y) = min(e;, €2) > 0.) By Condition 3.7 and Putinar’s Positivstellensatz, it holds that
q € 1Q(¢, ). Now, we consider the hierarchy of Lasserre’s relaxations for solving (3.49):

fi - =min (F,w)
subject to  (w)o =1, My(w) = 0, (3.50)
LY (w) =0, L (w) = 0.

Its dual optimization problem is

‘= max
Ji 7 (3.51)
subject to F — v € 1Q(¢, q)ax
Claim: For all £ big enough, it holds that f, = f, = f..
Proof. The possible objective values of (3.49) are ¢y, ..., cy. Let py, ..., py be real univariate

polynomials such that p;(c;) = 0 for i # j and p;(c;) =1 for ¢ = j. Let

2

8; 1= (c,—f*)(p,(F)) , i=4...,N.
Then s := sy + -+ + sy € X[x]ax, for some order k; > 0. Let
Fo= F—f.—s.

Note that F'(z) = 0 on the set

Ky = {¢($7y) =0, Q(xvy) > O}
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It has a single inequality. By the Positivstellensatz [13, Corollary 4.1.8], there exist 0 < t € N
and Q = by + ¢by (bo, by € X[z]) such that F2 4 Qe Ideal(¢). Note that @ € Qmod(q). For
all e > 0 and 7 > 0, we have F—i—e:qbe—k@e where

¢€ _ _7_61—2t(ﬁv2t + Q),

. = 6<1 +Fle+ T(F/E)2t> + 7 Q.

By Lemma 2.1 of [114], when 7 > %, there exists ko such that, for all € > 0,

¢ € Ideal(@)ap,, 0. € Qmod(q)ax,-

Hence, we can get
F—(f*—E) :¢6+0-57

where 0. = 0. + s € Qmod(q)ag, for all € > 0. For all € > 0, v = f,. — € is feasible in (3.51)
for the order ks, so fr, > f.. Because f; < fri1 < -+ < fi, we have fi, = f, = f. for all
k> ko. O O

Because ¢ € Qmod(v), each w, which is feasible for (3.28), is also feasible for (3.50).
This can be implied by [102, Lemma 2.5]. So, when k is big, each w is also a minimizer of
(3.50). The problem (3.49) also has only finitely many minimizers. By Theorem 2.6 of [102],
the condition (3.29) must be satisfied for some ¢ € [dy, k], when k is big enough. 0O O

Proof of Theorem 3.11. The proof is the same as the one for Theorem 3.8. This is because
the Lasserre’s relaxations (3.36) are constructed by using optimality conditions of (3.30),
which is the same as for Theorem 3.8. In other words, Theorem 3.11 can be thought of a
special version of Theorem 3.8 with K; = Ky = (), without variable y. The assumptions are

the same. Therefore, the same proof can be used. O O

Proof of Theorem 3.14. The proof is the same as the one for Theorem 3.11. [ [

3.6 Numerical examples

This section presents numerical examples of applying Algorithm 3.1 to solve saddle
point problems. The computation is implemented in MATLAB R2012a, on a Lenovo Laptop
with CPU@2.90GHz and RAM 16.0G. The Lasserre type moment semidefinite relaxations
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are solved by 