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Wireless sensor networks (WSNs) is a field with broad variety of applications. Its

flexibility for remote continuous measurement lends itself to applications ranging

from locating snipers to measuring volcanic activity. One application that stands

to substantially benefit from WSNs is building management. Buildings currently

account for 41% of the total energy consumption of U.S. [bed11]. Reducing this

energy is of critical importance if we are to achieve sustainability. In most com-

mercial buildings, many rooms remain unoccupied or are conditioned assuming

maximum occupancy. By relaxing temperature setbacks and adjusting ventilation

to match actual occupancy, significant energy savings are possible. This Disser-

tation examines the use of wireless sensor networks for the purpose of building

energy management and actuation. It explores the design and development of

wireless sensor networks for building energy management, how data from these

deployments are utilized, the development and implementation of data driven oc-

cupancy models to perform simulation and prediction, how data models are used

to actuate building management systems, and how crowd-sourced data can be

integrated into building control strategies. We show based on real-world data

that 30% energy savings is possible through usage based strategies and that 80%

occupant satisfaction rates are possible by occupant driven control strategies.
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CHAPTER 1

Introduction

For the past two decades, buildings have consumed a significant portion of the en-

ergy used in the United States. In 2008, buildings accounted for 41% of the total

energy consumption of U.S. [bed11]. Heating, ventilation, and air-conditioning

(HVAC) along with lighting account for approximately 50% of the total build-

ing energy usage [bed11]. At the same time, the total amount of energy being

consumed has also increased. From 1980 to 2008, the total amount of energy

consumed by buildings increased 51%. Over the years, lowering this usage has be-

come increasingly critical. The main thesis of this dissertation is the development

and evaluation of wireless network systems and data-driven models for occupancy

estimation, human participatory sensing, as well as the control algorithms for

building actuation using real-time data from the wireless sensor networks and

participatory sensing, and prediction for the data driven models. As part of this

effort, we propose to analyze and evaluate the trade-offs between reducing space

conditioning costs and providing quality of service to the building occupants.

1.1 Goals

1.1.1 Usage based Energy Savings

There are many opportunities to reduce energy usage through use-based manage-

ment. The goal is to only utilize building systems when needed. For example,

perhaps the most common use based management is controlling lighting through
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a passive infrared (PIR) sensor. Lights are actuated based on the motion de-

tected by these sensors. Lights are only used when the room is occupied. This

solution works arguably well for lights, with occasional issues when occupants sit

motionlessly thinking about hard research problems. However, this crude binary

sensing of occupancy is not always appropriate. Ventilation, for instance, is based

on the actual number of people that occupy a room. In order to achieve efficiency,

systems capable of monitoring occupancy in real-time with greater precision must

be developed. Though the ability to adjust an HVAC system based on real time

occupancy is an important step toward greater efficiency, perhaps just as impor-

tant is the ability to anticipate room usage based on room usage. This needs

to be addressed since conditioning a room is not instantaneous. For example, if

it is known that a large number of people are in a lobby area, the HVAC of an

adjacent conference room will be used with high probability, so it should begin

conditioning the room beforehand. In order to achieve preemptive conditioning,

we must be able to predict occupancy patterns.

1.1.2 Quality of Service

Recently many researchers have published works that explores how energy can

be saved in buildings through better usage monitoring. However, few of these

give occupant comfort a high priority. Often energy saving can come at the

expense of the occupants. For example, during peak usage during the summer,

facilities at our university have for brief periods increased temperatures at peak

consumption hours during the summer in order to conserve energy. Energy is

saved, but occupants may be overly warm. PIR sensors can turn off lights when

rooms are not in use, but may sometimes leave occupants in the dark if they remain

overly still. This trade-off philosophy, however, runs counter to the purpose of

these systems; to make occupants comfortable. Taken to the extreme, if we want

to maximize energy saving and do not care about occupants, then we could shut
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down all the lights and the conditioning system and achieve 100% savings.

Even when systems are not being optimized for energy savings, occupants

are not always comfortable with baseline conditioning strategies. Determining

occupant comfort levels is not straightforward with regard to what is a comfortable

temperature. In order to address this issue, we argue that including the human

in the control loop through participatory sensing provides a unique and effective

method to improve quality of service to the building occupants.

1.2 Contributions

For both of these building management criteria, better sensing of the surrounding

environment is required. Improving the conditioning efficiency of the building

requires sensing of the occupants in order to condition rooms based on actual need.

Improving the quality of service needs either additional sensing of environmental

conditions or better communication with occupants. In both cases, wireless sensor

networks can be utilized.

The goal of this work is to answer the following:

How can wireless sensor networks be utilized to achieve improved energy effi-

ciency of buildings and quality of service for occupants?

In this dissertation, we contribute the following:

• Implementation of two different wireless sensor networks capable of moni-

toring occupancy in near real-time. One WSN utilizes low power cameras

deployed in public hallways. The other uses thermal sensing in order to

measure occupancy.

• Development of occupancy prediction models for use in predictive condi-

tioning of spaces. For the development of these models, we also create large

ground truth datasets.
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• Development and testing of predictive conditioning strategies that incorpo-

rate real-time occupancy monitoring and occupancy prediction.

• Development of strategies that improve the quality of service and satisfaction

of occupants using participatory sensing as well as models of thermal comfort

and traditional sensing.

1.3 Motivation and Overview of Concepts

There are four major components discussed in this thesis that are used together

for achieving greater efficiency and comfort.

1.3.1 Occupancy Monitoring

Currently, the majority of HVAC systems condition rooms assuming maximum

occupancy during normal working hours and are turned off at night. This leads to

inefficiencies as rooms are often conditioned to levels that are not appropriate for

the number of occupants actually occupying the areas. An HVAC system could

waste energy supplying ventilation enough for 30 people when only 10 actually

occupy a room.

For demand response HVAC control, occupancy detection needs to be accurate,

reliable, and able to capture occupancy changes in real time. Based on real time

occupancy estimates, both temperature and ventilation can be adjusted based on

actual usage.

1.3.2 Occupancy Prediction

Though the ability to adjust an HVAC system based on real time occupancy

is an important step toward greater efficiency, perhaps just as important is the

ability to anticipate room usage based on current room usage. This needs to be

4



addressed since conditioning a room is not instantaneous and requires time for

adjustments. For example, if it is known that a large number of people are in a

lobby area, we want the HVAC system to know an adjacent conference room will

be used with high probability and begin conditioning the room beforehand. To

train these models, data from an occupancy monitoring system can be used.

1.3.3 HVAC Control

By combining an occupancy monitoring system with an occupancy prediction sys-

tem, it is possible to develop more efficient control HVAC strategies. The occu-

pancy monitoring system allows ventilation to be regulated in real-time based on

the number of occupants within a space. Occupancy prediction allows a space to

be pre-conditioned for temperature ahead of time when it is likely to be occupied.

1.3.4 Occupant Feedback

While energy efficiency is important, also critical is the comfort of occupants.

The purpose of HVAC systems is to maintain comfort for occupants. Occupant

feedback can be integrated with HVAC systems in real-time to better increase

occupant comfort.

1.4 Organization

Chapter 2 starts with a summary of the relevant prior work that has been done

with regards to the four major components. Figure 1.1 shows how these four

components are related. We then follow with chapters developing each of the four

major components.

We first start with the occupancy models component in Chapter 3. In this

chapter, we develop four different occupancy models; a basic Gaussian model and

5



three variations of a Markov Chain. We next develop two different occupancy

monitoring systems in Chapter 4 and 5. Chapter 4 develops OPTNet, which

is a wireless sensor network of cameras for estimating occupancy in near real-

time. Chapter 5 describes our second generation wireless occupancy monitoring

system, which uses thermal sensors along with passive infrared sensors to estimate

occupancy. With methods of occupancy prediction and occupancy monitoring

established, we next examine control strategies in Chapter 6. Chapter 7 and

Chapter 8 utilize the systems, models, and control strategies we developed in

the previous chapters. We show how these systems can be integrated with an

actual building energy management system in order to actuate the HVAC system

based on real-time and predicted occupancy estimates. In Chapter 9, we discuss

quality of service issues. We introduce the participatory sensing network called

Thermovote, which uses human as sensors in order to correct the error of thermal

comfort models to create a more comfortable environment. We conclude with

Chapter 10 where we summarize our conclusions and discuss the future research

directions.
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Figure 1.1: Concept Relationships
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CHAPTER 2

Related Work

In the previous Chapter we discussed the major parts of a system that would be

required to create a usage based system for HVAC control and management. We

need a system for monitoring occupancy in near real-time, a method of predicting

occupancy, an control strategy that combines occupancy monitoring and predic-

tion, and finally a method of incorporating occupancy feedback ensure occupant

comfort.

This Chapter is divided into two broad categories. The first section, Sec-

tion 2.1, focuses on different methods of occupancy monitoring, occupancy mod-

eling, and how occupancy monitoring and modeling can be incorporated into

different usage based control strategies. The second section, Section 2.2, exam-

ines the quality of service of HVAC systems as well as other participatory sensing

applications. We examine different works that measure thermal comfort, describe

the various parameters relevant to occupant comfort, and implement strategies

for maximizing occupant satisfaction.

2.1 Usage based Conditioning

In this section, we address the main problems related to developing a usage based

heating, cooling, and ventilation system. At the most basic level, occupancy in-

formation is required; rooms need to be conditioned when occupants are present.

There are two different indications of occupancy to be considered; binary occu-

8



pancy and actual occupancy. A binary indication of occupancy simply indicates

whether or not a room is occupied whereas actual occupancy indicates the precise

number of people of a room. For systems such as lighting, a binary indication of

occupancy is sufficient for control strategies. However, for ventilation, which is

based on the number of people [ASH07b], the precise number of people is needed

in order to optimally regulate ventilation. Section 2.1.1 focuses on the different

methods of monitoring occupancy and discusses the implications of each method

with respect to temperature actuation and ventilation. Section 2.1.1.1 discuss

work related to image based occupancy monitoring and tracking for wireless cam-

era networks.

Occupancy monitoring allows for reactive on/off actuation for systems such as

lighting or ventilation. However for heating and cooling, conditioning reactively

only when people are present is not suitable as a control strategy. The main

problem with reactively actuating on/off temperature conditioning based on oc-

cupancy is that temperature response is often slow. When occupants first enter

a room, they may be subjected to uncomfortable temperatures while the room

comes to the temperature. To ensure room temperatures are comfortable when

occupants enter a room, rooms need to be pre-conditioned before occupied. This

can be done using occupancy prediction models. Section 2.1.2 examines different

occupancy prediction models and how these models are integrated with predictive

HVAC control strategies. For the remainder of this paper, reference to reactive

control refers to on/off actuation of a system.

2.1.1 Occupancy Monitoring

Occupancy monitoring has been worked on for many years and long been rec-

ognized as a means of increasing energy efficiency. For over a decade, research

has shown that occupancy based lighting control can save a significant amount

of energy. The California Energy Commission showed that occupancy sensing
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actuating local lighting controls could save 25% to 50% for lighting energy us-

age [Com93] using passive infrared sensors (PIR) and ultrasonic sensors. These

savings have been confirmed by other studies [GB00] [AD95]. However, there are

also problems with this type of sensing. In a survey of 23 commercially available

PIR and ultrasonic sensors, it was found that 18 did not register movement within

the advertised specifications [NLP98]. Despite this, PIR sensors have long been

a popular method of obtaining a binary indication of occupancy since they are

cheap and accurate provided there is adequate coverage of the target area and if

properly placed.

One technique for increasing the accuracy of PIR sensors is to supplement the

system with different types of sensors. The authors of [LSS10] and [ABD11] utilize

door and PIR sensors for binary detection of occupancy for residential buildings

and examine reactive and predictive controls strategies. The door sensor is used

to augment the PIR sensor in order to prevent false positives from overly still

occupants. If the door sensor is activated, and the PIR sensor records movement

shortly afterwards, then the state of the room is considered occupied. However, if

there is no movement within a threshold of time after the activation of the door

switch, then the room is considered empty. Both [LSS10] and [ABD11] showed

that this door/PIR sensing to have superior performance than PIR alone for rooms

with a single entrance. Prior to these works, this type of door/PIR sensing was

also available as a wireless commercial product specific to HVAC control [Sol].

However, this method is limited to rooms with a single door.

Though binary indication of occupancy is suitable for applications such as

lighting, heating, and cooling, having a more accurate estimate of occupancy

allows for more opportunities to save energy. In particular, a more precise occu-

pancy estimate allows for the control of the ventilation, which is adjusted based

on the number of occupants [ASH07b] or CO2. Reducing the amount of ventila-

tion helps to save energy by reducing the amount of outside air that needs to be
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conditioned [EPS01]. As illustration, it is more efficient to condition a room with

all the windows closed than to condition a room with the windows open. The

same principle applies to HVAC systems except a minimum amount of ventilation

is required based on the number of occupants. In [EPS01], the authors report that

6.8% to 20% energy savings are possible by optimally controlling the ventilation.

In the following sections, we examine several methods of occupancy estimation

and will consider ventilation as the target application. In addition, we will also

take into account deployment and maintenance issues.

One strategy used is to attempt to estimate occupancy implicitly from ex-

isting infrastructure. The papers [MRN11, TYS13] uses the existing network in

order to estimate occupancy. In particular, the authors discuss many different

methods of using existing infrastructure that could potentially be used for oc-

cupancy estimation, such as phone call volume, mouse and keyboard detection

(sent over network), and security door access records. However, for their actual

experimentation, they simply use Address Resolution Protocol (ARP) to count

the number of occupants. They first use ARP to classify each host connection

as Ethernet or WiFi. For WiFi connections, they use triangulation in order to

determine the locality of occupants. Thus, for each area, the occupancy estimate

is the total number of hard-line connections and the estimated WiFi connections.

Though many of the methods they discuss are valid for the purpose of occupancy

estimation, many have too many privacy issues, tendencies to undercount, and

deployment complications for a practical solution; these issues are not addressed

in the paper. The fact they only use ARP suggests difficulty obtaining permission

to use such sensitive data. If we only consider ARP, then the main drawback to

this method is the assumption that occupancy can be determined solely based on

network connections. Occupants could have a connection but be away from their

computer. Not every occupant may have a connected machine and some may have

multiple computers connected. In order for implicit estimation of occupancy to
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be accurate, the measured phenomenon must be universal and consistent among

occupants.

The paper [BXN13] takes a similar approach of utilizing WiFi connections

from cell phones for estimating occupancy. The authors assume a zone of detec-

tion radius for each access point (AP) and associate each AP associated with one

or more area. Since localization was not accurate enough do make the distinction

between public and private spaces, they always assume public spaces are occupied

and focus on using WiFi for detecting occupancy for private spaces. For each pri-

vate space, they associate an AP and an occupant connection uniquely identified

using the MAC address. In order to achieve these mappings, they require users to

supply this information. They assume that if an occupant is connected with their

associated AP, then they occupy their private space. There are multiple draw-

backs to this approach. They require users to maintain continuous connections

to the AP and must set their phones to fetch mail every 15 minutes to maintain

the connection. Another major drawback is that this approach does not address

shared spaces. Since shared spaces are always considered occupied many loca-

tions, such as conference rooms, that are often unoccupied are considered always

occupied. Maintaining the space, AP, and occupant mapping is also an issue;

occupants can change phones and forget to update their mapping information.

Similarly, the same issues arise if the AP gets replaced or if an occupant no longer

“owns” the space.

The authors of [AC01] show how occupancy can be estimated from lighting

and equipment loads. Data was collected for lighting and equipment loads and

occupancy is estimated using a walk-through survey of the building. Using the

electrical loads as the indicator variables and occupancy estimations as the re-

sponse variable, linear regression models for weekdays, weekends, and holidays

were created. The main limitation of this model is the reliance on energy usage

to determine if someone is present. In general, this will tend to underestimate
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occupancy levels, which could potentially lead to under-ventilation. It is impor-

tant to not that while over-ventilation is inefficient, it is safe. Under-ventilation,

however, is not. For example, occupants attending a large group meeting in a

conference room may not be adding any additional loads, causing the model to

report the room empty. Similarly, there are instances when appliances are left

on, skewing the result of the model. From a deployment perspective this strategy

is also problematic since it requires monitoring at the plug level. This requires

additional infrastructure at the plug level or breaker level. Another deployment

issue is making sure that the location of the equipment does not change.

The paper [KBS13] also used a load based approach for determining a binary

indication of occupancy. In this paper, the authors examined load profiles for

5 houses over a period of 8 months. Ground truth occupancy was gathered via

a tablet placed at the entrance of each house where occupants can mark their

presence. In addition, PIR sensors were also deployed for an addition method

of verification. In order to establish correlation between occupancy and the load,

multiple “smart” plugs capable of measuring individual device loads were installed

along with a meter for the total house load. The authors test multiple classification

techniques in order to determine if the house is occupied. The best classifications

methods, Support Vector Machine (SVM), K Nearest Neighbors (KNN), and Hid-

den Markov Model (HMM), produced accuracies between 63%-93%. The main

drawback to this method is the training requirement. In order for these classi-

fication techniques to work, ground truth data must be gathered for the target

building. Given that PIR sensors can provide accuracies greater than 90% in

most cases if properly deployed, one is better off using a PIR sensor rather than

load data for a binary detection of occupancy. In [CBS], the authors developed a

method of measuring occupancy in residential homes using load data alone with-

out additional sensors such as PIR. In this paper, they used a threshold based

approach simply using the average and standard deviation of load data in order
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to calculate a threshold for occupancy. This strategy yielded an overall accuracy

of 73%-90%.

A common strategy is to incorporate multiple sources of sensor input in order

to infer the occupancy of a space. The authors of [DHT06] place three PIR sensors

in each office and uses on/off hook sensors on the telephones. They then use a

belief network of the multiple sensory inputs to determine the occupancy of the

room. There are several drawbacks to this approach. Though multiple telephone

sensors could potentially be used to help determine a lower bound of occupancy,

this system does not account for people occupying the room who do not have

a phone. For example, a private office only has one phone, but it is likely that

meeting in a private office will have one or more additional occupants. With this

system, is also difficult to determine when someone leaves an area occupied by sev-

eral people since the presence of multiple people essentially nullifies the usefulness

of the PIR sensor. For the purpose of ventilation, this would require providing

additional ventilation to provide larger margin of error in order to minimize the

risk of under-ventilation.

Rather than relaying on the more traditional PIR sensor, the authors of [SBK11]

instead utilize active radio frequency identification (RFID) tags to determine occu-

pancy. Tags were attached to the keys of the occupants of 5 homes. When within

the range of the antennas, the RFID tags transmit every 5 seconds. Though

this worked well in the majority of the cases, there were instances when errors

occurred when occupants did not leave the house with their keys. This method

also requires all occupants of the house to possess an RFID tag when leaving the

house. If a tag is left behind, then the house will erroneously detect an occupied

state. Similarly this method does not take into account guests who do not have

RFID tags; if ventilation is considered, then every occupant must have an RFID

tag to accurately estimate occupancy.

[LHD09] estimates occupancy by measuring a variety of parameters. In their
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deployment, the authors measure CO2, CO, lighting, temperature, humidity, mo-

tion, and acoustics. For each parameter, they define multiple feature vectors: the

original output, first order difference, second order difference, and a 20 minute

moving average. These feature vectors are then used with three different ap-

proaches to estimate occupancy; a support vector machine (SVM), an Artificial

Neural Network (ANN), and a Hidden Markov Model (HMM). The authors of

[MMC11], also used a similar approach. For their deployment, the authors use

CO2, PIR, humidity, and acoustic sensors. Rather than simply using only differ-

ences for the feature vectors as was done in [LHD09], they also consider the average

baselines over differing lengths of time as well as the time of day the readings were

observed as part of their set of feature vectors. They test various combinations

of their feature vectors with linear regression, logistic regression, perceptron, and

SVM’s to learn the occupancy levels. The paper [EBV13] uses CO2, room temper-

ature, and ventilation actuation signals to estimate occupancy. The authors test

several approaches to estimate occupancy using these parameters. The authors

first approach the problem by identifying a Linear Time Invariant (LTI) dynamic

model using ground truth data that takes ventilation and occupancy as inputs

in order to predict CO2 concentration and room temperature. Once the model

is identified, then it is possible to solve for occupancy given CO2 levels, room

temperature, and ventilation rates. They also tested the use of a Support Vector

Machine and Neural Network to estimate occupancy using the other parameters

as inputs.

Though the results from [EBV13, MMC11, LHD09] seem to show these meth-

ods work reasonably well, there are several issues that make the results suspect.

There is a fundamental problem using CO2 sensors for occupancy estimation for

the purpose of ventilation that these papers do not take into consideration. They

assume that ventilation will not affect occupancy estimates of the room. However,

since ventilation will affect CO2 levels and thus occupancy estimates, we argue
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that using CO2 sensors in combination with ventilation will lead to wild fluc-

tuations in ventilation actuation and periods of under-ventilation. CO2 sensors

are notorious for having a slow response time and their need for careful calibra-

tion [FFS06]. Suppose other inputs along with CO2 levels of a room indicates

that the room is occupied by multiple people, requiring that ventilation occur. As

ventilation occurs however, the CO2 levels drop causing the occupancy estimate

to also drop. Since there is an occupancy drop, ventilation decreases. This in

turn causes CO2 levels to increase and again increases occupancy estimates. This

process is repeated as long as occupants are present. During the periods where

the occupancy artificially appears to be low, the room will be under-ventilated

until the CO2 sensor slowly detects the CO2 buildup. It may be that one would

be better off using CO2 sensors to regulate ventilation directly since it would only

under-ventilate once when rooms are first occupied. In addition to these reser-

vations, there are several aspects that make these solutions less attractive from

a deployment perspective. While increasing the number of sensors also increases

redundancy, it also increases the initial cost of the deployment as well as on-going

maintenance cost; more sensors need to be checked and calibrated for the lifetime

of the deployment.

2.1.1.1 Wireless Camera Occupancy Monitoring

Since our work uses camera based occupancy monitoring, we will examine sev-

eral efforts that use wireless camera networks and will also explore relevant im-

age processing techniques. Commercial optical counting systems exist [tru] for

wired deployment. In addition, others have successfully used wired camera sys-

tem that have a high degree of accuracy with regards to counting or tracking

occupants [BLE11]. However, these systems are more costly and difficult to retro-

fit for buildings and are designed to require hard wiring. For our system, we

wish to utilize motes that can be easily deployed in even older buildings. With
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efficient use, mote battery replacement can be done along with routine light-bulb

replacement.

Over the past few years, several low-powered wireless cameras have been devel-

oped [CAB08, imb, KJD09]. One major limitation of wireless camera networks is

that the computational power and memory of wireless embedded systems are lim-

ited, which limits the techniques that can be utilized. In this section, we examine

several wireless camera networks developed for occupant tracking and counting.

In [KJD09], the authors developed a 16 sensor node deployment within the

hallways of a building. Each node at transition boundaries consisted of 3 cameras.

Since individual nodes lacked the memory and processing power to operate in real-

time, collections of three Tmote/Cyclops cameras were used at each boundary

where each mote took turns capturing the sensed area in a round robin fashion.

This round robin strategy was used overcome the memory and computational

constraints of the motes. While one mote captures images, another mote processes

images it just captured. The collection of cameras capture and process the image

data at each boundary to determine if a transition occurred. While the system

was shown to be accurate for counting individual components, additional tests

over 24 hours showed that the system is only able to capture ≈ 80% [ECC11]. In

particular, this paper does not address how errors in transitions lead to cumulative

errors in occupancy.

The authors of [TS07] use Imote2 motes [imb] with Enalab cameras to localize

and count occupants in areas. For their deployment, cameras are mounted over-

head with fish-eye lenses to maximize the view area and avoid occlusions. They

detect foreground pixels by performing background subtraction using the previous

frame as a background. This makes foreground detection sensitive to movement

and essentially assumes that occupants are always in motion at least at some point

in time. In order to localize each occupant, they develop the concept of a motion

histogram. The frame is subdivided into a grid where each grid position represents
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a block of pixels. A fixed bin, larger than the grid size, is defined based on the

size of the of a person and the defined grid pattern. A sliding window algorithm is

then performed with the bin over the grid positions. At each position, the number

of foreground pixels the bin covers is counted. A running total of foreground pix-

els is kept at each grid position. Since the bin can cover the same grid positions

multiple times as the bin is slid across the image, the same foreground pixels can

be added to the associated running total. This process constructs a two dimen-

sional histogram where the peaks represent the most likely position of occupants.

In [LBS09], the authors monitor elderly people using Imote2 motes with Enalab

cameras. To track occupants, they also use a motion histogram. Occupant counts

are achieved by counting peaks within the histograms. These peaks are also used

to estimate the motion of occupants. Their system also includes PIR sensors in

order to detect occupancy for certain areas. There are several drawbacks to these

approaches. The system assumes that the camera can actively monitor the entire

area of interest. The problem of privacy also exists for these systems; cameras

must be placed directly in the room.

2.1.2 Occupancy Prediction

While binary methods of measuring occupancy have been utilized for actuating

lighting for many years, little work has been done to actuate HVAC systems using

occupancy data. Some hard wired commercial products are integrated with the

building controls for a similar reactive control and the latest version of California

Title 24 energy code [Tit13] now requires demand response ventilation. The au-

thors of [ABD11] condition spaces by reactively adjusting the temperature based

on a binary indication of occupancy. In order to maintain a minimum amount of

conditioning, they establish upper and lower set-points according to the standards

set by [ASH07a]. However, there are several critical drawbacks to this reactive ap-

proach. The main problems with actuating HVAC based on real-time data alone
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is that conditioning is not instantaneous. Time is required for a room to come

to temperature. If the temperature of an unoccupied room is allowed to “float”,

then the temperature of the room could be potentially quite uncomfortable when

the occupants initially enter the room. If the room is large, then the duration

discomfort could be protracted. Since building energy managers wish to minimize

complaints and maximize comfort, most managers would be reluctant to subject

occupants to discomfort in order to save energy as well as violating standards

of thermal comfort [ASH07a]. In the case of [ABD11], the location was in San

Diego where the mild weather naturally reduces thermal discomfort since outside

temperatures are more likely to match the relaxed setback temperatures.

2.1.3 Static Occupancy Models

The simplest predictive HVAC control strategies are applications where the oc-

cupancy schedule is static and known beforehand. Examples of this scenario are

schools where the number of student occupying each classroom is known depend-

ing on the time of the day or hotels where the number of guests in each room

are known based on the registration. Since occupancy is not actually monitored

through sensory input such as PIR, energy efficiency comes from optimal time-of-

day HVAC scheduling. By optimally scheduling the HVAC system, the authors

of [MAA01] demonstrated that 25% - 46% energy savings were possible through

HVAC scheduling depending on the usage type of the building. Buildings with less

predictable occupancy schedules are more difficult to opportunistically schedule

the HVAC system.

In situations where occupancy patterns are unknown, it is common to use

static occupancy models derived from other similar buildings. These models are

sets of predefined static coefficients that are multiplied with a maximum room

occupancy. To estimate the occupancy of a room at 8am given that the room

has a maximum occupancy of 30, the coefficient for 8am is simply multiplied with
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30. Different sets of coefficients are used depending if it is a weekday, weekend,

or holiday and the purpose of the building. ASHRAE Standard 90.1 [ASH07c],

BLAST [HL83], and DOE-2 [Doe12] define several occupancy profiles for office

buildings day-types. These models are commonly used for energy simulation tools

such as eQuest [Bui] or EnergyPlus [Epl] during the design phase of buildings and

are also used to determine static conditioning strategies for buildings. These

models do not accurately capture changing trends in usage and generalize poorly.

Capturing the schedule of a building can be solved with a learned occupancy

prediction model using data specific to the target building. By utilizing data

from the actual building, better scheduling is possible and changing dynamics

can be captured. With a model, one can probabilistically determine if and when

a room will be occupied and the room can be pre-conditioned accordingly. Ini-

tially, few works on demand control utilized occupancy modeling were published.

Most still acknowledge that a major obstacle for developing occupancy prediction

models is difficulty gathering ground truth data. It is time-consuming to gather

ground truth occupancy data even for a small set of rooms. With new systems

of monitoring occupancy however, it is now simpler to develop occupancy models

and capture changing trends. In the following sections we will focus on common

methods of prediction suitable for occupancy and predictive conditioning.

2.1.4 Time Series Forecasting

Time series has long been used in areas such as econometrics and signal processing.

The dependency of occupancy change on time in buildings suggests it may be

possible to model occupancy using time series techniques. Intuitively, occupancy

will change based on time dependent events, such as arrival in the morning, leaving

for lunch, delivering mail in the afternoon, and so forth. In this section, we discuss

commonly used time series techniques that could be potentially used for occupancy

forecasting.
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Consider occupancy of offices that operate year-round. If we examine the data

at weekly, monthly or annual range, then there is no trend. However, there is

a great deal of seasonality related to the hour of the day; people arrive in the

morning, spend their day working in a space, and then eventually leave.

The most basic technique is the autoregressive (AR) model [BJ90]. Let xt

represent the observed occupancy at time t. For this technique, it is assumed

that the xt is based on the previously observed occupancies xi where i = 1 . . . n

and n is the number of observations into the past to consider. The length can be

adjusted to capture periodic behavior. The value of xt is then defined as

xt = α1xt−1 + α2xt−2 + . . .+ αpxt−p + ǫwp (2.1)

where αi is the weight for xt−i and ǫwp is white noise. For this method, it is

assumed the future occupancy can be estimated from the previous p steps of

occupancy where each step is assigned a weight. This model is defined as AR(p).

Another basic standard technique is a moving average (MA) model:

xt = µ+ ǫt + θ1ǫt−1 + . . .+ θqǫt−q (2.2)

where ǫt . . . ǫt−q are white noise error terms, θ1 . . . θq are model parameters, and µ

is the mean of the series. This model, denoted as MA(q), assumes the observed

value is a random noise term plus a linear combination of the previous q noise

terms.

The ARMA model [BJ90] combines the AR and MA models previously de-

scribed:

xt = α1xt−1 + α2xt−2 + . . .+ αnxt−p + ǫwp + µ+ ǫt + θ1ǫt−1 + . . .+ θnǫt−q. (2.3)

Since this model incorporates both AR and MA, it also inherits the same problems.

A requirement of AR and MA and is that the data is stationary; the same holds

true for ARMA. After testing these methods, we found the strong seasonality of

the daily occupancy pattern made these approaches not ideal for our application.
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We next tried the more general model ARIMA [BJ90] (also referred to as Box-

Jenkins), which is an extension of ARMA where differencing is used to de-trend

the data to transform a non-stationary time-series into a stationary distribution.

Typically it is referenced as the function ARIMA(p, d, q), where p, d, and q are

the order of the AR (AR(p)), integrated (I(d)), and MA (MA(q)) parts respec-

tively. The I(d) differences the observation by d lags, which depends on the linear

trend observed. Since daily office occupancy does not have a linear trend over

multiple days, we found the ARIMA model modeled on this time scale not to be

appropriate; the differencing would not remove seasonality. One potential strategy

to use ARIMA would be to examine specific trends within each day. Examining

occupancy at the daily level, there is no linear upward/downward trend since

buildings eventually empty at the end of the day. At the hourly level, however,

we can observe trends such as the increase in occupancy in the morning and the

downward trend at noon when people go to lunch. For each of these trends, we

can also observe “shocks” to the trend from events such as people going on breaks

or moving between spaces. We attempted to subdivide the day into multiple parts

and model these individual trends. While this piecewise strategy is somewhat fea-

sible, it requires knowledge of upward/downward events and assumes these events

do not change day to day. This is difficult to capture and we found that this

assumption often did not hold true. Identifying events and generalizing events is

a non-trivial. We also found it leads to over-fitting if the modeled intervals are too

small. In addition, subdividing the day did not help us determine when occupants

would occupy rooms without distinguishable occupancy patterns.

As mentioned previously, we found seasonality prevented our use of the pre-

vious models; seasonality causes a non-stationary mean that cannot be removed

with differencing. Since occupancy data has a strong and stable seasonal com-

ponent, seasonal ARIMA is a better candidate than the previously discussed ap-

proaches. This method includes additional terms that captures seasonality. In
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addition to having the terms ARIMA(p, d, q), it also includes the terms for the

model ARIMA(P,D,Q), which are multiplied with the terms of ARIMA(p, d, q).

Under this model, the AR(p) and MA(q) are used to model the short term cor-

relations; the AR(P ) and M(Q) are used to capture the seasonality. This model

is written as ARIMA(p, d, q)×ARIMA(P,D,Q)s, where s denotes the seasonal

lag (24 hours in our case).

Another strategy that accounts for strong periodicity is describing the data

through a linear combination of sines and cosines [Ham94]:

xt =

q
∑

k=1

[Uk1cos(2πωkt) + Uk2sin(2πωkt)], (2.4)

where Uk1 and Uk2 are independent zero mean random variables with variance σk

and ωk are frequencies (k = 1 . . . q). Because of the high degree of periodicity in

the occupancy data, different combinations of the sines and cosines could be used

to capture the dynamics found during different parts of the day. An advantage

of this method over the seasonal ARIMA is that less parameters are required.

However, as with the other tested methods, we found this method did not work

well for areas that are not consistently occupied.

Though there are no references that explicitly describe the use of these meth-

ods for occupancy modeling in buildings, we discuss several works from other

areas that examine the hourly dynamics with seasonal components. The authors

of [HLJ09] test several time-series methods to forecast patient volume in order to

manage hospital space, resources, and personnel. In their paper, they test two

different models: a seasonal ARIMA using a 24 hour lag to capture the seasonal

component, and a sinusoidal model. These methods were then used for 4 and 12

hour forecasts at three different locations. Both models performed well and out-

performed predictions based on historical average. When comparing the seasonal

ARIMA and the sinusoidal models, they found both to forecast equally well for

their application. This work has many similarities to occupancy since the season-
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ality also operates on a 24 hour period. The paper [WH03] uses seasonal ARIMA

to forecast car traffic flow. In their work, they compare the seasonal ARIMA

with historical average and a random walk forecast. They define a random walk

forecast as follows: the next predicted values is the last observed value. Seasonal

ARIMA was found to have the best overall forecast performance. While applicable

to this particular application, hospitals have specific patterns that are different

than those observed in offices, labs, or even houses. For example, patients tend

not to come and go daily nor they go out for lunch.

2.1.5 Markov Models

Another strategy for occupancy prediction is to frame the problem as a Markov

process. The general strategy is to assume the state of the room occupancy

depends only on the previous state of occupancy. Several papers in the literature

explore this strategy. The paper [DHT06] defines a Markov Chain model for the

binary occupancy of individual rooms. The states of the model are occupied or

unoccupied and the transition matrix probabilities are calculated by examining

the exponential distribution of the sojourn times of the observed states. The

sojourn times are found using the firings of the PIR sensors. One drawback

to this approach is that the model assumes the occupancy states of rooms are

independent. However, in reality, the occupancy of adjacent rooms have at least

strong correlations. Also not taken into account is the time of day. The occupancy

state of the room depends on the time of day, which would change the transition

probabilities. For example, the probability of an occupant exiting the room is

higher at noon since he/she is likely going to lunch. This method also does not

take into account differences between weekdays and weekends or different seasons.

The authors of [WFR05] uses a similar approach but also take into account

the time of day. They start by modeling the occupant state of single offices using

a non-homogeneous Poisson process using two exponential distributions; one for
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the occupied state and one for the unoccupied state. They first attempted to sub-

divide the day into hourly intervals and then determine the occupied/unoccupied

distributions for each hourly interval. However, they found many of the fits to

be not significant. Based on these results however, they subdivide the days into

three events; morning arrival, leaving for lunch, and leaving work. The occur-

rence of each event is estimated using a normal distribution where the time of the

event occurs within 1 standard deviation. In between each event, they use oc-

cupied/unoccupied exponential distributions to model the occupancy dynamics,

which they found to be a Poisson process. While this technique does incorpo-

rate time, hand crafting the states using events can lead to over-generalization; it

assumes that these events always occur. This model would not be applicable to

other buildings such as residences where occupants are generally away for most of

the day. One would need to handcraft a specific model based on domain knowl-

edge for each type of building. Even then, there are many instances where events

may not occur. A part time employee may only arrive in the afternoon. A con-

ference room may only be used one day a week for meetings. Lastly, this model

assumes the adjacent room occupancies are independent and does not attempt to

gain additional information through the use of these rooms.

In [LSS10], the authors use a Hidden Markov Model (HMM) to achieve occu-

pancy prediction. The hidden variable is the distribution of the home being in

one of three states: away, active, and sleep. The HMM transitions to a new state

every 5 minutes. The observed variables are the time of day (4 hour resolution),

the number of sensor readings over a time interval, the binary readings of the

doors switches, and the binary readings of the PIR sensors. Again, the drawback

to this approach is the handcrafting of the states. While this may be applicable to

residential buildings, a different set of states would be required for a commercial

building, which has more a complex variety of possible states. Another problem

with this approach is that it does not account for different daily schedules. Since
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the distribution is based on all of the observed days, no distinction is made be-

tween different days of the week. This will cause issues if events only occur on

specific days. For example, a family may consistently return home at 3 pm every

day except Wednesdays where they go to soccer practice and return at 7pm. In

this situation, the system will likely still assume a 3pm return on Wednesdays and

condition the house needlessly. Similarly, if a person stays out late on Friday on a

semi-regular basis, the model would not be able to predictively condition for this

scenario.

The authors of [DA09] attempt to avoid the handcrafting of states by using

Episode Discovery [HYC04] to learn the common states and then use these states

with a Semi-Markov Chain. The Episode Discovery algorithm examines the se-

quence of sensor events over a sliding window and then determines what patterns

are significant from several days of sensor data. Each significant pattern is defined

as an event state that is used with a Semi-Markov Model. Similar to the other

MC approaches, an exponential distribution is used to model the time spent in a

state before jumping to one of the other learned event states. For their model,

they consider adjacent room occupancies to be independent. What is not clear

from the paper is what happens when a sensed state does not match one of the

other known event states. In this scenario, one would encounter a discontinuity.

The method closest to our work is proposed by [RTI08]. In their work, they

attempt to model occupancy for residential homes. For a target building, they

assume a maximum occupancy n and create an n × n transition matrix where

n = 1 . . . 7. In order to account for time, they create a transition matrix for

different windows of time. In total, they construct 144 transition matrices (10

minute windows). While their strategy is suitable for low occupancy single zoned

buildings, their approach does not scale for large multi-zone buildings. A non-

trivial time is required to learn these transition matrices. The framework does

not account for inter-zone correlations and assumes that state continuity exists
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between the time slots; from our experiences described in Chapter 3, this is not

the case for areas with large populations. Our research in Chapter 3 discusses

these issues in detail and proposes methods of solving these problems.

2.1.6 Classification Based Prediction

Through proper framing of the problem, it is possible to create prediction models

using a classification framework. The authors of [SBK11] developed a predic-

tion based conditioning strategy for residential buildings using k-nearest-neighbors

(KNN) to predict occupancy. The binary occupancy schedule of each day is

recorded and stored for later comparison. To predict the occupancy, the oc-

cupancy schedule up to the current time is compared with the same time-frame

from all previously observed days. The 5 closest days, determined using Hamming

distance over the occupancy vector, are then used to calculate the probability that

a space will be occupied a specified amount of time into the future. In order to

increase the accuracy of the prediction, a distinction is made between weekdays

and weekends when computing the distances. This prediction method worked

reasonably well overall with accuracies ranging from 80% to 86% for a 90 minute

prediction. However, the method did not perform well for rooms that were not

consistently occupied and tended to predict these rooms to be empty. Despite

this, the MissTime [LSS10], which is the total amount of time occupants are sub-

jected to a temperature 1oC outside the specified heating and cooling set-points

during normal waking hours, showed a 38% to 88% improvement over a static

schedule strategy.

The use of KNN creates several drawbacks. KNN works best if the number of

days in the dataset is small since KNN is simply a comparison among all points in

the dataset. If the dataset of days is large, then the time required to compute the

prediction may be prohibitively long. While it may be possible to sub-sample, it is

possible that even the number of sub-samples required for a reasonable accuracy
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could still be too large. One possibility is to use other classification methods

such as support vector machines (SVM) or artificial neural networks (ANN). For

these methods, however, some adjustment of the framework is necessary. The

KNN method is able to use an input vector of occupancy of any length; when

the comparisons are done, the input vector is checked against the corresponding

time frame of the other days. However, SVM’s and ANN’s need to be trained to

accept a fixed number of inputs and provide a fixed number of outputs. This could

be done by training multiple models over different periods of time and provide a

prediction a fixed amount of time into the future. For example, a model could be

trained to take occupancy of the past hour as an input and provide a prediction

an hour into the future. Training multiple models would take time initially, but

this training would be only be required once. A similar strategy was utilized

by the authors of [DA09] to model occupancy for individual rooms. In order to

predict occupancy for a particular time t, they train a model using the room data

from midnight up to t from previously observed data. This strategy was applied

using Multilayer perceptron and logistic regression using data that was gathered

through user surveys. These methods were able to predict occupancy with an

accuracy of 67%-75%. Similar to the other papers, they model room occupancy

independently and do not consider inter-room correlations.

2.1.7 Predictive Conditioning

Though many different models of occupancy prediction exist, few works actuate

heating and cooling based on occupancy prediction models and those that do are

often done with static prediction. This is in part due to the lack of occupancy

sensing infrastructure and a means of automated actuation. With the introduction

of wireless sensor networks and an increasing number of commercial automation

retrofitting products, more work is being examined in this area.

Thus far, almost all the work that has been implemented has attempted to
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approximately optimize the energy consumption at the local level. However, op-

timizing energy at the local level may not guarantee optimization of energy at

the global level. Techniques such as Model Predictive Control [CB04] or Markov

Decision Process [Put94] could potentially be used to optimize energy globally.

Since these techniques would require a detailed thermal model describing the heat

transfer interactions among all the rooms as well as from other outside factors,

these global optimization techniques are not within the scope of this paper.

In [LSS10], which uses Hidden Markov Model (HMM) for occupancy predic-

tion, the authors provide results for real world deployments and EnergyPlus sim-

ulations. The authors of [SBK11], using their KNN prediction approach, tested

their predictive conditioning strategy on 5 houses with an average of 61 days per

house. In order to test both central and de-centralized heating, three of the homes

were in the US (central system) and two in the UK (de-centralized individual room

heating). Since ventilation was not considered, they utilized a binary prediction

of occupancy. Interestingly, the strategy did not work well with the centralized

systems when comparing the predictive strategy to a typical static schedule strat-

egy. In two of the homes, there was actually a decrease in gas efficiency. However,

the UK homes did save 8% and 18% in gas usage when scheduling on a room by

room basis.

[GK] employs a similar technique utilizing KNN for occupant prediction. In

addition to determining a binary indication of occupancy, they also measure the

radiant heat of occupants in order to better measure occupant comfort. Based

on the occupant comfort, predicted occupancy, and thermal properties of the

room, they solve an optimization problem minimizing occupant discomfort while

maximizing energy savings. In addition to the same drawbacks of [SBK11], [GK]

does not address the prediction accuracy of occupant comfort, which is critical for

their control scheme.

[DA09] uses their Semi-Markov model from their learned states to test pre-
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dictive condition strategies in an EnergyPlus simulation. They test four different

methods of conditioning; a fixed 7am-6pm schedule, an email client meeting sched-

uler, reactive motion actuation, and a the Semi-Markov predictive approach. For

their predictive approach, they first examine the current state of the system. If it

is likely that a room will be occupied a significant amount of time in the future,

then the room is conditioned. Using this predictive method, they were able to

save 30% in energy costs. There are several weaknesses to their approach. Again

the use of CO2 is questionable. Another issue is that their framework does not

take into account inter-room correlations.

2.2 Quality of Service

The most common method of determining thermal comfort is by trial and error.

Building managers will often guess a temperature and then take into consideration

complaints from the users. However, there are more precise methods of determin-

ing comfortable temperatures. Multiple works have explored different models of

thermal comfort[Hop99, ASP97, Gag86, AZHa, AZHb, ZHA, HZA]. Within the

building community, the most commonly used metric for thermal comfort is [O70].

This paper defines the Predicted Mean Vote metric (PMV), which establishes

a model of thermal comfort using humidity, temperature, radiant temperature,

metabolic rate, clothing insulation, and air flow as the parameters. Based on

these factors, the model returns a value between −3 (cold) and +3 (hot) where 0

indications ideal thermal comfort. Since then, many other papers have examined

how temperature impacts thermal comfort [SBW10, PHK07, PHK10].

2.2.1 PMV Measurement and Actuation

Several systems have been implemented to measure PMV. Authors of [YYC03]

developed a specialized comfort sensor that measures air temperature, air motion,
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mean radiant temperature, and humidity. Input from these sensors are then used

with PMV or standard effective temperature (SET*) models. They examine how

their sensor choice affects the estimates of PMV as compared with ideal sensors.

The main drawback to their work is that all their results are done in simulation;

there is no verification that compares the sensed comfort level with the actual

comfort level. Though their sensor may yield more accurate estimates for the

PMV and SET* models, it is unclear if this will also reflect actual comfort levels.

For factors such as air speed, it is unclear how many of these sensors are required

for adequate estimates of thermal comfort.

The paper [TC07] describes another system of measuring thermal comfort in

real-time. They separate their system into separate sensor nodes; temperature

sensors, radiation sensors, and PMV sensors. Each node in the system is designed

to accomplish different tasks locally. The temperature sensors measure the tem-

peratures of the surrounding surfaces. The radiation sensors measures the solar

radiation absorbed by occupants. The PMV sensor measures air temperature, air

velocity, and humidity. In order to reduce the computational load of the PMV

sensors, a table of PMV values are precomputed with different combinations of

the parameters. For the metabolic rate and clothing insulation are given initial

values, but can be modified manually by occupants. Since occupants are allowed

to adjust insulation and metabolism in order to adjust for PMV estimation errors,

it seems that asking users directly for PMV value is a less error prone since occu-

pants are more easily able to describe their thermal comfort level than metabolism

or insulation.

In the paper [RA09], the authors propose an architecture to measure thermal

comfort. They utilize SunSPOT nodes to measure air temperature. They assume

mean radiant temperature is equal to dry bulb temperature and for the remaining

parameters, they assume fixed values. Sensors are placed around the room in a

distributed fashion and used to estimate the PMV value at each location. They
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use these values in order to estimate the PMV value at unknown locations within

the room. This is done by weighting measured values by the inverse of distance

to the unknown location. For this approach, sensor coverage is again an issue

to consider. They do not address how much coverage is required or how sensor

coverage could potentially affect the error derived from the interpolated values.

Another drawback to their work is that they do not compare their results with

actual occupant comfort.

Another method of improving PMV estimations is to measure other environ-

mental parameters rather than assuming fixed values. The authors of [GK] ac-

complish this by creating a turret system that can track individual users using a

Microsoft Kinect [kin] coupled with a thermal sensor. With this tracking system,

they are able to estimate the clothing level and increase the accuracy of the PMV

calculated using Fanger’s model. There are several drawbacks to this approach.

Their system can only track one person at a time, making it only practical for

single occupancy areas. For areas with multiple occupants, the number of turrets

makes this strategy impractical. Another issue not addressed in the paper is how

much this single parameter impacts the overall accuracy of the PMV. Given the

complexity of the system, it may not be worth the effort of deploying such a sys-

tem in order if the accuracy gain is minimal. On a qualitative level, occupants

may not feel comfortable with a Kinect tracking their movement while in a room.

The paper [HW], developed after our work was published, has many similar-

ities to our work. They have a similar cell phone application where users input

their thermal comfort on a 7 point scale and use this input to change temperature

set-points. Rather than use the Fanger PMV formula for determining tempera-

ture, they instead attempt to learn individual user comfort levels using the room

temperature, outside temperature, and user votes. Once each model is developed

for each person, they calculate the optimal temperature by minimizing thermal

discomfort through each user’s individual preference. There are several issues
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that are not addressed by this paper. Based on our work, we found that outside

temperature has little correlation to indoor PMV and the authors do not address

the error for their models for each individual. Another issue we have encountered

that is not addressed is the bias that is introduced due to internal competition;

occupants often exaggerate their discomfort in order to offset the votes of other

occupants. This implies the individual models will often be flawed.

2.2.2 Participatory Sensing

A major component of wireless sensor networks is the acquisition of data. Typi-

cally this is done using a traditional deployment of standard sensors. Participatory

sensing [SGS] is a method of data collection that leverages off the prevalence of

mobile devices. Since many mobile devices now have a wide variety of sensors

available such as GPS, cameras, accelerometers, microphones, as well as others

and are already widely distributed, there are those who are exploring how to ex-

ploit this ready made sensor network deployments for data acquisition. In addition

to gathering data from mobile sensors, these networks have the unique advantage

of having a live person as a potential sensor. Many sensing problems normally

impossible using traditional sensing can be done by using humans as sensors.

Several participatory sensing applications have been developed in recent years.

PEIR (Personal Environmental Impact Report) [PEI, SGS] attempts to classify a

person’s activity based on locality found using GPS and cell phone tower triangu-

lation. Based on the activity classification, a persons environmental impact can

be estimated. Biketastic [RSD10] uses mobile phones to collect information about

bike routes used by bicyclist in the Los Angeles area. For this application, infor-

mation such as user contributed photos, accelerometer reading, sound, and GPS

are used to determine information such as road smoothness and traffic density.

While there have been sensors and sensor networks developed for measuring
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thermal comfort, there has been few works that have actuated temperatures using

participatory sensing. There are many advantages to utilizing participatory sens-

ing in this application. Psychological studies have also shown that direct control

can lead to greater satisfaction [Pac90], which is an important factor for build-

ing management to reduce user complaints. Using actual user input rather than

a model for the conditioning feedback loop is likely to lead to better quality of

service.

The authors of [Jaz11] developed a participatory sensing cell phone application

for measuring temperature, lighting and air quality. For measuring temperature,

they used a 5 point scale rather than a 7 point scale. They tested their applica-

tion over the course of 10 days in 8 different rooms and collected 200 data points;

they do not mention how many occupants participated. They compare the mea-

sured temperature readings with user data and the analyze differences. They do

not, however, use this data to actuate temperature changes. In our deployment,

our sensed data is used for temperature actuation and analysis, not solely moni-

toring. Our work discusses how differences from the measured PMV and sensed

data can be used for correction of temperatures. Our deployment has run for

a substantially longer period (24 months). Since user feedback directly impacts

their environment, the incentive to participate provides us with more data. As

illustration, a single room of our deployment over a 10 day period had 362 data

points whereas their 8 room deployment only yielded 200 data points.

In [MJK] departures from the standard 7 point scale and instead measures

occupant comfort on a scale between -50 (too hot) to +50 (too cold) using a

cell phone application. They then use this data to learn occupant comfort levels

using the online learning policy UCB1 [ACF02] and LLR [GKJ12]. They treat

this problem as a multi-armed bandit problem of picking the correct sequence

of temperatures over time in order to maximize thermal comfort and rewards

are in the form of favorable occupant feedback. An issue not addressed is the
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inconsistency of occupant feedback. We found that occupants often do not provide

feedback when comfortable. Thus, this scheme may be optimizing for occupants

who may not necessarily be present. Another issue not addressed is whether people

are truly able to differentiate on a 100 point scale; it is questionable whether or

not a person can consistently differentiate between for example +45 and +46.

In the next Chapter, we start discussion of our work by first examining strate-

gies for occupancy prediction that can be used for accuation strategies for condi-

tioning.
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CHAPTER 3

Occupancy Modeling

As mentioned in the previous chapters, there are four components we utilize to-

gether in order to improve HVAC efficiency; occupancy monitoring, occupancy

prediction, use-based HVAC control, and occupancy driven thermal comfort. The

initial direction of our research focused on developing a model for occupancy

prediction since the prediction models required for control HVAC are largely in-

dependent of occupancy monitoring used and we had access and prior experience

with an occupancy monitoring system. The goal of this chapter is to develop

occupancy models that can predict occupancy of rooms 30-60 minutes into the

future that can be used for predictive HVAC control.

In order to predict occupancy, we must have training data and input into the

prediction model. For training data, we assume that an occupancy monitoring

system is available. For inputs, we assume that occupancy is correlated by both

spatially and temporally. With regards to spatial correlation, intuitively occu-

pancy in a room is likely correlated with the occupancy of other nearby rooms.

For instance, if a hallway is occupied at one point in time, an adjoining room

will likely be occupied in the near future when the occupant exits the hallway

to enter the room. Since the occupancies of rooms are correlated, an input into

the prediction model will be the current occupancies of rooms. Occupancy is also

intuitively correlated to the time of day. For example, we expect at lunch for

occupancy of offices to decrease and break-rooms to increase. Thus, time is will

also be an input into the prediction model.
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Figure 3.1: The left shows the ten areas data was collected for and the 18 bound-

aries (gray lines) defining the areas. The right shows a graph representation.

This chapter contributes occupancy modeling techniques that uses inter-room

relationships over time to predict occupancy. Our models are developed using

accurate real world data rather than occupancy walk-through surveys or other

similar estimates of occupancy.

3.1 Data Collection

For the development our models, we used ground truth data; for a live real-

world deployment, data from an occupant monitoring system would be used. Five

days (Mon-Fri) of ground truth occupancy data were gathered for ten areas using

seven cameras covering 18 transition boundaries. Figure 3.1 shows the building

areas used for data collection. The cameras recorded images at 1.5 fps. Simple

background subtraction methods were used to first help identify images containing

people and then processed by hand to verify direction and the boundaries being

crossed.

The hall occupancies are generally 0. When the hallway is occupied, the

occupancy is usually low and the occupants typically exit within 4 to 8 seconds.

There are a few instances that the hall occupancy deviate from this typical pattern.
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When the data was collected, there was construction work being done near Lab 1.

On Monday and Thursday, about 7 people conducted building inspections in the

hallway. There are also some instances where people held lengthy conversations

in the hallway sections.

Figure 3.2 shows the occupancy data for ten areas. The Office 1, Office 3, Lab

1, and Lab 3 show occupancy pattens more typical of work routines though with

some slight variations. Office 1 is used by school administration. Workers come in

consistently at 8am, leave for lunch, come back from lunch, and then leave at 5pm.

Office 3, Lab 1, and Lab 3 are used by professors and graduate students. Though

the same general daily pattern can be seen, we can also see some occupants stay

later (all night in some cases) and arrive and leave at odd hours. Office 2 and

the Conference Room are similar since they both are mainly used for meetings.

Office 2 is a small office that is used for student counseling meetings and certain

administrative work. Lab 2 is currently not being used by any department and

serves as storage space.

3.2 Multivariate Gaussian Model

In this section, we discuss a simple occupancy model that utilizes multiple Gauss-

ian fits over the data. In particular, we focus on constructing a model that can

simulate the occupancy for two specific areas that are represented by the ground

truth data. Given its simplicity, this model serves as a coarse baseline model for

other occupancy simulation and prediction approaches.

On an intuitive level, over the course of a day we expect occupancy to increase

in the morning when people arrive for work, decrease when people go to lunch,

increase when people return from lunch, and then eventually drop to zero when

people leave for the day. These are the general increases and decreases of occu-

pancy we can expect based on our real world experiences. The strategy behind
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Figure 3.2: 5 days of ground truth occupancy data for eight areas.

this approach is to model each of the increases and decreases separately. How-

ever, as the occupancy data suggests in Figure 3.2, there may be other regular

phenomenon affecting occupancy other than those based on intuition.

We start first by defining the occupancy state for a building. The occupancy

state x is a vector ofm dimensions, where xi is a nonnegative integer corresponding

to the occupancy (number of people) in room i, and a probability distribution p(x).

Over a specified period of time, the room occupancies are normally distributed,

and can thus be represented with a multivariate Gaussian model. For our model,

we define hourly pdfs that allow the calculation of the probability for a particular

occupancy state occurring within a given hour.
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Let O = (r1 . . . rm) denote all occupancies that occur per second during a

period of time and ri is a vector of occupancies for room i where i = 1 . . .m. Let

µi denote the average occupancy for room ri over the time period. We calculate a

vector of means µ = (µ1, . . . , µm) and covariance matrix Σ from O. Using µ and

Σ, we define a probability density function (PDF) f :

f(O;µ,Σ) =
1

(2π)
n

2 |Σ|
1
2

exp

{

1

2
(O − µ)TΣ−1(O − µ)

}

We define hourly Gaussian models with mean µh and covariance matrix Σh where

f can give a probability of an occupancy occurring for a specific dataset Oh for

hour h.

Using this function, we can randomly draw occupancy vectors from the distri-

bution. Given a starting occupancy vector, all the possible occupancies that can

occur in the next timestep are examined. For each possible occupancy vector, the

probability of the occupancy occurring using the current PDF is calculated.

A major drawback of this method is that it erroneously predicts a great deal

of pacing behavior. For example, if the model predicts a person leaves the office

to enter a hallway at one time-step, the model shows a high probability that

the person will re-enter the office in the next time-step. This occurs since the

distribution does not take into account the behavior observed in the previous

time-step. This can cause predictions to favor parts of the distribution that have

high probabilities. This is particularly pronounced for rooms rarely occupied. In

these cases, the model rarely allows room entry and vacates the room too quickly.

Since intended purpose of the model is HVAC actuation, utilization of this model

would lead to rooms to be to under or over conditioned.

While the model considers both the temporal and inter-room correlations, it

does not take into account previous behavior and does not accurately capture

the usage of seldom used rooms. In the following section, we propose a more
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Figure 3.3: The occupancy state representation.

sophisticated technique using a Markov Chain approach in order to better capture

the dynamics of the rooms. In particular, we wish to better capture the use of

seldom occupied rooms. In order to create a prediction model suitable for HVAC

control, we need a model that captures the temporal nature of the occupancy

changes along with the inter-room correlations and occupant usage of the areas.

3.3 Markov Chain Model

In this section, we model the temporal dynamics of the occupancy in a building

with a Markov Chain (MC). The state of the chain consists of the occupancy at

each room and transitions to a new state occurs with a probability that depends

only on the current state and the time. This allows us to predict the occupancy

distribution at t + ∆t given the occupancy distribution at time t by multiplying

the Ot with the transition matrix. This allows us to predict when rooms will be
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likely occupied and begin conditioning beforehand.

Note that state transitions must respect the room graph of the building as

shown in Figure 3.1. Internal movement of occupants among adjacent rooms

maintains the sum of the components of the occupancy vector. External movement

of occupants to/from the outside of the building from rooms connected to the

outside will change the said sum. This limits the states to which we can transition

to from a given state (we call these reachable states). Figure 3.3 illustrates this.

The MC state at each time is represented by a vector where each component

represents occupancy in a specific room (Figure 3.3). Let R represent the set of

n rooms to be modeled. For each room in R, there is a maximum occupancy.

We define X = {x0, ..., xm} to be the set of all room occupancy combinations

that are possible given the maximum room occupancies of R where m is the total

number of states. Thus, X represents all observable occupancy states that can be

represented by a given set of rooms R.

One issue that needs to be addressed is the potentially large state space. As-

sume we have n = 4 rooms, each with a maximum occupancy of 20 people. In

this case, the MC will contain 160, 000 states. As the number of states increases,

more data is required to calculate the probabilities of the observable states. The

transition matrix is sparse because many transitions are impossible due to physi-

cal constraints of the building. However, the fact still remains that as more rooms

are added, the number of states to manage increases exponentially. To reduce

the component cost, we define the MC only on the states that were actually ob-

served during training. Although we will not be able to generate transitions to all

observable states, practically our model will be realistic if using a large enough

training set. As the WSN gathers data over time, more of the state space will

be represented. Additional strategies of reducing the state space are addressed in

Section 3.3.4.

With the observable states of the MC defined, we next define the transition
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probability matrix. Let pij represent the probability of moving from state j to i

where xt represents an occupancy state at time t. For each state in X we calculate

pij = P (xt+1 = i|xt = j).

Since the training data collected is at the resolution of seconds, each time step of

the MC represents 1 second. The transition probabilities are estimated from the

data normalized counts:

pij = nij/
m
∑

k=1

nik,

where nij is the number of times a transition from state i to state j in the set,

and m is the total number of states.

Since certain occupancy changes occur with greater probability depending on

the time of day, the time of day must be incorporated into the model. Consider a

person standing in a hallway at 8:00 am. Since it is early in the day, it is likely that

the person has arrived for work and will move into either a lab or office. However,

if we consider the same scenario at 8:00 pm, it is more likely that the person

will exit the hallway in order to leave the building. To incorporate time into the

model, we define multiple transition matrices that govern the state changes within

different slots of time, thus defining an inhomogeneous MC. That is, we consider

separate models for each hour that will be trained using the data for that hour,

just as we did in Section 3.2 with the Gaussian model.

While considering only observed (as opposed to observable) states and multi-

ple transition matrices does allow us to model occupancy dynamics efficiently, a

problem arises. Since we only consider states observed in the training data, parti-

tioning the data in temporal sets will create discontinuities at the slot boundaries.

Suppose we partition the data to create hourly transition matrices and are pre-

dicting occupancy for hours h and h + 1. After 3600 steps (one hour), we are in

some state x, the hour changes from h to h + 1, and the model switches to the

hourly transition matrix for h + 1. It is possible the transition matrix for hour

43



h+1 has no probability for occupancy state x. This occurs if state X never occurs

in the training data for hour h+1. Even though in reality the state x can occur in

hour h+1, if x does not occur in hour h+1 of the training data, then we cannot

calculate the transition probabilities for x. This cannot be solved by introducing

a small epsilon probability value of transitioning into another state because the

next state chosen may also not be represented in the transition matrix. The MC

becomes a random walk until it enters a state that was captured by the training

data.

Similarly sink states can also occur if an occupancy state only occurs once in

the training set. Suppose we have a set of occupancy states O that we use to

train a transition matrix. Let x be the last occupancy state of the training set

of O. If x is a unique state in O, then x never transitions to any other state.

If the occupancy state transitions to x, it will remain in that state until the

model changes to a transition matrix that does contain a transition probability.

We propose two different methods of solving the boundary discontinuities and

avoiding sink states.

3.3.1 Closest Distance Markov Chain

The closest distance Markov Chain (CDMC) attempts to solve the discontinuities

at the time slot boundaries. Suppose we finish simulating hour h and are currently

in state x. Before switching to the transition matrix for h + 1, we first check to

see if it contains a probability for x. If the probability does not exist, then we

examine all the states of transition matrix h+1 that does have a probability and

choose the state closest to x.

We define the distance between two states to be the number of transition to or

from the outside world in order to account for the difference between the states.

Let Mi represent the minimum number of area transitions that is needed for a
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single person to enter or exit out of a building from room i. Let A = (a0, ..., an) and

B = (b0, ..., bn) represent two occupancy states where ai and bi are the occupancies

of room i. We define distance dA,B between A andB to be dA,B =
∑n

i=0
Mi|ai − bi|.

Figure 3.4 shows an example of this distance metric. For this four room example,

the distance between the states is 5. One transition boundary is crossed to leave

Hall. Two transitions crossings are needed for the person to leave Rm1. Two

transition crossings are needed for the person to enter Rm3. Rm1 and Rm2

require two transitions each since a person must first enter the hallway and then

from the hallway exit to the outside world.

Although this method eliminates sink states at the hourly breaks, it does not

guarantee that the sequence of states is valid. It is possible for people to “teleport”

in or out of areas. Consider the floor plan in Figure 3.4. Suppose we have the

state (0, 0, 0, 0) (all the rooms are empty) and the closest state is (0, 0, 2, 0) (two

people are in the office). The transition from (0, 0, 0, 0) to (0, 0, 2, 0) is impossible

since the two people must first pass through the hallway to enter the office. Also,

it is still possible to enter sink state in the middle of a prediction. Applying
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the closest distance metric again does little to help since it will likely choose the

previous state and then immediately re-enter the sink state.

3.3.2 Moving Window Markov Chain

Sink states only occur when the next transition matrix does not contain a prob-

ability for the current state. To avoid sink states, we wish to ensure that the

current state exists in the next transition matrix. One way to avoid sink states

is to use a transition matrix that is trained over a moving window of data. As

state changes progress, the window of data that the transition matrix is trained

changes.

Thus far, we have defined the MC model to have hourly transition matrices

that capture the occupancy behavior for a particular hour. However, the choice to

train over a specific hour is somewhat arbitrary. We can create a transition matrix

for any specified window of time. Rather than defining a transition matrix every

hour, we instead define a transition matrix every n minutes with each transition

matrix still trained with an hour of training data. Thus, each transition matrix

overlaps its neighboring transition matrices by 60 − n minutes. By having this

overlap, we can reduce the likelihood of entering a sink state. Let D represent the

training data. Let the function g(D, t0, t1) return the transition matrix trained

with D defined for the window of time t0 to t1. For example, g(D, 8:00 am, 9:00

am) represents a transition matrix trained with D for hour 8:00 am to 9:00 am.

If n = 10 minutes, then we get the following 140 overlapping transition matrices,

T1 = g(D, 00:00, 1:00)

T2 = g(D, 00:10, 1:10)

...

T140 = g(D, 23:00, 00:00)

Once the transition matrices are defined, we perform predictions with Algorithm 1.
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Algorithm 1 MWMC
CurrState←Starting state

TransMat← Ti Starting transition matrix

Sim← {}

w ← 0 Window move counter

for t = 1 to Simulation Duration do

if w > n ∗ 60 seconds then

NextMat← Ti+1 Next transition matrix

if CurState ∈ NextMat then

TransMat← NextMat

w ← 0 Reset window counter

i← i + 1

end if

end if

if w < 2 ∗ n ∗ 60 seconds then

CurrState← RandomState(TransMat, CurrState)

else

CurrState←Closest State in Ti+2

end if

Sim.add(CurrState)

w ← w + 1

end for
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Once entering a transition matrix, after n*60 steps (n minutes) have past, the

algorithm attempts to move to the next overlapping transition matrix. However,

it only changes transition matrices if the currently defined state exists in the next

transition matrix. Otherwise it remains in the current transition matrix. Though

this lessens the probability of entering a sink state it is still possible to encounter

one. If this occurs, we use closest state of the next transition matrix.

After exploring the parameters by trial and error, we choose n = 30 in order

to reduce the number of overlapping matrices while still reducing the possibility

of entering a sink state.

3.3.3 Blended Markov Chain

The blended Markov chain approach solves the problem of encountering a sink

state without using the closest distance method. In this method, we blend each

matrix into a single state space containing each state of each transition matrix.

This is similar to the MWMC, but considers all states observed from the training

data.

If the day is partitioned in K parts, then we have K transition matrices

T1 . . . TK each with m states. We now linearly combine these K transition matri-

ces to obtain K blended transition matrices T 1, . . . , TK , as follows. The blended

transition matrix for slot t is

T t =
K
∑

s=1

βtsTs (3.1)

where the coefficients βt1, . . . , βtK are positive and sum to one (so that T t is a

valid transition matrix).
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Figure 3.5: Relationship of blending coefficient, hourly time slot, and transition

matrices.

We want these coefficients to be approximately 1 for close slots and quickly

decrease to 0 for farther slots. We can achieve this by defining the coefficients as

βts =
α(ct − cs)

∑K

s′=1
α(ct − cs′)

(3.2)

where ct, cs are the centers of slots t, s, and with a “slot” function

α(x) = σ

(

2a

d

(

x+
d

2

))

− σ

(

2a

d

(

x−
d

2

))

x ∈ R (3.3)

where σ(x) = 1/(1 + e−x) is the sigmoid function, a > 0 is the slope at the

slot boundaries and d > 0 is the slot width. Since the sigmoid is monotonically

increasing and satisfies σ(−x) = 1 − σ(x), it follows that α(x) is positive and

symmetric around its center. Figure 3.5 shows the slot functions for several slots.

This way, each entry in the blended transition matrix T s incorporates information

from all slots, but heavily weighting slot s.

For our model, we choose K = 48, partitioning the data into half hour transi-

tion matrices with slot widths of d = 3. We set a slope of a = 10 at the boundaries.

We choose the ck to be center of the current hour. Figure 3.5 shows the blending
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coefficient for these particular parameters. By defining the parameters in such

a manner, we create overlapping slot boundaries. This increases the number of

preferred states available to transition into, and decreases the chance of choosing

states completely outside the slot boundaries. The coefficient heavily favors tran-

sitions to states within a given hour time slot and somewhat considers states in

the adjacent half-hour slots. States outside this time frame are still considered,

but with greatly reduced probability.

These parameters were chosen through trial and error. The criteria of the

parameter selection was to maximize slot size while minimizing the transitions

into states completely outside the preferred slot boundaries. While larger values

of K could be used, smaller values of K are preferred since a large K reduces the

slot size and the number of observed states for each transition matrix. We also

prefer to only draw from states that are close with respect to time.

3.3.4 Scalability to Large Buildings

The number of observable states increases exponentially with the number of

rooms, but as described earlier we limit the complexity of our model by using

only states observed in the data sample. If this has length s over a given time

period, then the number of observed states N satisfies N ≤ s, and practically

N ≪ s because of repeated states. Besides, the N ×N transition matrix T is typ-

ically sparse, because physical constrains make many transitions impossible and

because not every possible transition is observed in the sample anyway. Indeed,

the number of nonzeros in T must be smaller than s, and again is practically much

smaller than s because of repeated transitions. For our 5-day training set, we ob-

served s = 432K samples resulting in N = 3809 and 19 578 nonzero transitions

(= 0.14% of all N2 transitions).

It is conceivable that, with a very large number of rooms and a very long
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Figure 3.6: Comparison of training data with the models for several areas.
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sample, N or the number of nonzeros of T are prohibitively large. Several simple

strategies can be used to achieve a manageable model. Firstly, s should not be

larger than necessary to achieve a sufficiently accurate model. Another strategy

for managing the number of states is to utilize multiple MC models. Suppose we

have a building with 40 rooms that is divided into two wings each containing 20

rooms. Rather than having a state representation that includes all 40 rooms, we

can train one MC per wing. The trade off is that more MC models would be

required to describe all possible relationships of all the rooms. Lastly, it is often

possible to aggregate multiple rooms together thus reducing the number of states.

This is because HVAC systems typically condition groups of rooms called zones.

We can aggregate room occupancies within a zone, and then create an MC model

using zones rather than individual rooms.

3.4 Markov Chain Performance

In this section, we will examine how well BMC, CDMC, and MWMC capture

room occupancy. A total of 7 days of ground truth data was collected. Five days

(Mon-Fri) of this ground truth occupancy data were used to train the models.

For each model, 100 simulations of 24 hours were created. The remaining three

days (Mon, Wed, Fri) of ground truth data are used for testing. Figure 3.6 shows

two days of training data along with model simulated room occupancy schedules.

Even without formal tests, the models seems to be capturing the dynamics of the

ground truth room occupancies. As expected, the CDMC enters sink states and

remains in the state until the end of the hour. Qualitatively, BMC and MWMC

seem to model occupancy variability better than CDMC.

3.4.1 Comparison Metrics

We use three metrics to evaluate the quantitative performance of the models. We

first examine how long room occupancies remain static to measure occupancy
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variability. We expect our occupancy models to remain at the different levels of

occupancy for similar durations as compared with the ground truth data. The next

metric utilizes Jensen-Shannon divergence (JSD). This is a method that applies

Kullback-Leibler divergence (KLD) to compare the similarity of two distributions.

The advantage of JSD over KLD is that JSD will always return a finite value and

is symmetrical. We compare the room occupancy distributions of the models

and testing data for different windows of time during the day. The last metric

considered is the rate people enter and exit a room. By examining the durations

between entrances and exits of a room, we can measure the flow of occupants in

and out of a room. Specifically, for a window of time w, we calculate λin,w and

λout,w for each room where the variables represent the rate of flow in and the rate

of flow out of a room respectively. Time is taken into account since the rate of

flow changes depending on the time of day.

3.4.2 Evaluation

Figure 3.7 compares the average static durations of the various occupancy levels

with those seen in the testing set. Duration differences closer to 0 indicate a closer

fit to testing data. For high traffic areas and rooms with low occupancy, BMC

and CDMC show similar differences. CDMC typically shows larger differences of

durations since the CDMC still tends to get stuck in states near the ends of the

hourly partitions. This causes the occupancy level to remain static for periods of

time longer than normal. Areas with larger occupancies are prone to containing

sink states as more data is required to cover the possible state space. This can be

seen in Figure 3.7 for Office 1 where CDMC remains at several occupancy levels

for long durations. Similar results were found for the other areas with higher levels

of occupancy such as Office 1, Office 3, Lab 1, and Lab 3. BMC and MWMC

show very similar differences. This is expected as both of these methods have a

similar method of favoring states within a frame of time. However, as mentioned
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Figure 3.7: The difference of the average static occupancy duration from 7am -

10pm.
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Figure 3.8: Each boxplot is for the JSDs observed within the time slot where the

+ is an outlier.

previously, the MWMC still has the possibility of entering a sink state causing

static occupancy levels. However, this occurs much less frequently when compared

to the CDMC.

We next examine the JSD for the different models. We partition the day into

3 hour slots and examine the JSD for each window of time. Examining the ground

truth data in Figure 3.2, we can expect a fair amount of variation among different

days. To establish a baseline of how much divergence is typical from day to day,

we compare the occupancy distributions of each testing set day to the remaining

testing set days for each window of time and establish the maximum divergence
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Figure 3.9: Flows for Hall 1, Office 1, and Office 2 and the min and max flows

observed in the testing set.

for each time slot. Rooms that are mostly empty such as Lab2 and the conference

room have JSD of nearly 0 for each window of time. Figure 3.8 shows the JSD

for the rooms that are consistently occupied. When we compare the testing set

for each model, we see that the JSD for each window is consistent. We find that

all three models have JSD’s that are below the maximum observed JSD. We also

see that MWMC and BMC have very similar results, which is expected as both

strategies have a similar mechanism for choosing the next state.

Lastly we examine the flow of occupants for each rooms. We consider the

hours 7am - 10am to be morning, 11pm - 2pm to be afternoon, and 3pm - 6pm

to be evening. Based on these windows of time, we calculate the flow into and

out of rooms. Figure 3.9 shows the flows into Hall 1 and Office 1 for the different

simulations. As with JSD, we will use the ground truth test data to establish

upper and lower limits for the λ values. Again, all three methods fall mostly

within the limits. However, CDMC and MWMC tends to have more outliers,

which again is caused by sink states. However, since sink states occur with less

frequency with the MWMC, the MWMC has fewer outliers than CDMC.
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Overall, all three models perform well, but in general, BMC performs better

since it does not encounter discontinuities at the boundaries, which can occur for

both CDMC and MWMC. For this particular training set, the MWMC did not

exhibit discontinuities at the slot boundaries; however it is possible with other

datasets this could occur. The sequence predicted by BMC is also always valid,

which may not be the case for the CDMC and MWMC where the closest distance

is used to escape sink states.

3.5 Summary

In this chapter, we develop and examine occupancy prediction models for the

predictive conditioning component of our system. Based on intuition backed by

ground truth data, we use inter-room occupancy correlation and time of data as

inputs into our model. Our initial model that used Gaussian fits to poorly predict

occupancy since it was not able to accurately predict areas that are only briefly

occupied. We next propose a statistical model of the temporal occupancy of a

building based on an inhomogeneous Markov chain. Since it is not practical to

consider every possibility state of room occupancy, We control the complexity of

the state space by using only states observed during training, and prevent dis-

continuities in the chain by a closest distance Markov chain (CDMC) approach,

or by continuously blending the transition matrices over time (BMC). Comparing

samples generated from the model with ground-truth data using various metrics

shows that the model captures the occupancy dynamics accurately. While all the

Markov based models would be suitable for many occupancy prediction applica-

tions, the BMC has advantages over the other models for predictive conditioning.

In particular, the BMC avoids discontinuities at the temporal bins. While the

other models may work the majority of the time, these discontinuities can poten-

tially lead to “stuck” occupied states, which should be avoided for pre-conditioning
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HVAC strategies.

With the occupancy prediction model developed, we next examine how to

measure occupancy. In the next two chapters, we will discuss two different ap-

proaches for monitoring occupancy using wireless sensor networks. With an occu-

pant estimation system, we are able to control ventilation in real-time and train

an occupancy model such as the BMC for predictive control.
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CHAPTER 4

OPTNet: OPtical Turnstile Network

In the previous Chapter, we developed multiple occupancy prediction models that

would be suitable for determining the likelihood a room will be occupied in the

near future. The next system of the four main components is the occupancy

monitoring system.

As described in Chapter 1, an occupancy estimation system can be used to

adjust HVAC system based on actual usage. In particular, it allows both tem-

perature and ventilation to be controlled. In addition to HVAC control, it also

can supply the training data required for the occupancy prediction model used

for predictive HVAC control of room temperature.

We developed two systems for real-time occupancy monitoring; a camera based

system deployed in public hallways that captures occupant movement among

rooms and a thermal array based solution deployed directly in rooms. In this

chapter, we examine our first developed system utilizing cameras deployed in pub-

lic hallways along with motion sensor in rooms to infer occupancy. The camera

system was developed before the more effective and inexpensive thermal sensing

arrays used in Chapter 5 became available.

4.1 Inferring Occupancy

By using cameras as optical turnstiles, it is possible to infer occupancy levels.

Privacy issues are avoided by only deploying in public hallways where security
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cameras are already present. Moreover, by performing local video processing on

the cameras, we avoid the transmission of raw feeds to a central location and

we prevent invasion of privacy. Furthermore, this distributed solution enhances

scalability and significantly reduces network load, improving system lifetime in

the bandwidth limited camera sensor network. Existing optical counting systems

exist, but they are difficult to retrofit to buildings and require hard wiring [tru].

For our solution, we wish to utilize motes that can be easily deployed in even older

buildings. With efficient use motes, battery replacement can be done along with

routine light-bulb replacement.

4.2 Motivation

Though there are several methods that are commonly used for detecting occu-

pancy within modern buildings, these methods present limitations. Passive in-

frared (PIR) sensors, commonly used for controlling lighting, are a simple way

of detecting if a room is occupied or not, but do not give information regard-

ing how many people occupy the room. This information is necessary for CO2

ventilation. Using CO2 sensors directly for regulating CO2 is also unsuitable for

conditioning strategies. CO2 buildup is slow, and by the time sensors detect high

levels of CO2 that trigger ventilation, occupants of the room are likely to already

feel uncomfortable [FFS06]. If not properly calibrated, these sensors can also be

inaccurate [FFS06]. Electrical loads have also been used for occupancy estima-

tion [AC01]. However, this method assumes each occupant contributes to the load

and requires accurate occupancy data for calibration.

Unlike lighting, the thermal ramp up or down of a room involves delay. While

an optical system of occupancy monitoring can give occupancy in near real-time,

reactively conditioning a room will likely leave occupants uncomfortable until

target temperatures are met. In order to ensure occupant comfort, we must be
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able to predict when occupants are likely to enter a room and begin conditioning

beforehand. The length of the prediction is based on how long it takes for the

room to reach temperature from a target temperature. We achieve this by using

a blended Markov Chain as described in Chapter 3.

In this chapter we contribute the following:

• We developed OPTNet, an occupancy estimation system comprised of 22

node wireless camera nodes, and BONet, a 40 node PIR wireless sensor

network. We show how lightweight on-board image processing algorithms

along with classification techniques can be used in order to accurately detect

occupants’ transitions.

• We show how errors in occupancy sensing can be corrected by fusing data

from an occupancy transition model together with sensor data using a par-

ticle filter.

4.3 Overview

In this chapter we develop OPTNet, a wireless camera sensor network and BONet,

a PIR sensor network. A particle filter that fuses the sensing data from OPTNet

and BONet with the output of an occupancy transition model in order to better

estimate the current occupancy in each room is also developed. Figure 4.1 shows

all system components.

4.4 OPTNet

OPtical Turnstile Network (OPTNet) is a new low power wireless camera system

that is able to accurately monitor room occupancy in near real-time. We start

with a description of the hardware and deployment in Section 4.4.1 followed by
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Figure 4.1: System components

Figure 4.2: Transition areas (bigger blue boxes) and trigger areas (small red

boxes).
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a discussion of sensor placement in Section 4.4.2. In Section 4.4.3, we describe

a lightweight image processing method that can be used with a classification

algorithm to detect transitions.

4.4.1 Overview and Design Challenges

We use the Imote2 platform developed by Intel and the IMB400 Camera [imb]

developed by Xbow. The mote uses an XScale processor currently set to run at

208 MHz. The mote has 64MB of memory and a CC2420 radio chip. The camera

can capture 32 fps at 640x320 resolution. By utilizing a fish-eye lens fashioned

from a door peephole (see Figure 4.2), we are able to roughly view 100 ft2 when

the cameras are deployed at a height of 10 ft. Therefore the camera has a viewing

angle of about 160 degrees. We have 22 camera nodes deployed on two floors

capable of measuring the occupancy of 60 areas. In our test deployment the

nodes have a wired energy supply, which makes it easier for us to run different

experiments. We also have the option to power a node with an 11 Ah battery

pack which provides enough energy to run a node for about 45 days.

The goal of the system is accurate detection of occupants moving between

areas. In order for the control system to be useful, accurate occupancy detection,

particularly for empty rooms, is critical. Empty rooms provide an opportunity to

let room temperatures float to more energy efficient levels. Also important is the

ventilation of the room, which is proportional to occupancy.

There are several design challenges. Motes have limited resources available.

Though the IMB400 cameras are able to capture 32 fps, the Imote2 radio is only

able to transmit ≈ 100 kbps under typical conditions, making real time image

streaming infeasible. This bandwidth issue can be partially solved if we only

send images of interest and buffer the images until they can be sent. However,

this requires heavy use of the radio, which is one of the most energy consuming
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components. Instead, it is more efficient to extract only useful features from the

images and transmit a small amount of information. Thus, our design challenge

is to design an efficient on-board image processing algorithm that can compress

data to be processed at the base-station.

Occupancy tracking is still an open problem in the computer vision community.

Many tracking algorithms focus on the person, typically correlating the identity of

a person between frames using feature-based algorithms such as SIFT [Low99] and

SURF [BET08]. While it is possible to run these algorithms on the Imote2, they

are computationally expensive. Also, placing cameras directly into rooms raises

serious privacy concerns. OPTNet thus only uses cameras installed along hallways.

In our application, we only care about occupant transitions between areas, not the

identity or precise location of specific occupants. Instead, we view this problem as

a motion recognition problem, where we are attempting to recognize a sequence

of images as a transition.

4.4.2 Camera Placement

HVAC systems are designed to condition zones within the building, where each

zone is comprised of one or more rooms and is controlled to a specific tempera-

ture/ventilation. Figure 4.1 shows the zones for our deployment. As previously

mentioned, we are attempting to capture the transitions that occur between zones

in order to track the occupancy of an HVAC zone; the cameras operate as optical

turnstiles. In order to capture all transitions, cameras must be deployed in such

a way that all the entrances and exits are covered for a zone. Thus, the distribu-

tion and number of cameras depends on the entry/exit points of an area. More

specifically, there must be one camera per entrance for a zone. For example, to

track all the transitions for Offices area 1 (see Figure 4.1), a camera is placed in

front of the Conference area and another in front of the Robotics lab. Since zones

share entry/exit points, a camera can serve multiple areas; the camera deployed
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Step 3: KNN Match
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Figure 4.3: Above is a summary of transition classification procedure. Previous

image background subtraction detects movement within a transition area. The

image sequence is then concatenated to form a larger matrix shown as a picture

on the right of Step 2. A feature vector is then constructed where each position

corresponds to the number of active pixels in each column of the matrix (left Step

2). This vector is then classified using KNN against known labeled data (Step 3).
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in front of the Conference area is used to track transitions from the Computer

Lab, Conference area, and Office area 1.

4.4.3 Transition Detection

In this section, we describe a fast lightweight image processing algorithm that can

be used for transition detection. Our strategy is to classify a sequence of images as

a specific type of transition. We accomplish this by first detecting motion within

a target transition area using background subtraction. We then determine the

start and end of a transition from a continuous sequence of images containing

motion. This sequence is then transformed into a vector that can be sent back to

the base-station to be compared against known labeled data using the k-Nearest

Neighbors (KNN) algorithm.

4.4.3.1 Motion Detection

For human motion detection we use previous frame background subtraction with a

static threshold [FP02]. We tried several other background subtraction methods

(e.g. moving average, weighted moving average), but we found previous frame

subtraction to work the best for our application. In particular, it is robust against

rapid lighting changes caused by opened doors as it can quickly reduce the number

of erroneously active pixels. This reduces the number of perceived transition

sequences caused by people loitering near or within transition areas. It also quickly

removes objects from images such as boxes and chairs, which occur frequently in

the public hallways that our deployment is located. Also advantageous is that it

requires minimal resources to run in real-time on the mote.
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4.4.3.2 Delimiting a Transition Sequence

The first problem we address is identifying a sequence of images that could po-

tentially contain a transition. We start by defining a transition area, which is a

small 1x2 m2 area on the ground typically in front of a door or within a hallway.

Figure 4.2 (left) shows an example of a transition area. In addition to a transition

area, we also include a trigger area (smaller inner red boxes in Figure 4.2) that

is placed on one side of the transition area. The trigger area helps to distinguish

when someone actually crosses the area and the direction of travel (Figure 4.4).

Figure 4.3 shows a transition example. If a transition area has been empty for 3

previous frames (≈ 0.6 seconds), when a person walks into the transition area, this

signals the beginning of a transition sequence. Detection is achieved using previ-

ous frame background subtraction using a static threshold. A sequence is ended

if there is no activity close to the trigger area (60 cm) for 3 consecutive frames.

Transitions are assumed to take a minimum of 0.25 seconds. With the non-active

frames buffering the front or back of the image sequence, about 0.25 seconds in

duration, we assume any sequence shorter than 5 frames (≈ 1.0 seconds) is not a

valid transition.

We found this method of delimiting sequences works well. The previous frame

background subtraction, in particular, is useful for discarding spurious transition

sequences. People loitering within the transition areas are usually relatively sta-

tionary. Movement will activate the sequence, but since they are not moving

significantly, they quickly disappear as part of the background causing the se-

quence to end quickly. A loiterer typically generates multiple sequences less than

the minimum 5 frames. Sudden flashes of light are adapted to quickly and the

perceived sequences are typically shorter than the minimum 5 frame sequence.
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Figure 4.4: The sequence of the trigger state helps indicate direction. The red

box indicates the trigger state is active.

4.4.3.3 Sequence Feature Vectors

Next, we define how to construct a feature vector from an image sequence, which

will then be used with a KNN classifier to determine the best classification. Let

[f0 . . . fn] denote a set of transition sequence frames, each fi encoded as a binary

matrix of size w × h where w and h are the width and height respectively. Thus,

f0 . . . fn denotes the complete image transition sequence. Let cji denote the ith

column vector of fj. We define the one dimensional image feature vector v where

vi =
∑

cji . By summing the columns we are removing the y axis locality of the

person moving through the frame. A person transitioning at the top, middle, or

bottom of a hallway will thus generate a similar image feature vector. The number

of people transitioning is also still retained. If two people walk side by side, the

magnitude of the column vector will be roughly doubled.

In addition to creating a feature vector of the image sequence, we also create

a feature vector of the trigger state. For each frame of the image sequence, we

determine if the trigger area is active or not. The state of the trigger area is defined

to be active when a certain threshold of pixels (5% for our deployment) differs
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from the corresponding background. For each frame of the transition sequence we

determine the state of this trigger. A vector of the trigger states is incorporated

into the KNN classification to determine the direction of the transition. Figure 4.4

shows how the sequence of the trigger state can be used to infer direction. In

this example, a left to right sequence will have non-active trigger states at the

beginning and end. A right to left sequence will have active trigger states only at

the beginning.

While it would be possible to use the entire transition area as the feature

vector, this would require more data to be sent via radio. If we assume a 10 image

sequence, then each binary 20× 40 transition area needs to be sent along with 10

bits for the trigger sequence. This would be (20 · 40) · 10 + 10 = 8, 010 bits. If we

were to send the feature vectors, we would only require (20·6)·10+10 = 1, 210 bits

or ≈ 152 bytes for an entire sequence (6 bits per column, 10 bits for the trigger

sequence). This can roughly put in 2 packets using the node RF transceiver

mentioned in Section 4.4.1. Further compression could be achieved by aggregating

groups of columns. Other techniques could also be potentially used to reduce the

size of packets. Learning the dimensionality reduction could be used to preserve

class information. This would reduce the size of the feature vector and potentially

increase the accuracy of the classification. This along with other compression

techniques are left for future work.

K-nearest neighbors is an effective classification technique when few labeled

examples are available. For gesture recognition, this has been used for classify-

ing specific gestures [KB]. With the feature vectors defined, we next define the

distance metric between feature vectors.

Let X = (x1...xm) and Y = (y1...yn) be image feature vectors and

Xt = (xt1...xtm) and Y t = (yt1...ytn) be the corresponding trigger feature
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vectors. If m = n, the distance between transition sequences is defined as follows,

d(X, Y,Xt, Y t) =
∑

i

|xi − yi|+ α
∑

i

|xti − yti| (4.1)

where α is a weighting coefficient. This coefficient helps to favor examples with

the correct direction. One issue with classification is the varying lengths of the

transition sequences. Transition sequence length depends on how many people

cross a transition area at walking speed. Rather than match only with transitions

of equal length, we also consider sequences within ±20%. Dynamic time warping

is also another possible strategy that we save for future work [MR81]. If m > n

then the distance is defined as,

d(X, Y,Xt, Y t) = argmin
off

m−off
∑

i=off

|xi − yi|+ α

m−off
∑

i=off

|xti − yti| (4.2)

where off is an offset. In other words, we are finding the minimum distance when

the smaller vector subtracted from a subset of the larger vector at different offsets.

Next we define how we choose from the k nearest neighbors. Let M = {l0 · · · lk}

be the set of k closest labeled matches and D = {d0 · · · dk} be the corresponding

distances. Rather than classify based on the most frequent label of M , we weight

each label li by 1/di and choose the label with the greatest summed weight.

4.4.4 OPTNet Evaluation

With the image algorithm defined, we next evaluate the accuracy of the algorithm.

For each boundary, we gathered 48 hours of ground truth transition sequence

data. This data was gathered by manually examining the original images seen by

OPTNet cameras and hand labeling each transition sequence. The first 24 hours

of ground truth is used for training. We trained each boundary area with 150

transition sequences taken from different periods of the day. The remaining 24

hours of ground truth is used for testing. For the weighting coefficient, we set
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Figure 4.5: Overall accuracy over 24 hours as a function of training set size.

α = 10 after trying several weighting factors. While it would be preferable to

gather data and test the system for different times of the year to examine the

performance, we leave this as future work given the amount of time and effort

required to gather ground truth data. We explored many different methods to

help assist the gathering of ground truth data. Initially we used a state of the art

technique that can count torsos and legs [Ope, VJ01, LM02] to identify images

that contain people but found this was only able to identify 80% of the images

with people. Even the most advanced techniques are not completely accurate

and need manual correction. We used a simple previous background subtraction

technique to identify images that contain moving objects and manually processed

these images.

In this section, we examine the directional and overall accuracy. We define

directional accuracy as number of transitions where the direction is classified cor-

rectly divided by the total number of transitions. We define overall accuracy as

the number of transitions where the direction and number of occupants are clas-

sified correctly divided by the total number of transitions. Figure 4.6 shows the
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Figure 4.6: Ground Truth compared with KNN model for two different transition

areas.
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transitions of two different boundary areas over the period of 24 hours. In both

cases, we see that the classification of the KNN model is very close to the ground

truth. In particular, we see that the directional error is very small. In the case of

Hall 1, the directional accuracy was 98.3% and the overall accuracy was 92.4%.

Corner 1 had 8 incorrect directions (5 false positive, 3 false negative) out of 110

detected transitions (92.7%) and an overall accuracy of 87.3%. For both cases,

150 training examples were used. We also found that KNN classifier had similar

performance when applied to different transition areas using training data from

different areas than the ones being tested. Figure 4.6 shows the accuracy when

applying the classifier for a different transition area using 300 training examples.

In this case we have a directional accuracy of 94.0% and an overall accuracy of

93.8%.

From a deployment perspective, a classifier can be substantially trained at

a few transition areas and then applied to other boundaries without requiring

excessive data gathering for training. Figure 4.5 shows the relationship between

training set size and accuracy for Hall 1. We took a random subset of transitions

from the training set and examined the overall accuracy over 24 hours. Only 90

samples (roughly 45 each direction) are required to achieve above 90% directional

accuracy. We found similar results for the other transition areas. Transition

areas near corners or highly variable lighting tended to have lower accuracy. In

these cases, additional training data would increase the accuracy as suggested by

Figure 4.5. More generally, one wants to position transition areas where people

are likely pass through and not loiter. We also found it helpful to choose areas

with less changes of lighting; this cannot always be achieved since key transition

points near exits must contain a transition area in order to capture the occupancy

of areas. We also found that transition areas deployed in hallways performed

better than transitions placed directly in front of doorways. This is because there

is greater variation for the ways people transition through doorways. We also
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Figure 4.7: Occupancy error over time with/without maximum/minimum occu-

pancy limits.
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Figure 4.8: A single transition error continues to affect occupancy estimate.

receive more and better quality training examples for transitions through hallways

than for transitions directly in front of doors.

4.4.4.1 Occupancy Error

In the previous section, we evaluated the accuracy of the system to detect oc-

cupant transitions between areas. Since we plan to use these sensed transitions

to infer occupancy, next evaluate the ability of the system to indirectly estimate

occupancy. In order to evaluate the error of the system to infer occupancy, we

collected 5 days of ground truth occupancy data and compared it to the system es-

timate of occupancy. The ground truth was collected by examining all the images

(≈ 50, 000) captured by the system and manually annotating transitions between

the different areas.
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While the individual errors of the transitions are low, the effect of these errors

is cumulative with respect to occupancy. Figure 4.8 shows an example where a

single error at the beginning of the day causes an over-count of 1 for the rest of the

day. Thus, the problem with this technique is with the integration. We employ

several basic strategies in order to limit this type of error. If a transition area has

a particular bias, maximum and minimum occupancies limit the magnitude of the

cumulative bias. Anytime we obtain negative occupancy we assume the occupancy

is 0. Similarly, for each room, we assume a maximum occupancy and do not allow

the occupancy estimate to be greater than this limit. Figure 4.8 shows examples

of how occupancy limits help reduce the cumulative error. In these plots we show

the difference between the occupancy estimate (with and without limits) and the

ground truth. For the negative cumulative error plot, we see that with limits in

place, the error is only -1 for the majority of the time, whereas with no limits,

the error is -6 for most of time. Similarly, we see in the positive cumulative error

plot that the limited occupancy has an error of 1 most of the time; with no limits,

the occupancy error is typically 2. The last strategy we use to reduce cumulative

error is assuming occupancy is 0 for all rooms at 4am. Though cumulative error is

eliminated eventually (i.e zeroing occupancies at 4am), there may be long periods

of time where the occupancy provided by the system deviates greatly from the

actual occupancy. This can be seen in Figure 4.8. We can see in the negative

cumulative error plot that there is an error of -1 for approximately 8 hours. The

positive cumulative error plot shows an error of 2 to 3 for nearly 13 hours. In

order to improve the occupancy estimate of the system we use a particle filter as

described in Section 4.6.
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Figure 4.9: PIR node deployed on ceiling

4.5 BONet

Binary Occupancy Network (BONet) is a wireless sensor network of PIR sensors

deployed in each office. Each node is comprised of a Tmote and PIR sensor (Fig-

ure 4.9). The sensing area of the node is approximately 11 m2 when deployed at

a hight of 3 m. For single offices, a single node provides adequate coverage. For

larger areas such as the lab, multiple PIR sensors were used. The PIR sensor is

sampled once per second and sends back the total number of triggers every minute.

Data was collected using low power listening [T10] and timestamped using Flood-

ing Time Synchronization Protocol [MKS04]. Out of the 34 nodes, 6 experienced

false triggering due to calibration issues. However, 3 of these sensor were in the

areas where redundant functional PIR sensors were available. Figure 4.10 shows

the accuracy for one area. We found the system to have an accuracy of 94% for

the 28 functional nodes when compared with ground truth data over a 48 hour

period.

4.6 Particle Filter

We implemented a re-sampling based particle filter to achieve a higher accuracy

of the room occupancy. This method uses an occupancy prediction model along

with the inferred occupancy estimate from the camera system to create a more

accurate estimate of occupancy. The particle filter algorithm is a nonparamet-
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Figure 4.10: PIR accuracy compared with ground truth.

ric implementation of the Bayes filter [TBF06]. We also tested a Kalman filter

approach but found the particle filter approach worked better since it is able to

track more hypotheses (i.e. future occupancies).

The main concept of the particle filter algorithm is to represent the posterior

occupancy state of a certain number of rooms by a set of random state samples

drawn from a predefined state transition model and weighted differently according

to a measurement model representing the sensor accuracy. These random samples

are called particles, and they give a distribution of the estimated posterior state.

The particles are defined as:

Xt = x1

t , x
2

t , . . . x
M
t (4.3)

where, each particle xm
t is a vector representing a set of N rooms with different

occupancies at time t. Each position in the vector represents a specific room

occupancy; xt = [r1, r2, . . . , rN ] where ri is the room occupancy for room i.

Algorithm 2 shows the particle filter algorithm. Data from BONet is used as

pre-processing step. If BONet senses a room is unoccupied and OPTNet indi-

cates there is occupancy, then the room occupancy is assumed to be 0; BONet

is more reliable than OPTNet for detecting empty rooms. We define OBNet as

the combined the OPTNet and BONet system that fuses occupancy data as just

described. The particle filter is initialized with the previous particle set Xt−1 and

the current processed sensor output zt, coming from OBNet. Time t in the particle
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Algorithm 2 ParticleFilter(Xt−1, zt):
for m = 1 to M do

sample x̂mt from TransitionModel(xmt−1, t)

add x̂mt to X̂t

for n = 1 to N do

get wm,n
t from Measurement(znt , x̂m,n

t )

end for

end for

w̄m,n
t = Normalize(wm,n

t ), m = 1 . . .M, n = 1 . . . N

for n = 1 to N do

draw xmt with probability w̄m,n
t from X̂t, ∀m ∈M

add xmt to Xt

end for

return Xt

filter represents the current second of a day, starting at 1 second after midnight.

M denotes the number of particles in the particle set Xt. In our experiments we

tried various numbers of particles between M = 50 and M = 1000. For the results

presented in this paper, we use M = 100 particles.

The particle filter algorithm consists of three major steps: 1. sampling from

the transition model; 2. calculation of the particle weights; and 3. re-sampling.

The sampling step of the particle filter algorithm, M samples are drawn from

the transition model. The transition model is represented by a blended Markov

Chain as described in [ECC11] and Chapter 3, where each state xm
t−1 can reach

one possible successor state x̂m
t with a certain probability p(x̂m

t |x
m
t−1),m = 1 . . .M .

In the weight calculation step of the particle filter, a specific weight wm,n
t

is assigned to each value of each state given the probability of the estimation

x̂m,n
t under the sensor measurement znt , for a specific particle m of room n. In

our implementation, the weight wm,n
t is determined by the measurement model,
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Figure 4.11: Sensor output error distribution.

which is a distribution of the difference between the occupancy ground truth

and the occupancy value of the processed sensor output of the training data. The

distribution consists of the number of cases of the difference between ground truth

and the inferred occupancy estimate from the sensor data as shown in Figure 4.11.

The weight wm,n
t of a specific particle is now determined by calculating the

absolute difference between the model estimation x̂m,n
t and the processed sensor

output occupancy value znt :

xm,n
tDiff = x̂m,n

t − znt (4.4)

Based on the previously created distribution, the weight wm,n
t of room n in particle

m is now determined by dividing the number of cases of a certain difference xm,n
tDiff

by the complete number of cases. For example, the observed number of cases with

a difference of xm,n
tDiff = 1 between ground truth and processed sensor output is

5,240 out of 86,400 overall cases, which equals 0.06. This is done for every room

n within each state m from the transition model.

The re-sampling step draws with replacement M samples from the tempo-

rary particle set X̂t. Each estimation is drawn with probability weight wm,n
t . This

method of re-sampling transforms the temporary particle set X̂t into another par-
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Figure 4.12: Occupancy over time for the transition model, the sensor output and

the particle filter for 2 areas

ticle set Xt. By considering the weight of each estimated occupancy value in this

step, the result is a different distribution since duplicates of values with a higher

weight wm,n
t are more likely to be part of the new distribution than values with a

lower weight. The final result is a matrix where each column represents a distri-

bution of the occupancy of a specific room. We obtain the final occupancy state

CurrOcc for a number of N rooms by averaging each column over all states of the

final particle filter result Xt.

CurrOcc =

M
∑

m=1

xm,n
t

M
, ∀n ∈ N (4.5)

80



4.6.1 Particle Filter Results

Figure 4.12 shows the occupancy estimation by a particle filter, the direct sen-

sor output of the OPTNet system. The ground truth shows a meeting in the

conference room starting at about 10:30 am and ending at 11:50 am. The direct

sensor output of the OPTNet system estimates shows negative occupancy near

the beginning of the day, which persists until the meeting starts. Later in the

day it overestimates the room occupancy, due to positive cumulative error. This

happens between 15:00 and 00:00 when no one is in the room. This error can lead

to energy waste if we were to use the direct sensor output of the OPTNet system

alone.

The occupancy estimation of the particle filter, which uses the fused OB-

Net sensor data and transition model, correctly estimates occupancy at around

10:30 am. Further examination of these short occupancies show a janitor enter-

ing/leaving the room. The particle filter tended to show a lower prediction of

occupancy than the actual ground truth for the 10:30 am to 11:50 am period.

This is because the training data used for the model never experienced a large

number of people and the sensor gives a lower occupancy number than the actual

ground truth. This can be solved using an extended training set for the transition

model.

For the robotics lab, the transition model alone is mostly underestimating the

occupancy between 7:30 am and 2:00 pm and only overestimating the occupancy

a little bit in the afternoon between 2:30 pm and 6:30 pm. The direct OPTNet

sensor output, overestimates the occupancy within the robotics lab almost all day

long, especially between 6:30 pm and 00:00 am when the room is actually not

occupied. The particle filter overestimates the occupancy only a little bit between

8:00 am and 4:00 pm. Between 4:00 pm and 6:30 pm the particle filter under-

estimate occupancy of the room. The overestimation of 1 person between 6:30 pm
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Figure 4.13: Occupancy error over 2 weeks.

and 00:00 am may lead to smaller conditioning costs compared to the sensor, but

larger than the model in this time window. Overall, the particle filter estimation

in this example provides an occupancy estimation much better than the direct

sensor output, and a slightly better estimation than the transition model in this

24 hour example.

We use root mean squared error (RMSE) to evaluate the occupancy estimation

accuracy by the transition model, the OBNet sensor data and the particle filter.

Figure 4.13 shows the RMSE for 6 different zones. For the conference room and

the computer lab, the sensor is more accurate than the model; the sensor output

is correcting the estimation of the transition model within the particle filter. For

the office areas 1-3 and the robotics lab, the sensor output has a large error caused

by transitional bias. The transition model for these rooms shows more accurate

results and leads to a slightly better result than the particle filter. Here, the

model estimation is correcting the sensor output within the particle filter. Since

the error of the sensor is high in the case of office area 1-3 and the computer lab,

it is possible that the estimation of the transition model alone is slightly better

then the particle filter. The particle filter gave an average RMSE of 1.83 for our

building. Overall, the particle filter gave the best results when compared to the
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model and the sensor.

4.7 Summary

Occupancy measurement is a critical component for controlling HVAC based on

occupancy. In this chapter, we design and implement an occupant measurement

system using two sensor networks; one network of cameras called OPTNet, and

another network of PIR sensors called BONet. We showed that this system is

capable of detecting transitions with up to 94% accuracy and that the system is

able to generalize to different locations. Combined with BONet and a particle

filter, we can bound the error of occupancy within 1.83 people on average for our

building.

The choice of cameras for inferring occupancy was based on previous success

with this technology and lack of alternative technologies at the time that could

estimate occupancy in real-time. In order to address privacy concerns, the cam-

eras had to be placed within hallways and used as turnstiles to indirectly infer

occupancy. The main drawback to this technique we found was cumulative er-

ror; even a single error had the potential to propagate for a significant amount

of time. By using the inferred occupancy from the camera system with an occu-

pancy estimate from an occupancy prediction model in a particle filter, we were

able to obtain an improved estimate of occupancy over using OPTNet to inferred

occupancy alone. However, this too has several drawbacks. The most significant

drawback is the requirement of an occupancy prediction model. In order to create

a prediction model, training data is required. Gathering ground truth training

data is impractical. Also an issue is that the model will tend to pull occupancy es-

timates similar to the training data of the occupancy model. OPTNet alone is too

inaccurate to infer occupancy alone. While placing cameras directly within offices

would remove the problem of cumulative error, this would raise main privacy con-
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cerns. While the use of the particle filter occupancy estimates for occupancy based

HVAC control is possible, these issues made the system less practical. However,

shortly after completing the project, new inexpensive thermal sensing technology

became available. With thermal sensing, sensors can be placed directly in the

room without the same privacy issues as cameras. Rather than infer occupancy

through transitions, thermal sensors can survey a target area and directly measure

occupancy, avoiding cumulative error and the need of a particle filter and model.

In the next chapter, we show how this thermal sensing technology can be used to

estimate occupancy.
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CHAPTER 5

ThermoSense: Thermal Based Occupancy

Sensing

In the previous chapter, we developed an occupancy detection system that uti-

lized cameras in order to monitor occupants in real-time. As we saw previously,

cameras placed in public hallways and function as an “optical” turnstile are prone

to cumulative error. If an optical turnstile misses even a single person enter-

ing/exiting a space, this error is propagated until another offsetting error occurs

or some other mechanism used to correct the error. By applying a particle filter

and applying some assumptions, such as assuming the building is empty very early

in the morning, we were able to obtain improved estimates of occupancy. While

these strategies improved occupancy estimates, it required a model of occupancy

in order for the error correction to work. Since the particle filter tended to pull

occupancy estimates toward values seen in the training data, the quality of the

occupancy estimate required the model to be adequately trained to capture the

majority of cases. Ideally, we wish to utilize an occupancy estimation method that

is not prone to cumulative error and does not require prior knowledge of occu-

pancy patterns. This became possible when inexpensive thermal sensing became

available.

In this chapter, we develop ThermoSense, an occupancy monitoring system

that utilizes thermal based sensing and PIR sensors. We develop a novel low-

power multi-sensor node for measuring occupancy utilizing a thermal sensor array

combined with a PIR sensor. The thermal sensor array used is able to measure
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temperatures in an 8x8 grid pattern within an 2.5mx2.5m area when deployed on

a 3.0m ceiling. We show it is possible to use these temperature readings in order

to determine how many people are within the space. Unlike the CO2 sensor, the

thermal array can measure occupancy in near real-time. The thermal array is

also not sensitive to optical issues, such as lighting or background changes. By

adding a PIR sensor, we increase accuracy of detecting empty spaces and the

overall accuracy of the platform. The PIR sensor is also used to reduce the node’s

power consumption by triggering the mote and thermal array only when someone

is present. We test this new platform with a 17-node deployment covering 10

building areas totaling 2,100 sq. ft. for a period of three weeks. In this Chapter,

we contribute the following:

• We developed a novel multi-sensor platform for estimating occupancy uti-

lizing a thermal sensor array and a PIR sensor. We performed a full system

power consumption analysis and tested a 17-node deployment over a 3 weeks, in

10 HVAC conditioning areas, covering 2,100 sq.ft.

• We developed a new occupancy classification process using the sensor data,

which includes thermal map background update, feature extraction, occupancy

classifiers and post-processing filtering. We tested three classifiers, including K-

Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and linear regres-

sion (LR). Using this process, we showed that these types of sensors are capable

of estimating occupancy with an RMSE of only ≈0.35 persons.

5.1 ThermoSense

We start by describing ThermoSense, a wireless sensor network of nodes that can

measure occupancy using a combination of thermal readings and PIR. Figure 5.1

shows the ThermoSense node used for the sensor network.

In order to have an effective wireless occupant measurement system suitable
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Figure 5.1: Grid-Eye attached to a Tmote (left). Enclosure containing both the

Grid-Eye and PIR (right).

for HVAC control, several design considerations must be examined. While wired

system for binary occupancy sensing exists, these systems are costly to install

and can be difficult to retrofit into older buildings; for our system, we want an

easy to deploy wireless system. Since it is wireless and untethered, power con-

sumption is a significant issue. Both the mote and sensors must be low-powered

and run in a power efficient manner. For our platform, we make use of a PIR

for two reasons. The first is that accurate detection of empty rooms is critical

in order to capitalize on potential savings. The second is that the PIR can also

be used to sleep components in the system when sensing and communication are

not necessary. While the PIR is able to give an accurate and reliable binary in-

dication of occupancy, we need another sensor capable of determining how many

occupants are in an area. In conditioned indoor spaces, like the great majority of

buildings, occupants are typically warmer than the surroundings, hence a thermal

array a thermal sensor array, capable of measuring multiple temperatures within

an area, is a viable method for detecting occupancy. Figure 5.2 shows an above

view of the area, where each square of the grid is a point of measurement of the

thermal sensor array. The shaded red squares shows the points in the grid with

higher temperatures, which in this case is the location of the occupant. Multiple

87



Figure 5.2: 8x8 thermal array sensing an occupant.

occupants can be distinguished by higher density of warmer temperatures.

5.1.1 Hardware

Each ThermoSense node contains a Tmote Sky, PIR, and Grid-Eye Sensor. The

Tmote Sky [tmo], produced by MoteIV, has a 8MHz TI-MSP430 micro-controller

with 48k Flash storage and 10k RAM. The Tmote communicates using a Chipcon

CC2420 radio. The PIR sensor is connected to the Tmote’s digital input/output

pin while the Grid-Eye is connected to the I2C clock and data pins. We developed

a board in order to connect both the Grid-Eye and PIR sensor with the Tmote.

The PIR used in the nodes is the PaPIR EKMB VZ series developed by Pana-

sonic. The PIR is able to detect motion up to 12m with a detection a viewing angle

of 102◦x92◦ horizontal by vertically respectively [PaP]. The infrared thermal array

used to detect actual occupancy is the Grid-Eye sensor made by Panasonic [gri],

priced at $31. This sensor measures 64 temperatures in an 8x8 grid where the

physical size of this grid is determined by the distance the sensor is to the target

surface. We found the Grid-Eye to be able to sense within a 2.5mx2.5m square
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Components Used Energy Usage

Mote Only (No Duty Cycling) 4.72 mA

Mote + PIR 4.73 mA

Mote + PIR + Grid-Eye 4.76 mA

Mote + PIR + Grid-Eye + Radio 4.82 mA

Table 5.1: Energy Usage for independent components.
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Figure 5.3: Energy usage for different duty cycles.

when placed at a height of 3m. The Grid-Eye measures temperatures from -20Co

to 80Co with an accuracy of ±2.5Co and can sample 10 times per second (each

sample contains 64 temperature values).

5.1.2 Power Consumption

We used two 3000 mAh lithium batteries for each node in our deployment. We

found battery life of ThermoSense node to be over three weeks sampling once

every five seconds. For a more detail analysis of the consumption, we measure each

component of the platform separately using an oscilloscope. Table 5.1 summarizes

the results. The difference in energy between using PIR and Grid-Eye together as

compared to the PIR only is small (0.03 mA). Adding the radio with the Grid-Eye

and PIR only increases the current use by 0.06 mA. Since the samples were only

sent once every 5 seconds, the energy use of the radio is small. Figure 5.3 shows

the lifetime of the system at different duty cycles for different battery capacities.

89



Since we have access to 80 Ah batteries that fit in our enclosure, we can estimate

how long this system would last with larger capacity batteries. We can see even

in the worse case, an 80 Ah battery would last longer than 1 year. If we were

to sleep various components of the mote and if we were to do smart local data

processing to transmit only deviations from a model, we could even further reduce

power consumption and extend system lifetime. These optimizations are left for

future work.

5.2 Occupancy Classification

In this section, we develop the process for occupancy classification in order to

estimate occupancy from the ThermoSense node. Figure 5.4 shows an overview of

this process. Information from the PIR and thermal sensors is used to update and

maintain background levels of the thermal map. The current values along with the

current background are used to create features vectors. These feature vectors are

inputed into a classification model, which produces a “raw” occupancy estimate. A

filter is then applied to the “raw” occupancy along with past occupancy estimates

to produce the final occupancy estimate.

In the following sections, we develop and analyze each component of the occu-

pancy classification process and examine the overall performance of the resulting

occupancy estimates. We first examine the performance of the PIR sensor, and

examine, in particular, the ability of the sensor to detect empty rooms. We next

describe the process used to maintain the thermal background using the thermal

array and PIR sensor. Then we describe how the background and current ther-

mal map are used to create the feature vectors used for the occupancy classifica-

tion model. We examine three different classification models; K-nearest-neighbors

(KNN), linear regression (LR), and artificial neural networks (ANN). We then dis-

cuss the use of the filter on the “raw” occupancy output of the models. Finally,
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Figure 5.4: Occupancy Classification Process

we examine how the final output of the process performs by comparing the out-

put to ground truth data collected over a 24-hour period of time from manually

processed video feeds.

5.2.1 PIR Sensor Input

In our ThermoSense nodes, the PIR is used to detect if a room is currently oc-

cupied or unoccupied. The nature of the PIRs only allows motion detection, but

people are not constantly moving when they are occupying a room. The PIR sig-

nal constantly fluctuates when motion is detected, and this requires a smoothing

method to process it. Therefore, we smooth the raw PIR values over a period of

8 minutes using a moving average. This period was found by evaluating multiple

different time windows and it is sufficient time to allow someone to remain inac-

tive for a short time while still being able to detect that the room is being used.

An 8 minute period was also found to return the least number of false positives.

These false positives can occur when a person momentarily enters a room (e.g. a

janitor) or positives that continue to be returned after a person has left a room

(e.g. motion activity before leaving). This smoothing compared to ground truth

can be seen in Figure 5.5.

Due to low number of false negatives, seen in Figure 5.6, the PIR can be used

reliably as an unoccupied indicator. This can be used to override any predictions

that would normally be made by our thermal array sensor. Once a room has been
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established as occupied by the PIR, additional models can be used to further

evaluate the actual occupancy of a room.

5.2.2 Thermal Background

Since occupants are typically by far the warmest objects in a conditioned room,

the thermal array can be used to detect occupants within a space. However, in or-

der to distinguish between passive warm objects such as computers or refrigerators

and humans, we maintain a thermal background map. If the PIR sensor indicates

the room is empty, then this information can be used to determine the thermal

background of the space. As the background can change over time, this back-

ground is continuously updated. In addition to maintaining the background, the

standard deviation of each grid position is also saved; this standard deviation is

used in the following section as a thresholding parameter for distinguishing signif-

icantly warm grid components. Algorithm 3 defines how our current background

and standard deviation for each pixel for this background is maintained.

Before defining the feature vectors, we first discuss how we maintain our back-

ground temperatures. In order to define our features, background subtraction is

used to differentiate an active pixel from a warm spot in a room. If the PIR has

detected no movement for the 15 previous minutes, the background is updated

using an exponential weighted moving average (EWMA) and the standard devi-

ation is updated for each grid component. We found 15 minutes worked best, as

it is unlikely an occupant remains motionless for 15 minutes. This threshold is

also commonly used for PIR based lighting control [NLP98]. However, if an occu-

pant occupies a space for a significant period, it is possible that the background

changes during this period. To adjust the background while the space is occupied,

we chose a few grid points with the lowest temperatures as our scaling compo-

nents. The points with the lowest temperatures are most likely unoccupied and

can be used to update the old background. We divide these scale points with the

93



old background and average them to find a multiplier we can use to update our

previous background. We then multiply the scale to the old background to find

out a new background. The new background is smoothed into our old background

by using an EWMA but with a significantly lower weight applied.

Algorithm 3 Background Update
EWMA(a, x, y)← EWMA with weight a.

minTemp(f, n)← indices of the n-lowest temperatures from frame, f

frame← current frame

newBg ← returned updated background

oldBg ← old background

windowBG← sliding window of the background

if PIR has been off for more than 15 minutes then

newBg = EWMA(0.1, oldBg, frame)

add frame to windowBG

threshold ← 3 * std(windowBG)

else

indices← minTemp(frame, 5)

for each index in indices do

scalePx(index)← oldBG(index)/frame(index)

end for

scale← mean(scalePx)

scaledBg ← scale ∗ frame

newBg = EWMA(0.01, oldBg, scaledBg)

end if

5.2.3 Feature Vectors

We next define feature vectors that we will use as input for the classification

models. While it is possible utilize all 64 values of the thermal array along with
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the PIR sensor, we found that this approach did not generalize well; the models

would not work well when applied to different areas. Instead, we use the following

three features for our models; the total number of significantly warm points, the

number of grouped points that are warm, and the size of the largest group of warm

points. The following subsections formally defines how we extract these features.

We tried a significant number of other less successful feature vectors, e.g. 64 raw

values, 64 thresholded-binary values, size of all connected components, different

permutations of the feature vectors, etc. We try these different options but none

of them work as well as the method chosen.

All three feature vectors are based on identifying the significantly warm points

on the grid. As our first step, we first create a 8x8 binary matrix represent-

ing the significantly warm points from the thermal map. This is done by taking

the difference between the background and the current thermal map and apply-

ing a standard deviation based threshold to this difference. We define current

thermal values, background, and standard deviation as Mij = (m0,0...m7,7),

Bij = (b0,0...b7,7), Sij = (s0,0...s7,7), respectively. An active point is defined as

being three standard deviations away from the background,

f(i, j) =











True, if Mi,j −Bi,j > 3 ∗ Si,j

False, if Mi,j −Bi,j < 3 ∗ Si,j

Feature 1: Total Active Points - For our first feature, we use the total number

of active points. A larger total is correlated with higher number of occupants.

Feature 2: Number of Connected Components - Our second feature is based

on connected components [HT73]. Connected components is a method of identi-

fying groups of points within a matrix that are connected to each other. A point

is considered connected if it is the same value as the point diagonal or directly

adjacent. A component is a group of connected points. The number of the compo-
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nents, which are number of grouped warm points in our application, is correlated

to the number of people occupying the area.

Feature 3: Size of Largest Component - The third feature is the size of the

largest component with the grid. Multiple occupants standing close together will

create one large component rather than several separate components, which would

results in a lower occupancy count. The size of the largest component is positively

correlated with occupancy and can be used to get a more accurate count.

5.2.4 K-Nearest Neighbors

The first model we consider is K-Nearest Neighbors. Let X = (x0...xn) be the

the components of the feature vector of the current frame. Y = (y0...yn) is each

individual feature components found inside the entire training set, Z = (Y0...Ym).

We use euclidean distance to calculate the distance between feature vectors,

d(X,Zj) =

√

√

√

√

n
∑

i=0

(xi − Zji)2

We then find the minimum k distances from the training set of Z and col-

lect the distances as D = (d0...dk) with it’s corresponding occupancy labels as

L = (l0...lk). Weight is applied depending on the distance to each labels to get

the final predicted occupancy, P .

P =

k
∑

i=0

wili, where wi = 1− di/(

k
∑

j=0

dj)

When calculating KNN, we find the 5 nearest neighbors and the distances

associated with each. The predicted occupancy is averaged with the labels asso-

ciated with the 5 closest values, with the largest weight given to values with the

smallest distance.

96



Value p-value

βA 0.141 2.44× 10−187

βS -0.051 1.14× 10−30

β 0.201 9.25× 10−11

F-statistic 3220 ≈ 0

R2 0.858

Table 5.2: Parameters of linear model and fit metrics.

5.2.5 Linear Regression

The next model we examine is a linear regression model. We define a linear model

y = βAA + βSS + β

where y is the estimated occupancy (predicted variable), A is the number of

active pixels and S is the size of the largest component (indicator variables). βi is

the corresponding coefficient for the indicator variable i and β is a constant. While

the other models also included the number of components as a parameter, for the

linear model, we chose A and S by testing permutations of the feature vectors

that minimized root mean squared error (RMSE) and had significant coefficients

(p < 0.05). We also found that the model fit best when estimating positive

occupancy. Thus, we train the linear model with data for the 1, 2, and 3 person

cases and rely on the PIR sensor to determine if a space is empty.

Table 5.2 shows the fitted model parameters along with p values of each pa-

rameter and the F-test of the overall model. Using a p < 0.05 threshold, we see

the p-values for each of the indicator variables is significant. We see also find

that p ≈ 0 from the F-test and R2 = 0.858, indicating a good fit. Figure 5.7,

shows the distribution of the residuals. The normal distribution verifies that the

independent error assumption has not been violated.
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5.2.6 Artificial Neural Network

The final model we consider is a forward feed ANN [Mit97] using a single hidden

layer of 5 perceptrons. We use a sigmoid for the hidden layer transfer function

and a linear transfer function for the output layer. The same data for the 1, 2,

and 3 person case was used for the ANN model. Again we use the PIR value

to determine the 0 person case. We used 70% of the data for training, 15% for

testing, and 15% for validation. We found R2 = 0.893 and R2 = 0.906 when

compared with the testing set and the entire dataset respectively, suggesting the

model has a strong fit.

5.2.7 Filter

The last step of the occupancy classification process is the filtering of the raw

occupancy estimate. If we examined the error of the models, we found that the

errors are independent and normally distributed (see Figure 5.7). Thus, we employ

a 4 minute moving average filter in order to reduce error of the raw occupancy

estimate produced by the classification model. We found that the 4 minute window

minimized our error and was found through trial and error. Figure 5.8 compares

the raw output of the model with the filtered output. From the figure, we can see

that the filter is effective at removing independent errors.

5.2.8 ThermoSense Performance

In this section, we examine the performance of the process with respect to the

three models. In order to test the performance, we gathered 24 hours of ground

truth data. This data was gathered by deploying a camera in a public hall way and

manually counting the number of people entering and leaving the zone through

out the day. For our analysis, we examined a single zone comprised of 3 separate

offices. For our performance metrics, we use RMSE and normalized root mean
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squared error (NRMSE).

Table 5.3 summarizes the performance results. Overall KNN, performed the

best. KNN had a RMSE of 0.346 people (NRMSE of 11.5%). LR and ANN

had slightly higher RMSE values of 0.409 people and 0.385 people (NRMSE of

13.6% and 12.8%) respectively. Figure 5.9 shows the performance of the models

as a function of the amount of training data available. In particular, KNN is

able to perform fairly well relative to the amount of data available. With only

100 training samples, KNN has a NRMSE value of 25%. Both LR and ANN

have values 35% and 34% respectively when trained with the same 100 samples.

LR and ANN have very similar performance between 100-900 samples. After

900 samples, we see that the ANN starts to have slightly better performance

than LR. Though KNN maintained lower NRMSE overall, the difference among

the different models became small as the available data increased; the maximum

difference among models is only 2.1%.

5.2.9 Model Discussion

While each model had similar results with KNN having the best RMSE, there are

other issues to be considered. KNN required the least amount of data in order to

achieve a low NRMSE. However, Figure 5.9 shows that as more training data is

available, the other models may well match or outperform KNN. Another consid-

eration is that as the number of training data increases, the run-time performance

of KNN will decrease. While there is a possibility of running KNN on a mote, it

requires storing the entire training set and iterating through the set for each new

sensed sample. Thus, KNN is more suited to situations with little data exists and

KNN is processed at the base-station rather than the node. Though the linear

model had the lowest accuracy, there are other advantages to this approach. In

particular, it can be run very efficiently on a mote; in our case, only the values of

the coefficients (β, βA, βS) need to be stored on the mote and new estimates are
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KNN LR ANN

RMSE 0.346 0.409 0.385

NRMSE 11.5% 13.6% 12.8%

Table 5.3: Evaluation of the models used.
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Figure 5.9: NRMSE of a ThermoSense node in a zone.

simple to calculate in real-time. A similar argument can be made for ANN; only

the input and weights need to be stored on the mote and estimates are trivial to

calculate in real-time. ANN can require potentially more time to train, but as

this is a one time cost, ANN may be preferable over LR since ANN can handle

non-linearities.

5.3 Summary

In this chapter, we developed ThermoSense, an occupancy monitoring system that

utilizes thermal based sensing and PIR sensors. We developed a novel low-power

multi-sensor node for measuring occupancy using a thermal sensor array combined

with a PIR sensor. The thermal sensor array is able to measure temperatures in an

8x8 grid pattern within an 2.5mx2.5m area when deployed at ceiling heights of 3m.
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We showed it is possible to use these temperature readings in order to determine

how many people are within the space using a novel occupancy classification

process. Unlike a CO2 sensor, the thermal array can measure occupancy in near

real-time. The thermal array is also not sensitive to optical issues associated with

the strategy discussed in the last chapter, such as lighting or background changes.

By adding a PIR sensor, we increase the accuracy of detecting empty spaces and

the overall accuracy of the platform. The PIR sensor is also used to reduce the

node’s power consumption by triggering the mote and thermal array only when

someone is present. We tested this new platform with a 17-node deployment

covering 10 building conditioning areas totaling 2,100 sq. ft. for a period of three

weeks and showed that ThermoSense is able to detect occupancy with a RMSE

of only ≈0.35 persons. Though we found KNN to work the best, both ANN and

linear regression worked sufficiently well for the purpose of estimating occupancy

for HVAC systems.
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CHAPTER 6

OBSERVE: Occupancy-Based System for

Efficient Reduction of hVac Energy

A major goal of this dissertation is to condition based on actual use rather than

assumed use. In order to accomplish this, we need knowledge of occupancy. In

Chapters 4 and 5 we developed two different wireless sensor networks for mea-

suring occupancy in near real-time; this will allow us to provide the appropriate

amount of ventilation to the spaces. Next, we need to know when people oc-

cupy the space so heating and cooling can be actuated beforehand. This needs

to be done predictively since time is required for rooms to reach target tempera-

tures. In Chapter 3, we developed several methods of predicting occupancy. With

occupancy modeling and occupancy measurement, we are now able to develop

control algorithms that can predictively actuate heating and cooling beforehand

and ventilate based on actual occupancy.

In this chapter, we combine the systems and modeling developed in the previ-

ous chapters to create a conditioning strategy. In this chapter we contribute the

following:

• We demonstrate how models developed from sensor network data can be

integrated with an HVAC control strategy to achieve significant energy sav-

ings.

• We show that we can still satisfy ASHRAE conditioning standards while

saving significant energy. In certain cases, we show that our predictive
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strategies meet user demand better than typical baseline strategies.

• We examine a PIR based WSN solution and show that binary measurement

of occupancy is not always sufficient for HVAC control. Under some circum-

stances, PIR based HVAC control performs worse than current strategies;

in order to achieve maximum energy savings within a building, accurate real

time levels of occupancy must be incorporated into HVAC strategies.

6.1 HVAC Conditioning Strategy

We start by examining the basic criteria required for usage based occupancy condi-

tioning. In Chapter 3, we explored several different occupancy strategies. The one

that best represented occupant behavior based on the metrics examined was the

Blended Markov Chain (BMC). Thus, for our control strategies, we will use BMC

to define a predictive control algorithm for temperature. We start by defining the

thermal and ventilation criteria that our HVAC strategies must meet to have an

ASHRAE compliant building. We then define the occupancy based temperature

control strategy.

6.1.1 Conditioning Criteria

6.1.1.1 Temperature

Thermal comfort is a complex measurement that depends on many aspects such

as temperature, humidity, air velocity, occupants clothing and activity [PHK10,

PHK07]. The most common comfort measurement is Fanger’s Predicted Mean

Vote PMV as standardized in ISO 7730 [OP02]. Fanger’s model is not an undis-

puted thermal comfort measurement [OP02, PHK07, SBW10], but provides good

generalized results in many cases. Fanger computes the thermal comfort PMV

value between −3.5 and 3.5. Rounding the PMV results in the comfort classes
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hot (PMV > 2.5), warm (1.5 ≤ PMV < 2.5), slightly warm (0.5 ≤ PMV < 1.5),

neutral (−0.5 ≤ PMV < 0.5), slightly cool (−1.5 ≤ PMV < −0.5), cool (−2.5 ≤

PMV < −1.5), and cold (PMV < −2.5). Fanger’s PMV depends on air tem-

perature [OP02], radiant temperature, humidity, air velocity, occupants clothing

and activity. The model is non-linear and based on large scale studies in climate

chambers.

Measuring the PMV based on this model is very complex due to the many

influences. The activity and clothing level of occupants is simplified by assum-

ing defaults such as office work and clothing level is correlated to the outside

temperature [4]. However, this still requires an air temperature, radiant tem-

perature, humidity and air velocity sensor in each room. Air temperature and

simple humidity sensors could be added to our wireless sensor node, but radiant

temperature and air velocity sensors are complex and expensive, such that large

scale installations are not affordable. Given these complexities, our work focuses

on optimally controlling temperature rather than attempting to control PMV.

From a control perspective, our goal is to meet a target temperature defined by

a comfort metric, which may not necessarily be Fanger PMV. Different comfort

metrics will establish different temperature set-points. It is thus more important

to meet specific target temperatures than to meet a specific comfort metric. As

metrics are developed and better environment sensing is available, we want our

system meet the temperature goals dictated by the new comfort criteria.

6.1.1.2 Ventilation

ASHRAE Standard 62.1 [ASH07b] uses the following to calculate outdoor air

ventilation rates:

Vbz = RpPz +RaAz (6.1)
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where z denotes the zone, Vbz is the ventilation rate, Rp is the minimum

CFM/person, Pz is the number of people, Ra is the minimum CFM/ft2, and Az

is the floor area. The Pz by determining Az. The other constants are determined

by ASHRAE Standard 62.1.

6.2 OBSERVE Temperature Control Strategy

This section defines the Occupancy-Based System for Efficient Reduction of hVac

Energy (OBSERVE) predictive control algorithm, which uses a BMC to predic-

tively condition room temperature. The function BMC(OccState, predLen) re-

turn a predicted schedule of occupancy occPred, where occPredt is a probability

a space being occupied at time t = 1 . . . predLen and OccState is the occupancy

state at time t = 0. This conditioning strategy is also applicable for binary occu-

pancy data. The BMC can be easily adapted to binary data by representing the

MC state at each time as a vector where each component is a binary indication

of occupancy (instead of actual occupancy). Algorithm 4 defines the OBSERVE

temperature control strategy.

This strategy conditions for two different types of occupancy. It first checks

short windows of time for occupancy to ensures that rooms, such as copy rooms,

that are not frequented often but have occupied durations of several minutes

are conditioned. The second longer window ensures rooms that are frequented

constantly but may have short stay durations are still conditioned. Hallways are

an example of such an area. Since no standards currently define what constitutes

a significant duration of occupancy, we chose values that seem reasonable.
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Algorithm 4 OBSERVE temperature control algorithm.
CondTempi,j ← Condition temperature from time i to j

CurrHour ← Current hour

TTG ← Temperature such that PMV = 0

TASH ← Temperature such that −0.5 < PMV < 0.5

pThresh← Probability threshold of occupancy

for Every n minutes do

CurrOcc← Current occupancy state

occPred← BMC(CurrOcc, predLen)

for Each room r and point of time t in occPred do

occupied← All periods occPredt→t+60 > pThresh

if occupied > 5 minutes of next 15 minutes then

CondTempt−60,t+15 = TTG

else if occupied > 20 minutes of next 60 minutes then

CondTempt−60,t+60 = TTG

else if 5 ≤ CurrHour ≤ 24 then

CondTempi,i = TASH

end if

end for

end for
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6.3 Evaluation

Four different strategies are considered. The first is coefficient based baseline

strategy (ASHRAE baseline) that employs a typical HVAC control strategy as-

suming maximum occupancy for ventilation and conditions all rooms from 7:00 -

22:00. The second strategy (Reactive Binary) is a binary based reactive control

of temperature and ventilation. Rooms are conditioned to a target temperature

when occupied and are not predictively preconditioned. Rooms that are unoc-

cupied are still conditioned to the max/min temperatures allowed by ASHRAE.

Since precise room occupancies are unknown, rooms are ventilated according to

the estimated maximum occupancy when occupied. The maximum occupancy is

determined using ASHRAE Standard 62.1 based on area and room purpose. The

third strategy (OBSERVE Occupancy) uses the OBSERVE algorithm described

in Section 6.2. Ventilation is based on the observed room occupancy using equa-

tion 6.1 during warm months (Apr - Oct). During the colder months ventilation

rates are increased. This increased ventilation is an optimization for terminal

reheat HVAC system and is discussed in Section 6.4.2.1. The last strategy (OB-

SERVE Occupancy) uses the OBSERVE algorithm but uses binary data to train

the BMC model. This strategy makes binary predictions of occupancy and ven-

tilates with the same maximum occupancy assumption of the reactive control

strategy.

6.4 Performance Results

6.4.1 Building Energy Simulator

EnergyPlus is one of the premiere tools for modeling the energy of buildings.

It takes into account factors such as weather, HVAC design, and construction

materials. In this section we define the main parameters used for an EnergyPlus
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EnergyPlus Building Parameters

HVAC Single Duct AHU, VAV with terminal reheat

Gas heating and cooling

9 zones

Temperature Heating: Ttg = 75oF, TASH = 70oF

Setbacks Cooling: Ttg = 78oF, TASH = 82oF

Areas Total: 30,130 ft2

Materials Concrete exterior walls

Metal interior walls

30% double glazed windows

Figure 6.1: Main building parameters used.

model to test our HVAC strategies.

6.4.1.1 Building Parameters

EnergyPlus simulations are run for three different locations; Fresno CA, Miami

FL, and Chicago IL. The EnergyPlus model replicates the geometry shown in

Figure 6.4.1 and is constructed to ASHRAE standards. Figure 6.1 summarizes

the main model parameters. The HVAC is a terminal reheat system that uses a

single air handler unit (AHU) with variable air volume vents (VAV). The sizing

of the AHU is done according to ASHRAE Standard 62.1 [ASH07b]. This type of

HVAC system cools air at the AHU level and heats primarily at the VAV level.

This is common for many office buildings [BK09]. This type of system is often
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Office 2 Conference
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Figure 6.2: The left shows the ten areas data was collected for and the 18 bound-

aries (gray lines) defining the areas.

used since it is able to heat and cool areas while still sharing the same AHU.

We save the evaluation of other types of HVAC systems for future work. The

set-points correspond the temperatures that predict −0.5 ≤PMV≤ 0.5 assuming

40% humidity, 1 m/s airflow, and clothing coefficients of 1.0 and 0.5 for winter and

summer respectively. Fresno, Miami, and Chicago have 40%, 52%, and 32% aver-

age humidities respectively. The HVAC system controls humidity to be between

35% and 45% using a cool-reheat heating coil.

6.4.1.2 Simulated Occupancy Schedules

EnergyPlus models typically use static occupancy schedules specified in sources

such as ASHRAE 90.1 and DOE-2 [Doe12] and are often based on survey data.

For our model, however, we will use the BMC to generate occupancy schedules.

A BMC trained with 5 days of ground truth data is used to generate 23 days of

simulated “ground truth” occupancy data for the building model. These simula-

tions will serve as our occupancy schedules for the weekdays of the month. The

110



00:00 4:00 8:00 12:00 16:00 20:00
0

2

4

6

8

10

12

14

16

Time

O
c

c
u

p
a

n
c

y

Simulated Occupancy: SCOPES vs Actual

 

 

SCOPES

Actual

Figure 6.3: Simulated SCOPES data.

building is assumed to be empty on weekends. Static occupancy schedules are

used for the restrooms since we have no data for privacy reasons.

Our control strategy assumes a system similar to SCOPES for occupancy mon-

itoring. For 20% of the time, the system inverts the direction or detects a false

positive or negative transition. We simulate SCOPES system error by artificially

introducing errors into the simulated ground truth data. Because directional er-

rors occur with roughly the same frequency, even with 80% accuracy, the observed

system data is close to ground truth. Since errors may produce states that do not

exist in the BMC, the closest distance metric defined earlier is used to find the

closest state for the OBSERVE algorithm. Figure 6.3 compares the simulated

scopes with the simulated ground truth.

6.4.2 Energy Savings

We evaluate the energy savings possible using the defined HVAC strategies for

each location. These results take into account the fan, pump, heating (gas), and

cooling (gas) energy consumption of the building. Figure 6.4 shows the monthly
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Figure 6.4: The breakdown of the energy consumption for each month and strategy

for three different locations.
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Figure 6.5: Improvement of energy consumption over baseline.

breakdown of the energy consumption for each location. Significant energy sav-

ings are achievable over a standard commonly used baseline; we see up to 112%

improvement (Figure 6.5) in some cases. We see that heating and cooling account

for most of the energy usage and that heating requires more energy than cool-

ing. OBSERVE Occupancy out-performs binary strategies. The strategies have

the most substantial savings during the colder months. This is primarily because

heating costs are greater than cooling costs.

During the coldest months in Fresno, the strategies are 45%-47% more effi-

cient than baseline; in particular OBSERVE Occupancy shows 88% to 112% im-

provement over baseline. For Fresno, OBSERVE Occupancy, OBSERVE Binary,

and Reactive Binary show annual savings of 42.3%, 38.3%, and 37.9% respec-

tively. Similar results are found for the Chicago location. The difference among

strategies increases during the warmer summer months. For summer months
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in Fresno, OBSERVE Occupancy shows 9%-11% improvement over Reactive Bi-

nary and 7%-10% improvement over OBSERVE binary. For summer months in

Chicago, OBSERVE Occupancy shows 10%-12% improvement over Reactive Bi-

nary, and 6%-7% improvement over OBSERVE Binary. This suggests OBSERVE

Occupancy is more efficient for warm weather areas. When we examine the re-

sults from the warmer Miami location, OBSERVE Occupancy shows 11%- 18%

improvement over both binary strategies throughout the year. OBSERVE Occu-

pancy again shows significant improvement over baseline (33%-69%). We see that

OBSERVE Occupancy is 26%-41% more efficient than baseline whereas Reactive

Binary is 17%-30% more efficient. OBSERVE Occupancy, OBSERVE Binary, and

Reactive Binary have annual savings of 30.4%, 23.7%, and 21.4% respectively for

Miami.

6.4.2.1 Discussion

We see that all three strategies are significantly more efficient than baseline and

that there are noticeable differences among the strategies. The main source of

these differences is related to ventilation and the terminal reheat system used for

the building. OBSERVE Occupancy is able to adjust the ventilation rate accord-

ing to estimated occupancy whereas OBSERVE Binary and Binary Reactive use

the maximum ventilation rate during periods of occupancy. Typically, increasing

the ventilation rate introduces additional outside air into the air handler loop

and increases the energy consumption since the outside air needs to be condi-

tioned; re-circulating air is more efficient since it takes less energy to maintain

pre-conditioned air. However, there are other ventilation efficiency factors that

need to be considered with a terminal reheat system. A terminal reheat system

partially preheats outside air before entering the AHU then reheats air at the

room VAV. Under certain conditions, it is more efficient to increase ventilation.

Increasing ventilation means losing some energy since more outside air needs to be
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conditioned. However, increased ventilation distributes the heating load across all

the VAV’s and increases the amount of VAV pre-heated air into the loop. During

the colder months, occupant load helps to increase the efficiency. The same is not

true for cooling. In this case, additional occupants decrease efficiency.

6.4.3 Conditioning Effectiveness

While substantial energy savings are possible, we must verify the building is

ASHRAE compliant. For this analysis we focus on the Fresno EnergyPlus simu-

lations.

6.4.3.1 Temperature Effectiveness

We examine the temperature of the rooms during all times of occupancy. In

particular, we are interested in areas such as the Conference Room, which are not

occupied the majority of the day. In order to be ASHRAE [ASH07a] compliant,

we must maintain the set-point temperatures to ensure −0.5 ≤ PMV ≤ 0.5. As

mentioned before, we examine temperature directly rather than PMV; our goal is

to meet the temperature set by any metric of thermal comfort. For this analysis,

we examine the root mean square error (RMSE) of the room temperatures. We

also examine building orientation to observe the influence of solar gain. The

results are shown in Figure 6.6.

All four strategies perform similarly for Office 1. Reactive Binary has the

highest RMSE (1.3o) for Nov-Mar. Both OBSERVE strategies have similar results

throughout the year. Baseline performed best during the coldest months.

OBSERVE Occupancy performs the best out of the four strategies for Office

3 with a RMSE of 0.1-0.3 Fo. OBSERVE Binary has a slightly higher RMSE of

0.1-0.5 Fo. The Reactive Binary strategy is highest with a RMSE of 0.9-2.8 Fo.

For Dec-Jan Reactive Binary has a RMSE of 2.5 Fo as compared with the RMSE
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Figure 6.6: Monthly RMSE temperature for each strategy for Fresno.

of 0.1 Fo and 1.0 Fo for OBSERVE Occupancy and baseline respectively.

Two different building orientations are considered for Conference Room and

Office 2 to show the effect of solar gain. North is defined in Figure 6.4.1. South

refers to the building turned 180o. Reactive Binary has higher RMSE for the south

orientation (0.4-3.6 Fo) than the north orientation (0.2-2.4 Fo). Both OBSERVE

strategies have lower RMSE than Reactive Binary for both orientations. Gener-

ally, both OBSERVE strategies have slightly lower RMSE than baseline for the

north orientation. Both OBSERVE strategies show higher RMSE for the south

orientation than the north orientation; this is caused by solar gain.

For the Conference Room, Reactive Binary has higher RMSE during the colder
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months (4.0-4.2 Fo) for both orientations. During the summer, Reactive Binary

has higher RMSE for the south orientation. For the north orientation, the baseline

does better than OBSERVE strategies for winter and spring. During the summer,

however, both OBSERVE strategies have lower RMSE than baseline. Compar-

ing OBSERVE strategies, OBSERVE Binary has lower RMSE than OBSERVE

Occupancy for the summer south orientation (0.3-1.1 Fo vs 0.8-1.2 Fo).

6.4.3.2 Discussion

Reactive Binary tends to have higher RMSE than the other strategies because of

the slow ramp up to target temperature. Once an occupant enters a room, it takes

time to reach the target temperature. For areas occupied most of the time such

as Office 1, Reactive Binary performance improves but does not match quality

of service of predictive strategies since there is still a temperature reaction delay

at the beginning of the day when the first occupant enters. This delay becomes

more critical for areas sporadically occupied such as Office 2 and the Conference

Room. A room occupied once or twice a day, such as the Conference Room

has insufficient time to reach the target temperature and is only at the correct

temperature if the outside conditions happens to match the target temperature

(spring, fall). RMSE increases if the room receives afternoon sun as is shown for

the southern orientation of the Conference Room and Office 2. Rooms such as

Office 2 that are constantly visited have slightly lower RMSE since the thermal

momentum creates an additive effect that helps maintain temperature. These

results show that reactive strategies based on a PIR WSN do not work in practice

and cannot reach the target temperature required by the users for all the different

scenarios tested.

In some cases, OBSERVE strategies perform better than the baseline since

the baseline uses a static HVAC schedule. This is seen for Office 3, which is

occupied by professors and graduate students working at odd hours. The static
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summer day.

baseline schedule stops conditioning during normal working hours whereas OB-

SERVE anticipates after hours usage. Even Reactive Binary out-performs the

baseline during mild months (spring and fall) when rooms are occupied off-hours

and the outside and target temperatures are close.

Both OBSERVE strategies perform similarly. However, there are instances in

warm weather where OBSERVE Binary performs slightly better. This is related

to over ventilation. Assuming maximum occupancy forces the VAV vent to open

fully when conditioning a room and less time is required to cool the room. The

same is not true for heating since air from the loop is only partially preheated.

6.4.3.3 Ventilation Effectiveness

The minimum ventilation rate is established by Equation 6.1. Since the occu-

pancy detection system can undercount occupants, we add an additional 10% to

occupancy estimates. Figure 6.7 shows the ventilation rate for a summer day.

The baseline strategy assumes a maximum ventilation rate. The binary strategies

use a maximum ventilation rate only when an area is occupied. OBSERVE Occu-

pancy uses a modified schedule. It uses maximum ventilation during cold months
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(Oct-Apr for Fresno/Chicago) and optimal ventilation during the warm months

(year-round for Miami). From the summer day ventilation, we can see that the

baseline greatly over-ventilates the building. While binary based strategies are

an improvement, we can see that binary ventilation rate far exceeds the required

ventilation rate. It has a RMSE of 335.0 CFM (Normalized RMSE of 146%). OB-

SERVE however, remains close to the required ventilation rate and has a RMSE of

9.5 CFM (NRMSE of 4.1%). OBSERVE is usually above the required ventilation

because of the 10% safety margin for under-counting. OBSERVE fell below the

required ventilation rate only 0.0004% of the time. From Oct-Apr, both binary

and OBSERVE share the same ventilation rates and have a NRMSE of 146%.

6.5 Conclusions

In this chapter, we have shown how a model can be integrated with a WSN

for demand control based conditioning strategies. We propose the OBSERVE

predictive demand control strategy and test the energy savings and conditioning

performance. We learned several lessons from our results. First, in order to

achieve energy savings, real time occupancy data is critical. This can be seen

by the average 42% annual energy savings compared to the current state of the

art baseline strategy. Second, predictive strategies show better energy savings

performance and even significantly better quality of service conditioning than

reactive strategies. Finally, in order to achieve maximum energy savings, actual

level of occupancy is required in order to optimize ventilation levels.

In order to develop OBSERVE, we used simulations based on real-world data.

The next step is thus to test OBSERVE in a live deployment. In the next two

chapters, we test the OBSERVE control algorithm using the occupancy monitoring

solutions from Chapters 4 and 5.
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CHAPTER 7

POEM: Power-efficient Occupancy-based Energy

Management System

Using the control strategy from the previous chapter, we next test the control

strategy in an actual deployment. In this chapter, we develop the Power-efficient

Occupancy-based Energy Management System (POEM), which shows how a con-

trol strategy can be implemented using the BMS programmatic interface to op-

timally condition rooms based on current and predictive occupancy. This system

uses a control strategy similar to OBSERVE (Chapter 6) that has been adapted

for the optical occupancy measurement system from Chapter 4. We evaluate the

energy saving and the conditioning effectiveness with respect to temperature and

ventilation and show that the cost of the system can be amortized in approxi-

mately 3 months if applied to the entire building. In this chapter we contribute

the following:

• Our most significant contribution is the design, implementation, deployment

and evaluation of the POEM system, which is a full close loop system that

conditions rooms based on occupancy. This system combines observed oc-

cupancy, predicted occupancy, and data fusion for tracking occupancy using

a particle filter in order to optimally condition rooms.

• We tested our system over a period of four weeks and show that signifi-

cant energy savings (26%) are possible while still maintaining conditioning

effectiveness. Using a calibrated EnergyPlus simulation, we show that this
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system saves 30% energy annually over standard strategies.

• We perform Return On Investment (ROI) analysis, showing the sensitivity

of different factors and concluding that the cost of the system could be

amortized in approximately 6 to 10 months.

7.1 Overview

POEM is a complete system that controls the temperature and ventilation of a

building. This system is comprised of several components. Figure 7.1 summarizes

the system architecture and shows all components of the POEM system. OPTNet,

a wireless camera sensor network, and BONet, a PIR sensor network, provide

occupancy estimates (Chapter 4). A particle filter then fuses the sensing data from

OPTNet and BONet with the output of an occupancy transition model in order

to better estimate the current occupancy in each room. The current occupancy

estimation from the particle filter, the ramp-up time, and the predicted occupancy

from the transition model 1 hour into the future are combined in a control schedule

to optimally pre-condition the spaces to reach the target temperature. Thus, we

can optimally schedule the HVAC system to match the likely arrival of occupants.

Once the process is complete, the conditioning affects occupants completing the

feedback loop. The next sections provide a detail description and evaluation of

each POEM component.

7.2 Actuation Scheduler Interface

We start be examining the programmatic interface that is available for the building

automation system (BMS). The building being controlled utilizes both Automated

Logic and Phoenix BMS systems [Log, pho]. The system is maintained through

a web server/interface called WebCtrl [Log], which can issue BACnet commands
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Figure 7.1: Architecture of the POEM system.
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to the various HVAC components including the variable air volume (VAV) unit.

Since the sequence of operations are stored on this server, the building energy

manager indicated that it would be preferable to keep the logic of the system

intact and change only the temperature/ventilation set-points within the server

logic blocks rather than bypass the server and issue BACNet commands directly.

Since the server could accept set-point changes via SOAP, we achieved control

using python scripts.

7.2.1 Actuation Algorithm

As previously mentioned, near real-time occupancy is useful for accurate ventila-

tion. However, occupancy prediction is necessary since time is required to reach

the target temperature of a room. In order to determine the minimum time to

reach a target temperature, we determined the maximum amount of time it was

required to reach set-point given the setbacks. Again, occupancy is predicted

using the blended Markov Chain approach used in Chapter 3. The main differ-

ence in the application of the BMC model for actuation/control is that occupancy

predictions are obtained 1 hour into the future. When using the BMC model to

correct the occupancy count of the raw sensor readings using the particle filter in

Chapter 4, predictions were done 1 second into the future.

Before we discuss actuation, we must again discuss American Society of Heat-

ing, Refrigerating and Air-Conditioning (ASHRAE) standards for thermal com-

fort. ASHRAE Standard 55 [ASH07a] uses the predicted mean vote (PMV) metric

to establish levels for occupant comfort. This metric incorporates multiple param-

eters such as humidity and airflow to estimate occupant comfort on a continuous

scale from -3 to 3, where negative values indicate slightly cool to cold (-1 to -

3) and slightly warm to hot (1 to 3). The optimal temperature corresponds to

PMV = 0. ASHRAE states that acceptable room conditions are temperatures

such that −0.7 ≤ PMV ≤ 0.7. For our deployment we choose more conservative

123



Algorithm 5 Actuation Algorithm
CondTempi,j ← Room temp from time i to j

CurrHour ← Current hour

TTG ← Temperature such that PMV = 0

TASH ← Temperature such that −0.5 < PMV < 0.5

pThresh← Probability threshold of occupancy

BMC(CurrOcc, predLen)

Returns probability vector when occupancy is likely

ThermalDelay ← Time to reach TTG given TASH

- Program Start -

for Every n minutes do

CurrOcc← Current Particle Filter estimate of occupancy

occPred← BMC(CurrOcc, predLen)

for Each room r and point of time t in occPred do

occupied← Periods occPredt→t+60 > pThresh

if occupied > 5 minutes of next 15 minutes then

CondTempt−ThermalDelay,t+15 = TTG

else if 5 ≤ CurrHour ≤ 24 then

CondTempi,i = TASH

end if

end for

end for
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temperatures where −0.5 ≤ PMV ≤ 0.5.

Algorithm 5 shows how we combine the current occupancy determined by

the particle filter, predicted occupancy determined by the transition model, and

the estimated thermal ramping time (estimated from historical data) in order to

schedule when to begin conditioning. There are two temperature set-points; TTG

and TASHRAE, which are the target and ASHRAE set-points respectively. The

algorithm’s purpose is to change these set-points optimally based on room usage.

Every n minutes (15 minutes for our deployment) we check the current occupancy

state of the rooms. We then make a prediction predLen (60 minutes) into the

future using the transition model. We examine each the predicted occupancy

probability for each room. If we find a window of time where the room will

be occupied 5 minutes out of the next 15 minutes, we use the experimentally

determined thermal delay (time required to reach the target temperature), and

schedule the set-point to the target temperature. Otherwise, we condition to the

ASHRAE set-point. This ensures the room will be at a reasonable temperature if

a prediction is false.

7.3 POEM System Evaluation

There are two aspects of the system to be examined. The first is that rooms

are conditioned appropriately given actual occupancy usage. The second is to

determine how much energy could be saved when applying the strategy to the

floor of a building.

We tested two versions of POEM in a live deployment. The first strategy uses

only PIR for occupancy detection and the same actuation using binary occupancy

data. PIR data does not have issues with cumulative error, hence a particle filter is

not used. Since PIR cannot determine how many people are in an area, ventilation

control is done assuming maximum occupancy; an occupied room is assumed to
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Ramping

Area Duration

Conference Room 40 m2 45 min

Office Area 1-9 36 m2 30 min

Computer Lab 111 m2 60 min

Conference Room 40 m2 30 min

Dean’s Conference Room 52 m2 30 min

Robotics Lab 18 m2 30 min

Table 7.1: Zone information for deployment. The ramping duration is the time

required to reach the target temperature from the setback temperature.

be fully occupied. This is equivalent to baseline ventilation strategy. This is

common practice since HVAC designers and building managers tend to be over

cautious with respect to ventilation. Indeed we found many areas that were over-

ventilated with respect to even maximum occupancy. The second strategy uses

OBNet (Camera and PIR data) along with the particle filter. Ventilation in this

case is done according to ASHRAE 62.1 [ASH07b]. Each strategy was tested for

two weeks for 16 zones (2 AHUs), accounting for 30% of the area that the AHUs

condition. Approximately 52 people occupy these areas and occupants in the area

were informed of the camera use with the experiments and the data collected

during our experiments has been handled following best practices [OEC, eur].

Table 7.1 shows size of each zone and how long each zone takes to get to

temperature from the setback temperature.

To evaluate the performance of the system over the course of a year, we devel-

oped a calibrated EnergyPlus simulation that closely matches the performance of

the actual building. This was done using 6 weeks of historical data from the build-

ing from different seasons; 2 weeks Fall, 2 weeks Winter, 2 weeks Summer. Each

day was compared with a similar day from the EnergyPlus simulation with respect

to weather/temperature. On average, the EnergyPlus simulation had a normal-
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ized RMSE of 6.2%. With a calibrated model, we are able to accurately determine

the performance of these strategies under exactly the same conditions; without a

model, we would be required to run each system for potentially years for enough

data for a valid comparison. Using the calibrated model, we test four different

strategies. Two strategies tested are the same PIR and Camera/PIR strategies

as the live deployment. In addition, we test a reactive strategy where rooms are

conditioned immediately once occupied without predictive temperature ramp up.

Similar to the predictive PIR approach, we assume maximum occupancy when

the room is occupied for ventilation purposes. The last strategy is an “Oracle”

strategy, where we condition the space assuming perfect prediction and perfect

measurement of occupancy. The oracle strategy gives us an upper bound of the

energy savings that is possible if the Camera/PIR system were to run with perfect

information.

7.3.1 Energy Savings

Our building is conditioned from a centralized chilled water tower and boiler

systems. The chilled water tower stores water within a tank large enough for

stratification to occur; warmer water naturally rises to the top and cold water

falls the bottom of the tank. Cold water is supplied by pumping water at the

bottom of the tank. Additional cooling is supplied to the tank as necessary.

The hot water is supplied by several hot water boilers. The chilled water tower

boilers supply the hot/cold water to air handler units (AHU) and variable air

volume units (VAV) for heating and cooling. The AHU is used for air cooling the

air. The VAV units (Figure 7.3) are used for heating and regulating cool air to

individual zones. This is done by using a damper to regulate the air volume that

passes over heating/cooling coils. For our deployment, we are interested in how

much energy the VAV units and AHUs are consuming.

The amount of energy lost/gained by the coil is equal to the amount of energy
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Figure 7.2: Energy consumption breakdown for 7 representative days. PIR and

camera/PIR based POEM saves on average 21.1% to 26.0% respectively.

Figure 7.3: Supply air (SA) flows through coils, heating or cooling the air.
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lost/gained by the air. We can estimate the energy consumed by a VAV or AHU

using the heat balance equation,

Q = mC(Tsa − Tda) (7.1)

where Q is energy transferred to the air, m is the total mass of the airflow over an

interval of time, C is the heat capacity of air, Tsa is supply air temperature, Tda is

the discharge temperature of the air after passing through the coil. By measuring

the airflow and the supply and discharge temperatures, we can calculate the energy

consumed.

7.3.2 Live Deployment Results

The baseline strategy of the building is a static schedule where the room HVAC

system (temperature/ventilation) is turned on at 6 am and then shut off at 1 am

the next day. From 1 am to 6 am, room temperatures “float”. In order to measure

the amount of energy consumed by the baseline strategy, we measure the energy

consumption of the system without POEM running. Days with similar weather

and temperature profile are used for the baseline comparison.

Figure 7.2 shows energy savings and breakdown for one particular week for

both strategies. The left and right bar for each day shows the baseline and strat-

egy breakdown respectively. Above each strategy, we show the percentage savings

over the adjacent baseline bar. Since the experiments were conducted during the

summer, no zone required heating. In general, the energy from the supply and

return fans along with the hot/cold water pump remained fairly constant. Overall

PIR and Camera/PIR saved on average 21.1% and 26.0% respectively. For both

strategies, the most savings occurred on the weekend where many zones were un-

occupied. For weekends, the PIR only strategy saved 25.1%-27.5% and the Cam-

era/PIR strategy saved 30.2%-32.0%. On the weekdays, PIR saved 13.8%-18.0%

and the Camera/PIR strategy saved 16.0%-22.5%. For areas that are consistently
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Figure 7.4: Energy consumption based on calibrated energy simulation. On aver-

age PIR and Camera based strategies save 24.5% and 31.0% annually respectively.

occupied with regular schedules, the savings were achieved by turning off the sys-

tem earlier than the 1 am shutoff time, or delaying the ramp-up in the morning.

The difference between these strategies is due to ventilation rate. Since the Cam-

era/PIR strategy is able to reduce ventilation rates, this strategy is able to save

more energy than predictive PIR strategy. For other areas not consistently occu-

pied, such as the conference room, energy savings were possible in the morning

where the temperature ramp-up could be delayed and in the evening when the

room was unoccupied.

The Camera/PIR strategy saves more energy since ventilation is based on the

number of people whereas the PIR only strategy ventilates based on the maximum

occupancy. Ventilation has a significant impact on energy consumption since

increasing ventilation increases the amount of outside air to be conditioned. This

is similar to trying to cool a house down on a hot summer day with the front door

open.

7.3.3 Calibrated Model Results

As previously mentioned, we also test four different strategies using the calibrated

model. Figure 7.4 show the energy savings and breakdown for each strategy. When

we compare the real world results to the calibrated model results, we see similar

energy savings for the periods of similar weather. For the predictive conditioning,
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we saw 21.1% average savings for live deployment and see 19.3% for the calibrated

model. We also see a similar difference between the PIR and Camera/PIR strate-

gies for the calibrated model as compared with the live deployment. For the live

deployment we saw difference of 4.9% (Camera/PIR 26.0% vs PIR 21.1%); the

calibrated model showed a difference of 4.2%. These results supports our initial

results (normalized RMSE of 6.2% between model and historical results) and that

our calibrated model is able to accurately measure energy differences between

strategies.

When comparing the predictive PIR and reactive PIR strategies, we see similar

results; we only see a maximum difference of 1.1% during the coldest months (Dec,

Jan). A priori one would expect the predictive strategy to use slightly more energy

since it conditions spaces over longer periods of time due to the fact that is trying

to anticipate expected occupancy (i.e. load). Interestingly, the predictive PIR

has slightly higher energy savings. The predictive PIR indeed conditions a larger

total amount of time than the reactive PIR strategy; on average the predictive PIR

conditions on average 1.2 hours more per day per room compared with reactive

PIR. However, the temperature differential from the initial to the final conditions

for any period of occupancy is on average smaller for predictive than the reactive

strategy. On average the temperature difference between the target and actual

room temperature when occupants initially occupy a room is approximately 0.08

Co (0.15 Fo) for predictive PIR and 1.7 Co (3.0 Fo) for reactive PIR. The reactive

strategy has to work harder to ramp up the room temperatures between periods

of occupancy; in some cases, it is more energy efficient to maintain temperature

than to ramp up temperatures from a very low level. As we’ll see in the following

section, this also dramatically impacts temperature effectiveness as perceived by

the building’s occupants.

The predictive PIR and the Camera/PIR strategies show 24.5% and 31.0% an-

nually respectively, with the largest savings occurring during the coldest months.
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The main cause of this difference is the ventilation. We also see how ventilation

plays a major role in the energy savings when comparing the Camera/PIR strategy

to the Oracle strategy. In general the predicted schedules from the Camera/PIR

strategies closely match the Oracle strategies (3% difference). One major differ-

ence, which is discussed in more detail in section 8.4, is that the Camera/PIR has

additional ventilation added in order to account for possible errors in the occu-

pancy count. When comparing Oracle and Camera/PIR results, we see that the

Oracle saves 33.0% whereas Camera/PIR saves 31.0% overall. In some instances,

the Camera/PIR saves slightly more than the Oracle. This occurs when the Cam-

era/PIR method predicts rooms to be empty space when in reality the space is

occupied. Further analysis of the energy traces shows that this difference is indeed

due to over-ventilation by the later due to the small uncertainty in occupancy (i.e.

a safe guard band added it by design to cope for potential under-counting). This

can be seen in Figure 7.7 where we see that the PIR/Camera strategy is above

the required ventilation rate for the majority of the time.

7.3.4 Conditioning Effectiveness

In this section, we examine the conditioning performance of POEM. We are inter-

ested how close operational temperatures were to the target temperature during

times of occupancy and how effectively we could reduce ventilation rates using

occupancy.

To evaluate the thermal effectiveness of POEM, we calculate the root mean

squared error (RMSE) between the target temperature and the observed room

temperature during the periods of when the room is occupied. For this analysis,

we will only examine the Camera/PIR strategy as we only gathered ground truth

data for the days of the Camera/PIR deployment. It is difficult and time con-

suming to process ground truth and was too labor intensive to process additional

days. In order to have a basis of comparison, we also consider the ability of the
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Figure 7.5: RMSE (Fo) between the target and observed room temperatures

baseline strategy to meet target temperatures. In most cases, the baseline tem-

perature deviates approximately 0.6 Co (1 Fo) from the target temperature. This

is expected as the proportional-integral-derivative (PID) controller of the VAV

will cause the temperature to oscillate with a small amplitude from the target

temperature. Figure 7.5 shows the overall RMSE for each room. Of particular

interest is the temperature of the conference room as this room does not have a

consistent schedule and most likely to deviate from target temperatures. In this

case, the RMSE of POEM is on average 0.25 Co (0.45 Fo) whereas the average

RMSE of the baseline strategy is 0.21 Co (0.38 Fo). As this is only a difference of

about 0.07 Co (0.12 Fo), we can see that the conditioning effectiveness of POEM

is close to baseline. This room tended to be farther from the target tempera-

ture for both baseline and POEM strategies since the conference room has two

exterior walls and receives solar gain. For areas with regular schedules, we found

POEM’s ability to condition comparable to the baseline strategy; in most cases,

the difference between POEM and baseline RMSE is less than 0.06 Co (0.1 Fo).

In addition to the actual results we also examined the thermal effectiveness

of the reactive and Camera/PIR strategies from the calibrated model. Figure 7.6

133



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.5

1

1.5

2

2.5

Temperature Condition: Reactive vs PIR/Camera

Month

R
M

S
E

 

 
Reactive Camera/PIR

Figure 7.6: RMSE (Fo) between the target and observed room temperatures from

the calibrated model.

shows the RMSE for each strategy for the conference room. The Camera/PIR

has substantially better performance than the reactive approach; the Camera/PIR

approach has an average RMSE of 0.52 Co (0.93 Fo) whereas the reactive approach

has an average RMSE of 0.83 Co (1.5 Fo). This is expected since time is required

for rooms to ramp to the target temperature. This is especially true during the

warmer months where solar gain can greatly affect the ability of the HVAC system

to meet load. During these months (Jun-Sept), the RMSE of the reactive system

is 0.83-1.33 Co (1.5-2.4 Fo), which can easily be perceived by occupants. Thus,

the Camera/PIR approach is better able to meet the target temperatures.

ASHRAE standard 62.1 [ASH07b] requires the outdoor ventilation to be Vbz =

RpPz +RaAz where z denotes the zone, Vbz is the ventilation rate, Rp is the min-

imum CFM (1 CFM = 1 ft3/min) per person, Pz is the number of people, Ra

is the minimum CFM/ft2, and Az is the floor area. Ra and Rp changes depend-

ing on the target use of the room as specified by the ASHRAE 62.1 standard.

This standard is for areas without a demand ventilation system. For our rooms,

the required CFM per person is 5. Examining Figure 7.7, we can see that a

typical baseline ventilation strategy is far more inefficient than POEM. Office
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1 under-ventilated 1%. During these periods of under-ventilation, the average

under-ventilation was 2.5 CFM. As 5 CFM is required per person, the magnitude

of the under-ventilation is not large. The lab is theoretically under-ventilated an

average of 2.98 CFM 4.8% of the time. When examining the actual CO2 levels, we

found the areas were properly ventilated. In order to evaluate proper ventilation,

we examine the CO2 levels with respect to the ASHRAE 62.1 demand response

ventilation standards. This standard states 925 ppm is considered acceptable for

office spaces. Figure 7.7 shows the CO2 levels for the most densely occupied area

in the deployment, which is the conference room. For the day shown, several

groups meet back-to-back. From the figure we can see that the levels never ex-

ceed 925 ppm showing that adequate ventilation is being provided. We can also

see that the Camera/PIR strategy has slightly higher levels since the strategy

provides less ventilation, but is well under the threshold (600 ppm vs 925 ppm).

This suggests the ventilation provided by the previous equation is above what is

actually required.

7.4 Return on Investment Analysis

In this section, we use our results in order to estimate whether deploying POEM

is economically viable. We extrapolate our results to the entire building, which

contains a base area of 6,689 m2 and is primarily used for research labs and offices.

The building has an annual energy consumption for conditioning of 5,275,992 kWh

electrical power and 246,000 therms of gas. The cost for electrical energy depends

on the time of a day and season, it is usually between $0.13 and $0.18 per kWh, the

price for gas is constant over the year at $0.7 per therm of gas. All these prices are

special rates negotiated with a utility company. For reference, the same company

charges $0.34 and $0.22 per kWh for residential and commercial customers. For

an average price of $0.15 per kWh electrical power and $0.7 per therm gas the
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annual conditioning costs of the mentioned building are $963,598.80. One node of

our system consists of the components listed in Table 1, which sums up to a price

of $710 for camera and $215 for PIR nodes. This cost can be reduced through

commercial production.

We estimate that each node costs $35 to deploy, and $8k is required for testing

the system. For a 3 story 6,689 m2 building, about 65 camera nodes and 360

PIR nodes are required to provide complete coverage. Therefore manufacturing

and deploying the system would cost approximately $147k. Savings of 26% of

$963k equals to $250k per year or $20.8k per month. The largest ongoing cost

for our system is battery maintenance. A conservative estimation of the energy

consumption of a camera node is about 80mW; with three battery packs with a

capacity of 11 Ah each, the battery packs have to be exchanged and recharged

every 60 days. Since the energy consumption of a PIR node is low compared to a

camera node, a PIR node is able to run 175 days on one battery pack rather than

60 days. This results in a maintenance cost of about $30 per camera node per

year and about $10 per PIR node per year. For the whole 65 camera and 360 PIR

node system, this would cost $5,500 for maintenance each year. Depending on the

market price for energy, the manufacturing and deployment costs of our system

would be amortized between 6.1 and 8 months. The energy savings of a system

with PIR sensors only are about 21.1%. This would result in an average amount of

$203k for energy savings and an amortization time between 4.8 and 6.4 months due

to the reduced system costs of $94k and maintenance costs and $3,800 per year.

As shown in Figure 7.8, a system consisting of only PIR sensors has a shorter

amortization time compared to a system with camera and PIR sensors. Since

buildings are usually operated for many years (70-75 years [bed11]), in the long

term, a combination of camera and PIR sensors always achieves higher savings.

These results also show that despite the extra work of adding cameras, the

savings are significant to justify the additional effort. This is due to the magnitude
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Table 7.2: Prices of camera and PIR nodes

Component Price

Imote2 $350

IMB 400 $250

Batteries $100

Fisheye lens $5

Assemble (10 min) $5

$710

Component Price

Tmote $120

PIR sensor $30

Batteries $60

Assemble (10 min) $5

$215

of the money currently spent on energy. Though the difference of the energy

savings between PIR and Camera/PIR is only 5%, this still constitutes a non-

trivial amount of money. For perspective, over a 5 year period, the Camera/PIR

system saves approximately $140k-$200k more than PIR alone (see Figure 7.8).

Over the average lifetime of the building, which is approximately 70 years, the

system can potentially save $15.0M to $20.0M.

7.5 Lessons Learned

We found that deploying, testing, verifying the performance of the system to be

extremely difficult. For the camera system testbed, a customized Imote2 debug

board was designed and manufactured for each of the 22 cameras. For the PIR

sensors, 40 nodes had to be hand “manufactured” and deployed after negotiating

with facilities, staff and students. In particular, facilities required us to have CO2

monitoring before we could proceed. In order to achieve this, we developed a

wireless network of 10 CO2 nodes using Tmotes and CO2 sensor boards.

One of the most time consuming part was the processing of ground truth

data. We tried multiple techniques to speed up the processing of the image

data. Initially, we tried using state-of-the art techniques that counted torsos
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Figure 7.8: The left compares savings for different energy prices. The right shows

savings over 80 year period.

and legs [Ope, VJ01, LM02] in order to detect the presence of humans. We found

even the best techniques were only about 80% accurate and in the end found

background subtraction a much more reliable method of identifying images with

occupants. We also tried various types static background techniques but found

that when people loitered of left static objects such as chair and boxes, this would

dramatically increase the number of images needed to be manually examined.

The most effective method we found for detecting transitions is similar to the one

presented previously. We use previous frame background subtraction in order to

identify images where objects are moving and then manually process this data.

After applying this technique to the images, each camera produces 1000-3000 im-

ages per day that potentially contains transitions. Processing the ground truth

required examining approximately 150,000 images.

Despite having deployed in a new building with a BMS, we experience multi-

ple difficulties with regards to instrumentation. For several zones, we found that

during construction, temperature sensors were left out of VAV boxes. This re-

quired us to deploy commercial wireless temperature sensors so we could measure

the exhaust air temperature; this was accomplished by examining the plans, lo-

cating the VAV boxes, obtaining permission from facilities to install sensors, and

physically drilling duct holes and mounting the sensors. Calibration of the duct

flow sensors was also an issue. While testing the system, we found the AHU flow
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measurements to be faulty with respect to other air flows measurements. For

several months, multiple calibrations were performed and some flow sensors had

to be replaced by facilities. Flow sensor measurements need to be verified prior

to deployments.

7.6 Summary

In this chapter, we designed and implemented POEM, a close loop system that

conditions rooms based on occupancy on a real production building. POEM uses

two wireless sensor networks developed in Chapter 4; one network of cameras

called OPTNet, and another network of PIR sensors called BONet. By oppor-

tunistically controlling the HVAC system based on occupancy, we showed savings

of 26.0% are possible while maintaining conditioning effectiveness. Using a cali-

brated model, we estimate that ≈ 30% savings are possible annually. Given the

cost of heating and cooling, we show that these savings would amortize the POEM

system within about 6 to 10 months. By providing greater value from the same

physical plant, our approach can move beyond cost-to-build and cost-to-operate

metrics to broader return-on-investment for new technologies. In the next chap-

ter, we test our control strategy in a live deployment except using the thermal

based occupancy sensing system from Chapter 5.
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CHAPTER 8

OBSERVE: ThermoSense

In the previous chapter, we tested a system utilizing the control strategy from

Chapter 3 developed around the camera based occupancy system from Chapter 4.

In this chapter, we test the thermal based occupancy system from Chapter 5

using the OBSERVE strategy from Chapter 6 in a building energy simulation.

Live actuation of the building using ThermoSense was not possible at the time

and is left as future work. We use the ThermoSense system to collect 3 weeks of

occupancy data from the target building and used the actual building energy to

calibrate the energy simulation to match the target building.

In this chapter, we contribute the following:

• The design, implementation, deployment and evaluation of a full close loop

system that conditions rooms based on occupancy measured using the Ther-

mosense system.

• We tested four different strategies for HVAC conditioning and show how

different sensing and actuation strategies affect energy consumption and

occupant comfort. We showed that by using this system for conditioning

usage based control of temperature and ventilation we can save 25% energy

annually while maintaining occupant comfort.

141



8.1 Energy Analysis

With the occupancy estimation system in place, we next would like to use data

collected from the ThermoSense system to estimate potential energy saves using

different strategies. Since KNN had the best performance in terms of RMSE and

NRMSE, as seen in Chapter 5, we use this model for our energy analysis. In this

section, we evaluate four strategies to reduce energy usage and compare them to a

baseline strategy that operates on a static schedule. We use the OBSERVE strat-

egy described in Chapter 6. The OBSERVE method utilizes a Blended Markov

Chain (BMC) that continuously updates its prediction based on the current occu-

pancy estimate. If trained with binary data, this model can give binary predictions

of occupancy. With discrete training data, the model is able to predict discrete

levels of occupancy. Based on a probability threshold, the room is conditioned

beforehand if the room is likely to be occupied in the coming hour. Ventilation is

controlled according to ASHRAE 62.1 [ASH07b]. For our analysis we use predic-

tions discrete occupancy, binary predictions, and a purely reactive strategy using

no prediction.

We trained the BMC’s using 3 weeks of data collected from the ThermoSense

system deployed in 8 offices, 1 lab and 1 conference room in an academic commer-

cial building. Using the BMC, we generated 7 days of simulated occupancy. To

simulate system error, we introduced error based on a normal error distribution.

This distribution was determined by examining the distribution of the residuals

from our RMSE analysis and performing a normal fit. The frequency of these

perturbations was added using an exponential distribution. We found that the

duration between the errors were exponentially distributed.

To test these strategies, we utilize EnergyPlus [Epl], which is a state-or-the-art

industry standard tool for simulating buildings. With this simulator, we are able

to change occupancy over time to determine how these strategies affect efficiency.
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Figure 8.1: Monthly heating and cooling consumption for the different strategies.

By using a simulator, we are also able to test the strategies under identical weather

conditions. In our simulation, we used materials similar to the actual building and

sized rooms to match the deployment. Target set-points of 24Co (75.2Fo) and 20Co

(68Fo) was used for cooling and a cooling and heating set-points respectively.

Since our deployment only covered part of the entire building, we assumed the

same schedules for the rest of the building in the simulation. The simulated

commercial building contains offices, labs, and meeting rooms. The location of

the simulation was in the central valley of California. Other locations were not

evaluated in the interest of space.

Figure 8.1 shows the monthly breakdown of the heating and cooling. All three

strategies had significant energy savings over the baseline strategy. Overall, the

reactive strategy had the lowest energy consumption. This strategy consumed

29.6% less than the baseline strategy annually. It saves additional energy since

it does not pre-condition rooms ahead of time. However, we will see that this

savings in energy comes at the cost of comfort (Section 8.2). In general, all

the strategies had the largest percentage of savings during winter months (Nov -

Feb) and the lowest percentage of savings during the warmer months (May - Sep).

ThermoSense and ThermoSense Binary had 24.8% and 19.7% savings respectively.

The binary approach consumed more energy since this strategy has a tendency

to over-ventilate. Over-ventilation reduces efficiency since it increases the amount

of outside air that needs to be conditioned. The greatest differences between the
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Figure 8.2: The temperature RMSE for the periods when the room was occupied

during the summer.

ThermoSense and ThermoSense Binary approaches occur during the warmest and

coldest months (Jan, Dec, Jul, Aug) where ThermoSense consumed 5-6% less than

ThermoSense Binary. Increased ventilation of ThermoSense binary during these

months has a greater impact on efficiency than during milder shoulder seasons.

8.2 Conditioning Effectiveness

In the previous section, we show that occupant based conditioning saves a sig-

nificant amount of energy. However, conditioning effectiveness also needs to be

considered.

For the temperature effectiveness, we examine a room that is only occupied

at 8am, 3pm, and 4pm on Mondays and focus our analysis to the warm months

(May - Sep). For our analysis, we examine the RMSE of the room temperature

from the target temperature for each hour. Figure 8.2 shows the RMSE for each

hour of the day. For un-occupied periods, we consider the RMSE to be 0. The

reactive strategy had the worst overall performance. At 8am, the RMSE was

0.877Co during the hour that the room was occupied. At 3pm the room had
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Figure 8.3: Ventilation effectiveness of the strategies.

a RMSE of 1.23Co. This higher RMSE is due to the solar gain increasing the

temperature of the room. However, at 4pm the RMSE drops to 0.197Co. In

this case, the occupied state of the room at 3pm carried over to the 4pm period.

Thus, while some energy was saved by not preconditioning, we can see that this

was at the cost of thermal conditioning. Both ThermoSense prediction strategies

perform substantially better than the reactive strategy. At 8am the ThermoSense

and ThermoSense Binary prediction methods had RMSE values of 0.309Co and

0.415Co respectively. At 3pm-4pm, both prediction strategies had nearly identical

RMSE values; both were close to 0.033Co. Again, while the ThermoSense predic-

tion strategies consumed slightly more energy, they did not compromise thermal

conditioning.

Next we examine the ventilation effectiveness of the system. For our analysis,

we evaluate the ventilation of the spaces for one particular day. As previously men-

tioned, we use the ASHRAE 62.1 standard to determine the ventilation according

to occupancy. As ventilation is regulated in real-time, the binary based strategies

(reactive and ThermoSense binary prediction) have the same ventilation rates.

As we cannot determine the precise occupancy with a binary occupancy estimate,

we assume maximum occupancy for rooms that are occupied for ventilation. The
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baseline strategy assumes maximum occupancy from 7am to 10pm. Figure 8.3

shows the baseline, ThermoSense binary, and ThermoSense based strategies. We

can see that the baseline strategy greatly over-ventilates. However, there is also a

short period at the beginning where the baseline strategy under-ventilates; this il-

lustrates the shortcomings of a static schedule. Both the ThermoSense binary and

ThermoSense strategies were able to meet the required ventilation level. However,

we can see that the ThermoSense binary strategy still over-ventilates the area a

great deal; overall, this strategy over-ventilated the area by 170%. The Ther-

moSense binary strategy performed best when multiple rooms were empty, which

can be seen during the period between 2pm and 5pm. Since only a few rooms were

occupied, only a few rooms were over-ventilated. The ThermoSense based ventila-

tion performed the best. We can see that the ventilation rate is only 3.25% more

than the required rate. This is due mainly to a 10% occupancy increase added

by design in order to protect against under-ventilation that could be caused by

sensor errors, as shown in Chapter 6.

8.3 Summary

In this chapter, we tested a occupancy based control strategy utilizing the Ther-

mosense system we developed in Chapter 5 and the control strategy from Chap-

ter 6. We tested the control strategy in with 17-node deployment covering 10

building conditioning areas totaling 2,100 sq. ft. for a period of three weeks. We

tested four different usage based conditioning strategies and analyzed the energy

usage; we showed that 25% annual energy savings are possible with occupant

based conditioning strategies. These results are consistent with the findings from

our live camera based system of the previous Chapter. Thus, we are confident

that the ThermoSense system is at least on par with the system described in

the previous chapter and with the added benefit of avoiding issues related to the
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cumulative error problems of a turnstile based system (Chapter 4). In the next

chapter, we next explore occupant driven strategies to increase thermal comfort.
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CHAPTER 9

Thermovote

Thus far, we have developed strategies that save energy while minimizing the

discomfort of occupants. In this chapter we now instead focus on increasing

the occupant thermal comfort level. In recent years, multiple works have been

published showing how wireless sensor networks can be utilized to reduce the

energy consumed by buildings[ECC11, ABD11, LSS10]. However, within the WSN

community, there has been little research attempted to improve the quality of

service for users. Instead, the aim has been simply to maintain, or in some cases

potentially decrease quality of service in order to achieve greater efficiency. While

increasing efficiency is an important goal, the service that HVAC systems provide

is arguably more important than reducing energy. Before we attempt to reduce

energy for HVAC systems, we must first ensure that the system is providing

adequate service.

While single occupant offices are simple to achieve thermal comfort, the task

becomes more difficult when multiple occupants share the same temperature set-

point. Building managers typically rely on the sensor networks of building man-

agement systems (BMS) to maintain user comfort. Managers choose a single tem-

perature set-point for occupied periods. This set-point is typically chosen based on

the criteria set by American Society of Heating, Refrigeration, Air-Conditioning

Engineering (ASHRAE) Standard 55 [ASH07a]. This standard uses Predicted

Mean Vote (PMV), to estimate the most comfortable temperature. PMV uses

multiple parameters such as humidity, temperature, and air flow to estimate how
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warm or cold occupants feel on a discrete scale from -3 to 3. Positive values in-

dicates occupants are warm and negative values indicates occupants are cold. A

PMV of 0 indicates occupants are comfortable. Temperature set-points are chosen

by assuming fixed values of most parameters and then solving for a temperature

will give a PMV value of 0.

Estimating PMV is inherently prone to error. Often, many of the values for

parameters such as clothing coefficients or activity levels are given fixed values

based on tables supplied by bodies such as ASHRAE. The clothing coefficient

has been shown to differ by up to 20% depending on the table and method

[BFB93] [ASH07a] [ISO06]. Other parameters such as mean radiant tempera-

ture is currently not measured by most BMS systems and is again often esti-

mated [RA09]. While it is possible that PMV estimates could be improved by

attempting to measure the parameters such as occupant activity, perceived air-

flow, and radiant heat for each space, this would require additional cost in terms of

installation and development of specialized sensors. Even if perfect measurement

is possible, the differences among individual preferences make error in the PMV

estimate inevitable.

Rather than develop and deploy an entire testbed dedicated to sensing param-

eters correlated to thermal comfort, we propose a more direct means of measuring

occupant thermal comfort; ask the occupants. For this application, humans are

the best sensors available. As data muling is to using humans for transport of data,

participatory sensing is to using humans to sense data. We propose leveraging

existing wireless infrastructure such as cell phone and use humans as sensors.

By controlling room temperatures directly using occupant feedback, we are

more likely to increase the overall thermal comfort. This is already done in pri-

vate offices where individual thermostats are available. However, for rooms with

multiple occupants, it is not straight-forward to regulate temperatures from a

single thermostat control such that the comfort level of the majority is maxi-
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mized. Indeed, many spaces with multiple occupants have a disabled thermostat,

a physically locked thermostat, or no thermostat control at all. In our building,

which was constructed recently, only 6% of occupants had a “somewhat effective”

thermostat. Occupants who do have a functional thermostat available must com-

pete with each other or devise an equitable method of choosing an appropriate

temperature.

This chapter contributes the following:

• We develop a crowd sourcing system that is able to gather thermal comfort

data using a variety of platforms; iOS, Android, and webpage. Utilizing

the system, we demonstrate two significant applications that leverage the

collected system data.

• We develop an application around Thermovote for real-time building HVAC

actuation based on user feedback. We also develop a method for removing

error when calculating PMV by using occupant feedback that is more ac-

curate than state-of-the-art methods of PMV parameter estimation. While

other works simply gather data, our thermal control strategies (learned and

real-time) are tested in real deployments for a significant period of time

(15 and 25 months) with a large 135 subject population in two different

buildings. Both user driven strategies performed significantly better than

baseline and we show 67% and 80% satisfaction for the learned and real-time

strategies respectively.

• We examine a second application that explores how the system can be used

for the development of models of thermal comfort. We then demonstrate

how these models can be integrated with building energy simulators in order

to examine the effect that thermal preference adjustment has on energy

consumption.

• We examine the relationship between occupant comfort and energy con-

150



sumption by developing a thermal comfort based control strategy that reg-

ulates temperature based on a comfort range rather than a temperature

range. We show that 13% can be saved annually by relaxing the acceptable

comfort range to the limit of the standard. In addition, we explore different

voting scales and show that a 7 point scale works best in general.

9.1 Thermovote Overview

Themovote is a system that occupants can utilize to report their current thermal

comfort level. Users have the option of inputing their preference via cellphone,

tablet, or website. Figure 9.1 shows the iOS, Android and web interfaces. Data

from this system is feed into a database, which can then be used for a variety of

applications.

9.1.1 Design Considerations

For our system, we gather thermal comfort data using the same 7 point scale speci-

fied by ASHRAE standard 55 [ASH07a]; hot (+3), warm (+2), slightly warm (+1),

neutral (0), slightly cool (−1), cool (−2), and cold (−3). We use this scale rather

than use temperature directly; temperature alone does not determine thermal

comfort. Deciding what is a comfortable temperature is difficult. Occupants of-

ten have conflicting perceptions of what constitutes a comfortable temperature.

As part of our surveys, we asked users what temperature they considered comfort-

able. We then compared this temperature to the actual comfortable temperature

they were experiencing, we found a root mean squared error of 3.8 Fo; letting

users choose a temperature will likely lead to discomfort. Figure 9.2 shows the

variation in user opinion. Rather than using temperature, we decided to use the

same 7 point scale as specified in ASHRAE standard 55 that ranges from -3 to

indicate cold to +3 to indicate hot. While users may not agree on a numerical

151



(a) IPhone (b) Android

(c) Website

Figure 9.1: The different methods of input provided.
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Figure 9.2: Variance of user opinion of what constitutes a comfortable tempera-

ture.
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temperature, they are more likely to agree on whether they feel warm or cold.

The next consideration is how to use this information. If a person states he/she

is warm, then how much should the temperature be changed? Since there are many

models of comfort developed, we decided to leverage off of the Fanger’s PMV

model (ASHRAE 55), which is one of the most widely used and studied models

for thermal comfort. Typically these models are used to predict user comfort level.

In our case, we know the actual comfort level. We can thus work backwards to

solve for the parameters that will give a more comfortable temperature given user

feedback. This is discussed in more detail in Section 9.2.

Lastly, we need to address how to handle diverging opinions. What happens

if one person feels cold while another feels hot? To handle this issue, we use

a voting based scheme. Users are allowed one vote valued from -3 (cold) to 3

(warm)for each voting period. After each voting period, votes can be then tallied

and aggregated.

9.1.2 Systems

Figure 9.3 shows the feedback loop of our proposed system that utilizes a fully fea-

tured BMS such as ALC or Phoenix. Room occupants provide feedback regarding

their thermal comfort level. This feedback is then evaluated. Depending on the

feedback, the information is then used to adjust the room temperature, which is

sent to the BMS and adjusts the room temperatures accordingly. In the case a

fault is detected, building maintenance is notified to investigate the problem.

Since older buildings may not have a BMS capable of real-time changes, we also

examine a strategy where we are only able to set a daily temperature schedule.

User feedback is collected over a short period of time and data is stored in a

database. This measured user comfort level data can be used to correct the error

of the estimated PMV and determine an improved temperature set-point. This
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Occupants

Building Maintenance

Adjusted Temperature
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(a) Real-Time

Feedback EvaluationBuilding Management System

Stored User FeedbackOccupant

Adjusted Temperature

Historical User feedback

User Feedback

(b) Learned Control

Figure 9.3: Architecture of the Thermovote system. Here we show both real-time

and learned versions of the system.

also allows managers to create different set-points throughout the day rather than

have a single static set-point.

For our application, users provide one of the following “readings”; hot (+3),

warm (+2), slightly warm (+1), neutral (0), slightly cool (−1), cool (−2), and

cold (−3). Users are able to provide participatory readings by using a cell phone

application (IPhone and Android) or by a website. Figure 9.1 shows each of these

input methods.

As user input could potentially be used for applications involving temperature

actuation, security must be considered. In order to use the interfaces, authentica-

tion is required through the university central authentication system where only

students and staff with university accounts can access the system. In addition,

when occupants register for the service, they must submit a room request that

is verified before approval. Before performing our studies, we obtained approval

from our university Institutional Review Board. Best practices are followed with
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regards to use of data [OEC, eur].

As with any participatory sensing application, privacy is an issue that should

be considered. Since thermal comfort level is not considered sensitive, most occu-

pants feel comfortable providing this information. Occupants would have to report

this information regardless if they were to request temperature change from man-

agement. Erring on the side of caution, we chose not to include any identifiers

when storing user feedback in our database.

9.2 Crowd Driven Control

The first application we examine is a building temperature control system driven

by data gathered by Thermovote. Our deployment covers one floor of an engineer-

ing building and one floor of a management and social sciences building. These

spaces have a mix lab space, private offices, and open office spaces. Lab spaces

are controlled using a Phoenix system [pho], which uses LonWorks as the network

protocol. The remaining space is controlled using Automated Logic [Log], which

is a BACnet based system. BACnet is a client-server protocol used for building

automation and control. LonWorks is another similarly designed protocol used by

Pheonix. Both systems are maintained and administrated using WebCtrl, which

is a BMS made by Automated Logic. The floorspace is subdivided into multiple

zones with each zone containing one or more rooms. Each zone contains multiple

BACnet points, where each point either provides sensory information or point of

control. For example, an air damper can be actuated by “writing” to the damper

BACnet point. Temperature can be determined be “reading” the thermostat

BACnet point of a zone. WebCtrl allows changes to be made to parameters such

as temperature using a Simple Object Access Protocol (SOAP) interface.

The first major design issue is how to utilize user feedback. If a user provides a

value of -3 (Cold), then how much should the temperature be adjusted? In order
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to determine an appropriate temperature change, we use the well known Fanger’s

PMV model (ASHRAE 55). Since we ask users directly for their thermal comfort

level, we know the actual mean vote (AMV). Thus, we can set PMV equal to AMV

and in order to correct the errors caused by estimates of the parameters. This

error correction is discussed in greater depth in the following sections. By utilizing

the AMV of an area, we also handle differences in preference. If the majority of

the occupants in a particular area is warm, but only one is cold, then the system

can make an adjustment that favors the majority. Since thermal preference can

change over time, votes are tallied at regular intervals.

9.2.1 Baseline Control

Determining a set-points for temperatures is often an imprecise exercise. As pre-

viously mentioned, ASHRAE 55 specifies guidelines for creating comfortable tem-

peratures through the PMV metric. In order to calculate the PMV, the following

parameters are required:

• Metabolism (M)

• External work (W )

• Mean Radiant Temperature (Trad)

• Air temperature (Tair)

• Relative Humidity (h)

• Partial water vapor pressure (P )

• Clothing coefficient (fcl)

• Air velocity (vair)

These parameters are used in the following to calculate PMV:
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ˆPMV (M,w, Trad, Tair, h, C, vair) = (9.1)

(0.028 + 0.303e−0.036M ){

(M −W )− 3.05−3(5.733− 6.99× 10−4(M −W )− P )

−0.42((M −W )− 58.15)− 0.017M(5.867− Pa)

−0.0014M(34− ta)

−3.96× 10−8fcl((Tcl + 273)4 − (Trad + 273)4)

−fcl × (Tcl − Tair)}

where outer clothing temperature Tcl is

Tcl = 35.7− 0.028(M −W )− (9.2)

Icl(3.96× 10−8fcl((Tcl + 273)4 − (Trad + 273)4)−

fcl × (Tcl − Tair)}

The main difficulty is that most of the parameters are not measured by a

BMS. Typically, only air temperature and relative humidity are actually measured.

While the BMS does sometimes have airflow through the vents, this does not

accurately reflect the perceived airflow felt by the occupant unless the occupant

is in the direct path of the vented air. Mean radiant temperature (MRT), the

average weighted temperature of the surroundings, is also not commonly sensed.

This value, affected by solar gain heating the surroundings, can be measured using

a black globe thermometer. The other remaining parameters are estimated since

factors such as metabolism cannot be practically sensed or measured. Table 9.1

shows the initial set-points for the building. Rooms with more sun exposure had

heating set-points of 72 Fo. The remaining rooms had set-points of 74 Fo. Since

many of the parameters are fixed estimates, the PMV error will vary depending
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Parameter High Solar Gain Low Solar Gain

Metabolism 70 W/m2 70 W/m2

MRT 75 Fo 72 Fo

Relative Humidity 30% 30%

Clothing 1.0 1.0

Air Velocity 0.1 m/s 0.1 m/s

Table 9.1: Parameters used for initial PMV estimate and temperature set-points.

on conditions. For example, if the estimated parameters are based on a sunny

day, then the PMV error will increase on cloudy days. Rooms that have more sun

in the morning might have higher PMV during this period of the day, but have

low PMV in the afternoon when the room receives no solar gain. The goal of our

strategy is to continually correct for these dynamically changing environmental

factors.

9.2.2 Learned Control Schedule

The learned control strategy uses historical data in order to correct temperatures

using an open loop system. Users are asked to report their thermal comfort

over the course of several days. This data is then aggregated to create a daily

temperature schedule. The temperature at each point of the day is set based

on the past user input. For example, a room may consistently be warm in the

morning due to solar gain, which users can log during the “learning” period. These

patterns are captured by aggregating votes at each point of the day.

Temperatures are corrected using user data and the PMV model. Fixed pa-

rameters are the main source of errors for PMV. Out of the PMV parameters,

temperature is the most important factor affecting PMV that can be regulated by

the BMS. Since we have actual data from the occupants, we have the actual mean

vote (AMV) of the users. Thus, we can compare the PMV and AMV in order to
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correct for the errors. This can be achieved by offsetting the air temperature until

PMV matches the AMV,

ˆPMV (M,w, Trad, Tair + Toffset, h, C, vair)− AMV = 0 (9.3)

In this equation, Toffset is a temperature offset that will correct the initial

PMV estimate to match AMV provided by occupants. This method allows us to

translate a AMV such as “Cold” to an actual temperature change based on the

current conditions.

The learned algorithm is shown in Algorithm 6. The day is subdivided into

10 minute windows of time. For each window, the historical user votes for the

window of time is examined to find the AMV. For example, if we gathered a week

of data and are examining the period 14:00-14:10, then we calculate the AMV by

aggregating the votes of this 14:00-14:10 period across all 7 days. The AMV is

then used to calculate the temperature change Toffset. However, we do not change

the set-point if the difference between the air temperature and the set-point is less

than a specific threshold. In this case, the system is adjusting the room to the

specified set-point. The threshold is determined by examining the amplitude of

the temperature change caused by the PID controller. Only one vote is allowed

per user during each 10 minute period, which is done to prevent bias.

Since most modern thermostats can be programmed with daily temperature

schedules, this method can be applied to the majority of current systems and does

not require a BMS. Offsets can be pre-computed and programmed as a schedule.

However, there are drawbacks to this approach. In particular, the offsets are based

on the time of collection. Data collected in the summer may not apply during the

winter. Seasonal error can be reduced by collecting data for each season but will

not be able to adapt to heat waves or cold spells.
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Algorithm 6 Learned Control Schedule

ˆPMV ← See Equation 9.1

AMV (i, j)← Actual Mean Vote from previous data from time i to j

Tsetpoint ← Current temperature set-point

ti ← Time at instance i

thresh← Threshold to consider Tair ≈ Tsetpoint

for Every n minutes do

tcurrent ← Current time

Solve for Toffset:

ˆPMV (M,w, Trad, Tair + Toffset, h, C, vair)−AMV (tc, tc+n) = 0

if |Tsetpoint − Tair| < thresh then

Tsetpoint = Tair + Toffset

end if

end for
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9.2.3 Real-Time Control

An increasing number of BMS’s allow for real-time control. With real time control

we can apply a similar strategy to the learned control schedule, except we can

apply the corrections based on real-time user readings. Algorithm 7 shows the

control algorithm. The strategy is similar to Algorithm 6. However, instead of

aggregating results from previous data, data from the past n minutes (10 minutes)

is used instead. Again, to prevent voting bias, we only count the most recent vote

by a user for each 10 minute period.

The main advantage of this approach is that it is highly adaptable. In particu-

lar, it can account for sudden changes such as someone opening a window, changes

in occupant thermal preference, or extreme weather. In Section 9.4, we will also

see that it is robust against the variance of user feedback. Though real-time

temperature control is currently less common, increasing availably of real-time

temperature control will eventually allow widespread application of this strategy.

9.3 User Studies

For our study, we recruited a total of 135 participants in two different buildings

to provide feedback, covering approximately 85% of the total occupancy of the

floor in each building. Table 9.2 shows the demographics of the users. We held

information sessions and described our study to people occupying the target floors.

For our initial studies, we conducted three different studies over a period of 5 weeks

in Lab 1 and Office areas (31 participants). After these studies, we continued to

run the real-time studies in these areas and added an additional Lab 2 area.

Figure 9.4 shows the zones of the office space. One of the long term study has

now run for total of 25 months.

Study 1: Baseline Evaluation: During the first week baseline period, occu-
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Algorithm 7 Real-Time Control Schedule

ˆPMV ← See Equation 9.1

AMV (i, j)← Actual Mean Vote from current data from time i to j

Tsetpoint ← Current temperature set-point

ti ← Time at instance i

thresh← Threshold to consider Tair ≈ Tsetpoint

for Every n minutes do

tc ← Current time c

Solve for Toffset:

ˆPMV (M,w, Trad, Tair + Toffset, h, C, vair)−AMV (tc, tc−n) = 0

if |Tsetpoint − Tair| < thresh then

Tsetpoint = Tair + Toffset

end if

end for

Male Female

Gender 67% 33%

21-29 30-39 40-49 50 or older Declined

Age 48% 36% 6% 3% 6%

Faculty Staff Student

User Type 12% 37% 51%

Table 9.2: Demographics of the users.
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(a) Office (b) Lab 1 and 2

Figure 9.4: Layout of offices and labs.

pants logged their thermal preference to determine how well the static temperature

schedule performed. In addition to establishing baseline performance, this data

was used to create a learned schedule for the second study. A survey was also

given to gather information such as overall satisfaction, area conditions, and past

interactions with the Facilities Department.

Study 2: Learned Control Schedule: This one week study uses the data

gathered from the baseline study to learn the temperature offsets to correct PMV

estimates using the technique described above. To determine the effectiveness of

the learned schedule, occupant were asked to continue to log their comfort level.

We sent another survey asking occupants about their overall satisfaction with the

new temperature schedule.

Study 3: Real-Time Control: This two week study tests the real-time

control strategy described in the previous section. A survey is sent to gather user

feedback regarding this strategy.

Long Term Studies: Real-Time Control: After the initial 3 studies, we

conducted several long term studies to examine how users interact with the real-
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Within 15 feet

Window 59%

Exterior Wall 72%

Window and Wall 56%

Table 9.3: Proximity to window or exterior wall.

time system. Our longest ongoing study is currently for a 25 month period. We

also have an additional study that has currently run for 15 months. Surveys were

given at the beginning and after 5 months to determine the prior performance of

the baseline system and the user perception of the system.

9.4 User Studies

For our study, we recruited a total of 135 participants in two different buildings

to provide feedback, covering approximately 85% of the total occupancy of the

floor in each building. Table 9.2 shows the demographics of the users. We held in-

formation sessions and described our study to people occupying the target floors.

The buildings were constructed in 2006 and 2012 and are both LEED Gold cer-

tified. For our initial studies, we conducted three different studies over a period

of 5 weeks in Lab 1 and Office areas (31 participants). After these studies, we

continued to run the real-time studies in these areas and added an additional Lab

2 area. Figure 9.4 shows the zones of the office space. One of the long term study

has now run for total of 22 months.

9.4.1 Surroundings

A preliminary survey was given to determine the surrounding environment of

occupants. Table 9.3 shows how many occupants are within 15 feet of a window

or external wall, which can potentially affect comfort level. 59% of occupants
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Figure 9.5: The top figure shows the initial estimate PMV estimate for this area,

which differs greatly from the user feedback. Based on this initial PMV estimate

and user feedback, we can correct the PMV estimate. The middle figure shows

when we condition according to the corrected PMV estimate. Though people still

indicate they are cold, the frequency of the vote is reduced. The bottom figure

shows the system running in real time. The frequency of the vote is reduced

dramatically indicating that occupants are comfortable. The corrected PMV is

actually higher than 0, indicating that our original correction produces tempera-

tures that are slightly cool.
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Figure 9.6: Airflow experienced by users.

were within 15 feet of a window and 72% were within 15 feet of an external wall.

We also asked occupants to report the perceived amount of air felt from the VAV.

Figure 9.6 shows most people felt some degree of airflow (84%); only 9% did not

feel any air movement.

9.4.2 Thermal Comfort: Studies 1-3

In Figure 9.7, we see the vote results over a 5 week period for two representative

zones. We first examine the baseline performance (Study 1). The initial PMV

estimate shown in Figure 9.5(a) is calculated using the initial parameters shown

in Table 9.1 (high solar gain). This estimate is neutral (PMV 0) most of the time

with some variation caused by the natural air temperature changes in the room.

However, when we compare the PMV estimate with the actual votes, we see most

occupants felt Cool to Colder during this period. This is also confirmed from the

initial survey. Table 9.4(a) shows that 76% of the occupant in the area either

cold, cool, or slightly cool. 0% of the respondents indicted they were satisfied

or even slightly satisfied with the initial conditions; 75% indicated they were not

satisfied with the initial conditions. Based on the votes and surveys, a positive
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(a) Thermal Comfort

Baseline Learned Real-time

Cold 29% 27% 0%

Cool 29% 9% 0%

Slightly Cool 18% 9% 22%

Neutral 0% 19% 67%

Slightly Warm 12% 27% 11%

Warm 12% 9% 0%

Hot 0% 0% 0%

(b) Satisfaction

Baseline Learned Real-time

Dissatisfied 33% 8% 0%

Somewhat Dissatisfied 42% 17% 0%

Neutral 0% 8% 0%

Somewhat Satisfied 8% 50% 77%

Satisfied 17% 17% 23%

Table 9.4: Survey results for studies 1, 2, and 3.

temperature offset is required in order to correct the PMV estimate. The AMV

is calculated by averaging the votes over 10 minute windows where the total we

average over is the number of unique occupants who have voted for the current

day. Occupants that do not vote during a window are assumed to have vote of 0

(neutral). We found occupants typically vote when they are uncomfortable, not

when they are comfortable. The calculated AMV is then used to correct the PMV

estimate. The corrected estimate is shown in Figure 9.5(a), which shows corrected

PMV estimate closer to the actual votes.
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(c) Lab 1 Study Results

Figure 9.7: Study results over the course of 5 weeks.
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The learned strategy (Study 2) that was applied during the second week

showed improved thermal comfort. Rooms showed AMV values closer to 0, and

the rate of voting decreased, showing that temperatures had improved (see Fig-

ure 9.5(b)). Survey results (Table 9.4) show 19% of occupants were comfortable

compared with the inital 0%. Only 45% felt slightly cool or cold with the learned

strategy vs the 76% felt slightly cool to cold during baseline. We also found that a

larger number of occupants were warmer (36%). This indicates that our corrected

PMV still contains some error for certain areas. In particular, it shows corrections

were too large in certain areas and too little for others. However, overall occu-

pants were more satisfied with the learned temperature schedule (Table 9.4). 67%

were satisfied or somewhat satisfied using the learned strategy; the corresponding

results for baseline was only 25%.

Study 3 showed the real-time strategy performed significantly better than both

baseline and learned strategies. Figure 9.7(c) shows the total number of votes

decreasing for several areas. As occupants adjust the temperature, less votes

are required to maintain comfortable conditions. The survey showed majority of

occupants felt comfortable (67%); only 22% felt slightly cool and 11% felt slightly

warm. Overall we show that 77% were satisfied and 23% were somewhat satisfied.

9.4.3 Thermal Comfort: Long Term Studies

We expanded our deployment area and launched two long term studies; at the

writing of this dissertation, a real-time system has run 25 months in the Office,

Lab 1, and Lab 2 areas and another real-time system has run 15 months using an

additional set of 5 offices (GradOff) occupied by graduate students. The GradOff

areas are each zoned separately. Baseline surveys of thermal comfort show that

initially 0% found the rooms to have neutral temperatures. Table 9.5 shows the

survey results for occupant thermal comfort levels. 62% of the occupants found

the space they occupied to slightly warm to hot. 38% found their space to slightly
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(a) Thermal Comfort

Baseline Real-time

Cold 28% 0%

Cool 25% 9%

Slightly Cool 9% 10%

Neutral 0% 65%

Slightly Warm 16% 12%

Warm 16% 4%

Hot 6% 0%

(b) Satisfaction

Baseline Real-time

Dissatisfied 44% 0%

Somewhat Dissatisfied 37% 7%

Neutral 0% 13%

Somewhat Satisfied 13% 27%

Satisfied 6% 53%

Table 9.5: Long term comfort and satisfaction.
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cool to cold. Table 9.5 shows the baseline and long term satisfaction from surveys.

Baseline performance shows that only 19% were satisfied or somewhat satisfied

with initial conditions. After using the real-time system over a long period, 80%

were satisfied or somewhat satisfied; only 7% were dissatisfied. One interesting

finding is that despite only having 65% of occupants indicate neutral comfort,

80% of occupant were satisfied. This shows that absolute thermal comfort is not

necessary to achieve satisfaction.

In addition to thermal comfort, there were several issues that we wished to

examine in this study. In particular, we wanted to examine the user participation

over time. Figure 9.8(a) shows the change in vote volume and total temperature

change over time for the different room types. Initially, the vote volume is high.

This is likely due to the novelty of the system for users. Consequently, the total

temperature change is also high. After the first few weeks, as the room temper-

ature converged to a comfortable range, we see the vote volume decrease similar

to what was seen in Study 3. From week 15 to 30, the temperature change is be-

tween 1.0-1.9 Fo. From weeks 30 onward we see that the temperature change only

between 0.1-1.0 Fo. We see similar results for the graduate offices (Figure 9.8(c));

we see a high initial vote volume the first few weeks that eventually tapers in

the following weeks. For these areas we see changes between 1.5-3.0 Fo. Even

though the vote volume is similar to the administrative area, the temperature

changes were higher for the graduate area as compared the administrative area.

This was due to the lower bias we saw with the votes of the graduate students,

which caused less votes to “cancel” out. We saw a similar situation with the Lab

areas where we again see higher temperature changes relative to the number of

votes. However, for the Lab areas (Figure 9.8(b)) we see a slight variation with

regards to the long term voting pattern. In this case, we see the familiar initial

experimentation phase in the beginning followed by a decrease number of votes,

followed by another increased spike around week 32. This was due to a new group
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Figure 9.8: The weekly vote average and temperature change for different areas.
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of graduate students entering the study. Again in the weeks following, we see the

number of votes tapers off.

During the seasonal changes, weeks 10-30 and 60-70, the degrees changed

clearly increased for the Lab and Administrative Offices (Figure 9.8(a),(b)). In-

terestingly the Graduate Offices (Figure 9.8(c)) did not show significant variation

of degrees changed. When we examined these rooms, we realized that these spaces

generally had less window area and exterior wall space than the Labs and Adminis-

trative Offices. The building housing the Graduate Offices also is a newer building

with slightly better insulation and this factor is likely the cause of the reduced

correlation between weather and voting patterns for these particular areas.

We attribute lower vote volume to more comfortable temperatures; votes are

usually supplied when users are uncomfortable. Another interpretation of the re-

sults is that occupants are losing interest and not voting. To test this hypothesis,

we performed a simple interrupted time series [DC02] by turning off the Ther-

movote in one zone without prior notice to the occupants. An office zone, which

experiences similar conditions, serves as a baseline. Stopping “treatment” leads to

a dramatic increase in the voting volume immediately following the deactivation.

Week 5 and 6 of this test (Figure 9.9) shows the period when Thermovote was

deactivated. In the month prior, weeks 1-4, the average vote volume was between

1 to 2 votes per day. During weeks 5 and 6, the average vote volume per day

increased to 5-7. After re-starting Thermovote, the vote volume again dropped

to previous levels. The baseline showed 1-2 votes per day for the same period

of time confirming the deactivation of Thermovote was likely the main cause for

the change in vote volume. These results show that occupants still actively use

the system and rely on it for temperature maintenance; it is not a novelty. The

findings also show that system is effective at correcting thermal estimates and

only a few votes per day are required to maintain proper room conditions.
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9.4.4 Vote Consistency

Another issue of interest is the consistency of the perceived thermal comfort. Since

user opinion is the definitive authority, an individual’s “sensed readings” can be

considered 100% accurate. However, an individual’s perceived thermal comfort

level may not match the overall perceived comfort level of the group since there

are differences among individual preference. This variance is shown in Figure 9.10.

Zones 3 and 4 show votes that are consistent among occupants with only a few

outliers. The convergence of the votes suggests that people tend to have similar

thermal preferences. People are more likely to agree that a particular temperature

is comfortable. However, people are less likely to agree on the severity of uncom-

fortable temperatures. While one person may feel that a room is cool, another
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person may feel the room is cold. Though we use the same temperature correction

method for both real-time and learned schedules, we see conditioning performance

of the real-time system is superior. This superior performance is most likely due to

the real-time feedback returned to the user. Users can re-correct the temperatures

until they feel comfortable, functioning as a human driven proportional integral

derivative controller.

Zone 1, however, shows a larger variation, where most occupants voted “Cold”

(-3) but a significant number of “Hot” votes were also recorded during. While we

may expect users to disagree on severity (Cold vs slightly cool), it is puzzling to see

such a large divergence in opinion. The most likely explanation is that the minority

is aware of the majority’s preference. In this case, the minority may attempt to

offset the majority’s vote by voting for the extreme opposite. This variation is

also seen in Office Zones 2 and 5 but to a lesser degree. Figure 9.11 shows the

votes in two different areas where multiple people occupy the space along with a

space only occupied by a single person. Area 1 occupied by multiple people shows

a clear pattern of bias caused by competition. There is somewhat a division of

preference in this particular space with slight majority of people feeling the space

is cold to slightly cool. Area 2 occupied by multiple people shows a more definite

consensus with more people reporting Hot (38%); we also see a small percentage

of people voting Cold (18%) in order to bias the temperature in their favor. The

remaining points from -2 to 2 are very uniform and are between 8%-10%. If we

examine the single zone space we see a very even number of percentages for PMV

-1, 0, and 3 (15%-18%). The user only found the space warm about 5% of the

time. There was a higher percentage of -2 in this case since the room was initially

too cold and required extra votes to adjust the temperature.
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9.4.5 Maintenance and Management

In addition to thermal comfort, another important factor to consider is system

management. For building management, reducing the number of complaints is of

critical importance. In our surveys, we also included questions regarding users’

experience when interacting with facilities management.

Users only contacted us 6 times during the long term real-time study period.

One zone have extreme temperatures. This particular zone had three small offices

attached to a single variable air volume (VAV) unit, where each room receives

a portion of air from the shared VAV. The amount of air each room receives is

manually controlled by adjusting a series of vents. In this particular case, one

room received 200CFM while the remaining rooms only received 50CFM each.

We contact facilities and resolved the issue through an air balance of the areas.

There were 3 instances where network/power outages caused our vote system to go

off-line. The remaining contacts were simple questions about the system. Survey

results showed 100% of occupants were either satisfied or somewhat satisfied with

our resolution.

As shown in Table 9.6, before the implementation of Thermovote, 56% of

occupants contacted facilities because of thermal comfort issues. 31% of these oc-

cupants were satisfied or somewhat satisfied. If 81% of occupants were dissatisfied

with thermal comfort (Table 9.5) and only 56% of occupants contacted facilities,

then approximately 25% choose not to contact facilities. Given that most occu-

pants were not satisfied with the results, it is possible the 25% occupants who did

not contact facilities perceive contacting facilities as ineffective. While this may

seem somewhat shocking, it is expected since even if facilities responds to each

complaint instantly, they do not incorporate all previous user feedback. Thus, it

is unlikely the temperature selected satisfies everyone.

We also found the system to detect other faults within the system. In one in-
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(a) Year Contact

Did Not Contact 37%

Unable to Contact 6%

Did Contact 56%

(b) Resolution

Dissatisfied 38%

Somewhat Dissatisfied 25%

Neutral 6%

Somewhat Satisfied 25%

Satisfied 6%

Table 9.6: User interaction with facilities management before Thermovote.

stance, we detected a sudden increase of warm votes within the Lab 1 spaces.

Though votes were being recorded, temperatures were not being accepted by

the BMS. Upon further inspection, we found the VAV was locked in a default

state, which was preventing changes to the system. Since the default state caused

warmer conditions, user feedback alerted us of this situation. This occurred sev-

eral times over the months. To prevent loss of service, we configured our system

to email us when the VAV was in a locked state so we could reset the VAV. With-

out the user feedback, detecting these types of problem is difficult and it is likely

this default state would have persisted for several months before being discovered.

Thermovote has also been used to examine the effect certain control changes had

on occupants. For instance, facilities was adjusting the set-point control logic of

the air handler unit. In particular, adjustments were being made to the econo-

mizer of the air-handler to increase efficiency. One concern was that temperature

changes could affect the air flow within the spaces causing colder temperatures.

Thermovote was used in this case to verify that proper conditioning was still

taking place.

9.4.6 Energy Consumption

In this section we examine how the strategies affect energy consumption. To esti-

mate the energy consumption, we analyze the heat transfer through the variable
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air volume (VAV) units. Each VAV contains a heat exchanger that delivers con-

ditioned water. Air is passed over the heat exchanger, conditioning the air for the

room. Air for the driven through the VAV units using the main air handler unit

on the roof. To measure the energy from the heat transfer, we use the following:

Q = mCair(Tin − Tout) where Q is energy transfered from the coil to the air, m is

the total air mass passing through the coil, Cair is the specific heat of air, Tin is

air temperature of the incoming air, Tout is the temperature of the outgoing air

after passing through the coil. The air mass is estimated by examining airflow to

find the total volume of air and then using air density.

For the learned strategy, we see a 2% increase in energy when compared to

baseline. This shows the overall change of the room offsets did not significantly

change the amount of energy used. Though additional heating was required for

the majority of the areas, there were several areas receiving a large amount of

solar gain that actually required a small amount of cooling. Since the outside

air temperature was sufficient for cooling needs, these areas did not contribute

to the energy consumption. The real-time system showed 10.1% savings over

the baseline strategy, showing that in certain situations a real-time system can

potentially save energy. The baseline used for this calculation was found using

similar days from historical data. This is to account for weather, which can

affect energy consumption. The real-time week had an average temperature of

54.4 Fo and standard deviation of 1.9 Fo. The corresponding baseline week had

an average temperature of 55Fo and standard deviation of 1.5 Fo. On average

office zone temperatures increase 2.1 Fo, increasing energy consumption. However,

temperatures in the labs decrease 3.3 Fo, accounting for the net energy savings.

Next we analyze the energy consumption for the 25 months study. Overall we

found a 16% increase in energy consumption for the 25 months. We again pick

baseline data to match the weather conditions during the real-time deployment.

Offices 1 and 2 showed increases of 9% and 21% respectively while Office 3 showed
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a change of -14%. This indicates the effect on energy consumption depends on

the situation. For example, for a room with a temperature that is too cold in

the summer, Thermovote will likely decrease energy. Similarly, for a room that is

too warm in the summer, Thermovote will likely increase energy. This is further

supported comparing the results of [EC] with our work; the authors found an

overall decrease in energy for the period of time their system was evaluated, while

our current deployment found an overall increase in energy.

An important point to make is that energy savings should not come at the

expense of occupant comfort. Previous to Thermovote the building as a whole

consumed less energy. However, this energy saving came at the cost of thermal

comfort, which is confirmed by the user feedback. This discomfort also has a mon-

etary cost in terms of lost office productivity. In [Hed04], typing errors dropped

44% and output increased 150% by increasing temperatures from 68Fo to 77Fo.

Thus, before energy saving measures are considered, one should also consider the

thermal comfort of the users.

9.5 Thermal Comfort Models

In the remaining sections, we discuss how the Thermovote system is an enabling

technology that allows the collection of thermal comfort data from users and

enables the construction of models of thermal comfort based on empirical data.

These models can be integrated into energy simulations and model driven control

schemes, such as model predictive control (MPC) [KB11] to actuate buildings in

a more efficient manner.

PMV is currently the most commonly used model for thermal comfort. As

previously mentioned, many of the parameters of this model must be estimated.

This leads to a very deterministic value of comfort. In reality, there are typically a

range of comfort values for a given room temperature. Thus, it can be argued that
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Figure 9.12: Comparison of the original data and KDE.
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Room Temp. Outside Temp. Humidity Wind

r 0.801 0.056 0.017 -0.145

Table 9.7: Correlation coefficient of thermal comfort with several parameters.

it is more practical and realistic to model comfort levels based on a distribution.

In the following sections we develop and examine two different comfort models

using data collected from Thermovote.

9.5.1 Model Development

We start by first examining the parameters that can easily be obtained from

the building automation system or weather data. Table 9.7 shows the list of

parameters examined and the correlation coefficient of these parameters when

compared with thermal comfort.

As expected, room temperature had the highest correlation (r = 0.801). Given

these findings, we use room temperature to develop a model using kernel density

estimation (KDE). In the following sections, we show how these methods can be

used to construct a probability density function (PDF) for occupant comfort given

room temperatures.

KDE is a non-parametric method of estimating a PDF. This method estimates

the density at a point by taking a weighted average of nearby samples where the

weighting is determined by some kernel function. Let X = (X1, ..., Xn) be n

independent and identially distributed samples of an unknown density f̂h. The

kernel density estimator of f̂h is

f̂h(x) =
1

nh

n
∑

i=1

K
(x−Xi

h

)

where h > 0 is the smoothing bandwidth, K(•) is a symmetric kernel function,
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and f̂h(x) integrates to 1. In our case, we defineK to be a normal distribution. We

set the bandwidth partly by trying statistical rules and partly by eye. Figure 9.12

shows the original 194 data points and the fitted PDF.

9.5.2 EnergyPlus Simulated AMV

In this section, we show how the models developed can be integrated with Ener-

gyPlus [Epl] (EPlus) to explore different comfort based strategies and how these

strategies affect energy consumption. EPlus is an energy management simulator

that is able to account for a variety of parameters such as building geometry,

weather, and occupancy to estimate energy consumption and examine how the

building behaves. Natively, EPlus does not support customized models for thermal

comfort. In order to integrate a thermal comfort model, we utilize MLE+ [Ngh],

which is a package that is able to interact with EPlus and change parameters

during simulations. This package allows halts at each simulation iteration and

can be used to examine the state of the building. For our application, we will

use the thermal model developed in the previous section to simulate votes from

occupants. The model will give us distribution of occupant votes based on the

temperature. Algorithm 8 is used for our energy simulations.

At each simulation iteration, we first examine each occupant to determine if

a vote should be recorded. This is based on an exponential distribution or the

duration between each vote fit from the original data. The number of occupants

is based on an occupancy schedule. Based on all the votes cast, we calculate the

estimated actual mean vote ˆAMV by averaging all the votes during this period.

We then calculate the appropriate Toffset in a similar manner as the previously live

deployment strategy. However, rather than adjusting PMV to be 0, we calculate

Toffset such that the estimated PMV falls within acceptable range of thermal

comfort determined by an AMV set-point.
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Algorithm 8 Learned Control Schedule
ˆPMV ← See Equation 9.1

ÂV (Tair)← Modeled Actual Vote given Tair

Tsetpoint ← Current temperature set-point

AMVsetpoint ← AMV setpoint for acceptable comfort range

for Each Simulation Iteration do

for Each occupant do

if occupant scheduled to vote then

votes[occupant] = ÂV (Tair)

end if

end for

ˆAMV ← mean(votes)

Solve for Toffset such that:

−AMVsetpoint ≤ ˆPMV (M,w, Trad, Tair + Toffset, h, C, vair)− ˆAMV ) ≤ AMVsetpoint

Tsetpoint = Tair + Toffset

end for
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We tested two different comfort based strategies in energy simulations. Since

the number of samples is relatively small, we use KDE to model ˆAMV . Our target

building is a multi-room multi-story building. The first strategy we tested was the

same strategy utilized in the live deployment where AMVsetpoint = 0. The second

strategy we tried was setting to AMVsetpoint = 0.7, which is the maximum value

allowed by ASHRAE 55 standards. The same weekly occupancy schedule was

used for each strategy. Figure 9.13 shows energy results of each of these studies as

compared with a baseline strategy where the set-point band was 70-74Fo, which

is often the starting set-points for many buildings. Overall, the optimal comfort

AMVsetpoint = 0 strategy showed 7% increase overall annually. The winter months

showed the highest increases (9%-17% for Dec-Feb) and the lowest increases during

the warmer months (2%-4% for May to Apr). As expected, when we relaxed the

comfort set-point to 0.7, we saw a reduction in energy usage (13% annually). The

largest savings were during the colder months (9%-13% Nov-Feb). The smallest

savings occurred during the warmest months (5%-6% for Jul-Aug). These results

confirm that the energy costs are greater for heating; correspondingly, savings are

thus also greater during heating. Figure 9.14 shows the vote distribution for both

strategies. When the AMV set-point is 0, we can see the peak of the distribution

is 0. When the AMV set-point is 0.7, we see one peak at 0.7 and another at

-0.7. This is expected as the offsets at each iteration are just enough to move

the temperature to within the acceptable range. During warmer weather, the

offsets will push the AMV to just below 0.7. Similarly, during cold weather, the

offsets will push it just above -0.7. We can also see the peak around -0.7 is higher

than the peak around 0.7. This indicates that there are more instances of cold

conditions than warm conditions.

These results show how data from Thermovote can be used to build much more

realistic models of thermal comfort and how the models can be integrated into

energy simulations to explore different design decisions that influence thermal
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Figure 9.14: Simulated AMV Distributions.

comfort and vice versa. These results demonstrate just one simple application

that a thermal preference simulator can provide; it can examine the interactions

of thermal comfort with other parameters or be used to develop comfort based

control strategies.

9.5.3 EnergyPlus Simulated Input Bias

In Section 9.4.4, we saw that competing thermal preferences could cause bias in the

data; areas containing multiple people tended to have votes at the extreme ends of

the scale in order to bias the temperatures in their favor. For our live deployments,

our systems utilized the 7 point PMV scale, allowing for this introduction of bias

data. One possible strategy, would be to use a 3 point scale (Cold, Neutral,

Hot) in order to reduce the magnitude of the bias. In this section, we will use a

building simulator along with a user thermal comfort model developed with past
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Point Scale Convergence Time Std. Dev.

3 points 17.7 days 0.4765

5 points 11.6 days 0.4694

7 points (Simulated) 9.5 days 0.4417

7 points (Actual Avg.) 10.0 days 0.3233

Table 9.8: Point scale results, multiple occupants.

Thermovote data to test both the behavior of the system and how the users are

likely to interact if we were to change the voting scale.

While it may seem preferable to test different point scales in a live deployment,

the main problem is that it is impossible to replicate the same conditions even if

experiments are run in parallel; too many variables exist that can influence both

the user input and the system.

9.5.4 Voting Scale Comparison

Using our thermal comfort model, we are able to examine how changing the vot-

ing scale affects how the control system performs. In particular, we would like to

examine how well lower point scales are able to adjust for different bias. For our

simulations, we tested a 3 point scale (-1 to 1), a 5 point scale (-2 to 2), and a 7

point scale (-3 to 3). Scales above 7 points are not considered since it has been

shown that beyond this resolution, people are unable to reliable distinguish the

difference between each point within the scale [O70]. We utilize the same temper-

ature correction procedure described in Section 9.2.2 but restrict the maximum

correction depending on the scale used. For the 3 point scale, we solve for offset

corrections setting PMV=-1,0,1. Similarly, for the 5 point scale, we solve for offset

corrections setting PMV=-2,-1,0,1,2. For our tested control strategy, we choose to

reduce the magnitudes of the temperature offset corrections and thereby reduce

bias. Another control strategy is assuming the largest temperature corrections
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Figure 9.15: The convergence of the different scales for rooms with multiple oc-

cupants.

and use “0” as an input to stop temperature change. Given our finding that peo-

ple do not typically vote 0 when comfortable, we chose the minimum change as

our strategy and save exploring other strategies for future work. We show that

by not choosing input scales that reduce bias, we improve the response time of

system by 86%.

Table 9.8 shows the time to converge to an acceptable comfort range (-0.5 to

0.5 per ASHRAE standards) and the standard deviation from neutral 0 for rooms

with multiple occupants. Figure 9.15 shows the average PMV over time. The

three point scale takes 17.7 days to reach the comfortable range. A longer time is

required to reach the comfort range since the temperature corrections are smaller

for each voting period. As expected, the 5 point range takes 11.6 days to reach

the comfort range. The 7 point scale only took 9.5 days to converge. To validate

the method, we compare the simulated 7 point results with a similar area in our

live deployment. We see that both simulated and actual results are very similar

showing 9.5 days and 10.0 days respectively. All three methods had very similar
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standard deviations. The similar deviation indicates the the bias actually does

not seem to hinder the stability of the PMV. This is likely due to the fact that

bias is “self-correcting” since occupants tend to vote at the extremes of the scale

to maximize their influence. However, since the higher point scales allow for larger

temperature corrections, the convergence for these strategies occurs faster.

Table 9.9 shows the time to converge for a single office using different scales.

Again we find similar results to the multiple occupancy area. However, much less

time is required to reach the target range since there is no competition with other

occupants. In this case, the 7 point scale is preferable since there is no competition

and the time required to reach the optimal comfort range is almost half (3.3 hours

vs 6 hours). We again validate the simulation by comparing the simulated office

with data from an actual office (3.3 hours vs 3.7 hours).

9.6 Discussion

In this section we discuss some of our experiences with our crowd sourcing appli-

cation.

9.6.1 User Participation

One of the most critical components to a success to crowd sourcing is actual

user participation. The quality, quantity, and reliability of the data is entirely in

the hands of the users. Our main concerns were whether participants would be

willing to provide baseline data for an entire week. Also a concern was whether

the quantity of data would be enough to estimate AMV effectively. Overall, we

found that participants were more than willing to provide votes; some participant

actually voted every 15 min for the baseline week. Since occupants knew their

votes during the learning period would affect their “thermal well-being”, they were

much more inclined to provide votes. Having a direct benefit to the user greatly
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Point Scale Convergence Time Std. Dev.

3 points 6 hours 0.3533

5 points 4.5 hours 0.3402

7 points (Simulated) 3.3 hours 0.3171

7 points (Actual Avg.) 3.7 hours 0.2742

Table 9.9: Point scale results, single occupant.

increases success of the application, and important factor of a participatory sensing

application.

9.6.2 Voting Bias

The vote variation shows that users can provide false information in order to

better benefit. Users can give inflated estimates of their vote to give more weight

to their preference in the hopes of increasing their thermal comfort. The bias

present in our system did not affect overall satisfaction in our application, but

this issue must be considered with other applications using crowd sourcing. More

generally, one must consider the user’s interest in the data and how they might

artificially create bias in order to benefit. In particular, one must examine how

this bias affects that target application.

9.6.3 User Psychology

In [Pac90], they showed that users with the illusion of some control more likely to

be satisfied. We found that building managers do indeed take this to heart. We

found most of thermostats on walls completely disabled from making temperature

changes. However, we also found there is a limit to this rouse. 62.5% of our

participants had access to a thermostat. However, 90% of these participants

stated that the thermostat was ineffective. On other hand, if users actually do
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have some level of control, our results seem to confirm that this control greatly

increases satisfaction and perceived comfort.

9.6.4 System Issues

In certain situations it is not efficient to cycle a thermostat constantly. However,

this typically refers to large changes over relatively short periods for standard

package units or any other system that is forced to react relatively fast to meet

temperature demands. Our strategy only effects small changes every 10 minutes.

In many cases, the period between changes is even larger. In addition, since the

building uses district cooling using thermal storage rather than a package unit,

our system is not affect by frequent temperature cycling; frequent temperature

changes do not cycle the chillers that supply the cold water to the thermal storage

tank. Another potential system issue is if a window is open. For most areas, this

will automatically turn off the HVAC system to the area. This is part of the

sequence of operations done in order to save energy. For other areas without

window switches, this will mean that the room will lose additional conditioned

area, decreasing efficiency. From a comfort perspective, this is simply the user

“correcting” their PMV estimate using a parameter not available by our crowd

sourced system.

9.6.5 Limitations

Crowd sourcing of thermal comfort can be affected by creating an appropriate

incentive structure. For example, one could motivate users by positive (e.g. green

points, future QOS in heat/cold waves, cash, etc.) and/or negative (e.g. extra

fees, social pressure by public outing, etc.) incentives. For example, users may

choose to wear a sweater if they are cold, instead of voting cold in order to save

energy. While this behavior would affect the voting patterns, we believe incentive
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structures could be readily integrated into our crowd sourcing platform by pro-

viding user incentive tracking/accounting and even modeling of users’ responses

to incentives. We have left the exploration of this issue for future work.

9.7 Summary

In this chapter, we developed a crowd sourcing platform called Thermovote. This

system uses cell phone applications and a website to allow users to provide feed-

back regarding their thermal comfort. Utilizing this platform we created two ap-

plications. The first are two live long term (25 and 15 months) deployments of a

thermal comfort driven temperature control. We develop two different methods of

utilizing Thermovote data for controlling the temperatures of rooms and a method

of correcting PMV estimates in order to determine temperature changes. Our long

term deployments showed significant improvement over baseline. With a 16% in-

crease of energy, we were able to achieve 80% satisfaction across all testing areas.

Our second application was the development of non-parametric thermal comfort

models that can be integrated into an energy simulator. Through simulations we

showed that optimizing comfort increases energy from 4%-16% depending on the

season. We also explored potential energy savings by relaxing thermal preference

requirements. By maintaining an AMV of ±0.7, we show annual savings of 13%.

We also show through validated simulations how other voting scales would affect

temperature convergence. With these applications, we have demonstrated a novel

tool for examining the interaction of thermal comfort with building conditions

constructed with Thermovote data. This work is an initial foray into the design

of crowd sourcing mechanisms for control of complex engineering systems. Our

models, simulations and experiments represent a non-trivial exploration of the

problem space. Such techniques will find increasing importance as the community

seeks ways to exploit the information offered by humans as a way of addressing
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new dimensions of building performance such as comfort levels and energy savings.
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CHAPTER 10

Conclusion and Future Work

There is tremendous opportunity for reducing energy in buildings by conditioning

to the appropriate level. We explored four areas central to usage based occupancy

control that utilize wireless sensor technology; occupancy estimation, occupancy

prediction, actuation using real-time and predicted occupancy, and user driven

temperature control. Measuring occupancy is a critical for determining adequate

conditioning for a room. With real-time occupancy information, it is possible to

develop conditioning strategies for reducing energy costs by adjusting the ventila-

tion and relaxing the set-points of a room based on occupancy. However, knowl-

edge of occupancy alone is not sufficient conditioning for temperature. Since, time

is required for the room temperatures to reach target levels, occupancy prediction

is necessary in order to determine when to begin conditioning a room. While

reducing energy is an important goal, just as critical is the ability of the control

strategies to maintain comfortable conditions for the spaces. This dissertation

examines each of these issues and how how they can be integrated together.

We started by examining occupancy prediction. Since rooms cannot be ac-

tuated instantaneously and take time to reach target temperatures, we present

several occupancy prediction methods based on inhomogeneous Markov Chains

in order to determine how far in advance rooms should be conditioned. We show

that the size of the state space can be reduced by using only states observed

during training and that discontinuities in the chain can be prevented using by

a closest distance Markov chain (CDMC) approach, or by continuously blend-
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ing the transition matrices over time (BMC). We demonstrate that the models

capture the occupancy dynamics accurately when comparing samples generated

from the model with ground-truth data using various metrics. With these pre-

diction models, we then developed conditioning strategies for conditioning spaces

based on predicted occupancy patterns. We show through both simulations and

real-world deployments that conditioning temperature and ventilation based on

actually occupancy can save up 42% or more annually depending on the climate.

In this dissertation, two different hardware platforms were developed for mea-

suring occupancy; a low-power wireless camera platform deployed in public hall-

ways and a wireless sensor thermal sensing platform that can be deployed in

rooms. We showed that the camera based system is capable of detecting tran-

sitions with up to 94% accuracy and can be generalized to different locations.

Using a particle filter, we bounded the error of occupancy within 1.83 people on

average for our building. When inexpensive thermal sensing became available we

developed a thermal sensing platform to be even more accurate and less power

intensive. With this system we are able to detect occupancy with a RMSE of

≈0.35 persons. We showed it is possible to use low resolution thermal sensing to

determine how many people are within the space by utilizing a novel occupancy

classification process. Unlike the camera system, the thermal array is not affected

by cumulative error. We increased accuracy of detecting empty spaces and the

overall accuracy of the platform by also including a PIR sensor. This PIR sen-

sor also helps to reduce the node’s power consumption by triggering sensing only

when someone is present. We showed both of these strategies to be successful for

measuring occupancy within rooms in near real-time.

In order to address the issue of comfort, we developed a crowd sourcing plat-

form called Thermovote. Users are able to use a cell phone application or website

to provide feedback regarding their thermal comfort. We develop two different

methods of utilizing Thermovote data for temperature actuation and a method
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of correcting PMV estimates in order to determine temperature changes. We

also developed novel tool for examining the interaction of thermal comfort with

building conditions constructed with system data. We use non-parametric ther-

mal comfort models that can be integrated into an energy simulator and explored

potential energy savings by relaxing thermal preference requirements.

There are multiple areas where additional future work is possible. Learning

the thermal properties of the room is one such optimization. By taking into

account the parameters such as current air temperature, damper position, and

discharge air temperature, it would be possible to determine a more optimal ramp

up time. The prediction models for PMV developed in the last chapter could be

integrated into control strategies. Perhaps the most ambitious project would

be integrating occupancy, thermal preference, and the thermal properties of the

building, and HVAC components into a optimization problem that minimizes

energy consumption while maximizing occupant comfort.
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