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An Interactive Environment for

Explanatory Biological Modeling

Pat Langley(langley@asu.edu)
Computing Science and Engineering

Arizona State University, Tempe, AZ 85287 USA

Abstract

In this paper, we describe an interactive environment
for the representation, interpretation, and revision of ex-
planatory biological models. We illustrate our approach
on the systems biology of aging, a complex topic that
involves many interacting components. We also report
initial experiences with using this environment to cod-
ify an informal model of aging. We close by discussing
related efforts and directions for future research.

Keywords: scientific models, qualitative reasoning,
applied cognitive science

Introduction and Overview

There is general agreement that the explosive growth in
biological data offers great opportunities but also poses
major challenges. Although less widely recognized, the
growing complexity of biological models that aim to ac-
count for these observations raises a host of other issues.
Computational techniques hold promise for mitigating
this complexity, but most responses have been driven by
algorithmic concerns rather than the cognitive needs of
scientists who must develop, interpret, and understand
complex models. Biologists would benefit from new com-
putational tools designed with scientific users in mind.

Many efforts in modern science aim to understand
complex phenomena from a systems perspective. One
important example comes from research on aging, with
recent studies suggesting that senescence results from
the interaction of many distinct but interconnected pro-
cesses (Vijg & Campisi, 2008). Individual laboratories
report experiments and propose hypotheses to explain
them, but there has been little work on how they fit to-
gether. The systems biology movement has championed
integrative science, but it has emphasized topics like gene
regulation and left phenomena like aging understudied.

In this paper, we report an interactive computational
framework designed to support modeling of this variety.
Our approach relies on three distinct but mutually sup-
portive ideas:
• formal representations of scientific knowledge that

make contact with specific fields’ terms and concepts;
• methods for reasoning over models cast in these for-

malisms that provide the same flexibility and draw
the same conclusions as scientists;

• techniques that let researchers analyze and update
these models in an incremental, cumulative manner.

In the next section, we discuss three computational chal-
lenges that these capabilities raise, after which we de-
scribe an interactive software environment that embod-

ies our responses. We illustrate the system’s abilities
with examples from the domain of aging, then report
initial experiences with the environment. We conclude
with a discussion of related work on scientific modeling,
along with directions for additional research.

Some readers may question the relevance of our work
to cognitive science. Of course, scientific reasoning has
long been a topic of study within this community, but we
will not claim our system reasons in precisely the same
way as biologists. However, our approach is informed
by results from cognitive science that constrain it in im-
portant ways. In particular, it borrows from research
on qualitative mental models, which has proposed rep-
resentations and reasoning methods that are consistent
with knowledge about human cognition. A good analog
comes from work on intelligent tutoring systems (e.g.,
VanLehn, 2006), which does not model the details of hu-
man tutors but takes lessons from them. We view our
work on computational aids for biological modeling as
another important instance of applied cognitive science.

Challenges in Scientific Modeling

As we have noted, the construction of complex scientific
models raises three separate but interrelated challenges.
Here we expand upon each of them in turn, placing con-
straints on the form our responses should take in devel-
oping an environment for biological modeling.

The overall aim of science is to produce knowledge,
but the social nature of science requires the use of com-

municable formalisms that researchers can exchange and
understand (Džeroski, Langley, & Todorovski, 2007).
Thus, our first computational challenge involves select-
ing a communicable formalism for biological models.
Over the past decade, computational researchers have
proposed many notations for such models, but most uti-
lize notations borrowed from other fields that have ques-
tionable relevance to traditional biological thinking. Re-
search in biology generally, and on aging in particular,
imposes two constraints on modeling formalism. One is
that most accounts of phenomena are qualitative, not be-
cause researchers prefer them intrinsically, but because
they enable useful claims even when lacking more pre-
cise information. A second feature is that biologists often
move beyond simple predictive models to posit causal hy-
potheses or processes that underlie known phenomena.

Science also differs from some areas of inquiry by its
concern with observations. However, biologists typically
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desire more from their models than simple predictions;
they prefer explanations that account for observations
in terms of concepts and mechanisms they find familiar
and plausible. Such explanatory reasoning is common
in biology (Darden, 2006), but the growing complexity
of models suggests that, without assistance, researchers
will otherwise overlook important implications. Thus, a
second computational challenge involves supporting rea-
soning over the communicable scientific formalisms just
described. Methods for calculating results from numeric
equations are well established, but automated reasoning
over the qualitative models that dominate biology re-
quires a different approach. One complication that arises
in qualitative models is that two or more causal path-
ways can predict different relationships between vari-
ables. Another is that it can be difficult to reason qual-
itatively about how a system changes over time.

A third important feature of science is its cumulative
character. Historians often focus on conceptual break-
throughs by individuals like Darwin, Pasteur, and Mor-
gan, but the great majority of research involves filling in
technical details rather than changing paradigms. This is
especially true for biology and medicine, in which scien-
tists devote considerable effort to piecing together com-
plicated models with many interacting parts. Thus, our
final computational challenge involves supporting the cu-
mulative improvement of system-level models by biolog-
ical researchers. A common response is to develop cu-
rated knowledge bases (e.g., Karp et al., 2000; Vastrik
et al., 2007) that rely on centralized control by a few ex-
perts, but the field has also explored community-based
approaches. Both require ways to update models incre-
mentally as new knowledge becomes available.

An Interactive Modeling Environment

We have incorporated our responses to the above is-
sues into an interactive software environment for bio-
logical modeling. We have implemented the initial sys-
tem in Lisp and we have used it to formalize four com-
partments of Furber’s (2009) network diagram of aging,
which depicts in a graphical but informal way some well-
supported hypotheses and phenomena from biogerontol-
ogy. In this section, we report the environment’s re-
sponse to each of the challenges just described, using
examples from aging to clarify its operation.

Representing Biological Models

Recall that our first computational challenge involves en-
coding explanatory models and presenting them in ways
that biologists will understand. Let us review some key
features of aging that hold implications for modeling
these phenomena:

• Different effects of aging and age-related disease are
localized in different portions of body. For instance,
some age-linked changes occur in specific parts of the
cell, such as the lysosome or the mitochondria.

• Some hypotheses about aging involve transient sub-
stances, such as enzymes and reactive oxygen species
(ROS), whereas others involve far more stable enti-
ties like lipofuscin and mitochondrial mutations that
accumulate over time.

• Empirical results generally take the form of qualita-
tive relations between continuous variables. For in-
stance, one robust finding involves a negative influ-
ence of caloric intake on lifespan in model organisms.

• Aging takes place over time, but its effects are primar-
ily monotonic in character, with the values of variables
increasing or decreasing consistently. For example,
lipofuscin in the lysosome is generally observed to in-
crease with chronological age.

• Empirical findings about aging come in two distinct
varieties: uncontrolled observations about changes
over time and results of controlled experiments that
measure the effect of one variable on another.

Taken together, these observations provide both con-
straints on our approach to modeling aging processes
and avenues for making the task more tractable.

Table 1 presents our reformulation of the lysomone
compartment of Furber’s network diagram. The ini-
tial 12 statements in (a) and (b) reflect the first two
points above. They declare specific locations – the lyso-
some, the cytoplasm, and the cell that contains them –
along with quantities that are measurable (at least in
principle) in those locations. Some quantities refer to
stable substances, such as junk protein, oxidized pro-
tein, and lipofuscin, which accumulate over time unless
actively broken down, whereas others denote transient
substances, like Fe, ROS, and lytic enzyme, which are
reactive enough to be very short lived.

The table also includes a set of hypotheses (c) about
how these quantities influence each other. One claim is
that transient ROS increases with transient Fe within
the lysosome, whereas another is that stable oxidized
protein increases with transient ROS in the same loca-
tion. Hypotheses may also relate quantities in distinct
locations (e.g., that lipofuscin in the cytoplasm increases
with damaged membrane in the lysosome). These hy-
potheses have a clear causal interpretation, in that they
state how one variable will change when one alters an-
other. However, although they link continuous quanti-
ties, the relations themselves are qualitative in character.

Of course, we should remember the purpose of hy-
potheses like those in Table 1 (c), which is to explain
known empirical results and predict new ones. This in
turn requires not only that we represent these empiri-
cal findings formally, but also that we distinguish them
clearly from the hypotheses themselves. Table 1 (d)
shows four facts about aging in the lysosome that il-
lustrate our earlier point about two forms of empirical
findings. The first two items clarify both the observa-
tional, nonexperimental character of many facts about
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Table 1: Formalization of Furber’s (2009) lysosome
model, including (a) locations, (b) stable and transient
quantities in these locations, (c) hypothetical claims
about causal influences between these quantities, and
(d) empirical facts about relations between quantities.

(a) location cell
location lysosome in the cell
location cytoplasm in the cell

(b) stable junk protein in the lysosome and cytoplasm
transient degradation rate in the lysosome
transient Fe in the lysosome
transient ROS in the lysosome
stable oxidized protein in the lysosome
stable lipofuscin in the lysosome and cytoplasm
transient lytic enzyme in the lysosome
stable damaged membrane in the lysosome
transient H2O2 in the lysosome and cytoplasm

(c) hypothesis junk protein decreases with degradation
rate in the lysosome

hypothesis junk protein in the lysosome increases
with junk protein in the cytoplasm

hypothesis Fe increases with junk protein in the
lysosome

hypothesis ROS increases with Fe in the lysosome
hypothesis oxidized protein increases with ROS in

the lysosome
hypothesis lipofuscin increases with oxidized protein

in the lysosome
hypothesis degradation rate decreases with lipofuscin

in the lysosome
hypothesis lytic enzyme decreases with lipofuscin in

the lysosome
hypothesis ROS increases with lipofuscin in the

lysosome
hypothesis damaged membrane increases with ROS

in the lysosome
hypothesis lipofuscin in the cytoplasm increases with

damaged membrane in the lysosome
hypothesis H2O2 in the lysosome increases with H2O2

in the cytoplasm

(d) fact lipofuscin in the lysosome increases with time
fact membrane damage in the lysosome increases

with time
fact lytic enzyme decreases with ROS in the lysosome
fact H2O2 does not change with ROS in the lysosome

aging and also their monotonic nature. These explicitly
mention time as a variable, which the model hypotheses
do not. The other two facts reflect (plausible) results of
experimental studies that measure the effect of one quan-
tity’s variation on another. The first states that lytic
enzyme decreases with ROS in the lysosome. The sec-
ond states that H2O2 does not vary with of ROS. Such
negative results place constraints on models, although
hypotheses may contain only positive causal relations.

This notation meets two of the criteria given earlier.
It supports qualitative models that nevertheless relate
quantitative variables of the type that biologists typi-
cally measure, and the hypotheses that make up models

Figure 1: A graphical visualization of the qualitative
lysosome model from Table 1, with plus (+) on an arrow
denoting that one quantity increases with another and
with minus (−) denoting a decreasing relationship.

have a clear causal interpretation. The formalism also
lends itself to graphical display, with quantities shown in
locations where they occur and with arrows depicting di-
rect causal influences between these variables. Figure 1
shows a graphical version of the lysosome model from Ta-
ble 1, with the empirical facts omitted. Our implemented
system does not yet generate such graphs automatically,
but adding this ability should not be difficult.

In addition, our notation lets users specify places,
quantities, hypotheses, and empirical facts in con-
strained English, which we believe will make it more
accessible to biologists who are uncomfortable with tra-
ditional computer languages. Yet models stated in this
notation are well defined and unambiguous about their
claims, making them just as formal as ones stated in
the more arcane languages typically proposed in com-
putational biology. This also distinguishes our approach
from work on qualitative reasoning in cognitive science
and AI (e.g., Bredeweg et al., 2007; Forbus, 1984), which
has influenced our approach to biological modeling.

Reasoning over Biological Models

Our second computational challenge involves interpret-
ing a given model to account for known phenomena. Sci-
entists regularly engage in such reasoning, but with com-
plex models they can easily overlook some conclusions
and incorrectly infer others (e.g., Feldman et al., 1989).
Thus, automatically determining a model’s implications
should be a key part of our scientific modeling environ-
ment. Good models should explain known phenomena
and predict new ones accurately, while phenomena place
constraints on model content. Our framework’s formal
statement of hypotheses and empirical results has an-
other advantage: it lets one answer questions about how
one quantity should affect another and predict the out-
comes of thought experiments.
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We can clarify this ability by introducing the notion of
a query about how two quantities are related. This takes
the same form as an empirical finding except that it does
not state the direction in which one variable influences
another or indeed whether an influence occurs at all.
Thus, given the hypotheses in Table 1, we might ask
“Does lipofuscin in the cytoplasm vary with Fe in the
lysosome?” or “Does ROS in the lysosome vary with
time?” The first asks a question about how changes to
one quantity in a controlled experiment affect another;
the second asks how a given quantity changes over time.
The reasoning task is simplified by our assumption that
effects are monotonic in character, giving behavior that
one can describe in terms of a single qualitative state.
This differs from much work on qualitative reasoning,
which deals with trajectories of such states over time
(e.g., Bredeweg et al., 2007; Forbus, 1984).

Because hypotheses take a form similar to facts, we
can utilize a relatively straightforward chaining proce-
dure to answer queries. To handle a question about how
dependent variable Y varies with independent variable
X, other things being equal, one simply finds a causal
pathway, typically through other quantities, that starts
with Y and ends with X. If no such path exists, then one
can conclude that changes to X do not produce changes
in Y. If there is such path, then one must still predict
the direction of the effect. Briefly, if the path contains
an even number of ‘decreases’ links, then one predicts
that Y increases with X; otherwise one predicts that it
decreases. For example, the model in Figure 1 lets one
conclude that lytic enzyme will decrease with ROS. The
justification for this strategy is simple: each ‘decreases’
link reverses the direction or sign of the path’s overall
influence, so that an even number of them cancel out.

One complication arises when multiple paths from
Y to X make different predictions. Without knowing
the functional forms and parameters that produce each
causal link, one cannot determine the exact effects of al-
ternative pathways. Given the modeling framework as
we have described it, in such cases one can only state that
the hypotheses make contradictory predictions. How-
ever, we can extend the formalism in a simple way that
lets it express another type of hypothesis that biologists
regularly make: that the effect of one causal pathway
dominates that of another. This requires a way to spec-
ify paths between two quantities and note which has
the greater or dominating effect. Once included, such
dominance relations let a qualitative causal model make
unambiguous predictions about how one quantity varies
with another, despite its abstract character.

Reasoning about how quantities change over time re-
quires a slightly different approach. We assume that any
exogenous variables not influenced by other quantities
take on constant positive values. One can then infer the
effect of such an exogenous quantity on another variable

downstream by finding pathways that connect them and
combining the influences on their causal links. One can
conclude that ‘stable’ quantities occurring downstream
will increase or decrease over time, depending on their re-
lation to the exogenous term. We can treat causal loops
between two variables as special cases of conflicting paths
in which a variable influences itself, again provided we
specify which path is dominant.

Taken together, these computational mechanisms re-
spond to a number of the issues raised above. They let
our biological models move beyond inert structures to
become interpretable ‘programs’ one can use to answer
directed queries and make predictions about empirical
relations. They also support reasoning about the ef-
fects of both controlled manipulation and the passage
of time. As we will see shortly, the system can also ex-
plain the reasons for its conclusions. Computational aids
of this sort should let biologists derive the implications
of system-level models of aging that are more complex
than ones they can handle without assistance.

Interactive Aids for Model Improvement

Our third computational challenge involves the incre-
mental revision of models to bring them into closer align-
ment with known phenomena. This depends on the abil-
ity to represent such models and reason over them, but
it must go beyond to identify portions of models that
are problematic and modify them in response. Although
there has been some research on automated model revi-
sion (e.g., Mahidadia & Compton, 2001), we have chosen
to rely on interactive revision under user control. To this
end, the system includes a number of commands through
which users can update the knowledge base. These are
currently available only through a textual interface, but
we also plan to embed them in a graphical environment.

Naturally, the most basic commands includes ones for
adding new model elements. The user can introduce new
locations, quantities, hypotheses, and empirical facts by
entering this content in the same format as shown in
Table 1. The modularity of the modeling formalism, and
its constrained English syntax, make these steps simple
to carry out. The environment also includes a display
command that presents the user with all elements in the
current model or only those of a specified type. These
commands provide the basic functionality needed for the
cumulative improvement of causal biological models.

However, the system also provides users with addi-
tional details about the model’s behavior that can inform
their revisions. In addition to answering specific queries
like “Does ROS in the lysosome vary with time?”, users
can also ask the environment to compare the current
model’s predictions to known phenomena. When these
predictions disagree with the empirical facts, the user
can also ask the system to explain its reasoning. For
each explanation, it presents the causal chain between
two quantities that, taken together, predicted a partic-
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ular outcome. Exceptions occur when the model incor-
rectly predicts no effect because no causal chain exists or
makes an ambiguous prediction when two paths conflict
and the user has not specified one as dominant.

The ability to inspect not only predictions but the rea-
soning behind them provides important insights about a
model’s strengths and weaknesses. If the model fails to
match one or more empirical facts, explanations may re-
veal the source of the problem and ways to fix it. The
user can remedy such situations in two basic ways – by
adding new hypotheses, as described above, and by re-
moving existing hypotheses. However, because the im-
pact of deleting an element may be unclear in advance,
the environment also lets users disable a model element
without removing it entirely, as well as enable it later if
that seems desirable. Taken together, these commands
provide basic support for the incremental improvement
of models, which will continue to be needed as new phe-
nomena become available and demand explanation.

Initial Experiences with the Environment

We selected the systems biology of aging as our initial
application domain because it was gaining increased at-
tention within biology and because John Furber (2009)
had already developed a network diagram that summa-
rized many hypotheses and phenomena in this complex
field. Repeated discussions with Furber let us convert
his informal statements into our modeling notation.

We have focused our efforts on four compartments of
Furber’s diagram. These involve the dysfunction of lyso-
somes due to the accumulation of indigestible aggregates
known as lipofuscin, the degeneration of mitochondrial
energy production in the cell as the result of mutations,
the shortening of telomeres and decline in Lon protease
mRNA over time in the cell nucleus, and the crosslink-
ing of proteins in the extracellular matrix. The lyso-
somal model, already seen in Table 1 and Figure 1, in-
corporated three places, nine quantities, and 12 hypothe-
ses. The mitochondrial model included three places, nine
quantities, and ten hypotheses, while the nuclear and ex-
tracellular models have similar complexities.

Naturally, translation of content from the informal di-
agram into our logical notation required some care and
effort, with certain representational issues becoming ap-
parent only along the way. Interactions with Furber
clarified his intentions and usually determined how to
proceed. Once we had the initial translation complete,
we used the environment to detect and correct problems
with these models, much as we intend its use by sci-
entists. Running the reasoning mechanism over these
models revealed a number of errors, some in our encod-
ing of Furber’s chart but also a few ambiguities in the
original aging diagram itself. Formalization of the ag-
ing model, combined with the environment’s reasoning
methods, led to repair of these problems.

Related Work on Scientific Modeling

Our approach to interactive biological modeling borrows
ideas from three distinct traditions, but combines them
in new ways to produce novel capabilities. The com-
putational biology community has pursued a number
of projects that support Web-based access to biological
knowledge. For instance, KEGG (Kanehisa, 1997), Re-
actome (Vastrik et al., 2007), and Metacyc (Karp et al.,
2000) let their users explore biological content that cu-
rators have extracted from the literature, but they have
only limited abilities to reason over their knowledge.

Some other biological modeling efforts come closer to
our framework. For example, Genepath (Zupan et al.,
2003) offers a Web-based environment that lets users
enter qualitative results from genetics experiments and
knowledge about gene regulation, but the model con-
struction process is entirely automated. JustAid (Mahi-
dadia & Compton, 2001) supports iterative revision
of qualitative causal models, with the system propos-
ing changes but the user selecting which to implement.
Racunas et al.’s (2004) HyBrow supports interactive cre-
ation of qualitative models and checks their consistency
with logical reasoning, but our system provides a more
general treatment of explanatory biological models.

Of course, we have also been strongly influenced by re-
search on mental models in cognitive science, especially
work on qualitative reasoning and simulation (e.g., For-
bus, 1984). Our approach shares some key ideas, es-
pecially that models involve qualitative causal relations
among continuous variables. One difference is our as-
sumption that behavior is monotonic over time, which
simplifies reasoning considerably. Another distinction is
our willingness to resolve ambiguity by specifying that
one path dominates another. A third lies in our empha-
sis on predicting relations between pairs of quantities,
rather than on model simulation. Our incorporation of
qualitative models into an interactive modeling environ-
ment is not new. Bredeweg et al.’s (2007) GARP lets
users construct qualitative models manually and simu-
late their behavior, although it focuses on ecology rather
than biology, it uses a more complex process ontology,
and it does not emphasize incremental revision.

Directions for Future Research

Although our modeling environment shows considerable
promise, we need to extend the framework along a num-
ber of fronts. Clearly, our first step should be to embed
the existing abilities in a graphical interface. This would
let users visualize models in a manner similar to Fig-
ure 1, but it would also use this display to support query
answering, prediction, and explanation, each of which
have natural visual analogs. The environment would in-
clude templates for creating new locations, quantities,
hypotheses, and empirical facts, for disabling and en-
abling model elements, and for copying and editing entire
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models. These features would not change the environ-
ment’s basic functionality, but they would make it more
accessible to many biologists.

We should also expand the representational abilities
of the modeling framework. One extension would enable
grouping a set of causal links into a process, much as in
Forbus’ (1984) qualitative process theory. This would let
a graphical interface hide model details until a user asks
to see individual connections. Another augmentation
would allow contextual conditions on causal links that
specify the tissues and organisms in which they occur.
If queries included similar conditions, then the reason-
ing system would collect relevant connections to create
query-specific models for use in drawing conclusions. Fi-
nally, we should explore ways to move beyond the frame-
work’s strict assumption of monotonic behavior. One re-
sponse would involve adding quantitative conditions to
causal links and dominance relations that specify when
they hold, with the reasoner collecting relevant model
elements to make predictions for a specific situation.

Concluding Remarks

In this paper, we reported an interactive approach to the
representation, interpretation, and revision of scientific
models. Our environment encodes models as sets of qual-
itative causal influences that relates quantities in partic-
ular location, and its reasoning methods answer queries,
make predictions, and explain its conclusions. Users can
interactively invoke these abilities, which should help
them understand a model’s behavior and improve it over
time. We have carried out initial tests on cellular models
of aging, using the environment’s interactive character to
identify problems in these models and repair them.

Although our approach draws on ideas developed in
earlier work, it combines them in novel ways to sup-
port three key facets of the scientific enterprise: the
formal representation of knowledge and hypotheses, re-
lating that knowledge to observations through explicit
reasoning, and the incremental development of knowl-
edge over time. Many projects that formalize biologi-
cal knowledge have focused on inert structures, rather
than offering aids for reasoning over complex models,
and most techniques for codifying knowledge rely on cu-
rators, rather than giving scientists tools to make their
own changes. We believe our interactive environment of-
fers a promising approach that addresses these issues in
ways that biologists will find accessible and useful.
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