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Abstract

Optical and Chemical Responses of Nanostructured Films

by

Jose Navarrete Jr

When illuminated with visible light, nanostructured noble metals exhibit a strong

plasmon resonance at wavelength, λp, that has been shown to be sensitive to its size,

structure, the dielectric properties of the surrounding medium, and charge density. The

tunability of the plasmon resonance has allowed metal nanosystems to be fabricated with

resonances matching the solar spectrum for us in plasmon promoted catalysis, plasmonic

photovoltaics, and surface-enhanced raman spectroscopy. Here we use UV-Visible spec-

troscopy to track the shifts of the plasmon resonances from an array of gold nanoparticles

buried under metal oxide layers of varying thickness when in contact with one of two bulk

metals: aluminum or silver. By assuming the array of gold nanoparticles and metal-oxide

layers to be an optically homogenous film of core-shell particles on a substrate, we de-

veloped a Maxwell-Garnett effective medium approximation to extract reliable optical

parameters for the gold nanoparticles, yielding their charge state before and after con-

tact with the bulk metal.

Based on the optical parameters extracted from our model, we find the magnitude of

charge transfer from the bulk metal to the gold nanoparticle is independent of the work

function of the bulk metal. Furthermore, when gold is used as the bulk layer in contact

with the gold nanoparticles, we measured an appreciable amount of charge transfer to the

gold nanoparticles, failing to support the well-established model for electrostatic contact

electrification. Instead, we attribute the charge transfer to the so called plasmoelectric

effect, an optically induced charge transfer mechanism, in which the gold nanoparticle

xii



modifies its charge density to allow its resonant wavelength to match that of the incident

light. We show, however, that in our devices the Schottky barriers between the metals

and the metal oxide layers create a rectification effect that favors electron transfer from

the bulk metal to the nanoparticles over the reverse effect.
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Chapter 1

Introduction

When illuminated with visible light, nanostructured noble metals exhibit a strong plas-

mon resonance at a wavelength λp, Figure 1.1 and Figure 1.2. [1, 2]. The effect on λp

of size [3,4], geometry [2,5], surrounding medium [6], and electrochemical charging [7,8]

have beeen well documented and the agreement between experiment and theory is gen-

erally very good. The above-mentioned tunability has allowed metal nanosystems to

be fabricated with resonances matching the solar spectrum and subsequently used in

plasmon promoted catalyis [9], surface-enhanced raman spectrosocopy [10], and the de-

velopment of plasmonic photovoltaics [11, 12]. More recently, shifts in λp were observed

on metallic nanostructures due to an optically induced change in carrier density [13],

further expanding the functionality and applicability of metallic nanostructures.

In short, we will be utilizing the plasmonic properties of gold nanoparticles to ex-

plore various applications including the development of an optical model that utilizes

the Maxwell-Garnett effective medium approximation to describe the optical response

of thin film composite comprised of gold nanoparticles and various metal oxide dielec-

tric materials. This model was then used as a method of probing the electronic state

of the gold nanoparticles when in electrical contact with various bulk metals to eluci-
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Introduction Chapter 1

Figure 1.1: The collective oscillation of conduction electrons in a nanostructured metal
sphere in phase with incident light.
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Figure 1.2: UV-Visible spectra illustrating the position of the absorbance maximum
as a result of the plasmon resonance of noble metals within the visible spectrum.
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date the electrostatic effect of bulk metals within nanometer range of gold nanoparticles,

showing that classical electrostatics will fail to predict charge transfer when coupling

plasmonic nanoparticles with bulk materials. Finally, we will lay the groundwork to-

wards the development of an electronically controlled heterogenous catalytic platform

where we demonstrate what appears to be a layer thickness dependent behavior towards

oxidizing and reducing gases.

Scope of this thesis

Optical modeling of plasmonic thin film composites

We first report the optical properties of nanostructured media comprised of gold

nanoparticles buried under nano-layers of dielectric (TiO2, SiO2, Al2O3). By develop-

ing an effective medium model in which the gold/dielectric phase is assumed to be a

Maxwell-Garnett film comprised of core-shell particles, we are able to extract reliable

optical parameters by UV-Vis spectroscopy from which the electron density in the gold

nanoparticles is realiably determined. We determined that there is no measureable charge

transfer occurring between the gold nanoparticle and the dielectric medium and show that

our model holds for layer thicknesses of the dielectric oxide up to 10 nm.

Elucidating charge transfer dynamics through surface plasmon

resonance and MG-EMA

When metallic nanoparticles are placed in electrical contact with other materials,

such as metal-oxide or metallic films, charge redistribution between the participating

material takes place to allow the Fermi energies of the participating materials to be

equal. [14–16]. Choosing materials with either higher or lower Fermi energy levels relative

3
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to the energy level of the nanoparticle, it is possible to charge the nanoparticle positively

or negatively. Furthermore, it has been shown experimentally that the magnitude of the

charge redistribution is proportional to the difference in the Fermi energy levels between

the work functions of the nanoparticle and the contacting materials [17], allowing one to

modify, in this way, the electronic properties of the nanoparticle for possible applications

in catalysis and plasmonics.

Here, we show that under illumination, we find the charge transfer to the gold

nanoparticles from the metallic bulk layer to be independent of the bulk metal’s work-

function, thus rejecting an explanation based on a purely electrostatic approximation in

which the difference of energy levels of the constitutent materials is the primary mecha-

nism for charge redistribution in the system. Instead, the major mechanism for charge

accumulation can be successfully attributed to the plasmoelectric effect in which the

charge transfer is favored towards from the bulk metal to the nanoparticle, thereby in-

ducing an overall net negative charge on the particle. We attribute this net negative

charge to the Schottky barriers within between the metals and the metal oxide layers

creating a rectification effect that favors electron transfer from the bulk metal to the

nanoparticles over the reverse effect.

Towards a gate-tunable heterogenous catalytic platform

Inspired by prior research group members where they showed the kinetics of surface

reactions on a tin oxide nanowire can be modified by an external gate potential when

the nanowire is configured as a field-effect transistor, we sought to expand this idea to a

TiO2 thin film transistor where we hope to control heterogenous catalytic reactions by

simply tuning the charge density of the thin film through the gate potential.

We show for layer thicknesses between 15-25 nm of TiO2, deposited through various

4
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methods including thermal oxidation of titanium, atomic layer deposition, and sputter

deposition, that the films exhibit unusual behavior in that oxygen gas appears to be re-

ducing its surface, significantly contradicting the known properties of TiO2. We show this

no longer is the case for sputtered TiO2 films of thickness greater than 50 nm. Further-

more, upon configuring a 20 nm TiO2 film into a field-effect transistor, we determined

there was no significant or obvious difference in its electronic properties from that of

significantly thicker layers. These properties have led us to believe there must be some

physical parameter that has not yet either been considered or well understood that is

influencing such anomlous behaviors at ultrathin regimes.

5



Chapter 2

Optical modeling of plasmonic thin

film composites

2.1 Introduction and background information

The optical and electrical properties arising from mixtures of metallic nanostructures

and dielectric media have allowed for unique properties not possible from their pure

constitutents. By tailoring the volume fractions of the participating materials, it has

become possible to obtain a wide range of properties simply by changing the relative

amounts of each materials. A particular colorful example is that of medieval era staind

glass resulting from metallic particles embedded in the transparent material as shown by

the SEM micrograph in Figure 2.1.

Although quite apparent to a user with a powerful imaging technique such as SEM,

there was much debate as how to approximate the optical response of such mixtures.

Then, in 1904, Maxwell Garnett developed a theoretical solution which was eloquently

simple but immensly powerful to describe the a complex mixture, such as metallic struc-

tures within a film, as a homogenous effective medium. [19] The formula, so-called the

6
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Figure 2.1: SEM micrograph of staind glass. Reprinted with permission from [18].

Maxwell Garnett effective medium approximation, simply allowed one to calculate the

effective permittivity (effective medium) of a complex mixture solely based on the vol-

ume fractions of the individual constituents within the complex solution or film. There

exists an extensive amount of literature regarding the derivation and applicability of the

Maxwell-Garnett approximation, therefore only the major keypoints and topics will be

discussed.

The Maxwell-Garnett effective medium approximation for arbitrary spherical inclu-

sions within a host media yields the following equation,

εMG = εh
1 + 2f εi−εh

εi+2εh

1− f εi−εh
εi+2εh

, (2.1)

where εh is the effective dielectric function of the host medium, εi is the dielectric function

of the inclusions within the host medium, and f is the volume fraction of the inclusions

7
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Host

Inclusion

d << λ

Figure 2.2: Top view schematic for a Maxwell-Garnett film where the spherical in-
clusions are of diameter d and are significantly smaller than the wavelength of light,
λ.

within the host medium.

In Equation 2.1, the expression εi−εh
εi+2εh

is in fact the polarizability of a sphere in a host

medium, given by,

α = 4πr3
ε− εh
ε+ 2εh

, (2.2)

where Equation 2.2 explicitly considers the volume of the individual sphere, while Equa-

tion 2.1 contains the volume term within the volume fraction f .

Equation 2.2, known as the Clausius-Mossotti relation or the Lorentz-Lorenz equa-

tion, derives from the Lorentz molecular theory of polarization where the system considers

a collection of point-like polarizable atoms to describe the dielectric function of the mate-

rial. [20,21] This relationship was discovered independently by Lorentz and Lorenz while

an analogous formula for static fields describing insulators was derived by Clausius and

Mossotti. [22]

While both approaches stem from very different first principles, they both achieve the

ability to compute the the macroscopic dielectric function of a mixture made up of inclu-

sions (spheres, disk, whatever shape one chooses). The effective medium approximations

are most effective when the inclusions are significantly smaller than the wavlength light

8
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being used to investigate the system, as illustrated in Figure 2.2.

Equation 2.1 can be rearranged to the following form:

εMG − εh
εMG + 2εh

= f
εi − εh
εi + 2εh

, (2.3)

where if we assume the composite mixture contains inclusions made of different materials

with permittivities εn (n = 1, 2, .., N), can generalize as,

εMG − εh
εMG + 2εh

=
N∑
n=1

fn
εn − εh
εn + 2εh

. (2.4)

This allows one to consider a composite of multiple components.

While there are many examples using Maxwell-Garnett approximation, I will primar-

ily focus on a few examples that have laid the groundwork for our proposed devices.

As demonstrated by Charles R. Martin and co-workers, the Maxwell-Garnett approx-

imation was able to some-what successfully describe the optical properties of a metal-

insulator composite comprised of varying metal volume fractions prepared by depositing

gold into porous aluminum oxide membranes. [23] Although close inspection of their mea-

sured spectra and calculated spectra may cause one to claim invalidates to the Maxwell-

Garnett approach, they showed the spectra was somewhat consistent considering the large

gold particles (on the order of 0.3 to 3 microns) relative to the wavelength of the incident

light and the interparticle spacing was relatively large. This becomes important when

considering significant scattering effects, an effect not considered by the Maxwell-Garnett

approach. They also claim that the infrared spectra are not completely amenable to the

quasi-static approach approximation, an approximation that states that if the particle

dimensions and their mutual separation distances are small relative to the wavelength of

light, scattering effects can be considered negligible. This was confirmed by the inabil-

9
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Figure 2.3: Alumina template by Charles R. Martin and co-workers. [24]

ity to match the Maxwell-Garnett calculation to their measured spectra with infrared

radiation. Therefore, to circumvent the issues with such large nanoparticles relative the

incident wavelength, they prepared an anodic template with significantly smaller pores,

on the order of 50 nm diameter pores. [24] With significantly smaller gold dimensions,

they were able to successfully prepare a composite of gold and porous alumina template

that can be tuned to various levels of optical transparencies within the visible spectrum,

Figure 2.3. They were then able to to confirm these spectra were in agreement with the

predictions of Maxwell-Garnett, thus confirming their prior hypothesis that reducing the

dimensions of the metallic componenet would yield significantly better agreement with

the Maxwell-Garnett approximation, shown by Figure 2.4.

The worked demonstrated by Martin and coworkers showed that Maxwell-Garnett

is an appropriate approximation for calculating the optical spectra of metal/dielectric

composites. Their work demonstrated the following:

10
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a) b)

Figure 2.4: a) Measured and b) calculated spectra of metallic spheres adapted from [24]

1. Maxwell-Garnett will most effectively predict optical spectra in the visible region

when using particles significantly smaller than the wavelength of light, up to 50

nm, as expected by the criteria laid out with previous studies.

2. Maxwell-Garnett will underestimate the transmittance when using structures on

the order of microns for infrared radiation, due to the scattering and coupling

effects between the structures.

3. They claim the approximation will yield the best fits when the particle is less than

0.16×λp, there λp is the wavelength of maximum absorption of the particle.

In more recent studies, Demir and coworkers studied the extinction of ceria@silica

(ceria core, silica shell) hybrid particles embedded in polystyrene composites, Figure

2.5. [25] In this work, they were able to successfully lower scattering by attempting to

index match the core ceria to the polystyrene material with a silica shell.

While the scattering processes and their results are outside of the scope of this thesis,

they demonstrated that the Maxwell-Garnett approximation successfully accounted for

their measured spectra when considering the system to be a set of core-shell particles

11
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Figure 2.5: Schematic illustrating the core-shell particles embedded in polystyerene.
Adapted from [25]

embedded in polystyrene. This core-shell type configuration will be of great use as we

will also require such an approximation for our system.

Moving forward with our configuration, we wish to study composite films fabricated

by foundry friendly techqniques with a ‘bottom up’ approach, as in, we will begin with

a bare substrate and grow all constituents from this substrate, whereas a ‘top down’

approach typically begins with all constituents in place and selective etching is used to

define features and isolate devices.

A schematic of the sample we will investigate is shown in Figure 2.6. The device archi-

tecture consists of gold nanoparticles grown on a quartz substrate, followed by deposition

of one of three oxides, Al2O3, SiO2, or TiO2. The sample will be analyzed by UV-Vis

spectroscopy and the Maxwell-Garnett approximation will be employed for modeling the

system.

12
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Transparent Quartz

Au

Metal oxide shell

Figure 2.6: Basic schematic of proposed device; include are gold nanoparticles with a
metal oxide shell on a transparent quartz substrate.

2.2 Device fabrication and methods

All films under investigation in this thesis work were grown on quartz substrate 1.7

mm thick. High quality quartz is typically greater than 99% transparent in the visible

region while having minimal loss throughout the ultraviolet spectrum. Before dicing,

the 5×5 cm quartz plate was coated with LOL 2000 (a lift off layer typically used in

lithography processes) on both sides. No hot bake was required as the LOL 2000 adhered

quite nicely to the quartz substrate, furthermore, we wanted the LOL 2000 to be removed

as easily as possible in later steps after dicing. Quartz substrates were diced into 1×1.5

cm pieces and cleaned throughouly in acetone, isopropanol, and deionized (DI) water. If

residual LOL 2000 was left after the solvent cleanings, soaking in NMP Rinse (commercial

photoresist stripper) at 50 ◦C would properly remove the residual layer. Although further

solution phase techniques are typically employed to ensure the surface of the quartz is

free of contamination, we found these further solution cleaning processes did not have a

significant impact on the quality of the spectra we obtained. Upon final DI rinse quartz

substrates were plasma cleaned in an oxygen descum chamber (Gasonics) in 300 mTorr

oxygen at 100 W substrate bias power to ensure any organic residues were removed.

Substrates were then placed on 110 ◦C hotplate in a photolithography hood to remove
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any residual water for the surface.

Substrates were then immediately mounted to the carrier plate for electron beam

deposition of the gold nanparticles. Samples could be left in storage for weeks without

seeing an negligible degradation of the optical spectra. A thin gold film of 2 nm mass

thickness was deposited by electron beam evaporation at a rate of 0.1 Å/s. Electron beam

evaporation was done on a Temescal electron beam evaporation system. The system

has a home-built load-lock system that allows for quick pumping between samples with

approximately 5×10-8 torr ultimate base pressure, although typically base pressures tend

to be at around 9×10-7 torr. Overnight pumping would really be required to achieve

the ultimate base pressure, although there is not significant difference film quality when

depositing at the base pressure mentioned above. It was critical to perform the deposition

at a slow rate to ensure large ‘globs’ would not form on the surface. This was noticed

when we initially attempted to deposit gold at 1.0 Å/s causing unreproducible gold

depositions. Therefore, by carefully ramping the electron beam until the desired rate

is achieved, reproducible substrates were obtained. Upon the completion of the gold

deposition, substrates were annealed at 500 ◦C for 10 minutes in 5 slm N2 in a rapid

thermal annealing tool (RTA) by AET . Although the RTA tool could achieve high

anneal ramp rates, we choose a 10 minute ramp up time to the annealing setpoint to

minimize any thermal stresses on the materials due to high ramp rates.

As can be seen in Figure 2.7, there is a significant difference in the morphology

of the gold nanoparticles from the as-deposited film to the annealed film. When ini-

tially deposited, the gold film tends to form what appears to be an irregular array of

islands lacking uniform size and shape dispersed throughout the substrates. However,

upon annealing, the film transforms from irregular shaped islands to nanoparticles evenly

disperesed throughout the substrate. This technique for forming naoparticles has been

used by others in our lab and continue to be a simple and clean method for fabricating
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50 nm

a) b)

Figure 2.7: SEM micrograph of 2 nm mass thickness gold deposited by e-beam evap-
oration a) before annealing and b) after annealing at 500 ◦C for 10 minutes in 5 slm
N2 yielding in gold particles with radius ≈5nm.

nanoparticles on the surface. [26] Although we are employing a non-traditional method

for fabricating gold nanoparticles, this technique has been shown has a suitable method

for depositing gold nanoparticles for plasmonic photovoltaics, therefore not making it

competely absolete if ever needed for such technologies. [27] No further surface treat-

ments were performed on the gold nanoparticles upon annealing.

Upon annealing the gold nanoparticle on quartz substrates, the samples were loaded

onto a 6 inch Si carrier wafer. If the carrier wafer appeared to be very worn from many

ALD uses, one could run about 30 cycles of whichever ALD recipe was being used for

deposition. This prevented any unwanted flaking of the carrier wafer during deposition

on to the active substrates as these flakes could potentially land on the substrate and

destroy the surface.

The ALD provided in the nanofab at UCSB is the FlexAl Atomic Layer Deposition

system from Oxford Instruments. This system is capable of performing plasma-enhanced

depositions as well as water based depositions for for the precise growth of ultra-thin ox-

ides and nitrides. Growing films by ALD allows for the self-limiting layer by layer growth

process which ensure we have very reproducible film qualitty. Although the system can

accommodate sample temperatures up to 550 ◦C we chose to run our depositions at 300
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◦C as other users in the nanofab have reported this to be the best and most reproducible

temperature for growth with the ALD system. Furthermore, the staff at the nanofab

has done a pretty nice job with making sure the growth rates and film quality quite sta-

ble. ALD was also chosen due to its demonstrated conformal coverage of nanostructures

for deposited layer thicknesses down to 1 nanometer. Other deposition techniques, such

as e-beam, sputtering, and plasma-enhanced chemical vapor deposition (PECVD), tend

to follow nucleated growth mechanisms that tends to not fair well with nanostructured

materials. Although some e-beam deposition techniques have been shown to have ideal

surface coverage. With all these considerations, ALD was the obvious choice due to its

many ideal properties. Although the substrate temperature of 300 ◦C can cause issues

if one chooses to use photolithography procedures to define deposition areas on their

substrate since the resist can decompose and contaminate the deposition chamber, there

have been demonstrations of using a hard-mark technique using a silicon nitride and

chromium mask to define feature and has been shown to be stable up to 600 ◦C.

For the work presented in this dissertation, we will be focusing on three metal-oxides

available on the ALD system: TiO2, SiO2, Al2O3. Although all three of these materials

are used as dielectrics for insulating purposes, they actually afford a wide range of electri-

cal and optical properties from which we can choose. TiO2 has a high index of refraction,

approximately 2.4 at 633 nm wavlengths, and has a relatively high relative static dielec-

tric constant of approximately 80 and a wide bandgap of approximately 3.2 eV. [28] SiO2

has a relatively low index of refraction of approximately 1.5-1.6, static dielectric constant

of 3.9 and bandgap of 1.1 eV. Al2O3 has a large 7.0 eV bandgap, static dielectric constant

of 9, and an index of refraction of approximately 1.76. The absolute value for these above

mentioned properties can vary extensively depending on the deposition parameters, the

source quality, substrate temperature, etc. Variations for all will not be addressed in this

work, but will be mentioned when such issues arise throughout device fabrication and
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analysis. Details regarding the growth process such as organometallic precursors, growth

rate, and index of refraction can be found in the appendix.

For all of the above mentioned oxides, layer thickness ranging from 1.5 to 7 nm

was deposited onto the gold nanoparticle substrates. Ellipsometric measurements to

determine oxide layer thickness was obtained from both a bare silicon monitor wafer

and a wafer with a Au/Ti layer (3000/100 Å). We did this to ensure there were no

significant differences in the growth rates between the silicon wafer, from which the

standard process was characterized, and the bare gold substrate (since we are growing

on gold nanparticles). Ellipomsetry (JA Woolam Inc.) confirmed similar growth rates

although the indices of refraction varied slightly from the gold and silicon substrates.

The model used for fitting was a Cauchy transparent optical model that follows, n(λ) =

A+ B
λ2

+ C
λ4

+ ..., where n is the refractive index, λ, is the wavelength, and A, B, C, are

coefficients determined empirically. The model used was provided by the nanofab staff

during the qualification of the Oxford ALD instrument. Details for the Cauchy parameter

and the ellipomsetry program used for fitting can be found in the appendix. Furthermore,

the Woolllam software provided powerful methods for developing an optical model based

on unique architectures and materials, something to consider when developing novel

optical materials. Note to users who will be using ALD deposition: although it’s not

advised to develop recipes different from the standrard recipes provided by the staff, due

to possible accidental contamination and writing recipes incorrectly, some users change

the standard recipe. Issues have come up a few times when a user will improperly adjust

a recipe and cause the deposition to give terrible quality films. Therefore, for critical

depositions where you’re limited in samples and need to be completely sure the deposition

will yield proper films, it is suggested running a test deposition on a silicon monitor

wafer that will yield a few nanometers of the desired material. Confirm deposition by

ellipomsetry and ensure the index of refraction and growth rates follow those provided
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DetectorSource

Sample mount Sample

Figure 2.8: Simplified schematic of optical path for transmission measurements, not
shown are the internal components of the spectrometer which include the chopper,
several optical elements, and the reference beam.

by the standard recipes. This practice will also ensure there is plenty of metal-organic

precurors as the film quality will begin to significantly deviate when the precursor bottles

are nearing low levels.

Deposition of the oxides will yield a significant color change on the gold substrates,

something that should be of no surprise due to the visible activity of the gold nanopar-

ticles. Visual inspection of uniformity can confirm whether the deposition was a success

as you can see ‘blotches’ across the substrate if the growth did not proceed successfully.

These film imperfections appear to occur randomly, haven’t really been able to pinpoint

exactly what causes the poor quality deposition. Furthermore, once all the film thick-

nesses and index of refraction have been confirmed by measuring the film grown on the

silicon wafer by ellipsometry, transmission measurements were obtained for all samples

(Varian Cary 500 UV-Vis-NIR spectrometer), Figure 2.8.

Spectra were then fitting using a Matlab based least squares program where the

fit adjusted primarily in the region dominated by the plasmon resonance of the gold

nanoparticle (550-720 nm), details of the fit will be discussed in the results section.

18



Optical modeling of plasmonic thin film composites Chapter 2

0.05

Ab
so

rb
an

ce

480 500 520 540 560 580

0.07

0.09

0.11

λ (nm)

Measured

Figure 2.9: UV-Vis spectra of r = 5 nm bare gold nanoparticles on 1.7 mm quartz
substrates exhibiting a strong resonance at approximately 525 nm wavelength.

2.3 Results and Discussion

To set forth a baseline for our modeling program, we begin by analyzing bare gold

nanoparticles on a quartz substrate as mentioned in the methods section. We first ob-

tained a spectra for our bare gold nanoparticles on the quartz substrate. These particles

were approximately 10 nm in diameter and were well dispersed on the substrate, as

confirmed in Figure 2.7.

A strong plasmon resonance is observed at approximately 525 nm, agreeing with

prior observations for the resonance of gold on similar substrates. Not surprising, this

resonance was relatively strong considering only a film of 2 nm mass deposited gold was

used, this can be attributed to the the relatively close packing of the gold nanoparticles

on the substrate, even if their total layer thickness is on the order of 10 nm.

Maxwell-Garnett effective medium aproximation for bare Au-NPs

We will now develop the model for the bare gold nanoparticles. As mentioned before-

hand, a prerequisite for using the Maxwell-Garnett effective medium approximation is
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that the inclusion, in this case, the Au-NPs, must be significantly smaller than the wave-

length of light being used to interrogate the film. This requisite prevents the light from

‘seeing’ two separate phases if the inclusion becomes large, therefore, eliminating the use

of an effective medium to describe the optical properties of this film. These requisites are

shown in Figure 2.2. For our system, the gold nanoparticles are approximately 10 nm in

diameter, and are not percolating (well dispersed and not in contact with one another),

allowing the film to be described as a Maxwell-Garnett film.

To determine the effective dielectric function of the effective medium film comprised

of the gold nanoparticles in air, we first begin with the generalized Maxwell-Garnett

equation, [29] (
εeff − εh
εeff + κεh

)
= f

(
εi − εm
εi + κεm

)
(2.5)

where εeff is the effective complex dielectric function of the film, εh is the dielectric

function of the host media (in this case, air), εi is the dielectric function of the inclusion

(Au-NPs), κ is the screening parameter, and f is the volume fraction of the inclusion in

the host. The screening parameter, κ, is related to the Lorentz depolarization factor, L,

given by,

κ =
(1− L)

L
.

The screening parater is determined by the shape and the orientation of the nanoparticles

with respect to the external electric field. Since our particles are spherical, L = 1/3 and

κ = 2. However, for long elliptical cylinders, their orientation with respect to the external

field becomes significantly more important as the depolarization factor approaches close

to zero when the cyclinder is oriented along the electrical field. This then simplifies

Equation 2.5 to the following,

(
εeff − εair
εeff + 2εair

)
= f

(
εAu − εair
εAu + 2εair

)
(2.6)
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The complex dielectric function for gold, εAu, can be expressed as follows,

εAu(ω) = 1−
ω2
p

ω2 + iωγ
+

N∑
j

aj
ω2
0j − ω − iωΓj

+ ε∞. (2.7)

The function consists of a drude term describing the contribution of the conduction

electrons, a number of Lorentzians which account for the contribution of interband tran-

sitions primarily to the UV-Vis region of the spectrum and a constant accounting for

the trailing contribution from transitions in the far UV. The plasma frequency, ωp, is

the bulk metal frequency and γ the scattering rate in the Drude model. The bulk metal

plasma frequency, ωp, is related to the electron density in the nanoparticle, N , as follows,

ω2
p =

Ne2

mε0
, (2.8)

and m is the effective mass of the electron, e is the elementary charge, and ε0 is the

permittivity of free space. The dielectric function for air (εair) is assumed to be equal to

unity. The values for the Lorentzian sums were fitted versus the optical constant values

provided by Johnson and Christy and are provided in the Appendix A.1. [30]

Upon solving for the effective dielectric function for the nanoparticle/air film, one

obtained a complex dielectric function of the following form, ε̃(ω) = ε1 + iε2. This

complex dielectric function is then converted to its complementary complex index of

refraction, ñ = n− ik, as follows,

n =

√
(ε1 +

√
(ε21 + ε22))/2 (2.9)

k =

√
(−ε1 +

√
(ε21 + ε22))/2, (2.10)

to formulate the complex index of refraction for the effective medium film as ñ = n−ik =
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ñMG in Figure 2.11. Although not shown, it is important to note that, generally, both n

and k are strongly dependent on the frequency of the light, therefore, a more complete

expression can be written as ñ(ω) = n(ω)− ik(ω). The complex index of refraction of air,

ñAir is assumed to be 1, and the complex index of refraction of quartz, ñquartz, is assumed

to be 1.50. Lacking an imaginary component for the complex index of rerfraction for both

air and quartz indicates that both materials are lossless in the spectral region of interest.

For a two layer system with incident light normal to the interface, illustrated in Figure

2.10, the Frensel coefficients as well as the reflectance, R, and transmittance, T , can be

written as,

r12 =
n1 − n2

n1 + n2

(2.11)

t12 =
2n1

n1 + n2

(2.12)

R = |r|2 (2.13)

T =
n2

n1

|t|2. (2.14)

Since all of our measurements are performed with light at normal incidence to the

interface, there is no need to designate the polarization (s or p). General formulas for

the Frensel coefficients at angles other than normal to the interface and for particular

polarizations can easily be found in the literature. [22]

However, the reflectance and transmittance of our system, comprised of several layers,

becomes a little more complex. We first begin by addressing the individual Fresnel

coefficients for reflections at the interface and propagation through the layer. When the

complex index of refraction for the materials shown in Figure 2.11 are known, assuming
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t12
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n1 n2

Interface

Figure 2.10: Schematic of a two layer system with light at normal incidence to the
interface between two materials of index refraction, n1 and n2.

normal incidence the Fresnel coefficients can be expressed as follows,

r12 =
n1 − n2

n1 + n2

(2.15)

r23 =
n2 − n3

n2 + n3

(2.16)

r34 =
n3 − n4

n3 + n4

(2.17)

t12 =
2n1

n1 + n2

(2.18)

t23 =
2n2

n2 + n3

(2.19)

t34 =
2n3

n3 + n4

(2.20)

When considering wave propagation through a multilayer stack, the transfer matrix

formulation can be used to simplify the calculation and allow one to easily calculate the

transmittance and reflectance for a multilayer stack. [31] The general transmission (Tij)
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Figure 2.11: Schematic illustrating the propagation of light various transmission
(through the layers) and reflection (at boundaries) Fresnel coefficients needed for
accurately describing the optical properties of these films. The subscripts indicate the
layer numer order sequentially from left to right where air is assumed to be infinite.

matrix for a wave between two layers, i and j, is given by,

Tij =
1

tij

 1 rij

rij 1

 (2.21)

where tij and rij are the complex reflection and transmission Fresnel coefficients for layers

i and j. For a wave propagating through layer i is given by,

Ti =

ejφ 0

0 e−jφi

 (2.22)

where

φi =

(
2πLi
λ

)
ñi cos θi, (2.23)

and Li is the length of propagation through layer i, ñi is the complex index of refraction
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of layer i and θi is the angle of propagation through layer i.

Multilayered systems can be constructed simply by matrix multiplying the basic com-

ponents shown above for each layer interface and propagation through layers to yield a

transmission matrix of the following form,

T =

T11 T21

T21 T11

 (2.24)

which can be converted the more useful scattering matrix, S, by the following relationship,

S =

S11 S21

S21 S22

 =
1

T11

T21 detT

1 −T12

 (2.25)

where now, r12 = S11, t12 = S21, r21 = S22, and t21 = S12, thereby simplifying the

calculation for transmittance and reflectance. Further analysis and examples can be

found in Chapter 3 of Diode Lasers and Photonic Integrated Circuits by Larry Coldren

and coworkers. [31]

A Matlab least squares script was used for fitting the spectra data obtained from

UV-Vis where the least squares minimization was performed in the spectral region where

the plasmon resonance of the gold nanoparticle dominated for a MG film of thickness

d = 2× r, where r is the radius of the nanoparticle.

As shown in Figure 2.12, the agreement between the measured and calculated spectra

track very nicely with no significant deviations from the measured spectra. The param-

eters of primary interest are those pertaining to the complex dielectric function of the

gold nanoparticle, in particular, ωp, a measure of the charge density of the material, and

γ, a measure of the resistivity of the metal due to bulk and surface scattering effects.

The dielectric function is shown below again for reference.
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Figure 2.12: Least squares minimization assuming a Maxwell-Garnett effective
medium film of a layer comprised of an array of 10 nm diameter gold nanoparticles
on quartz.

εAu(ω) = 1−
ω2
p

ω2 + iωγ
+

N∑
j

aj
ω2
0j − ω − iωΓj

+ ε∞

From the proposed model assumming the array of gold nanoparticles to be a Maxwell-

Garnett effective medium film, values of ωp and γ were determined to be 8.99 eV and

0.281 eV, respectively. The value obtained for ωp of 8.99 eV reasonably agrees with

the bulk value for gold, 9.1 eV. However, value for γ was exctracted for our system,

showed significant deviation from the bulk value of γ for gold, 0.0757 eV. The scatteing

parameter, γ, can be written as follows,

γ =
νF
l
, (2.26)

where νF is the Fermi velocity of the material and l is the electron mean free path for

the material. Although not obvious from above, γ exhibits a size dependency that will

strongly affect the imaginary component of the dielectric function, which is the dominant
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Figure 2.13: Size dependency of the imaginary component of the dielectric function
for silver. Reprinted with permission from Optical Metamaterials by Shalaev and
Cai. [29]

component of the dielectric function attributed to the interaction with optical frequencies

for noble metals.. The imaginary component of the dielectric function can be shown by

expansion of the complex dielectric function, assuming a Drude model with contributing

interband transitions, as follows:

ε(ω) = ε′ω + iε′ω = ε∞ −
ω2
p

ω2 + iγω
= ε∞ −

ω2
p

ω2 + γ2
+ i

ω2
pγ

ω (ω2 + γ2)
(2.27)

As shown in Figure 2.13, there is a clear dependency of the imaginary component of

the dielectric function with respect to the size of the noble metal. This increase in the

imaginary component when the metal is nanostructured is due to the change in γ. As

mentioned beforehand, γ, is a measure of the scattering rate (damping, resisitivity, etc.)

that needs to be size corrected when the metal is structured to the order of 10’s of nm’s.

27



Optical modeling of plasmonic thin film composites Chapter 2

Transparent Quartz

Au

Metal oxide shell

Figure 2.14: Basic schematic of proposed device; include are gold nanoparticles with
a metal oxide shell on a transparent quartz substrate.

Therefore, γ can be corrected as follows,

γ = γB + A
νF
R
, (2.28)

where γB is the bulk scattering rate, R is the nanoparticle radius, and A is a geometrical

parameter taken to be unity for spherical nanoparticles, giving a value of 0.256 eV for

a nanoparticle of 5 nm radius, in close agreement with the 0.281 eV obtained through

our model. When accounting for the approximations and assumptions made with this

system, the model does a sufficiently adequate job of describing the effective layer while

extracting meaningful values of ωp and γ.

Now that the proposed model has shown to be adequate to accurately describe the

spectra of bare Au-NPs, we wish to expand this model to a system comprised of Au-NPs

buried under nano-layers of atomic layer deposited (ALD) metal-oxides.

As mentioned in the methods, we chose three metal-oxides, TiO2, SiO2, and Al2O3,

to yield a structure schematically shown in Figure 2.14.

We first began by fabricating samples consisting of either 2 nm of Al2O3, TiO2, or

1.5 nm of SiO2 deposited onto an array of 5 nm radius gold nanoparticles on a quartz
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Figure 2.15: Measured spectra consisting of gold nanoparticles with its respective
metal-oxide shell.
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Figure 2.16: Structural approximation used to reduce the Au-NP and metal-oxide
film to an array of core-shell nanoparticles on a quartz substrate.

substrate. The resulting spectra are shown in Figure 2.15.

The system becomes slightly more complex as now we have two inclusions (Au-NP

and metal-oxide layer) that must be taken into account with the Maxwell-Garnett ap-

proximation. Unfortunately, the Maxwell-Garnett approximation only considers one in-

clusion into a host media. Although we could use the Bruggememan effective medium

approximation, where one can take any sum of inclusions as long as their volume frac-

tions are known, we chose to instead, perform a structural approximation to simplify

the nanoparticle/metal-oxide phase to an array of core-shell nanoparticles on a quartz

substrate, illustrated by Figure 2.16.
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By allowing the nanoparticle/metal-oxide phase to be approximated as an array of

core-shell nanoparticles, we can follow a similar method as used for the bare Au-NPs.

The effective dielectric function, εMG, for the Maxwell-Garnett film composed of gold

nanoparticles and the oxide coating as seen in Figure 2.16, is given by,

εMG = εm

(
1 + 2fcs β

1− fcs β

)
, (2.29)

where εm is the dielectric function of the host media (air, silver, or aluminum), fcs is the

volume fraction of the core (ε1) - shell (ε2) particle within the host medium, and β, which

is proportional to the polarizability, α, of the Au/dielectric core-shell particles is defined

by the following equation,

α = r3
(ε2 − εm)(ε1 + 2ε2) + f(ε1 − ε2)(εm + 2ε2)

(ε2 + 2εm)(ε1 + 2ε2) + f(2ε2 − 2εm)(ε1 − ε2)
= r3β. (2.30)

where ε2 (the dielectric function of the metal-oxide shell) is assumed to be constant within

the region of interest. The volume fraction f , not to be confused for the volume fraction

used for the Maxwell-Garnett expression (fCS), is the volume fraction of the core within

the core-shell defined as, f = (r1)3

(r2)3
, where r1 is the radius of the gold nanoparticle and r2

is the sum of the radius of the nanoparticle and the layer thickness (t) of oxide deposited.

Therefore, if f = 1 (gold nanoparticle), Equation 2.30 reduces to,

α =
ε1 − εm
ε1 + 2εm

(2.31)

and when f = 0 (metal-oxide particle),

α =
ε2 − εm
ε2 + 2εm

. (2.32)
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Figure 2.17: 7 nm TiO2 deposited on gold nanoparticles.

The fit adjusted, and therefore determined the following parameters: the dielectric

function, ε1 of the gold core from which we wish to extract the value of ωp (among

others). This was done by using the function for ε1 which contains among the adjustable

parameters those we seek,

ε1(ω) = 1−
ω2
p

ω2 + iωγ
+

N∑
j

aj
ω2
0j − ω2 − iωΓj

+ ε∞. (2.33)

The fitted spectra (Figure ??) by using εMG yields very nice agreement with the

measured spectra for the three oxides used as capping layers for the gold nanoparticles

when the nanoparticle/metal-oxide phase is assumed to be a film of thickness d = 2×r+t,

where r = 5 nm (radius of gold nanoparticle) and t is the layer thickness of metal-oxide

deposited. As expected, the observed red-shift of λp tracks the index of refraction of the
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Figure 2.18: Measured optical spectra of Au — metal-oxide core-shell nanoparticles
with similar shell thicknesses, 2 nm for TiO2 and Al2O3 and 1.5 nm for SiO2. Cal-
culated spectra based on our proposed model showed very nice agreement with the
measured spectra when performing a minimization around the plasmon resonance of
the gold nanoparticle.

shell materials, n (SiO2) = 1.5, n (Al2O3) = 1.7, n (TiO2) = 2.4. The index of refraction

of the shell materials was assumed to be constant within the spectral region of interest.

The following values of ωp (of Au-NPs) were returned from the fits obtained (Figure ??):

9.0 eV for samples produced with TiO2 and Al2O3 and 8.99 eV for the sampe fabricated

with SiO2. The scattering rates (γ) were determined to be in the 0.350-0.480 eV range

which were somewhat higher than the uncoated gold nanoparticles. Samples for thicker

shell layers for TiO2, SiO2, and Al2O3, were alos measured (Table 2.1).

As shown in Table 2.1, there is no obvious deviation in the values of ωp from the

expected value of 9.1 eV. Although we attempted to ‘fix’ what had appeared to be wrong

values of ωp for the Au-NPs with Al2O3 shells, the values were reproducible from batch

to batch and we could not determine a proper explanation as to why the values were

varying with shell thickness.
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Figure 2.19: Transmission spectra for core-shell gold nanoparticles with various TiO2

layer thicknesses.

Table 2.1: Extracted optical parameters of gold (ωp and γ) as determined by the fitting
algorithm with respect to the various film thicknesses of oxide, include as well are the
volume fractions of the core-shell particles used in the Maxwell-Garnett calculation.

nm (oxide) ωp γ fC-S

Al2O3

2 9 0.350 0.6
5.5 9.43 0.356 0.84
10 9.24 0.275 0.95

SiO2

1.5 8.99 0.381 0.47
3.5 9 0.337 0.74
7 9 0.331 0.9

TiO2

2 9 0.481 0.57
4 9.1 0.446 0.8
7 9.1 0.464 0.9
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2.4 Conclusions

By using a structural approximation of the gold nanoparticle / metal-oxide phase as

an array of core-shell particles on a quartz substrate, we were able to employ a Maxwell-

Garnett approximation to describe the effective dielectric function of the phase. We found

no significant deviation of the optical parameters for the gold nanoparticles including

finding γ values that were reasonable after adjusting for their size.

Because the diameter of the gold nanoparticles are on the order of 10 nanometers,

it would interesting to see if this model would hold for large particles that are more

applicable to plasmonic devices. Corrections may need to be used to account for in-

creased scattering, as well as possible coupling between neighboring nanoparticles, thus

expanding the versatility of this model to architectures that are of great interest those

developing plasmonic based devices.
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Chapter 3

Elucidating charge transfer

dynamics through surface plasmon

resonance and MG-EMA

3.1 Motivation and background

The magnitude and direction of charge transfer between two dissimilar materials has

been throughly documented and well understood. [1] By using band diagrams proposed

by electrostatics, one can predict and obtain qualitative trends when attempting to model

charge transfer, as shown by Figure 3.1. Electrostatics, as the name implies, provides

reasonable predictions when the electrical components are time-invariant. The system

will become significantly more comlex when considering time dependent electrical fields

due to the introductin of phase differences between the waveforms of the electrical fields.

[22]

The electron energy levels of materials, synonymously called workfunction, Fermi

level, electrochemical potential, thermodynamic potential, (depending on the field of
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study and with slight modificaitons to the specific defintions), allows one to tailor the

charge transfer between the materials.

Figure 3.1 shows the relative energy levels between three constituent materials where

two dissimilar metals are placed in contact with an insulating material. As an arbritray

reference point, Evac is typically used the ‘zero’ energy for the electron. Typically called

the ‘vacuum level’, this energy refers to the energy of a free stationary electron that is

placed outside of any material within a perfect vacuum, or it can be defined being closer

to the surface, or in another definition, it can be takenly infinitely apart from the material

to where it no longer ‘feels’ the material. [1] This level is simply used as a method for

aligning the energy levels between dissimilar materials, Figure 3.1, and provides very

nice agreement between its use and experiments. The metals shown in Figure 3.1, with

workfunctions φm1 and φm2 retain their intrinsic properties when placed far enough from

each other to the point where they do not feel the difference in the electron energy levels,

we can assume an infinite (although not physically meaningful) distance to assure they do

not interact. We can then place a non-conducting (dielectric) material between the two

metals to which the two metals will make direct contact with, shown by the equilibrium

position in Figure 3.1.

Dielectrics will typically have various dielectric strengths associated with their elec-

trical properties; the material can be characterized by their inability to transfer charge,

or it can be see as how polarized the material can become before permanently modifying

its structure to allow charge flow at high enough voltages, called the breakdown volt-

age. Upon reaching the breakdown voltage, the material irreversibly modifies itself since

now the localized non-conducting electrons have become unbound from their nucleus.

Dielectrics also have a Fermi level, not shown in Figure 3.1, which typically lies slightly

below the middle of the bandgap (Eg) of the material. Because the Fermi level of the

dielectric can vary extensively, we use the electron affinity χ which is the energy from
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Figure 3.1: Energy levels of participating materials where φm1 is greater than φm2

with an insulator of electron affinity χ before participating materials are brought into
close proximity of one another and after contact when the Fermi levels equilibrate
throughout the participating materials resulting in a redistribution of charges.

the vacuum level to the conduction band (Ec) of the dielectric to align the energy levels

between the materials.

Upon contact between all three constituent materials, charge transfer from the lower

workfunction φm2 metal to the higher workfunction metal (φm1) occurs to equalize the

Fermi levels throughout all the materials. As shown in Figure 3.1, Metal 1 now retains

excess negative charge due to the difference between the Fermi levels between the two

metals, resulting in a build-in potential between the two materials. Qualitatively, the

magnitude of charge transfer will track with the difference between the workfunctions of

the materials as well as the thickness of the dielectric being used. The magnitude of the

charge transfer is also dependent on the contact area between the two conductors where

one can assume a parallel plate capacitor configuration where both metal electrodes are

two flat plates with a film of dielectric between the plates or even a configuration where

one metal is embedded in the other metal with a dielectric shell, the latter typically

providing the most charge transfer per unit area. [32] By using the energy levels and

certain numerical approximations, one can obtain a reasonable value for the magnitude of

the charge transfer expected from such systems. However, it can be significantly complex
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Figure 3.2: Charge transfer resulting from two dissimilar metals brought close to contact

when considering Fermi level pinning due to surface defects, Schotty junction formation

between a metal and semiconductor, free charge carriers available in the dielectric, etc.

Therefore, emperical methods for determining charge transfer are typically necessary to

determine the true electrostatic interactions between dissimilar materials especially for a

metal-insulator-metal (MIM) architecture, although appropriate approximations can be

determined numerically. [33]

Figure 3.2 schematically shows charge transfer resulting from two dissimilar metals

in direct contact with one another. As was shown in Figure 3.1, contact between the two

materials will result in charge redistribution throughout the system. However, unlike

in the case of the MIM strucutre (Fig. 3.1), the potential difference between the two

metals upon contact cannot directly be determined upon contact as the charges will

redistribute and a measured potential of 0 V will be determined if one tries to directly

probe the surface potential due to the higly conducting nature of the metals. Instead, as

Lowell demonstrated, one can accurately obtain the electrostatic charge transfer between

two dissimilar conductors by bringing the materials into contact, separating them at a

particular rate, and measuring their charge. [34] As expected, he determiend the surface

charge was proprotional to the contact potential difference (difference in workfunction
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Figure 3.3: Charge, Q, measured on the spheres after separating the two conductive
materials with various combinations of metals being shown. Adapted from [34].

values) of the two conductors, Figure 3.3. More importantly, he determined the charge

was not affected by the velocity of separation, in contrast to prior findings.

The importance of contact electrification becomes increasingly important when de-

signing micro and nano systems. For example, understanding the Schottky junction, a

junction between a metal and semiconductor, was and continues to be an area of extensive

research. The Schottky junction at the electrical contacts has caused many issues in tran-

sistosr devices due to its rectifying behavior at the contacts, causing the current-voltage

current to be non-linear. This of course was unacceptable for the proper engineering of

particular devices prompting throuough studies into understanding and eliminating the

Schottky junction for particular devices. Although the Schottky junction was detrimen-

tal to various devices, it proved useful as a diode due to its rectifying behavior as well as

an electron filter for plasmonic devices due to the build-in potential. [35, 36]

Understanding the electronic interactions in nanostructured plasmonic devices, such
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Bulk metal

Metal-oxide shell
Quartz sustrate

Figure 3.4: Schematic illustrating a gold nanoparticle in contact with a dissimilar bulk
metal (Al — Ag — Au) through a metal-oxide shell, similar to the samples shown in
Chapter 2.

as those in plasmonic photovoltaics, has beeen shown to play a significant role in the

performance and efficiency of these devices. [12] With this in mind we were interested

in constructing a sample where we could probe the electronic state of a nanostructured

metallic nanoparticle, purely by measuring the plasmon resonance of the nanoparticle.

We proposed the following schematic:

By using the same methods as used in Chapter 2, we can then probe the plasmon

resonance of the gold nanoparticles by reflectance UV-Vis spectroscopy, and employ the

model we developed to extract ωp for the gold nanoparticles. By determining ωp, we

are then able to correllate changes in electron density with modifications made to the

architecture of the sample shown in Figure 3.4. For example, how will the magnitude

of charge transfer change when we use an aluminum bulk layer as compared to a silver

bulk layer? Electrostatics can provide a reasonable approximation when comparing two

dissimilar materials and by taking advantage of the sensitivity of the plasmon resonance

of the gold nanoparticles due to the change in electron density, we can then determine

the charge transfer by employing said methods.

For example, Zhang and coworkers were able to measure the change in the work-

function of gold nanoparticles supported on a degenerately doped n-type silicon wafer

separated by an organic bi-layer, Figure 3.5. [17]
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Figure 3.5: Schematic illustrating

With this basic device architecture, Zhang and coworkers were able to determine the

electrostatic interactions at the nanoscale between the Si wafer and the gold nanoparti-

cles. Due to the difference in the Fermi levels, they were able to employ Kelvin probe

force microscopy to study the workfunction of the gold nanoparticles as a function of

the oxide thickness of the Si wafer and the diameter of the gold nanoparticles. They

determined the workfunction of the Au was size dependent and deviates strongly from

that of bulk Au, the change being attributed to the difference in Fermi levels. Fur-

thermore, they demonstrated the classical electrostatic model involving charge transfer

between dissimilar materials was robust in prediciting the net negative charging of the

gold nanoparticles, Figure 3.6.

Although the work by Zhang and coworkers primarily focused on the workfunction

changes of the gold nanoparticles for sensing applications, their seminal work demon-

strated that the predictions of classical electrostatics still holds true for nanostructured

metals in contact with bulk like materials. Although such calculations may require fur-

ther fine tuning for an exact numerical calculcation, which will typically deviate from

actual measurements due to many factors, such approximations can be used successfully

to tailor plasmonic systems where one would want to control the intrinsic charge transfer

due to the difference in workfunctions of the materials.
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Figure 3.6: Device schematic, workfunction values and determined charge state of the
gold nanoparticles from KPFM. Printed with permission from [17]

Figure 3.7: Experimental (blue) and simulation (red) results for various applied biases
for the sample shown, +2.25, 0 , and -2.25 V. Reprinted with permission from [8].
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Atwater and coworkers performed an experiment where they tuned the dielectric

response of an array of gold nanoparticles under electrochemical bias, thus altering the

charge state of the gold nanoparticle by charging or discharging the nanoparticle with an

external source, Figure 3.7. [8]

Their method for probing the charge state of the nanoparticles was by monitoring the

UV-Vis spectra of the nanoparticles under varying applied biases. Because the plasmonic

response of metal nanoparticles are sensitive to the charge density, they were able to

model the shifts of the plasmon resonance and attribute such shifts to the charging and

discharging of the nanparticles. In fact, they were able to extract optical parameters, such

as ωp, that confirmed the change in the dielectric function of the gold nanoparticles. Their

extensive work also corrected for the change in the index of refraction of the surrounding

medium due to the applied bias and dampening effects.

Brown and coworkers were able to use a full wave electromagnetic simulation to model

the optical response of the gold nanoparticles, for detailed analysis refer to [8], where

they included a variable thickness conducting shell with modified dielectric function to

account for the surface charging of the nanoparticles. They were demonstrated good fits

with their modeling process even with the applied bias.

Similar work was performed by various contributors in the Mulvaney research group

where they investigated the change in the optical response of single goldnanorods as well

as silver nanoparticle films with varying applied potentials. [7, 37]

Their work, similar to the experiments Brown and coworkers performed, demonstrated

the tunable response of the optical spectra of the plasmonic metals by electrochemical

methods by using conventional dark-field spectroscopy providing further evidence that

the plasmon resonance is indeed sensitive to the electron density of the nanostructured

metal.

For our sample, we will use ebeam evaporated gold nanoparticles as the plasmonic

43



Elucidating charge transfer dynamics through surface plasmon resonance and MG-EMA Chapter 3

Figure 3.8: Scattering spectra resulting of the gold nanoparticles due to the various
electrochemical potentials applied to the substrate along with their corresponding
SEM images of the particles measured. Adapted from [7]
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Figure 3.9: Spectra of Ag nanoparticle films as a function of the applied potential.
Adapted from [37]

component within our system for which we can use our proposed Maxwell-Garnett effec-

tive medium approximation we used in Chapter 2 to extract optical parameters relevant

to the dielectric function of the gold nanoparticles. We will then deposit various layer

thicknesses of TiO2, SiO2, or Al2O3 followed by a bulk layer of ebeam deposited silver,

aluminum, or gold. By varying the bulk layer, we can determine if the intrinsic differ-

ences in the Fermi levels between the gold nanoparticles and the bulk metal do indeed

dominate the measurables changes in electron density, represented by an increase in ωp

before and after the addition of bulk metal, since ωp ∝
√
N where N is the electron

density of the gold nanoparticle.

3.2 Device fabrication and Experimental Methods

Fabrication for these devices followed the same initial steps as for the devices in

chapter 2. Only difference was after obtaining the transmission spectra, we capped the

nanoparticle/dielectric phase with 2500 Å of the following metals: silver, aluminum, and
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gold, schematically shown in Figure 3.4.

Ebeam evaporation was used for capping the nanoparticle/dielectric phase. The bulk

metal was deposited at 1.0 Å/s until a layer thickness of 100 Åwas obtained, followed

by deposition at 2.0 Å/s to 500 Åthen deposition rate was 4.0 Å/s thereafter until the

final thickness of the bulk metal is reached. A proper deposition rate was required to

ensure the nanoparticle/dielectric phase is uniformly capped. Too high of a deposition

rate will give a low quality/density film since we can not use post-thermal treatments to

improve the quality of the film due to possible disruption of the nanoparticle/dielectric

phase. After running though a few iterations of device fabrication, we realized the optical

properties of the nanoparticle/TiO2 phase would change significantly if left out too long.

This was due to excess water absorption to the surface that could significantly change the

properties of the TiO2. This was not too surprising as the TiO2 is significantly oxygen

deficient and these deficiencies allow for water absorption to the surface, thus altering

its electron density and changing the electronic behavior between the nanoparticle/TiO2

phase.

Spectra were fitted using the same method developed in Chapter 2, except now we

have a bulk metallic capping layer, which also acts a mirror for optical frequencies, which

allowed us to obtain reflectance spectra of the nanoparticle/metal-oxide phase, Figure

3.11. The transfer matrix method handles the change in sample configuration very nicely

and no further modification was needed to obtain proper fits. Method for obtaining a

closed funtional form of the optical constants for the bulk metals are shown in Appendix

A.
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Figure 3.10: Simplified reflectance setup used for obtaining reflectance spectra of
samples using Varian Cary UV-Vis-NIR 500 spectrometer. For clarity, the actual
optical paths within the source and detector black box are not shown here but can be
found from Varian’s website.
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Figure 3.11: Schematic illustrating the structural approximations used in our proposed
model to extract the effective dielectric function of the nanoparticle/dielectric shell.
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Figure 3.12: Measured and calculated reflectance spectra for core-shell nanoparticles
with a silver bulk capping layer.

3.3 Results and Discussion

Spectra were obtained by using the same three metal-oxides and their respective

thicknesses used in Chapter 2. Due to the opaque nature of the bulk metal deposited on

the nanoparticle/metal-oxide phase, reflectance spectra were obtained instead of a trans-

mittance spectra. Measured spectra and their corresponding fits for samples comprised

of 2 nm TiO2 or Al2O3 or 1.5 nm SiO2 with a silver bulk layer are shown in Figure 3.12.

The extracted values (Table 3.1) show an increase in ωp following the deposition of

the bulk metal, implying an increase in the electron density in the gold nanoparticles.

Assuming the effective electron mass is approximately unchanged by depositing the bulk

metal the ratio of the electron density in the Au-NP after bulk metal deposition to its

value before is given by, (
ω′p
ωp

)2

=
N ′

N
. (3.1)

At first glance, one might presume that this net charge transfer can be explained

by the relative values of the work functions between the gold nanoparticle and the bulk

metal. When two conductive materials with dissimilar work functions come to contact,

their energy levels will equilibrate by electron charge transfer from the material with
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ωp ω′p N ′/N e− trans./NP

TiO2

Al 9 11.5 1.64 19,598
Ag 9 11.4 1.60 18,639
Au 9 11.9 1.74 23,074

SiO2

Al 8.9 10.39 1.36 11,189
Ag 8.9 10.64 1.43 13,263
Au 8.9 11.6 1.70 21,548

Al2O3

Al 9 10.2 1.28 8,771
Ag 9 10.3 1.6 9,551
Au 9 11 1.74 15,228

Table 3.1: Extracted optical constants for gold nanoparticles before (ωp) and after
(ω′p) deposition of aluminum, silver, or gold bulk metal with 2 nm TiO2 / Al2O3 or
1.5 nm SiO2 shell. Included are calculated values of N and N ′ based on eqn. 3.1 along
with calculated values of the number of electrons transferred per nanoparticle based
on the extracted values of ωp.

lower (φm2) to higher (φm1) workfunction, modifying the charge density of the materials

in contact, as illustrated in Figure 3.13. Because gold has a larger work function than

both silver and aluminum, we expect a net increase in electron charge density on the

gold nanoparticles and an overall net positive charge on the bulk metal, as observed.

The magnitude of this charge transfer will also depend on the electronic properties of the

dielectric shell used.

Illustrated in Figure 3.14 a trend in the magnitude of the charge transfer tracked

with the shell thickness, an acceptable trend if one considers the shell to be a material

of constant resistivity throughout the thicknesses used, generally a good assumption for

atomic-layer deposited films. Furthermore, the overall magnitude of the charge accumu-

lation also tracks with the bulk properties of the dielectrics used. TiO2, a conductive

material due to the oxygen vacancies present after deposition, is expected to allow a

higher charge transfer from the bulk metal to the gold nanoparticles.

When comparing the insulators, SiO2 and Al2O3, there was a clear decrease in the

magnitude of the charge transfer when using Al2O3 as the shell layer. This is expected due
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Figure 3.13: Relative energy levels of the system when using silver or aluminum as
the bulk metal capping layer.
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Figure 3.14: Caculated transfer of electrons per nanoparticle when in contact with
a layer of bulk silver. Qualitatively, charge transfer trends with thickness of oxide
deposited (t) as well as with the bulk electrical properties of the metal-oxide shell
used with TiO2 yielding the largest charge transfer due to its conductive properties
and Al2O3 yielding the lowest charge transfer due to its higher dielctric constant and
low electrical conductivity. Visual guides shown to aid in visualizing the trend and
are not indicative of a fit to the data.

to the higher dielectric constant, bulk resistivity, and conduction band offsets of Al2O3

as compared to SiO2. Although these values are not exactly quantified with respect to

their bulk properties, if we consider the nanostructured nature of the composite and the

approximations used to extract the optical parameters the values provide a very nice

qualitative trend when comparing materials.

The most striking result noted from Table 3.1 is that the deposition of a bulk gold

metal layer produces a charge transfer to the gold nanoparticles as large or larger than

those produced by the other two metals. At first glance this might imply that the work

function of the gold nanoparticles is larger than that of bulk gold. This, however, is not

the case. Reported values for the work function or ionization values of gold nanoparticles

indicate that for Au-NPs with radii ≈5 nm the work function is approximately equal
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Figure 3.15: Demonstrating the negligible change in charge density when using the
same metals.

to that of bulk gold. [38] We will show below that for the samples we produced, the

relatively large charge exchange between the bulk metal layer and the gold nanoparticles

is negligibly impacted by the difference in work function. We propose the large portion

of the charge exchange is the result of the so-called palsmo-electric effect.

To justify the first statement we calculate the number of electrons transferred from

the bulk metal to the gold nanoparticles using methods developed by Peljo et. al. [39,40]

in which they use the capacitance matrix approach for calculating the surface charge on

nanoparticles of varying size and workfunctions. The charges on two spherical conductors

(qi), A (Au-NP) and B (bulk metal sphere) of radii rA and rb, are computed by expressing

the charges on each nanoparticle in terms of their outer electrostatic potentials (ψi) and

the self and mutual capacitances given as follows,

qa
qb

 =

CAA CAB

CAB CBB


ψA
ψB

 (3.2)
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Figure 3.16: Measured charge transfer for all systems when using 2 nm of TiO2 or
Al2O3or 1.5 nm SiO2.

Where the elements in the matrix are as follows:

CAA(s) = C0 [λ(s)− ψ0 (xb)] (3.3)

CBB(s) = C0 [λ(s)− ψ0 (xa)] (3.4)

CAB(s) = −C0 [λ(s) + γ] (3.5)

Here, xi = ri/(rA + rB), 2λ(s) = ln {2rarb/ [(ra + rb) s]}, and ψ0(z) = d (lnΓ(z)) /dz.

Given a fixed spatial distance, s, between the nanoparticles and assuming the elctrostatic

equilibrium condition, the following expression holds,

(ψB − ψA)eq = − (φB − φA) /e (3.6)

which implies the outer electrostatic potentials on each nanoparticle is dependent on the

difference in their workfunctions (Figure 3.1).

Although our system consists of gold nanoparticles in contact with a bulk metal layer,
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Figure 3.17: Calculated capacitance values assuming a 1 V potential difference be-
tween the silver and gold, based on the difference of their work functions.

the bulk metal layer to can be reliably approximated to be a particle of significantly larger

radius than the gold nanoparticle (e.g. rb ≈ 1000×ra). Accordingly, one can assume that

the surface potential of the gold nanoparticle will be approximately equal to the difference

in the workfunctions of the materials, in other words, in other words, ψA = φA− φB and

ψB ≈ 0. This implies that the relative shift of the Fermi level of the bulk metal will be

negligible compared to the shift of Fermi level of the gold nanoparticle. In the case of

the gold nanoparticle, (φA = 5.3 eV ) and silver bulk metal sphere (φB = 4.3 eV ) with 2

nm TiO2 shell and using Eqn. 3.2, we approximated using Peljo’s approach that ≈ 400

electrons are transferred from the silver to the gold nanoparticle. This is significantly

less than the 18,639 electrons transferred based on the shifts in ωp in Table 3.1.

Clearly a model based on electrostatics cannot account for our observed results. We

will now show that a phenomenon predicted and observed by Atwater and coworkers that

they named the plasmoelectric effect does qualitatively account for our observations, and

specifically, for the fact that bulk gold in proximity of gold nanoparticles results in charge
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Figure 3.18: Comparing the measured and calculated charge transfer shown in Figure 3.17.

transfer, although, of course, only when the nanoparticles are illuminated. Even here,

we show that the relative capacitances of the bulk metal and the nanoparticles play an

important role, in that the electron transfer from the bulk metal to the nanoparticles is fa-

vored over the reverse process. In short, the plasmoelectric effect is an optically induced

charging of nanostructured noble metals. This effect is observed when a nanoparticle

electrically connected to ground, such as nanoparticles directly on a transparent con-

ductive oxide, alter its charge density to attempt to match is resonance wavelength to

the wavelength of the incident photon when the photon wavelength is slightly greater or

less than the natural resonance of the gold particles. If the incident light is of a shorter

wavelength than the natural resonance of the nanoparticle, the nanoparticle will transfer

some of its electrons to ground; if the illuminating light is of a longer wavelength than the

resonance of the nanoparticle, electrons from ground will flow to the nanoparticle until
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its plasmon resonance wavelength matches the wavelength of the incident light. In brief,

the plasmoelectric effect takes place because a system that absorbs light at resonance

converting most of the absorbed energy to heat, increases entropy; hence when illumi-

nated by light that is slightly off resonance a system might be induced to modify itself

so as to come into resonance with the light, provided that the free energy decreases as

result. Accordingly, the increased entropy due to light absorption predisposes the system

to modify itself so as to be in resonance with the light illuminating it, provided that the

energy associated with the modification does not overwhelm the entropic effect. Moving

electrons to and from a conducting nanoparticle to ground normally requires relatively

little energy; hence charge transfer to or from a particle illuminated by light slightly off

plasmon resonance is not unexpected, as predicted and reported by Atwater and cowork-

ers. By contrast, modifying a molecule to alter its structure so as to modify its electronic

resonances would normally require a great deal of energy that would likely not be offset

by the entropic effect; hence the equivalent process is not expected to be observed with

most molecules. We ascribe the plasmon shifts, and the electron density changes on the

Au-NPs, we observe when bulk metal is placed into contact with the Au-NP core-shell

system to the plasmoelectric effect. As the light illuminating the NPs scans over the

NP’s resonances, electrons move from the bulk metal (at ground) to the nanoparticles

when the light is of shorter wavelength than the resonance wavelength of the NP; and

from the NP to the bulk metal when the NP’s are illuminated with longer wavelengths

than their resonance wavlengths. We further argue that the Schottky barrier between

the metals and the oxide shell favors the process in which electrons are transferred from

the bulk metal to the NPs over the reverse charge transfer process, accounting for our

observation, that overall, when scanned with light of continously varying wavlength in

the process of acquiring the system’s spectrum, the plasmon blue-shifts for the samples

in which the bulk metal is placed in close proximity to the Au-NPs.
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Figure 3.19: A qualitative schematic demonstrating the plasmoelectric effect; when
illuminated with photons of wavelength shorter (λ−) than the natural resonance of
the gold nanoparticle the nanoparticle will accumulate charge whereas it will deplete
charge if illuminated with photons of longer wavelength (λ+). The sign on λ illustrates
the resulting optically induced change in the charge of the nanoparticle as a result
of the particle modifying it’s electron density to allow it’s resonance to match the
wavelength of the incident photons.

These processes are illustrated in Figure 3.19 where the natural resonance of the

nanoparticle is referred to as λ0 and the resulting resonance due to illumination by

shorter and longer wavelength photons are referred to as λ− and λ+, where the signs

on λ indicate the resulting surface charge on the nanoparticles, i.e. λ− implies a gain of

electrons by the Au-NP with a blue shift in the NP’s plasmon resonance, while λ+ implies

loss of electrons by the Au-NP causing a red shift in its plasmon resonance. Detailed

background theory is reported in the seminal work by Atwater and coworkers.

The plasmoelectric effect was previously demonstrated with a system both gold

nanoparticles on FTO or gold hole-arrays on quartz. In those reports the optically

induced plasmoelectric effect yielded symmetrical surface charging about the natural res-

onance of the gold. [13] implying that when in direct contact with a conductive substrate

serving as ground, the nanoparticles showed no net preference for either accumulating or

depleting. This contrasts with our systems in which the gold nanoparticles are separated

from ground by a thin, low conductivity shell with a rectifying contact due to the Schot-

tky effect which is responsible for the lack of symmetry between our system’s preference
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of the gold NPs preference to acquire electrons from the bulk metal film over donating

them to it. Referring to Figure 3.1, the potential barrier between the gold nanoparticle

and the insulator (φb1) is larger than the barrier between the bulk metal and the insu-

lator (φb2), which implies that over-the-barrier electron injection from the bulk metal to

the gold nanoparticles is more probable to occur due to the smaller barrier. [41] For our

samples, we observed that increasing the work function of the bulk metal (φm2) resulted

in a higher degree of charging of the nanoparticle, further strengthening our conclusion

that it is the plasmoelectric effect is mainly responsible for our observations rather than

an electrostatic effect due to the relative values of the work functions of the Au-NPs vs

the bulk metal film. Although the results track reasonably well with the known bulk

dielectric properties and electron conduction properties for TiO2, SiO2, and Al2O3, the

electrostatic model falls short in accounting for the charging effects of the gold nanopar-

ticles.

3.4 Conclusions and Future Work

In conclusion, using a Maxwell-Garnett effective medium approximation, we were able

to extract reliable ωp values of gold nanoparticles which served as the core in core-shell

particles embedded in dielectric and bulk metal media. Since ωp is a measure of the elec-

tron density of the nanoparticles we determined that the proximity of a bulk metal (Ag,

Al, and Au) produced an increased negative charge on the Au core. The observed results

could not be accounted for using purely electrostatic arguments. However, our observa-

tions accorded well with what is predicted by the plasmoelectric effect, a phenomenon

predicted and measured by Atwater and coworkers in which gold nanoparticles can ac-

quire either positive or negative charges when illuminated by light whose wavelength is

near but not coincident with the natural plasmon resonance of the mteal nanoparticle.
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Although we demonstrated what we believe to be the plasmoelectric effect dominating

the change in charge density of the gold nanoparticles by the observed increase in ωp, I

believe there are a few more experiments that can further support this conclusion. In

particular, one experiment that can be done is performing a normal reflection UV-vis

measurement, as we showed in this chapter, but perform the measurement with varying

light intensities as Atwater and coworkers performed for their samples, Figure 3.20. [13]

If indeed our sample is dominated by the plasmoelectric effect, we should obtain

ωp values that correlate with the light intensities, as in, ωp should increase with light

intensity. Another possibility would be to fabricate an array of gold nanodisks into

various layer thicknesses of similar dielectric oxides used in our study (Al2O3, TiO2,SiO2)

onto FTO. This would allow for workfunction measurements, similar to those performed

by Zhang and coworkers. [17] With this architecture, we could do the following:

• Workfunction measurements on the gold nanodisk to determine if the workfunction

measurements correlate with the classical electrostatic models where we can vary

the layer thickness of dielectric between the gold nanodisk and the FTO, or even use

n-Si, as measured by Zhang and coworkers. These measurements will be performed

with no illumination to determine the charge increase in the gold nanodisk from

only the differences in the Fermi levels of the FTO and gold nanodisks.

• Perform light intensity measurements with KPFM to determine the change in

charge density of the gold nanodisk with respect to various light intensities and

wavlengths of light used. The change in charge density from these experiments

would then be attributed to the plasmoelectric effect.

With this we could then separate the contributing effects from both electrostatics and

the plasmoelectric effect with the same sample. Furthermore, since we would be directly

probing the gold nanodisk through electrical measurements, it would no longer be neces-
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Figure 3.20: Plasmoelectric effect measured for an array of gold nanoparticles at
varying light intensities by measuring the surface potential with KPFM. Shown also
is the modeled plasmoelectric effect for the same measured array. Adapted from [13]
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sary to perform a Maxwell-Garnett approximation model to extract ωp, thus minimizing

errors due to the approximations used for the calculations.
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Chapter 4

Towards a gate-tunable

heterogenous catalytic platform

4.1 Motivation and Background

4.1.1 Principles of metal oxide based catalytic sensors

The goals of optimizing catalytic reactions include generating faster, more efficiently,

and cost-effective, metal-oxide supported catalytic platforms. Methods that have led to

enhancing such reactions include nanostructuring of the metal-oxide support, introducing

dopants into the metal oxide framework, and by depositing noble metals on the surface

of the support. All these efforts have allowed chemist to develop an extensive library of

physical parameters that can be tailored to provide the desired product with a given cat-

alytic system. These efforts have allowed for the development of more efficient catalytic

converters for automobiles where one wishes to minimize the toxic gases produced by

the engine by converting the toxic gases into benign and non-toxic products. It has also

allowed the chemical industry to produce valuable and highly desired products on the
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large scale. Furthermore, an application of catalytic reactions with metal-oxide materials,

apart from the chemical synthesis application, is that of gas sensors. Gas sensors work

on the same basic working principles of catatlytic reactions with a metal-oxide support.

However, unlike traditional catalysts, the support for gas sensors must be conductive to

allow one to make electrical contact to the support since it is necessary to make contact

to the support since by monitoring the current of the gas sensor, one can determine the

surface chemistry occurring on the surface of the metal oxide support. [42] therefore, by

using a semiconducting metal oxide, it would then be possible to monitor the surface

reactivies occuring on the surface purely from a condumetric standpoint.

Typical requirements for a metal oxide material to be eligible to be used as a condu-

metric gas sensor include:

1. Reactions occuring on the surface must be reversible, otherwise the sensors will be

useless once all reactive sites have been filled

2. Must be physically stable at elevated temperatures, usually greater than 100 ◦C

3. Electrical contact to active material without excessive contamination or damage to

surface

4. Maintain conductivity during operation of the device, including during gas intro-

duction

With these basic requirements, there have been a significant amount of oxides that

have in some way been used as a condumetric gas sensors including: Cr2O3, Mn2O3,

Co3O4, NiO, CuO, In2O3, WO3, TiO2, V2O3, Fe2O3, and many more. [43] While the

above mentioned materials have shown to be sufficiently conductive to be operated as a

gas sensor, not all exhibit the same surface chemistries nor do they exhibit they same sen-

sitivites towards similar gases. With this in mind, many derivatives have been fabricated

63



Towards a gate-tunable heterogenous catalytic platform Chapter 4

that can be tailored towards specific applications such as:

• Medical applications for diagnostics and patient monitoring

• Use by military for detection of explosives

• Poisonous gas detection such as carbon monoxide in homes

• Detection of combustible gases in industrial applications

A general schematic for a condumetric deivce based on thin metal oxide is shown

in Figure 4.1. Although nanotubes, nanowires, and other structures based on metal

oxide materials have been synthesized and used as gas sensors, the primary focus of

this dissertation will be primarily on thin films. [44] As mentioned in the requisites for

a metal oxide material to be eligible to be used as a condumetric gas sensor, electrical

contacts are necessary to probe the conductivity of the material when exposing to various

gases. Shown in Figure 4.1 the metal oxide material is either grown or deposited onto an

insulating substrate such as thick thermal oxide (SiO2) on silicon. This prevents electrical

shorting of the device where the conductivity of the substrate would be measured instead

of the conductivity of the metal oxide material. For these devices, there are typically

two electrical contacts made to the active metal oxide material, designated as source (S)

and drain (D). The source is typically considered to be held at ground (0 V) potential to

serve as the reference while the voltage is applied across the source and drain contacts

which allows one to measure the conductivity while exposing the film to gases.

The conductivity in semiconductors can be attributed to two majority charge carriers:

electrons and holes. When electrons are the majority carriers, the semiconductor is

designated as an ‘n-type’ material whereas a semiconductor with holes as the major

carrier is considered to be a ‘p-type’ material. [45] While the physics and properties of

n and p type materials are not within the scope of this dissertation, it is important to
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Figure 4.1: a) Basic schematic for a thin film device based on a metal oxide semicon-
ductor on an insulating substracte with source (S) and drain (D) electrical contacts.
Illustration depicting an electron b) donating or c) withdrawing gaseous species that
can significantly modify the free charge carriers within the conduction channel of the
material, thus modifying its measured conductivity.

know that gas sensors of both majority carriers have been synthesized. For the rest

of this dissertation, n-type metal oxides will primarily be studied and characterized,

therefore transport and current properties will be primarily addressed assuming n-type

conductivity depicted in Figure 4.1.

For the materials studied in this dissertation, n-type conductivity arises from oxygen

deficiencies in the metal oxide structurem, thus unintentionally electron doping the mate-

rial. These oxygen vacancies allow for shallow donors slightly below the conduction band

of the semiconductor that can be thermalized at room and elevated temperatures. [46]

Due to the oxygen deficiency, TiO2 is no longer fully coordinated and will thus donate

its free electron to conduction in the bulk. Using the energy levels of TiO2, it has been

shown that oxygen vacancies introduce a shallow donor level band ranging from 0.75

to 1.18 eV below the conduction band. [47] Typically, the position of the donor levels

will vary on the conditions used for synthesis of the material, even for TiO2. It has

been shown that donor levels and concentration can also be modified after the mate-

rial has been synthesized, thereby expanding the accessibility to a wide range of desired

characteristics. [48]

With regards to the energy levels of metal oxide system, one can even decrease the

amount of free carriers within the material by introducing oxygen gas to the system.
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Figure 4.2: Position of donor levels due to oxygen vacancies for TiO2 films, adapted from [47]

Figure 4.3: Band bending induced due to chemisorption, adapted from [49]

In one example, when oxygen gas is introduced at elevated temperatures, it will adsorb

to the surface of the metal oxide resulting in extraction of a free electron that leads to

electronic band-bending at the surface. The band-bending resulting from the adsorbed

oxygen decreases the number of charge carriers in the material thus causing a decrease

in the conductivity of the material shown by the model in Figure 4.3.

This is further illustrated by the schematic shown in Figure 4.4. Since many of the

metal oxide films used for sensing are based on polycrystalline materials, the film is

depicted here as a polycrystalline film with various size domains where conduction of

charge carriers proceeds through the percolation path of the bulk material.
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Figure 4.4: Conduction path associated with adsorbed oxygen assuming n-type conductivity.

4.1.2 Thin film devices towards heterogenous catalysis

In the studies discussed in this dissertation, we primarily focused our efforts on TiO2.

Although the true nature of the TiO2 films in our studies are more like TiOx due to

the oxygen deficiencies within the lattice, the material will be simply referenced as TiO2

to avoid confusion on the exact nature of ‘x’. Furthermore, our studies will focus on

three methods of fabricating TiO2 films: a) oxidization of e-beam evaporated Ti films,

b) atomic layer deposited films of TiO2, and c) sputtered TiO2 films. TiO2 films in

pristine, doped, and decorated with metal nanoparticles form, have been shown to be a

highly tunable, selective, and robust chemical sensor. With the plethora of physical and

chemical parameters that have been used to enhance the sensing properties of TiO2 there

has been little progress in recent years towards any new significant findings in the field

of sensing. Of particular interest, we became interested in developing a platform that

could not only be used as a sensing array, but also as a heterogenous catalytic array. The

difference between sensing and heterogenous catalysis is quite vague as they both involve

surface processes dictated by the surface chemistry of the metal oxide film. Attempts

to clarify the difference will be made here. Sensing devices are primarily optimized to

detect a compound from a background containing multiple analytes. This can be done

by tailoring the metal-oxide material with certain dopants or metallic nanoparticles to
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Figure 4.5: Schematic for proposed TiO2 thin film device for a gate-tunable heteroge-
nous catalytic platform.

increase the propensity for a particular analyte to react with the substrate and provide a

measureable output, with no interest in determining, analytically, the products formed.

However, for our proposed device, we wish to have a way to tune the products formed

from the surface, schematically shown in Figure 4.5.

The device configuration in Figure 4.5 has been widely implemented to increase the

sensitivity of gas sensors.

The device configuration shown in Figure 4.5 allows one to modulate the charge den-

sity of the active channel, in this case, any conductive metal-oxide one chooses to use

and in turn, this will effectively modulate the chemical potential of the surface, ideally

allowing one to modulate the products created at the surface of the metal-oxide as a

result of simply applying a potential across the gate oxide. This can be further expanded

by incorporating metallic nanoparticles where its chemical potential is in constant equi-

libriums with the chemical potential of the conductive channel, therefore, its chemical

potential would in principle be modulated as a result of the charge modification within

the active channel.

Modulation of the charge density within the active channel of the metal-oxide is
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Figure 4.6: Gate-effects modulating the charge density of the active channel, shown
in gray, by applying a potential across the gate oxide polarizing the insulator causing
charge accumulation with the surface in contact with the conductive channel. Choos-
ing a negative or positive gate potential allows one to fine-tune the electron density
within the conductive channel.

schematically shown in Figure 4.6

Our proposed work was primarily inspired by earlier work performed in the Moskovits

lab by Zhang and Kolmakov where they showed that the rates and extent of oxidation

and reduction reactions can be modified by varying the gate potential on the nanowire,

thus changing the electron density within the nanowire. [50]

The study by Zhang and coworkers concluded that the gate potential can have varying

effects depending on what species are interacting on the surface of the oxide material. One

important finding was that if the number of electrons within the nanowire are reduced,

by applying a negative gate potential, the number of available electrons for surface chem-

istry is significantly impacted thus lowering the oxidation rate and the extent of oxygen

adsoprtion.

Our proposed device towards development of a gate-tunable heterogenous platform

is schematically shown in Figure 4.5. Catalytic reactions require elevated temperatures

typically over 100 ◦C which will significantly impact our choice for the gate dielectric

material. With this device, we hope to apply a potential across the gate dielectric for a
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Figure 4.7: The current response at various gate potentials when adding oxygen,
decaying exponential, followed by the addition of CO, rising exponential. Adapted
from [50].

significant amount of time to measure the formation of its product with a quadropole mass

spectrometer used in trace analysis. However, leakage current and dielectric breakdown

become significantly pronounced at elevated temperatures necessitating the need for a

relatively thin active channel to allow for proper modulation of the charge density within

the active channel, in this case, TiO2.

4.2 Results and Discussion

We chose three different techniques for fabricating TiO2 thin films: thermal oxidation

of ebeam deposited titanium films, atomic layer deposited (ALD) thin films, and reactive

ion sputtered thin films.

All samples were tested in a custom made probe station schematically shown in Figure

4.8.
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Figure 4.8: Schematic used for gas testing setup

Figure 4.9: Custom built probe station used for gas testing of the TiO2 thin film devices.

71



Towards a gate-tunable heterogenous catalytic platform Chapter 4

The custom amde probe station has a base pressure of approximately 9.5 x 10-4 torr

after further modifications were made to the original configuration. Although this base

pressure would arguable not be acceptable for surface chemistry reactions, we used a

background flow of nitrogen as a baseline for our measurements. The chamber itself is

sealed by a removable viewport that we use with a compound microscope to view the

sample to make contact with the probes, Figure 4.9.

Although I show 5 separate gases connected through mass flow controllers to the

testing chamber, we could only use three at one time. I had many issues with a few

of the mass flow controllers, and I could not find any suitable replacements for them.

We had considered buying new mass flow controllers but deemed it not necessary since

we weren’t sure about the longevity of this project, therefore making it irresponsible to

purchase mass flow controllers if we were only going to use them during my time here.

Therefore, we chose to always have the argon connected, since it served as our background

and carrier gas, and switch the mass flow controllers to whichever gas was needed.

The sample stage was a ceramic block, built by the machine shop in the Chemistry

department, where the heating element used was a basic lightbulb controlled by a PID

controller coupled with a type K thermocouple. We found the lightbulb to be much more

efficient for maintaing the elevated temperatures and it was very stable as we could run

tests for many hours without worrying about the bulb burning out during a test run.

A copper plate was used as the gate electrode to which the lead from Keithley was

attached by an alligator clip. To prevent loss of contract due to thermal oxidation of the

copper plate, we used indium contact the copper plate and the sample under testing, this

would ensure oxidation of the copper plate would not have an impact on the testing of

the samples.

Micromanipulators were used with fine tip probes (Micromanipulator Company) al-

lowing us to make electrical contact to the source and drain pads on the substrate. A
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Keithley 2400 source-measurement unit integrated with a custom made Labview program

was used for obtaining electrical measurements of the samples under test.

4.2.1 Thermal oxidation of ebeam deposited titanium films

TiO2 films fabricated by thermal oxidation of ebeam deposited titanium were fab-

ricated as shown in Figure ??. We first begin with a degenerately doped p++ Silicon

wafer that acts as the gate electrode. The silicon wafer wet thermally oxidized at 800

◦C to yield a thermal oxide of approximately 300 nm. The thermal oxide was sufficiently

thick to avoid any excessive leakage current during any applied gate potentials and was

very stable with the thermal processes used in the fabrication of the thin films.

Upon the growth of the gate oxide, the samples were cleaned in acetone, isopropanol,

followed by rinse in DI water. The substrates were then baked at 170 ◦C for approximately

5 minutes. LOL 2000 was spun at 2.5 krpm for 30 seconds followed by baking at 170

◦C for an additional 5 minutes to yield 100 nm layer. For the lift off layer (LOL 2000),

it’s very critical to keep an eye on the baking times as the development and desired

undercut of the lift off layer after exposure is very sensitive to the temperature of the

baking time as well as the length. We found that 170 ◦C for 5 minutes with our recipe

was ideal although lower baking temperatures can be used in case of possible surface

reactivity or substrate compatibility. We considered the possibility that the LOL 2000

or the photoresist would in some way impact the performance or functionality of the

devices since we are baking the exposed surfaces with an organic layer at relatively high

temperatures. However, we ran a few experiments where we fabricated devices by use

of photolithographic defined features and devices where we used a hard mask to deposit

features. Both devices performed similarily, therefore, we determined the exposure of

the active layer would be negligibly affected by the photoresist or the LOL 2000 in
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Figure 4.10: Polymer based photoresist used for defining features on the substrate
using standard recipes developed at UCSB.
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anyway. Also, when using LOL 2000, due to its low viscosity, the layer will appear to be

visibly nonuniform throughout the surface, however, we determined through ellipsometry

that the layer thickness did not vary significantly throughout a 1x1 cm sample. More

importantly, we obtained consistent layer thicknesses in the middle of the sample, where

the active area and probing contacts would be placed.

After applying the liftoff layer, we spun AZ 4210 photoresist at 4 krpm for 30 seconds,

yielding a layer thickness of approximately 2 microns. We had difficulties measuring

the layer thickness of the photoresist with ellipsometry, primarily due to the strongly

absorbing nature of the resist, but layer thickness was confirmed independenty by a

Michael Belt.

Samples were then baked at 90◦C for one minute. The features for the active layer

were then defined by contact lithography exposing for 13 seconds at 7.5 mW/cm2 power.

Samples were then developed in 1:4 MIBK:DI developer for 2 minutes and 15 seconds.

The longer development time was required to appropriately etch the LOL 2000 layer to

provide an ideal undercut for liftoff after active layer deposition, as shown schematically

in Figure 4.10.

Titanium was deposited using ebeam evaporation (Temescal). Evaporation was held

at a constant rate of 0.1 Å/s until the desired thickness of 15 nm was achieved. Following

depositon of the titanium layer, the photoresist and LOL 2000 were removed by soaking

the sample overnight in Nanostrip, a commercial solvent used for lifting off resists.

Once liftoff was achieved, the samples were removed from the Nanostrip and rinsed

with copious amounts of isopropanol followed by a final DI water rinse. To remove any

residual impurities, the samples were cleaned in a UV-ozone chamber for 10 minutes.

Although this cleaning method will slightly oxidize the due to the high reactivity of tita-

nium, we determined the extent of oxidation would negligibly effect the overall properties

of the film after we perform the thermal oxidation.
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After confirming the features on the substrates, the samples were placed in a tube

furnace and annealed overnight at 500 ◦C in open atmosphere. We determined 16 hours

annealing time was sufficient to obtain the desired conductivity although longer annealing

times would of course further oxidize the film and cause a decrease in the conductivity.

Ellipsometry was used to approximate the layer thickness of the TiO2 upon thermal

oxidation and we determined the film to be approximately 25 nm in thickness.

Ti/Au (10/1000 Å) ohmic contacts were deposited onto the active channel. Ohmic

properties were confirmed by performing Id-Vd sweeps using the probe station in the

nanofab.

Samples were then taken to the testing chamber, shown schematically in Figure 4.8.

Before testing, the sample was annealed in the probe station under vacuum for ap-

proximately 12 hours at 150 ◦C followed by 1 hour of UV (254 nm wavelength) exposure

with 25 sccm (standard cubic centimeter) of argon. Since our samples are surface sensi-

tive, these two cleaning techniques allow us to clean the sample of any residual solvent

or surface contaminants introduced during previous steps.

UV exposure has been shown to excite electron-hole pairs in the film, that then react

with organic or other contaminants on the surface to remove the material. [51] Typically

after UV treatment, the number of oxygen vacancies tend to increase due to the removal

of impurities at the oxygen vacancy site, thus increasing the measured current for at a

constant voltage. UV treatment also yielded higher mobilities and lower ‘off’ currents

due to the removal of the impurities.

Heating the sample for 12 hours also removes any weakly bounded water molecules

that may be coordinated to the oxide surface. Along with the UV light, this also allows

for removal of any residual materials.

After the treating the sample for contaminants we obtained voltage sweeps from 60 to

200 ◦C, Figure 4.11. This was done to confirm the semiconducting properties of the TiO2
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Figure 4.11: ID-VD of thermally oxidized electron beam evaporated titanium films
showing ohmic and semiconducting properties.

film since the conductivity is exponentially dependent on the temperature, ID ∝ e
1
kT .

Although not shown here, we performed an arrhenius fit to the current vs temperature

plot by extracting current values at a particular voltage which allowed us to determine

an approximate value for the position of the donor levels within the band gap of TiO2.

We obtained a value of approximately 0.21 eV, indicating that the donor levels reside

predominantely 0.21 eV below the conduction band of TiO2.

The samples demonstrated great stability, even at elevated temperatures, with leakage

current approximately in the nano ampere range, acceptable for our measured currents

here. Although we did find that the current-voltage characteristics could vary from the

beginning to the end of the day at 200 ◦C, we attribute this to residual oxygen and water

in our testing chamber that could very easily coordinate within the oxygen vacancy sites

and alter the conductivity. It would become more obvious when no argon flow was used,

further necessitating the use of the background argon flow to set as a baseline for testing.
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Figure 4.12: Room temperature voltage sweep before and after oxygen exposure at
room temperature.

For the sensing experiments, we first measured the response of 10 sccm oxygen at room

temperature, Figure 4.12, with background flow of 25 sccm argon. As the current-voltage

measurement indicates, we observed no response to oxygen at room temperature since

oxygen is not expected to appreciably react with the oxide surface at room temperature

and yield a measureable change in current. [52]

After confirming that we are not observing any unusual response to the oxygen ex-

posure, we first measured the response of our sample to various oxygen flows at 150 ◦C,

Figure 4.13.

This temperature was chosen since it has been shown that oxygen readily reacts with

the oxide surface at 150 ◦Cas the oxygen will react with the oxygen vacancies found at

the surface of the oxide. At sufficiently elevated temperatures, the oxygen will adsorb to

the surface of the oxygen by various mechanisms illustrated by Figure ??.

Typically, at temperatures from 100 to 550 ◦C, oxygen will ionosorb as molecular
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Figure 4.13: Oxygen response at 150 ◦C, noise in measurement was due to the probe
vibrating from the gas flows and was eliminated by simply adjusting the probe posi-
tion.

and atomic species, shown in Figure ??. These species, as mentioned before, will either

react with oxygen vacancies or will furth lead to a depletion fregion at the layer of the

oxide, thus causing a decrease in the conductivity leading to a measureable response in

the conductivity of the sample. The reactivity can be written as follows:

β

2
Ogas

2 + α· e− + S ⇀↽ O−αβS (4.1)

where Ogas
2 is the oxygen molecule, e− is a free electron which can react with molecules,

S is an unoccupied site for oxygen reactivity which are typically surface oxygen vacancies

and other surface defects, O−αβS is a chemisorbed species where,

• α = 1 for singly ionized forms

• α = 2 for doubly ionized forms
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Figure 4.14: Oxygen species detected at different temperatures on oxide surface by use
of infrared analysis (IR), temperature programmed desorption (TPD), and electron
paramagnetic resonance (EPR). Adapted from [53].

• β = 1 for atomic forms

• β = 2 for molecular forms.

As is readily described in the literature, the chemisorption of oxygen is a process

that involves both a chemical and electronic process. However, since the TiO2 surface

has essentially unlimited electrons (relative to molecules that can possibly absorb), the

limiting factor is the chemical process of adsorption, hence the requirement of elevated

temperatures to allow oxygen to adsorb to the surface.

However, even with the extensive research performed with oxide materials and their

reactivities with oxygen indicating that the oxygen should lead to a decrease in the

conductivity of the metal oxide, we instead observe the opposite, Figure 4.13. Initially,

when we first obtained these results, we believed that we were observing some sort of

error in our measurement. Therefore, we carefully revisted our fabrication procedure to

determine if we were introducing any contaminates unintentionally.
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Figure 4.15: Scanning electron micrograph of oxidized titanium film before addition
of contact pads.

As mentioned during device fabrication, we believed at some point that we were

leaving residual photoresist or some other organic residue that was then reacting with

the oxygen at elevated temperatures leading to an increase in conductivity. In particular,

we soaked a few of the samples in various organic solvents over night and remeasured

their oxygen sensing properties after extensive cleaning with UV ozone as well as elevated

temperatures. We found however, there was no significant difference in the response

towards oxygen from one set of films to another.

With bare metal oxides at elevated temperatures, ethylene gas will react with oxygen

species on the oxide surface to form ethylene oxide, as was also observed for our films,

Figure 4.16. [54] Ethylene, a reducing gas towards metal oxide films, yielded appropriate

responses for our device system. As expected, we observed an increase in the conductivity

of the thin film due to the ethylene reacting with various surface oxygen species that then

allowed for a donation of an electron to the metal oxide film, yielding an increase in the

conductivity of the system.

This of course still doesn’t address our question as to why the film behaves normally
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Figure 4.16: Response of thermally oxidized titanium films towards 10 and 5 sccm
ethylene exposures with a constant background flow of 25 sccm argon at 150 ◦C.

with ethylene but not with oxygen. Although our film is approximately 25 nm in thickness

of TiO2, we didn’t expect that this would lead to any significant differences in the behavior

of the films towards the gases. We attempted to deposit thicker layers of titanium,

followed by oxidation, but we could not obtain uniform samples as we noticed significant

lack of uniformity after thermally oxidizing when trying to oxidize titanium layers greater

than 50 nm. Therefore, we fabricated atomic layer deposited films for comparison to the

oxidized titanium films.

4.2.2 Atomic layer deposited TiO2 films

ALD is a monolayer-by-monolayer deposition technique that allows for a set of chem-

ical precursors to be sequentially introduced into a reaction chamber containing the

substrate. The precurors are designed to not react with each other only until they

are introduced into the reaction chamber and react on the substrate through a cyclic

82



Towards a gate-tunable heterogenous catalytic platform Chapter 4

Figure 4.17: Tetrakis(dimethylamino)titanium precursor used for ALD deposition of TiO2.

fashion. When properly designed, the film will grow one monolayer per cycle that al-

lows for precise control of the final film thickness by simply varying the total num-

ber of deposition cycles. TiO2 films were fabricated from atomic layer deposition from

tetrakis(dimethylamino)titanium (C8H24N4Ti), TDMAT) the titanium source and wa-

ter served as the oxidaant, Figure 4.17. [55]The ALD recipe for our instrument (Oxford

Instruments) was characterized and developed by Bill Mitchell. Growth rates were mea-

sured to be 0.6 Å/cycle at 300 ◦C, confirmed by ellipsometry.

The as-deposited films are of rutile / anatase mixture, with exact composition un-

known since we were not able to obtain a clear XRD pattern to confirm the composition.

We choose to deposit at 300 ◦C as we wanted to obtain dense films without causing

significant damage to the gate oxide due to incorporated stress from the deposited films.

However, prior studies suggested that depositing at this temperature would increase car-

bon and nitrogen contamination within the film. Although we have no reason to believe

the incorporated carbon and nitrogen would contribute significantly to the performance

of the thin films, we none the less took this into consideration for our analysis and post

treatment of the films.

We deposited 333 cycles with the precursors was performed, yielding a total layer
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Figure 4.18: Response of 20 nm ALD deposited TiO2 films towards 5 sccm oxygen.

thickness of 20 nm of TiO2. For the ALD films, we did not define the active areas for

the deposition of the TiO2 films due to the conformal coverage of the deposition process

which would significantly increase the difficulty of achieving a clean lift off. Therefore,

we simply used a hard mask to cover the edges of the silicon wafers and allowed the film

to cover all exposed areas. Contact pads of Ti/Au (100/1000 Å) were deposited using

the similar process as for the oxidized titanium films, Figure 4.10.

As-deposited ALD films of TiO2 were tested for their oxygen response, Figure 4.18

and 4.19. As with the thermally oxidized films of titanium, we obtained an increase in

current for the devices when exposing oxygen gas with background argon flow. Once

again contradicting prior observed oxygen responses for the films.

We considered the possibility of film contamination within the ALD films, since the

film is fabricated from metallorganic precursors. We therefore annealed as-deposited films

at various temperatures ranging from 300-500 ◦C for 1 hour in nitrogen atmosphere. For
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Figure 4.19: Response of ALD deposited TiO2 films towards 10 sccm oxygen.

all the samples, we measured a decrease in the conductivity, but still observed the same

response towards oxgyen. As a reducing gas, we then used hydrogen to probe the surface

reactivity and observed the expected increase in conductivity for the sample.

To determine whether the ALD films were behaving electronically similar to the ther-

mal oxidized titanium films we obtained temperature dependent current-voltage sweeps.

A quick introduction behind the reason for such a measurement is given below.

The conductivity of a semiconductor is given by the following relation

σ = q(µnn+ µpp) (4.2)

where µn and µp refer to the mobilities of electrons and holes and n and p refer to

density of electrons and holes. Because TiO2 is an n-type material, where n >> p, we

can simplify conductivity as σ ∝ n.

In general, the intrinsic concentration of a semiconductor increases with increasing
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temperature, as described by the following equation:

ni(T ) = 2

[
2πkT

h2

] 3
2 (
m∗nm

∗
p

) 3
4 exp

[
−Eg
2kT

]
(4.3)

In this equation, the exponential temperature dependence dominates the intrinsic

concentration (ni).

While this equation holds valid for the intrinsic carriers of semiconductor, it is neces-

sary to determine the total carrier concentration (following space-charge neutrality) by

the following expressions:

n(T ) = N+
D (T )−N−A (T ) +

n2
i (T )

n(T )
and p(T ) = N−A (T )−N+

D (T ) +
n2
i (T )

p(T )
(4.4)

where N+
D (T ) is the number of ionized donors and N−A (T ) is the number of ionized

acceptors.

At sufficiently high temperatures, the level of the donors can be determined by plot-

ting ln(σ)vs. 1
T

, which will yield a slope equal to −Eg

2k
. Therefore, by measuring conduci-

tivity at sufficiently high temperatures where dopant contribution to carrier density is

minimized, the level of carrier density of the material can be determined, Figure 4.20.

The donor levels of the ALD deposited TiO2 films are similar to those we obtained

for the oxidized titanium films, showing similar electronic properties with regards to the

donor levels from the oxygen vacancies. After exhaustively attempting various cleaning

and postdeposition parameters, we determined that the increase in current due to oxygen

exposure is in fact a real phenomenon we are measuring and not simply an accident. We

are limited in the layer thickness of TiO2 we can deposit using ALD as the nanofab

staff does not allow us to grow significantly thicker films due to the expensive TDMAT

precursor preventing us from performing thickness dependent measurements.
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Figure 4.20: Arrhenius fit for conductivity of ALD films obtained at various temper-
atures with 1 V applied bias.

4.2.3 Sputter deposited TiO2 films

Reactive ion sputtering is a widely used technique to produce thin films. By using the

same titanium target, it is possible to obtain oxide, TiO2 and nitride, TiN, films by simply

changing the deposition atmosphere from oxygen to nitrogen although a compound target

(TiO2 or TiN) can also be used for depositing films. Sputtering also allows one to control

the substrate temperature of the sample during deposition as substrate temperature has

been shown to significantly impact the resulting crystallinity and surface morphology of

the film. [28,56,57]

The sputter tool (AJA International ATC 2000-F) in the UCSB nanofab is a six target

tool that is capable of handling both DC and RF sputtering. Ultimate base pressure of

approximately 9.8 x 10-8 torr can be achieved. The system is setup with an adaptive

pressure control that allows one to precisely adjust the chamber pressure without having

to alter the mass flows of the gases. In our system, argon is used as the sputter gas with
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Table 4.1: Example recipe used for depositing TiO2 films on AJA International ATC
2000-F sputter system in the UCSB nanofab.

Power (Watts) 200
Oxygen flow (sccm) 3.0
Argon flow (sccm) 30
Pressure (mTorr) 2
Substrate height 25

Gun tilt 9
Feedback voltage 434

Deposition time (s) 600
Thickness (nm) 56
Rate (nm/min) 5.6

Refractive index @ 633 nm 2.4

nitrogen and oxygen gas available for depositing both nitrides and oxides. The tool also

has a substrate heating element allowing for samples to be heated up to 800 ◦Cduring

depositions.

The recipe shown in Table 4.1 was developed after we spent some time calibrating the

recipe to obtain a proper deposition rate and desired conductivity. The as-deposited film

from this recipe yielded conductivity in the microamp range with the same lithographic

procedure illustrated in Figure 4.10.

Since we could control substrate temperature during the deposition on the sputter

tool, we studied the response of films deposited at various temperatures towards hydrogen

and oxygen, since depositing at various temperatures would favor the formation of mixed

phases or rutile phase at elevated temperatures. [48, 58] Since all the films yielded the

same trends with response, we only show the set for a sample deposited at 400 ◦C.

Films shown here are of 20 nm layer thickness, confirmed by ellipsometry with an

index of refraction approximately 2.4 at 633 nm wavelength. As was observed for the

ALD deposited and thermally oxidized films, we observed the expected response of the

films towards hydrogen gas. The response of the films exhibits a sudden increase in the

conductivity followed by a plateau effect.
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Figure 4.21: 20 nm layer thickness TiO2 film behaving as expected in reducing con-
ditions with 10,5, 2.5 sccm hydrogen gas at 120 ◦C.
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Figure 4.22: 20 nm layer thickness sputter deposited TiO2 film exhibit unusual be-
havior towards oxygen flows of 15,10, and 5 sccm at 120 ◦C.
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The oxygen response for these films, exhibited increses in conductivity once again

after exposing the films to various concentrations of oxygen. These responses are very

reproducible from sample to sample and we have tried various methods for ensuring they

are clean before gas testing.

Suprisingly, all the films, whether sputter deposited at room temperature or 400

◦C, showed similar reponses to oxygen and hydrogen for layer thicknesses of 20 nm. Our

observations, which indicates that oxygen is reducing the TiO2 surface simply contradicts

essentially all of the literature studies regarding the oxidation of TiO2 surfaces. Of course,

we were skeptical throughout all of our samples when we observed this for all of our films.

However, we event went as far as changing the oxygen cyclinder and reconfiguring the

gas lines leading to the testing chamber. My wonderful undergrads, Chris and Sam,

spent countless hours testing a wide range of samples with various deposition and post

processing parameters, but we continued to observe the same trends with respect to

hydrogen and oxygen response.

To suggest that both hydrogen and oxygen are reducing the TiO2 surface is something

that defies all logic regarding surface science. So with this in mind we had to ask ourselves,

is this in fact a chemical property? Or there is another effect we have not considered?

One possibility we proposed may be affecting the response of the films is the use of

the thermally grown SiO2 as the gate oxide. While we have no real reason to believe this

is in fact the culprit, we have no other evidence that would suggest otherwise. We assume

the TiO2 and SiO2 surface are behaving ideally, but with such thin films of TiO2 there’s

always a possibility something may in fact be affected by the substrate. Therefore, we

fabricated devices with Al2O3 and Si3N4 gate insulators. However, we observed the same

responses towards hydrogen and oxygen even when using other gate dielectric. With

these experiments, we’ve eliminated the possibility of the substrate having an influence

on the response of the films.
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Next, we consider the layer thickness of TiO2 being used. Although the ability to

precisely deposited layers down to tens of nanometers has yielded significant improvement

for the performance of transistors and other electronic devices, there have not been

significant reactivity studies of such films since the development of nanowire and nanobelt

1-D materials. These materials have unprecedented responses and sensitivities towards

gases due to their nanostructured properties which has caused research in thin film based

sensors to significantly decrease.

As mentioned in the prior sections, we were limited to smaller layer thicknesses due

to growth restrictions on the ALD and due to the lack of uniformity with thicker layers of

oxidized titanium films. However, sputtering is capable of yielding growths on the order

of microns. Although the nanofab at UCSB typically asks users to not exceed depositions

longer than 12 hours, we can easily obtain thicker films within this time frame since our

deposition rates are typically on the order of 6 nm/min.

By using the recipe shown in Table 4.1, we deposited films of TiO2 approximately

100 nm layer thickness onto silicon wafers with 300 nm thermal oxide. Same lithographic

procedure for defining the contact pads as used for the previous samples was used for the

source and drain contacts.

The film’s response towards oxygen is shown in Figure 4.23. The relatively thick layer

of TiO2 (100 nm layer thickness), exhibited a decrease in conductivity when exposed to

an oxidizing atmosphere, precisely what should be expected for oxide materials. Hydro-

gen exhibited its usual reducing behavior towards the same film where the increase in

conductivity can be seen towards the end of the oxygen testing in Figure ??.

Since the 100 nm thick sputtered film is exhibiting ‘normal’ responses towards oxi-

dizing and reducing gases this of course begs the question as to whether the change in

response towards an oxidizing environment is due to the ultrathin properties of the film.

Due to the difficulty of obtaining proper glancing XRD patterns that would indicate the
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Figure 4.23: 100 nm thick sputter TiO2sample exhibiting as expected response to an
oxidizing atmosphere with 10 sccm mass flow of oxygen.

phase and strucutre of the ultrathin TiO2 films, we decided to probe to electronic prop-

erties by finally fabricating a proper FET using the sputter oxide for the active channel.

Because we were interested in testing the properties of films deposited at temperatures

up to 400 ◦C, we were forced to develop a novel method for patterning substrates since

traditional photolithographic techniques could not be used for fabricating such patterns.

Here, we briefly show a hard mask technique we developed that was based on a similar

method. [59]

High-vacumm depositions have been extensively used for depositing high quality,

pure, and tunable materials. Examples such as sputter deposition, physical enhanced

chemical vapor deposition, and electron beam assissted deposition quite often employ

depositing material at elevated substrate temperature in order to achieve a particular

crystalline phase or purity. Although operating at elevated substrate temperature ranges

offers many benefits, such techniques are not practical when considering the delicate
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Figure 4.24: Hard mask method allowing for depositings of materials at temperatures
up to 600 ◦C without causing diminishing the resolution of the features. Note that
features used in this dissertation were significantly large, generally greater than 25
microns, smaller feature sizes were not tested.

surface of the substrate and the limited lithography techniques available for patterning

at elevated operating temperatures.

In our process, we demonstrate a versatile hard-mask layer that will replace traditional

photoresist lithographic processes for use in sputter deposition of various materials at

substrate temperatures up to 400 ◦C. Due to the structural damage caused by high

energy ions during sputtering, incorporation of atomic layer deposition (ALD) will be

used towards protecting the substrate from extensive structural damage. This will be

demonstrated by applying our method towards fabricating a back-gated thin film TiO2

transistor with an active channel deposited at elevated substrate temperatures.

The germanium silicon nitride bi-layer mask was fabricated by a combination of

PECVD and e-beam deposition techniques. The working substrate was composed of 40

nm Al2O3 dielectric deposited on a (100) p++-Si wafer by atomic layer deposition. The
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alumina layer served as the gate dielectric layer when operating the device as a back-

gated FET. To ensure minimized leakage current and increase the quality of the dielectric

material, the as-deposited Al2O3 film was annealed at 600◦C in flowing nitrogen for 3

minutes. 200 nm of germanium was deposited by e-beam evaporation (base pressure of

3×10−6) followed by deposition of 50 nm SiO2 by PECVD. No post-deposition treatment

was performed to the Ge and SiO2 layers. Depositing at higher rates caused very uniform

etching of the germanium, therefore, we determined depositing the germanium layer at

2.0 Å/s would yield the most consistent etch rates.

Contact lithography was used to define the areas for deposition of the active channel

onto the Ge/SiO2 bi-layer using UV photolithographic techniques. The pattern from

the resist to the substrate was transferred by ICP etching of the SiO2 with CHF3 with

minimal etching of Ge. Following removal of the photoresist after pattern transfer to the

substrate, the exposed Ge was then etched with 30 % H2O2 at 50 ◦C for approximately

5 minutes. Undercut of the bi-layer was confirmed with an optical microscope.

Upon deposition of the active channel, the samples were lifted off overnight in room

temperature 30% H2O2 and rinsed with DI water. Contact lithography was used to define

contact pad features followed by Ti/Au (20/2000 Å) e-beam deposition for the contact

pads. Samples were then cleaned in a UV-ozone environment to remove any residual

contaminations from the surface of the TiO2 film.

Charge transfer measurements (Id-Vg) for 20 nm layer thickness samples sputter

deposited at 400 ◦C were obtained at both room temperature and at 150 ◦C, Figure

4.25 and Figure 4.26, respectively. The charge transfer measurements indicated n-type

conductivity (electrons are major charge carriers), which agrees with the accepted models

for charge transfers of TiO2 films. There was no significant change in the electronic

properties from room temperature to 150 ◦C, except for a slight change in the saturation

current and threshold voltage, which is expected for elevated temperatures.
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Figure 4.25: Room temperature transfer characteristics of the TiO2 film deposited at
400 ◦C. The film exhibited n-type characteristics as expected for TiO2 thin films.
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Figure 4.26: Transfer characteristics obtained at 150 ◦C for 20 nm layer thickness
TiO2 sample deposited by sputtering.
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The charge transfer measurements confirmed to us that the ultrathin films are be-

having as n-type materials, which would eliminate the possiblity of accidentally p-type

behavior due to excess oxygen incorporated into the film. [45] Therefore, we cannot at-

tribute some sort of mechanism where the ultrathin films are altering their electronic

properties.

4.3 Future work and conclusions

Although we did not reach our goal to develop a gate-tunable heterogenous catalytic

platform, we have encountered an interesting observation where both oxygen and hydro-

gen are reducing the TiO2 surface for films ranging of layer thickness from 15-30 nm.

We demonstrated these effect was observed for thermally oxidized titanium films, atomic

layer deposited, and sputter deposited TiO2 films.

We determined the response towards oxygen gas does not change its properties even

with postprocessing of deposited films, suggesting the crystallinity of the film is not

significantly impacting its behavior towards oxygen. Furthermore, we show that a 100 nm

layer thickness film of sputter deposited TiO2 exhibits its expected behavior when exposed

to oxygen, thus leading us to believe that layer thickness of the film is somehow the major

contributor towards its behavior with oxygen. Electronically, the ultrathin films exhibit

normal n-type behavior, as expected for TiO2 thereby eliminating the possiblity of any

kind of anomolous electronic behavior at such low layer thicknesses.

Moving forward, we would need to perform a thorough evaluation on the TiO2 films.

For example, we could use XPS to probe the nature of the titanium coordination within

the film. Also, we have primarily been assuming the response of the film has been due

to a chemical interaction at the surface. While very unlikely, it could be possible that

somehow the oxygen incorporates itself at the grain boundaries of the TiO2 layer that
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then allows for an improve electronic pathway for conductivity. While this is not very

likely, due to the precise response of the films towards the various concentrations oxygen,

it could somehow be a contributing factor.
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Appendix A

Bulk metal optical constants

The optical constants for the bulk metals were fitting the following equation to optical

constants provided by the references listed:

ε(ω) = 1−
ω2
p

ω2 + iωγ
+

N∑
j

aj
ω2
0j − ω2 − iωΓj

+ ε∞ (A.1)

A.1 Gold optical constants

Equation A.1 was used to fit the optical constant data provided by Johnson and

Christy. [30]

Table A.1: Values resulting from least squares fit using 3 lorentzian oscillators and
drude contribution, the following parameters were held constant: ωp = 9.1 eV and
γ = 0.0757 eV , however, ε∞ was a free variable and was determine to be 4.308.

j = 1 2 3
aj -21.74 71.37 75.52
ω0j -2.06 -5.65 3.33
Γj 1.92 5.83 4.03
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A.2 Silver optical constants

Silver optical constants were obtained from Johnson and Christy. [30]

Table A.2: Values resulting from least squares fit using 3 lorentzian oscillators and
drude contribution, the following parameters were also found: ωp = 9.18 eV and
γ = 0.020 eV , and ε∞ = 2.10.

j = 1 2 3
aj 48.315 -70.9657 75.6473
ω0j 5.6449 4.1692 4.225
Γj 3.0219 1.195 1.1713
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A.3 Aluminum optical constants

Optical constants were obtained from Rakic and Aleksandar. [60]

Table A.3: Values resulting from least squares fit using 3 lorentzian oscillators and
drude contribution, the following parameters were also found: ωp = 15.1 eV and
γ = 0.605 eV , and ε∞ = −22.34.

j = 1 2 3
aj 57.18 -849.436 -1464.88
ω0j 1.5802 -0.6647 2.236
Γj 0.7617 3.848 -10.028
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[38] O. D. Häberlen, S.-C. Chung, M. Stener, and N. Rösch, From clusters to bulk: A
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