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ABSTRACT OF THE DISSERTATION

Flow estimation with point vortex models

by

Mathieu Jacques Philippe Le Provost

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2022

Professor Jeffrey D. Eldredge, Chair

In many applications, there is growing interest to use limited pressure observations to es-

timate the flow behavior. In this dissertation, we represent the flow field by the positions

and strengths of a collection of point vortices. We perform the assimilation of the pres-

sure observations with the ensemble Kalman filter (EnKF), which builds a Monte-Carlo

approximation of the Kalman gain. As a result of the limited ensemble size, the estimated

Kalman gain suffers from ill-conditioning issues, sampling errors, and spurious long-range

correlations. We propose two strategies to resolve these problems in the context of flow

estimation. First, we show that the flow estimator introduced by Darakananda et al. (Phys.

Rev. Fluids 3, 124701 (2018)) is greatly improved by replacing the stochastic version of the

EnKF with the ensemble transform Kalman filter (ETKF): a deterministic version of the

EnKF that reduces sampling errors. We assess this improved flow estimator on two chal-

lenging flow configurations: a flat plate is subjected to strong and overlapping disturbances

applied near the leading edge to mimic flow actuation, and a flat plate is placed in the wake

of a cylinder. The ETKF significantly improves the estimation of the flow field. Second,

predominant methods for regularizing the EnKF suppress correlations at long distances.
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In incompressible fluid problems, the observations are given by elliptic partial differential

equations, e.g. the pressure Poisson equation. Distance localization is not applicable here,

as we cannot distinguish the slowly decaying physical correlations from the spurious long-

range ones. In elliptic inverse problems, we observe that a low-dimensional projection of

the observations is only informative of a low-dimensional subspace of the state space. We

introduce the low-rank EnKF (LREnKF): a novel version of the EnKF that leverages this

structure. We identify the most informative directions of the state and observation spaces

as the leading eigenvectors of Gramian matrices based on the sensitivity of the observation

operator. From the rapid spectral decay, we can estimate a lower-dimensional Kalman gain

in the low-dimensional subspace spanned by the leading eigenvectors, hence reducing the

variance of the estimator. The LREnKF avoids any ad-hoc tuning by adaptively identifying

the dimensions of the informative subspace. We show the LREnKF significantly improves

the estimate of the stochastic EnKF on two potential flow examples.
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CHAPTER 1

Introduction

Light-weight and agile aerial vehicles can experience large amplitude and overlapping flow

perturbations. Unfortunately, in this regime, the linear theory developed for airfoils at small

angle of attack [4, 5, 6] is inadequate to estimate the nonlinear interactions between the

disturbances and the vehicle. The development of unmanned aerial vehicles operating in

this extended flight envelope requires an accurate model of the flow response to disturbances

and flow actuation. This question is the common thread of this dissertation.

A major challenge in real world flow estimation problems is the limited (both spatially

and temporally) observations of the surrounding flow field available onboard. Indeed, it

is not possible to probe locally the fluid velocity field about the vehicle, as we cannot have

floating Pitot sensors in the surrounding fluid region. Unfortunately, the flow estimation must

be performed from a sparse set of surface pressure receptors. While pressure observations

provide valuable information on the flow field, these observations are limited, noisy, and

nonlinearly related to a velocity description of the surrounding flow field. In real flight

conditions, the goal of flow estimation is to use these limited surface pressure observations

to estimate the surrounding flow field in the presence of unknown disturbances and flow

actuation. This inverse problem can be tackled with a purely regressional approach, where

we seek to learn the mapping from the pressure observations to an estimate of the flow field

(potentially returned as an estimation of the surrounding fluid velocity field) [7, 8]. This

direction has gained a considerable interest over the last decade with the novel opportunities

offered with deep learning [9, 10]. We refer readers to Fukami et al. [11] for a review of
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supervised machine learning techniques for fluid flow estimation. In this dissertation, we

prefer a hybrid solution, where the flow estimation is based on a simplified physics-based

dynamical model, whose missing physical effects are reintroduced in the flow estimate via

the assimilation of pressure observations.

Aerodynamic flow estimation problems are usually ill-posed: different flow fields can

produce the same pressure distribution at limited locations on the surface of the airfoil.

Individually taken, computational models, or noisy observations are often not sufficient to

accurately estimate the flow field. The mathematical model for the flow field suffers from

errors due to the choice of the discretization scheme, the initial and boundary conditions, the

parameters of the model or simplifying assumptions. Moreover, the dynamical model cannot

represent a priori the flow disturbances, which are by nature unknown. The observations of

the state are usually limited, noisy and nonlinearly related to the state. Using the dynamical

problem to generate a prior estimate for the flow state is essential to regularize the inverse

problem. The field of data assimilation (DA) provides an elegant means to incorporate

these observations in the dynamical model [12, 13]. The dynamical model gives an a priori

prediction for the probability distribution of the state. Using Bayes theorem, the observa-

tions are used to improve the estimation of the state distribution and form the a posteriori

state estimate. This dissertation focuses on the filtering problem, which is of primer interest

for real-time flow estimation. We seek to estimate the conditional distribution of the state

given the knowledge of all the observations up to that time. For high dimensional problems,

we usually use a Monte-Carlo approximation of the filtering distribution: an ensemble of

samples that approximate the filtering density is recursively updated. Within each assim-

ilation cycle, we perform the following two steps: a forecast step and an analysis step. In

the forecast step, the filtering ensemble is propagated through the dynamical model to gen-

erate samples from the forecast ensemble. The analysis step updates the forecast ensemble

by assimilating the newly available observation from the true system. Unlike the forecast,

the analysis step does not involve time propagation and can be treated as a static Bayesian
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inference problem. It is enlightening to see this Bayesian inference step as the application

of a prior-to-posterior transformation – the analysis map – to the forecast samples. Differ-

ent ensemble filtering methods estimate this analysis map under different assumptions given

limited samples from the forecast density. In particular, the ensemble Kalman filter (EnKF)

(Evensen [14]) builds an empirical estimation of the Kalman gain — the linear mapping

from observations discrepancies to state updates — derived for linear-Gaussian state-space

models [15].

The dynamical model in a flow estimation problem can take diverse forms. da Silva

and Colonius [16] used a discrete solver of the Navier-Stokes equation based on the im-

mersed boundary projection method [17]. They successfully estimated the flow field about

a two-dimensional airfoil subject to a time-varying freestream from limited surface pressure

observations collected on the surface of an airfoil. To alleviate the computational cost of

a fully-resolved Navier-Stokes simulation, they relied in a following work on a coarse-grid

representation of the flow field [18]. To balance the bias error introduced by the trunca-

tion errors of the grid mesh, they developed a closure model for the bias error based on

autoregressive algorithm. Deep learning has an important role in the development of closure

models for truncation errors terms [19, 20]. In the current state of the art, it is not clear

that these coarse-mesh strategies can be fast enough for real-time flow estimation without

dramatic truncation errors. However, recent progresses in quantum computing could signif-

icantly reduce the computational cost of classical algorithms like the Poisson solver, which

is the limiting component of any Navier-Stokes solver [21].

In this dissertation, we pursue an alternative direction, and use a low-dimensional La-

grangian representation of the flow field by tracking the positions and strengths of a limited

collection of point vortices. Point vortex models constitute a versatile and highly expressive

template to explain and model unsteady aerodynamic phenomena [22, 6, 23, 24, 25]. Indeed,

changing the location of the vortex elements is a highly sensitive knob for flow approximation.

Obviously, inviscid point vortex models do not explicitly account for viscosity. Fortunately,
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for moderate to high Reynolds number aerodynamic flows, the effects of viscosity are limited

to two main contributions: the creation of vorticity about the surface of the airfoil, and

the viscous dissipation [6]. In an inviscid vortex model, the vorticity flux from the edges

of the airfoil can be modeled by the shedding of new vortex elements. About the trailing

edge, the Kutta condition is commonly used to determine the strength of the newly shed

point vortices. However, the application of the Kutta condition is questionable about the

leading edge, as it leads to a non-physical reverse flow. Ramesh et al. [26, 27] introduced

the concept of leading edge suction parameter (LESP), as a non dimensional measure of the

amount of suction (negative integrated pressure) about the leading edge of the airfoil. They

showed from a combination of wind-tunnel and numerical experiments that the flow over

the leading-edge of an airfoil can support a finite amount of suction before flow separation.

The associated value of the LESP that triggers flow separation is called the critical LESP

(LESPc). One can formulate a simple vortex shedding criterion from this definition: a new

vortex element is shed about the leading edge if the LESP exceeds the LESPc, otherwise no

vorticity is shed. The strength of the newly shed vortex is set by the amount by which the

LESP exceeds the LESPc. Eldredge [6] showed that this shedding criterion generalizes the

Kutta condition, which is recovered for LESPc = 0. Ramesh et al. [26, 27] hypothesized

that the LESPc is only a function of the shape of the airfoil. This hypothesis has been

confirmed to hold for a wide variety of unsteady flows generated by an airfoil undergoing

unsteady maneuvers [28]. However, in the presence of unknown flow disturbances, LESPc is

unknown and time-varying. With the inference of this single parameter, an inviscid vortex

model can represent the vorticity flux generated by unknown flow perturbations. We should

emphasize that the LESPc is likely to be observable from the surface pressure observations,

as it represents a measure of the integrated pressure load about the leading edge of the

airfoil.

The continuous shedding of point vortices (two vortex elements are typically shed at each

time step) constitutes a major limitation of classical point vortex models for simulations
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past several convective times. To maintain a limited vortex population, Darakananda et

al. [29, 25] developed an aggregation procedure for point vortices based on the impulse

matching procedure. This aggregated vortex model outfitted with an estimate of the time-

varying LESPc was used as a basis for flow estimation in [29]. The state variable was

composed of the positions and strengths of a limited collection of point vortices, and the

value of LESPc for a flat plate. The EnKF was used to assimilate surface pressure jumps

across a flat plate in the state estimate. The truth pressure observations were generated from

a high-fidelity simulation at Re = 500 [17, 30]. This framework successfully estimated the

normal force of a flat plate at 20◦ with less than 50 vortex elements. This dissertation builds

upon this flow estimation framework by following two main directions. First, one of their

examples look at a flat plate subject to vortical gusts applied near the leading edge of the

airfoil. Their framework accurately captured the flow response to these disturbances, with

no representation of the perturbation in the dynamical model. The presence of the gusts

was only accounted through the assimilation of the truth pressure observations. This is an

appealing feature, as gusts are in essence unknown. In this dissertation, we show that this

flow estimator remains accurate in the presence of stronger and overlapping perturbations,

for which the individual contribution of the perturbations cannot be disentangled.

Second, Darakananda et al. [29] noted that the performance of the estimator can vary

significantly from one realization to the next of the same flow experiment. We observe the

creation of nonphysical spikes in the pressure and force estimates at random instants. These

undesired events are caused by spurious updates of the vortex elements in the analysis

step of the EnKF. The EnKF estimates the Kalman gain, a linear operator that maps

pressure discrepancies to updates of the vortex elements, from limited samples of the forecast

distribution. Thus, the empirical estimate of the Kalman gain suffers from sampling errors,

rank-deficiency and possible spurious long-range correlations. To alleviate these effects, this

dissertation explores several options to regularize the EnKF with point vortex models. The

original algorithm of the EnKF, called the stochastic EnKF (sEnKF), artificially perturbs
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the observations to account for the additive observation noise [14]. This introduces additional

sampling errors in the empirical Kalman gain. The sEnKF does not reproduce the exact

posterior covariance relation of the Kalman filter with a finite ensemble [13]. Since this

seminal work, deterministic versions of the EnKF have been introduced, such as the ensemble

transform Kalman filter (ETKF) (Bishop et al. [31]), to exactly reproduce the expected

covariance relation with a finite ensemble. We have found that using the ETKF instead of

the sEnKF significantly reduces the occurrence of the spurious updates in the flow estimation

[3].

Localization is another important regularization technique based on the assumption that

the observations are local, i.e. an observation only provides information about a subset of

the state variables which are close-by in physical distance. This assumption is supported

by the rapid decay of the correlations between state and observation variables. In this

setting, distance localization removes long-range correlations [13]. However, in many inverse

problems, the observations are given as non-local mappings of the state variables. Non-local

observation operators such as integral of linear/nonlinear functions of the state are frequently

encountered in fluid mechanics: mass flux through a surface, force exerted by a fluid on a

surface, or the solution of an elliptic partial differential equation (PDE). For the Poisson

equation, a canonical elliptic PDE, the solution can be obtained by convolution of the right

hand-side with the Green’s function associated with the Laplace operator. Elliptic PDEs are

of primer importance in flow estimation. For the incompressible Navier-Stokes equations, the

pressure field is given as a solution of the pressure Poisson equation: a Poisson equation whose

right-hand side depends nonlinearly on the vorticity field (i.e. our state representation of the

flow field). From the logarithmic or algebraic decay of the Green’s function of the Laplace

operator (depending on the dimension of the physical space), we expect long-range physical

correlations between the state and observation variables. By systematically removing long-

range interactions between the state and observation variables, distance localization would be

harmful to regularize flow estimation problems. A major achievement of this dissertation is to
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introduce a novel regularization of the EnKF for filtering problems with elliptic observation

models. In fluid mechanics, fluid particles (particles of infinitesimally small radius) behave

as coherent structures. Intuitively, limited pressure observations provide information about

the large-scale structures of the flow, and not about the contribution of each fluid particle.

Second, observations are corrupted by noise, making it difficult to extract features smaller in

amplitude than the level noise. Based on these observations, incompressible flow estimation

problems usually possess a low effective dimension: a low-dimensional projection of the

observations variables is only informative along a limited number of directions of the state

space. Spantini et al. [32] identified the informative directions of the state space, based

on the spectrum of the observation matrix in the linear-Gaussian case (a linear observation

model corrupted with an additive Gaussian noise). Cui et al. [33] generalizes this result for a

nonlinear observation model, based on the Jacobian of the observation model with respect to

the state variable. To the best of our knowledge, there is no procedure to identify the most

informative directions in the observation space. By analogy, we propose a similar dimension

reduction for the observation space. The methodology is applicable to any observation model,

for which the Jacobian can be evaluated. To leverage the structure of the inference problem,

we derive a factorization of the Kalman gain based on the identified modes in the linear and

nonlinear cases. We observe that a few modes can well approximate the row and columns

spaces of the Kalman gain. We regularize the Monte-Carlo estimate of the Kalman gain of

the EnKF, by performing the inference in the low-dimensional subspace spanned by these

modes. For a limited ensemble size, our strategy significantly reduces the variance of the

Kalman gain, while making little sacrifice on the bias error [34]. The proposed observation-

informed low-rank EnKF (LREnKF) can be summarized as the following sequence of steps:

identify and project the state and observation variables on the leading directions of the state

and observation spaces, compute the Kalman gain in these reduced coordinates, and lift the

result to the original variable space. We show that this novel regularization significantly

improves the estimation of the positions and strengths of point vortices provided by the

7



sEnKF.

The rest of this manuscript is organized as follows. Chapter 2 presents a review of

potential flow theory. Chapter 3 provides background information on the filtering problem,

and the ensemble Kalman filter. Chapter 4 presents the results of flow estimation with the

aggregated point vortex model. Chapter 5 introduces a novel regularization of the EnKF

for elliptic inverse problems, and applies it to flow estimation problems with point vortices.

Conclusions and directions for future work are presented in Chapter 6. For the sake of

completeness and clarity, pseudo-codes for the sEnKF, the ETKF, and the LREnKF are

presented in Appendix A. In the course of my doctoral degree, I developed computational

tools to predict the mean transport of inertial particles in oscillating viscous flows generated

by weakly oscillating surfaces (viscous streaming flow)[35]. This work was published as

Le Provost, M. and Eldredge, J. D. (2020). Mean transport of inertial particles in viscous

streaming flows. Physical Review Fluids, 5(5), 054302. [35]. An adapted version is presented

in Appendix B.

The contributions of this dissertation can be summarized as follows:

• I improved the flow estimator based on a point vortex model — first introduced by

Darakananda et al. [29] — to predict the flow response to large-amplitude and over-

lapping flow perturbations about an impulsively translating flat plate at an angle of

attack of 20◦.

• I introduced a novel regularization of the EnKF for elliptic inverse problems, and

applied it to potential flow problems.

• I developed a closed set of equations that governs the mean motion of inertial particles

in oscillatory viscous flows (viscous streaming flows). I showed that these equations

allow for efficient and accurate predictions of particle transport with numerical steps

that are O(103) larger than the existing approach.
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CHAPTER 2

Background on potential flow theory

This dissertation focuses on the problem of flow estimation about an impenetrable surface

(i.e. the surface of an airfoil) with a point vortex model. This chapter provides a minimal

review of potential flow theory (see Eldredge [6] for further details). We use this review

to highlight the challenges of estimating the positions and strengths of point singularities

from limited pressure observations. These challenges motivate the introduction of a novel

regularization of the EnKF presented in Chapter 5. Section 2.1 introduces our notations

and presents the Biot-Savart law: the dynamical model that advects the point singularities.

Section 2.2 presents the pressure calculation in potential flows from the inversion of the pres-

sure Poisson equation or from the unsteady Bernoulli equation. To simplify our discussion,

the Biot-Savart law, the pressure Poisson equation, and the unsteady Bernoulli equation are

presented for a collection of point singularities without body. Section 2.3 briefly describes

how to account for the presence of an additional body in the previous results and presents

the aggregated vortex model.

2.1 The basics of potential flow theory

A potential flow refers to a flow field which is both incompressible and irrotational almost

everywhere [6]. We restrict ourselves to two-dimensional problems, but we remark that

all of the material is easily extended to three-dimensional problems. Here we use “almost

everywhere” to allow for non-zero dilatation rate θ = ∇ · v and/or non-zero vorticity ω =

∇× v at most on sets of zero volume of R2, where v(r, t) denotes the velocity field. With
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these assumptions, the velocity field v(r, t) can be derived from the velocity potential ϕ(r, t)

as v = ∇ϕ, or alternatively, from the streamfunction ψ(r, t) as v = ∇× ψez. In this study,

we use both vector notation and complex notation. A point in space will either be referred

in vector notation as r = (x, y) ∈ R2, or in complex notation as z = x + iy. The conjugate

of a complex number z = Re (z) + iIm (z) is denoted as z ≡ Re (z) − iIm (z). We denote

the canonical basis of R3 as (e1, e2, e3).

We consider a set of N singularities located at {z1, . . . , zN} with complex strengths

{S1, . . . , SN}, subject to a uniform flow with velocity U∞ = (U∞, V∞) or in complex notation

W∞ = U∞− iV∞. The strengths are represented as SJ = QJ− iΓJ where QJ, ΓJ ∈ R denote

the volume flux and the circulation of the J th singularity, respectively. A point source of

volume flux QJ corresponds to a singularity of real strength SJ = QJ, while a point vortex

of circulation ΓJ corresponds to a singularity of imaginary strength SJ = −iΓJ. By linearity,

the complex potential F = ϕ+ iψ induced by these elements at a location z ∈ C is

F (z) =
N∑
J=1

SJ

2π
log(z − zJ) +W∞z. (2.1)

The derivative of the complex potential is the complex velocity w given by:

w(z, t) =
dF

dz
=

N∑
J=1

SJ

2π

1

z − zJ
+W∞. (2.2)

The induced velocity can also be written in vector notation as:

v(r, t) =
N∑
J=1

−QJk (r − rJ) +
N∑
J=1

k (r − rJ)× ΓJez +U∞, (2.3)

where k is the velocity kernel given by k (r) = −r/(2π||r||2). For a velocity field given

in vector notation by v(r, t) = (u(r, t), v(r, t)), we should stress the classical conjugation

(i.e. minus sign) in the definition of the equivalent complex velocity w(z, t) = u(z, t)−iv(z, t)
for consistency with the Cauchy-Riemann equation [6]. Using the induced velocity (2.2), we

can write the transport equation for the positions and strengths of the singularities. By

simple inspection of (2.2), the velocity field is singular at the locations of the singularities.
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Per Kirchhoff’s law, a point singularity cannot induce velocity on itself [6]. Instead, a

singularity is transported by the total induced velocity on itself minus its own contribution.

The regularized velocity of the Jth singularity is called the Kirchhoff velocity, denoted v−J in

vector notation, or w−J in complex notation. The dynamic of these singularities is governed

by the following set of ordinary differential equations (ODEs):

dzJ
dt

= w−J(t) =
N∑

K=1,K̸=J

SJ

2π

1

zJ − zK
+W∞,

dSJ

dt
= 0, J = 1, . . . , N. (2.4)

2.2 Pressure calculation in potential flows

For potential flows, the pressure can be computed by two means: from the inversion of the

pressure Poisson equation or from the unsteady Bernoulli equation. The Euler equation and

the associated divergence and curl conditions on the velocity field are given by:

ρ
∂v

∂t
+ ρv · ∇v = −∇p, (2.5a)

∇ · v(r, t) =
N∑
J=1

QJδ(r − rJ). (2.5b)

∇× v(r, t) =
N∑
J=1

ΓJδ(r − rJ). (2.5c)

The pressure Poisson equation is formed by taking the divergence of the Euler equation

(2.5a) and using the identity v · ∇v = ∇(||v||2/2)− v × ω:

∇2

(
p+

1

2
ρ||v||2

)
= ρ∇ · (v × ω)− ρ∂∇ · v

∂t
, (2.6)

where ω(r, t) is the vorticity. Using (2.5b) and (2.5c), we obtain the pressure Poisson

equation:

∇2

(
p+

1

2
ρ||v||2

)
= ρ

N∑
J=1

[QJv−J · ∇δ(r − rJ)− ΓJez · (v−J ×∇δ(r − rJ))] . (2.7)

From the elliptic nature of eq. (2.7), we expect long-range interactions between point sin-

gularities and pressure observations. This aspect is critical for inference in incompressible
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fluid flows. In Chapter 1, we showed the limitations of the existing regularization methods

of the EnKFto handle these long-range interactions. These limitations will motivate a novel

regularization technique that exploits the structure of the inference problem introduced in

Chapter 5. Equivalently to (2.7), the pressure induced by point singularities can be obtained

in closed form from the unsteady Bernoulli equation. For a fixed evaluation point denoted

r′ in vector notation, or z′ in complex notation, the unsteady Bernoulli equation reads [6]:

p(r′, t) + ρ
1

2
||v(r′, t)||2 + ρ

∂ϕ(r′, t)

∂t
= B(t), (2.8)

where B(t) is the Bernoulli constant. The second term of (2.8) is called the quadratic term,

while the third term is called the unsteady term. Using the results derived in 2.1, we get

p(z′, t)−B(t) = −1

2
ρ

∣∣∣∣∣
N∑
J=1

SJ

2π

1

z′ − zJ
+W∞

∣∣∣∣∣
2

+ ρRe

(
N∑
J=1

SJ

2π

1

z′ − zJ
w−J(t)

)
(2.9)

From this last equation, a singularity induces a direct and an indirect pressure field. First, a

singularity directly induces velocity at the evaluation points, accounted in the quadratic term

−1/2ρ||v||2. Second, a singularity is also responsible for an indirect contribution through tri-

adic interactions with the other singularities and the target evaluation points. These indirect

contributions are accounted in the unsteady term −ρ∂ϕ/∂t. Physically, one singular point

induces velocity on a second, which in turn induces pressure at the target location. Again,

the interactions only have an algebraic decay, responsible for the strong interconnections

between the singularities. A pressure observation nonlinearly encodes information about

all the singularities. Thus, estimating the characteristics of the singularities from limited

pressure observations present many challenges.

2.3 Flow modeling over an airfoil with an aggregated vortex model

This section is largely inspired by Le Provost et al. [3].
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The two previous sections focus on the potential flow created by a collection of point

singularities without body. To account for the presence of an additional body, we recall that

the Poisson equations verified by the velocity potential ϕ and the streamfunction ψ are linear.

Thus, the potential flow created by a collection of point singularities, a freestream, and a

body can be constructed by linear superposition of these elements. From the linearity of the

Helmholtz decomposition, the induced velocity v(r, t) in (2.3) can also be decomposed into

the contribution of the point vortices, the contribution of the freestream, and the contribution

of the body. Note that in a potential flow, the induced velocity v(r, t) only verifies the no-

flow-through on the surface of the body. We refer readers to Eldredge [6] for a thorough

treatment. This section succinctly describes the aggregated vortex model, which constitutes

the dynamical model of our flow estimator, see [29] for more details.

c

α

e1

e2

e3

Ue1

Figure 2.1: Schematic of the two-dimensional infinitely-thin plate.

In this dissertation, we consider the response of a two-dimensional infinitely-thin plate of

chord length c at an angle of attack α, translating impulsively from rest at a velocity Ue1 in

a fluid of density ρ, see Fig. 2.1. Throughout this study, positions will be reported in chord

lengths and time will be measured in convective units t⋆ = tU/c. As in Darakananda et

al. [29], the flow is modeled with a collection of N regularized point vortices. To regularize

the interactions between nearby point vortices in the Biot-Savart law (2.4), we replace the

singular Cauchy kernel k (), with the regularized algebraic blob kernel kε (r) = kε (r) =

(ε2/π)(||r||2 + ε2)−2, where ε is called the blob radius. The regularized point vortices are

called blobs. We refer readers to [6] for a review of modeling strategies of two dimensional

13



inviscid flows.

As we have mentioned earlier, the main role of viscosity in moderate to high Reynolds

number external flows, is to generate vorticity at the surface of a body. We model this

vorticity flux by shedding new vortex elements from the edges of the plate. In particular,

we apply the classical Kutta condition at the trailing edge. However, enforcing the Kutta

condition at the leading edge at small to moderate angles of attack leads to a non-physical

flow. The regularized flow will leave tangentially the leading-edge in the opposite direction to

the freestream. Instead, Ramesh et al. [26] found experimentally that the flow at the leading

edge can support a finite amount of suction (integrated pressure) before to trigger a flow

separation. They defined the leading edge suction parameter (LESP) as a nondimensional

measure of the amount of suction at the noise of an airfoil. An elegant vortex shedding

criterion can be formulated from this definition: vortex elements are shed only if the LESP

exceeds a critical value denoted LESPc [26, 27]. Eldredge [6] showed that the Kutta condition

is recovered if LESPc is set to zero. The circulation of the new vortex element is proportional

to the amount by which LESP exceeds LESPc. We apply this shedding criterion at the

leading edge. The LESPc is included with the vortex elements’ positions and strengths as

part of the system state vector, x. Following Ramesh et al. [27], the LESPc is forecast to

remain constant. Ramesh et al. [28] and Darakananda et al. [29] have shown that LESPc has

a strong authority over the vortex dynamics near the leading edge. The true vortex dynamics

are encoded in the pressure measurements of the plate, from which we can distill an estimate

of the LESPc [7, 29]. In other words, though LESPc is predicted to remain constant, the

assimilated pressure measurements will tend to cause it to vary, thereby triggering the release

of weaker or stronger vorticity.

We use the same vortex element aggregation scheme developed by Darakananda et al. [29].

By aggregating vortex elements at every time step, the overall population remains modest

(smaller than 60 in all cases explored) and the aggregated elements stay relatively farther

from the plate than without such treatment, dramatically reducing the occurrence of spurious

14



pressure disturbances.

In our flow estimator, the state variable xk contains the positions and circulations of N

blobs and the critical leading-edge suction parameter LESPc,

xk =
[
x1k y1k Γ1

k . . . xNk yNk ΓN
k LESPck

]⊤
. (2.10)

Thus, the state vector dimension is n = 3N +1. The dynamical model applies the following

operations:

1. Enforce the no-flow-through condition on the plate,

2. Introduce new vortices according to the Kutta condition at the trailing edge and the

current estimate of LESPc at the leading edge,

3. Advect vortices and plate,

4. Aggregate vortex elements, and nullify the strength of the source blobs.

More details on the dynamical model can be found in [29].
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CHAPTER 3

Background on the ensemble Kalman filter

This chapter is adapted from [3].

In this section, we describe the filtering methodology that underpins our data-assimilated

vortex model. We start by reviewing the basic filtering problem and the purpose of addressing

this problem with an ensemble approach. We then present two algorithms of the ensemble

Kalman filter (EnKF): the sEnKF as well as a deterministic variant called the ensemble

transform Kalman filter (ETKF) (Bishop et al. [31]). Both will be evaluated in the vortex

model applications that follow in Chapter 4. Finally, we review two classical regularization

techniques of the EnKF: the covariance inflation and the localization.

3.1 A review of the filtering problem

In this section, we present a basic outline of the general filtering problem and its connection

with Bayesian inference; details on this can be found in several references, including Asch

et al. [13], Bishop et al. [31], Carrassi et al. [36], Evensen [37] and Vetra-Carvalho et

al. [38]. Though the variants of the ensemble Kalman filter can be explained without this

background, it is useful to discuss it in order to justify the use of the ensemble Kalman

filter in a filtering problem and to identify some of its limitations. In this dissertation, we

use the following font conventions. Serif fonts refer to random variables, e.g. Q on Rn, or

Q on R. Lowercase roman fonts refer to realization of random variables, e.g. q on Rn, or q

on R. πQ denotes the probability density function for the random variable Q, and q ∼ πQ
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means that q is a realization of Q. πQ | R=r := πQ | R(· | r), is the probability density function

for the random variable Q knowing that random variable R takes the value r. It is called

the conditional probability of Q given r. µQ,ΣQ denote the mean, the covariance matrix

of the random variable Q, respectively. ΣQ,R denotes the covariance matrix of the random

variables Q and R. Empirical quantities are differentiated by the carets.

For the sake of generality, we frame our discussion on a generic discrete nonlinear state-

space model, but we will connect the reader throughout to the present case of a low-order

vortex model. Formally, the model is described by the pair of random variables (Xk,Yk) for

k ≥ 1, where Xk is the state variable of a Markov process in Rn and Yk ∈ Rd is an observation

of the state Xk, assumed to be conditionally independent of the state (detailed later in this

section). In our case, the state variable is composed of the positions and strengths of the

entire set of point vortices, and potentially of the LESPc, while the observation vector is

given by the vector of pressure jump coefficients along the plate. The dynamics of the state

Xk is described by the probability distribution for the initial condition πX0 and a propagation

equation, also called the dynamical equation:

Xk = fk(Xk−1) +Wk, (3.1)

where fk : Rn −→ Rn is the forward operator and Wk is an additive process noise. In the

present case, fk is the time-discretized vortex model. Propagating the dynamical equa-

tion for the state variable Xk−1 is equivalent to sampling from the transition distribution

πXk | Xk−1
(· | xk−1) where xk−1 is one realization of the random variable Xk−1.

In general, the state Xk is only indirectly observed in a noisy and nonlinear fashion

through Yk:

Yk = hk(Xk) + Ek, (3.2)

where hk : Rn −→ Rd is the observation operator and Ek is an additive measurement noise.

In our case, hk applies the unsteady Bernoulli equation to the state vector to obtain a vector

of pressure differences, at discrete locations, between the upper and lower surfaces of the
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plate. The gradient of the observation operator hk evaluated at the current state xk is

called the tangent linear of the observation operator, denotedHk, i.e.,Hk = ∇hk [13]. It is

important to note that we do not restrict ourselves in this section to Gaussian distributions

for the initial condition, process noise, or measurement noise. Furthermore, the forward and

observation operators can be time-dependent. In general, the dynamical and observation

models could include forcing terms. In our case, the system is not subject to known forcing

terms, and we have omitted these terms for brevity.

In the filtering problem, we leverage the realizations of the observation process (y)1:k to

infer the realization of the state variable x at time step k. Our main objective is to estimate

the posterior distribution of this state—providing us with complete information about the

state and its uncertainty—given all of the observations made thus far, πXk | Y1:k
(x | y1:k) =

πXk | Y1,Y2,··· ,Yk
(x | y1,y2, · · · ,yk). In the present case, we seek to estimate the positions and

strengths of the vortex elements and the LESPc based on all the pressure observations that

are available up to this time. Let us consider the estimation of this posterior distribution from

the most recent observation, yk, which can be computed from Bayes’ theorem [38, 36, 13]:

πXk | Y1:k
(x | y1:k) =

πYk | Xk
(yk | x)πXk | Y1:k−1

(x | y1:k−1)

πYk
(yk)

, (3.3)

where πYk | Xk
(yk |x) is the likelihood distribution, i.e., the probability of the observation

yk if we knew the state x; πXk | Y1:k−1
(x | y1:k−1) is the prior distribution, our estimate of

the state before knowledge of the new observation yk; and πYk
(yk) is the distribution of

the observation. In our case, Bayes’ theorem tells us how the probability densities of the

positions and strengths of the vortex elements and the LESPc value get updated by the

assimilation of a new pressure observation. Note that, in the likelihood, we have assumed

that the observation errors are independent in time, so it is only conditioned on the current

state and not on past observations. Indeed, the Bernoulli equation (2.8) only depends on

the current collection of vortex elements and LESPc value, and not on its past values. Since
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πYk
(yk) can be thought of as a normalizing constant, we can rewrite (3.3) as:

πXk | Y1:k
(x | y1:k) ∝ πYk | Xk

(yk | x)πXk | Y1:k−1
(x | y1:k−1). (3.4)

This equation provides us with a means of assimilating a new observation, yk, into our

forecast probability distribution for the state [39]. The forecast itself comes from our dy-

namical model. Under the Markov assumption for the state dynamics, the distribution of

the state at time step k depends only on the state at the previous time step k − 1, i.e.,

πXk | X0:k−1
= πXk | Xk−1

. The Markov assumption is appropriate in this problem as the time

marching of the discrete vortex model only depends on the distribution of vortex elements

and the LESPc value at the previous time step. The joint distribution πXk−1:k
can thus be

factorized into this state transition and the posterior distribution at the end of the previous

step:

πXk−1:k | Y1:k−1
= πXk | Xk−1

πXk−1 | Y1:k−1
. (3.5)

By recursively applying this equation with (3.4) substituted for the posterior distribution, it

is easy to show that

πX0:k | Y1:k
∝ πX0

k∏
i=1

πYi | Xi
πXi | Xi−1

. (3.6)

This equation is central in Bayesian inference since it justifies the use of sequential methods

to estimate the posterior distribution [39, 36]. We can update our previous estimate with

new observations sequentially without having to restart the calculation at every time step.

The prior distribution πXk|Y1:k−1
can be obtained by marginalizing (3.5) over all the pos-

sible realizations of the state at time k − 1:

πXk | Y1:k−1
=

∫
Xk

πXk | Xk−1
πXk−1 | Y1:k−1

dXk−1. (3.7)

This equation is called the Chapman–Kolmogorov equation and corresponds to a direct

integration of the state transition kernel [36, 39].

Thus, Bayes’ theorem (3.4) coupled with equation (3.7) provides us with an elegant up-

date rule for incorporating new measurements into the probability distribution, and thus, im-

proving our estimate of the mean and uncertainty of the state. It requires a time-discretized
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dynamical model (3.1) for the state transition, πXk|Xk−1
, and an observational model (3.2)

for the likelihood πYk|Xk
.

However, there are two primary challenges with applying this in the contexts of interest

here. First, we do not generally know the forms of distributions involved in any of these

formulas. In what follows in this paper, we will make the typical assumption that all errors

are drawn from Gaussian distributions with zero mean, but there are good reasons to doubt

that this is reasonable in the present nonlinear context of a vortex model. Second, for

high-dimensional problems, the integration of the Chapman–Kolmogorov equation (3.7) is

intractable. Indeed, here, as in many physics contexts, the forecast step corresponds to the

time advancement of a partial differential equation (the Euler equations), so it is infeasible

that we could advance such an equation over all possible values of the state. In our case,

this corresponds to one time step of the discrete vortex model for all the possible values of

the strength and position of the vortex elements and the LESPc. Even if our the discrete

vortex model is lower dimensional than the discretized Navier–Stokes system, to be sure, it

still contains tens to hundreds of degrees of freedom.

Both of these challenges motivate our use of ensemble filtering methods in this work to se-

quentially estimate the posterior distribution. We use a set ofM particles
{
x1,x2, · · · ,xM

}
sampled from the state distribution πXk−1 | Y1:k−1

and we aim to construct a particle approxi-

mation of the posterior distribution πXk | Y1:k
. It should be stressed that the term “particle”

is used here in its usual sense in stochastic estimation as a member of the ensemble; it does

not denote a vortex particle, a term that we avoid in this paper in favor of “vortex element”

or “vortex blob”. In the present case, a particle xi is a sample of the distribution of interest

for the positions and strengths of the vortex elements and the LESPc.

To construct this particle approximation of the posterior distribution, we perform the

following two steps: a forecast step and an analysis step. In the forecast step, each particle

xi is propagated through the dynamical equation (3.1) (the vortex model) and randomly

perturbed with noise (called additive covariance inflation, discussed below) to form samples
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from the prior distribution πXk | Y1:k−1=y1:k−1
. This ensemble forecast step constitutes a Monte

Carlo approximation of the Chapman–Kolmogorov equation (3.7). Given this sampling

{xi} from the prior distribution, one can easily create a sampling {yi} from the likelihood

distribution πYk | Xk
by evaluating the observation equation (3.2) (the Bernoulli equation) for

each ensemble member xi, i = 1, . . . ,M .

The analysis step then updates the set of ensemble members by assimilating the new

realization y⋆
k of the observation variable Yk; in this paper, y⋆

k represents a new pressure

measured from the truth system, a high-fidelity Navier–Stokes simulation. With the proba-

bility distributions unknown, this would require that we estimate the posterior distribution

via Bayes’ theorem (3.4) given the finite set of samples {xi,yi} from the joint distribution

formed by the prior and likelihood. We note that the different ensemble filtering methods

have a common forecast step but differ in the analysis step. The analysis step updates M

samples {xi} of the prior density with the new observation of the truth system y⋆
k to form

samples of the posterior density. Our treatment of the analysis step is built on the idea that

there is an underlying transformation T that directly maps samples from the prior density

πXk | Y1:k=y1:k−1
to the posterior density πXk | Y1:k=y1:k

[40, 39]. For a Gaussian-linear state-space

model, Kalman [15] derived in closed form an exact linear prior-to-posterior transformation

for the analysis step. Unfortunately, there is no closed-form otherwise. To bypass this issue,

ensemble filtering methods estimate the analysis map T from samples. For instance, Evensen

introduced the ensemble Kalman filter (EnKF) that approximates the analysis map found

by the Kalman filter from samples [14]. However, the task is made considerably simpler if

we assume that the distributions are Gaussian. Under that assumption, and with knowl-

edge of the prior mean and covariance matrix, then Bayes’ theorem leads naturally to the

analysis step of the classical Kalman filter [15]. In the particle approximation, in which we

estimate this mean and covariance from the finite ensemble statistics that emerge from the

forecast, we obtain the ensemble Kalman filter [13]. It should be noted, however, that since

the underlying distributions are likely non-Gaussian, our EnKF framework is not expected
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to converge in the limit of large ensemble size to the true Bayesian solution (Mandel et al.

[41]). Indeed, the EnKF can only produce a Gaussian approximation of the posterior density.

In the following sections we will present two forms of this method, but first we present some

important notation.

3.2 Additional notation

We will use the superscript f to denote prior, forecast quantities and the superscript a to

denote analysis, posterior quantities. In particular, the exact prior mean is

xf
k = E

[
Xk | Y1:k−1 = y1:k−1

]
= E

[
Xk | y1:k−1

]
, (3.8)

and exact prior covariance is P f
k = ΣXk | y1:k−1

. The posterior mean and covariance are given

by xa
k = E [Xk | y1:k] and P

a
k = ΣXk | y1:k

, respectively. The notations used in this section are

similar to those of Asch et al. [13] and Raanes [42].

Given an ensemble (xi) of size M , we define the ensemble matrix X ∈ Rn×M as [13, 42]:

X =
[
x1,x2, . . . ,xM

]
. (3.9)

We use an overbar to denote statistics obtained from the ensemble, such as the sample mean

and covariance:

x =
1

M

M∑
i=1

xi, P =
1

M − 1

M∑
i=1

(
xi − x

) (
xi − x

)⊤
, (3.10)

where ⊤ denotes the transpose operator. We define the anomaly matrix X ′ ∈ Rn×M of an

ensemble as

X ′ =
1√

M − 1
[x1 − x,x2 − x, . . . ,xM − x]. (3.11)

The anomaly matrix obviously has zero mean. Using 1 to denote the vector of ones of length

M , we can conveniently define the sample mean, anomaly matrix, and sample covariance

from the ensemble matrix:

x =
1

M
X1, X ′ =

1√
M − 1

X(I − 11⊤/M), P =X ′X ′⊤. (3.12)
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Finally, we have the relation between the ensemble matrix and the anomaly matrix:

X =X +
√
M − 1X ′ (3.13)

where X = x1⊤ = [x,x, . . . ,x] ∈ Rn×M . It is easy to verify that 1⊤1 = M , X ′1 = 0, and

X1/M = x.

3.3 The stochastic ensemble Kalman filter

The application of the stochastic ensemble Kalman filter for aerodynamic flow estimation

was already presented in [16, 29], but we review it here in order to identify an important

deficiency that motivates our current treatment. The forecast step of the sEnKF—and,

indeed, of all forms of the EnKF—is given by applying (3.1) (the vortex model) to each

ensemble member [37]:

xf,i
k = f(xa,i

k−1) +w
i
k for i = 1, . . . ,M, (3.14)

where the random process noise wi
k is drawn from the distribution wi

k ∼ πWk
. It should

be noted that this process noise is not inherently part of the dynamical model and must be

explicitly introduced; this is discussed in Section 3.5.

In order to simplify notation, we drop the time dependence subscript of the variables

in the rest of this section, since the analysis step does not involve time propagation. The

analysis step of the sEnKF seeks a linear transformation of the form:

xa,i = xf,i +K(y⋆ − (h(xf,i) + ϵi)), for i = 1, . . . ,M, (3.15)

where xf,i and xa,i are the ith prior and posterior ensemble member, respectively; ϵi is drawn

from the measurement noise distribution πE ; and y
⋆ is the realization of the observation

variable Y at the current assimilation time. The expression y⋆ − (h(xf,i) + ϵi) is called

the innovation for the ith ensemble member. In our case, (3.15) shows how discrepancies
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in the pressure observations are mapped via the Kalman gain K into linear updates of the

positions and strengths of the vortex elements and the LESPc for each ensemble member.

The algorithm of the sEnKF is provided in Algorithm 1. The original analysis step

derived by Evensen [14] did not include the measurement noise term, but this was corrected

by Burgers et al. [43] to reflect that y⋆ is drawn from a random distribution and to avoid

some spurious correlations within the ensemble. The matrixK ∈ Rn×d is called the Kalman

gain and is identical to its form in the standard Kalman filter, derived to minimize the trace

of the posterior covariance matrix P a (as we will discuss further below):

K = P fH⊤(HP fH⊤ + V )−1 (3.16)

with V the covariance matrix of the measurement noise and H the tangent linear of the

observation operator. The exact prior covariance P f is approximated by the sample prior

covariance P
f
formed from the prior ensemble

{
xf,i
}
with (3.12), P

f
=X ′fX ′f⊤; similarly,

the posterior covariance is approximated by P
a
=X ′aX ′a⊤.

The Kalman gain suggests that we must calculate the tangent linear of the observation

operator. Evensen [14] proposed a technique called implicit linearization that approximates

P fH and HP fH⊤ given the prior ensemble. First, we construct yf the mean of the

observations
{
h(xf,i)

}
for i = 1, . . . ,M :

yf =
1

M

M∑
i=1

h
(
xf,i
)
. (3.17)

Let us then define the innovation anomaly matrix Z ′f , with ith column given by

Z ′f,i =
h(xf,i)− yf − ϵi + ϵ√

M − 1
, for i = 1, . . . ,M, (3.18)

and with ϵ the sample mean of {ϵi}. It should be noted that this mean is itself a random

number whose expected value is 0.

The key ingredient of the technique is to make the following approximation [13]:

H(xf,i − xf ) ≃ h(xf,i)− yf . (3.19)
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Using this approximation, it is easy to show that P fH⊤ and HP fH⊤ are approximated

by X ′fZ ′f⊤ and Z ′fZ ′f⊤−V , respectively [13], and thus, the Kalman gain (3.16) takes the

simple form

K =X ′fZ ′f⊤
(
Z ′fZ ′f⊤

)−1

. (3.20)

To gain more insights on this formulation of the filter, we can rewrite the analysis update

(3.15) with ensemble matrix notations. From (3.13), the update of each posterior ensemble

member is equivalent to a separate update of the posterior mean xa and the posterior

anomaly matrix X ′a. From the linear analysis step (3.15), the posterior anomaly matrix

X ′a is updated according to ([13]):

X ′a =X ′f −KZ ′f ; (3.21)

the update equation for the posterior mean state xa is obtained by taking the expectation

of the analysis step (3.15):

xa = xf +K(y⋆ − yf ), (3.22)

where yf is defined in (3.17). Equation (3.22) is the exact Kalman update equation.

Our derivations thus far have omitted the fact that our actual ensemble is finite sized.

Because of the assumed linear form of the analysis step, equation (3.22) is reproduced al-

most exactly for finite-sized ensembles, except for the addition of a lingering sample mean

of the measurement noise, ϵ, in parentheses. However, a more problematic discrepancy

lies in the relationship between the posterior and prior covariance matrices. For obtaining

this relationship, let us first denote by W ′ the anomaly matrix of the measurement noise

W ′,i = (ϵi−ϵ)/
√
M − 1; the productW ′W ′⊤ approximates the measurement covariance V .

Then, from the update equation (3.21) and the definitions of the covariances and innovation

anomaly matrix, we can construct the equation for the posterior covariance matrix [13]:

P
a
=+(In −KH)P

f
(In −KH)⊤ +KW ′W ′⊤K⊤

+ (In −KH)X ′fW ′⊤K⊤ +KW ′X ′f⊤(In −KH)⊤.
(3.23)
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By taking the expectation of this matrix over the measurement noise process and then

minimizing its trace over K, we recover the classical Kalman gain (3.16) and a simple form

of the expected value of the posterior covariance:

E
[
P

a]
= (In −KH)P

f
. (3.24)

Indeed, the classical Kalman filter adopts this expected value in order to propagate the

covariance matrix, P a = (In − KH)P f . However, the finite sample covariance P
a
=

X ′aX ′a⊤ does not reproduce this ideal relation except in the limit of infinite ensemble sizes.

Rather, the covariance of the finite ensemble only strictly satisfies (3.23), due to spurious

correlations between the forecast anomalies and observation noise, X ′fW ′⊤. Thus, the

stochastic analysis step of the sEnKF introduces error that degrades the performance of the

ensemble Kalman filter [31, 13]. A pseudo-code for the sEnKF is presented in Algorithm 1.

An alternative form of the EnKF will be presented in the next section that addresses this

issue.

3.4 The ensemble transform Kalman filter

In the previous section, it was shown that finite ensembles do not reproduce the expected

value of the posterior covariance matrix P
a
, and that this can cause the performance of

the sEnKF to degrade. To circumvent the issue, Bishop et al. [31] developed the ensemble

transform Kalman filter (ETKF) that exactly reproduces the ideal propagation equation

for the covariance. This has been shown to give better performance in other applications

[42, 13]. The ETKF belongs to a more general class of ensemble Kalman filters—called

deterministic ensemble Kalman filters—that verify exactly the correct propagation equation

through various analysis schemes.

To generate a posterior anomaly matrix X ′a, one can start from the desired propagation
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equation for the covariance and use the factorization of the sample covariance matrix (3.12):

P
a
=X ′aX ′a⊤ = (In −KH)P

f (3.25)

The right-hand side of this equation can also be factorized when P
f
is replaced with its own

factorization and the ensemble expression (3.20) of the Kalman gain is introduced. In the

following, it should be noted the innovation anomaly matrix Z ′f is defined as in (3.18), but

now without the observation noise, so that Z ′f =HX ′f :

X ′aX ′a⊤ = (In −KH)X ′fX ′f⊤

= (In −X ′fZ ′f⊤(Z ′fZ ′f⊤ + V )−1H)X ′fX ′f⊤

=X ′f (IM −Z ′f⊤(Z ′fZ ′f⊤ + V )−1Z ′f )X ′f⊤

=X ′fGX ′f⊤.

(3.26)

Matrix G ∈ RM×M is symmetric positive definite. In order to produce an analysis equation

for the posterior anomaly matrix, we seek a square-root factorization of G [13]. In other

words, we look for a matrix G1/2 such that G = G1/2G1/2⊤ = G1/2⊤G1/2. For a positive-

definite matrix, the square-root decomposition exists but is not unique. Indeed for an arbi-

trary orthogonal matrix U ∈ O(M)—i.e., any matrix such that UU⊤ = U⊤U = IM—then

G1/2U is also a square-root of G [13, 42].

Therefore, the analysis update of the anomaly can be written as a right linear transfor-

mation [13]:

X ′a =X ′fG1/2U (3.27)

with some choice of U ∈ O(M), discussed below. Furthermore, the analysis update of the

sample mean (3.21) can be written with the help of (3.20) as

xa = xf +X ′fZ ′f⊤(Z ′fZ ′f⊤ + V )−1δ, (3.28)

where δ = y⋆−h(xf ) is the mean innovation. Equations (3.27) and (3.28) are used together,

through (3.13), to update the ensemble.
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It is notable that this analysis step assembles both the posterior anomaly and the update

to the mean from the columns of X ′f . In other words, the analysis is said to be performed

in the ensemble space: the update to the state vector is a linear combination of the de-

viations among the forecast ensemble members from the mean. In our case, for example,

the position of a certain vortex element will be updated with a linear combination of the

ensemble deviations of that element’s position from the ensemble mean, after the ensemble

has been advanced by the vortex model. This emphasizes the importance of such variance

among ensemble members: without it, any discrepancy δ between the new observation and

the predicted observation is simply ignored.

The form of this update is an attractive property of the ETKF since the ensemble size

M—which is on the order of 100—is typically similar to the size of the state n encountered

in the vortex model, and certainly much smaller than the state vector associated with a CFD

simulation [31, 13, 38]. Using Sherman–Morrison–Woodbury identities, the formula for G1/2

can be simplified [38]:

G1/2 = (IM −Z ′f⊤(Z ′fZ ′f⊤ + V )−1Z ′f )
1/2

= (IM +Z ′f⊤V −1Z ′f )
−1/2

. (3.29)

In this work, we choose the symmetric square-root factorization, G = G1/2G1/2, among

the different possibilities. Given an eigendecomposition G = RΣR⊤, the symmetric square

root G1/2 is given by RΣ1/2R⊤, with Σ1/2 the entry-wise positive square root of the diag-

onal matrix Σ. Several studies [44, 37, 42] have shown that the symmetric root has useful

properties, particularly that it does not introduce a spurious mean in the posterior anomaly

matrix: G1 = 1, so 1 is an eigenvector of G with unit eigenvalue; thus, this is also true of

G1/2, so X ′fG1/21 =X ′f1 = 0. The overall construction of the size M square-root G1/2 is

computationally inexpensive.

Sakov and Oke [45] have found that the choice of the symmetric square root leads con-

sistently to better performance. However, for large ensemble, the symmetric square root can

lead to the creation of outliers in the ensemble. One can prevent the appearance of these
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spurious members by right multiplying G1/2 by a random orthogonal matrix U from time to

time. To avoid bias in the posterior anomaly matrix, we must also ensure that X ′a has zero

mean. To do so, U must preserve the mean, equivalent to requiring that U1 = 1. Some

authors [46, 47] have have proposed a scheme based on sampling of the standard normal

distribution and use of Householder reflections to construct such mean-preserving random

rotations; this algorithm is presented in Algorithm 2. For the other assimilation steps, U

is simply the identity IM . A pseudo-code for the ETKF is presented in Algorithm 3. For

further reading on the differences between the sEnKF and the ETKF, we refer readers to

Katzfuss et al. [48].

3.5 Classical regularization techniques: covariance inflation and

localization

In the different algorithms of the EnKF, we estimate the forecast covariance matrixΣXk | y1:k−1

and the covariance of the state and observation densities ΣXk | y1:k−1,Yk
fromM prior samples

{xf,i}, where the ensemble size M ∼ 100 is typically smaller by several order of magnitudes

than the dimensions of the state and observation spaces. Thus, the estimated Kalman gain

suffers from rank-deficiency, sampling errors, and spurious long-range correlations. Another

consequence of the limited ensemble size is the underestimation of the posterior covariance

[42]. While the EnKF can be successfully applied in high-dimensional problems, its success

is dependent to an adequate regularization of the EnKF. The two classical regularization

techniques of the EnKF are the covariance inflation and the localization.

Over multiple assimilation cycles, the under-estimation of the covariance matrices drive

the entries of the empirical Kalman gain to zero, leading to the filter divergence. Covariance

inflation aims to increase the forecast state covariance and improve the conditioning of the

estimated Kalman gain. Covariance inflation is typically applied after the forecast step and

before the analysis step. A physical interpretation of the covariance inflation in the context
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of our vortex modeling is presented in Chapter 4. The multiplicative inflation increases the

spread of the ensemble about the sample mean, by rescaling the deviation xf,i − xf by the

multiplicative factor β > 1 for each ensemble member:

xf,i ←− xf + β(xf,i − xf ), for i = 1, . . . ,M. (3.30)

This form of inflation is equivalent to multiplying the sample prior covariance P
f
by β2. We

recommend setting the value of β to 1.01 and 1.03 for the sEnKF and ETKF, respectively.

Additive inflation adds to each ensemble member a sample from a Gaussian distribution

with zero mean and covariance Q. Equivalently, additive inflation acts as a Tikkonov regu-

larization of the prior covariance P
f
, by adding the covariance matrix Q. Thus, it enforces

a lower bound on the spread of the prior covariance matrix and improves the conditioning

of the analysis step. Additive inflation can also account for model errors in the dynamical

model. Note that one can combine additive and multiplicative inflations as they account

for different kind of errors [49]. The tuning of the multiplicative inflation only requires one

parameter, while additive inflation requires n(n+ 1)/2 parameters for an arbitrary positive

definite matrix Q. In this work, we restrict to isometry covariance matrices αIn, where

α > 0. In general, the tuning of the additive inflation requires expert knowledge of the

system.

The limited ensemble size is also responsible for spurious correlations over long distances

between the state and observation variables. Here, the notion of “long distance” is intrin-

sically related to the definition of a metric d for the problem of interest. In our case, d

can be the Eulerian distance between the position of a pressure sensor and the location of

a point vortex. In many high-dimensional problems, such as atmospheric problems [13],

the correlations between the state and observation variables are rapidly decaying with the

distance. Distance localization regularizes the EnKF by systematically removing all the

long-range correlations. However, in inverse problems of incompressible fluid mechanics,

the observation models are given by elliptic partial differential equations (e.g. the pressure

Poisson equation) for which there are physical long-range correlations between the state and
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observation variables. Distance localization cannot be applied for these problems, as we

cannot disentangle the true slowly decaying correlations from the spurious long-range ones.

Chapter 5 will introduce a novel regularization of the EnKF for elliptic observation models.
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CHAPTER 4

Aerodynamic flow estimation with point vortex models

This chapter is adapted from [3].

With the description of the aggregated vortex model in Chapter 2 and the review of the

ensemble Kalman filter in Chapter 3, we are now in position to summarize one time step

of the flow estimator developed in this work. A schematic of this method is presented in

Fig. 4.1. In the forecast step, we propagate an ensemble of inviscid vortex models through

the Biot-Savart law. At the end of this forecast, multiplicative and additive covariance

inflation are applied to each member of the ensemble. In the analysis step, we update the

positions and strengths of the different vortex models with the pressure observations obtained

from the true system. In our case, the true observations will be obtained from high-fidelity

simulations of the Navier-Stokes equations, see 4.2 for more details. The assimilation of

the observations is either carried with the stochastic EnKF (sEnKF) [14] or the ensemble

transform Kalman filter (ETKF) [31]. The rest of this chapter is organized as follows. Section

4.1 provides a physical interpretation of our method. Section 4.2 applies our flow estimator

to two challenging scenarios. First, we consider an impulsively translating flat plate at 20◦

of angle of attack subjected to large-amplitude and overlapping perturbations applied near

the leading edge of the airfoil to mimic flow actuation. Second, we look at an impulsively

translating flat plate at 20◦ placed in the von Kármán street of a cylinder placed upstream.
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Figure 4.1: One time step of the data-assimilated aggregated vortex model
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4.1 Flow estimation with an ensemble of aggregated vortex mod-

els

In this section, we interpret physically the role of each step of the filter. First, it is important

to understand the effect of the ensemble and its propagation on the vorticity field. To

demonstrate this effect in the clearest manner, let us assume that the N vortex elements in

each ensemble member are singular: point vortices rather than blobs. Their blob form is

only used to regularize the Biot–Savart interactions between them, and our discussion here

focuses only on the interpretation of the vorticity field itself.

We can then write the vorticity field at location r and time step k as a function of the

random state vector Xk, whose components (aside from LESPc) constitute the strengths and

positions of the singular elements:

ω(r,Xk) =
N∑
J=1

ΓJ
kδ(r − rJk), (4.1)

where δ is the Dirac delta function. The expected value of the vorticity field at the end

of time step k is given (ideally, for infinite ensemble) in terms of the posterior distribution

function

E [ω(r,Xk)] =

∫
ω(r,xk)πXk

(xk) dxk. (4.2)

(For simplicity of notation, we have omitted the fact that the distribution πXk
is conditioned

on the observations made thus far.) Under our Gaussian assumption, it is particularly easy

to evaluate these integrals, and we arrive at

E [ω(r,Xk)] =
N∑
J=1

Γ
J

k

2π|P rJ
k |1/2

exp

(
−1

2
(r − rJk)⊤P rJ

k
−1(r − rJk)

)
, (4.3)

where | · | denotes determinant; Γ
J

k and rJk denote, respectively, the mean circulation and

position of vortex element J at time step k; and P rJ
k is the 2 × 2 covariance submatrix

associated with the position of vortex element J at step k.
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In other words, we can interpret each vortex element’s uncertainty as defining an elliptically-

shaped region, centered at its mean location and endowed with its mean strength. The

behavior of this elliptical region’s shape over time is determined by the combined influences

of three processes in the filter: the forecast, the inflation, and the analysis.

The role of the forecast step is straightforward: it constitutes an inviscid (i.e., advective)

advancement of the vortex elements by one step and the creation of new vorticity to satisfy

modeled edge conditions. The ensemble of such inviscid models establishes a set of slightly

different displacements of each vortex element. Since we interpret this ensemble as approxi-

mating a Gaussian distribution both before and after the forecast, the set of displacements

of each vortex define a constrained transformation of the vortex’s ellipse: a net advection of

the center and a stretching and rotation of its shape.

The inflation step imposes two influences on each region’s shape. The multiplicative

inflation stretches the ellipse uniformly by a small fraction in every direction. The additive

inflation, on the other hand, comprises a single step of a random walk. It is well known

that a random walk, applied over a large number of steps, approaches a Wiener process, and

the associated probability distribution satisfies a linear diffusion equation. This diffusion

causes the elliptical region to spread, reminiscent of core spreading in vortex methods [50].

To simulate diffusion of viscosity ν, the random step is chosen from a normal distribution

with standard deviation
√
2ν∆t.

In the context here, the additive inflation occurs among other processes, so its inter-

pretation is less clear. Chorin’s random vortex method [51], utilizing a large number of

overlapping vortex blobs undergoing random walks, is known to converge to the solution of

the Navier–Stokes equation as N−1/2 logN , where N is the number of blobs [52]. In the

EnKF context, it is possible to identify a stochastic differential equation that asymptotically

describes the forecast and inflation steps in the limit of large ensemble [53]. We leave a

rigorous interpretation of the ensemble of vortex models in this manner for future work.

We merely observe that the variance of the distribution from which we select the additive
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inflation parameter loosely specifies the viscosity of a diffusion process. However, we do not

attempt to match this effective viscosity to the actual viscosity in the truth system; rather,

we tune the additive inflation to balance the trust between the forecast and analysis steps.

Finally, in order to reconcile the new observations made in this step—namely, the pres-

sures measured on the surface of the wing—with the pressures predicted via the Bernoulli

equation, the vortex elements’ positions and strengths (and LESPc) need to be adjusted.

The EnKF analysis step provides this adjustment by assembling a minimum least-squares

solution to the problem h(xa) = y⋆, subject to measurement noise V ; the minimization

is regularized by the forecast xf , with its associated covariance P
f
, ensuring that the new

state vector does not stray far from its forecast. Mathematically, this problem is expressed

as [18, 12]:

xa = argminx∈Rn

1

2
(y⋆ − h(x))⊤V −1(y⋆ − h(x)) + 1

2β
(x− xf )⊤P

f−1
(x− xf ), (4.4)

with β the multiplicative covariance inflation factor. The analysis step causes the covariance

to shrink, according to (3.23). The elliptical region associated with each vortex element is

translated, stretched, and rotated by the analysis step, but its area shrinks.

4.2 Results

In this section, we present the results of flow estimation for two strongly-perturbed flows

about an infinitely thin plate at 20◦. In the first case, a sequence of perturbations that mimic

pulse actuation is applied near the leading edge of the plate. In the second case, the plate is

subject to large scale and coherent perturbations created in the wake of an upstream cylinder.

In the discussion of the results, positive and negative vortex elements will refer to vortex

elements with positive (counter-clockwise) and negative (clockwise) circulation respectively.

We discretize the vortex model with the forward Euler time scheme with time step ∆t⋆ =

0.01. The blob radius δ (normalized by c) is set to 5 × 10−3 and 9 × 10−3 for the sEnKF

and the ETKF, respectively. The difference between these two blob sizes is of little physical
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relevance: each blob radius was chosen concomitantly with the inflation and noise parameters

to reduce the time-averaged root mean-square error of the normal force prediction and the

appearance of spurious pressures on the surface for the sEnKF and the ETKF. We use the

same blob radius for the sEnKF as the previous study by Darakananda et al. [29]. For

the aggregated vortex model, the vortex elements are mostly isolated and their interactions

require little regularization. The non-zero blob radius primarily regularizes the interactions

of the vortex elements soon after their release from the edges. Throughout this study, we use

an ensemble of sizeM = 50. At the initial time, no vortices are present in the state vector of

the vortex model. The ensemble is initiated with random samples for the LESPc drawn from

N (0.5, 0.1), i.e., a normal distribution with mean 0.5 and covariance 0.1. In this work, we

rely on the assimilation of pressure jump coefficients—∆Cp = 2(p+ − p−)/ρU2 where + and

− denote the upper and lower side of the plate—obtained from the truth system to correct

our aggregated vortex model [29]. The role of the assimilation is twofold: to better account

for the viscous effects, and to account for the presence of flow disturbances in the true system

that are not modeled into the vortex model. The observation operator hk in (3.2) uses the

unsteady Bernoulli equation to predict the pressure jump coefficients at d locations on the

plate [54]. In this work, pressure measurements are calculated (and also provided by the

truth system) at the following d = 50 sampled Chebyshev points:

c

2
cos

(
10iπ

512 + 1

)
for i = 1, . . . , d. (4.5)

The true pressure jump measurements are generated from simulations of a flat plate at

Reynolds number Re = 500, carried out with a high-fidelity Navier–Stokes solver, based

on the immersed boundary projection method with lattice Green’s function [17, 30]. It is

important to emphasize that the flow perturbations are only present in the truth system,

and their effect is only made available to the vortex model through the assimilation of the

true pressure measurements.

We use a different set of inflation parameters for the sEnKF and the ETKF:
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• A multiplicative inflation β = 1.01, 1.028 for the sEnKF and ETKF, respectively.

• An additive inflation for the position of the vortices drawn from N (0, 1× 10−5) (nor-

malized by c).

• An additive inflation for the strength of the vortices drawn from N (0, 1 × 10−3∆t⋆)

(normalized by Uc).

• An additive inflation for the LESPc drawn from N (0, 5 × 10−5), N (0, 8.5 × 10−5) for

the sEnKF and ETKF, respectively.

• The measurement noise ϵk is drawn from N (0, 1× 10−8) (normalized by ρU2).

These parameters and the blob radius have been manually determined, independently for

the sEnKF and the ETKF, to minimize the time-averaged root-mean-squared error of the

predicted normal force and the occurrence of spurious pressures on the surface. The sEnKF

and ETKF share the same additive inflation parameters for the vortex properties. It is

important to note that each of these parameters is chosen in order to balance the trust

between the vortex model and the analysis step; lower values, for example, lead to a vortex

model that is less responsive to measurement innovation. For example, the relatively larger

additive inflation for the LESPc makes this parameter more responsive than the vortex

parameters. The same parameters are used for all examples in the next section. These

parameters are nondimensionalized by the undisturbed characteristic scales of the problem:

the density of the fluid ρ, the chord length c and the translational velocity of the plate U . In

our various numerical experiments, we have found that this choice of the parameters work

well for perturbations of different strengths and shapes.

It should be noted that the dimension of the state vector, n, changes with each time step of

this filtering process: it increases typically by six (three per newly released blob originating

from each edge), and occasionally decreases as elements of zero strength are eliminated.

There are no inherent restrictions in the EnKF on changes to the dimension of the state.
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However, in order to keep a consistent state dimension, i.e., the same number of blobs across

the different ensemble members, the vortex elements whose circulations are aggregated into

another element are not removed, but rather, are simply assigned zero circulation. Similarly,

even if the LESP does not exceed the current estimate of the LESPc, a new vortex with zero

circulation is still introduced. If the blob has zero circulation across all ensemble members,

then it is removed from the state vector.

Due to the stochastic nature of the filtering problem, results may vary from one simu-

lation to another for the same filter. We estimate the uncertainty in the results in order to

draw consistent conclusions about the performance of each filter. For assessment purposes,

the results presented in this work have been obtained by running an ensemble of 100 real-

izations of the same filter on each flow configuration, with each realization consisting of an

application of the EnKF (using an M = 50 ensemble of vortex models). From this ensem-

ble of realizations, we construct the sample mean and standard deviation of the quantity

of interest for comparison with the truth. If we assume that the results obtained over the

different runs follow a Gaussian distribution, the 95% confidence interval can be estimated

by considering the plus and minus deviation of twice the standard deviation from the mean.

It should be noted that the number of vortex elements—and hence, the dimensionality of

the state vector—varies from one realization of the filter to the next, so it is not possible to

define a mean state from the ensemble of realizations.

As mentioned in Section 2.3, the near encounters between the singular vortex elements

and the plate can lead to spurious errors in the estimate of the pressure distribution, and

hence, in the prediction of overall normal force on the plate. We use a median filter to

remove these spurious spikes from our presented results. At each time step, the current

value is replaced by the median value of the l = 7 previous time steps. The median filter is

causal, so it is directly integrated into the estimation sequence.

Unfortunately, there is no simple and direct way to compare the discrete vorticity dis-

tribution generated by the state estimate with the true continuous vorticity distribution.
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Figure 4.2: (a): Schematic of the plate at 20◦ at t⋆ = 0 subject to actuation. Green dot

depicts the location of the actuation. (b) Time history of the flow actuation.

Instead, we compare the normal force coefficient Cn (i.e., the integral of this pressure dis-

tribution on the plate rescaled by ρcU2/2) from the high-fidelity simulation and from its

evaluation for the analysis ensemble obtained from either the sEnKF or the ETKF. The

performance of each filter is assessed with the root-mean-squared error (RMSE), the stan-

dard deviation of the ensemble [39], and the interquantile range defined by the 2.5% and

the 97.5% quantiles. These metrics are time-averaged. We define the RMSE between the

true observation C⋆
n (from the high-fidelity simulation) and the mean posterior normal force

coefficient C
a

n (i.e., the mean normal force coefficient for the different realizations computed

from the posterior ensemble) as RMSE = ||C⋆
n − C

a

n||2. We quantify the dispersion of the

ensemble with the sample standard deviation of the normal force coefficient σCa
n
. While the

RMSE and the standard deviation of the ensemble can be affected by the spurious force

events, the interquantile range defined between the 2.5% and the 97.5% quantiles is insensi-

tive to outliers, and is used as a companion to the standard deviation to quantify the spread

of the ensemble.

4.2.1 Translating plate subjected to pulse actuation disturbances

In this section, we assess the data-assimilated vortex model on the response of an impul-

sively translating plate at 20◦ to disturbances applied near the leading edge. We apply the
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perturbations at a point 0.475c from the centroid along the plate and 0.1c above it, as shown

in Fig. 4.2(a). The pertubations are introduced as a superposition of vertical body force

of nominal strength Fn = 0.03ρU2c at t⋆ = 2.5, 2.9, 3.0 and 3.2, distributed in Gaussian

form in time and space, with temporal standard deviation of t⋆std = 0.1 and spatial standard

deviation 0.1c. The vertical body force f(t⋆) is given by:

f(t⋆)

Fn

= N (t⋆; 2.5, t⋆std) +N (t⋆; 2.9, t⋆std) +N (t⋆; 3.0, t⋆std) +N (t⋆; 3.2, t⋆std), (4.6)

whereN (t⋆;µ, σ) denotes the temporal Gaussian kernel, with mean µ and standard deviation

σ, evaluated at t⋆. Fig. 4.2(b) shows the time history of the force actuation. For reference,

the gusts considered in Darakananda et al. [29] were weaker and non-overlapping, applied

further upstream of the plate at t⋆ = 3, 4 with nominal amplitude Fn = 0.01ρU2c. The

disturbance considered here is more challenging due to the presence of strong and overlapping

perturbations.

Fig. 4.3 compares the history of the surface pressure response from the truth with the

mean of 100 realizations of the sEnKF and the ETKF. During the first two convective

times, we observe the development of the leading-edge vortex. The successive flow actuation

disturbances are easily detected by the distinct regions of strongly negative pressure. The

first suction region is due to the disturbance applied at t⋆ = 2.5, while the second one is

due to the superposed response to the flow disturbances centered at t⋆ = 2.9, 3.0, and 3.2.

Both filters match well with the true pressure distribution. The uncertainty of each filter is

characterized by the sample standard deviation of the pressure, computed over the 100 runs;

these are shown in the right column of Fig. 4.3. In both filters, two narrow bands of high

variance, particularly strong near the leading edge, can be identified at t⋆ = 2.5 and 3.0.

These correspond to the instants of local maxima in the disturbance force. However, the

sEnKF has a higher level of variability in the pressure distribution from one run to another.

In particular, there is a significant band of high dispersion for the sEnKF at around t⋆ = 3.8,

and additional smaller bands at other times. The ETKF does not exhibit such bands, a

direct consequence of its statistically consistent analysis update.
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Figure 4.3: Left column [(a), (b), (d)]: Spatiotemporal map of the pressure coefficient jump

for an impulsively translating plate at 20◦ subjected to pulse actuation disturbance from (a)

high-fidelity numerical simulation at Reynolds number 500, and mean over 100 realizations

of an inviscid vortex model with (b) the sEnKF and (d) the ETKF. Right column [(c),

(e)]: Spatiotemporal map of standard deviation of the pressure coefficient jump over 100

realizations for (c) the sEnKF and (e) the ETKF.
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Figure 4.4: Top left panel (a): Normal force coefficient of an impulsively translating plate

at 20◦ subject to actuation, from high-fidelity numerical simulation at Reynolds number 500

( ), mean over 100 realizations of the inviscid vortex model with sEnKF ( ), mean over

100 realizations of the inviscid vortex model with ETKF ( ). Shaded areas show the 95%

confidence interval for the inviscid vortex model with sEnKF and ETKF. Time history of the

flow actuation ( ). Top right panel (b): Comparison with the same normal force coefficient

from high-fidelity simulation, but without application of the median filter for the sEnKF

( ) and ETKF ( ). Lower panel (c): Comparison of the same normal force coefficient from

high-fidelity simulation, with the 2.5% (lower curve) and 97.5% (upper curve) quantiles of

the normal force coefficient over 100 realizations of the inviscid vortex model for the sEnKF

( ) and ETKF ( ) without application of the median filter.
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The normal force coefficient is the integral of this pressure distribution on the plate.

The top left panel in Fig. 4.4 compares the force coefficient obtained from the truth system

with the mean of the sEnKF and the ETKF applications over 100 realizations. The mean

force predicted by each filter agrees very well with the true force response. The peaks

created by the actuation and the subsequent drop of force around t⋆ = 4 are also well

predicted. However, consistent with our observations of the surface pressure data, both

filters show variability near the peak disturbances; Fig. 4.4 also shows that the peaks are

slightly underpredicted.

The sEnKF exhibits more variability than the ETKF at all times, and this higher variabil-

ity is apparent in the wider uncertainty envelope for the normal force coefficient, particularly

after t⋆ > 3.5. To better appreciate the raw behavior of each filter, the top right panel in

Fig. 4.4 show the same results, but without the use of the median filter. The sEnKF, in

Fig. 4.4(b), exhibits frequent spikes throughout the simulation, and particularly so after

t⋆ > 3.5. These spikes are not eliminated by the ETKF, but they are much weaker and less

frequent. Due to the presence of spikes, the 95% confidence interval based on the standard

deviation can be corrupted. To better appreciate the raw performance of the two filters, we

have also plotted the 2.5% and 97.5% quantiles for each filter in the lower panel in Fig. 4.4.

Table 4.1 reports the time-averaged RMSE, the standard deviation and the interquantile

range of the normal force coefficient for the sEnKF and the ETKF, without the application

of the median filter. The ETKF outperforms the sEnKF with an average reduction of 29%

of the RMSE, 49% of the standard deviation and 17% of the interquantile range. We should

note that there is no downside to apply the median filter.

The origins of this high uncertainty are clear when we examine the flow behavior. In

Fig. 4.5 we show the vorticity distribution from the truth system at three instants, t⋆ = 3.0,

4.0, and 5.0. Since the vorticity in the fluid is modeled with limited number of regularized

point vortices, it is not possible to make a direct comparison; instead, we plot the loca-

tions of the elements for one realization of each filter, with the elements’ signed circulations
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Figure 4.5: Snapshots of the vorticity distribution at t⋆ = 3.0 (left column), t⋆ = 4.0 (middle

column) and t⋆ = 5.0 (right column) for an impulsively translating plate at 20◦ subject to

actuation, predicted from [(a)-(c)] high-fidelity numerical simulation at Reynolds number

500, [(d)-(f)] inviscid vortex model with sEnKF, and [(g)-(i)] inviscid vortex model with

ETKF.
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Figure 4.6: Time history of the ensemble mean value of the LESPc of an impulsively translat-

ing plate at 20◦ subject to actuation, averaged over 100 realizations, from the inviscid vortex

model with sEnKF ( ) and the inviscid vortex model with ETKF ( ). Shaded areas show

the 95% confidence interval for the inviscid vortex model with sEnKF and ETKF.

represented in colors consistent with the sign of vorticity in the truth data. Most of the

large-scale vortex dynamics are captured by the data-assimilated vortex model. Over the

first two convective times, the impulsive translation of the plate creates a leading-edge vor-

tex that grows in size and strength. This feature is captured by the continuous release of

new vortex elements in both filters. The disturbance applied at t⋆ = 2.5 creates a coherent

structure that is rapidly advected along the plate and merges with the initial leading-edge

vortex. At around t⋆ = 3.0, the resulting vortex lies slightly above the mid chord of the plate,

evident in the left column of Fig. 4.5. Both the sEnKF and ETKF capture this feature with

positive vortex elements clustered at a similar position. It is also important to note that the

vorticity associated with the disturbance itself, clearly evident at t⋆ = 3.0, is not observed

in the vortex model results. The absence of this disturbance vorticity is by design; only its

effect on vortex elements shed from the edge of the plate is captured by the assimilation of

pressure data.

Over the time interval t⋆ ∈ [3.0, 4.0], the vortex models predict a separation of a cluster

of positive vortex elements from the plate with dynamics similar to the truth flow. The

middle column of Fig. 4.5 compares the results at t⋆ = 4.0. The large coherent structure

with positive vorticity is well captured by the inviscid model with both filters, but is more

tightly clustered in the case of the ETKF. From t⋆ = 4.0 to 5.0, the vortex is shed into the
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wake and triggers a large flux of negative vorticity from the trailing edge. The right column

of Fig. 4.5, for t⋆ = 5.0, shows a good visual agreement between the truth and the prediction

of the ETKF. The spatial vortex distribution predicted by the sEnKF is less representative of

the true vorticity distribution, however. Overall, the ETKF predicts a more structured and

physically consistent spatial distribution of the vortices than the sEnKF. The coherence of

these vortex element clusters is consistent with the narrower uncertainty in the normal force

coefficient, and demonstrates a clear advantage of the ETKF over the sEnKF for modeling

the flow response to unknown flow perturbations.

In Fig. 4.6 we compare the time histories of the LESPc estimated by the sEnKF and

the ETKF. The LESPc is constrained to remain positive, and the constraint reverts to the

Kutta condition if LESPc becomes zero. Before the flow is disturbed, the mean estimate

of the LESPc stays on a plateau about 0.5, the mean value in the initial ensemble. This

behavior supports the hypothesis of Ramesh et al. [26, 27]: the LESPc remains constant for

a given Reynolds number and airfoil section. The time variation of the imposed disturbance

is reflected in a similar variation of the LESPc. Indeed, the application of an actuation-like

disturbance near the leading edge directly controls the vorticity flux about this edge. Large

values of LESPc lead to weaker vorticity, temporarily suppressing the flux into the shear

layer. The small decay of LESPc after the first disturbance increases the vorticity flux,

triggering the creation of a new coherent structure that merges with the initial leading-edge

vortex about the mid-chord. This leading-edge development is then halted after the next

disturbance peak, and the leading-edge vortex is shed. The uncertainty envelopes of the

two filters are very similar and tend to grow over time. The width of these envelopes is

large, reflecting significant variation in the estimated values of LESPc from one realization

to the next. This variation indicates a weak physical correlation between this threshold value

and the pressure on the plate: this threshold’s effect on pressure is only exerted indirectly,

through the subsequent release of vorticity. (The LESP itself, in contrast, is more strongly

correlated, since shed vortex elements contribute to this value [27, 6].)
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Figure 4.7: Time history of the particle count for an impulsively translating plate at 20◦

subject to actuation, averaged over 100 realizations, from the inviscid vortex model with

sEnKF ( ) and the inviscid vortex model with ETKF ( ). Shaded areas show the 95%

confidence interval for the inviscid vortex model with sEnKF and ETKF.

The population histories of vortex elements is depicted in Fig. 4.7. The histories are

nearly identical for each filter. In the initial time steps, the number of vortex elements

increases linearly from 0 to 20; the model prevents aggregation of elements during this

interval. Subsequently, the population grows slowly up to 35 ± 7 at t⋆ = 5. It should

be noted that, without aggregation, this population would be approximately 1000 vortex

elements (500 time steps, with two elements shed per step). The variation in population

among the different realizations of each filter is attributable to the variation in LESPc,

which sets the initial strengths of the elements, which in turn affects their later aggregation.

It is interesting to note that this variation of vortex element populations is proportionally

larger than the variation in the pressure and normal force, indicating that there is some

non-uniqueness in the mapping from surface pressures to vortex element dynamics.

Fig. 4.8 depicts the ensemble variances of the positions and strengths of the vortex el-

ements and the LESPc estimate, averaged over the 100 realizations of each filter. Each

variance is lower-bounded by the additive covariance inflation to avoid filter divergence. The

variances of the strengths of the vortices and LESPc are fairly constant (and near the values

set by the inflation parameter) while those of the x and y positions are more variable. These

values are larger than the variance set by the inflation, likely due to additional error incurred

by aggregation.
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Figure 4.8: Time history of the ensemble variances of an impulsively translating plate at 20◦

subject to actuation, averaged over 100 realizations. Mean variances for (a) the x coordinate

of the blobs, (b) the y coordinate of the blobs, (c) the circulation of the blobs, and (d) the

LESPc from the inviscid vortex model with sEnKF ( ) and the inviscid vortex model with

ETKF ( ). Fainter dashed lines show the standard deviation of the different variances over

the 100 realizations for the inviscid vortex model with sEnKF and ETKF.

RMSE Standard deviation Interquantile range

sEnKF 3.67 3.06× 10−1 4.71× 10−1

ETKF 2.61 1.56 × 10−1 3.92 × 10−1

Table 4.1: Time-averaged RMSE, standard deviation and interquantile metrics of the normal

force of the impulsively translating plate subject to actuation with the sEnKF and the ETKF,

without application of the median filter. The lowest RMSE, the standard deviation and the

interquantile range among the two filters is highlighted in bold.
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Figure 4.9: Schematic of a plate at 20◦ behind a cylinder. The plate and cylinder translate

to the right at uniform speed.

4.2.2 Plate in the wake of a cylinder

In this part, we assess our flow estimator when applied to a plate at 20◦ angle of attack in

the wake of a cylinder. In the truth system, high fidelity simulations are conducted of a

cylinder of diameter 0.16c is centered 2 chord lengths upstream and 0.3 chord lengths above

the plate’s centroid, as shown in Fig. 4.9. The plate and cylinder are both impulsively set

in motion at t⋆ = 0 at speed U , so that their relative configuration remains fixed for all

time. The Reynolds number based on the cylinder diameter is 80, sufficiently large that the

cylinder’s wake exhibits a von Kármán vortex street. The presence of the plate triggers the

wake to break symmetry and achieve this vortex street. This flow configuration distills the

main features of a vehicle flying through the wake of a structure, e.g., buildings in an urban

environment or other flying vehicles.

It is important to recall that we do not include the cylinder and its wake in our vortex

model flow estimator; its effects are only felt through the pressure jump measurements

obtained from surface sensors along the plate. Fig. 4.10 depicts the history of the true

surface pressure distribution and those estimated by the sEnKF and ETKF; the associated
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Figure 4.10: Left column [(a), (b), (d)]: Spatiotemporal map of the pressure coefficient jump

for an impulsively translating plate at 20◦ in a cylinder wake (a) high-fidelity numerical

simulation at Reynolds number 500, mean over 100 realizations of an inviscid vortex model

with the sEnKF (b) and the ETKF (d). Right column [(c), (e)]: Spatiotemporal map of

standard deviation of the pressure coefficient jump over 100 realizations for the sEnKF(c)

and ETKF (e)
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Figure 4.11: Snapshots of the vorticity distribution at t⋆ = 3.5 (left column), t⋆ = 4.2

(middle column) and t⋆ = 10.0 (right column) for an impulsively translating plate at 20◦

in a cylinder wake, predicted from [(a)-(c)] high-fidelity numerical simulation at Reynolds

number 500, [(d)-(f)] inviscid vortex model with sEnKF, and [(g)-(i)] inviscid vortex model

with ETKF.
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(a)

(c)

(b)

Figure 4.12: Top left panel (a): Normal force coefficient of an impulsively translating plate

at 20◦ in a cylinder wake, from high-fidelity numerical simulation at Reynolds number 500

( ), mean over 100 realizations of the inviscid vortex model with sEnKF ( ), mean over

100 realizations of the inviscid vortex model with ETKF ( ). Shaded areas show the 95%

confidence interval for the inviscid vortex model with sEnKF and ETKF. Top right panel

(b): Comparison with the same normal force coefficient from high-fidelity simulation, but

without application of the median filter for the sEnKF ( ) and ETKF ( ). Lower panel

(c): Comparison of the same normal force coefficient from high-fidelity simulation, with the

2.5% (lower curve) and 97.5% (upper curve) quantiles of the normal force coefficient over

100 realizations of the inviscid vortex model for the sEnKF ( ) and ETKF ( ) without

application of the median filter.
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Figure 4.13: Time history of the ensemble mean value of the LESPc of an impulsively

translating plate at 20◦ in a cylinder wake, averaged over 100 realizations, from the inviscid

vortex model with sEnKF ( ) and the inviscid vortex model with ETKF ( ). Shaded areas

show the 95% confidence interval for the inviscid vortex model with sEnKF and ETKF.
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Figure 4.14: Time history of the particle count for an impulsively translating plate at 20◦ in

a cylinder wake, averaged over 100 realizations, from the inviscid vortex model with sEnKF

( ) and the inviscid vortex model with ETKF ( ). Shaded areas show the 95% confidence

interval for the inviscid vortex model with sEnKF and ETKF.
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standard deviations are shown on the right. Both filters estimate pressure fields that agree

very well with the true distribution. As expected, it takes about 2 convective times for the

cylinder wake to reach and be sensed by the plate. Over this time window, the pressure field

is essentially disturbance-free. The encounter of the vortex structures shed by the cylinder

leaves successive short-lived pressure disturbances.

The true vorticity distribution and mean sets of vortex elements are compared in Fig. 4.11

at t⋆ = 3.5 (soon after the wake has reached the plate), at t⋆ = 4.2 (when the cylinder wake

transitions to a von Kármán vortex street) and at t⋆ = 10 (long after the flow has achieved

periodic vortex shedding). As expected, the vortex models do not attempt to represent the

cylinder wake with vortex elements; rather, the filter accommodates the influence of the

wake vorticity by modifying the behavior of the vortex elements shed from the plate. Large

scale structures of the flow around the plate are captured and match visually with the true

vorticity field.

Concomitantly, the normal force estimate agrees well with the truth, as seen in Fig. 4.12.

As in the first example, we have plotted the normal force estimate of the two filters, without

the application of the median filter, and the associated uncertainty between different realiza-

tions based on the standard deviation (Fig. 4.12 (b)) and the interquantile range (Fig. 4.12

(c)). The transition from a symmetric cylinder wake to a periodic vortex shedding causes

some challenge to the discrete vortex models, as highlighted by the temporary growth of the

uncertainty envelope around t⋆ = 4.0. The envelope remains small for both filters after the

periodic wake behavior has been established. Table 4.2 reports the time-averaged RMSE

and the standard deviation and the interquantile range of the normal force coefficient for the

sEnKF and the ETKF. The ETKF reduces on average the standard deviation by 16% and

the interquantile range by 16%. The RMSE performance of the two filters are almost identi-

cal. The history of the LESPc estimate in Fig. 4.13 reveals the same growth and decay of this

critical value observed in the previous example; here, they represent a response to individual

cylinder wake vortices passing the leading edge of the plate. These variations are essential
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RMSE Standard deviation Interquantile range

sEnKF 2.63 1.63× 10−1 3.18× 10−1

ETKF 2.66 1.41 × 10−1 2.69 × 10−1

Table 4.2: Time-averaged RMSE, standard deviation and interquantile metrics of the normal

force of the impulsively translating plate subject in a cylinder wake with the sEnKF and

the ETKF without the median filter. The lowest RMSE, the standard deviation and the

interquantile range among the two filters is highlighted in bold.

to our inviscid framework to control the leading-edge vortex shedding in the presence of flow

perturbations. As in the previous example, the weak correlation between the LESPc and

measured pressure causes significant volatility in the estimated LESPc among the different

realizations. The vortex element population remains small, O(60), after 12 convective time

units. Without aggregation, we would have to track 2400 vortex elements.
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CHAPTER 5

Regularization of the ensemble Kalman filter in elliptic

inverse problems

This chapter is adapted from [55].

In this chapter, we are interested in filtering problems where the assimilated observations

correspond to non-local functions of the state, such as integrals of linear and nonlinear

functions of the state [56]. As examples, we can cite the radiance measured by satellites,

heat or mass fluxes through surfaces, forces measured on a body immersed in a fluid, or

as we focus in this chapter, solutions of elliptic partial differential equations (PDEs). An

elliptic PDE is given by

Luk(r) = qk(r,xk), r ∈ Ω, (5.1)

where Ω is the physical space (a subspace of R2 or R3), r ∈ Ω denotes the point of evaluation

of (5.1), and L is an elliptic linear operator (e.g. the Laplacian ∇2, in which case (5.1)

is a Poisson equation). qk is a forcing term that depends nonlinearly on the state xk and

comprises information about the spatial distribution and strength of the forcing. This chapter

focuses on elliptic inverse problems where we seek to determine the state xk from noisy and

spatially limited evaluations (i.e. for limited points r ∈ Ω) of the solution uk of the elliptic

PDE (5.1). Up to an homogeneous part, the solution uk can be obtained by convolution

of the Green’s function of the elliptic operator L with the forcing term qk over Ω. Elliptic

inverse problems are particularly challenging as the observations inherit the non-locality and

the nonlinearity of the Green’s function and further nonlinear state dependence in the forcing

term qk.
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While in many high-dimensional problems the EnKF can successfully track the state with

very limited samples, this success is predicated on an adequate regularization of the empirical

Kalman gain. Predominant regularization techniques assume that the observations are local,

i.e. an observation only provides information about a subset of the state variables which

are close-by in physical distance. This assumption is supported by the rapid decay of the

correlations between state and observation variables. In this setting, distance localization

cuts off long-range correlations [13].

Distance localization is inappropriate in the current context, however. For a Poisson equa-

tion, the Green’s function of the Laplacian has a logarithmic or algebraic decay (based on

the dimension of the physical space) as a function of distance, so we expect long-range phys-

ical interactions between the state and observation variables. Distance localization should

therefore be avoided, as it will remove all long-range correlations, spurious or physical. In

this chapter, we develop a novel regularization technique (discussed in the next paragraph)

to assimilate non-local observations. While the methodology can be applied to a wide range

of problems, we focus our discussion on the representative context of incompressible fluid

mechanics. In these problems, the flow field is most compactly represented by the vorticity,

or curl of the velocity field. We use a low-dimensional Lagrangian representation of the flow

field by tracking the positions and strengths of a small collection of point vortices. Inviscid

point vortex models have been a long-standing tool to model and explain incompressible

fluid phenomena [57, 6, 3]. In this chapter, we focus on filtering problems where we seek to

estimate the characteristics of point singularities over time from limited potential or pressure

observations. Despite their relative low-dimensionality, these problems can be particularly

challenging as the transport equation for point vortices (the Biot-Savart law) and the ob-

servation model (the pressure Poisson equation) involve the resolution of Poisson equations

like (5.1) whose forcing terms nonlinearly couple all the singularities’ contributions.

The rest of this chapter is organized as follows. Section 5.1 presents our methodology.

Example problems are treated in Section 5.2. A pseudo-code for the proposed low-rank
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ensemble Kalman filter is provided in the Appendix A.

5.1 Low-rank ensemble Kalman filter

5.1.1 Ensemble Kalman filter

For the remainder of this section, we focus on a single analysis step of the EnKF. Our

treatment of the analysis step is built on the idea that there is an underlying transformation

T k, called the prior-to-posterior transformation or analysis map, that directly maps samples

from the forecast (i.e. prior) density πXk | Y1:k−1=y1:k−1
to the filtering (i.e. posterior) density

πXk | Y1:k=y1:k
[40, 39]. Further details on the filtering problem and the analysis map are given

in Chapter 3. Kalman [15] showed that the best linear estimator for the prior-to-posterior

transformation T k is given by:

T k(yk,xk) = xk −ΣXk,Yk
Σ−1

Yk
(yk − y⋆

k), (5.2)

where y⋆
k is the observation to be assimilated, ΣXk,Yk

∈ Rn×d is the cross-covariance matrix

of the state and observation, while Σ−1
Yk
∈ Rd×d is the precision matrix (inverse of the

covariance matrix) of the observation’s marginal distribution. The linear operator Kk =

ΣXk,Yk
Σ−1

Yk
∈ Rn×d is called the Kalman gain and maps observation discrepancies (yk −

y⋆
k) to the state correction. The stochastic ensemble Kalman filter (sEnKF) introduced by

Evensen [14] estimates the transformation (5.2) by replacing the covariances with empirical

covariances that are computed from the joint samples of the observations and states {yi
k,x

i
k}

∼ πXk,Yk | Y1:k−1
, i.e.

T̂ k(yk,xk) = xk − Σ̂Xk,Yk
Σ̂−1

Yk
(yk − y⋆

k). (5.3)

5.1.2 Assimilation in low-dimensional subspaces

For elliptic inverse problems, the conditional structure of the joint density of the observation

and the state πXk,Yk | Y1:k−1
is not localized, i.e. there is no rapid decay of the correlations as
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a function of the distance between variables. Hence, distance based localization in this prob-

lem results in biased estimators for the Kalman gain. Instead, we will exploit another kind

of low-dimensional structure in the joint distribution. Our treatment draws inspiration from

the fast multipole method (FMM) [58], which uses a hierarchical clustering of “source” and

“target” elements to accelerate the calculation of the potential field from a large set of point

singularities [59]. These clusterings are typically based only on spatial distance, but here

we will use information from the prior distribution and observation model (i.e. observation

operator and observation noise) to infer these clusters automatically in a way that works

independently of the spatial distribution of the singularities and observation locations. To

regularize the EnKF, we identify important directions in the state and observation spaces,

perform the assimilation in these low-dimensional subspaces, and finally, lift the result to

the original state space. First, we present the treatment of low-rank structure in the case of

a linear-Gaussian observation model in 5.1.2(5.1.2.1). The main result of this derivation is a

factorization of the Kalman gain that exploits the existence of this low-dimensional subspace.

Then, we extend this decomposition to the nonlinear-Gaussian setting in 5.1.2(5.1.2.2). An

algorithm that summarizes the overall low-rank assimilation procedure is provided in Ap-

pendix A. For convenience, we drop the time dependence subscripts of the variables in the

rest of this chapter, since the analysis step does not involve time propagation.

5.1.2.1 Low-rank assimilation for the linear-Gaussian case

In this section, we consider the inference problem for the linear-Gaussian observation model:

Y =HX+ E , (5.4)

where the state is given by X ∼ N (µX,ΣX) and the observational error is given by E ∼
N (0,ΣE) where E is independent of X. The matrix H ∈ Rd×n is called the observation

matrix. In order to identify the important assimilation directions, we first define the whitened

variables X̃ = Σ
−1/2
X (X− µX) ∈ Rn, Ẽ = Σ

−1/2
E E ∈ Rd. We use B1/2,B−1/2 to denote a
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square root of the matrix B and its inverse, respectively. These whitened variables satisfy

Ẽ ∼ N (0d, Id), X̃ ∼ N (0n, In). Applying the same whitening to the observation variable,

the observation model becomes

Ỹ = Σ
−1/2
E (Y − µY) = H̃X̃+ Ẽ , (5.5)

where µY =HµX and H̃ = Σ
−1/2
E HΣ

1/2
X ∈ Rd×n is the whitened observation matrix. In this

derivation we assume that d ≤ n. We can now identify the important assimilation directions

with a singular value decomposition (SVD) of the whitened observation matrix H̃ = UΛV ⊤,

where U ∈ Rd×d and V ∈ Rn×d are the left and right singular vectors, and Λ ∈ Rd×d is

the diagonal matrix of singular values. From this decomposition, we can rotate and project

the whitened state on the subspace spanned by the columns of V ⊤ — X̆ = V ⊤X̃ ∈ Rd —

and similarly rotate and project the whitened observational error and observation on the

subspace spanned by the columns of U⊤ — Ĕ = U⊤Ẽ ∈ Rd, Y̆ = U⊤Ỹ ∈ Rd. The SVD of

the whitened observation matrix simultaneously identifies a pair of orthogonal bases for the

state and observation spaces and an ordering for these directions. In the rotated spaces, the

observation model can be written as:

Y̆ = ΛX̆+ Ĕ , (5.6)

where the rotated observation operator Λ and the observation error covariance are diagonal

matrices. Hence, the inference in this rotated space can be performed in a fully decoupled

manner for each state variable. Using the decoupled observation model (5.6), the Kalman

gain in the rotated space is given by:

K̆ = Λ(Λ2 + Id)
−1. (5.7)

Thus, the linear analysis map in the rotated space T̆ is given by:

T̆ (y̆, x̆) = x̆− K̆(y̆ − y̆⋆) = x̆−Λ(Λ2 + Id)
−1(y̆ − y̆⋆), (5.8)

where y̆⋆ = U⊤Σ
−1/2
E y⋆ denotes the realization of the assimilated data in the rotated obser-

vation space. In these rotated coordinates, the analysis map is local, i.e. each component of
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the rotated observation only updates one associated component of the rotated state. The

d columns of V span the informative subspace of the whitened state space (i.e. where the

random variable X̃ lives). Thus, P d = V V ⊤ ∈ Rn×n is an orthogonal projector from the

whitened state space to this informative subspace. Note that P d has rank d as the subscript

suggests. Therefore, the whitened state variable can be decomposed as:

X̃ = P dX̃+ (In − P d)X̃ = X̃
∥
+ X̃

⊥
, (5.9)

where X̃
∥
:= P dX̃ and X̃

⊥
:= (In − P d)X̃. Since P d is an orthogonal projector, the decom-

position above is unique and X̃
∥ ∈ Rn is orthogonal to X̃

⊥ ∈ Rn. We can always complete

the orthogonal family of columns of V to form a basis for Rn with n−d orthogonal columns

V ⊥. The projector on this complementary subspace is given by P⊥
n−d = V

⊥V ⊥⊤
= In−P d.

We can now connect the decomposition (5.9) with the projected state variables on the infor-

mative and complementary subspaces:

X̃ = V V ⊤X̃+ V ⊥V ⊥⊤
X̃ = V (V ⊤X̃) + V ⊥(V ⊥⊤

X̃) = V X̆+ V ⊥X⊥, (5.10)

with X̆ ∈ Rd and X⊥ ∈ Rn−d. We emphasize that the inference performed with the anal-

ysis map in (5.8) only affects the rotated state variable X̆ ∈ Rd, while the complementary

component X̃
⊥
of the whitened state is unaffected by the assimilation. Using eq. (5.10), the

low-rank analysis map in the original space is given by:

T (y,x) = Σ
1/2
X (V T̆ (y̆, x̆) + (Id − V V ⊤)Σ

−1/2
X x) = x−K(y − y⋆), (5.11)

where K denotes the Kalman gain. We note that this recovers the canonical form of the

linear analysis map given in eq. (5.3) with the Kalman gain K ∈ Rn×d factorized as

K = Σ
1/2
X V Λ(Λ2 + Id)

−1U⊤Σ
−1/2
E . (5.12)

A few important comments are in order about this factorization of the Kalman gain. The

application of K in (5.11) and (5.12) provides a concise summary of the inference process in

the low-rank informative subspaces: the innovation term (y − y⋆) is whitened and rotated,

62



assimilated in this new set of coordinates, and finally lifted to the original state space. In the

whitened space (where X̃ and Ỹ live), it is easy to see that V Λ(Λ2+Id)
−1U⊤ constitutes the

singular value decomposition of the Kalman gain. Thus, in the whitened space, exploiting

the spectrum of the whitened observation matrix gives us the best low-rank approximation

of the Kalman gain. Unfortunately, (5.12) is no longer the SVD of the Kalman gain in

the original space as the columns of the matrices Σ
1/2
X V and Σ

−⊤/2
E U are not necessary

orthogonal. Nonetheless, the proposed factorization gives us a constructive means to form a

low-rank approximation of the Kalman gain in the original space (even if not optimal in the

Frobenius norm) without having to form the entire Kalman gain. This is clearly a desired

feature for large inference problems where the Kalman gain cannot be practically formed.

In the next section, we will generalize this factorization to perform the assimilation using

low-dimensional subspaces in the nonlinear-Gaussian setting. From the decay of the singular

values Λ, we can instead use a truncated singular value decomposition of H̃ ≈ U rΛrV
⊤
r ,

where r ≤ d, U r ∈ Rr×r,V r ∈ Rn×r are the first r left and right singular vectors, and

Λ ∈ Rr×r. A rank−r approximation of the Kalman gain is then given by:

Kr = Σ
1/2
X V rΛr(Λ

2
r + Ir)

−1U⊤
r Σ

−1/2
E . (5.13)

We should emphasize that, without the truncation of the SVD, eq. (5.12) is an exact fac-

torization of the Kalman gain. With the truncated SVD, the state and observation variables

are no longer just rotated but also projected to a subspace of dimension r < min(d, n).

5.1.2.2 Low-rank assimilation for the nonlinear-Gaussian case

In this section, we consider the nonlinear observation model of eq. (3.2), recalled for reference:

Y = h(X) + E , (5.14)

where the state is X ∼ N (µX,ΣX) and the observational error is given by E ∼ N (0,ΣE)

where E is independent of X. To handle a nonlinear observation operator with a lin-

ear Gaussian filter, we usually use the Jacobian of the observation operator about the
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prior mean as the observation matrix [53, 13]. Unfortunately, this treatment is only vi-

able for functions which are well approximated by a linear function over the bulk of the

prior distribution. Clearly, the proposed linearization about the prior mean, and conse-

quently the results of the previous section, cannot be applied to the observation operator

h : Rn → R,x 7→ (1+ ||x||2)−1 with a zero-mean prior distribution. This section resolves this

issue in two steps. First, we present a methodology to identify the important subspaces for

the state and observation variables for an arbitrary nonlinear observation model corrupted

by an additive Gaussian noise. Second, we generalize the factorization of the Kalman gain

(5.12) to the nonlinear-Gaussian case.

To understand the construction of the informative subspaces in the nonlinear case, it is

enlightening to examine the directions that maximize the Rayleigh quotient of the posterior

to prior precision in the linear-Gaussian case:

R(w) =

〈
w,Σ−1

X | Yw⟩
⟨w,Σ−1

X w⟩
, for w ∈ Rn. (5.15)

Given that Σ−1
X | Y = H⊤Σ−1

E H + Σ−1
X , maximizing this Rayleigh quotient is equivalent to

maximizing the Rayleigh ratio of the Hessian of the log-likelihood to the prior precision given

by:

S(w) =

〈
w,H⊤Σ−1

E Hw
〉

⟨w,Σ−1
X w⟩

. (5.16)

This equation shows the connection between the directions that maximize the Rayleigh

quotient of the posterior to prior, and the directions (in the state space) where the ob-

servations are most informative with respect to the prior. With the change of variable

v = Σ
−1/2
X w ∈ Rn, we also obtain

S̃(v) =
〈
v,Σ

1/2
X H⊤Σ−1

E HΣ
1/2
X v

〉
⟨v,v⟩ . (5.17)

We denote the columns of V that span the image space of the projector P d introduced in the

previous section as {v1, . . . ,vd}. Spantini et al. [32] showed that the vector vj maximizes the

Rayleigh quotient S̃ over the subspace Rn \ span{v1, . . . ,vj−1}, which is the null space of
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the projector generated by the previous columns vectors {v1, . . . ,vj−1}. In other words, we

are successively identifying the directions in the whitened state space where the observations

are the most expressive relative to the prior and which are not in the same subspace as

the previous directions. The matrix CX = Σ
1/2
X H⊤Σ−1

E HΣ
1/2
X ∈ Rn×n can in fact be

rewritten as the inner product of the whitened observation matrix introduced in 5.1.2.1,

i.e. CX = H̃
⊤
H̃ . It is straightforward to show that the vectors {v1, . . . ,vd} are the d

eigenvectors associated with the d largest eigenvalues of the positive semi-definite matrix

CX. The following n − d eigenvectors form an orthonormal basis for the non-informative

subspace V ⊥. The interpretation of the vectors {v1, . . . ,vn} as the eigenvectors of the matrix

CX is an important step in generalizing to the setting with nonlinear observational models.

In the nonlinear and non-Gaussian setting, Cui et al. [33] showed that the most important

assimilation directions (for any realization of the observations) in the whitened state space

can be identified by the eigenvectors of the state space Gramian:

CX =

∫ (
Σ

−1/2
E ∇h(x)Σ1/2

X

)⊤ (
Σ

−1/2
E ∇h(x)Σ1/2

X

)
dπX(x) ∈ Rn×n, (5.18)

where the expectation is taken over the prior distribution. As expected, eq. (5.18) reverts to

H̃
⊤
H̃ in the linear-Gaussian case. As before, CX is positive semi-definite and its eigende-

composition can be written as

CX = V Λ2
XV

⊤, (5.19)

where V ∈ Rn×n is an orthogonal basis for the whitened state space with associated eigen-

values Λ2
X ∈ Rn×n.

To the best of our knowledge, there is no proved procedure to identify the most important

directions of the observation space for a nonlinear observation model. We propose a heuristic

inspired from the construction of eq. (5.18) for the state space that reverts to the columns

of the orthogonal matrix U in the linear-Gaussian case. It is reasonable to look for the

directions in the observation space that maximize the relative ratio of the signal to the
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observational noise. In the linear-Gaussian case, we can form the Rayleigh quotient T that

conveys this comparison as

T (q) =
〈
q,ΣYq

〉
⟨q,ΣEq⟩

− 1 =

〈
q, (ΣY −ΣE)q

〉
⟨q,ΣEq⟩

, for q ∈ Rd. (5.20)

From eq. (5.4), we have ΣY =HΣXH
⊤+ΣE . With the change of variable u = Σ

1/2
E q ∈ Rd,

we obtain:

T̃ (u) =
〈
u,Σ

−1/2
E HΣXH

⊤Σ
−1/2
E u

〉
⟨u,u⟩ (5.21)

It is easy to show that the directions that maximize the ratio in (5.21) are the eigenvectors

of the matrix CY = Σ
−1/2
E HΣXH

⊤Σ
−1/2
E = H̃H̃

⊤ ∈ Rd×d. The eigenvectors of CY are

also the column vectors of the matrix U introduced in the previous section. Inspired by the

treatment in the state space, we propose to use the eigenvectors of the observation space

Gramian CY to select the important assimilation directions in the whitened observation

space:

CY =

∫ (
Σ

−1/2
E ∇h(x)Σ1/2

X

)(
Σ

−1/2
E ∇h(x)Σ1/2

X

)⊤
dπX(x) ∈ Rd×d. (5.22)

The matrix CY is also PSD and has the eigendecomposition CY = UΛ2
YU

⊤, where U ∈
Rd×d is an orthonormal basis for the whitened observation space with associated eigenvalues

Λ2
Y ∈ Rd×d. For convenience, we assume that the eigenvectors of CX and CY are ordered by

decreasing eigenvalues. For a nonlinear observation model, the eigenvalues of the state and

observation Gramians can be different. In practice, we use Monte-Carlo approximations of

CX and CY that are estimated using the prior samples to identify the important subspaces.

Depending on the inference problem, the Jacobian ∇h ∈ Rd×n of the observation operator

h with respect to the state components can be computed either analytically, with automatic

differentiation, with complex step differentiation, or, in the worst case, from finite differences.

To perform the low-rank assimilation, we only retain the first rX ≤ n eigenmodes for the

state space, and rY ≤ d eigenmodes for the observation space. The ranks rX and rY can

be tuned independently based on the decay of Λ2
X and Λ2

Y; typically we recommend setting

these ranks to achieve a threshold α ∈ [0, 1] for the cumulative normalized energy of the
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eigenvalue spectra, e.g. in the state space, we set rX = min {rα ∈ J1, nK | EX,rα ≥ α}, where
EX,rα =

∑rα
i=1 λ

2
X,i/

∑n
i=1 λ

2
X,i. The new projected state and projected observation variables

are defined as

X̆ = V ⊤
rX
X̃ = V ⊤

rX
Σ

−1/2
X (X− µX) ∈ RrX

Y̆ = U⊤
rY
Ỹ = U⊤

rY
Σ

−1/2
Y (Y − µY) ∈ RrY ,

(5.23)

where V rX ,U rY denotes the first rX, rY columns of V ,U , respectively. We should emphasize

that the different eigenvectors tell us the importance of each state and observation component

in the inference problem. In particular, one can exploit the observation modes to determine

the most impactful sensors, e.g. in an optimal sensor placement procedure [16, 8]. We will

address this issue in the nonlinear setting in future work.

We now outline how to obtain the factorization of the Kalman gain in the nonlinear

setting. In the linear-Gaussian case, the Gramians in (5.18) and (5.22) revert to CX = H̃
⊤
H̃

and CY = H̃H̃
⊤
, respectively. From the definition of the SVD of the whitened observation

matrix H̃ , we have H̃vi = λiui for some left singular vector ui, singular value λi and right

singular vector vi. This results in the eigendecompositions CXui = λ2iui and CYvi = λ2i vi.

Therefore, if the triplet {ui, λi,vi} is obtained from the eigendecomposition of CX and CY,

the sign of the singular vectors is lost, i.e. we only have H̃vi = ±λiui. For a nonlinear

observation model, the factorization of the Kalman gain given in eq. (5.12) is no longer

applicable and needs to be generalized. In the rotated and whitened space, the analysis map

is given by:

T̆ (y̆, x̆) = x̆− K̆(y̆ − y̆⋆), (5.24)

where K̆ = ΣX̆Y̆Σ
−1

Y̆
∈ RrX×rY is the Kalman gain in the informative space with ΣX̆Y̆ ∈

RrX×rY and Σ−1

Y̆
∈ RrY×rY . In the original space, we get

T (y,x) = x−Σ
1/2
X V K̆U⊤Σ

−1/2
E (y − y⋆). (5.25)

This new factorization of the Kalman gain nicely generalizes eq. (5.12) to an inference prob-

lem with a nonlinear observation model. We emphasize that the sign issue presented above
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is obviated by absorbing it into the definition of K̆. Let us remark that the definition of K̆

reduces to the diagonal matrix Λ(Λ2 + I )−1 in the linear-Gaussian case, where the matrices

U ,V are obtained from the SVD of H̃ . Indeed, eq. (5.25) constitutes a change of coordinates

for the Kalman gain between the original space and the informative space. We denote the

algorithm applying the linear update in (5.25) in each analysis step as the low-rank EnKF

(LREnKF). A pseudo-code for the proposed low-rank EnKF is presented in A.

We should emphasize that one can consider different bases to project the state and ob-

servation variables. Solonen et al. [60] used the eigenvectors of the covariance matrices for

the state and observation variables to reduce the dimension of the inference problem. This

option can be significantly cheaper than our proposed methodology, as it does not require

evaluating the Jacobian of the observation operator. We detail several remedies to this lim-

itation in the conclusion 6. However, it is not clear that the covariance matrices will have

a low-rank structure if the dynamical model does not have an intrinsic low dimension. Fur-

thermore, for given ranks rX and rY, these bases give a suboptimal low-rank approximation

of the Kalman gain, compared to our proposed bases. Therefore, a larger number of modes

will be required to obtain the same error on the Kalman gain. By estimating a larger number

of components with a limited budget of samples, additional sampling errors are created in

the posterior estimate.

In comparison, the sEnKF estimates the Kalman gain in the original space, a linear

operator of dimensions n×d, where n and d are the dimensions of the space and observation

spaces. Leveraging the dimension reduction offered by the state and observation Gramians,

the LREnKF only has to estimate the Kalman gain in the informative subspaces of X and

Y, whose dimension is only rX × rY, where rX and rY can be significantly smaller than n

and d, respectively. To appreciate the benefit of this dimension reduction in the inference

problem, it is useful to recall the classical bias-variance trade-off in any machine learning

problem [61]: Given an ensemble size M , the error in the estimation of the Kalman gain

K can be decomposed into a variance term and a bias term. For a limited ensemble size
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(compared to n and d), the estimated Kalman gain from the vanilla sEnKF will have a

large variance, potentially leading to a filter with diverging state estimation error, as is the

case for small ensemble size in the example problems. We show later in this chapter that

with the proposed dimension reduction, the Kalman gain in the informative subspaces K̆

contains a much smaller number of entries than K. This results in smaller variance. The

bias in computing K̆ can be controlled by setting the ranks of the state and observation

projections. Due to the rapid decay of the spectrum of the state and observation Gramians,

increasing the rank of the projected subspace beyond a certain ratio of the cumulative energy

will only marginally reduce the bias, but greatly increases the variance. In other words, we

choose the ranks rX, rY to capture the column/row space of the Kalman gain and make the

bias small for any finite-sample-estimator of K.

5.1.3 Estimation of the leading directions from samples

In practice, we only have access to limited samples {x1, . . .xM} from the prior distribution to

estimate the state and observation Gramians CX,CY and their associated eigenvectors. One

can show that the empirical state and observation Gramians, namely ĈX and ĈY, converge

to the true Gramians at the rate O(1/
√
M). However, this result is not sufficient to justify

that we can accurately estimate the leading eigenvectors from these empirical Gramians. To

justify this more rigorously, we recall this corollary of the Davis-Kahan theorem [62, 63]:

Theorem 5.1.1 (Corollary of the Davis-Kahan theorem [62, 63]1 ) Let Γ and Γ̂ be

m × m positive semi-definite matrices with eigendecompositions Γwi = λ2iwi and Γ̂ŵi =

λ2i ŵi where the eigenvalues are ordered by decreasing order: λ21 ≥ λ22 ≥ . . . ≥ λ2m ≥ 0

and λ̂21 ≥ λ̂22 ≥ . . . ≥ λ̂2m ≥ 0. For 1 ≤ r < m with λ2r − λ2r+1 > 0, we define W r =

(w1,w2, . . . ,wr) ∈ Rm×r and Ŵ r = (ŵ1, ŵ2, . . . , ŵr) ∈ Rm×r. Then, the distance between

the subspaces spanned by the columns of W r and Ŵ r denoted d(W r, Ŵ r) satisfies

d(W r, Ŵ r)
2 := ||W rW

⊤
r

(
I − Ŵ rŴ

⊤
r

)
||2F ≤

C√
M

1

λ2r − λ2r+1

, (5.26)
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where C is a strictly positive constant that depends only on Γ.

Let us now apply the Davis-Kahan theorem to the pairs (Γ, Γ̂) = (CX, ĈX), and (CY, ĈY).

Two important conclusions can be made from this result. First, the error in the subspace

spanned by the first r eigenvectors also converges at the rate O(1/
√
M). This is a critical

result, as a slower convergence rate would have been a serious limitation to estimate the

informative directions with limited samples. Second, the error in the estimated subspace

spanned by the first r eigenvectors of the two matrices depends on the difference between

two consecutive eigenvalues λr, λr+1, namely λr − λr+1, which is called the spectral gap (or

eigengap), Therefore, the inverse of the spectral gap is a useful indicator of the estimation

error of the informative subspaces. Intuitively, two eigenvectors with close eigenvalues are

difficult to distinguish. For the fluid problems considered in this chapter (see examples in

Section 5.2), the spectra of the state and observation Gramians rapidly decay. Thus, the

leading eigenvalues are well separated. This suggests that we can accurately capture the row

and column spaces of the Kalman gain with a few directions in the state and observation

spaces.

5.2 Examples

5.2.1 Multipole expansion and leading directions of the state and observation

Gramians

In this example, we develop intuition for the ideas presented in this chapter by connecting the

leading eigenvectors of the state and observation space Gramians discussed in eqns. (5.18)

and (5.22) to the multipole expansion. We consider a set of N point sources located

at {z1, . . . , zN} with strengths {Q1, . . . , QN}, and a set of d evaluation points located at

{z′1, . . . , z′d}. We assume that the strengths are perfectly known, but we seek to estimate the

positions of the singularities from observations of the velocity potential ϕ at the evaluation
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Figure 5.1: Schematic of the setup. Orange dots depict the location of the point sources.

The yellow square (located at (0, 0)) depicts the location of the centroid of the point sources.

Grey diamonds depict the location of the evaluation points of the velocity potential ϕ

points corrupted by additive Gaussian noise ϵ ∼ N (0d,Σϵ). To ensure a convergent multipole

expansion, we place all the evaluation points outside a circle of radius R where R = maxJ |zJ|.
We use the following notations: x = [z1, . . . , zN ]

⊤ ∈ CN , S = [Q1, . . . , QN ]
⊤ ∈ RN and

z′ = [z′1, . . . , z
′
d]

⊤ ∈ Cd. The superscript ⊤ denotes the transpose of a complex vector/matrix

without conjugation, while the superscript H denotes the transpose with conjugation of a

complex vector/matrix.

The ith component of the observation vector y ∈ Rd is given by yi = ϕ(ξi;x) + ϵi, i =

1, . . . , d, where the notation ϕ(z′i;x) is used to highlight the dependence on the positions of

the point sources. We seek to estimate the position vector x from the noisy observations

y. The observation model reads in vector form as y = h(x) + ϵ, where h : CN → Rd, x 7→
[ϕ(z′1;x), . . . , ϕ(z

′
d;x)]

⊤. From section 5.1.2, the informative subspaces are identified from

the Jacobian of the observation operator h with respect to the state variable x, denoted

∇xh(x). If |zJ|/|z′k| < 1 for all k, J, then we get from (2.1)

∇xh =
1

4π


−Q1

z′1−z1
. . . −QN

z′1−zN
...

...

−Q1

z′d−z1
. . . −QN

z′d−zN

 ≈


1
z′1

. . . 1
z′1

p

...
...

1
z′d

. . . 1
z′d

p


︸ ︷︷ ︸

A
z′


1 . . . 1

z1 . . . zN
...

...

zp1 . . . zpn


︸ ︷︷ ︸

Bx
⊤

diag

(
− S
4π

)
, (5.27)
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where the approximation comes from truncating the multipole expansion at the p-th or-

der. This factorization decouples the contribution of the position of the evaluation points

(Az′), the position of the point sources (B⊤
x ), and the volume fluxes of the point sources

(diag (−S)). Unfortunately, it is not possible to compute analytically the Gramians CX,CY

for this inference problem, even with a Gaussian distribution for the x and y coordinates of

the point source locations. To highlight the connection between the eigenvectors of these

matrices and the multipole expansion, we compare the singular vectors obtained from the

SVD of ∇xh, with the orthonormal bases obtained by orthonormalization of the matrices

Az′ ,Bx for a particular position vector x. We recall that the left singular vectors ui of ∇xh

are also the eigenvectors of the Gram matrix ∇xh
H∇xh, and similarly, the right singular

vectors vi of ∇xh are also the eigenvectors of the Gram matrix ∇xh∇xh
H. To compute

an orthonormal basis for the columns of Az′ and Bx, we extract the Q factor of the QR

factorizations of these matrices, denoted by Qz′ ∈ Cd×p and Qx ∈ Cn×p, respectively.

We place a set of N = 16 point sources distributed according to zJ = ρ exp (2πiJ/N) for

J = 1, . . . , N , where ρ = 0.3. The volume flux of the point sources is set to 4π. The centroid

of this set of point sources is at the origin. This is critical for a sensible comparison with the

factorization of eq. (5.27). We use d = 50 evaluation points distributed along a horizontal

line as z′k = −10+ (k− 1)∆s+4i, for k = 1, . . . , d with interspace ∆s = 20/(d− 1). Fig. 5.1

depicts the configuration of the different elements. We truncate the multipole expansion at

the p = 30th order to get a machine precision approximation of ∇zh in eq. (5.27).

Fig. 5.2 (a) compares the real and imaginary parts of the 1, 2, 3, 4, 6 and 8th modes

obtained from the right singular vectors of ∇xh, and from the corresponding columns of the

unitary matrix Qx. Fig. 5.2 (b) compares the real and imaginary parts of the 1, 2, 3, 4, 6

and 8th modes obtained from the left singular vectors of ∇xh, and from the corresponding

columns of the unitary matrix Qz′ . Overall, the state and observation modes obtained from

these two procedures agree well, and particularly for the first three modes. The first state

mode v1 is ±1/
√
N , where 1 denote a vector of ones of length N . Therefore, the leading
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(a)

(b)

Figure 5.2: Top panel (a): Comparison of the real and imaginary parts of the 1, 2, 3, 4, 6

and 8th state modes (vis) obtained from the SVD of ∇xh (solid turquoise and solid blue

lines), and from orthogonalization of the columns of Qx (dashed red and dashed purple

lines). Lower panel (b): Comparison of the real and imaginary parts of the 1, 2, 3, 4, 6 and

8th observation modes (uis) obtained from the SVD of ∇xh (solid turquoise and solid blue

lines), and from the columns of Qz′ (dashed red and dashed purple lines). The vectors have

unit norm.
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state correction corresponds to a rigid body translation of the point sources. Three modes

capture more than 99.999999% of the cumulative energy of ∇zh
H∇zh. The differences in

the vectors obtained from these two approaches may be attributed to Qz′ only relying on

the positions of the evaluation points, and Qx only relying on the positions of the point

sources. In constrast, the SVD simultaneously has access to the locations of the evaluation

points and the point sources to identify the left and right singular vectors. As a result, the

SVD constructs an optimized “multipole expansion” of the Jacobian (see the Eckart-Young

theorem [64]), specifically designed for the particular set of the evaluation points and the

point sources.

5.2.2 Inference of the properties of point vortices from pressure observations

along a wall

In this second example, we compare the LREnKF with the sEnKF for estimating the posi-

tions and strengths of a collection of point vortices advecting along a horizontal wall. We rely

on pressure observations collected along the wall to estimate the state. These observations

were generated from the same observation model used for inference, thereby making this a

twin experiment [13]. We consider a set of N = 5 point vortices located at {z1, . . . , zN} with
circulations {Γ1, . . . ,ΓN}, and a set of d evaluation points located at {z′1, . . . , z′d}, see Fig. 5.3
(a). The state variable x contains the positions and circulations of the N point vortices: x =

[x1, y1,Γ1, . . . xN , yN ,ΓN ]
⊤ ∈ R3N . To avoid singular interactions between nearby vortices, we

replace the singular Cauchy kernel k(z) = 1/(2πz) used to compute the Kirchhoff velocities

w−J in (2.4) and (2.9), with the regularized algebraic blob kernel kϵ(z) = z/(2π(|z|2 + ϵ2)),

where ϵ is called the blob radius [6], set here to 5 × 10−2. To enforce the no-flow-through

condition along the x axis, we use the method of images and augment our collection of vor-

tices with another set of N vortices at the conjugate positions {z1, . . . , zN} with opposite

circulation {−Γ1, . . . ,−ΓN}. We emphasize that these mirrored vortices are only an artifice

to enforce the no-flow-through in the forecast step, and play no role in the analysis step. We
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Figure 5.3: (a): Schematic of the setup. True trajectories of the point vortices (for one

realization of the system) are represented by colored lines. The location of the point vortices,

sampled every three convective times, is depicted by colored dots. Fainter dashed lines and

fainter dots refer to the image point vortices. Location of the pressure sensors are depicted

by grey diamonds. (b): Estimation of the trajectories of the vortices with the LREnKF for

M = 40 with the ranks rX and rY set to capture 99% of the cumulative energy spectra. Solid

lines depict the time history of the median posterior estimate for the position of the different

point vortices. Fainted areas show the 5% and 95% quantiles of the posterior estimate for

the position of the point vortices.
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Figure 5.4: Median spectrum of the state Gramian CX (left panels (a)-(c)) and observation

Gramian CY (right panels (d)-(f)) over the time interval [0, 12]. Statistics are obtained from

a run of the sEnKF with M = 1000. Panels [(a), (d)]: Median eigenvalues of CX and CY.

Panels [(b), (e)]: Median normalized cumulative energy Ei =
∑i

j=1 λ
2
j/
∑

j λ
2
j of CX and

CY. Panels [(c), (f)]: Median spectral gap λ2i − λ2i+1 of CX and CY. The abscissa axis is in

log scale. Dashed lines depict the 25% and 75% quantiles. Dotted lines depict the 5% and

95% quantiles.

add a freestream flow directed along increasing x values with velocity U∞ = [1, 0]⊤. The

initial position of the Jth point vortex is generated randomly with the form zJ + ρr exp(iθ)

where {z1, . . . , zN} = {−2.0 + 0.3i,−1.9 + 1.9i,−1.8 + 1.1i,−1.3 + 1.4i,−1.4 + 0.8i}, ρr is

drawn from N (0.0, 0.1) and θ is drawn from the uniform distribution on [0, π]. The initial

circulation of the point vortices is drawn from N (0.4, 0.1). The collection of point vortices

is advanced using a forward Euler scheme with time step ∆t = 1 × 10−3. The observation

vector y consists of pressure observations at d = 37 locations linearly distributed with an

interspace of 0.5 along the segment [−2, 16], see Fig. 5.3 (a). We use a Gaussian observation

noise with zero mean and covariance 1 × 10−4. We obtain the Jacobian of the observation

operator used in the state and observation GramiansCX andCY by analytical differentiation

of eq. (2.9).

We assess the performance of the two filters with a twin experiment. We draw a random

initial condition for the positions and strengths of the different point vortices. Then we
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Figure 5.5: 1, 2, 3 and 8th eigenvectors of the observation Gramian CY, i.e. observation

modes uis, at t = 0.1 (left column), t = 7.0 (middle column), and t = 10.0 (right column).

(a)-(c): first mode, (d)-(f): second mode, and (g)-(i): third mode, (j)-(l): eight mode. The

dashed grey vertical line depicts the x component of the position of the centroid of the

vortices. The grey horizontal line corresponds to 0 ordinate. Statistics are obtained from a

run of the sEnKF with M = 1000. The eigenvectors have unit norm.

simulate the dynamics of the point vortices over the time interval [0, 12] (corresponding to

12000 assimilation cycles with the choice of time step ∆t). The true state at the time step

k is denoted by x⋆
k. At every time step, we generate the noisy pressure observation at the

sample locations based on the true state x⋆
k. The realization of the true observation vector

at the time step is denoted by y⋆
k. In the twin experiment, we seek to estimate the true state

x⋆
k only from the knowledge of the noisy and indirect observations y⋆

k and the prior.

First, we assess the spectra and leading subspaces of the state and observation Gramians.

Fig. 5.4 depicts the median eigenvalues of the state and observation Gramians over the

time interval [0, 12]. We run the sEnKF with ensemble size M = 1000 to generate the

samples used to compute empirical Gramians in each analysis step. We choose this larger

ensemble size to reduce sampling errors. The median ranks rX to capture 80%, 90%, 95%, and

99% of the cumulative energy of CX are 1, 2, 3, and 5, respectively. Similarly, the median
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ranks rY to capture 80%, 90%, and 99% of the cumulative energy of CY are 1, 2, and 4,

respectively. The sharp decay of the spectra of CX and CY supports our hypothesis of low-

rank structure existing in the prior-to-posterior update. A low-dimensional subspace of the

pressure observations is only informative along a limited number of directions in the state

space. Fig. 5.5 shows the 1, 2, 3 and 8th eigenvectors of the observation Gramian at the three

times: t = 0.1, 7.0, and 10.0. These modes clearly illustrate how information is extracted

from the different pressure discrepancies during the analysis step. The first observation mode

corresponds to a spatially weighted average of the pressure discrepancies about the mean x

coordinate of the position of the vortices (depicted by the dashed vertical line on the panels of

Fig. 5.5). The second mode captures differences between the pressure observations collected

on the left and right side of the centroid location. The higher modes follow the same pattern

and act as refined stencils with growing support to extract higher order features from the

pressure observations. The leading eigenvectors of the state Gramian are more difficult to

interpret, due to the manner in which vortices are coupled in the determination of pressure.

Next, we compare the performance of the LREnKF with the stochastic EnKF (sEnKF).

The comparison of these two filters is natural, as the LREnKF without dimension reduction

(i.e. for rX = n = 3N and rY = d) reverts to the sEnKF. For a given ensemble size M ,

one could perform a parametric study to determine the ranks rX and rY which give the best

performance of the LREnKF. We found, however, that using fixed ranks for all assimilation

cycles is suboptimal as we face one of two possible scenarios: either the ranks are too

large, leading to additional variance, or the ranks are too small, leading to additional bias.

Furthermore, we expect the dimension of the informative subspaces may vary over time as

the flow field evolves. Instead, we select the ranks rX and rY adaptively at each time step

based on a predetermined ratio of the cumulative energy of the Gramians CX and CY. The

performance of each filter is assessed using the root mean squared error (RMSE) for tracking

the true state x⋆
k. The best estimate of the true state at a given assimilation time is given by

the mean of the analysis ensemble at this step, that we denote by xa
k. We define the RMSE
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Figure 5.6: Left column (a): Time-averaged evolution of the median RMSE with the ensem-

ble size M (computed over 50 realizations) with the sEnKF (blue), and with the LREnKF

for different ratios of the cumulative energy: 85% (yellow), 95% (orange), and 99% (green).

The tracking performance of the sEnKF is unstable for M < 40. Dashed lines depict the

25% and 75% quantiles. Right column [(b)-(c)]: Time-history of the median ranks rX and

rY of the LREnKF for M = 30 (computed over 50 realizations) for different ratios of the

cumulative energy of CX, CY: 85% (yellow), 95% (orange), and 99% (green). The dimension

of the state and observation spaces, namely n and d, are depicted for comparison in blue.
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at one time between the true state x⋆
k and the estimate xa

k as RMSEk = ||x⋆
k − xa

k||2/
√
3N ,

where N is the number of point vortices. The mean RMSE of each filter is computed

over the time interval [8, 12] (i.e. the last 4000 assimilation steps), to remove any influence

of the initial conditions and to ensure empirical stationarity of the filters. The first 8000

assimilation steps are called the spin-up phase and are discarded. The uncertainty in the

RMSE is quantified by the 5%, 25%, 75% and 95% quantiles of the time-averaged RMSE over

50 realizations of the same experiment for different initial ensembles.

Fig. 5.6(a) shows the time-averaged RMSE for the LREnKF and the sEnKF. We assess

the performance of the LREnKF for 85%, 95%, and 99% of the normalized cumulative

energy of CX and CY. For M < 40, the sEnKF is unstable, while the LREnKF accurately

estimates the true state, even for M = 10. For M ∈ [40, 60] , the RMSE of the sEnKF

significantly increases as M decreases. For M = 40, the median RMSE of the sEnKF is

0.9, while the median RMSEs of the LREnKF with the different energy ratios are smaller

than 0.16. For large M , the RMSE of the LREnKF decreases with the energy ratio, but

remains larger than the RMSE of the sEnKF. The proposed low-rank approximation of the

Kalman gain can lead to a small bias for large ensemble sizes. The regularization technique

proposed in this work, however, is designed for the small ensemble size regime; one can

always increase the energy ratio (beyond 99%) to recover the performance of the sEnKF for

large ensemble sizes. The RMSE of the LREnKF with the different energy ratios decreases

for M ∈ [10, 40], then plateaus. In the small ensemble size regime, adding samples improves

the estimate of the dominant directions (see the Davis-Kahan theorem 5.1.1), leading to a

reduction in variance. As we continue to increase the number of samples for a given number

of dimensions to estimate, the variance becomes smaller than the bias from using a truncated

basis to approximate the Kalman gain. For M = 10, the LREnKF with 85% energy ratio

performs better than the LREnKF with 99% energy ratio. For M = 10, the ranks needed

to achieve 99% is large, leading to additional variance. On the other hand, 85% energy

requires a much smaller number of entries to estimate, leading to less variance compared to
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the bias of this approximation. We recommend choosing the target energy ratio based on

the available ensemble size.

Fig. 5.6(b)-(c) show the history of the median ranks rX and rY (computed over 50 realiza-

tions) for the different ratios of the cumulative energy for M = 30. The ranks plateau over

the time window and remain small compared to the dimension of the state and observation

spaces. For the LREnKF with 99% of the cumulative energy, rX, rY are smaller than 8, 6,

respectively. Fig. 5.3 (b) shows one estimate of the trajectories of the vortices over the time

interval [0, 12]. The results are obtained from the LREnKF with M = 50 with the ranks rX

and rY set to capture 99% of the energy spectra. We quantify the uncertainty with the 5%

and 95% quantiles of the posterior for the point vortex positions. We observe an excellent

agreement with the true trajectories with a time-averaged RMSE of 0.038.

In Section 5.1.2, we argue that distance localization schemes will be harmful to regularize

inference problems with elliptic observation models, as studied herein. We conclude this

section by providing an a posteriori justification based on the results of the sEnKF run

with a large ensemble (M = 1000). Fig. 5.7 (a)-(c) shows the magnitude of the cross-

covariance between the positions and strengths of the different point vortices and the pressure

observations at t = 1.0. We notice that the cross-covariance entries decay very quickly on a

small support about each point vortex. Past a certain radius, however, the cross-covariance

entries quickly increase, and beyond this point, they only decay algebraically. More precisely,

we observe a decay as the inverse square of the distance between the point vortex and the

pressure observation. This decay rate is expected from the pressure field derived in (2.9).

In Fig. 5.7(c), the covariance between the circulation of three point vortices and pressure

observations at a distance of 5 and 10 units away is still about 20% and 10% of its maximal

value, respectively. This algebraic decay clearly violates the assumption of rapidly decaying

correlations of distance localization schemes. The cross-covariance of the components of the

position and the strength for the different point vortices can have different algebraic decay

rates as a function of the distance. Even for a particular vortex, the variations of the cross-
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Figure 5.7: Panel (a), (b), (c) depicts the magnitude of the empirical cross-covariance be-

tween the x, y coordinate and strength of the J point vortex with the kth pressure observation

at t = 1.0, respectively. The curves are plotted against the distance dJ,k = |zJ − z′k|, where
zJ = xJ + iyJ is the (complex) position of the Jth point vortex, and z′k is the (complex)

location of the kth pressure sensor. The magnitude of the cross-covariances are normalized

by the maximum cross-covariance (in magnitude) between the x, y coordinate or strength

of the J point vortex with the different pressure observation, respectively. The dashed grey

vertical line depicts the x component of the position of the centroid of the vortices. Red

dashed and dotted curve depicts the algebraic decay O(1/d2J,k). (d) Mean position of the

different point vortices at t = 1.0. The same color is used to depict the properties of a

point vortex on the panels (a)-(d). The results are obtained from a run of the sEnKF for

M = 1000.

covariance for different components of the position and the strength are drastically different.

In unreported results, we observe that the decay rate of the correlations also varies over

time as the vortices evolve. In the best case, this suggests that three different localization

radius are needed and would have to be tuned independently: an impractical procedure.

These different facts support our a priori hypothesis that distance localization is not suited

to regularize filtering problems with elliptic observation operators.
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5.2.3 Inference of a vortex patch advected along a wall from pressure observa-

tions.

In this third example, we look at the inference of a circular vortex patch advected along

the x axis. A circular vortex patch V is a disk of uniform vorticity ω0. As in 5.2.2, the

vortex patch is constrained to advect along the x axis by the method of images [6]. The

total circulation of the vortex patch V , denoted ΓV , is given by ΓV =
∫
x∈V ω0 dS(x) and

the vorticity centroid, denoted xV , is given by xV = ΓV
∫
x∈V xω0 dS(x). The problem is

parameterized by the ratio of the radius rV of the vortex patch to the distance dV between

the centroid of the vortex patch and its image centroid.

We discretize each vortex patch with a collection of regularized point vortices; further de-

tails are given in [6]. In this study, the vortex patch is discretized by Nr = 4 concentric rings

of blobs, leading to a subdivision of the vortex patch into Npv = 1 + 4Nr(Nr−1) = 49. The

initial position of the Jth point vortex is generated randomly with the form zJ + ρr exp(iθ),

where zJ denotes the nominal position of the Jth vortex. ρr is drawn from N (0.0, σ2
r), where

σr corresponds to 10% of the radius between two concentric rings of point vortices, and θ is

drawn from the uniform distribution on [0, π]. The initial circulation of the point vortices

is drawn from N (ΓV/Npv, 10
−4). For a blob at zJ with circulation ΓJ in the vortex patch V ,

there is an image blob located at zJ with circulation −ΓJ. The state is defined, as in the pre-

vious example, by the positions and strengths of the point vortices in the upper half-plane.

For Npv blobs, the state dimension is n = 3Npv = 147. We use a forward Euler model scheme

with time step ∆t = 5.0×10−3. The vortex patches are evolved over the time interval [0, 12].

The observation vector y consists of pressure observations collected at d = 24 locations with

interspace 0.5 along the segment [−1.5, 10.0] of the x axis. The observation noise is Gaussian

with zero mean and covariance 4×10−2 (corresponding to a ratio of peak pressure amplitude

to standard deviation of the noise equal to 10).

In this example, the forward model that generated the observations is given by solving
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Figure 5.8: Snapshots of the vorticity distribution at t = 0.5 (left column), t = 1.5 (second

column), t = 6.0 (third column), and t = 12.0, for a vortex patch and its image, predicted

from [(a)-(d)] high-fidelity numerical simulation at Reynolds number 1000, [(e)-(h)] inviscid

vortex model with LREnKF with M = 30, and [(i)-(l)] inviscid vortex model with sEnKF

withM = 30. The ranks rX and rY of the LREnKF are set to capture 99% of the normalized

cumulative energy of CX and CY, respectively. Pressure sensors are depicted with grey

diamonds. Orange denote positive vorticity, while blue vorticity denotes negative vorticity.
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the incompressible Navier-Stokes equations at a Reynolds number ΓV/ν = 1000, where ν

is the kinematic viscosity of the fluid. The true solution contains viscous effects, which are

not explicitly included in the forecast model we use for inference. The initial condition is

constructed by discretizing the two vortex patches on a uniform Cartesian grid with grid

spacing ∆x = 0.01 for the same geometry (i.e. rV ,xV , and dV are identical) and the same

total circulation ΓV . We use a high-fidelity Navier Stokes solver with lattice Green function

(LGF) [17, 30]. The true pressure observations are generated by inverting the pressure

Poisson equation (2.7) with LGF. Panels (a)-(d) of Fig. 5.8 depict the truth vorticity field

at t = 0.5, 1.5, 6.0 and 12.0.

To the best of our knowledge, there is no straightforward way to compare the dis-

crete vorticity distribution generated by the ensemble filter with the true continuous vor-

ticity distribution obtained from the Navier-Stokes solver. Instead, we compare the pres-

sure distribution along the x axis from the high-fidelity simulation with the evaluation of

the observation model (3.2) at the posterior ensemble generated by the LREnKF, or the

sEnKF (i.e. posterior predictive samples for the pressure distribution). The performance

of the LREnKF is assessed for 85%, 95% and 99% of the normalized cumulative energy

for CX and CY. We assess the performance of the filter on the segment [−1.5, 11.0] with
a finer interspace distance of 0.01. We define the median-squared-error (MSE) at time k

between the true pressure distribution y⋆
k, and the median posterior pressure distribution

median (ya
k) (i.e. the median pressure distribution for the posterior ensemble at time k) as

MSEk = ||y⋆
k −median (ya

k) ||2/dim(y⋆
k), where dim(v) denotes the dimension of a vector v.

Due to the singular nature of the pressure field, we found that the MSE is a more robust esti-

mator of the performance of each filter than the RMSE due to the presence of outliers in the

ensemble estimate of the sEnKF. The spin-up phase of the filters is [0.0, 8.0]. The reported

MSE is time-averaged over the remaining time interval [8.0, 12.0]. The uncertainty in the

MSE is quantified by the 5%, 25%, 75% and 95% quantiles of the MSE over 50 realizations

of the same experiment with different samples for the initial condition.
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Fig. 5.9 shows the median spectrum of CX and CY over the entire time interval. The

statistics are obtained from a run of the sEnKF for a large ensemble (M = 1000). As in

the previous example, the inference problem possesses the low-rank informative structure.

The median ranks rX needed to capture 80%, 90%, 95%, and 99% of the cumulative energy

of CX are 2, 3, 4, and 16, respectively. Similarly, the median ranks rY to capture 80%, 90%,

and 99% of the cumulative energy of CY are 2, 3, and 5, respectively. These ranks are small

compared to the state dimension n = 147, and the observation dimension d = 24.

Fig. 5.10 (a) reports the evolution of the median MSE (computed over 50 realizations)

for the sEnKF and the LREnKF with the ensemble size M . We assess the performance of

the LREnKF for 85%, 95%, and 99% of the normalized cumulative energy of CX and CY.

We recall that the LREnKF reverts to the sEnKF when the dimensions are not reduced. For

M ≥ 60, there is no significant difference in the MSE of the sEnKF and the LREnKF (for

the different energy ratios). For M ∈ [30, 50], the MSE of the sEnKF significantly increases

as M decreases. Over this interval, the MSE of the LREnKF shows no major variation.

Overall, capturing 85% of the cumulative energy of CX and CY is sufficient to yield stable

inference results. For M < 30, the MSE of the sEnKF diverges, while the LREnKF leads

to a reasonable estimate of the pressure distribution for ensemble size as small as 10. This

clearly demonstrates the benefit of our regularization for the EnKF. Fig. 5.10(b)-(c) shows

the time history of the median ranks rX and rY required to capture at least 85, 95, 99% of

the cumulative energy (computed over 50 realizations) for M = 20. The rank rX initially

increases with time, until it reaches a plateau at about t = 3.0−7.0 depending on the energy

ratio. The increase of the rank rX can be related to the growing role of viscosity in the true

pressure response. The rank rY remains close to 5 over time for the different energy ratios.

Fig. 5.8 compares the vorticity distribution at four times, t = 0.5, 1.5, 6.0, and 12.0, from

the truth with the distribution of vortex elements of the posterior mean of the LREnKF

and the sEnKF. The ensemble estimates are obtained from one realization of each filter for

M = 30. The ranks of the LREnKF are set to capture at least 99% of the normalized cumu-
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lative energy. The large-scale vortex features are well captured by the inviscid vortex model,

despite the obvious absence of the viscous effects in our flow representation. The state esti-

mate is informed of the viscous effects through the assimilation of the pressure observations

[3]. Overall, the LREnKF provides a more physically consistent estimate of the vorticity

distribution than the sEnKF. With a limited ensemble size, the sEnKF cannot distinguish

between physical and spurious long-range correlations between the pressure observations and

the vortices. As a result, the sEnKF inconsistently displaces the vortices. At t = 12.0, the

vorticity distribution of the LREnKF contains a dense core of vortices, with a few vortex

satellites to capture the viscous diffusion of the vortex patch. However, the sEnKF poorly

estimates the truth vorticity distribution for t > 6.0. The spatial structure of the vortices is

lost, and they occupy a much larger support than the true vorticity distribution.

Fig. 5.11 compares the history of the pressure from the truth with the posterior mean

estimate of the LREnKF and the sEnKF for the same realization of the filters. Over time,

the pair of vortex patches is advected along the x axis. Concomitant to the diffusion of the

vortex patches, the peak pressure (in magnitude) decreases over time. The true pressure is

globally well approximated by the two filters. As we pointed in the previous paragraph, the

sEnKF creates spurious displacements of the vortices over time, leading to a growing error

in the posterior predictive pressure at later times (the red regions in Fig. 5.11(e) for t > 6.0).
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Figure 5.9: Median spectrum of the state Gramian CX (left panels (a)-(c)) and observation

Gramian CY (right panels (d)-(f)) over the time interval [0, 12]. Statistics are obtained from

a run of the sEnKF with M = 1000. Panels [(a), (d)]: Median eigenvalues of CX and CY.

Panels [(b), (e)]: Median normalized cumulative energy Ei =
∑i

j=1 λ
2
j/
∑

j λ
2
j of CX and

CY. Panels [(c), (f)]: Median spectral gap λ2i − λ2i+1 of CX and CY. The abscissa axis is in

log scale. Dashed lines depict the 25% and 75% quantiles. Dotted lines depict the 5% and

95% quantiles.
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Figure 5.10: Left column (a): Time-averaged evolution of the median MSE of the posterior

pressure with the ensemble size M (computed over 50 realizations) with the sEnKF (blue),

and with the LREnKF for different ratios of the cumulative energy: 85% (yellow), 95%

(orange), and 99% (green). The sEnKF is found unstable for M < 30. Dashed lines depict

the 25% and 75% quantiles. Dotted lines depict the 5% and 95% quantiles. Right column

[(b)-(c)]: Time-history of the median ranks rX and rY of the LREnKF forM = 20 (computed

over 50 realizations) for different ratios of the cumulative energy of CX, CY: 85% (yellow),

95% (orange), and 99% (green). The dimension of the state and observation spaces, namely

n and d, are depicted for comparison in blue.
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Figure 5.11: Top line [(a), (b), (c)]: Spatiotemporal map of the pressure induced by a pair

of two co-rotating vortex patches from (a) high-fidelity numerical simulation at Reynolds

number 1000, and the mean posterior of an inviscid vortex model for one realization of the

LREnKF (b), and the sEnKF (c) with M = 30. Bottom line [(d), (e)]: Spatiotemporal

magnitude of the error between the truth pressure and the mean posterior pressure for one

realization of the LREnKF (d), and the sEnKF (e) with M = 30. The ranks rX and rY of

the LREnKF are set to capture 99% of the normalized cumulative energy of CX and CY,

respectively. The same color levels are used for all the top panels, and another set for the

bottom panels.
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CHAPTER 6

Conclusions

6.1 Summary

This dissertation studies the regularization of flow estimation problems, where the state is

composed of the positions and strengths of a collection of point vortices and the observations

are given by pressure readings. We focus our attention on the regularization of the ensemble

Kalman filter, which builds an empirical estimate of the Kalman gain from limited samples

of the forecast distribution. Unfortunately, for high dimensional and nonlinear problems,

the finite ensemble size leads to rank-deficiency, sampling errors and spurious long-range

correlations in the estimated Kalman gain. For point vortex models, spurious updates can

have dramatic consequences on the flow estimation, with the creation of nonphysical spikes

in the pressure and normal force response. This work proposes two strategies to resolve these

issues.

Stochastic versions of the EnKF, such as the sEnKF, only verify the propagation equation

of the posterior covariance matrix of the Kalman filter with an infinite ensemble. Determin-

istic versions of the EnKF have been introduced to verify the desired propagation equation

with a finite ensemble size. Chapter 4 examines the influence of using a deterministic ver-

sion of the EnKF, called the ETKF, instead of the sEnKF. We show that the flow estimator

introduced by Darakananda et al. [29] is greatly improved with the ETKF. We assess this

flow estimator on two challenging scenarios: a flat plate subject to strong and overlapping

disturbances applied near the leading edge of the airfoil, and a flat plate placed in the wake
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of a circular cylinder over an extended time window of 12 convective times. On these two

examples, we demonstrate the superiority of the ETKF over the sEnKF on the estimation

of the coherent structures of the flow field, and the normal force response. In both cases,

we show that the proposed flow estimator accurately estimates the flow field, with no a

priori knowledge of the flow perturbations. The perturbations are only accounted by the

assimilation of the truth pressure observations.

Chapter 5 proposes a novel regularization of the EnKF for non-local observation models,

such as models given by elliptic PDEs. Elliptic PDEs are ubiquitous in fluid mechanics: the

relation between vorticity and pressure, the relation between streamfunction and vorticity,

and the relation between the scalar potential and dilation rate of the velocity field are all

given by Poisson equations. Classical methods for regularizing the EnKF are based on

the locality of the observations: an observation only provides information about the state

variables which are close-by in physical distance. From the logarithm or algebraic decay of the

Green’s function of the Laplace operator, we expect physical long-range correlations between

the state and observation variables. Distance localization is not suited for elliptic inverse

problems, as it would blindly remove spurious and physical long-range correlations. We show

that elliptic inverse problems usually possess a low effective dimension: a low-dimensional

projection of the observations is mostly informative along a limited number of directions

of the state space. Chapter 5 leverages this structure, to propose a novel regularization

of the EnKF. To do so, we use a factorization of the Kalman gain based on the singular

value decomposition of the whitened observation matrix. This factorization illuminates the

inference process: the innovation term is first whitened, projected onto the leading modes

of the observation space (the right singular vectors of the whitened observation matrix),

assimilated in the rotated informative subspace, and finally lifted to the original space.

We generalize this decomposition to a nonlinear-Gaussian observation model with two key

steps. First, we identify the informative directions of the state and observation spaces as the

leading eigenvectors of the state Gramian CX and the observation Gramian CY, based on the
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sensitivity of the observation operator. We show that the leading eigenvectors of the state

and observation Gramians are reminiscent of the source and target modes of the multipole

expansion. Nonetheless, our methodology only requires evaluations of the Jacobian of the

observation operator. Second, we interpret the factorization of the Kalman gain as a change

of coordinates between the original space and the informative space. We introduce a novel

algorithm for the EnKF, the low-rank EnKF (LREnKF), which regularizes the inference by

computing the Kalman gain in the span of the informative subspace (i.e. in the span of the

leading eigenvectors of CX and CY), and then lifting the result to the original space. For

elliptic inverse problems, the spectrum of CX and CY is rapidly decaying. This is the central

property exploited by the LREnKF. Our methodology concomitantly reduces the variance

error due to the smaller number of coefficients to identify, while making the bias error very

small for any budget of samples from the prior distribution. To avoid any ad hoc tuning of the

ranks rX and rY, the ranks are adaptively selected based on a given ratio of the cumulative

energy of CX and CY. We assess the sEnKF and the LREnKF on two problems where we

seek to estimate the positions and strengths of point vortices from pressure observations. On

both problems, the LREnKF significantly improves the estimate of the sEnKF, and remains

stable with limited samples (M = 10).

6.2 Future directions

To conclude this dissertation, we propose several directions to further improve the assimila-

tion of pressure observations into a point vortex model.

For frequent assimilation cycles and Gaussian observation noise, the Gaussian assump-

tion is valid. Indeed, over a short time window any nonlinear system with Gaussian noise can

be well approximated by a linear-Gaussian system (using first order Taylor series approx-

imations). However, real-world pressure observations collected on the surface of an airfoil

contain many outliers, and are not well represented by light-tailed Gaussian densities. To
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perform robust flow estimation with experimental observations, one could model the obser-

vation noise with a Laplace distribution [34]. A Laplace distribution has heavy tails that

will assign higher probability to outliers, and be more representative of the statistics of real-

world pressure data. From the nonlinearity of the dynamical and observation operators (the

Biot-Savart law and the pressure Poisson equation), one can expect the state distribution

to be non-Gaussian. Therefore, the linear analysis map of the EnKF can be inadequate

for estimating the true update of a pressure discrepancy on a vortex element. Indeed, the

analysis step of the EnKF uses an implicit linearization of the observation operator about

the mean of the forecast ensemble [53]. In future work, it could be useful to explore non-

linear filters that embrace the nonlinear and non-Gaussian properties of the flow estimation

problem. Spantini et al. [39] introduces a nonlinear generalization of the sEnKF, the stochas-

tic map filter (SMF), based on parsimonious and interpretable nonlinear prior-to-posterior

transformations to reduce the bias of the EnKF but maintain its robustness. Le Provost et

al. [34] shows encouraging results with the SMF on flow estimation problems with only two

pressure sensors placed at the edges of a flat plate undergoing strong perturbations. This

work introduced a low-rank version of the SMF by estimating the nonlinear analysis map in

the informative subspace spanned by the leading eigenvectors of the state and observation

Gramians.

The major limitation of the proposed joint dimension reduction is the computational

cost to form the state and observation Gramians. Fortunately, several techniques can be

used in tandem to reduce this cost. First, we do not need the entire set of eigenpairs of

these Gramians. The algorithm of the LREnKF works for any basis of the low-dimensional

subspace spanned by the leading eigenvectors ofCX andCY. From the Davis-Kahan theorem

5.1.1, and the rapid spectral decay of the eigenvalues of CX and CY, the top eigenvectors

can be identified with limited samples. Instead, one can evaluate the Jacobian for a subset of

the samples, either selected by random subsampling without replacement, or by a clustering

algorithm (e.g. k-means algorithm). Moreover, it is not necessary to compute the entire
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Jacobian matrix for all the samples. Let assume that one has scalable routines to evaluate

the matrix-vector products (∇h)v, and (∇h⊤)u where v ∈ Rn and u ∈ Rd. The product

(∇h)v corresponds to a single directional derivative of h along v. The product (∇h⊤)u can

be computed with a single call of an adjoint solver for the observation model. By leveraging

ideas from randomized linear algebra [65, 66, 67], we can construct accurate approximation of

the informative subspaces from limited matrix-vector products (∇h)v and (∇h⊤)u. Another

interesting direction is to recognize that the evaluation of the observation model at the prior

samples provide unstaggered information about its sensitivity. One can seek to construct a

Jacobian-free estimate for the state and observation Gramians from these evaluations [66].

In many problems of engineering, it is sometimes unclear how the state and observation

variables are related. The spectrum of the state and observation Gramians provides a prin-

cipled way to discover and interpret these interactions. The algorithm of the LREnKF based

on the idea of a low-rank prior-to-posterior transformation is not limited to the flow estima-

tion problems studied in this dissertation. Indeed, elliptic observation models are ubiquitous

in science: geoscience, electromagnetism, magneto-hydrodynamics to name a few. For all

these problems, the regularization of the EnKF is usually ad-hoc [68, 69]. The LREnKF can

be highly beneficial to regularize these problems. We firmly believe that the methodology of

the LREnKF can pave the way for the development of principled and scalable algorithms to

assimilate non-local observations.
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APPENDIX A

Algorithms of the stochastic, deterministic, and

low-rank ensemble Kalman filters

For the sake of completeness, we provide pseudo-codes for the stochastic EnKF (sEnKF)

[14, 13] in Algorithm 1, the ensemble transform Kalman filter (ETKF) [31, 13] in Algorithm

3, and the low-rank EnKF (LREnKF) in Algorithm 4. Algorithm 2 describes an algorithm

to construct a mean-preserving random rotations based on [47, 46] used in the ETKF’s

algorithm.
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Algorithm 1: senkf(πX0 ,f ,h, K, {y⋆
k}1:K) recursively assimilates the observations

{y⋆
k}1:K with the ETKF, where K is the number of assimilation steps and πX0 is the

initial state distribution. Adapted from Le Provost et al. [3].

Input: πX0 , f : Rn → Rn, h : Rn → Rd, the number of time steps K ∈ N, and the

observations to assimilate {y⋆
k}1:K .

Output: {xa,i
k }k=1:K,i=1:M

1 for k = 1 : K do

/* Compute the ensemble forecast: */

2 xf,i
k = f(xa,i

k−1) +w
i
k−1, for i = 1, . . . ,M

/* Sample from the measurement noise distribution πEk
: */

3 ϵik ∼ N (0,V k), for i = 1, . . . ,M

/* Compute the sample means: */

4 xf
k = 1

M

∑M
i=1 x

f,i
k , ϵk =

1
M

∑M
i=1 ϵ

i
k, yf

k = 1
M

∑M
i=1 h(x

f,i
k ),

/* Compute the anomalies: */

5 X ′f,i
k = (xf,i

k − xf
k)/
√
M − 1,

Z ′f,i
k = (h(xf,i

k )− ϵik − yf
k + ϵk)/

√
M − 1, for i = 1, . . . ,M

/* Solve the linear systems for (bik): */

6 Z ′fZ ′f⊤bik = y
⋆
k − h(xf,i

k ) + ϵik, for i = 1, . . . ,M

/* Update the ensemble: */

7 xa,i
k = xf,i

k +X ′,f
k Z

′,f
k

⊤
bik

8 return {xa,i
k }k=1:K,i=1:M
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Algorithm 2: Algorithm to generate mean-preserving random rotations, adapted

from [47, 46, 3].

Input: M ∈ N

Output: U ∈ RM×M

/* Draw (M − 1)× (M − 1) samples from a standard normal distribution and store them

in Ω ∈ R(M−1)×(M−1): */

1 Ω = randn(M − 1,M − 1)

/* SVD decomposition of Ω: */

2 Ω = UΣV ⊤

3 Ω = V ⊤

4 b = 1/
√
M

/* Compute bsign: */

5 bsign = b

/* Add sign(b[M ]) to the last entry: */

6 bsign[M ] += sign(b[M ])

7 Initialize B ∈ RM×M

/* Fill columns of B: */

8 B[:, 1] = b

9 B[:, 2 :M ] = −(IM + bsignbsign
⊤
/(||b||+ 1))[:, 1 :M − 1]

10 Initialize Λb ∈ RM×M

/* Fill Λb: */

11 Λb[1, 1] = 1

12 Λb[1 :M − 1, 1 :M − 1] = Ω

13 return U = BΛbB
⊤
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Algorithm 3: etkf(πX0 ,U ,f ,h, K, {y⋆
k}1:K) recursively assimilates the observa-

tions {y⋆
k}1:K with the ETKF, where K is the number of assimilation steps, πX0 is

the initial state distribution, and U is a mean-preserving rotation generated from

time to time, see Algorithm 2, otherwise set to IM . Adapted from Le Provost et

al. [3].

Input: πX0 , U ∈ RM×M , f : Rn → Rn, h : Rn → Rd, the number of time steps

K ∈ N, and the observations to assimilate {y⋆
k}1:K .

Output: {Xa
k}1:K

/* Generate M samples from πX0: */

1 xa,i
0 ∼ πX0 for i = 1, . . . ,M

2 for k = 1 : K do

/* Compute the ensemble forecast: */

3 xf,i
k = f(xa,i

k−1) +w
i
k−1 for i = 1, . . . ,M

/* Compute the prior mean and anomaly matrix: */

4 xf
k = 1

M

∑M
i=1 x

f,i
k , X ′f,i

k = (xf,i
k − xf

k)/
√
M − 1, for i = 1, . . . ,M

5 Zf,i
k = h(xf,i

k ), for i = 1, . . . ,M (compute the observations)

/* Compute mean of the observations yf
k: */

6 yf
k = 1

M
Zf

k1

/* Construct the matrices S and G: */

7 S = V
−1/2
k (Zf

k − yf
k1

⊤)/
√
M − 1

8 G = (IM + SS⊤)−1

/* Construct the vectors δ and c: */

9 δ = V
−1/2
k (y⋆

k − yf
k), c = GS

⊤δ

/* Update the ensemble: */

10 Xa
k = x

f
k1

⊤ +X ′f
k (c1

⊤ +
√
M − 1G1/2U)

11 return {Xa
k}1:K
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Algorithm 4: lowrankenkf(y⋆,h, {xi}, rX, rY) assimilates the data y⋆ in the prior

samples {x1, . . . ,xM} with the low-rank EnKF. The integers rX and rY determine

the rank of the projected subspace in the state space and in the observation space,

respectively.

Input: y⋆ ∈ Rd, h : Rn −→ Rd, M samples {xi} from πX, ranks rX and rY

Output: M samples {xi
a} from πX | Y(· | y⋆)

1 for i = 1 :M do

2 zi ← h(xi), ϵi ∼ N (0d,ΣE)

/* Compute a Monte-Carlo approximation of CX and CY. */

3 ĈX ← 1
M−1

∑M
i=1

(
Σ

−1/2
E ∇h(xi)Σ

1/2
X

)⊤ (
Σ

−1/2
E ∇h(xi)Σ

1/2
X

)
4 ĈY ← 1

M−1

∑M
i=1

(
Σ

−1/2
E ∇h(xi)Σ

1/2
X

)(
Σ

−1/2
E ∇h(xi)Σ

1/2
X

)⊤
/* Perform a low-rank eigendecomposition of ĈX and ĈY: */

5 V rX ←− eigenvector(ĈX, rX), U rX ←− eigenvector(ĈY, rY)

6 for i = 1 :M do

7 x̆i ←− V ⊤
rX
Σ

−1/2
X (xi − µ̂X), z̆

i ←− U⊤
rY
Σ

−1/2
E (zi − µ̂Z), ϵ̆

i ←− U⊤
rY
Σ

−1/2
E (ϵi − µ̂E)

8 for i = 1 :M do

9 AX̆[:, i]←− 1√
M−1

(
x̆i − µ̂X̆

)
, AZ̆[:, i]←− 1√

M−1

(
z̆i − µ̂Z̆

)
10 AĔ [:, i]←− 1√

M−1

(
ϵ̆i − µ̂Ĕ

)
/* Solve the linear system for b̆ ∈ RrY×M: */

11 (AZ̆A
⊤
Z̆
+AĔA

⊤
Ĕ )b̆ = U

⊤
rY
Σ

−1/2
E (y⋆1⊤

M − (EZ +EE)),

/* where EZ ∈ Rd×M and EE ∈ Rd×M are the ensemble matrices of the samples {zi}

and {ϵi}. Lift result to the original space: */

12 for i = 1 :M do

13 xi
a ←− xi +Σ

1/2
X V rX

(
AX̆A

⊤
Z̆

)
b̆[:, i]

14 return {xi
a}
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APPENDIX B

Mean transport of inertial particles in viscous

streaming flows

B.1 Introduction

Recent developments in the fields of biomedical diagnosis, pollutant treatment, drug delivery,

and microfluidics—to name a few—have motivated the need for efficient and fast methods

to transport, cluster or trap inertial particles (small finite-sized particles) in a fluid envi-

ronment. The particles transported, such as drugs or biological cells, are fragile, and any

direct contact creates undesirable stresses on the particles that may cause irreversible dam-

age. Though no method of transport can avoid applying stress, non-contact methods can

provide opportunities to distribute the stresses over the particle more uniformly, reducing

the possibility for damage. Techniques using ultrasound [70, 71], lasers [72, 73], magnetic

effects [74], dielectrophoresis [75] or inertial hydrodynamics effects [76, 77] have emerged as

some of the most effective methods to manipulate inertial particles.

Another attractive possibility for non-contact particle transport is based on the notion

of viscous streaming. A streaming flow is a weak but large-scale steady response of the

fluid to oscillatory forcing, brought about through the Reynolds stresses imparted on the

fluid. Numerous studies have shown the promises of viscous streaming to transport and trap

inertial particles. Classical works have focused on viscous streaming created by a cylinder

oscillating weakly in rectilinear motion [78, 79, 80, 81]. Lutz et al. [82] have been able to trap

particles in steady streaming eddies arranged in a clover-shaped pattern around a cylindrical
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post fixed in a micro-channel through which fluid was forced in oscillatory fashion. Chong

et al. have identified the mechanisms that underlie this trapping [81], and have shown that

an arrangement of multiple cylinders forced in sequence with oscillatory motions can be

used to construct desired inertial particle trajectories [2]. Abadi et al. [83] have recently

designed a closed-loop controller for the position and velocity of inertial particles inside a

two-dimensional square box using steady streaming mechanisms. The control actuation is

made through four vibrating piezoelectric beams inclined at 45◦ at each corner of the square

box. Very good performance was reported: inertial particles were successfully forced to carry

out a variety of prescribed motions, such as eight-branch star trajectories or the transport of a

constellation of inertial particles without changing the distance between them. Parthasarathy

et al. [84] have recently shown that, in a arrangement of two cylinders in a fluid, in which

one is actively moved and the other is passively transported by the resulting flow, the passive

cylinder’s transport is enhanced by adding oscillations to the active cylinder’s motion. The

additional oscillations generate a streaming flow.

Rigid walls are not the only means for introducing oscillatory motion into the fluid

to enact a streaming flow. For example, recent works have shown the potential of using

streaming flows created by bubbles undergoing oscillatory volume and shape changes [85, 86,

87, 88]. Two reasons motivate the use of bubbles for actuation of viscous streaming: Larger

amplitude motions can be created compared to rigid bodies, resulting in quadratic increase of

the streaming speed [86]. Also, the bubble–fluid interface allows non-zero tangential velocity,

leading to less deceleration of inertial particles in the vicinity of bubbles’ surface compared

to rigid surfaces.

All of these works have shown the potential for particle manipulation using viscous

streaming. In order to devise means of strategically exploiting this mechanism for transport,

it is important to have a mathematical model for predicting the particle trajectories effected

by a given geometry and forcing modality. Chong et al. [81] showed that the dynamics of

isolated inertial particles in viscous streaming flows are well captured by the Maxey–Riley
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(MR) equation [89] with the addition of a Saffman lift force [90]. (We refer readers to

Michaelides [91] for a review and history of various transport equations for inertial parti-

cles.) In particular, this approach accounts for the local velocity of the fluid in the particle

transport, but the particle’s influence on the fluid motion can be reasonably neglected.

This prediction of particle transport is challenged by the underlying mechanisms respon-

sible for the transport. A viscous streaming flow has two well-separated time scales: a fast

oscillatory scale tf and a slow one associated with the steady streaming ts [81, 92]. Consider a

weakly oscillating cylinder with angular frequency Ω, amplitude of oscillation A and radius R

such that, ϵ = A/R≪ 1, as is typical in streaming applications. The fast time scale is set by

the period of oscillation, tf = T ∼ 1/Ω. Inertial particles are transported at the characteristic

(drift-corrected) speed of the streaming flow, Vs = ϵΩA, in a streaming cell of characteristic

size δDC . Chong et al. [81] have shown that this streaming cell size remains δDC = O(R) over

a wide range of Reynolds number Re = ΩR2/ν. Hence, the characteristic convective time of

an inertial particle around a streaming cell is of order ts ∼ δDC/Vs ∼ R/(ϵΩA) = 1/(ϵ2Ω).

Therefore the slow time scale ts is a factor 1/ϵ2 larger than the fast scale, i.e., ts = tf/ϵ
2 with

ϵ ≪ 1. An inertial particle of small radius a ≪ R has a third, even faster time scale: the

time of viscous response when its velocity deviates from that of the fluid. The ratio of this

scale to that of the oscillations is measured by the Stokes number, denoted in this paper by

τ , which is proportional to Rea2/R2.

Indeed, in a viscous streaming flow, a particle is continuously wiggling around its mean

trajectory at the fast time scale and translating at the slow time scale. In order to discern

long-time behaviors of inertial particles in viscous streaming flows, simulations must be

carried out over several transport time scales, i.e., several multiples of ts, and consequently,

several thousands of oscillation cycles. Since the oscillatory motion of the fluid—occurring

on the fast time scale—has non-negligible influence on the particle transport, the simulations

of both the particle transport and the governing equations in the fluid must ostensibly be

well-resolved temporally at the scale tf . Even with the one-way coupling described above, a
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full simulation of a single particle trajectory is computationally expensive when carried out

in this manner.

Clearly, the primary desire is to predict the slow-timescale (i.e, ‘mean’) trajectory of

the particle and to seek only the averaged influence of the fast-timescale on this trajectory.

In this work, we seek to provide a framework for accelerated prediction of inertial particle

trajectories in this fashion. We are not the first to pursue such a strategy. It should be noted

that Thameem et al. [92] and Agarwal et al. [93] have proposed a time-scale separation of the

Maxey–Riley equation to derive equations resolved at the slow time scale. However, their

approach is restricted to a purely radial velocity field, periodic in time at leading order (in

powers of ϵ) and steady at second order.

The approach we propose in this work is also focused on oscillatory fluid velocity fields,

though it allows for slow transient changes of such fields, and places no restrictions on the

field’s spatial structure. We will use the framework of the Generalized Lagrangian Mean

(GLM) theory of Andrews and McIntyre [94] to form an expression for the Lagrangian

mean velocity field, wL, associated with an underlying oscillatory velocity field w. This

velocity field, defined as the time-average velocity of the particle passing through any field

point, is a cornerstone of our method: once we have it, we can directly compute the mean

particle trajectories, using numerical time steps equal to several oscillation periods. The

field wL explicitly filters the fast fluctuating component from the mean motion of particles;

we will show that the fast component’s effect is confined to the Stokes drift. To the best of

our knowledge, no previous work has used these tools to efficiently solve the Maxey–Riley

equation in a setting of disparate time scales.

We will form Lagrangian mean velocity fields for fluid particles as well as inertial parti-

cles. The underlying velocity field for inertial particles will be obtained by an asymptotic

expansion of the Maxey–Riley equation in small Stokes number for the deviation of the par-

ticle’s velocity from that of the fluid. In so doing, we will extend an approach used previously

by Maxey [95] and Ferry and Balachandar [96]; here, we will add the important Faxén cor-
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rection to these earlier treatments. This approach allows us to obtain the inertial particle’s

velocity from that of the fluid at little extra cost. The problem will be further simplified by

applying a separate asymptotic expansion in small oscillation amplitude ϵ. Truncating this

expansion at second order, we will arrive at a compact and self-consistent form of equations

for the fluid velocity field and the subsequent mean transport of fluid and inertial particles.

The remainder of the paper is organized as follows. The description of the Maxey–Riley

equation and their expansion in small Stokes number will be presented in Section B.2. The

equations for the Lagrangian mean velocity field, their simplification in small-amplitude

viscous streaming flow, and the algorithm for the fast Lagrangian-averaged transport of

particles will be discussed in Section B.3. Applications of our algorithm to the cases of one

and two weakly oscillating cylinders will be presented in Section B.4. Concluding remarks will

follow in Section B.5. We would also like to note that all of the computational tools developed

for this paper are available at https://github.com/jdeldre/ViscousStreaming.jl.

B.2 Basic transport for inertial particles

In this work, we are interested in computing the trajectory an inertial particle immersed in

an incompressible flow. As discussed in Section B.1, we assume that the coupling between

the fluid motion and the particle trajectory is one way: the particle’s motion is determined by

the local fluid velocity and generates a disturbance field that is unmodified by the proximity

to oscillating bodies. Thus, the fluid’s time-varying velocity field, u(x, t) can be assumed

known—for example, through analytical or computational means—without regard for the

particle’s presence, and our focus is only on obtaining the particle trajectory in this field.

The goal of this section is to obtain the general transport equations for inertial particles in a

form conducive for the next section, in which we distill this transport into the mean motion.

The fluid’s density and kinematic viscosity are denoted by ρf and ν, respectively. The
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fluid velocity field, u, is governed by the incompressible Navier–Stokes equations,

∂u

∂t
+ u · ∇u = −∇p+ 1

Re
∇2u, ∇ · u = 0, (B.1)

in which all quantities (including pressure, p) have been non-dimensionalized by the uniform

fluid density ρf and the characteristic length and time scales of the flow. These scales are

established by the driving mechanism: The fluid is bounded on the interior by impenetrable

surfaces that are either stationary or oscillating with angular frequency Ω—generically, we

will refer to these surfaces as ‘oscillators’. Thus, the characteristic time scale is taken as 1/Ω

and, in the case of a cylindrically-shaped oscillator, the characteristic length taken as the

cylinder’s radius, R. The flow Reynolds number, Re, is thus defined as

Re =
ΩR2

ν
. (B.2)

In viscous streaming applications, we anticipate Re = O(10). We assume that the fluid is

initially quiescent and that the flow is generated in an infinite domain in which the fluid

remains at rest at infinity,

u(x, 0) = 0, u→ 0, |x| → ∞, (B.3)

though this condition at infinity can easily be replaced with, e.g., a steady uniform flow or

stationary enclosing walls. The form of the boundary conditions on the oscillators will be

discussed later in the paper. For now, we simply note that the displacement amplitude of

the oscillations, A, will be assumed small compared with the size of the oscillator. The ratio

of these scales is denoted by ϵ, so we are assuming that

ϵ ≡ A/R≪ 1. (B.4)

Inertial particles are assumed to be rigid spheres with density ρp and radius much smaller

than the oscillating object, e.g., a ≪ R. The particle’s mass is denoted by mp = 4πρpa
3/3,

and the displaced fluid mass by mf = 4πρfa
3/3 = mpρf/ρp. We will denote the particle
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trajectory by xp(t) and associated velocity by V p(t):

dxp

dt
= V p(t). (B.5)

It will be assumed that the particle starts each trajectory at the same velocity as the sur-

rounding fluid,

V p(t0) = u(xp(t0), t0). (B.6)

It is also useful to define the particle ‘slip’ velocity, V p(t)−u(xp(t), t), the particle’s velocity

relative to the surrounding fluid, which is initially zero by virtue of the initial condition (B.6).

B.2.1 The Maxey–Riley equation with Saffman lift

We will assume throughout this work that the Reynolds number redefined on the particle

radius is small,

Re(a/R)2 ≪ 1. (B.7)

In this work, for the transport of an inertial particle, we use a form of the Maxey–Riley

(MR) equation [89] that includes the Saffman lift [90], as was done by Chong et al. [81] or

Ferry and Balachandar [96]. If we neglect gravity, the trajectory of an inertial particle is

governed by

mp
dV p

dt
= 6πρfνa

(
u(xp(t), t) +

1

6
a2∇2u(xp(t), t)− V p(t)

)
+mf

Du

Dt

∣∣∣∣
xp(t)

− 1

2
mf

[
dV p

dt
− Du

Dt

∣∣∣∣
xp(t)

− d

dt

(
1

10
a2∇2u(xp(t), t)

)]

+ 2
√
3πν1/2a2ρfLB

[
u(xp(t), t) +

1

6
a2∇2u(xp(t), t)− V p(t)

]
+ 2
√
3πν1/2a2ρfLS [u(xp(t), t)− V p(t)] .

(B.8)
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Two different time derivatives act on field quantities in equation (B.8): by d/dt and D/Dt

we denote, respectively, the time derivative operators following the particle and the fluid:

d

dt
=

∂

∂t
+ V p(t) · ∇ (B.9)

D

Dt
=

∂

∂t
+ u · ∇. (B.10)

The set of terms on each line of the right-hand side of equation (B.8) represent, respec-

tively, the Stokes drag, the fluid acceleration force, the added mass effects, and finally, the

Basset history force and the Saffman lift, with linear operators respectively defined as

LB[f ](t) =

√
3

π

∫ t

−∞

df/dτ√
t− τ dτ, (B.11)

LS[f ](t) =
3
√
3J∞

2π2
√
|ω(xp(t), t)|

f(t)× ω(xp(t), t), (B.12)

where ω = ∇ × u denotes the associated vorticity of the fluid flow at the location of the

particle. For the coefficient J∞, we use J∞ = 2.255: the limit of the lift coefficient function

J(η) as the ratio η = Re
1/2
G /Rep goes to infinity. (For details on this function J , see [97, 98].)

The Basset history force is a memory term due to the unsteady diffusion of vorticity from

the particle during its traveling history. Several studies [99, 100] have shown that it can be of

significant importance. We retain the term for now for the sake of generality and comparison

with previous works, and our scaling analysis below will not reveal it to be clearly smaller

than other terms. However, in the context of particle transport in viscous streaming, Chong

et al. [81] have shown empirically that this term is of negligible importance in the current

parameter regime and can safely be ignored. We will do the same later in the paper.

Equation (B.8) also contains the Faxén corrections (the Laplacian of the fluid velocity

field), which were shown by Chong et al. [81] to be crucial in regions of high shear to cause

the particle’s trajectory to deviate from that of the fluid. That study also demonstrated the

important role of the Saffman lift in ultimately trapping the inertial particle at the center of

a viscous streaming cell, observed in previous experiments by, for example, Lutz et al. [82].
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Several comments are in order regarding our inclusion of the Saffman lift. This term

represents an inertial influence of the fluid when the particle moves relative to the fluid in

a region of shear, generating a force on the particle perpendicular to the motion. As such,

it is non-linearly dependent on the fluid velocity field. The parameter regime of viscous

streaming described in this paper justifies the inclusion of such lift, as we will discuss below.

However, it does not strictly meet all of the conditions under which Saffman derived the

expression for lift [90]. That derivation relies on the particle lying in a region of shear that is

nearly uniform well beyond a region of length LS = (ν/G)1/2 (the so-called ‘Saffman length’),

where G is the norm of the local velocity gradient; such shear uniformity enables Saffman’s

rigorous singular perturbation treatment [90].

In streaming flows, the particle encounters significant shear within the Stokes boundary

layer generated around the oscillating body, a region of thickness δs = (ν/Ω)1/2. The ratio of

the Saffman length to the Stokes boundary thickness should be small to justify the singular

perturbation treatment. Here, that ratio is (Ω/|ω|)1/2, where |ω| is representative of the

instantaneous vorticity in the Stokes layer. In the limit of vanishing oscillation amplitude ϵ,

this ratio increasingly fails to abide by the required separation of scales. But this limit is of

little practical relevance, as the flow itself vanishes in this limit. In the scenarios described

later in this paper, the ratio is of order 1: still not quite sufficient for the strict separation

of scales. As Saffman’s own analysis of a particle in steady Poiseuille flow showed [90],

this separation of scales is difficult to meet even in many simpler flows. Thus, we interpret

the mathematical form here as a representative model of the phenomenon, albeit not fully

justified mathematically. We believe that the Saffman lift has served as a useful model in

this capacity for many other studies.

Aside from our relaxation of proper scale separation, the other conditions of Saffman’s

derivation [90]—placed on the various Reynolds numbers—are satisfied in the parameter

regime considered in this paper. The shear Reynolds number, ReG = Ga2/ν, describes the

squared ratio of the particle size to the Saffman length, and should be much smaller than
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unity. This Reynolds number is approximately ReG ∼ Re(a/R)2|ω|/Ω, and thus satisfies its

condition by virtue of (B.7). The ‘slip’ Reynolds number, Rep = a|V p−u|/ν, is more difficult

to ascertain a priori, but based on the analysis that follows in this paper (demonstrated in

equation (B.62)), the slip velocity is dominated by the Faxén correction and approximately

a2|∇2u|. In the Stokes layer, where this correction is most active, the Laplacian of the fluid

velocity scales like |ω|/δs, and thus Rep ∼ Re3/2(a/R)3|ω|/Ω, also much less than unity.

Using these scalings, the requirement that Res/Re
1/2
G ≪ 1 is also met.

For arbitrary shear flows, different generalizations of the Saffman lift can be found in

the literature: Tio et al. [101] used expressions involving coordinate-independent fluid shear

rate and the norm of the particle slip velocity. However, the form used here, due to Ferry

and Balachandar [96], is written in a manner that is linearly dependent on the particle

velocity. These two formulations are not equivalent for arbitrary shear flows but reduce to

the same formula with Saffman’s assumptions. In unreported tests, only minor differences

in the transport of inertial particles were observed between these two formulas. We retain

the second formulation whose linearity in the slip velocity will be helpful for deriving the

asymptotic expansion of the Maxey–Riley equation.

It should also be emphasized that the particle transport model omits other effects—

namely, hydrodynamic interactions with the wall of the oscillator—that are undoubtedly

significant in some parts of the trajectory. In particular, both the tangential and normal

components of the particle’s motion would be slowed relative to the fluid during encounters

with the wall, providing an additional mechanism for the particle to be pushed toward

the center of the streaming cell. Rather than compute the full hydrodynamics of these

encounters, however, we rely instead on capturing similar effects in a manner that does not

require a full coupling with the fluid flow field: the Faxén correction to generate a relative slip

velocity, the Saffman lift to effect transverse motions, and kinematic constraints to prevent

penetration.

Overall, these simplifying assumptions, while omitting some of the physics of the particle
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transport, are made in order to obtain a model that can predict long-range trajectories in

extended arrays of oscillators while preserving the basic mechanisms of particle trapping.

B.2.2 The inertial particle velocity field

The velocity V p(t) is clearly a quantity associated with a particle-centered (i.e., Lagrangian)

perspective. However, our treatment in this paper benefits greatly from changing our view

of particle motion into an Eulerian perspective: the velocity and other quantities observed

at a fixed position x are those attributable to the inertial particle currently occupying that

position. That is, we define the inertial particle velocity field v(x, t) such that

dxp

dt
= v(xp(t), t) = V p(t), (B.13)

By differentiating this expression, it is clear that the time derivative of v following the

particle trajectory (B.9) is identical to dV p/dt.

This definition v(x, t), and much of the remainder of this section, draw closely from the

work of Ferry and Balachandar [96]. We briefly review the treatment here, and adapt it to

account for the Faxén corrections, which were neglected by Ferry and Balachandar [96] but

which we expect are non-negligible in the current context. It is important to note that the

integral curves (i.e., pathlines) of this time-varying inertial particle velocity field describe

every possible inertial particle trajectory. The flow map of this field, once obtained, provides

a comprehensive solution for inertial particle transport, an extremely valuable result.

However, it should also be noted that the definition of v depends on our choice of initial

condition for the particle: with a different choice, a different particle would generally occupy

a position x at time t. Ferry and Balachandar [96] reason that the trajectories for two

different choices of initial condition converge toward each other over time, losing memory of

their different initial velocities.

From hereon, we will presume that independent and dependent variables have been non-

dimensionalized by the characteristic time and length scales of the flow. In our viscous
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streaming context, it is reasonable to take these, respectively, as the fast flow time scale—the

inverse of the oscillation frequency, 1/Ω—and the radius R of an oscillating cylinder. Thus,

for example, u and v will henceforth denote the fluid and inertial particle velocity fields

scaled by ΩR, x will be the position scaled by R, and time t will represent the dimensional

time multiplied by Ω.

Using the definitions presented above and some simple manipulation, we can rewrite

(B.8) in a more compact dimensionless form:

dv

dt
=
1

τ
(u+ qF − v) + β

Du

Dt
+
β

5

dqF
dt

+

√
β

τ
(LB [u+ qF − v] + LS [u− v]) , (B.14)

in which, for convenience, we have defined a Faxén correction velocity,

qF =
1

6
(a/R)2∇2u. (B.15)

We have also defined two dimensionless parameters: a density ratio parameter, β, and a

particle Stokes number, τ , respectively, as

β ≡ 3

2ρp/ρf + 1
, τ ≡ Ωa2

3βν
. (B.16)

This latter parameter represents the ratio of the characteristic response time of the Stokes

drag on the particle to the fastest characteristic flow time scale.

B.2.3 Asymptotic expansion of the Maxey–Riley equation in small Stokes num-

ber

The two parameters introduced in equation (B.16), β and τ , each play an important role

in dictating the behavior of the inertial particle motion. For example, β = 1 represents a

neutrally buoyant particle, which, in the absence of the Faxén corrections, remains on the

same trajectory as a fluid particle. The Stokes number, τ , is proportional to Re(a/R)2, which

we have already assumed to be small in (B.7), and thus make the same assumption for the

Stokes number: τ ≪ 1. In the absence of Faxén corrections, we would expect this small
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Stokes number to quickly penalize deviations of the inertial particle’s velocity from that of the

surrounding fluid (and to render the governing equation (B.14) numerically stiff). Maxey [95]

used this argument to develop an asymptotic expansion in τ for the inertial particle velocity’s

departure from that of the fluid. Later, Ferry and Balachandar [96] extended this expansion

to include all of the terms that we have included in the MR equation (B.14) except for the

Faxén correction.

In regions of shear, the Faxén correction cannot be neglected a priori. For example, in the

Stokes boundary layer formed by an oscillating cylinder, whose thickness scales like 1/
√
Re,

one expects qF ∼ Re(a/R)2u, and thus, qF ∼ τu. For the sake of keeping our analysis in this

section general, we will not yet explicitly invoke this scaling of qF. It is important simply

to note that the Faxén correction is at least comparable to the other dominant terms in

the analysis. We will include the Faxén correction only as qF, unadorned with scaling; once

its scaling in τ is determined, its placement in the asymptotic expansion can be adjusted

accordingly. We will do so for the case of an oscillating cylinder.

Note that this inclusion changes the apparent target velocity at vanishing τ from u to

u+ qF, and also changes the lowest power of τ in the expansion from τ to τ 1/2, as we shall

see. Adapting the approach of Maxey [95] and Ferry and Balachandar [96], we write the

inertial particle velocity field in terms of the fluid velocity field as

v = u+ qF + τ 1/2q. (B.17)

The deviation of the particle velocity from the target is now borne by the third term on the

right-hand side of (B.17). A derivation of the resulting equation for q is presented in the

appendix of Le Provost et al. [35]. In the course of that derivation, they use the expected

scaling of qF in the Stokes layer surrounding the oscillating cylinder, and furthermore, neglect

the Basset memory term as consistent with the analysis of Chong et al. [81]. The resulting

expression is

v = u+ τa− τ 3/2β1/2LS [a] +O(τ 2), (B.18)
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in which the fluid acceleration force, a, has been defined as

a ≡ (β − 1)
Du

Dt
+

1

2

β

Re
∇2u. (B.19)

Equation (B.18) forms one of the cornerstones of our proposed method for accelerated

simulation of inertial particle transport, since it provides a velocity field that describes this

transport everywhere, entirely in terms of the local fluid velocity and its derivatives. However,

before we proceed to the distillation of this equation into fast and slow time-scales, we make

a few observations. First, it is important to note that the equation reduces to that of Ferry

and Balachandar [96] and Haller et al. [102] when the Faxén correction velocity is omitted.

In that situation, the acceleration force (B.19) reduces to

a = (β − 1)
Du

Dt
. (B.20)

We can observe from this reduced form that, without the Faxén corrections, the inertial

particle’s motion can only depart from that of the fluid if the particle is not neutrally buoyant

(i.e., if β ̸= 1). But the retention of these Faxén correction terms into the expanded field

emphasizes the observations made by Chong et al. [81]: When the particle is neutrally

buoyant or nearly so, deviation of the particle’s motion from that of the fluid is solely

brought about by the Faxén correction velocity, and the particle’s subsequent dynamics are

dominated by the Saffman lift. In equation (B.18), these observations are confirmed to be

the two dominant disturbances from the fluid velocity. For lighter or heavier particles, the

dynamics are effected by a mixture of this influence with that from fluid acceleration.

B.3 Development of the equations for mean particle transport

In the previous section, we obtained a velocity field for inertial particle transport that derives

from the velocity field of the fluid. The trajectories of both fluid and inertial particles are

described by the general transport equation

dxp

dt
= w (xp(t), t) , xp(0) = x0, (B.21)
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where the generic velocity field w can be interpreted as either the fluid velocity field u or

the inertial particle velocity field v. In the current discussion it is not important to make

the distinction, and we will use the generic term ‘particle’ to describe either a fluid particle

or an inertial particle.

In the flows associated with u or v, the trajectories contain a mixture of fast (fluc-

tuating) and slow (mean) scales. The main objective of this work is to seek the mean

trajectories of such particles directly, skipping over the integration of the fast scales to the

extent possible. This challenge to derive equations resolved only at the slower (or larger)

scales exists in many realms of physics, e.g., turbulence or climate modeling. The classical

Reynolds decomposition [103] of a fluid quantity (such as velocity or pressure) into a mean

and a fluctuating component provides the basic machinery for developing such equations

from an Eulerian perspective, i.e., for fluctuations observed from a fixed spatial location.

Because we are interested in this paper in seeking the slow-scale transport of individual par-

ticles, we cannot perform a standard Eulerian average of the Maxey–Riley equation; rather,

we need to average it in a Lagrangian sense, i.e., for a fixed particle label. Following the

work of Andrews and McIntyre [94, 104], we will introduce a Reynolds-like decomposition

of the motion of a particle into a slow (mean) Lagrangian component and a fast (fluctuat-

ing) component. In the context of Lagrangian fluid stability, Bernstein [105] first argued

that the fluctuating component of the motion of a particle can be derived from an Eulerian

disturbed displacement field, ξ(x, t), evaluated at the mean Lagrangian position of the par-

ticle. This led to Generalized Lagrangian Mean (GLM) theory, developed by Andrews and

McIntyre [94, 104], who successfully applied the theory to wave problems in the contexts

of stratified and rotating fluid flows. Holm analyzed the GLM theory from a geometric

point of view and derived the Lagrangian averaged Navier-Stokes-alpha (LANS-α) model for

turbulent flows [106, 107, 108].

We will use GLM theory to provide a framework in which to analyze particle transport

into fast and slow components. The basic aspects of the theory’s application are outlined
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in Section B.3.1. Like the Reynolds-averaged Navier–Stokes equations, GLM theory still

leaves the treated equations with a closure problem, analogous to the one encountered in

the Reynolds-averaged Navier-Stokes equations. However, rather than seek to replace the

influence of the fastest scales with a model, we instead account for their influence by explic-

itly computing the disturbed displacement field, ξ. Following the work of Holm [108], we

formulate a simplified form of the equation for ξ for small disturbances. In Section B.3.2,

we will clarify this equation via an asymptotic expansion in the small oscillation amplitude

that underpins viscous streaming theory.

B.3.1 Development of the Lagrangian mean field equations

Given a time-varying Eulerian field f(x, t) of arbitrary tensor rank, we can define the fol-

lowing averaging operator

f(x, t) =
1

T

∫ t

t−T

f(x, t′)dt′. (B.22)

In anticipation of the emergence of two timescales, it is important to note that this operator is

intended to average the fast scales and leave the slow scales unaffected. Following Holm [108],

we could formally define f with distinct dependencies on time in these two separate scales.

By expanding the averaging operator in the ratio tf/ts ≪ 1, it is straightforward to show

that the operator’s leading-order behavior preserves the slow behavior of f , provided that

ts ≪ T ≪ tf . In the case of strictly periodic fast scales, it is sufficient for T to be the period

of oscillation or some integer multiple thereof.

We will refer to the field defined in this fashion as the Eulerian mean field. The averaging

operator has the following properties:

• Linearity: For constant scalars a, b and two Eulerian fields f and g, af + bg = af + bg

• Idempotence: f = f

It also commutes with spatial and time derivatives, but importantly (and famously in the
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Navier–Stokes equations), does not commute with the advection operator: That is,

u · ∇f ̸= u · ∇f. (B.23)

In this paper, we seek the mean paths of fluid or inertial particles, and the mean variation

of quantities along those paths. The Eulerian mean, assessed at a fixed location, is not

the appropriate measure of average in this context. However, it can be used to ‘induce’ a

definition of a Lagrangian mean, (·)L: that is, an average of a field taken along the trajectory

of a particle, for fixed Lagrangian label. This definition, and several useful tools associated

with it, are provided by the Generalized Lagrangian Mean (GLM) theory of Andrews and

McIntyre [94]. In this section, we present a basic outline of the Generalized Lagrangian Mean

theory of Andrews and McIntyre [94].

Consider a flow map, X(x0, t), illustrated in Figure B.1, from material coordinates (i.e.,

Lagrangian label) x0 in a reference space X0 to a location in a space-time configuration space

Xt× [0,∞). In this latter space, each slice Xt represents an evolved form of X0 at some later

time t; we assume that Xt = X0 at t = 0. We denote the velocity field associated with this

map as w, and will refer to the infinitesimal bit of material associated with x0 as a ‘particle’.

We will use the notation w0(x0, t) to denote the velocity w in its Lagrangian form, i.e.,

w0(x0, t) ≡
∂X(x0, t)

∂t
. (B.24)

As is typical, we regard the flow map as invertible, so that we can uniquely associate a

Lagrangian label with any fixed location. To distinguish from later terminology, we will

refer to the location X(x0, t) as the actual location of the particle x0 at time t, and the

velocity w0(x0, t) as the particle’s actual velocity.

We can always think of X(x0, t) as a composition of two maps,

X(x0, t) =X
ξ(Y (x0, t), t), (B.25)

as illustrated in Figure B.1. The first, Y (x0, t), maps x0 in X0 to some location in another
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configuration space Yt × [0,∞) at time t; and the second,

Xξ(x, t) ≡ x+ ξ(x, t), (B.26)

maps from that location in the slice Yt at t to the actual location in the corresponding slice

Xt at time t.

We will require that Yt coincides with X0 at t = 0, just as Xt does. In other words, the

two spaces are identical at the initial instant. At all times, we assume that the mapping

Y (·, t)—like X(·, t)—is invertible. Also, just as X(·, t) is associated with the velocity field

w, the flow map Y (·, t) is generated by its own velocity field, W , i.e.,

W 0(x0, t) ≡
∂Y (x0, t)

∂t
. (B.27)

From the definition (B.26) and its use in the composition (B.25), it is clear that ξ(x, t)

provides an additive correction from the location provided by mapping Y (x0, t) to the actual

location of the particle, provided by X(x0, t):

ξ(Y (x0, t), t) =X(x0, t)− Y (x0, t). (B.28)

If we differentiate this with respect to time (keeping the Lagrangian label fixed), then by the

chain rule we obtain

∂

∂t
ξ(Y (x0, t), t) +W 0(x0, t) · ∇ξ(Y (x0, t), t) = w0(x0, t)−W 0(x0, t), (B.29)

which relates the velocity fields, w and W , associated with each flow map.

For GLM theory and our later applications, it will be very useful to regard ξ as an

Eulerian vector field, ξ(x, t). To make sense of this interpretation, let us make use of the

inverse mapping x0 = Y −1(x, t), uniquely associating any fixed location x in Yt to the

particle currently residing there at time t via the mapping Y (·, t). Then relation (B.28) can

be written as

ξ(x, t) =X(Y −1(x, t), t)− x, (B.30)
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showing that, at each point x, ξ(x, t) provides the actual location of the particle relative

to x itself. In fact, it is clear from (B.25) that Xξ(x, t) = X(Y −1(x, t), t): the two sides

of the equality just represent two different routes to the same map, as can be observed in

Figure B.1. Indeed, through this map formalism, any field quantity ϕ can be viewed from

one of three perspectives: as an Eulerian field quantity in the configuration space Yt, ϕ
ξ(·, t);

as the ‘actual’ Eulerian field in Xt, ϕ(·, t); or as a Lagrangian (i.e, particle-centered) field,

ϕ0(·, t), associating ϕ to particles in X0. They are related by

ϕξ(x, t) ≡ ϕ(Xξ(x, t), t) ≡ ϕ0(Y
−1(x, t), t). (B.31)

Similarly, we can rewrite the velocity relation (B.29) as

∂

∂t
ξ(x, t) +W (x, t) · ∇ξ(x, t) = wξ(x, t)−W (x, t), (B.32)

where we have defined the Eulerian velocity field, W (x, t) ≡ W 0(Y
−1(x, t), t), associated

with the flow map Y (·, t). By wξ(x, t), we denote the actual velocity of the particle currently

mapped to x by Y (·, t):
wξ(x, t) ≡ w0(Y

−1(x, t), t). (B.33)

Equation (B.32) shows that this velocity differs from W (x, t) by a correction described by

the rate of change of the ξ field measured along the Y (·, t) trajectory passing through x at

time t.

With this formalism in place, following Andrews and McIntyre [94], we can define the

Lagrangian mean (·)L of any field ϕξ(x, t) as equal to the Eulerian mean along the trajectory

followed by x in the configuration space Xt under the map Xξ(x, t) ≡ x+ ξ(x, t):

ϕ(x, t)
L ≡ ϕ(x+ ξ(x, t), t) ≡ ϕξ(x, t). (B.34)

Thus far, we have not specified anything about the map Y (·, t) and its associated field

ξ(x, t). GLM theory assigns ξ(x, t) the role of a fluctuation field, and furthermore, asserts

that it has zero Eulerian mean and that the velocity field W (x, t) is its own mean.

ξ(x, t) = 0, W (x, t) =W (x, t). (B.35)
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We can immediately note that, by taking the mean of equation (B.26) and applying the first

of these axioms, we get

Xξ(x, t) = x. (B.36)

That is, the location x in Yt × [0,∞) maps on average to the location x in Xt × [0,∞).

Furthermore, by taking the Eulerian mean of the relationships (B.30) and (B.32), the axioms

(B.35) immediately imply other important relationships between the configuration spaces

Yt× [0,∞) and Xt× [0,∞): The trajectory in Yt× [0,∞) described by the flow map Y (x0, t)

is the mean of the actual trajectoryX(x0, t) in Xt× [0,∞), so that (B.28), rewritten trivially

as

X(x0, t) = Y (x0, t) + ξ(Y (x0, t), t), (B.37)

represents a Reynolds decomposition of the trajectory, and ξ can be called the disturbed

displacement field; and the velocityW represents the Lagrangian mean of the actual velocity

w,

W (x, t) = w(x, t)
L
, (B.38)

or simply, W = wL. From hereon, we will refer to Yt × [0,∞) as the mean configuration

space.

If we define the Lagrangian mean material derivative as the rate of change while moving

along a mean trajectory,
DL

Dt
≡ ∂

∂t
+wL · ∇, (B.39)

and the Lagrangian disturbance velocity as the difference between the actual velocity and

the Lagrangian mean velocity,

wl ≡ wξ −wL, (B.40)

then we can rewrite the velocity relationship (B.32) as

DLξ

Dt
= wl. (B.41)
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This equation provides the basis for generating the actual trajectory of the particle while

following the particle’s mean trajectory. It is useful to note that the Lagrangian mean of

this equation is identically zero.

The analysis of other fields follows from the definitions thus far. For a general field ϕ, if

we differentiate the relationship (B.31) with respect to time and apply the chain rule, then,

with the help of (B.32), it can be shown that

DLϕξ

Dt
(x, t) =

(
Dϕ

Dt

)ξ

(x, t) ≡
(
∂ϕ

∂t
+w · ∇ϕ

)
(Xξ(x, t), t). (B.42)

In other words, the rate of change of ϕξ measured while moving along the mean trajectory is

identical to the rate of change measured while moving along the actual trajectory. That is, no

information has been lost while following a different trajectory. The Reynolds decomposition

of this field follows naturally from the Lagrangian mean,

ϕξ(x, t) = ϕ
L
(x, t) + ϕl(x, t). (B.43)

In particular, the Lagrangian disturbance velocity is defined by vl(x, t) ≡ vξ(x, t) −
vL(x, t) [35].

B.3.1.1 The basic equations for mean particle transport

Using the notation for GLM theory defined in the previous section and illustrated in Fig-

ure B.1, our objective is to seek the mean flow map Y (·, t) for particular values of the

particle label x0. The equation generating this trajectory for a specific particle x0 follows

directly from equation (B.27). When we substitute the velocity with the Lagrangian mean

velocity using relation (B.38), we obtain the kinematic equation for a mean particle trajec-

tory:
dxL

dt
= wL(xL(t), t), xL(0) = x0, (B.44)

where we have used the shorthand notation xL(t) ≡ Y (x0, t) to denote the mean trajectory

of a single particle, x0, and explicitly included its initial condition. By definition, the
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Figure B.1: Schematic of flow maps used in this work. Xt and Yt represent slices of the

configuration spaces Xt × [0,∞) and Yt × [0,∞) at some instant t. Illustrations of parti-

cle trajectories are shown as colored curves (though strictly, these trajectories would proceed

along the time axis of the respective space).

Lagrangian mean velocity field requires averaging while following the actual trajectory of

the particle in Xt × [0,∞), obtained by adding the local disturbed displacement, ξ(xL(t), t)

to the trajectory in Yt × [0,∞). The disturbed displacement field can be generated from

the velocity field via its transport equation (B.41), which we rewrite here with relevant

definitions for the purpose of elucidating the underlying (and thus far, exact) computational

problem:

∂ξ

∂t
= −wL · ∇ξ +wξ −wL,

ξ(x, 0) = 0, (B.45)

wξ(x, t) = w(x+ ξ(x, t), t),

wL(x, t) =
1

T

∫ t

t−T

wξ(x, t′) dt′.

We have included here the initial condition on ξ, which was established by requiring that

Yt = Xt = X0 at t = 0. Figure B.2 illustrates the relationships between the mean and actual

trajectories.
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x0

t = 0

wξ(xL, t)

xL

ξ

wL(xL, t)

Actual trajectory

Mean trajectory

Figure B.2: Mean (green) and actual (blue) particle trajectories with initial position x0.

The position xξ is the actual position whose mean is x. Adapted from Bühler et al. [1].

The set of equations (B.44) and (B.45) does not obviously achieve our goal of ‘skipping

over’ the fast (oscillatory) time scales of the flow to accelerate the solution for mean trajec-

tories. However, it is important to observe that the coupled equations (B.45) are Eulerian in

the mean configuration space Yt× [0,∞). Furthermore, when they are supplied with the ac-

tual velocity field, w, they can be solved a priori to generate the (slowly-varying) Lagrangian

mean field wL(x, t), either simultaneously with w or in a subsequent procedure. With this

Lagrangian mean velocity field in hand, the slow particle trajectories are easily obtained

with no further regard for the fast (oscillatory) timescale by integrating equation (B.44).

In Section B.3.2.2, we will clarify features of the equations (B.45) that can be used to

simplify our task. In particular, we will make the assumption that the disturbed displacement

field ξ is small everywhere (compared with the characteristic length scale of the flow, e.g.,

R) and exploit this assumption to reduce the equations to a more computationally tractable

form.
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B.3.1.2 A note on the disturbed displacement field on moving surfaces

In the context of this paper, the problems we wish to solve involve flows whose fastest

time-scales are generated by impenetrable surfaces undergoing motion consisting entirely of

rapid disturbances. The partial differential equation in (B.45) for the disturbed displacement

field, ξ(x, t), is already closed—it purely describes transport and has no need of boundary

conditions. However, it is nonetheless useful to reconcile the surface motion (which we will

assume is prescribed) with our definition of the mean configuration space Yt × [0,∞) and

the field ξ(x, t); intuitively, we should expect that the surface motion is somewhat simpler

in this space. In fact, we will restrict our attention in this work to surfaces that are at rest in

the mean configuration space, and consider the implications of this restriction. After that,

we will discuss its rationale.

Let us consider a subset of the particles in X0 to comprise a reference surface, Sb0. This

surface represents the interface between the body and the surrounding fluid at t = 0. We

can also interpret Sb0 as comprising multiple disconnected surfaces in case there are many

bodies. The (actual) subsequent motion of any surface particle x0 ∈ Sb0 is described by a

mapXb(x0, t), and the collection of all such points is denoted by Sb(t). For the velocity field

w, whether it represents the fluid or inertial particle motion, we will require that the no-slip

and no-penetration conditions are both enforced at the surface. (It should be apparent from

the inertial particle velocity field (B.18) that this field does not satisfy these conditions even

if the fluid velocity does. We will augment the field with a constraint, to be discussed in

Section B.3.3.) We thus insist that X(x0, t) =Xb(x0, t) for all x0 ∈ Sb0, which ensures that

w0(x0, t) =
∂Xb(x0, t)

∂t
(B.46)

for all such particles.

We also define the map Y b(x0, t) and insist that it, too, agrees with the overall map to

Yt × [0,∞) for all particles in Sb0. But, in line with our assumption that the surface is at
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rest in the mean configuration space, we require that this map is the identity:

Y (x0, t) = Y b(x0, t) ≡ x0, x0 ∈ Sb0. (B.47)

Applying our Lagrangian form of the Reynolds decomposition (B.37) to particles in Sb0, we

can relate these surface maps to the disturbed displacement field:

ξ(x0, t) = ξb(x0, t) ≡Xb(x0, t)− x0, x0 ∈ Sb0. (B.48)

where we have defined a surface displacement field, ξb(x, t) for particles in the surface. Note

that this relationship also ensures that ξ(x0, 0) = 0, as desired.

To express this relationship in the usual Eulerian form of the field ξ, we will define

Sb as the fixed position of the surface in the mean configuration space. By assumption,

Sb = Sb0, and clearly, the coordinates of any fixed location on this surface x ∈ Sb are equal

to the particle label there, x = x0. Thus, we obtain the following simple expression for the

disturbed displacement field at points on the surface:

ξ(x, t) = ξb(x, t) ≡Xb(x, t)− x, x ∈ Sb. (B.49)

Applying the GLM axiom that the mean of ξ vanishes identically, it is clear that requiring

the surface to remain at rest in the mean configuration space is equivalent to requiring that

ξb = 0, or equivalently,

Xb(x, t) = x. (B.50)

That is, the location x ∈ Sb, as intuitively expected, is identically the mean position of this

moving surface point on Sb(t) in the full configuration space Xt× [0,∞), and ξ(x, t) entirely

describes its motion in that space. It should also be clear that, being stationary in the mean

configuration space implies that the Lagrangian mean velocity, wL(x, t), is exactly zero at

all points on the surface:

wL(x, t) = 0, x ∈ Sb. (B.51)
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In the specific case of the fluid velocity field, w → u, the no-slip boundary condition

(B.46) can be rewritten in terms of the surface displacement field ξb as

u(x0 + ξb(x0, t), t) =
∂ξb(x0, t)

∂t
, x0 ∈ Sb0, (B.52)

where ξb = 0 and x0 coincides with the mean location of the surface point on Sb(t).

As an example of an admissible surface motion, relevant for the results we will show later

in this work, let us consider a rigid body in oscillatory translational motion. Then we can

write the full surface map for any surface label x0 ∈ Sb0 as

Xb(x0, t) = xc(t) + (x0 − xc0) , (B.53)

where xc(t) is the time-varying position of the centroid of the body, and xc(0) = xc0 is that

centroid’s initial location. Applying the restriction to this motion, the surface point must

remain fixed at x0 in the mean configuration space, and, to ensure that this truly is the

mean space,

xL
c = xc0. (B.54)

That is, the centroid must start at its mean position. The resulting disturbed displacement

field on the mean surface is described by

ξ(x, t) = ξb(x, t) ≡Xb(x, t)− x = xc(t)− xc0, x ∈ Sb. (B.55)

In other words, when the surface is in rigid translation, the disturbed displacement field is

uniform. It is straightforward to conceive of other admissible surface motions that would

generate streaming flows, including oscillatory rigid rotation or time-varying deformations

about a stationary mean surface.

We should observe that our restriction (B.50) precludes combinations of faster (fluctu-

ating) motions with slower motions that have non-zero mean. We make this restriction to

avoid ambiguity involving our definition of the Eulerian mean (B.22) when applied in the

mean configuration space at fixed positions on or near the surface. If such a surface were
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moving in this space, then it would move relative to this fixed averaging position during the

averaging interval, obscuring the decomposition of the surface’s motion. Of course, by con-

struction, any motion in the mean space is presumed to occur on a much slower time-scale

than the averaging interval. In fact, if we rely on two independent measures of time, slow

and fast—as, for example, by Holm [106] and others—then the surface can be treated as

stationary with respect to the time averaging over the fast scales. However, we have chosen

to use only a single measure of time, primarily because the time-scale associated with the

slow motion effected by viscous streaming only presents itself a posteriori. Nevertheless, the

viscous streaming flows we focus on in this work do not contain such slow surface motions.

In passing, we note that there is nothing in the analysis of this section that prevents us

from applying it to surfaces formed from bubble (liquid–gas) interfaces. However, in that

case, one would have to allow for mean transport within the mean surface. That is, although

Sb would still be stationary, Y b(·, t) would no longer be the identity, but would allow for

mean transport on the surface.

B.3.2 Asymptotic reduction for small oscillation amplitude

The full governing equations describing the mean transport of fluid and inertial particles

have now been specified. These include the equations for the velocity fields themselves—

the Navier–Stokes equations (B.1) for the fluid velocity field u and equation (B.18) for the

inertial particle velocity field v induced by this fluid motion, and the initial condition and

boundary conditions on the fluid velocity (B.3) and (B.52). They also include the equations

for mean transport in these velocity fields, including (B.45) for the Lagrangian mean wL of

either of the velocity fields, and equation (B.44) for the mean transport xL(t) of any particle,

fluid or inertial. Collectively, they represent a map from a given surface displacement field

of the oscillator(s), ξb, to the resulting mean transport of the particles in the fluid.

In this section, we aim to simplify the calculation of this mean transport by exploiting

the small amplitude, ϵ = A/R ≪ 1, of the oscillations described by ξb. We will help our
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cause by exposing the oscillation amplitude with a unit form, Ξb, of the surface displacement

field:

ξb(x, t) = ϵΞb(x, t), (B.56)

where Ξb(x, t) = O(1). With the driving mechanism proportional to ϵ, we expect that all

other quantities, including either velocity field embodied by w, and its associated disturbed

displacement field, ξ, are themselves proportional to ϵ at leading order (and we do not expect

flow instabilities to emerge in this parameter regime that might change this fact). Thus, we

will expand all such quantities in powers of ϵ,

w = ϵw1 + ϵ2w2 +O(ϵ3), ξ = ϵξ1 + ϵ2ξ2 +O(ϵ3), (B.57)

where w, as usual, could be either the fluid velocity u or the inertial particle velocity v. We

will also use the same expansion for the pressure, p (which, more precisely, represents the

pressure disturbance from ambient).

B.3.2.1 Reduction of the Navier–Stokes equations

Let us first introduce the asymptotic expansions for u and p into the Navier–Stokes equations

(B.1). We can also do the same for the boundary condition (B.52) and expand the velocity

in a Taylor series about ϵ = 0. Equating powers of ϵ, it is easy to show that we get

∂u1

∂t
− 1

Re
∇2u1 +∇p1 = 0, ∇ · u1 = 0, (B.58)

and the associated initial condition u1(x, 0) = 0 and boundary conditions

u1(x, t) =
∂Ξb(x, t)

∂t
, x ∈ Sb, u1 → 0, |x| → ∞. (B.59)

At the next level, we get

∂u2

∂t
− 1

Re
∇2u2 +∇p2 = −u1 · ∇u1, ∇ · u2 = 0, (B.60)

with initial condition u2(x, 0) = 0 and boundary condition

u2(x, t) = −Ξb(x, t) · ∇u1(x, t), x ∈ Sb, u2 → 0, |x| → ∞. (B.61)
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Equations (B.58)–(B.61) describe the dominant fluid behavior in a viscous streaming

problem for a given unit surface motion, Ξb(x, t). It is important to note that the equations

for u1 and u2 are both unsteady Stokes equations and linear. The non-linear effects enter

the second-order equation, as a forcing term involving only the first-order flow field. The

boundary conditions are applied at the mean location of the cylinder surface. Because of this,

the second-order boundary condition contains a correction to account for the application of

the first-order boundary condition at this mean location rather than its actual location. In

fact, as will be revealed in equations (B.67) and (B.73) below, the boundary conditions on

u1 and u2 ensure that fluid particles initially on the surface remain on the surface and that

the Lagrangian mean fluid velocity uL will remain zero on the mean surface to O(ϵ3).

There are two significant advantages gained by this asymptotic treatment of the governing

equation. First, the geometry of the problem, including that of the oscillators, is fixed, which

greatly improves the computational efficiency of the solution procedure; and second, the flow

field generated at each asymptotic level has unit order of magnitude, which reduces the effects

of numerical error on the solution.

With this expansion of the fluid velocity in small amplitude, the inertial particle velocity

field, v, provided by equation (B.18), can be asymptotically expanded in the same manner,

though with the inclusion of an intermediate term at ϵ3/2 due to the Saffman lift, v =

ϵv1 + ϵ3/2v3/2 + ϵ2v2. It is straightforward to show that the leading contributions are given

by

v1 = u1 + τa1, (B.62)

and

v3/2 = −τ 3/2β1/2 3
√
3J∞

2π2
√
|ω1|

a1 × ω1, v2 = u2 + τa2, (B.63)

where ω1 = ∇× u1 and where the leading-order acceleration forces a1 and a2 are given

by

a1 = (β − 1)
∂u1

∂t
+

1

2

β

Re
∇2u1 (B.64)
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and

a2 = (β − 1)

(
∂u2

∂t
+ u1 · ∇u1

)
+

1

2

β

Re
∇2u2. (B.65)

In order to unify our later discussions on averaging the trajectories of fluid and inertial

particles under the generic velocity w, we take some liberty in asymptotic notation by

lumping ϵ3/2v3/2 + ϵ2v2 into a single second-order term, ϵ2v2, where

v2 = −ϵ−1/2τ 3/2β1/2 3
√
3J∞

2π2
√
|ω1|

a1 × ω1 + u2 + τa2. (B.66)

Though there is some awkwardness in this notation with a negative power of ϵ, there should

be no ambiguity, and the O(ϵ3/2) term is easily recovered in every expression that follows.

With the advantages presented by the mean configuration space, it is worth wondering

whether we might formulate and solve governing equations directly for uξ in this space to

provide a more direct path to the Lagrangian mean velocity field. Such equations have been

derived, for example, by Andrews and McIntyre [94, 104]. These equations introduce new

quantities, such as the pseudo-momentum density field, −ul · ∇ξ, that couple the disturbed
displacement field into the equations. We have chosen instead to solve for u in the actual

configuration space and then follow the procedure described in Section B.3.2.2 to relate

this velocity (or the inertial particle velocity) to its corresponding Lagrangian mean field.

Ultimately, after asymptotic expansions in ϵ have been used to reduce the equations, one

can show that both procedures reduce to the same result.

B.3.2.2 Reduction of the Lagrangian mean velocity field

Now let us apply our asymptotic expansions (B.57) to the particle transport equations. We

start with the equation for wξ in (B.45) and carry out a Taylor expansion about ϵ = 0. We

get

wξ(x, t) = ϵw1(x, t) + ϵ2 (w2(x, t) + ξ1 · ∇w1(x, t)) +O(ϵ3). (B.67)

It should be noted that this expanded form of wξ relates the Eulerian forms of the actual

velocity field in our two spaces: between the value at fixed x in the mean configuration space
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and its value at the mean location to which x is mapped in the actual configuration space.

We can then substitute this expanded form of wξ into the definition of wL in (B.45) and

easily get an expanded form of this mean velocity:

wL = ϵw1 + ϵ2
(
w2 + ξ1 · ∇w1

)
+O(ϵ3). (B.68)

This shows that, at leading order, the Lagrangian mean velocity at some location x in Yt is

equal to the Eulerian mean of the leading-order velocity at the same location in Xt. At the

next order, however, an additional term appears: the Eulerian mean velocity is modified by

the Stokes drift velocity, wd ≡ ξ1 · ∇w1. When the fluid velocity field is purely oscillatory

(i.e., without transient behavior), it can be easily verified that the leading velocity has zero

Eulerian mean, w1 = 0, for both types of particles. Thus, the Stokes drift has an essential

role in determining the mean trajectories of particles. For inertial particles, where w is taken

to be v, the Saffman lift in (B.18) generates non-zero Eulerian mean at smaller order (ϵ3/2)

than for a fluid, but the Stokes drift still cannot be neglected in such a case.

Now let us complete the asymptotic analysis by substituting the expansion of ξ and both

expanded forms of the velocities into the equation for ξ in (B.45) and equating like powers

of ϵ. At the leading two asymptotic levels, we get

∂ξ1
∂t

= w1 −w1, (B.69)

∂ξ2
∂t

= w2 −w2 −w1 · ∇ξ1 + ξ1 · ∇w1 − ξ1 · ∇w1. (B.70)

First, let us note that at each asymptotic level these equations preserve the zero mean of ξ,

thereby ensuring that we remain within the constraints of GLM theory. Second, we observe

that we can obtain a completely self-consistent algorithm for generating the Lagrangian

mean velocity field by retaining only the equation for ξ1. In other words, for a given pair of
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asymptotic velocity fields w1 and w2, we can solve

∂ξ1
∂t

= w1 −w1, (B.71)

wd ≡ ξ1 · ∇w1, (B.72)

wL(x, t) = ϵw1(x, t) + ϵ2 (w2(x, t) +wd(x, t)) , (B.73)

to generate a Lagrangian mean field, wL, valid to O(ϵ5/2). This reduced form only requires

the leading Eulerian velocity fluctuation, w1−w1 to obtain the required disturbed displace-

ment field, and thence, the Stokes drift’s important contribution, wd, to the Lagrangian

mean velocity field for particle transport.

It is worth making a few other notes on the Lagrangian velocity before we close this

section. To support the first two notes, let us first develop an alternative form of the Stokes

drift (B.72). If we substitute (B.71) for w1 and remember that ξ1 = 0, then this Stokes drift

can be written as ξ1 · ∇∂ξ1,t, where ξ1,t denotes ∂ξ1/∂t. Using our definition of the Eulerian

mean in (B.22), we can integrate this form of the Stokes drift by parts:

wd =
1

T

∫ t

t−T

ξ1 · ∇ξ1,t′ dt′ =
1

T
[ξ1 · ∇ξ1]tt−T −

1

T

∫ t

t−T

ξ1,t′ · ∇ξ1 dt′ (B.74)

with T the averaging interval. The first term on the right-hand side of this equation is

identically zero when the field ξ1 is periodic and T is an integer multiple of the period. For

transient problems, in which T is taken to be much larger than the oscillatory time-scale,

the term does not strictly vanish. However, it should be noted that, had we formally defined

separate fast and slow measures of time, then T would be much longer than this fast time

scale (while the slow time is effectively held fixed). The term would vanish in this limit. For

this reason, we argue that it can be neglected in general cases without consequence. Thus,

the Stokes drift can also be written as wd = −ξ1,t · ∇ξ1, or, alternatively, as a combination

of the two forms, with the velocity substituted back in,

wd =
1

2

(
ξ1 · ∇w1 −w1 · ∇ξ1

)
. (B.75)

This latter form of the Stokes drift has several merits, as we discuss below.
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Mean trajectories in an incompressible velocity field. In the case when the velocity

field w is incompressible, ∇ · w = 0, and the Lagrangian mean of this field is steady,

∂wL/∂t = 0, then we can obtain mean particle trajectories directly from the contours of a

Lagrangian streamfunction field associated with wL [109], as we will show here. When w

is divergence-free, then w1 and w2 and their means are, as well. Each of these means can

thus be derived from a streamfunction field, which we will denote by ψ1 and ψ2, respectively

(where, e.g., w1 = ∇×ψ1). It is less obvious that the Stokes drift term, wd = ξ1 · ∇w1 can

be derived from a streamfunction, as well. However, when the velocity field w1 is divergence-

free, then by (B.71), so are ξ1 and its time derivative, and the right-hand side of (B.75) can

thus be written as ∇ · (ξ1w1)/2−∇ · (w1ξ1)/2. After applying a standard vector identity

on this latter form, the Lagrangian mean of an incompressible periodic velocity field can be

written as

wL = ∇×ψL
, (B.76)

where the Lagrangian streamfunction, ψ
L
, is defined as

ψ
L
= ϵψ1 + ϵ2

(
ψ2 +ψd

)
, (B.77)

and we have defined a Stokes drift streamfunction, ψd, as

ψd =
1

2
w1 × ξ1. (B.78)

Numerical computation of the Lagrangian mean velocity field. In our present

viscous streaming context, the assumptions necessary to derive the trajectories from a La-

grangian streamfunction are only fulfilled by the fluid velocity field. The inertial particle

velocity field is not divergence-free due to the Saffman lift, and we must compute trajecto-

ries by numerically integrating the mean transport equation (B.44). For most problems, this

numerical integration must make use of a wL field numerically computed from grid velocity

data. This grid-based approximation inevitably introduces error, and the specific form of

this error can be highly deleterious. The error is most clearly revealed in the cases in which
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we have the Lagrangian streamfunction available to verify our result—that is, cases in which

wL is divergence-free. Most contours of the Lagrangian streamfunction form closed loops,

whereas numerically computed trajectories generally fail to close unless we adopt a numerical

approximation that has certain key properties. In particular, if, for two vector fields a and

b, the underlying approximation satisfies the product rule a · ∇b = ∇ · (ab)− (∇ · a)b in a

discrete sense, and if the discrete divergence vanishes when the continuous divergence does,

then the form of the Stokes drift given by equation (B.75) greatly mitigates the mismatch be-

tween the numerically-computed particle trajectories and the Lagrangian streamlines. Even

when the mean particle trajectories cannot be otherwise obtained from a Lagrangian stream-

function, form (B.75) retains many of its benefits for reducing the accumulated error in the

trajectories.

Reconciliation with surface motion. Finally, it is useful to reconcile equations (B.71)–

(B.73) with the expected behavior of these quantities on the surface Sb at this order of

approximation. Most obviously, the first-order disturbed displacement field ξ1 on this surface

is described by the fluctuating velocity of the moving surface Sb(t) evaluated at its mean

location in the actual space. Furthermore, by (B.51), we restrict the Lagrangian mean

velocity to be exactly zero on Sb. Equation (B.73) shows that this restriction requires that

w1 = 0 at the mean location of the surface in actual space; at second order, it is further

required that

w2 = −wd, (B.79)

which reflects that the Eulerian mean velocity at this mean location is not exactly zero, but

must vary with the displacement of the surface from this location.

B.3.3 Algorithm for Lagrangian averaged transport of particles

With the governing equations now developed and reduced for O(ϵ) oscillations, we can now

summarize the proposed algorithm for computing the fast Lagrangian averaged transport of
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Step 1 Step 2 Step 3

Field computation Particle transport

Compute Eulerian

velocity field w

Compute fields ξ

and wL

Compute mean trajectory

dxL/dt = wL(xL(t), t)

Figure B.3: Overall algorithm for the fast Lagrangian averaged transport of particles.

fluid or inertial particles in viscous streaming flows. The algorithm, illustrated in Figure B.3,

involves three steps. The first step consists of computing the underlying velocity field, w, for

a given surface motion ϵΞb(x, t). If our interest is in fluid particle trajectories, w represents

the fluid velocity field u. This velocity is assembled from u = ϵu1+ ϵ
2u2, using the solutions

of the sequence of unsteady Stokes equations (B.58)–(B.61). In this work, these equations

are solved numerically with the Immersed Boundary Projection Method [17, 30]. For inertial

particles, w corresponds to the particle velocity field v, induced by the fluid velocity u via

the expansion in small Stokes number (B.18). This velocity field’s own asymptotic expansion

in ϵ, where needed, is provided through O(ϵ2) by equations (B.62) and (B.66).

In the second step of the algorithm, the leading-order disturbed displacement field, ξ1,

is computed by integrating equation (B.71), rewritten here for reference:

∂ξ1
∂t

= w1 −w1. (B.80)

In the case of fluid particles, we simply integrate this equation simultaneously with the

Navier–Stokes equations in the first step. For inertial particles, we integrate with a third-

order Runge-Kutta method, using cubic splines to interpolate the underlying time-discretized

velocity field. From this field, the Lagrangian mean velocity field wL is computed from
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equation (B.73) with the Stokes drift calculated with equation (B.75), i.e.,

wL = ϵw1 + ϵ2
(
w2 +

1

2

(
ξ1 · ∇w1 −w1 · ∇ξ1

))
. (B.81)

Finally, in the third step, the Lagrangian mean trajectory of each particle is computed by

integrating the mean transport equation (B.44) from some initial location x0, with a fifth-

order Adams–Bashforth method. We generally use a time step that is 10 times larger than

the period of oscillation. As we observed in Section B.3.1.2, the inertial particle velocity field

(B.18) does not inherently satisfy the no-slip or no-flow-through conditions, even if the fluid

velocity field does. This is also true of the solution from the full Maxey–Riley equation, and

Chong et al. [2] handled the issue by adding a penalty force inspired from lubrication theory

to prevent penetration of inertial particles through the surfaces of oscillators. Here, we use

an alternative approach wherein we augment the transport equation with a constraint that

the particle remain in the region external to the oscillators. The constraint is posed as

Hδ(d(x)) = 0, (B.82)

where d(x) is a signed distance field with respect to the oscillator boundaries—positive in

the interior of the oscillator and negative in the exterior—and Hδ is a smooth Heaviside

function used previously by Li et al. [110], defined as

Hδ(z) =


0 z < −δ,
1
2
(1 + z/δ + π−1 sin(πz/δ)) |z| ≤ δ,

1 z > δ,

(B.83)

where δ is a smoothing distance set equal to the particle radius a for all our simulations.

The constrained system of ordinary differential equations is then solved with the manifold

projection method described by Hairer et al. [111].

For both types of particles, all Eulerian means in the algorithm are computed with the

time average defined in equation (B.22). The averaging interval T is taken to be 10 periods

of oscillation. This ensures that, during transient phases, the interval is long compared
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with the fast time scale but short compared with the trajectory. When the flow reaches a

stationary periodic state, the averaging interval can be reduced without consequence to a

single period of oscillation.

B.4 Results

In this section, we present the results from the application of the particle transport algorithm

to two representative viscous streaming flows. First, in Section B.4.1, we verify that our

asymptotic expansion (B.18) of the inertial particle velocity field in small Stokes number

produces time-resolved trajectories that are accurate when compared with the solution of

these trajectories from the full Maxey–Riley equation (B.8). Then, in Sections B.4.2 and

B.4.3 we investigate the performance of the mean transport algorithm when applied to fluid

and inertial particles, respectively, compared with the fully time-resolved integration of these

trajectories, and, in the case of fluid particles, with the Lagrangian streamlines.

The two viscous streaming flows we consider in this work each consist of a flow gener-

ated by a rigid cylinder of radius R in weak oscillatory translation with angular frequency

Ω. An isolated cylinder in such motion creates four streaming cells arranged along 45 de-

gree rays [112]; in arrays of multiple cylinders, the cells are still present, though somewhat

deformed by the presence of other cylinders. Inertial particles tend to become trapped in

these streaming cells, as evident from previous work [82, 81, 2]. Our focus in this paper is

primarily to confirm the various aspects of the proposed transport algorithm. The first case

consists of a single cylinder, while the second case consists of two cylinders that oscillate

in sequence: one cylinder oscillates while the other remains stationary, then, after a certain

interval, they exchange their roles. In this second case, we are particularly interested in the

second cylinder’s ability to draw an inertial particle originally trapped near the first cylinder

towards one of its own streaming cells.

For both cases, the surface displacement ξb of any oscillator is described entirely by the
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Figure B.4: Diagram of the oscillating cylinder (right), and a time sequence illustrating the

repeated oscillation cycles.
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Figure B.5: Configuration and oscillation sequence with two cylinders adapted from the work

of Chong et al. [2].

motion of the cylinder’s centroid, as expressed in equation (B.55). In our investigations of

this section, the centroid motion is purely sinusoidal, xc(t) = xc0+ϵ sin t ex, where ϵ = A/R.

(We continue to non-dimensionalize all quantities in this section with Ω and R, as discussed

just before equation (B.14).) In terms of the unit form of this surface displacement, ξb = ϵΞb,

we can express the motion as

Ξb(x, t) = sin t ex. (B.84)

Throughout, the Reynolds number, Re, is held fixed at 40, and the amplitude, ϵ, for any

oscillator is 0.1. The Stokes number of the inertial particles is set at τ = 0.1 and the particle

density ratio at ρp/ρf = 0.95, which correspond to β = 1.034 and a particle of radius

a/R = 0.088.
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A schematic of the unit surface motion is depicted in Figures B.4 and B.5. The blue dot

represents the position of the centroid of the cylinder, and the blue dashed line depicts the

unit surface displacement applied at points on the fixed cylinder surface. The right diagram

in each figure depicts the manner in which we generate flow fields over long time horizons.

After each change in the oscillator motion, the flow does not become statistically stationary

until viscous diffusion has had sufficient time to act. Once this transient phase has ended and

the flow’s mean has become stationary, the solution over the last oscillation cycle is re-used

as many times as necessary to generate the flow field’s history. In the conditions specified

above, we find that the flow becomes statistically stationary in the region within 6 radii of

the oscillator after around ns1 = 20 periods of oscillation. We have two such transient phases

in the case of two oscillators. As Figure B.5 shows, these oscillators are arranged 6 radii

apart along the same axis on which they oscillate, and the periodic flow solution developed

by each oscillator is repeatedly recycled as needed in the respective intervening periods. For

particle trapping purposes in this conditions, we find that these recycling intervals require

nf1 − ns1 = 25000 periods and nf2 − ns2 = 40000 periods, respectively.

Throughout this investigation we will rely on fluid velocity fields obtained by numerical

solution of the unsteady Stokes equations with a procedure based on the immersed boundary

projection method with lattice Green’s function [17, 30]. The validation of this procedure,

including its convergence to the analytical solution in the case of a single cylinder in oscilla-

tory translation, has been confirmed but is omitted from this work for brevity. We note that

the simulations reported here are carried out on a Cartesian grid with spacing ∆x/R = 0.02

and a time-step size Ω∆t/(2π) = 0.004, or 250 time steps per period, to satisfy the viscous

stability constraint. The computational domain in both cases, [−6R, 6R] × [−6R, 6R], is
relatively more compact than required by other numerical methods due to the use of the

lattice Green’s function and associated viscous integrating factor [30].
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Figure B.6: Time-resolved inertial particle trajectories from the Maxey–Riley equation

(black) and the asymptotic expansion in small Stokes number (green) for particles initially

located at x0 = (2, 2) (left column) and x0 = (1, 3) (right column). The top row (a,d) shows

the trajectories over the first 20 oscillation periods, and the middle (b,e) and lower (c,f) rows

depict the time histories of the x and y components, respectively, sampled once per period.
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B.4.1 Small Stokes expansion of inertial particle velocity field

In this section, we assess the accuracy of the asymptotic expansion of the inertial particle

velocity field in small Stokes number, developed in equation (B.18). For evaluation purposes,

we compare the trajectories of inertial particles transported by this velocity field, with the

trajectories of the same particles with velocity obtained from the full Maxey–Riley equa-

tion (B.8). It should be noted that we are not yet assessing the mean transport algorithm in

this section, so our comparison is made of the full time-resolved trajectory, computed from

(B.13) for both velocities. As discussed earlier in the paper, the Basset term is neglected

in both forms of velocity. For the numerical integration of these trajectories, we use a fifth

order Adams–Bashforth method with time step Ω∆t/(2π) = 0.004.

For the case of a single oscillating cylinder, we simulate two trajectories: one for a

particle starting from x0 = (2, 2) and tracked for 10000 periods of oscillation, and another

for a particle released from x0 = (1, 3) and tracked for 25000 periods. Both particles are

released after the flow has reached its stationary periodic state. The comparisons of these

trajectories are shown in Figure B.6. The small portions of the full trajectories shown in

the top row exhibit the characteristic fluctuations of these trajectories about a mean. To

reveal this mean behavior more clearly, we sample these trajectories only once per cycle

in the middle and lower rows, with the history of each component depicted in a separate

plot. These plots exhibit the trapping behavior: both particles converge toward a fixed point

inside the streaming cell along the 45-degree ray.

The plots in Figure B.6 show that the asymptotic expansion in small Stokes number has

very accurately preserved the behavior of the Maxey–Riley equation. Though small errors

accumulate over time, the trajectories apparently agree well even after 25000 periods. Ta-

ble B.1 reports a quantitative measure of this comparison, with error defined as the difference

of the asymptotically-approximated trajectory components from those of the Maxey–Riley

trajectory at the same instant, normalized by the current radial distance from. The error
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x0 error after 1 period(%) tf/T error at tf (%)

(2, 2) (−1.19× 10−5, 8.77× 10−5) 10000 (−6.91,−1.11)
(1, 3) (1.29× 10−4, 2.04× 10−5) 25000 (−0.693,−0.736)

Table B.1: Relative errors on particle position, after 1 period and at the final time tf , in two

different inertial particles trajectories predicted by the small Stokes number expansion.

remains small throughout, and the final trapping location is predicted with less than one

percent error.

Now, let us validate our small Stokes number expansion on the transport of inertial

particles in the two-cylinder case. Here, we release particles just after the initiation of

motion of the left cylinder. This case is potentially more challenging due to the transient

behavior of the flow after each oscillator’s motion is initiated. The results in Figure B.7,

which depicts the full trajectory sampled once per period for a particle released from (−2, 3),
show that the particle is first trapped near the center of a streaming cell near the left cylinder

at (x, y) = (−1.98, 1.03); and after the right cylinder starts its own motion, the particle is

eventually drawn to a new trapping location at (x, y) = (1.98, 1.03). It should be noted that

this problem requires the no-penetration constraint described in equation (B.82) when the

inertial particle approaches the right oscillator. As observed in Figure B.7, the particle is

drawn toward this oscillator along the axis of symmetry. Without the explicit enforcement of

this constraint the particle would spuriously pass across the oscillator surface. Instead, the

particle remains offset from the oscillator by a small distance set by the smoothing parameter

δ in this constraint and is quickly drawn into an orbit that spirals toward the trapping point.

Throughout this sequence, the asymptotically-approximated trajectory agrees well with the

Maxey–Riley trajectory, with error less than 0.01 percent after the first transient phase. The

final percentage error in the trapping location, after 65000 cycles, is (1.76×10−2, 1.19×10−2).

142



-3 -2 -1 0 1 2 30

1

2

3

4

x/R

y/R

Figure B.7: Trajectory of an inertial particle initially located at x0 = (−2, 3) over 65000

periods of oscillation. Trajectories from the Maxey–Riley equation (black) and small Stokes

number expansion (green) are both sampled once per period.

B.4.2 Mean fluid particle trajectories

In this section, we verify our algorithm for computing mean particle trajectories by applying

it to fluid particles. In the first case, we compute trajectories from the fluid velocity field

generated by the single oscillating cylinder after it has achieved periodic behavior. As we

discussed in Section B.3.2.2, the mean trajectories of fluid particles are equivalently derived

from the contours of a Lagrangian streamfunction field, ψ
L
, in equation (B.77). This al-

ternative approach provides a natural target for verification. Examples of this comparison

are shown in Figure B.8 for two different particles, both of whose mean trajectories have

been integrated with a time step size of 10 periods. The agreement is very good, and im-

portantly, the trajectories generated by the algorithm are closed after each orbit to within

small numerical error.

In Figure B.9 we compare the mean trajectory of the particle x0 = (2, 2) with the full

time-resolved trajectory. This latter trajectory is obtained from the same (numerically-
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Figure B.8: Lagrangian mean trajectories (magenta circles, spaced by 30 periods) generated

for fluid particles started at x0 = (2, 2) and x0 = (1, 3) (denoted by the larger grey circle),

compared with the Lagrangian streamlines, depicted as black lines. (Other Lagrangian

streamlines are shown in light grey.) The black region shows the mean position of the

cylinder, and the lighter shaded region in the vicinity of the cylinder shows the range of

displacement of the cylinder over one oscillation cycle.
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computed) fluid velocity field, but by integrating the unsteady fluid velocity with 250 time

steps per period and cubic spline interpolation of the Cartesian grid values. The full tra-

jectory reveals the oscillations incurred by the particle as it orbits about the streaming cell.

The mean trajectory from the algorithm displays the expected behavior, passing through

the first point in each cycle, as shown in the small section of trajectory in Figure B.9(b). In-

deed, when the full trajectory is sampled once per cycle (starting with its initial position), as

shown in Figure B.9(c,d), the mean trajectory agrees well with it even after 10000 oscillation

periods, corresponding to nearly 6 orbits.

In the second case, we use the configuration of two cylinders. As a target of comparison,

we release a particle from x0 = (−1, 3), near the left cylinder, after statistically stationary

behavior has been achieved from the right cylinder’s motion. The comparison with the full

time-resolved trajectory is shown in Figure B.10 and exhibits very good agreement. The

particle is initially drawn toward the right cylinder and achieves a closed orbit about the

streaming cell; each orbit requires approximately 13000 periods of oscillation.

B.4.3 Mean inertial particle trajectories

The previous section demonstrated that our proposed algorithm can successfully predict the

mean trajectories of fluid particles. In this section, we apply the algorithm to inertial particle

transport. Each trajectory computed from this algorithm is compared with the full time-

resolved trajectory obtained from the same inertial particle velocity field, v, derived from

the fluid velocity field after it has reached a periodic state. Thus, the differences between

these trajectories is due entirely to errors in truncating the asymptotic expansion in ϵ in the

construction of the Lagrangian mean velocity in (B.71)–(B.73).

The panels in Figure B.11 depict the predicted mean trajectories of inertial particles

initially released from (2, 2) and (1, 3), respectively, in the single cylinder configuration.

Both exhibit good agreement with the full trajectory, though small errors incurred during

the nearest approach to the cylinder (due to the aforementioned truncation of the expansion
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Figure B.9: (a) Lagrangian mean trajectory (magenta) for fluid particle started at

x0 = (2, 2), compared with the full time-resolved trajectory (blue) for the same particle.

(b) Magnified view of fluid particle trajectory. (c,d) Comparison of x and y components, re-

spectively, of the Lagrangian mean trajectory and the full time-resolved trajectory (sampled

once per cycle).
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Figure B.10: Left: Time resolved fluid particle trajectory, sampled once per cycle (blue), and

Lagrangian mean trajectory (magenta circles, spaced by 30 periods), and Lagrangian mean

streamlines (in light gray) for x0 = (−1, 3), with mean cylinder configurations depicted in

black. Right: Time histories of the x and y components of both trajectories shown in the

left panel.
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in ϵ) tend to push the particle onto a slightly different orbit in each encirclement of the

streaming cell. However, these errors are largely irrelevant, as both the mean trajectory

and the full time-resolved trajectory converge on the same trapping point. This is more

clearly revealed in panels Figure B.12(a,b) and (d,e), which show the respective comparisons

of each coordinate’s history along the trajectory (plotted once per cycle in the case of the

full trajectory). The orbits of the streaming cell predicted by the mean transport algorithm

are slightly faster than those of the full trajectories due to the slightly larger push toward

the center experienced by the particle in the mean algorithm as it passes closest to the

cylinder. To better illustrate the relationship between these two approaches to computing

the trajectories, in Figure B.12(c) and (f) we plot every point along a portion of the full

time-resolved trajectory and overlay the same portion of trajectory predicted by the mean

transport algorithm. The algorithm visually tracks the center of oscillations, but skews

slightly inward as it moves away from the cylinder. It can be observed that, for x0 = (1, 3),

the oscillations along the full trajectory overlap with the right-most configuration of the

cylinder; however, those portions of the trajectory that overlap correspond to the phase in

the cycle when the cylinder is in its left-most configuration.

Most of our results in this paper are focused on a single type of particle, nearly neutrally

buoyant with ρp/ρf = 0.95 (or β = 1.034). To demonstrate the effect of density ratio, we

compare this particle’s mean trajectory in Figure B.13 with that of a very light particle,

with density ratio ρp/ρf = 0.05 (so that β = 2.73). The light particle is affected much more

by the buoyancy term—the first term in (B.19)—which applies a centrifugal motion directed

toward the center of the streaming cell. Interestingly, this contribution is most active during

the intervals when the Saffman lift is not, on the outermost parts of the orbit when the

particle’s trajectory is most curved.

Figure B.14 shows the results for a particle released from (−2, 3) in the two-cylinder

configuration. Over the first 25000 periods, the particle is drawn toward the streaming

cell of the left cylinder during that cylinder’s motion. Then, when the left cylinder stops its
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Figure B.11: Lagrangian mean trajectories (magenta) generated for inertial particles started

at (a) x0 = (2, 2) and (b) x0 = (1, 3) (denoted by the small circle), compared with the

full time-resolved trajectories (blue) of the same particles, sampled once per cycle. The

Lagrangian streamlines of the fluid are shown for reference as light grey lines. The black

region shows the mean position of the cylinder, and the lighter shaded region in the vicinity

of the cylinder shows the range of displacement of the cylinder over one oscillation cycle.

motion and the right cylinder starts to oscillate, the particle is entrained into the cell nearest

to the right cylinder over the ensuing 40000 periods. Both trajectories are predicted well

by the mean transport algorithm. It should be noted that the no-penetration constraint is

active for both the mean and the full trajectory predictions during the interval in which the

particle reaches the right-most cylinder and is drawn along its boundary (at around 30000

periods).

B.4.4 The effect of transient behavior

An important question that overlies the transport of particles in viscous streaming is the

effect of transient behavior in the fluid during changes of oscillator motion. In the examples

we have profiled in this paper, these changes in motion occur suddenly: each cylinder stops
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Figure B.12: Left column: (a,b) Comparison of x and y components, respectively, of the

Lagrangian mean trajectory and the full time-resolved trajectory (sampled once per cycle)

for particle x0 = (2, 2). (c) Lagrangian mean trajectory (magenta) for inertial particle

x0 = (2, 2), compared with the full time-resolved trajectory (blue) for the same particle.

Right column: (d,e) Comparison of x and y components, respectively, of the Lagrangian

mean trajectory and the full time-resolved trajectory (sampled once per cycle) for parti-

cle x0 = (1, 3). (f) Lagrangian mean trajectory (magenta) for inertial particle started at

x0 = (1, 3), compared with the full time-resolved trajectory (blue) for the same particle.
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Figure B.13: Lagrangian mean trajectories generated for inertial particles with ρp/ρf = 0.95

(magenta) and 0.05 (blue) started at x0 = (2, 2).

or starts instantaneously. Such sudden changes provide an unambiguous context in which to

assess the transient effects since the flow is necessarily approaching a well-defined stationary

state when such transient effects will vanish. Some of the sudden change of motion is

communicated everywhere instantaneously through pressure. The transient effects are due

to viscous diffusion, which plays a particularly important role along directions transverse to

the motion. As mentioned earlier, at Re = 40, this diffusion requires (empirically) around

20 oscillation cycles to spread the information about motion changes across the entire region

of interest and thus establish stationary periodic behavior.

In Figure B.15 we examine the effects of transient behavior for two inertial particles over

the first 14 oscillation periods. Each case depicts the inertial particle’s trajectory predicted

by the mean transport algorithm over one time step (in this example only, taken to be 14

periods) during a transient interval of the two-cylinder array—in the first case during the

initial motion of the left cylinder, and in the second case during the newly-initiated motion

of the right cylinder (after the left cylinder has stopped). The full time-resolved trajectory
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Figure B.14: (a) Full time resolved inertial particle trajectory, sampled once per cycle (blue),

and Lagrangian mean trajectory (magenta) for a particle released from x0 = (−2, 3) in the

sequential oscillator configuration. (b,c) Time histories of the x and y trajectory components,

respectively.
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Figure B.15: Time resolved inertial particles trajectories (blue) and mean transport algo-

rithm (yellow) for x0 = (−2.0, 3.0) over the transient regime of the left cylinder (left) and

x0 = (−1.9285, 1.0266) over the transient regime of the right cylinder (right).

is depicted for reference in both cases. It is important to observe first that, as a result

of the pressure-driven part of the flow, each particle’s trajectory achieves approximately

periodic behavior very quickly; the viscous adjustment takes longer. However, the mean

transport algorithm predicts the behavior very well during such intervals: the particle’s final

location at the end of the step agrees well with where it is expected to be along the full

trajectory. Furthermore, the plots show that the influence of transient behavior in the flow

is likely negligible. In 14 periods, neither particle has moved more than 0.02R from its initial

location. Even if we were to ignore the mean transport during this transient interval, our

error would be equivalent to assuming that the particle had started at a negligibly different

location and then been subject to a truly periodic flow.

B.5 Conclusions

In this paper, we have developed simplified equations governing the mean transport of in-

ertial particles in viscous streaming flows. In flows generated by weakly oscillating rigid

surfaces, the motions of fluid and inertial particles exhibit two distinct time scales: a fast
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scale associated with the particle’s oscillatory motion and a slow scale associated with its

mean translation. Previous work by Chong et al. [81] has shown that the mean motion of

small inertial particles in streaming flows is well described by the Maxey–Riley equation aug-

mented with Saffman lift and with Faxén corrections retained, but with the Basset memory

term neglected. Collectively, the Faxén correction and the Saffman lift effect the trapping

of inertial particles in streaming cells generated near the oscillating object.

In this work, we have analyzed such transport with the help of three key tools. First,

we conceived an Eulerian field for inertial particle velocity by asymptotically expanding

the Maxey–Riley equation in the small Stokes number associated with small particles in

moderate Reynolds number flows. This approach follows the earlier works of Maxey [95] and

Ferry and Balachandar [96], but importantly here, retains the essential Faxén term. This

expansion has confirmed the observations made by Chong et al. [81]: A small neutrally-

buoyant particle moves at leading order like a fluid particle, but in regions of shear near the

oscillating body, the Faxén correction alters the particle’s velocity from that of the fluid and

the Saffman lift then causes it to move transversely to the shear, ultimately causing it to

spiral toward a trapping point in the center of a streaming cell.

The second tool has been the Generalized Lagrangian Mean theory of Andrews and

McIntyre [94]. This theory’s exact distinction between the mean and fluctuating parts of a

trajectory has allowed us to construct the Lagrangian mean velocity field, which is ultimately

responsible for a particle’s mean transport. This mean field receives an essential contribution

from Stokes drift, based on an Eulerian disturbed displacement field that accompanies the

time-varying velocity field.

The third important tool has been an expansion in the small oscillation amplitude. This

expansion’s effect on the fluid velocity field was already known from early work on streaming

(e.g., Holtsmark et al. [112]). However, with the availability now of the inertial particle

velocity field and its subsequent decomposition into mean and fluctuating parts, we have

been able to identify the dominant effects of small amplitude oscillation on mean inertial
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particle transport. For fluid particles, the particle trajectories are directly obtained from the

contours of a mean Lagrangian streamfunction field.

By applying the resulting algorithm to two basic oscillator flows, we have demonstrated

that the approximations we have made by truncating these expansions have generally pre-

served the accuracy of the original treatment. Furthermore, the application of these tools

has made a tremendous impact on the efficiency of computing mean particle trajectories.

The previous approach to predicting such trajectories involved two straightforward steps:

first, to compute the fluid velocity field until it reached stationary periodic behavior; and

second, to advance the particle in this oscillatory flow field with the Maxey–Riley equation,

with time steps that sufficiently resolve the fast scales. Each such time step requires the

evaluation of the instantaneous forces on the particle, generally obtained by interpolating

the velocity field and its derivatives from the computational grid. A full trajectory generally

requires O(106) such time steps and is quite slow to compute. The new approach presented

here, which constructs the aforementioned Eulerian fields to develop the Lagrangian mean

velocity field, allows time steps that are O(1000) times larger than the previous approach.

It is also important to stress that, in spite of our examples, no aspect of our treatment

of this problem is limited to two-dimensional oscillators. Indeed, the cost reduction would

be proportionally greater in three-dimensional problems, where the calculations of forces on

full trajectories require more taxing interrogations and calculations of the flowfield data.

We have also shown in this work that the viscous transients in the fluid that arise after

changes of oscillator motion have insignificant effect on mean particle transport. This ob-

servation depends on the distinction of time scales in this regime of Reynolds number and

oscillator amplitude: a particle moves very little in the time it takes for viscous diffusion

to communicate the oscillator’s change of motion, so it is safe to assume that the fluid has

already reached a stationary periodic state. We have not exploited this feature in this paper,

but in a paper currently in development we will demonstrate that, by treating the under-

lying flow field as strictly periodic, we can solve for this flow field and then construct the
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Lagrangian mean velocity of either type of particle entirely in the frequency domain. This

leads to a further substantial gain in computational efficiency.
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