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Feature-based attentional tuning during biological motion

detection measured with SSVEP

Rakibul Hasan
Ramesh Srinivasan

Emily D. Grossman

Performance in detection tasks can be improved by
directing attention to task-relevant features. In this
study, we evaluate the direction tuning of selective
attention to motion features when observers detect
point-light biological motion in noise. Feature-based
attention strategy is assessed by capitalizing on the
sensitivity of unattended steady-state visual-evoked
potential (SSVEP) to the spreading of feature-based
attention to unattended regions of space. Participants
monitored for the presence of a point-light walker
embedded in uniform dynamic noise in the center of the
screen. We analyzed the phase-locked
electroencephalogram response to a flickering random-
dot kinematogram (RDK) in an unattended peripheral
annulus for the 1 s prior to the onset of the target. We
found the highest SSVEP power to originate from
electrodes over posterior parietal cortex (PPC), with
power modulated by the direction of motion in the
unattended annulus. The SSVEP was strongest on trials in
which the unattended motion was opposite the facing
direction of the walker, consistent with the backstroke of
the feet and with the global direction of perceived
background motion from a translating walker. Coherence
between electrodes over PPC and other brain regions
successfully predicted individual participant’s d-prime,
with the highest regression coefficients at electrodes
over ventrolateral prefrontal cortex (VLPFC). The findings
are evidence that functional connectivity between
frontal and parietal cortex promote perceptual feature-
based attention, and subsequent perceptual sensitivity,
when segregating point-light figures from masking
surround.
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Feature-based attention is often implicated as the
mechanism by which we selectively attend to a limited
set of objects in a cluttered environment and effectively
ignore, or filter, distracting items from our awareness.
Feature-based attention acts upon diagnostic elements
in complex scenes to promote detection and recogni-
tion, often without explicit knowledge of the observer
(i.e., Driver et al., 1999; Gosselyn & Schyns, 2001; New,
Cosmides, & Tooby, 2007).

A key example of this is action recognition from
point-light animations, in which selective attention
binds the unique trajectories of body parts into a
perceptually coherent whole (Johansson, 1973; Wit-
tinghofer, de Lussanet, & Lappe, 2012). Although
seemingly effortless, integrating the local elements of
point-light walkers is attentively demanding. Visual
searches for point-light walkers among distractors
proceed serially, as would be expected from a feature-
based conjunction search (Cavanagh, Labianca, &
Thornton, 2001; Mayer, Vuong, & Thornton, 2015),
and discriminating point—light actions suffers in dual-
task paradigms that make demands on the capacity
limited attentional system (Chandrasekaran, Turner,
Bulthoff, & Thornton, 2010). Moreover, point-light
biological motion sequences constructed from rapidly
changing local elements that defeat local motion signals
are readily recognized (Beintema & Lappe, 2002; Tyler
& Grossman, 2011), while those constructed from
complex local elements that discourage binding the
local elements are not readily recognized (Wittinghofer,
de Lussanet, & Lappe, 2010).

While the importance of attention to the recognition
of biological motion is clear from these studies, what
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remains uncertain is the nature of the features onto
which visual attention is directed. Whereas some
computational models argue that biological motion
perception proceeds via a skeletal template matching
algorithm (Beintema & Lappe, 2002; Thurman & Lu,
2013), most studies implicate characteristic dynamic
body movements (Hiris, 2007; Giese & Poggio, 2003;
Saunders, Suchan, & Troje, 2009; Thirkettle, Benton, &
Scott-Samuel, 2009; Thurman, Giese, & Grossman,
2010; Thurman & Grossman, 2008; Troje, 2002). The
two most commonly reported features are the back-
stroke of the feet (Saunders et al., 2009) and the
crossing of joints visible in profile views of locomotion
(Giese & Poggio, 2003; Thurman & Grossman, 2008).
Neurons tuned to point-light actions typically display
selectivity for consistent combinations of body postures
and body dynamics (Oram & Perrett, 1996; Vange-
neugden, Vancleef, Jaeggli, VanGool, & Vogels, 2010;
Vangeneugden et al., 2011).

In addition to features embedded within the actor
itself, a body of work exists demonstrating that the
visual processes engaged when organizing point-light
walkers also influence perception of the surround.
Illustrated by the so-called “backscroll illusion,”
observers experience illusory motion of the background
when viewing a stationary point-light walker (lacking
translation, as if on a treadmill), with the background
perceived to be moving in the opposite direction of the
walker (Fujimoto, 2003; Fujimoto & Yagi, 2008). This
illusory motion is sufficiently powerful so as to capture
and bias the perceived motion of random motion
elements in favor of the background when superim-
posed on point-light sequences (Fujimoto & Yagi,
2007).

In this study, we use a novel neurophysiological
approach to isolate the motion features observers
selectively attend that promote point-light biological
motion detection. In tasks with known targets, selective
attention filters are employed in anticipation of the
attended items, to bias perceptual encoding in favor of
those features (Bridwell, Hecker, Serences, & Sriniva-
san, 2013; Bridwell & Srinivasan, 2012). Feature-based
attention is also not spatially specific, with attention-
mediated gain observed in neural populations in visual
cortex tuned to the attended feature across visual field
(Saenz, Buracas, & Boynton, 2002; Serences & Boyn-
ton, 2007). This phenomenon is also predicted from
single-unit recordings of feature-based attention gain
control, which is not spatially selective (Treue &
Martinez Trujillo, 1999). Features and object categories
can also be decoded from the neural activity in parietal
cortex, an important brain region for cortical control of
attention (Erez & Duncan, 2015; Liu & Hou, 2013).
This finding is also consistent with early steady-state
visual-evoked potential (SSVEP) studies that find
parietal responses to be modulated by feature-based
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attention (Bridwell & Srinivasan, 2012; Bridwell et al.,
2013).

We have developed a paradigm to measure these
attentionally mediated modulations for attended
motion features using probe stimuli in unattended
locations that are flickered to evoke a robust SSVEP
(Bridwell et al., 2013; Bridwell & Srinivasan, 2012).
SSVEP signal modulation is associated with different
cognitive and sensory phenomena, and in particular,
selective attention (Ding, Sperling, & Srinivasan,
2006; Morgan, Hansen, & Hillyard, 1996; Miiller et
al., 2006). Important for this study, frequency-tagged
SSVEPs can capture the attention modulation of
neural signals that share features with the attended
objects, even when the SSVEP is tagged to unattended
and spatially displaced stimuli (Bridwell et al., 2013;
Bridwell & Srinivasan, 2012; Garcia, Srinivasan, &
Serences, 2013; Painter, Dux, Travis, & Mattingley,
2014).

We therefore seek to use the attentionally-mediated
SSVEP as a means for evaluating the directional
selectivity of the attentive filters deployed when
detecting a biological motion target. Given that
subjects use task-relevant knowledge to anticipate
diagnostic features, we reason that evidence for
features-based attention should be apparent in the
brain response throughout the interval during which
subjects monitor for appearance of the walker. That
includes prior to the actual appearance of the target
when the walker is anticipated but not yet perceived.
And because neurons tuned to those diagnostic features
exhibit attentional gain throughout the visual field, we
should be able to identify this attentional strategy in the
SSVEP modulations for the flicker-tagged, unattended
stimulus when it contains task-relevant features. If
observers monitor for local opponent motion when
detecting a point—light walker, this should be apparent
in brain responses for task-irrelevant motion in both
the forward and backward walking directions. If
observers monitor for a global body posture, we should
not observe any attention modulation on task-irrele-
vant motion features. Finally, if observers attend to the
illusory motion of the background, we should observe
attention gain in task-irrelevant motion opposite to
that of the facing direction of the walker.

Participants

The study included 19 unpaid participants (22 to 34
years old, 10 males and nine females) with normal or
corrected-to-normal vision. All data was collected in
two sessions, and data from three subjects was removed
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Figure 1. Sample frame of the stimulus (top) and a timeline of the trial events (bottom). The central region of the stimulus contained
randomly moving noise dots, a subset of which briefly (500 ms) morphed into a coherent point—light walker. The skeleton figure
walker shown in this schematic is for illustrative purposes only and was not visible during the experiment. Subjects monitored this
region for the presence of the intact point-light walker, which could appear anywhere from 500-2500 ms following the onset of the
trial. The peripheral region of the stimulus was populated with dots moving 100% coherently in one of four possible directions.
Backward-directed motion is shown in the main figure, with the other three directions shown in the right panel.

from the analysis because of excessive noise in the
electroencephalogram (EEG) data.

Stimuli

All experimental stimuli were presented in Matlab
2013a (MathWorks, Inc., Natick, MA) using Psych-
toolbox 3.0 (Brainard, 1997), and were displayed on an
LED monitor set to 60 Hz refresh rate. The visual
stimulus was designed with two key regions as shown in
Figure 1. The central attended region subtended 3.1°
visual angle, and a peripheral unattended annulus
encircled the attended region (6.2°-9.91° visual angle).
The two regions were separated by 3.1° and delineated
with a black circular line.

The central attended region was populated by small
black dots of that moved with a constant velocity in
random directions uniformly sampled from all possible
orientations (random dot kinematogram, or RDK).
Shortly after the onset of the trial, a subset (the
“target” dots) transitioned to velocity trajectories were
consistent with the 13 major joints and head of a walker
at the most salient 500 ms interval of the gait cycle
(when the ankles and legs cross; Thurman & Gross-
man, 2008). In half the trials, the initial starting
positions of the dots were carefully constructed such

that this transition occurred when those dots had
arranged into spatial positions consistent with that of
the profile view of a point-light walker (the walker
present trials). In the other half of the trials, the initial
starting positions of the target dots were constructed
such that the transition occurred when the dots were
randomly arranged within a virtual box of the
approximate same size as the target walker (walker
absent “scrambled” trials). At the completion of the
gait segment, the target dots smoothly returned to the
uniform velocities at which they traveled prior to the
target interval. Throughout the trial, the nontarget dots
in the central region maintained their constant velocity,
serving as a mask by which to increase the difficult level
for detecting the coherent walkers. The number of
masking noise dots was calibrated for each subject so as
to equate detection performance across individuals. All
dots, target or masking noise, were displayed as black
against a white background and subtended 0.13° visual
angle.

The unattended peripheral annulus contained 100
dots dispersed throughout the annulus that moved
uniformly and coherently in one of the four possible
directions: consistent with the facing direction of the
walker (“0°” or “forward”), in the opposite direction
as the facing side of the walker (“180°” or “back-
ward”), upward (“90°” or “orthogonal”), or diago-
nally upward (“45°” or “diagonal”). In addition to the
constant velocity, the peripheral annulus dots were
frequency tagged using a counterphase flickered (on—
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off) at 15 Hz with 50% duty cycle (33 ms on, 33 ms
off). Each of the peripheral dots subtends 0.19° visual
angle.

Procedure

Participants were instructed to keep their eyes
fixated in the central attended region and to monitor
for the brief (500 ms) presence of an intact point-light
walker, which occurred on half the trials (a detection
task). Trials were a total of 3 s in duration, and
morphing was initiated at a variable onset between
trials (following an exponential decay function) of 500
ms and 2500 ms after the trial start. Half the
participants monitored for a leftward facing point—
light walker, and the other half monitored for a
rightward facing point-light walker. The participants
were informed prior to the start of the experiment as
to the target facing direction, and were given practice
detecting the target on calibration trials (see the
following material). Subjects completed 480 trials over
the course of eight blocks (60 trials each).

Psychophysical calibration

Before completing the main experiment, each
subject participated in a calibration session in which
we estimated the number of masking distractor dots in
the central region required to obtain equivalent
performance across individuals. Calibration proceed-
ed as a 2—1 double interleaved staircase design in
which the number of distractor dots increased
following two successive correct trials, and decreased
following a single incorrect trial. Subjects were not
given feedback on their performance after each trial.
This procedure, completed for two independent and
interleaved staircases, converged on the number of
noise dots that yields 71% accuracy in the detection
task. The total number of trials was 150 and the
number of required distractor dots determined using
mean of the last five reversals of each of the staircases.
Trials in the main experiment were identical to the
calibration, with the exception that the number of dots
masking the target figure was fixed at the individually
calibrated level.

Behavioral data from the main experiment was
analyzed using signal detection theory in which d-
prime, a perceptual sensitivity index, is computed
independently from decision criteria. Subject responses
were categorized as hits, misses, correct rejections, or
false alarms, and d-prime was computed using cumu-
lative normal distribution corresponding to the hit rate
and false-alarm rate.
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Dprime = Z(HitRate) — Z(FalseAlarmRate) (1)

EEG acquisition and analysis

EEG measurements were collected during the main
experiment using a 128 channel Hydrocel Geodesic
Sensor Net (Electrical Geodesics, Eugene, OR)
equipped with a photocell system to give accurate and
fast sampling of each cycle of the peripheral flickering
stimulus. The EEG signals were recorded with a 1000
Hz sampling rate and low-pass filtered at 50 Hz.

We analyzed data from correct trials from the four
unattended motion direction conditions (forward,
backward, orthogonal, and diagonal) using the 1000 ms
of phase-locked EEG signal prior to target onset. We
removed nuisance noise (e.g., eye blink and muscle
movements) using Infomax independent component
analysis (Bell & Sejnowski, 1995) and then applied a
fast Fourier transform (Matlab; MathWorks) to
perform Fourier transform on the time series data to
convert into frequency domain. Then, for each
condition ¢ at each electrode e we calculated SSVEP
power by averaging the Fourier coefficients F, at the
flicker frequency f over N trials as

Power, . = ‘

Here, F, refers to Fourier coefficient on trial n; e refers
to electrode, and N refers to total number of trials.
Then, we calculated mean SSVEP power over all the
conditions at each electrode for SSVEP frequency as

4
M, (f) = %Z Power,.(f) (3)
c=1

To eliminate electrodes with insufficient SSVEP power,
we computed a signal-to-noise ratio for the mean
SSVEP power at each electrode (M,) as the ratio of the
power at the SSVEP frequency of 15 Hz (with a 1Hz
bandwidth) to the average of each of the four
surrounding center frequencies (13, 14, 16, 17 Hz).
These four frequencies were selected to obtain an
estimate of the background power at 15 Hz as they
symmetrically surround the stimulus frequency and all
fall within the beta band. Signal-to-noise ratios were
used to select the channels with robust SSVEP
responses.

The mean normalized SSVEP was used as a metric
for attentional tuning. At each electrode, we calculated
normalized SSVEP power for each condition as the
fractional modulation with respect to the average
SSVEP power over all the conditions.
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Power, .(f) — M.(f)
M.(f)

MeanNormalizedPower, . =

4)

Coherence and partial least squares (PLS)
regression

EEG coherence is used as an estimate of functional
connectivity (Srinivasan, Bibi, & Nunez, 2006; Winter,
Nunez, Ding, & Srinivasan, 2007). Coherence is the
squared correlation coefficient that estimates the
consistency of relative amplitude and phase between
any two pair of electrodes/sources at each frequency
band (Bendat & Piersol, 2000). For a given frequency, a
coherence value of 1 indicates signals with exactly the
same phase difference and amplitude ratio on each
trial, while coherence approaches 0 if the signals have a
random difference in phase and amplitude ratio. In
practice, EEG coherence depends mostly on the
consistency of phase differences between electrodes
(Srinivasan et al., 2006). For our data, we were
interested to look at strength of phase-locking across
the brain with respect to a particular seed region, and
therefore calculated coherence matrix across electrodes
at the SSVEP frequency.

Coherence was then used as an independent variable
for predicting individual subject perceptual sensitivity
using partial least squares (PLS). The PLS models were
computed using the N-way toolbox (Andersson & Bro,
2000). Data were first mean-centered, then subjected to
direct orthogonal signal correction (DOSC) to remove
the largest component of the predicting data (SSVEP
coherence or power) that was orthogonal to the
behavioral data (d-prime) before applying PLS to allow
for more efficient PLS models with fewer components
(Krishnan, Kang, Sperling, & Srinivasan, 2013; Svens-
son, Kourti, & MacGregor, 2002).

We generated a new PLS model for each condition
of motion direction (in the unattended peripheral
annulus). We determined the predictive values for each
of the four PLS models using a leave-one-out cross-
validation procedure in which data from one partici-
pant was iteratively removed from the PLS model and
the remainder of the subjects’ data were used as a
training set. As used in previous studies using PLS, we
considered as many components as needed to explain at
least 80% of fitted behavioral variance to retain in the
model (Krishnan et al., 2013; Wu, Srinivasan, Kaur, &
Cramer, 2014). Models with either less or more
components did not perform as well in the cross-
validation. We then tested the extent to which the
trained model could predict the d-prime sensitivity of
the one excluded subject, and repeated this process for
each subject. Model performance was estimated using
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the difference between predicted and actual d-prime for
each subject, we calculated the predicted R> for each
condition.

Behavior

Subjects detected the presence of point-light walkers
within the dynamic mask with mean accuracy of 8§0.0%,
which was expected because task difficulty was
calibrated prior to the onset of the main experiment.
This corresponded to an average d-prime sensitivity
score of 2.31 (SD: 0.81), and an average criterion score
of 0.33 (SD: 0.52). A one-way repeated-measures
analysis of variance (ANOVA) showed no significant
effect of the direction of motion in the unattended
peripheral annulus on sensitivity or criterion, (F(3, 60)
=0.15, p=0.92; F(3, 60)=0.08, p =0.97, respectively).

SSVEP

Our SSVEP analysis targeted those electrodes with
the highest signal-to-noise (SNR) ratio estimates, which
corresponded with electrodes overlying three brain
regions: posterior parietal cortex (PPC), left occipital
cortex, and right occipital cortex (Figure 2A). A one-
way repeated-measures ANOVA revealed significant
differences in the SSVEP power of the electrodes over
PPC depending on the direction of unattended motion
in the unattended peripheral annulus, F(3, 60)=9.97, p
< 0.001. A post-hoc ¢ test indicated significantly higher
power over the PPC for those trials in which the
unattended motion moved opposite to the facing
direction of the walker (backward condition, Figure
2B), as compared with the forward, diagonal, or
orthogonal conditions (p = 0.002, p < 0.001, and p =
0.007, respectively). In contrast, we found no significant
influence of unattended motion on the SSVEP power
over right occipital cortex (Figure 2D), F(3, 60) = 1.46,
p=0.23, and a marginal effect of motion direction over
left occipital cortex (Figure 2C), F(3, 60) =2.44, p =
0.07.

PLS regression

From the findings discussed so far we conclude the
SSVEP in posterior parietal cortex has information as
to the attentional filter applied by the observers, when
monitoring for the onset of the target but prior to
perceptual encoding. We therefore sought to determine
whether there exists a relationship between the neural
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Figure 2. (A) Topographic map of the average signal-to-noise ratio (SNR) of the SSVEP during the anticipatory interval, across all
conditions. Electrodes over posterior parietal regions had the highest SSVEP SNR across participants. (B, C, D) Tuning curves of mean
normalized SSVEP power for the posterior parietal (three electrodes), left and right occipital region (four and three electrodes,
respectively). Forward, diagonal, orthogonal, and backward are with respect to the facing direction of the walker and indicate the
direction of peripheral motion. Each circle indicates the mean SSVEP normalized power for each condition (specified by the direction
of the unattended motion), for each participant. The solid line indicates the average “tuning curve” across participants.

signals associated with directing attention to backwards
motion and individual subject performance. We hy-
pothesized that the extent to which subjects effectively
engaged a tuned attentional filter should predict
individual subject behavioral performance.

To evaluate the relationship between the SSVEP
signals across the subjects and individual subject
performance (specifically, d-prime sensitivity) in de-
tecting an upcoming target, we applied a PLS
regression method to predict behavioral data from the
SSVEP data (Wold, Svante, Ruhe, Wold, & Dunn,
1984). In a previous study, PLS methods successfully
predicted acquisition of motor skill in a future task
from brain connectivity during resting state (Wu et al.,
2014). PLS methods have also been used to identify
patterns of neural activation related to changes in task
content (Mclntosh & Lobaugh, 2004), and has been
found useful for defining relationships between mea-

Downloaded from jov.arvojournals.org on 02/21/2024

sures of brain function and performance in spatial
attention tasks (Krishnan, Williams, MclIntosh, &
Abdi, 2011).

To test our hypothesis, we applied PLS modeling to
predict individual subjects’ sensitivity (d-prime) from
SSVEP power using electrodes located over PPC, and
right and left occipital cortex, computed for each
condition’s data separately. None of these groups of
electrodes tested had SSVEP power, for any condition,
that could successfully predict d-prime values from
SSVEP (R? < 0.01 for all the conditions). Additionally,
we repeated this analysis for all the electrodes
(excluding those with artifacts) as independent vari-
ables instead of taking regional electrodes only, but
found no evidence that SSVEP power predicts d-prime
sensitivity.

We did, however, find evidence that cortico-cortical
connectivity (as reflected in coherence) predicts behav-
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Figure 3. (A) Topographic map of regression coefficients (left: posterior view; right: top view) from the PLS model fitting in which
independent variables were coherence estimation of SSVEP at each electrode with respect to the PPC, constructed using the
“backward” condition data. Dependent variables are mean d-prime values across the conditions for each subject. (B) Scatterplot of
actual d-prime and predicted d-prime from PLS model using backward condition data. Circles indicate participants.

ioral sensitivity. Using PLS cross-validation, we found
that coherence between the electrodes of PPC region
and all other electrodes successfully predicted individ-
ual subject d-prime (sensitivity index) in the backward
unattended motion condition (predicted R> = 0.46).
The highest regression coefficients, those electrodes
that contributed most strongly to the individual
subject’s d-prime variance, were located over left
ventrolateral prefrontal cortex (VLPFC; Figure 3A),
evidence for a frontal—parietal network supporting
successful target detection. Positive linear relation
between actual and predicted d-prime values from
backward unattended motion condition data (Figure
3B) supports successful prediction of individual par-
ticipant’s d-prime from backward condition data using
PLS model. No other condition data (forward,

diagonal, and orthogonal) could successfully predict d-
prime values from connectivity strength between
posterior parietal and other brain regions.

We found no feature in the SSVEP coherence scores
to successfully predict criterion values from the
individual subjects. SSVEP coherence during the
monitoring phase only carries information about
subject’s subsequent perceptual sensitivity, not about
criterion shifts in response.

In our study, we sought evidence for feature-tuning
in the brain while monitoring for the appearance of a
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point-light walker embedded in a cluttered array. We
found posterior parietal cortex to be modulated by the
direction of unattended motion in the periphery,
indicative of feature-based attention that is dispersed
throughout the visual field. This finding was antici-
pated based on previous studies capitalizing on the
spatially distributed boost in cortical gain for neurons
with receptive field tuning matched to the attended
features (Martinez-Trujillo & Treue, 2004; Saenz et al.,
2002; Serences & Boynton, 2007; Treue & Martinez-
Trujillo, 1999).

SSVEP power was significantly higher only when the
unattended RDK was moving opposite to the heading
direction of the target point-light walker. Because the
power was asymmetric, higher for opposite versus the
forward facing direction of the walker, we conclude
that subjects were not monitoring for local opponent
motion (which contains both directional features).
Instead, the unattended motion condition with highest
SSVEP power most closely matches both that of the
backstroke of feet and the perceived illusory movement
of the background during gait (the “backscroll
illusion”). Both of these features have been previously
identified in studies of point-light biological motion
encoding as beneficial for promoting point-light target
detection in masking arrays (Fujimoto & Sato, 2006;
Saunders et al., 2009).

We observe the increased SSVEP power for unat-
tended backward motion prior to observing the action,
evidence that subjects are engaging attentional filters
while monitoring for the target, the onset of which was
uncertain within the extended trial sequence. More-
over, the extent to which subjects engaged those filters
predicted sensitivity to target detection. Thus subjects
actively engage feature-based attention mechanisms
prior to the onset of targets to maximize detection.

Our task involves monitoring for a target that is
constructed by diagnostic features that must be
segregated from surrounding noise. To achieve this,
subjects must employ a guided visual search to enhance
task-relevant features and suppress unwanted noise.
Previous studies show that synchronization strength
between fronto-parietal network and visual cortex
carry information regarding target relevant features
(Gregoriou, Gotts, Zhou, & Desimone, 2009). From
our results, we not only found evidence for attentional
modulation in parietal cortex for task-relevant features,
but also found behaviorally relevant information in the
phase synchronization of a fronto-parietal network
tagged by a SSVEP outside of the attentional focus.

The strength of the SSVEP phase-locking coherence
between posterior parietal cortex and lateral prefrontal
cortex carries information regarding participants’
subsequent perceptual sensitivity (d-prime), with pre-
dictive information highest when the RDK matches a
relevant feature for perceptual encoding. This is not
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without precedent. In a previous single-unit study,
neurons in V4 are modulated by changes in perceptual
sensitivity, without any change in criterion shifts (Luo
& Maunsell, 2015). Together, this is evidence that there
are separate brain networks and/or regions associated
with processing of perceptual sensitivity toward the
stimuli only. On the other hand, although the fronto-
parietal network could predict behavioral performance
(e.g., d-prime), individual brain regions alone could not
predict information about behavioral performance,
which reflects that behavioral performance is linked to
coordinated activations of more than one brain region,
not to local activations of a particular brain region.
In a previous study using the same paradigm of
tagging unattended region with SSVEP, enhancement
of task-relevant features was found when using upper
alpha range (12 Hz) flickering stimuli (Bridwell et al.,
2012). Unlike our findings, that study also revealed
evidence of suppression for task-irrelevant features.
There could be two possible reasons for the differences
between these studies. One reason is that in the
previous work, authors found task-relevant suppres-
sion in lower alpha range (8 Hz), whereas our study
only used one frequency (15 Hz) at beta range. Also,
the previous work found suppression in the unattended
region when the attended and unattended region had
similar background noise flickering at 8 Hz, a design
feature that may have made the subjects to engage in
attention strategies that included suppressing the
background flickering stimuli. In our study, noise at the
attended region (coherent motion in all directions) had
limited similarity to the unattended features (unidirec-
tional motion, minimizing the need to actively suppress
features in the peripheral SSVEP-tagged field. Note
that if suppression of irrelevant features contributed to
perceptual sensitivity, the PLS model would have been
able to predict sensitivity in the forward, diagonal, and
orthogonal directions, albeit with regression coeffi-
cients of the opposite sign. It was our observation,
however, that the SSVEP coherence for irrelevant
motion directions did not predict sensitivity. Our
results are consistent with another study using the same
SSVEP paradigm where feature-based enhancement of
unattended SSVEP was found when subjects had to
perform an attentionally demanding task (during visual
conjunction search, not during unique feature task;
Painter et al., 2014) and no suppression was observed.
In this study, we found attentional enhancement for
unattended motion that moved opposite the facing
direction of the walker, consistent with one local and
one global feature. The local feature, the backstroke of
the feet, is a salient cue for walker detection present in
natural point-light motion but often missing in
simulated locomotion (Saunders et al., 2009). The
illusory motion of the background is a global feature
associated with perceptual organization of dynamic
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objects (but not disconnected object features; Fujimo-
to, 2003; Fujimoto & Sato, 2006; Fujimoto & Yagi,
2008). Individuals experience this illusory motion when
detecting an intact point-light walker, but not with
scrambled walkers (Fujimoto & Sato, 2006; Fujimoto
& Yagi, 2007), and when point-light walkers are
embedded in dynamic noise the illusory motion of the
background captures and strengthens the perceived
motion energy of masking noise elements (Fujimoto &
Sato, 2007). Thus the perceived motion of the
background is a potent cue for driving attentional
modulation of the SSVEP-tagged unattended surround
and could facilitate detection of the masked point-light
figure.

Additionally, the tuning of the attentional modula-
tion we observed was much stronger in PPC than in
early visual cortex. A comparison between the tuning
curves between the electrodes over these two regions
indicates stronger attention bias consistent with back-
ward motion in the PPC, with smaller attentional bias
in early visual cortex during both the forward and
backward conditions. This suggests that parietal cortex
is more reflective of feature-based attention tuning than
early visual areas.

An alternative explanation arises from the possibility
of motion adaptation for biological motion. In a
previous study, individuals experienced motion adap-
tion for the global heading direction of point-light
biological motion when exposed for a long period of
time (90 s), with no evidence for adaptation when
viewing local dot motion (Jackson & Blake, 2010). In
our experiment, however, we note that unambiguous
point-light walkers were only present for 500 ms on
half the trials, with incoherent translating motion
present for the remaining 2.5 s. Considering that our
findings are based on data from portion of trial that
contained only scrambled bio-motion and masking
dots, and we feel the increase in SSVEP power for
unattended feature is unlikely to have arisen from
motion adaptation; rather, it is more likely to be an
effect of attentional monitoring.

Conclusion

Our study identifies neural tuning to relevant
features for human walker detection using a point-light
human walker embedded in a noisy background.
Evidence shows the observers monitor for motion
opposite the facing direction of the walker, and this
feature matches with the backstroke of the feet and the
direction of “backscroll illusion” while detecting a
human walker. Our study also finds that brain
connectivity strength of fronto-parietal network during
monitoring phase of attention can be predictive about
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subsequent perceptual sensitivity (d-prime) in healthy
human participants. This indicates that behavioral
performance in our task was dependent on the state of
communication between posterior parietal and lateral
prefrontal brain regions during the monitoring phase of
the task. Additionally, as identified fronto-parietal
network could predict only perceptual sensitivity, not
decision criteria, that particular fronto-parietal net-
work during monitoring phase was most likely involved
in processing subjective quality of signal associated
with task only, not internal response bias of partici-
pants.

In our study, we tagged only peripheral unattended
region and analyzed data before the target onset to
exclude any influence of decision criteria on the
measurement of attentional feature selectivity. To
identify brain networks associated with change in
decision criteria, in a future study, we can tag the target
region with a distinct frequency in beta range and
analyze the data after target onset.

Keywords: biological motion, EEG, feature-based
attention, SSVEP
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