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Abstract of the Thesis

Multi Negative Feedback Loops and Nonlinear Time-Delays in a Mathematical Model of

Bone Morphogenetic Protein (BMP) Signaling in Vascular Endothelial Cells

by

Anna Mohtasham Nia

Master of Science in Bioengineering

University of California, Los Angeles, 2015

Professor Alan Garfinkel, Chair

Negative feedback loops are well known in physiology. Previous work at UCLA has iden-

tified a negative feedback pathway involving Bone Morphogenetic Protein 4 (BMP-4) and

an inhibitor of BMP-4 called Matrix Gla Protein (MGP) active in vascular development

and pathology.[28] More recently, other inhibitors of BMP-4 have been identified in vascular

tissue, including Crossveinless 2 (CV-2). In addition, experimental works performed by our

collaborators at Dr. Bostrom’s lab have identified oscillations in the concentrations of these

morphogens gene expressions.

We developed a mathematical model of the interactions among the new, larger set of

morphogens. In particular, there are at least 2 negative feedback loops, one acting with a

short time delay and the other acting with a longer time delay. In fact, there are 3 distinct

time delays in our mathematical model. The goal was to understand what conditions would

give rise to sustained oscillations in this model. With a view to comparing these results to

experimental observations in the lab of Dr. Kristina Bostrom at UCLA, we have attempted

to draw general conclusions about the behavior of multiple loop feedback systems, a problem

of general interest.
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CHAPTER 1

Introduction

1.1 Oscillating Systems

Oscillating systems are abundant in nature. To name just a few, your body temperature, the

pendulum on your grandfather’s clock, your sleep pattern cycle, and so on. We are all used

to observing oscillations throughout our everyday lives, but understanding what it exactly

takes to demonstrate these kind of oscillations is a daunting task. One way to generalize

oscillating systems are damped and un-damped (sustained) oscillations. Another way to

classify are through free or forced oscillations. In our study, we are more concerned with

the distinction between damped and un-damped oscillation. In a damped oscillation, the

amplitude of the oscillation will be reduced to zero as there will be no compensation for the

the energy loss. However, in an un-damped oscillation the oscillation continues; therefore,

they are called sustained oscillations or continuous waves.

Oscillations are essential property of every living systems. Currently, there are numerous

examples of biological oscillators in the scientific literature. Many of them have addressed

the mathematical basis of these general oscillatory phenomenon ([18],[34],[27],[31],[41]). Os-

cillations play a pivotal role in many dynamic cellular processes, and contribute to the

patho-physiology of many diseases. As an example, a diverse collection of neuroendocrine

responses and signals occur along the hypothalamic-pituitary-adrenal axis (HPA axis). The

HPA axis is a prominent example of a dynamical biological system constantly at work. It

is functionally related to other systems in the body. Perturbation to the system causing

a sustained elevation of the cortisol level (hypercortisolism) has been reported in patients

with depression, diabetes, obesity, and Cushing syndrome (CS)([21, 47, 42]). Also, diseases
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that suppress the adrenal cortex lead to cortisol insufficiency (hypo-cortisolism) have been

reported in patients with Addison’s disease. A common feature among all these patients are

oscillations at signature frequencies. The origin of these different oscillatory behaviors de-

pend upon numerous factors from different biological systems at work simultaneously. This

is just one example to represent the crucial effect of oscillatory dynamics in our physiology

and health.

Many oscillatory systems share common features. Scientists would like to identify these

mechanisms and feature in order to identify general principles that underlie the existence of

dynamic behaviors in numerous biological systems. System biology addresses such questions

by studying the the complex behaviors of these oscillating system through theoretical and

experimental analysis ([34]).

1.2 Nonlinear Oscillators and Complex Dynamical Behavior

When we learn about oscillations, we often hear about linear oscillators and their properties.

We all learned about the simple oscillator in our high school physics class. Our simple

examples were mass on a spring or a cork floating in water. In our macroscopic world, no

system is actually a simple oscillator. Dissipative forces are always present even though we

are used to ignore them in order to simplify the problems. A linear oscillator only oscillates

with one frequency; its motion is frequently characterized by a sinusoidal wave equation

along with its period and angular frequency. If we have a restorative force that is not linear

in the system, the oscillations will no longer have a single frequency even though the waves

would still repeat themselves. That is a feature of a nonlinear oscillating system.

Non-linear oscillators are the building blocks of a complex motion. The motion of a non-

linear oscillator consists of complex behavior that is made up of harmonics of its fundamental

frequency. Whether you see one frequency more than the other depends upon the details

of the non-linearity and interaction of the terms in the mathematical equations. A good

example of a nonlinear oscillator is a pendulum. The pendulum is not a simple oscillator,
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but it is rather a nonlinear one since its frequency decreases with increasing amplitude.

Over the years, the ideas and techniques of nonlinear dynamics and chaos have been

used extensively in biology, even though it was originally a branch of physics where Newton

invented differential equations in order to describe the laws of motion and universal gravi-

tation in the mid-1600s. He developed extensive analytical methods to solve the two-body

problem. When scientists tried to use his mathematical methods to solve the three-body

problem, they realized it was essentially impossible to solve ([57]). In the late 1800s, Poincare

made a breakthrough by introducing qualitative analysis rather than quantitative. His ge-

ometric insights into answering complex questions rendered the study of complex systems

possible. In our study, we use nonlinear techniques to study bone morphogenetic protein

(BMP) regulatory network. Specifically, the BMP-4/9 network in endothelial cells.

1.3 Time Delays in Biological Oscillations

Complex rhythms are ubiquitous in physiological systems. Mathematical biologists have been

using ordinary and partial differential equations to model the dynamics of these physiological

systems for decades. Lotka and Volterra, Verhulst, and Malthus, to name a few, have

provided us with a better quantification of these complex biological phenomena, as all of

these models have many assumptions built into them. It is obvious that no model can truly

capture the complexity of the dynamics observed in real biological phenomena. Therefore,

mathematical biologists always look for better approaches to model these complexities with

fewer and better assumptions. We can raise the number of ordinary or partial differential

equations to capture more complexity, but the downfall of that would be dealing with a large

number of parameters that are often difficult if not impossible to pin down. Investigating

which parameters are crucial to describe a biological process is a very challenging task and

oftentimes it requires experimental work in order to estimate a physiologically meaningful

range for a given parameter.

One approach that have been used to model the complex biological rhythms are the
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usage of time delays in systems of differential equations. Current evidence suggests that

time delays play an important role in a design of many of these biological feedback control

systems. The presence of dual-delayed feedback mechanisms have been observed numerous

times in many biological systems. One prominent example of time delays is demonstrated

in the HPA axis model mentioned earlier in this chapter.

When modeling the HPA axis, circadian rhythm and ultradian rhythm were considered

two different characteristics of this system, with circadian rhythm characterized as an exter-

nal input of the system in a 24-hour cycle and ultradian rhythm as an inherent characteristic

of the system. Regardless of the these two general beliefs, a system of coupled non-linear

ordinary differential equations with oscillating solution curves have always been modeled

mainly because they have been in line with experimental data showing cortisol concentra-

tion in hypercortisolic, hypocortisolic, and normal individuals ([2]). The model presented

by [63] consists of three coupled nonlinear ordinary differential equations called minimal

model trying to exemplify the general case. Their minimal model has a locally stable fixed

point using parameters that were obtained either from the literature, or using physiological

reasoning. It is shown that a perturbation to any of these parameters led to global stability

of the fixed point, and when using these parameters, no oscillating solutions were possible.

Therefore, the aforementioned model could not account for the ultradian rhythm observed

in cortisol experimental data when using the minimal model and physiologically meaningful

parameter values. Anderson et al. 2013, later proposed that some important mechanisms

were missing from the model such as hippocampal effects that could introduce important

dynamical properties to the model or time delays which could present the possibility of ul-

tradian rhythm and limit cycles. When time delays were used, the oscillatory regimes that

were in line with clinical data could be observed. The use of time delays was explained by

the time it takes for the hormones to travel in the bloodstream and to bind to receptors

([2]).

Much of the complexity observed in these control biological systems can be captured

through time delay dynamics. Biological systems by nature have intrinsic delays, and math-
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Figure 1.1: Compartment Diagram of the HPA Axis [3]

ematics of these time delayed systems are compelling and pose many analytical challenges.

In this work, we try to investigate time delays in the BMP regulatory network and their

effects on the system’s dynamics.

1.4 Feedback Control and Cellular Differentiation

Feedback control systems have been long considered as a basis to ensure homeostasis. Gene

networks are no exceptions and constantly use both positive and negative feedback regulatory

control systems in order to regulate their own expression. As an example, positive feedback

and autocatalysis have been identified in bistable responses in chemical reactions ([9]). In

a bistable system, when one or more system’s parameters are changed, the system can can

make a transition between stability and instability. In theoretical models, positive and

negative feedback systems have been shown to produce a variety of dynamical behaviors

([25]). The HPA axis model described above was an expample of a negative feedback model

that produced many complex dynamics in patients.

Bone morphogenetic proteins (BMP) are a part of the TGF-β superfamily, which pri-

marily induce bone formation. In mammals, there are at least 12 BMPs. BMPs have

been conserved throughout evolution and have been shown to rescue a patterning defect in

BMP-2/4 null Drosophila ([44]). As the name suggests, Bone morphogenetic proteins play
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Figure 1.2: Cortisol Data in Patients [3]
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Figure 1.3: ALK-1 mRNA Expression

important roles in morphogenesis and cell differentiation. Oscillatory gene expression has

been identified to maintain the progenitor status of the cell.

Our collaborators in Dr. Kristina Bostrom’s Lab at UCLA have identified oscillatory gene

expression patterns in several proteins in the BMP regulatory network in human pulmonary

vascular endothelial cells (HPAECs) that transition to non-oscillatory regime upon cellular

differentiation. Like the HPA axis, the BMP network also consists of negative feedback loops

that makes its dynamical behavior interesting. The effect of negative feedback control and

oscillatory gene expression on cellular differentiation as shown in 1.3 motivated our lab to

mathematically model this gene regulatory network and study their feedback mechanisms in

more detail.
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1.5 The BMP Regulatory Network

The maturation of the cardiovascular system is a crucial event for a normal embryonic

development. There are two distinct forms of vascular formation in the embryo: vasculo-

genesis and angiogenesis. Vasculogenesis gives rise to the heart and vascular plexus while

angiogenesis is responsible for the remodeling of the vascular network and wound healing.

Angiogenesis itself consists of two different mechanisms: endothelial sprouting and intussus-

ceptive microvascular growth (IMG)([46]). In general, the growth of blood vessels during

embryogenesis is tightly controlled. Angiogenesis is found to be controlled by several soluble

growth factors ([66],[48]) such as type-I receptor activin receptor-like kinase 1 (ALK-1) of

the transforming growth factor-β (TGF-β) superfamily. Its co-receptor endoglin also plays

an important role in angiogenesis and vascular development.

Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily that are identi-

fied for their ability to regulate cell growth, differentiation, cartilage formation, ectopic bone

growth, and apoptosis of various cell types. Our collaborators in Dr. Kristina Bostrom’s

lab at UCLA are specifically interested in investigating this family for their critical role in

morphogenesis and differentiation of tissues and organs ([61],[65],[30],[23]). They have pre-

viously investigated pattern formation created by the interaction of a protein in this family,

specifically BMP-2 and its inhibitor matrix carboxyglutamic acid protein (MGP), which is

a small molecule.

Our lab has previously constructed a mathematical model of vascular mesenchymal cells

pattern formation based on the interaction of BMP-2 and MGP in the experimental prepa-

rations of Dr. Bostrom’s Lab at UCLA. The previously constructed mathematical model

was a system of partial differential equations over a 2D domain ([28]). This mathematical

model predicted spatial pattern formation in different patterns such as stripes, spots, and

stripe-doubling. Predictions were validated in an in-vitro vascular mesenchymal cell culture

by Dr. Bostrom’s lab. Numerical simulations and cell cultures are both shown in 1.5 and 1.4.

This mathematical model provided an insight into how the kinetic interaction of these two
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chemicals can produce very specific patterns. This was clinically significant because during

embryogenesis, mesenchymal stem cells aggregate and organize into patterned tissues. Later

in life, when these mesenchymal cells organize into ectopic bone or vascular calcification in

tissue, this process can lead to pathological creation of atherosclerotic lesions within the

artery wall ([28]).

1.6 Simplified BMP Network Diagram of the Mathematical Model

We have investigated the oscillatory gene expression of the following network shown in fig-

ure 1.6 through mathematical modeling and numerical simulations. Specifically, the protein

interactions studied in our model involve. BMP-9, BMP-4, Endoglin, MGP, CV-2, and

ALK-1. BMP-9 is a protein produced by the liver ([13],[14],[40]) that induces the differenti-

ation of mesenchymal cells into cartilage([33]). BMP-9 specifically inhibits basic fibroblast

growth factor (bFGF) stimulated proliferation and blocks vascular endothelial growth factor

(VEGF) induced angiogenesis ([51]). BMP-9 has been shown to bind with high affinity to

the extracellular domain of activin receptor-like kinase 1 (ALK-1) ([13]). ALK-1 is predom-

inantly expressed in endothelial cells and has been shown to regulate EC proliferation and

angiogenesis ([53]). Urness et al., 2000 ([62]), have shown that ALK-1 deficient mice were not

able to undergo vascular remodeling and angiogenesis ([43], [62]). Endoglin is a co-receptor

that forms a complex with ALK-1 to promote the effects of ALK-1 on ECs ([10], [29], [36]).

Two pieces of evidence have particularly shown that endoglin plays an essential role on in-

ducing angiogenesis in ALK-1 signal. First, Li et al., 1999 ([38]), have shown that endoglin

deficient mice have significantly similar phenotypes as ALK-1 deficient mice. Second, vas-

cular disorder hereditary hemorrhagic telangiectasia (HHT or Osler-Weber-Rendu disease)

have been observed in both ALK-1 and endoglin knock out mice. HHT is an autosomal

dominant vascular dysplasia that is mainly characterized by arteriovenous malformations in

the brain, the lungs, and the liver. Specifically, the ALK-1 mutation is responsible for HHT2,

whereas the endoglin mutation is responsible for HHT1 ([32], [39]). Nonetheless, patients

with both types of HHT have very similar symptoms with slight differences in the severity of
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Figure 1.4: A pattern formation in cultured VMCs in vitro. Over 20 days, VMCs plated

in vitro develop from a monolayer of randomly oriented cells of nearly uniform density

(approximately day 1; stage 1) (a), to local alignment of cells into regions (swirls) of nearly

uniform size (approximately day 4; stage 2) (b), to ridges of high cell density (dark areas)

(approximately day 10; stage 3) (c), to connected ridges forming a labyrinthine pattern

(approximately day 16; stage 4) (von Kossa stain) (d). (e)At 3 higher magnification, a

phase-contrast image of an unstained ridge shows the perpendicular orientation of cells in

the monolayer relative to the edges of the multicellular ridge. [Bar = 250 m(a and b); c

and d are at the same magnification as b; bar in e shows the approximate size, shape, and

orientation of a single cell ([28]).
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Figure 1.5: Numerical solutions of the mathematical model corresponding to each of the

stages from figure 1.4 ([28]).

lung arteriovenous malfromations (AVMs). Particularly, people with HHT1 are more likely

to have lung AVMs than those with HHT2 ([1]). BMP-4 opposes the action of BMP-9 by

stimulating the differentiation of human embryonic stem cells to vascular progenitor cells

through Smad signaling and by inducing bFGF stimulated proliferation and VEGF induced

angiogenesis ([12], [6], [51]).

BMP-9 and BMP-4 interact with each other through ALK-1. BMP-4 induces ALK-

1 expression and BMP-9 binds to ALK-1 as a ligand along with its co-receptor endoglin

([26]). The expression of BMPs mentioned so far are regulated through specific inhibitors

that create multiple negative feedback loops. MGP is induced by BMP-9/ALK-1 signaling

and inhibits the activity of BMP-4. Since BMP-4 is pro-angiogenesis, inhibition by MGP

antagonizes angiogenesis, and MGP knockouts like the ALK-1 knockout lead to AVMs ([60],

[68]). CV-2 expression is also induced by BMP-9/ALK-1 signaling. It specifically binds to

BMP-9 and inhibits it. Since BMP-9 inhibits angiogenesis and increases EC differentiation,
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CV-2 antagonizes EC differentiation and is an angiogenic. Studies have shown that CV-2

knockouts have abnormal vascular endothelium with increased levels of EC differentiation

markers ([68]).

1.7 Motivation

Previous mathematical models of the BMP network published by our lab [28] focused on

the spatio-temporal dynamics of the model in order to capture pattern formation seen in

the cultures. In order to that, partial differential equations were used over a 2D domain.

Our current model of the BMP network involves more players along with time-delays. As a

result, we designed a mathematical model of the BMP network in vascular endothelial cells

through ordinary differential equations with time-delays. The role of temporal fluctuations

in this system motivated us to explore the conditions leading to these interesting molecular

dynamics and time-delays. In conjunction with our experimental results, we have predicted

that oscillatory dynamics of the system correspond to the progenitor state of the endothelial

cells, whereas, non-oscillatory dynamics and steady states correspond to the differentiation

of mesenchymal stem cells into mature endothelial cells.
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Figure 1.6: BMP Network Diagram: Network diagram for biological relationship ac-

counted for in the model. BMP-9 endogenous ligands bind to ALK-1 receptor along with its

co-receptor endoglin to stimulate production of CV-2 and MGP with a transcriptional time

delay of τ1 and τ2 respectively. CV-2 and MGP bind and inhibit BMP-9 and BMP-4, re-

spectively. BMP-4 autocatalytically produces itself and activates ALK-1 transcription with a

time delay of τ3. BMP-4 signaling is associated with EC progenitor state and it is angiogenic,

while BMP-9/ALK-1 signaling stimulates EC differentiation and it is anti-angiogenic.
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CHAPTER 2

Methods

2.1 The Non-Linear Time Delay Mathematical Model

We developed a mathematical model of the BMP regulatory network. The model consists

of 6 variables with 6 ordinary differential equations, each representing a different protein

concentration that are modeled with non linear time-delay ordinary differential equations.

The equations model the rate of change of concentrations over time ng
ml.hr

. The reaction terms

are modeled by the interaction of BMP-9, BMP-4, Endoglin, MGP, CV-2, and ALK-1.

The first equation belongs to BMP-9, shown below (2.7). The variable A is the con-

centration of BMP-9 in ng
ml

. BMP-9 is produced by hepatic biliary cells and is present in

the human plasma concentration of 2-12 ng
ml

([20]). k1 is the source term which represents

the constant production rate of BMP-9 in ng
mlhr

. As mentioned above, BMP-9 is an EC

differentiation marker and CV-2 inhibits EC differentiation signaling by inhibiting BMP-9.

The inhibitory interaction of CV-2 and BMP-9 is modeled by the CV-2 variable C, which

is subtracted from the equation. σ1AC term represents the inhibition of BMP-9 through

CV-2 with σ1 representing the binding rate of BMP-9 and CV-2 measured in ml
nghr

. BMP-9 is

removed from the system at a rate proportional to its concentration, µ1, which is measured

in 1
hr

.

BMP-9:
dA

dt
= k1 − σ1AC − µ1A (2.1)
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The second equation belongs to BMP-4, shown below (2.8). The variable B is the

concentration of BMP-4 in ng
ml

. k2 is the source term which represents the constant production

rate of BMP-4 in ng
mlhr

. BMP-4 is regulated and produced autocatalytically and the squared

term in the sigmoidal function is representative of that ([52]). Parameter q is the saturation

coefficient of BMP-4 which is induced autocatalytically. In addition, BMP-4 is directly

inhibited by MGP, which is represented by the variable M ([68]). The inhibitory interaction

of MGP and BMP-4 is modeled by the MGP variable M which is subtracted from the

equation. The σ2BM term represents the inhibition of BMP-4 through MGP with σ2 as the

binding rate of MGP and BMP-4 measured in ml
nghr

. BMP-4 is removed from the system at

a rate proportional to its concentration, µ2, which is measured in 1
hr

.

BMP-4:
dB

dt
=

k2B
2

(1 + q2B2)
− σ2BM − µ2B (2.2)

The third equation belongs to Endoglin, shown below (2.9). The variable E is the con-

centration of Endoglin in ng
ml

. Endoglin is an auxillary membrane receptor of TGF-β, where

it modulates angiogenesis through ALK-1 signaling. BMP-9 inhibits angiogenesis via ALK-

1, which makes endoglin a promising target for anti-angiogenic cancer therapy. Specifically,

the ALK-1 signaling defects that signal through SMAD-1 lead to a clinically similar form

of HHT as described earlier ([32]). This suggests that Endoglin and ALK-1 are in the same

signaling pathway. Another piece of evidence that suggests this comes from Panchenko et al.

1996 ([45]) and Roelen et al., 1997 ([49]), which shows a very similar expression pattern of

ALK-1 and Endoglin in the vascular endothelium. It has been shown that TGF-β signaling

via SMAD transcription factors stimulates endoglin expression, in which BMP-9 specifically

stimulates the production of endoglin as shown in our BMP Network Diagram (1.6) ([11],

[35],[50],[55]). k3 is the source term and maximal releasable amount of endoglin and repre-

sents the constant production rate of endoglin in ng
mlhr

. Endoglin stimulation by BMP-9 is

modeled by a sigmoidal function to capture its saturation dynamics when the concentration

of endoglin is elevated, since endoglin cannot be exponentially induced by BMP-9. Endoglin
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is removed from the system at a rate proportional to its concentration, µ3, which is measured

in 1
hr

.

Endoglin:
dE

dt
=

k3A
2

(1 + ρ2A2)
− µ3E (2.3)

The fourth equation belongs to MGP, shown below (2.10). The variable M is the con-

centration of MGP in ng
ml

. k4 is the source term which represents the constant production rate

of MGP in ng
mlhr

. MGP is produced as a downstream product of BMP-9/ALK-1/Endoglin

signaling. Previous data from Dr. Bostrom’s Lab at UCLA have shown that MGP is over-

expressed with a time delay after the treatment of human aortic endothelial cells (HAECs)

with BMP-9 ([68]). Since ALK-1 is the preferred bound receptor for BMP-9 and endoglin is

its co-receptor, the MGP equation is modeled with all three of them along with time delay.

MGP is removed by the system when it binds to BMP-4. The term σ2BM represents this

removal, since after binding MGP is no longer available to act in the system. MGP is also

removed from the system at a rate proportional to its concentration, µ4, which is measured

in 1
hr

.

MGP:
dM

dt
= k4A(t− τ1)S(t− τ1)E(t− τ1)− σ2BM − µ4M (2.4)

The fifth equation belongs to CV-2, shown below (2.11). CV-2 is another inhibitory

molecule making the multiple negative feedback loop in the system. It is modeled by the

variable C, which is the concentration of CV-2 in ng
ml

. k5 is the source term which represents

the constant production rate of CV-2 in ng
mlhr

. CV-2 production is also downstream of BMP-

9/ALK-1/Endoglin signaling similar to MGP, and it was found by Dr. Bostrom’s Lab that

its expression peaks with a time delay after the treatment of HAECs with BMP-9 ([68]). As

a result, the CV-2 is modeled by the same reasoning as MGP with a different time delay.

CV-2 is removed by the system when it binds to BMP-9. The term σ1AC represents this
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removal, since after binding CV-2 is no longer available to act in the system. CV-2 is also

removed from the system at a rate proportional to its concentration, µ5, which is measured

in 1
hr

.

CV-2:
dC

dt
= k5A(t− τ2)S(t− τ2)E(t− τ2)− σ1AC − µ5C (2.5)

The sixth equation belongs to ALK-1, shown below (2.12). ALK-1, the preferred re-

ceptor of BMP-9, is modeled by the variable S which is the concentration of ALK-1 in ng
ml

.

BMP-4 stimulates the expression of ALK-1 ([54]). It has been shown that ALK-1 expres-

sion also peaks with a time delay after treating the HAECs with BMP-4 ([68]). k6 is the

source term which represents the constant production rate of ALK-1 in ng
mlhr

. The induction

of ALK-1 by BMP-4 with a time delay is modeled with the term k6(B(t − τ3))
2. ALK-1

removal from the system occurs primarily through endocytosis from the plasma membrane.

ALK-1 is removed from the system at a rate proportional to its concentration, µ6, which is

measured in 1
hr

.

ALK-1:
dS

dt
= k6((B(t− τ3)))2 − µ6S (2.6)

2.2 BMP ODE System

All six equations are shown below as a system:

BMP-9:
dA

dt
= k1 − σ1AC − µ1A (2.7)
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BMP-4:
dB

dt
=

k2B
2

(1 + q2B2)
− σ2BM − µ2B (2.8)

Endoglin:
dE

dt
=

k3A
2

(1 + ρ2A2)
− µ3E (2.9)

MGP:
dM

dt
= k4A(t− τ1)S(t− τ1)E(t− τ1)− σ2BM − µ4M (2.10)

CV-2:
dC

dt
= k5A(t− τ2)S(t− τ2)E(t− τ2)− σ1AC − µ5C (2.11)

ALK-1:
dS

dt
= k6((B(t− τ3)))2 − µ6S (2.12)

2.3 Parameter Estimation

Practically speaking, parameter estimation is one of the toughest problems in dynamical

systems modeling with many resources, such as research review articles devoted to this area

([4],[7],[8],[16]). In general, parameter estimation is based on numerical analysis, probability

and statistical inference, and theory. In our model, we used experimental results of gene

expression analysis on cell cultures of HPAECs done in Dr. Bostrom’s lab at UCLA in order

to estimate some of the production rates and degradation rates. All parameters estimated

are shown in table 2.1.
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2.3.1 Production Rates

In a set of experiments, the HPAEC culture was treated with 50 ng
ml

of BMP-4, and expression

of ALK-1 and BMP-9 were measured. In an unpublished work, a member of our lab estimated

the production rates of BMP-9 and BMP-4 ([69]), which estimated k2=10. Similarly, k1, the

production rate of BMP-9, was estimated to be 5 based on its human vascular circulation

([20], [69]). In another set of experiments, fold changes of mRNA expression of Endoglin,

MGP, CV-2, and ALK-1 were measured, and the magnitude of expression levels was about

5-10 fold lower than BMP-9 and BMP-4. We conservatively approximated these production

rate values to be 1 based on the production rates of BMP-9 and BMP-4 estimated from Dr.

Bostrom’s lab’s experiments ([69]).

2.3.2 Degradation Rates

The upper limit of proteolytic degradation of the BMP-2 and its homoglogs is 5 percent

of its production rate ([24]). BMP-4 autocatalytic dynamics is very similar to BMP-2 that

was previously modeled by our lab ([28]). We estimated BMP-4 degradation rate as 15

percent of its production rate, because we also considered its degradation by other routes, like

sequestration into extracellular matrix ([70]). The rest of the degradation rate parameters

were estimated to be 60 percent of their production rates. These degradation rate parameters

are crucial to the system’s behavior and will be altered in our simulation experiments.

Based on unpublished work, it was observed that MGP is taken up more avidly by the

extracellular matrix than BMP-2 ([28]), and the rest of the variables in the system had similar

magnitude to MGP expression levels. Therefore, we estimated their degradation rates to be

60 percent of their production rates due to extensive degradation by other routes. It was

previously observed based on the experimental results that the BMP-4 degradation rate has

to be lower than the rest of the system’s degradation rates in order to capture the oscillatory
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dynamics in the cell cultures.

2.3.3 Time Delays and Coefficients

We estimated the time delays of our system based on the mRNA expression data from

HPAECs. MGP and CV-2 transcriptional delays are about 7 hours apart and CV-2 takes

7 hours longer after MGP, so we estimated their time delays respectively to be 13 and 20

hours. ALK-1 transcription time delay was also estimated from the experimental data to be

8 hours.

q is the BMP-4 saturation coefficient and it was estimated based on a previous paper

published by our lab, ([15]). In that paper, Chen et al., 2012, studied a biological model

of cultured vascular mesenchymal cells (VMCs) that self organize into aggregates. BMP-4

autocatalytic saturation coefficient was estimated from the experiments and it is shown in

figure 3 of that paper. The saturation coefficient is to the power of 2. As a result, q is
√

5.

A similar experiment was recently done by Dr. Bostrom’s lab for endoglin and the

endoglin saturation coefficient, ρ, was estimated to be
√

2.5. This was determined after

fitting a sigmoidal curve to the data representing the fold expression increase of endoglin

with different concentrations of BMP-9, since endoglin is induced by BMP-9. As a result, ρ

is
√

2.5.

σ1 is the inhibition rate of CV-2 on BMP-9. Based on experimental data, it was observed

that CV-2 is an extremely potent inhibitor of BMP-9. As a result, the rate was estimated to

be 1, meaning that every time a molecule of CV-2 interacts with a molecule of BMP-9, the

inhibition occurs. This makes the inhibition success rate to be 100 percent. Furthermore, σ2

is the inhibition rate of MGP on BMP-4. Danino et al., 2011 ([19]), have estimated the lower

limit of the inhibition rate of MGP on BMP-2 to be 0.2 ml
nghr

. Based on the similar dynamics
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of BMP-2 and BMP-4, we conservatively chose the inhibition rate of MGP on BMP-4 to be

this lower limit, σ2=0.2 ml
nghr

.

2.4 Stability, Equilibrium Points and Steady State Analysis

2.4.1 Numerical Integration Algorithm

We used Mathematica software to numerically simulate the set of ODEs with time delays

using parameter values describes above in table (2.1). All initial conditions were set to 1,

although the system’s behavior was not sensitive to these choices.

2.4.2 State Space Geometry

We visualize the motions of state variables in state space. State space is n-dimensional, and

in state space geometry, we represent each state variable as an axis in a multi-dimensional

Euclidean space. Motion of the states of the system can be drawn in a multi-dimensional

state space which yields a state space diagram. We have shown the state space diagrams for

our model to define the motion of the system as it evolves through the plane in time from the

initial time to the final time specified in the numerical integration algorithm. In case of stable

oscillations, a stable limit cycle is shown, which attracts all the neighboring trajectories in

order to exhibit sustained oscillations. Limit cycles play an important role in biology and

describe many biological rhythms. Our model oscillatory behavior also exhibit limit cycling

behaviors. Our model consists of 6 variables, which, by nature, has a 6-D dynamical system

trajectories in state space. In order to be able to represent the trajectories, we show two

different state space diagrams, each showing 3 different variables. Phase diagrams are similar

to state space diagrams, but instead of variables, we represent each parameter as an axis
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Table 2.1: Model Parameters: This table contains the approximate values, units and the

biological functions of parameters used in this study.

Dimensional Parameters Value Units Function Source

k1 5 ng
mlhr BMP-9 Production Rate 2.7

k2 10 ng
mlhr BMP-4 Production Rate 2.8

k3 1 ng
mlhr Endoglin Production Rate 2.9

k4 1 ng
mlhr MGP Production Rate 2.10

k5 1 ng
mlhr CV-2 Production Rate 2.11

k6 1 ng
mlhr ALK-1 Production Rate 2.12

µ1 3 1
hr BMP-9 Degradation Rate 2.7

µ2 1.5 1
hr BMP-4 Degradation Rate 2.8

µ3 0.6 1
hr Endoglin Degradation Rate 2.9

µ4 0.6 1
hr MGP Degradation Rate 2.10

µ5 0.6 1
hr CV-2 Degradation Rate 2.11

µ6 0.6 1
hr ALK-1 Degradation Rate 2.12

τ1 13 hr MGP Transcriptional Time Delay 2.10

τ2 20 hr CV-2 Transcriptional Time Delay 2.11

τ3 8 hr ALK-1 Transcriptional Time Delay 2.12

σ1 1 ml
nghr CV-2 and BMP-9 Binding Rate 2.7 and 2.11

σ2 0.2 ml
nghr MGP and BMP-4 Binding Rate 2.8 and 2.8

q
√

5 No unit BMP-4 Saturation Coefficient 2.8

ρ
√

2.5 No unit Endoglin Saturation Coefficient 2.9
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in a multi-dimensional Euclidean space. We also use phase diagrams to represent many

simulations for our time delay parameters. Each set of time delays shows the behavior of

the system.

2.4.3 Equilibrium

Stability of a nonlinear system refers to its behavior at and near system equilibrium points.

There are one or more stationary points called steady states that the system approaches to

the steady state. When we talk about the stability of a nonlinear system, we talk about the

stability of its equilibrium points. Whereas, in most cases that linear systems are discussed,

the stability refers to the stability of the ODE model and not its equilibrium points.

We can either have none or more equilibrium points. The question we often ask is: what

happens if we perturb the system away from the equilibrium point? For continuous nonlinear

ODE systems such as our mathematical model, which is in the form of ẋ(t) = f(x(t),p,u(t)),

the equilibrium points are the points for which all the terms equal zero.

Nonlinear systems generally have multiple equilibria in state space with different stability

properties for each equilibrium. In planar geometries, we can perform a qualitative analysis

using different initial conditions in order to understand the behavior of the model and its

motion through space. In general, the dynamical properties of the system depend upon their

initial conditions and parameters. However, as the name suggests, in nonlinear models, the

dynamics behave in a nonlinear way based on their inputs and parameters. As a result, it is

computationally challenging to pin down all the parameters along with their stability.

Furthermore, delay differential equations (DDEs) differ from ODEs in that the derivative

at any time point depends on the solution at prior times. They often arise in biological

models when assumptions are more realistic. For example, the birth rate of predators is
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affected by the prior number of predators or preys rather than solely on the current number

of predators and preys in the current time. Since the derivative is dependent upon the

solution at previous times, it is necessary to provide an initial history before time t=0.

However, DDE equilibrium points are calculated the same as a regular ODE system.

2.5 Oscillation Period Analysis with the Fourier Transform Method

In order to get more insight about how the time delays affect the dynamical behavior of our

system, we analyzed the period of oscillations using the Fourier Transform method. Any

periodic time series can be expressed as a combination of cosine or sine waves with different

periods and amplitudes. This fact is utilized in Fourier analysis to examine the periodic be-

havior in a time series. We have used a periodogram array to identify the dominant periods

of our time series. Our goal was to identify the regions where the times series oscillation pe-

riod is 24 hours, which might explain the oscillation patterns observed in experimental data.

We used Mathematica to find the period of oscillation in different regions. We analyzed the

system by fixing one of the time delays and changing the other two. The Fourier Transform

method was performed from 400 to 1000 time points with step size of 0.1. All time delays

are scanned from 0-20 hours in 1 hour intervals.
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CHAPTER 3

Results

3.1 System Simulations Using Parameter Estimation Table 2.1

Numerical solutions for the mathematical model developed based on our parameter esti-

mations are shown in this section. Computation and plotting were accomplished with a

Mathematica script.

3.2 System’s Equilibria and Stability

We have calculated the systems’ equilibria, and we have found that our system has two

stable equilibria vectors.



BMP − 9 = 1.41171

BMP − 4 = 0.902407

Endoglin = 0.555227

MGP = 1.39651

CV − 2 = 0.541803

ALK − 1 = 1.39056


and



BMP − 9 = 1.64677

BMP − 4 = 0.176264

Endoglin = 0.580973

MGP = 0.128188

CV − 2 = 0.0362439

ALK − 1 = 0.0851148


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Figure 3.1: Temporal responses for the mathematical model of BMP using the parameter

values estimated 2.1 and all initial conditions were set to 1.

3.3 Oscillation Simulation of the Model

Using a new set of parameters, we obtain sustained oscillations as shown below in figure

3.5 with periods of oscillation around 24 hours with time delays of 4, 11, and 8 hours,

respectively, by increasing the degradation rates of Endoglin, MGP, and CV-2 to 80 percent

of their production rates and reducing ALK-1 and BMP-9 to 65 and 20 percent of their

production rates, respectively.

3.4 Fourier Analysis Results

Figures shown below are the phase diagrams using the Fourier Transform method for different

time delays. Each variable is presented in a separate figure with three different conditions
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(a) BMP-9 (b) BMP-4

(c) Endoglin (d) MGP

(e) CV-2 (f) ALK-1

Figure 3.2: Temporal responses for the individual variables in the mathematical model of

BMP using the parameter values estimated 2.1 and all initial conditions were set to 1.
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Figure 3.3: State Space Diagram: state space solution are illustrated in 3D plot for

BMP-9, BMP-4 and Endoglin shown in 3.2.
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Figure 3.4: State Space Diagram: state space solutions are illustrated in 3D plot for

MGP, CV-2 and ALK-1 shown in 3.2.

29



Figure 3.5: The simulation results of the model: Temporal responses for the mathemat-

ical model of BMP using the parameter values estimated 2.1, but using different degradation

rates for BMP-9 at 65 percent, Endoglin, MGP, and CV-2 at 80 percent and ALK-1 at 15

percent of their production rates.

30



(a) BMP-9 (b) BMP-4

(c) Endoglin (d) MGP

(e) CV-2 (f) ALK-1

Figure 3.6: The simulation results of the model: Temporal responses for the individual

variables of BMP using the parameter values estimated 2.1, but using different degradation

rates for BMP-9 at 65 percent, Endoglin, MGP, and CV-2 at 80 percent and ALK-1 at 15

percent of their production rates.
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Figure 3.7: State Space Diagram: state space solution are illustrated in 3D plot for

BMP-9, BMP-4 and Endoglin shown in 3.6.
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Figure 3.8: State Space Diagram: state space solutions are illustrated in 3D plot for

MGP, CV-2 and ALK-1 shown in 3.6.
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as: τ1 versus τ2, τ1 versus τ3, and τ2 versus τ3 while fixing the other τ constant. We studied

the mathematical model illustrated above to display oscillatory dynamics using different

parameter sets in Fourier Analysis. We first simulated the gene expression levels of this model

using the parameter ranges that were investigated in table 2.1, but we obtained damped

oscillation. Decreasing the degradation rate of BMP-9 to 40 percent of its production rate

while fixing all other parameters produces sustained oscillations, but the oscillatory regimes

have periods that are higher than 24 hours. We sought to determine which conditions of

parameter values could give rise to the oscillations seen in the biological experiments. We

took as a requirement that the oscillations have the following properties:

• τ2 > τ1

• τ2 − τ1 is approximately 7-9 hours.

• τ3 is approximately 7-10 hours.

• Oscillation period is about 20-27 hours.

Possible combinations of parameters that would give oscillations consistent with the above

conditions are the regions specified below:

• τ1 = 1 - 4 hr, τ2 = 11-15 hr, τ3 = 8 hr

• τ1 = 1 - 7 hr, τ2 = 11 hr, τ3 = 1 - 8 hr

• τ1 = 4 hr , τ2 = 8 - 14 hr, τ3 = 1 - 8 hr
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(a) BMP-9

(b) The specified colors correspond to oscillation

period measured in hours. Each color shows a

specific period for each set of time delay shown

in 3.9a

Figure 3.9: Fourier Analysis of BMP-9: Oscillation periods are shown with different

time delays for MGP and CV-2 transcription while keeping ALK-1 transcriptional time

delay constant at 8 hours. All parameters are used from 3.5.
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(a) BMP-9

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.10a

Figure 3.10: Fourier Analysis of BMP-9: Oscillation periods are shown with different

time delays for MGP and ALK-1 transcription while keeping CV-2 transcriptional time delay

constant at 11 hours. All parameters are used from 3.5.
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(a) BMP-9

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.11a

Figure 3.11: Fourier Analysis of BMP-9: Oscillation periods are shown with different

time delays for CV-2 and ALK-1 transcription while keeping MGP transcriptional time delay

constant at 4 hours. All parameters are used from 3.5.
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(a) BMP-4

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.12a

Figure 3.12: Fourier Analysis of BMP-4: Oscillation periods are shown with different

time delays for MGP and CV-2 transcription while keeping ALK-1 transcriptional time delay

constant at 8 hours. All parameters are used from 3.5.

38



(a) BMP-4

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.13a

Figure 3.13: Fourier Analysis of BMP-4: Oscillation periods are shown with different

time delays for MGP and ALK-1 transcription while keeping CV-2 transcriptional time delay

constant at 11 hours. All parameters are used from 3.5.
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(a) BMP-4

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.14a

Figure 3.14: Fourier Analysis of BMP-4: Oscillation periods are shown with different

time delays for CV-2 and ALK-1 transcription while keeping MGP transcriptional time delay

constant at 4 hours. All parameters are used from 3.5.
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(a) Endoglin

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.15a

Figure 3.15: Fourier Analysis of Endoglin: Oscillation periods are shown with different

time delays for MGP and CV-2 transcription while keeping ALK-1 transcriptional time delay

constant at 8 hours. All parameters are used from 3.5.
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(a) Endoglin

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.16a

Figure 3.16: Fourier Analysis of Endoglin: Oscillation periods are shown with different

time delays for MGP and ALK-1 transcription while keeping CV-2 transcriptional time delay

constant at 11 hours. All parameters are used from 3.5.
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(a) Endoglin

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in3.17a

Figure 3.17: Fourier Analysis of Endoglin: Oscillation periods are shown with different

time delays for CV-2 and ALK-1 transcription while keeping MGP transcriptional time delay

constant at 4 hours. All parameters are used from 3.5.

43



(a) MGP

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.18a

Figure 3.18: Fourier Analysis of MGP: Oscillation periods are shown with different time

delays for MGP and CV-2 transcription while keeping ALK-1 transcriptional time delay

constant at 8 hours. All parameters are used from 3.5.
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(a) MGP

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in3.19a

Figure 3.19: Fourier Analysis of MGP: Oscillation periods are shown with different time

delays for MGP and ALK-1 transcription while keeping CV-2 transcriptional time delay

constant at 11 hours. All parameters are used from 3.5.
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(a) MGP

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in3.20a

Figure 3.20: Fourier Analysis of MGP: Oscillation periods are shown with different time

delays for CV-2 and ALK-1 transcription while keeping MGP transcriptional time delay

constant at 4 hours. All parameters are used from 3.5
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(a) CV-2

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in3.21a

Figure 3.21: Fourier Analysis of CV-2: Oscillation periods are shown with different time

delays for MGP and CV-2 transcription while keeping ALK-1 transcriptional time delay

constant at 8 hours. All parameters are used from 3.5.
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(a) CV-2

(b) The specified colors correspond to oscillation

period measured in hours. Each color shows a

specific period for each set of time delay shown in

3.22a

Figure 3.22: Fourier Analysis of CV-2: Oscillation periods are shown with different time

delays for MGP and ALK-1 transcription while keeping CV-2 transcriptional time delay

constant at 11 hours. All parameters are used from 3.5.
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(a) CV-2

(b) The specified colors correspond to oscillation period

measured in hours. Each color shows a specific period for

each set of time delay shown in3.23a

Figure 3.23: Fourier Analysis of CV-2: Oscillation periods are shown with different time

delays for CV-2 and ALK-1 transcription while keeping MGP transcriptional time delay

constant at 4 hours. All parameters are used from 3.5
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(a) ALK-1

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.24a

Figure 3.24: Fourier Analysis of ALK-1: Oscillation periods are shown with different

time delays for MGP and CV-2 transcription while keeping ALK-1 transcriptional time

delay constant at 8 hours. All parameters are used from 3.5.
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(a) ALK-1

(b) The specified colors correspond to oscillation

period measured in hours. Each color shows a

specific period for each set of time delay shown in

3.25a

Figure 3.25: Fourier Analysis of ALK-1: Oscillation periods are shown with different

time delays for MGP and ALK-1 transcription while keeping CV-2 transcriptional time

delay constant at 11 hours. All parameters are used from 3.5.
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(a) ALK-1

(b) The specified colors correspond to

oscillation period measured in hours.

Each color shows a specific period for

each set of time delay shown in 3.26a

Figure 3.26: Fourier Analysis of ALK-1: Oscillation periods are shown with different

time delays for CV-2 and ALK-1 transcription while keeping MGP transcriptional time

delay constant at 4 hours. All parameters are used from 3.5
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CHAPTER 4

Discussion

Oscillations play an important role in many dynamic biological processes. They emerge from

the collective interactions of individual entities within the system. Many of the biological

oscillations share general features, and theoretical approaches like mathematical modeling

are essential for an intuitive understanding of the underlying principles of these biological

oscillations.

Negative feedback loops are common in many regulatory networks, particularly in biol-

ogy, where they regulate transcriptional and post-transcriptional activities. Negative feed-

back systems usually consist of two genes that mutually control each other. In recent years,

mathematical models have been proposed to illustrate the mechanisms of signaling pathways

in differentiation. As an example, somite formation is controlled by oscillatory gene expres-

sions that are themselves controlled by the Notch pathway, the Wnt pathway, and the FGF

pathway ([5][22][17][56]). These pathways are the main components of the segmentation

clock ([5]). The first mathematical model of the Notch pathway was developed by Lewis

et al., 2003, in which the researchers modeled the oscillations of Her1/7 gene expression by

a single negative feedback loop that is formed by the inhibition of Her1/7 protein ([37]).

Later on, a more involved mathematical model was developed by Terry et al., 2011, that had

transcriptional time delays ([58][64]).

Currently, there is no study indicating the dynamics of BMP oscillations and their po-
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tential role in vascular endothelial cellular differentiation. Our current model investigates

the mechanism of oscillatory gene expressions of the BMP system and the cross-talk be-

tween BMP-4 and BMP-9 pathways. Here, we characterized a multi-negative feedback loop

which are not very well understood in biology. In particular, we explored the dynamics of

a feedback system consisting of BMP-9, BMP-4, Endoglin, MGP, CV-2, and ALK-1, which

are critical for vascular endothelial differentiation and angiogenesis ([59][12][67][66]). We

mathematically modeled this oscillatory regulatory gene expression network and focused on

studying the mechanisms for maintaining stable oscillations through a series of simulation

experiments. A group of important parameters that can significantly influence oscillations

were determined. We have found that stable oscillations can be lost due to disturbing some

parameters even in small ranges. From the current analysis of this theoretical model comple-

mented with experimental results of Dr. Bostrom’s lab at UCLA, we infer that degradation

rates and time delays are the main causes of maintaining the stable oscillations of this par-

ticular BMP-4/9 multi-negative feedback regulatory network.

In order to capture the oscillatory dynamics that would satisfy the four conditions men-

tioned in the result section above, we had to increase the degradation rates of Endoglin,

MGP, and CV-2 to 80 percent of their production rates and reduced ALK-1 and BMP-9

degradation rates to 65 and 20 percent of their production rates, respectively. We obtain

sustained oscillations as shown above in figure 3.5 with periods of oscillations around 24

hours with time delays of 4, 11, and 8 hours, respectively. We identified this set of time

delays as our best candidate for several reasons. First, they satisfy the conditions set by the

biological experiments. Second, oscillations of 24 hour periods or 1 day has been consistent

with most of the experimental results. Last, all time delays are less than 15 hours, which

are more physiologically reasonable.

As shown in figure 3.6, all target gene activities are expressed with an oscillatory pattern

and their oscillatory period is about 24 hours. In addition, they oscillate synchronously

and they are in phase with each other. The results are in good agreement with the results
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derived from wet experiments with the exception of BMP-9 and ALK-1, where there are no

oscillations in the production of these proteins. However, gene production is different from

the activity of these genes. We speculate that the oscillations might indeed occur in the

activity levels of BMP-9 and ALK-1 over time as shown in the simulations of figure 3.6. The

simulation results along with Fourier analysis results indicate that the high degradation rates

of Endoglin, MGP, and CV-2 are required to produce oscillations that would have periods of

24 hours. The mechanisms of proteins degradation are numerous. When biologists talk about

degradation, they often refer to proteosomal degradation, a process in which proteins are

selected for proteolysis. However, in mathematical models, the degradation terms encompass

the larger definition, where it could mean degradation by other processes, such as enzymatic

deactivation, binding to extra-cellular matrix, binding to other proteins, endocytosis, and

many other routes. As a result, we postulate high degradation rates, as high as 80 percent of

Endoglin, MGP, and CV-2 are required in order to achieve oscillatory dynamics of periods

of 24 hours, as seen in unpublished experimental results by Dr. Bostrom’s lab at UCLA.

This would indeed act as a mechanism to regulate progenitor EC differentiation into mature

ECs.

Our simulation experiments with degradation rates in order to produce stable oscillations

have revealed that low degradation rate of BMP-4 is critical for oscillations. In addition,

high degradation rates of Endoglin, MGP, and CV-2 are also critical in order to produce

stable oscillations. MGP is an inhibitor of BMP-4 and its high degradation rate would be in

line with higher levels of BMP-4. Furthermore, using lower time delays in order to produce

24 hour period oscillations requires the ALK-1 degradation rate to be lower than the rest

of the variables. Since ALK-1 is produced by BMP-4, higher levels of BMP-4 would also

require higher levels of ALK-1. The presence of BMP-4 and ALK-1 induced oscillations,

while too much Endoglin, MGP, and CV-2 would quench oscillations. We speculate that

different degradation rates in different tissues could be key to different control of oscillatory

regime behavior.
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4.1 Time Delay Analysis using the Fourier Transform Method

Time delays are often not considered in differential equations, since they add tremendous

complexity to analyzing the model. However, in our current model, time delays are essential

for the production of oscillations and have been observed in biological experimental results

as well. We performed Fourier analysis to recognize the important time delay parameters

to identify the stable oscillations of the system that would satisfy the conditions mentioned

above. One of the conditions that had to be satisfied was that the time delay of the CV-

2 expression in vascular endothelial cells had to be greater than the time delay of MGP

expression, and the difference between the two was about 7-8 hours. In addition, we are only

interested in finding those oscillations that are about 24 hours long. The Fourier analysis of

each individual time delay set for individual variables revealed that there are only certain

regions where these conditions are met. In particular, time delay set of 4, 11, and 8 hours

has been identified as the best candidate for the system’s time delays.

4.2 Conclusion

In this study, we proposed a mathematical model to simulate the dynamics of the BMP-9/4

pathways in ECs and focused on studying the mechanisms for maintaining stable oscillations

through a series of simulation experiments and Fourier analysis. The simulation results show

that it is feasible to obtain stable oscillations that meet our conditions, if we increase the

degradation rates of Endoglin, CV-2, and MGP while keeping more BMP-4 in the system. A

group of important parameters that can significantly affect the oscillations are degradation

rates and the time delays. In addition, we have found that when oscillation is lost due to

changing the time delays, it can be rescued by changing the degradation rates. In other

words, stable oscillations can be rescued when the degradation rates of Endoglin, CV-2,

and MGP are 60 percent of their production rates with longer time delays. However, the

56



drawback of that would be that the period of oscillations are unusually larger than our

expected 24 hour outcome. Achieving 24 hour periodic oscillations would require increasing

those degradation rates. In addition, we inferred that multi-negative feedback loops are one

of the main regulators of stable oscillations in BMP gene expression.
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