
UC San Diego
UC San Diego Previously Published Works

Title
Glaucoma progression detection using nonlocal Markov random field prior

Permalink
https://escholarship.org/uc/item/5m93d4j1

Journal
Journal of Medical Imaging, 1(3)

ISSN
2329-4302

Authors
Belghith, Akram
Bowd, Christopher
Medeiros, Felipe A
et al.

Publication Date
2014-12-29

DOI
10.1117/1.jmi.1.3.034504
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5m93d4j1
https://escholarship.org/uc/item/5m93d4j1#author
https://escholarship.org
http://www.cdlib.org/


Glaucoma progression detection using
nonlocal Markov random field prior

Akram Belghith
Christopher Bowd
Felipe A. Medeiros
Madhusudhanan Balasubramanian
Robert N. Weinreb
Linda M. Zangwill



Glaucoma progression detection using nonlocal
Markov random field prior

Akram Belghith,a,* Christopher Bowd,a Felipe A. Medeiros,a Madhusudhanan Balasubramanian,b,c,d
Robert N. Weinreb,a and Linda M. Zangwilla
aUniversity of California San Diego, Hamilton Glaucoma Center, 9500 Gilman Drive, La Jolla, California 92093-0946, United States
bUniversity of Memphis, Department of Electrical and Computer Engineering, 3815 Central Avenue, Memphis, Tennessee 38152 United States
cUniversity of Memphis, Department of Biomedical Engineering, 920 Madison Avenue, Memphis, Tennessee 38103 United States
dUniversity of Tennessee Health Science Center, Department of Biomedical Engineering, 920 Madison Avenue, Memphis, Tennessee 38103
United States

Abstract. Glaucoma is neurodegenerative disease characterized by distinctive changes in the optic nerve head
and visual field. Without treatment, glaucoma can lead to permanent blindness. Therefore, monitoring glaucoma
progression is important to detect uncontrolled disease and the possible need for therapy advancement. In this
context, three-dimensional (3-D) spectral domain optical coherence tomography (SD-OCT) has been commonly
used in the diagnosis and management of glaucoma patients. We present a new framework for detection of
glaucoma progression using 3-D SD-OCT images. In contrast to previous works that use the retinal nerve
fiber layer thickness measurement provided by commercially available instruments, we consider the whole
3-D volume for change detection. To account for the spatial voxel dependency, we propose the use of the
Markov random field (MRF) model as a prior for the change detection map. In order to improve the robustness
of the proposed approach, a nonlocal strategy was adopted to define the MRF energy function. To accommodate
the presence of false-positive detection, we used a fuzzy logic approach to classify a 3-D SD-OCT image into a
“non-progressing” or “progressing” glaucoma class. We compared the diagnostic performance of the proposed
framework to the existing methods of progression detection. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

[DOI: 10.1117/1.JMI.1.3.034504]
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1 Introduction
Glaucoma is a leading cause of visual impairment and blindness
around the world.1 It is characterized by structural changes in the
optic nerve head (ONH) (neuroretinal rim and retinal nerve fiber
layer (RNFL) thinning and optic nerve cupping are usually the
first visible signs), and visual field defects. Glaucoma is painless
and gradually damages the optic nerve, which makes patients
not aware of any visual loss until the optic nerve is severely
damaged. Untreated it can cause an irreversible vision loss,
and hence it is critical to early detect glaucoma and to monitor
its progression in order to avoid permanent damage to the ONH.

It has now been more than 150 years since physicians were
able to visualize damages in the ONH associated with glaucoma
using an ophthalmoscope. However, clinical examination of the
ONH remains subjective, qualitative, and often with higher var-
iabilities among observers.2

Over the past three decades, advances in technology for ocu-
lar imaging using the optical properties of the optic nerve and
RNFL layer have gained widespread use in the diagnosis and
management of glaucoma patients. In particular, the
Heidelberg retina tomograph (HRT) (Heidelberg Engineering,
Heidelberg, Germany), a confocal scanning laser technology,
has been commonly used for glaucoma diagnosis since its
commercialization 20 years ago.3 Several strategies have been

proposed for automated change detection using HRT images.
One strategy, the proper orthogonal decomposition,4 indirectly
utilizes the spatial relationship among voxels by controlling the
family-wise type I error rate. The Markov model was used in
Ref. 5 to model the inter/intra observations dependency
allowing a better glaucoma regression detection rate. However,
because HRT imaging is limited to ONH surface topography, it
cannot directly measure the RNFL thickness.6

In order to overcome this drawback, the three-dimensional
(3-D) spectral domain optical coherence tomography (SD-
OCT), an optical imaging technique, is now the standard of
care for obtaining images of both the ONH and RNFL thick-
nesses. Several studies have been proposed for glaucoma diag-
nosis using SD-OCT images. Most of the studies use the
peripapillary RNFL thickness measurements (i.e, circular B-
scans (3.4-mm diameter, 768 A-scans) centered at the optic
disk were automatically averaged to reduce speckle noise)7–11

or the ONH measurements (e.g, rim area, minimum rim
width, etc.)12–14 which are either provided by the commercially
available spectral-domain optical coherence tomographers or
manually calculated by experts.13 In Ref. 15, authors used
the 3-D volume to extract the whole RNFL thickness map
instead of the peripapillary RNFL thickness and proposed a var-
iable-size super pixel segmentation to improve the discrimina-
tion between early glaucomatous and healthy eyes. In Ref. 16,
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authors used the RNFL thickness map to identify and to quantify
glaucoma defects. Because of the high reproducibility of the
SD-OCT, many studies used the peripapillary RNFL measure-
ments for glaucoma change detection.17–19 In Ref. 20, authors
showed that the instrument built-in segmentation software is rel-
atively robust to the image quality and the noise may lower the
accuracy of the RNFL layer thickness estimation. However, the
detection of glaucoma progression with optical coherence
tomography (OCT) remains a challenge because when assessing
structural changes over time, it is difficult to discriminate
between glaucomatous structural damage and measurement
variability.

In this paper, we propose a new strategy for glaucoma pro-
gression detection using 3-D SD-OCT images. This strategy is
divided into two steps:

1. Change detection step: it consists of detecting changes
between a baseline image and a follow-up image. In
contrast to previous works that use the RNFL thick-
ness measurement provided by commercially available
instruments, we consider the whole 3-D volume for
change detection. Note that to the best of our knowl-
edge, this is the first time that the whole 3-D SD-OCT
volume is considered for glaucoma progression detec-
tion. In this work, we propose a fully Bayesian frame-
work for change detection. Bayesian methods are
relatively simple and offer efficient tools to include
priori through a posteriori probability density func-
tions (PDF). In this work, we propose the use of
the Markov random field (MRF) to exploit the statis-
tical correlation of intensities among the neighborhood
voxels.21 In particular, consider the use of a nonlocal
framework for the MRF energy function definition
which has been proposed for the image denoising
task.22 Indeed, the nonlocal approach has been
successfully applied in several image processing appli-
cations such as image restoration23 and image
segmentation.24The main idea of the nonlocal
approach is to exploit repetitive structures in the image
which leads to a multi-model approach using only a
single observation. Moreover, in order to develop a
noise robust algorithm, we propose the consideration
of the change detection problem as a missing data
problem where we jointly estimate the noise hyper-
parameters and the change detection map. Because
we used the MRF model with the change detection
map as the prior for the change detection map, the opti-
mization step is intractable. Hence, we propose the use
of a Monte Carlo Markov chain (MCMC) technique.25

2. Classification step: it consists of classifying an
SD-OCT image into the “non-progressing” and the
“progressing” glaucoma classes using the estimated
change detection map. For this, a threshold-based
classification method is generally used to accommo-
date the presence of false-positive detection.4

However, the choice of the threshold may affect the
robustness of the classification method. We will
show that the classification results are better when
we use a fuzzy set-based classifier compared with
other classifiers.

This paper is divided into four sections. In Sec. 2, the pro-
posed glaucoma change detection scheme is presented. In
Sec. 3, we describe the classification scheme. Then, in Sec. 4
results obtained by applying the proposed scheme to real
data are presented. Specifically, we compare the diagnostic
accuracy, robustness, and efficiency of this novel proposed
approach to the two existing progression detection RNFL-
based approaches: the artificial neural network classifier
(ANN) and the support vectors machine classifier.

2 Change Detection
Let us consider the detection of changes in a pair of 3-D SD-
OCT images. The change detection problem is formulated as a
multihypotheses testing problem by denoting the “no-change,”
“increase change” (i.e., ONH hypertrophy), and “decrease
change” (i.e., ONH atrophy) hypotheses as H0, H1, and H2,
respectively. We denote by I0 and I1 two images acquired
over the same eye at times t0 and t1, respectively (t1 > t0),
and co-registered. In this paper, we assume that the noise is addi-
tive, white, and normally distributed, whereas the noise-free SD-
OCT images follow a gamma distribution. Indeed, the gamma
distribution G is widely used for fitting non-negative data such
as the synthetic aperture radar images26 and the high resolution
magic angle spinning nuclear magnetic resonance images27

due to its shape hyperparameters ðα > 0; β > 0Þ, which allow
us to fit spectral data that may present a background.28 The
direct model for both images I0 ¼ ½I0ðiÞji ¼ 1; : : : ;M� and
I1 ¼ ½I1ðiÞji ¼ 1; : : : ;M�, where M is the number of voxels,
is then given by

I0 ¼ X0 þ N0; I1 ¼ X1 þ N1; (1)

where X0 ¼ ½X0ðiÞji ¼ 1; : : : ;M�, X0ðiÞ ∼ Gðα0; β0Þ, and
X1 ¼ ½X1ðiÞji ¼ 1; : : : ;M�, X1ðiÞ ∼ Gðα1; β1Þ are the noise-
free 3-D SD-OCT ONH images and N0 ¼ ½N0ðiÞ
ji ¼ 1; : : : ;M�, N0ðiÞ ∼N ð0; σ0Þ, N1 ¼ ½N1ðiÞji ¼ 1; : : : ;M�,
and N1 ∼N ð0; σ1Þ are the Gaussian additive noises. As no sim-
ple expression of the distribution of the difference of two gamma
distribution variables exists, we adopted for image an ratioing
approach instead of the differencing image approach, which
generates a ratio image R resulting in the following direct
model:

R ¼ I0
I1

¼ X0 þ N0

X1 þ N1

; (2)

where R ¼ ðRðiÞ; i ¼ 1: : :MÞ. This model is unfortunately
intractable. To overcome this problem, we propose a hierarchi-
cal change detection framework which consists of estimating the
noise-free SD-OCT images X̂0 and X̂1 and then using the image
ratio approach for change detection. The new direct model is
then given by R ¼ X̂0∕X̂1. The gamma ratio distribution is
expressed as
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pðRðiÞ; α0; β0; α1; β1Þ ¼
Γðα0 þ α1Þ
Γðα0ÞΓðα1Þ

RðiÞα0−1
�
β0
β1

�
α0

×
�
RðiÞ þ β0

β1

�
−ðα0þα1Þ

: (3)

Proof. The PDF of the ratio R ¼ ðX0∕X1Þ is given by

pðRðiÞ; α0; β0; α1; β1Þ

¼
Z

∞

0

GðX1ðiÞRðiÞ; α0; β0ÞGðX1ðiÞ; α1; β1ÞX1ðiÞdX1ðiÞ

¼ RðiÞα0−1
Γðα1Þβα11

1

Γðα0Þβα00

�
RðiÞ
β0

þ 1

β1

�
α0þα1

Γðα1 þ α0Þ

×
Z

∞

0

1�
RðiÞ
β0

þ 1
β1

�
α0þα1

Γðα1 þ α0Þ
Xα0þα1−1
1

× exp

�
−X1ðiÞ

�
r
β0

þ 1

β1

��
dX1

¼ Γðα0 þ α1Þ
Γðα0ÞΓðα1Þ

RðiÞα0−1
�
β0
β1

�
α0
�
RðiÞ þ β0

β1

�
−ðα0þα1Þ

; (4)

since the PDF integrates to 1.

For the sake of simplicity, we assume that α0 ¼ α1 ¼ α and
β ¼ β0∕β1, pðRðiÞ; α; βÞ is then given by

pðRðiÞ; α; βÞ ¼ Γð2αÞ
ΓðαÞ2 rðiÞ

α−1βαðrðiÞ þ βÞ−2α: (5)

The change detection is handled through the introduction of
change class assignments Q ¼ ½QðiÞji ¼ 1; : : : ;M�. Hence, the
posterior probability distribution of change detection map Q at
each voxel location (i.e., QðiÞ) is given by

pðQi ¼ HjjR;ΘÞ ¼
1

Z
expð−Uðqi ¼ HjjR;ΘÞÞ; (6)

where Z is the normalization constant, Θ consists of the model
hyperparameters and UðHjjR;ΘÞ, and j ∈ f0;1; 2g is the
energy function of the MRF model. In the case of an isotropic
Potts model-type prior,29 the corresponding posterior energy to
be minimized is

UðQi¼HjjR;αj;βj;ζÞ¼
X
l∈Si

flog½plðRðlÞjQðlÞ¼Hj;αj;βjÞ�g

þζ
X
l∈Si\i

δðqi;qlÞ; (7)

where plðRðlÞjQðlÞ ¼ HjÞ is the gamma ratio probability den-
sity function of the l’th amplitude ratio RðlÞ belonging to the
source neighboring system Si given the class Hj, ðαj; βjÞ is
the set of the gamma ratio distribution hyperparameters of
the class Hj, j ∈ f0;1; 2g, δ is the delta Kroneker function,
and ζ is a positive parameter. Note that we opted for the 3-D
eight-connexity neighboring system.

In this work, we adopt a nonlocal approach to define the
energy function. The nonlocal approach aims to take advantage
of the redundancy presented in the images by extending the
neighboring system. This is based on the assumption that a

given neighborhood around a voxel may be similar to the neigh-
borhoods around other voxels in the same image. Figure 1
presents an example of the classical and the nonlocal neighbor-
ing systems. In contrast to the classical approach, the nonlocal
approach allows us to exploit the information available in other
neighborhoods called patches. The contribution of each new
neighborhood or patch depends on the similarity between the
main neighborhood Si and the other patches Sid where id is
the center of the patch [Fig. 1(b)]. The more similar they are,
the greater their contribution is. To this end, a weighted
graph G that links together voxels over the image is calculated.
In Ref. 30, authors showed that the Euclidean distance is suffi-
cient to reliably measure the similarity. Hence, the similarity
between two voxels i and id, based on the pairwise
Euclidean distance, is expressed as follows:

Gid;i ¼
X

l1∈Si1 ;l∈Si

ðRðl1Þ − RðlÞÞ2: (8)

The new energy function, which integrates the non-local
weights G associated with different patches around the voxel
of interest i and located in an extended neighborhood NSi, is
expressed as follows:

UðQi ¼ HjjR; αj; βj; ζ; ηÞ
¼ η

X
Sn∈NSi

Gn;i

X
l∈Sn

flog½plðRðlÞjqðlÞ ¼ Hj; αj; βjÞ�g

þ ζ
X
l∈Si\i

δðQi;QlÞ: (9)

The first part of the energy function models the a priori we
have on the image ratio RðlÞ conditioned to change and no-
change hypotheses as well as the information available in
other patches (information fusion). The second part models
the spatial dependency by the use of the second-order isotropic
Potts model with parameter ζ. Hence, the definition of the
energy function favors the generation of homogeneous areas
reducing the impact of the speckle noise, which could affect
the classification results of the SD-OCT images.31 The hyper-
parameters ζ; η handle the importance of the energy terms.
On one hand, ζ allows us to tune the importance of the spatial
dependency constraint. In particular, high values of ζ corre-
spond to a high spatial constraint. On the other hand, η models

Fig. 1 Comparison of (a) the classical approach (b) the
nonlocal approach where the different neighborhoods/patches
Sid;d∈f1;2;3;4;5;6g will contribute to the estimation of the voxel i
based and the their similarities Gid ; i .
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the reliability of the patches and is usually assumed to take on
values in [0, 1]. This constraint can easily be satisfied by choos-
ing the appropriate a priori distribution for η.

The whole set of the model hyperparameters is then given by
Θ ¼ fσ0;1; α0;1; β0;1; αj; βj; η; ζg. Without information prior
knowledge, the following priors are retained: pðσ20Þ ¼ 1

σ0
,

pðσ21Þ ¼ 1
σ1
. The non-negativity of the the hyperparameters

fα0;1; β0;1; αj; βj; η; ζg is guaranteed through the use of the expo-
nential densities: pðα0; β0Þ ¼ 1

φ expð−α0∕φÞ 1
ϑ expð−β0∕ϑÞ,

pðα1; β1Þ ¼ 1
φ expð−α1∕φÞ 1

ϑ expð−β1∕ϑÞ, pðαj; βjÞ ¼ 1
φ

expð−αj∕φÞ 1
ϑ expð−βj∕ϑÞ, pðηÞ ¼ 1

κ expð−η∕κÞ, and pðζÞ ¼ 1
κ

expð−ζ∕κÞ. Note that the values of fφ; ϑ; κg are empirically
fixed but do not really influence the results. The hierarchical
approach we proposed and the prior knowledge we opted for
our model lead to an intractable posterior distribution
pðQ;ΘjRÞ. Therefore, we propose the use of an MCMC pro-
cedure to estimate the model parameters and hyperparameters.
Indeed, the principle of theMCMCmethod is to generate samples
drawn from the posterior densities and then to be able to achieve
parameter estimation.We use a Gibbs sampler based on a station-
ary ergodic Markov chain allowing us to draw samples whose
distribution asymptotically follows the a posteriori densities.
Indeed, theGibbs sampler decomposes the problemof generating
a sample from a high dimension PDF by simulating each variable
separately according to its conditional PDF. Since no classical
expressions for the posterior PDFs are available, there is no direct
simulation algorithm for them. To overcome this problem, we
perform Hastings–Metropolis steps within the Gibbs sampler25

to ensure that all convergence properties are preserved.32

Moreover, since no knowledge on the posterior definition is avail-
able, we have opted for the randomwalk version of the Hastings–
Metropolis algorithm. The proposal distribution p is then
defined as pð:jYÞ ¼ Y þ p 0ð:Þ where p 0 is a distribution
which does not depend on Y and is usually centered on 0.
Hence, at each iteration, a random move is proposed from the
actual position. The choice of a good proposal distribution is cru-
cial to obtain an efficient algorithm, and the literature suggests
that, for low dimension variables, a good proposal should lead
to an acceptance rate of 0.5.25 The determination of a good
proposal distribution can be solved by using a standard
Gaussian distribution with an adaptive scale technique.33 The
main Gibbs sampler steps are described in Algorithm 1. We

used a burn-in period of hmin ¼ 500 iterations followed
by another 1000 iterations for convergence (hmax ¼ 1500).
The change detection map Q is estimated using the maximum
a posteriori MAP estimator: Q̂ ¼ argmax

Hl

p̄Hl
, where

p̄H1
¼ 1

hmax−hmin

Phmax

h¼hminþ1p
½h�ðQ¼H1jR½h�;Θ½h−1�Þ, p̄H2

¼ 1
hmax−hminPhmax

h¼hminþ1p
½h�ðQ¼H2jR½h�;Θ½h−1�Þ and p̄H3

¼ 1 − p̄H3
− p̄H1

.

3 Classification
This step aims at classifying an image into the nonprogressor or
the progressor classes based on the estimated change detection
map. In contrast to Ref. 4, we considered two-layer fuzzy clas-
sifier rather than a threshold-based classifier. Indeed, the fuzzy
set theory is used to quantify the membership degrees of a given
image to each class (i.e, progressor and nonprogressor).

As in Ref. 4, we considered two features as input for the clas-
sifier: (1)feature 1: the number of changed sites and (2) feature
2: the ratio image intensity R of changed sites. In this work, only
the loss of retinal height in neighboring areas is considered
change due to glaucomatous progression because an increase
in retinal height is considered improvement (possibly due to
treatment or tissue rearrangement).

We now calculate the elementary membership degree to the
nonprogressor class given each feature γnor;o∈ffeature1;feature2g
using an S-membership function f whose expression is given
in Eq. (10). Note that the range ½a; c� defines the fuzzy region.

fðx; a; b; cÞ ¼

8>>><
>>>:

0 x < a
ðx−aÞ2

ðb−aÞðc−aÞ a ≤ x < b

1 − ðx−cÞ2
ðc−bÞðc−aÞ b ≤ x < c

1 otherwise

; (10)

where a < b < c.

γnor ¼ γnor;feature1 × γnor;feature2; (11)

where γnor;feature1 ¼ fðNc; a1; b1; c1Þ, γnor;feature2 ¼ fðPi∈CRi;

a2; b2; c2Þ, Nc and C stand for the number of changed
sites and the changed site class, respectively, and
ða1; b1; c1; a2; b2; c2Þ are the hyperparameters of the S-member-
ship functions. The hyperparameters ða1; b1; c1; a2; b2; c2Þ are
estimated with the genetic algorithms34 using longitudinal
SD-OCT data from a training dataset which contains 10 normal
eyes, 5 nonprogressing eyes, and 10 progressing eyes. Note that
the training dataset is independent of the test dataset described
in Sec. 4.1.

The membership degree to the glaucoma class γglau is given
by

γglau ¼ 1 − γnor: (12)

To decide if a given SD-OCT image belongs to the glaucoma
progressor class, another membership function is used. We
opted for the trapezoidal function denoted by g as a membership
function. The expression of g is given by

Algorithm 1 Sampling Algorithm.

1. Initialization of X ½0�
0 ; X ½0�

1 ; Q½0� and Θ½0�

2. For each iteration h repeat:

i) Sampling X ½h�
0 from pðX 0jI0;Θ½h−1�Þ

ii) Sampling X ½h�
1 from pðX 1jI1;Θ½h−1�

iii) Calculating R ½h� ¼ X ½h�
0 ∕X ½h�

1

iv) Creating a configuration of Q basing on R ½h�

v) Calculating p½h�ðQ ¼ Hl jR ½h�;Θ½h−1�Þ

vi) Sampling Θ½h� from pðΘjX ½h�
0 ; X ½h�

1 ; I0; I1Þ

vii) Until convergence criterion is satisfied
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gðx; a3; b3; c3; d3Þ ¼

8>>>>><
>>>>>:

�
x−a3
b3−a3

�
a3 ≤ x < b3

1 b3 ≤ x < c3�
d3−x
d3−c3

�
c3 ≤ x < d3

0 otherwise

; (13)

where a3 < b3 < c3 < d3. Alternately, the genetic algorithm was
used to estimate this quadruple. The decision to classify an
image into the glaucoma class depends on the output of the func-
tion gðγglauÞ. As can be observed, the g function depends on the
quadruple ða3; b3; c3; d3Þ as well as on ða2; b2; c2Þ and
ða1; b1; c1Þ. If gðγglauÞ ¼ 1 the image is assigned to the glau-
coma progressor class. Note that an eye is considered as a pro-
gressor if one follow-up image is a progressor.

4 Experiments
The different datasets used for validation are described in the
next sub-section 4.1. Then, change detection results on simu-
lated and semi-simulated datasets are presented in sub-sec-
tion 4.2. Finally, the classification results on clinical datasets
are presented in sub-section 4.3.

4.1 Datasets

The proposed framework was experimentally validated on simu-
lated, semi-simulated, and clinical datasets. Our clinical datasets
consist of 117 eyes of 75 participants. Table 1 presents a descrip-
tion of the clinical dataset. Specifically, the first clinical dataset
consists of 27 eyes from 27 participants with glaucoma progres-
sion. The glaucomatous progression was defined based on: (1)
likely progression by visual field35 or (2) progression by stereo-
photographic assessment of the optic disk.36 A third observer
adjudicated any differences in assessment between these two
observers. The second clinical dataset consists of 40 eyes
from 23 healthy participants. The third clinical dataset consists
of 50 eyes from 26 participants considered stable (each partici-
pant was imaged once a week for five consecutive weeks). All
eligible participants were recruited from the University of
California, San Diego Diagnostic Innovations in Glaucoma
Study (DIGS) with at least five good quality visual field
exams to ensure an accurate diagnosis. Note that for
each exam, the baseline image and the follow-up image are
automatically co-registered with built in instrument software.
Specifically, the Spectralis SD-OCT (Heidelberg Engineering
GmbH, Heidelberg, Germany) instrument features two different
options to enhance reproducibility. A real-time eye-tracking
device (eye tracker) compensates for involuntary eye

movements during the scanning process, and a retest function
assures that follow-up measurements are taken from the same
area of the retina as the baseline examination. Many studies
demonstrate that the retest recognition and eye tracker options
led to high reproducibility and accurate and repeatable align-
ment of the baseline and the follow-up images.36–38

Because the performance of any change detection algorithm
can be affected by the OCT instrument specifications39 (axial/
lateral resolution, voxel sizes, etc.), a test with low measurement
variability is important for detecting change during longitudinal
analysis. This is of particular importance in the evaluation of
glaucoma progression where visit-to-visit changes may be
very small. Several studies have shown that Spectralis
SD-OCT can reliably measure very small changes.37,40,41

Using the high resolution mode and a (4.5 × 1.9 × 4.5 mm) pat-
tern size centered on the ONH, we obtained an axial and lateral
resolution of 3.87 and 5.84 μm, respectively, where the
distance between two consecutive B-scans is 62 μm (c.f,
Fig. 2). Therefore, each 3-D OCT images consists of
(768 × 468 × 73) voxels. All experiments were performed on
a workstation with Intel Core i7, 1.6 GHz CPU and 16 GB
RAM memory. MATLAB® 7.14.0 (R2012a) and C++ were
used for processing. The processing time is approximately
5 min per image.

Because no ground truth for glaucomatous change in the 3-D
SD-OCT images is available, we generated simulated and semi-
simulated datasets to assess the proposed change detection
method. The simulated dataset consists of 100 images generated
according to the proposed model with different values of
peak signal to noise ratio (PSNR) (30, 25, 20, and 15 dB)
(PSNR ¼ 10 log10fmax ðImageÞ2∕E½ðNoiseÞ2�g). Figure 3
presents an example of a simulated image. The semi-simulated
dataset was constructed from 100 normal 3-D SD-OCT images.
Changes were simulated (1) by the permuting 1%, 2%, 3%, and
5% of image regions in the images, respectively, and (2) by
modifying the intensities of each 15 × 15 × 3 voxel-sized region
in the images randomly with 0.5%, 0.75%, 1%, and 1.25% prob-
abilities, respectively. The intensities were randomly modified
by multiplying the real intensities by 0.5, 0.75, 1.5, or 2 with
a 0.25% probability. In order to emphasize the robustness of
the proposed approach, an additive Gaussian noise with different
values of PSNR (30, 25, 20, and 15 dB) was added to both the
original image and the semi-simulated images. Figure 4 presents
an example of a semi-simulated image. Table 2 summarizes the
simulated and semi-simulated datasets.

Table 1 Description of the clinical dataset used to assess the diag-
nosis accuracy of the proposed framework.

Number of
patients

Number
of eyes

Follow-up duration
(median/interquartile

range)

Normal group 23 40 2.03 (1.8) years

Stable glaucoma group 50 26 5 (0) weeks

Progressing glaucoma
group

27 27 2.4 (1.6) years
Fig. 2 Dimension of the three-dimensional (3-D) optical coherence
tomography (OCT) images.

Journal of Medical Imaging 034504-5 Oct–Dec 2014 • Vol. 1(3)

Belghith et al.: Glaucoma progression detection using nonlocal Markov random field prior



4.2 Change Detection Algorithm Assessment

In order to emphasize the benefit of the proposed change detec-
tion approach called the nonlocal Bayesian Markovian approach
and particularly the use of the nonlocal approach to define the
MRF energy function, we compared the proposed nonlocal
Bayesian Markovian approach with three change detection
methods:

1. The proposed method with a classic MRF neighboring
system

2. The kernel k-means algorithm6 with the RBF Gaussian
kernel

3. A Bayesian threshold-based method.42

To perform the change detection evaluation, we use the per-
centage of false alarm (PFA), the percentage of missed detection
(PMD) and the percentage of total error (PTE) measurements
defined by

PFA ¼ FA

NF
× 100%; PMD ¼ MD

NM
× 100%;

PTE ¼ MDþ FA

NM þ NF
× 100%;

where FA stands for the number of unchanged voxels that were
incorrectly determined as changed ones, NF stands for the total
number of unchanged voxels, MD stands for the number of
changed voxels that were mistakenly detected as unchanged
ones, and NM stands for the total number of changed voxels.
The kappa coefficient of agreement between the ground truth
and the change detection map was also calculated. The kappa
statistic was originally developed by Cohen43 in order to discern
the amount of agreement that could be expected to occur
through chance. A detailed description of the kappa coefficient
of agreement can be found.44 Strength of agreement can be cat-
egorized according to the method proposed in Ref. 45:
0 ¼ poor, 0 to 0.20 ¼ slight, 0.21 to 0.40 ¼ fair, 0.41 to
0.60 ¼ moderate, 0.61 to 0.80 ¼ substantial, and 0.81 to 1.00 ¼
almost perfect. Table 3 shows the results of the change detection
on simulated and semi-simulated datasets. The nonlocal
Bayesian Markovian approach (kappa ¼ 0.84) tends to perform
better than the kernel k-means (kappa ¼ 0.71), classic MRF
approach (kappa ¼ 0.78), and the Bayesian threshold-based
(kappa ¼ 0.64) methods. This means that the proposed nonlocal
Markov priori we considered improves the change detection
results by modeling the spatial dependency of voxels as well
as the redundancy presented in the images by extending the
neighboring system.

4.3 Classification Results

This section describes the glaucoma progression detection
results obtained with the proposed scheme. In order to perform
the classification evaluation, we have retained the area under the
receiver operating characteristic area under the receiver operat-
ing characteristic curve (AUROC), the sensitivity and the speci-
ficity measurements:

sensitivity ¼ TP

TPþ FN
; specificity ¼ TN

TNþ FP
;

where TP stands for the number of true positive identifications,
FN stands for the number of false-negative identifications, and
FP stands for the number of false-positive identifications.

The proposed framework was experimentally validated with
clinical datasets. It is important to note that we used independent
training and test sets to estimate the diagnostic accuracy of the
methods. Specifically, we trained our classifiers, as well as the
other classifiers used for the comparison, on 10 normal eyes, 5
stable glaucoma eyes, and 10 progressor eyes. In order to
emphasize the benefit of the proposed glaucoma progression
detection scheme, we have compared the proposed framework
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Fig. 3 Simulated image: (a) the simulated image (PSNR ¼ 20 dB)
and (b) the ground truth; the white boxes represent the changes.
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Fig. 4 Semi-simulated image by the permutation of image regions:
(a) the original B-scan image, (b) the simulated B-scan image,
(c) the ground truth: the white boxes represent the changes.

Table 2 Description of the simulated and semi-simulated dataset
used to evaluate the proposed nonlocal Bayesian Markovian
approach for change detection.

Number of images

Simulated dataset 100

Semi-simulated dataset
by region permutation

100

Semi-simulated dataset
by intensity modification

100
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called as nonlocal Bayesian-fuzzy detection scheme (BFDS) to
six other methods:

1. The support vector machine (SVM) classifier of the
RNFL thickness. As in Ref. 46, we used the radial
basis function as a kernel. The SVM was trained by
a variation of Platt’s sequential minimal optimization
algorithm.47 The SVM hyperparameters were deter-
mined by a global optimization technique based on
simulated annealing48 (RNFL-SVM).

2. The ANN classifier of the RNFL thickness. As in
Ref. 46, we used the multiayer perceptrons version
of the ANN49 (RNFL-ANN).

3. The proposed method with the classic MRF a priori
knowledge on the change detection map stan-
dard BFDS.

Results are presented in Table 4. The nonlocal BFDS method
with the use of the whole 3-D SD-OCT volume instead of the

RNFL measurements results in high specificity in both normal
and stable glaucoma eyes (94% and 94% respectively) while
maintaining good sensitivity (70%). This can be explained by
the fact that we take the noise for change detection instead
of the machine measurements which strongly depend on the
image quality. Moreover, the nonlocal approach led to a better
sensitivity compared to the classic approach. This is due to the
accuracy of the changes detection of the nonlocal approach. It is
important to note that the specificity is generally considered
more important in glaucoma progression detection than the sen-
sitivity since glaucoma is a slow disease50 and false negatives
(people falsely identified as nonprogressing) can be eliminated
in the next follow-up visits. However, if the specificity is low,
this would lead to substantial follow-up costs, unnecessary treat-
ment (e.g., surgery) and may cause much distress for people who
are not progressing.

5 Conclusion
A new framework for glaucoma progression detection has been
proposed. We particularly focus on the formulation of the
change problem as a missing data problem. The task of inferring
the glaucomatous changes is tackled with a hierarchical MCMC
algorithm that is used for the first time to our knowledge in the
glaucoma diagnosis framework. The new nonlocal approach we
proposed to define the MRF energy function increased the
robustness of the proposed change detection scheme compared
to the classic method. The validation using clinical data of the
proposed approach has shown that it has a high diagnostic accu-
racy for detecting glaucoma progression compared with other
methods.
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Table 3 Mean and standard deviation (SD) of false detection, missed detection, total errors, and the kappa coefficient resulting from the proposed
nonlocal Bayesian Markovian approach, the classic Markov random field (MRF) approach, the kernel k -means method and the threshold method
using simulated and semi-simulated.

Semi-simulated datasets False detection (�SD) Missed detection (�SD) Total errors (�SD) Kappa

Nonlocal Bayesian Markovian approach 0.37 (�0.14) % 3.12 (�0.65) % 0.61 (�0.13) % 0.84

Classic MRF approach 0.54 (�0.21) % 5.62 (�1.03) % 0.91 (�0.20) % 0.78

Kernel k -means 0.89 (�0.41) % 8.03(�2.75) % 2.03(�0.51) % 0.71

Threshold 2.14(�0.71) % 10.52(�3.14) % 3.45(�1.24) % 0.64

Simulated dataset False detection (�SD) Missed detection (�SD) Total errors (�SD) Kappa

Nonlocal Bayesian Markovian approach 0.84 (�0.24) % 5.17 (�1.05) % 0.97 (�0.17) % 0.82

Classic MRF approach 1.24 (�0.35) % 7.05 (�1.95) % 1.51 (�0.34) % 0.72

Kernel k -means 1.65 (�0.63) % 8.89 (�2.87) % 2.38 (�2.44) % 0.69

Threshold 3.78 (�1.47) % 15.25 (�SD4.17) % 6.41 (�2.74) % 0.53

Note: Bold values correspond to the best values.

Table 4 Diagnostic accuracy of the nonlocal BFDS, the standard
BFDS, the RNFL-ANN, and the RNFL-SVM methods.

Progressing
glaucoma
group

sensitivity (%)

Normal
group

specificity
(%)

Stable
group

specificity
(%) AUROC

Nonlocal
BFDS

70 94 94 0.87

standard
BFDS

64 90 92 0.83

RNFL-ANN 69 71 78 0.69

RNFL-SVM 52 68 79 0.60

Note: Bold values correspond to the best values.
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