
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
An adaptive mesh refinement technique for dynamics of solids

Permalink
https://escholarship.org/uc/item/5m90q7p4

Author
Trivedi, Abhishek

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5m90q7p4
https://escholarship.org
http://www.cdlib.org/

i

UNIVERSITY OF CALIFORNIA, SAN DIEGO

An Adaptive Mesh Refinement Technique for Dynamics

of Solids

A Dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Structural Engineering

by

Abhishek Trivedi

Committee in Charge:

 Professor Petr Krysl, Chair
 Professor David Benson
 Professor Michael Holst
 Professor Fransisco Lanza Di Scalea
 Professor P. Benson Shiang

2007

ii

Copyright

Abhishek Trivedi, 2007

All rights reserved.

 iii

The Dissertation of Abhishek Trivedi is approved, and it is acceptable in quality and

form for publication on microfilm:

 Chair

University of California, San Diego

2007

iv

 Dedicated to my belated uncle Mr. Nishkam Tripathi

and grand mother Mrs. Shri Devi Tripathi.

v

TABLE OF CONTENTS

SIGNATURE PAGE ... iii

DEDICATION ... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES.. x

LIST OF TABLES.. xii

PREFACE .. xiii

ACKNOWLEDGEMENTS .. xiv

VITA ... xvi

ABSTRACT .. xvii

OUTLINE AND CONTRIBUTIONS ... 1

CHAPTER 1 : BACKGROUND AND MOTIVATION 6

1.1 Introduction ..7

1.2 Mesh Improvement and Adaptive Mesh Refinement...........................12

1.2.1 Specialized Adaptive Techniques...13

1.2.2 H Type Techniques...16

1.2.2.1 Techniques Based on Remeshing.................................16

1.2.2.2 Fixed Order Mesh Modification Procedures16

1.2.2.3 Techniques Based on Element Splitting and Edge
Collapse ..17

1.2.2.4 Techniques Based on Basis Refinement.......................18

1.2.3 P Type Techniques ...18

vi

1.2.4 HP Adaptive Techniques..19

1.3 Adaptive Mesh Refinement in Commercial Software..........................20

1.4 Case for a New Adaptive Technique..22

CHAPTER 2 : CONFORMING HIERARCHICAL ADAPTIVE
REFINEMENT METHODS (CHARMS) .. 24

2.1 Nested Spaces...24

2.2 Refinement Equation ..24

2.3 Construction of Meshes of Higher Resolution25

2.3.1 True Hierarchical Basis ..29

2.3.2 Quasi-Hierarchical Basis ..30

2.4 Approximation on CHARMS-Refined Meshes....................................32

2.5 Formal Statement of the Refinement and Unrefinement Algorithms ..33

2.5.1 Quasi-Hierarchical Basis ..35

2.5.1.1 Refinement ...35

2.5.1.2 Unrefinement ..36

2.5.2 Hierarchical Basis...36

2.5.2.1 Refinement ...37

2.5.2.2 Unrefinement ..37

2.6 Design of an Adaptive Solver...38

2.6.1 Geometric Cell (GCELL) ...38

2.6.2 Connectivity and Refinement Nodes..40

2.6.3 Field ..42

2.6.4 Basis Function (BFUN)..43

2.6.5 Basis Function Set (BFUN_SET)...44

vii

2.7 Implementation of Refinement/Unrefinement45

2.7.1 Example: Equation of Steady Diffusion...................................46

2.7.1.1 Hexahedral Discretization in 3D48

2.7.1.2 Refinement of Triangulations with Quadratic Triangles
..49

2.7.2 Example: Equation of linear elasticity52

2.7.2.1 Refinement of Tetrahedra...53

CHAPTER 3 : ADAPTIVE SIMULATION OF ELASTIC WAVE
PROPAGATION IN SOLIDS ... 56

3.1 Equation of Elastic Wave Propagation...56

3.2 Solution with Adaptive Scheme ...58

3.3 Required Resolution for Wave Propagation Problems.........................60

3.4 Adaptive Time Stepping...61

3.5 Error Indicator ..61

3.6 Partition of Unity basis...63

3.7 Implementation of a wave propagation solver65

3.7.1 Adaptive Algorithm..65

3.7.2 Field Transfer ...67

3.7.3 Evaluation Cell (ECELL) ...70

3.7.4 Protocols ...70

3.7.5 Calculation of Basis Function Tables.......................................71

3.7.6 Geometry ..75

3.8 Conservation Laws ...76

3.8.1.1 Uniformly Refined Mesh...80

3.8.1.1.1 Using Lumped Mass (Row-sum technique) ..80

viii

3.8.1.2 CHARMS Refined Mesh..84

3.8.1.2.1 Row sum technique87

3.8.1.2.2 Consistent Mass...87

3.8.1.2.3 HRZ Mass Lumping88

3.8.1.2.4 Template Mass Lumping...............................89

3.8.1.3 Conclusion of Calculations...90

3.8.2 Conservation of Momentum...91

3.8.2.1 Momentum Conservation with Central Difference
Method..91

3.8.2.2 Momentum Conservation Property with Adaptive Mesh
Refinement ...92

3.8.2.2.1 Using Row-Sum Technique94

3.8.2.2.2 Using Consistent Mass Matrix95

3.8.2.2.3 Using HRZ Lumping.....................................96

3.8.3 Conservation of Energy..97

3.8.3.1 Energy in Central Difference Method97

3.8.3.2.1 Row-Sum Technique99

3.8.3.2.2 Using Consistent Mass Matrix102

3.8.3.2.3 Using HRZ Lumping...................................103

3.8.3.3 Conclusion from Conservation Behavior104

3.8.4 Conservation of Mass, Momentum and Energy with
Unrefinement ..105

3.9 Example..105

CHAPTER 4 : A VALIDATION CASE... 109

4.1 Background and Introduction ...109

ix

4.2 Experimental Setup ..110

4.3 Post Processing of Time Signal..112

4.4 Numerical Approximation..113

4.5 Analysis of Numerical Results ...114

4.6 Conclusion..117

CHAPTER 5 : OUTLOOK.. 121

5.1 Simulation of Tumor ..122

5.1.1 Description ...122

5.1.2 Role of CHARMS ..123

5.2 Pattern Recognition for NDE applications using Support Vector
Machine ..124

5.2.1 Description ...124

5.2.2 Role of CHARMS ..124

5.3 Future Work..125

5.3.1 Applications of CHARMS in Bio-Mechanics Simulations...125

5.3.2 Links to Nonlinear Mechanics and Dynamics........................126

5.3.3 Links to Visual Simulations ...126

5.3.3 Use of Asynchronous Variational Integrators127

5.3.4 Error Estimators..127

5.3.5 Lossy Unrefinement ...127

5.3.6 Implementation on Parallel Computers128

5.4 Conclusion..128

REFERENCES ... 129

x

LIST OF FIGURES

Figure 2-1: Uniform division of mesh 0M that results in a compatible mesh 1M .26

Figure 2-2: Refinement of 8-node quadrilateral finite elements: (I) stands for
 isoparametric mapping; (R) stands for refinement28

Figure 2-3: Illustration of Equation (2-6)..30

Figure 2-4: Comparison of true hierarchical basis (left) with quasi-hierarchical
 basis (right). ..32

Figure 2-5: Class diagram for a GCELL representing a six-node (quadratic)
 triangular finite element. Note the use of the templated CONN class for
 the specification of the connectivity...39

Figure 2-6: Schematic refinement tree for a quadrilateral GCELL.........................40

Figure 2-7: Class diagram for the field pair and field ...43

Figure 2-8: Class diagram for the basis function and basis function set.44

Figure 2-9: Steady diffusion equation solved in a three-dimensional domain. Left:
 initial grid; middle: step after two adaptations; right: cut-off grid with a
 solution contour. The integration cells are shown, with color coding
 corresponding to the temperature distribution......................................49

Figure 2-10: Refinement of the 6-node triangle..51

Figure 2-11: Dipole equation with homogeneous boundary conditions solved on a
 triangulation of square domain with 6-node quadratic triangles. Color
 coding of the field on three refined grids. ..51

Figure 2-12: Dipole equation, 6-node quadratic triangles. The geometric cells from
 the upper-left corner of the computational domain that support basis
 functions on different levels: left to right, level 1, 2, 3, 4. The red balls
 indicate the active basis functions. ...51

Figure 2-13: Linear elastic model of human brain using tetrahedral mesh refinement.
 Color-coded area shows distribution of Von Mises stresses.55

Figure 3-1: Progress of solver. ..59

xi

Figure 3-2: Quasi-hierarchical refinement of shape function)0(
jN with partition of

 unity..64

Figure 3-3: Class diagram for steady-diffusion evaluation cell for 8-node
 hexahedron. ..71

Figure 3-4: Uniformly Refined Mesh..80

Figure 3-5: Adaptive mesh refinement of shape function)0(
jN using CHARMS ...84

Figure 3-6: Adaptive mesh refinement of shape function)0(
jN using CHARMS ...93

Figure 3-7: Points representing no energy increase on v1, v2, v3 Cartesian space 101

Figure 3-8: Points representing no energy increase on v1, v2, v3 Cartesian space for
 consistent mass matrix..103

Figure 3-9: Points representing no energy increase on v1, v2, v3 Cartesian space 104

Figure 3-10: Mesh refinement at different time steps as wave front travels through
 the bar. ..106

Figure 3-11: Number of basis functions generated (top), Conservation of momentum
 in this process (bottom) ..107

Figure 4-1: Different types of defects ...111

Figure 4-2: Experimental Setup ..112

Figure 4-3: Scalogram using coarse mesh...118

Figure 4-4: Comparison of reflection coefficients with coarse mesh118

Figure 4-5: Same-Mode Energy Reflection Coefficient Spectra Obtained for the
 Vertical Test of Zero Degree Defects...119

Figure 4-6: Wave Front Tracking and Mesh Refinement. (a) Rail with Refined
 Mesh, (b) Rail illustrating Wave Front Tracking & Mesh Refinement
 and Unrefinement. (One level of refinement is shown)119

Figure 4-7: Same-Mode Energy Reflection Coefficient Spectra Obtained for the
 Vertical Test of Zero Degree Defects...120

Figure 5-1: Finite element biomechanical model of cross-sectioned brain...........123

xii

LIST OF TABLES

Table 2-1: Refinement Nodes of an 8-node Hexahedron46

Table 3-1: Linear hat functions and their derivatives of coarse mesh.80

Table 3-2: Linear hat functions and their derivatives of mesh refined using
 CHARMS. ..85

Table 3-3: Comparison of eigenvalues ..90

xiii

PREFACE

 This work is about adaptive mesh refinement and how it can be successfully

utilized in dynamics problems. Adaptive mesh refinement technique focuses on

refinement of the basis functions instead of subdivision of elements. Refinement done

in this fashion produces compatible and hierarchical meshes [66], the overall

algorithm is easy to implement [32], and it can be applied to a wide range of 1D, 2D,

and 3D elements. We apply this technique to numerically explicit, dynamic problems

and verify our solution strategy by validating it against NDE experiments performed

for simulated guided wave problems [35].

 There are already concrete, compelling applications of the current work [76]. A

variety of complex simulation problems are likely to benefit from our adaptive

framework [77-79].

 xiv

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge funding from the Office of Naval Research for

a part of this project.

I am very grateful for the guidance of Dr. Petr Krysl. Thanks for having faith on my

ability to carry on this research work at some of the most difficult times. Without

your mentoring and close collaboration this research work could not have been a

reality. The lessons I learned from you will stay with me for lifetime.

 I am very thankful to Dr. John McNamara for his support in development of

verification problem with simulation of long range guided waves in rail road

tracks. John thanks for being a great friend and fellow researcher.

I am thankful to Professor Francisco Lanza di Scalea for his encouragement and

support on guided wave simulation project.

I am grateful that I had a chance to go through series of math courses taught by Dr.

Michael Holst and series of FEA courses taught by Dr. David Benson. Lessons

that I learned during these courses provided a solid foundation to carry on this

research work.

I am thankful to Aaron Young for proof reading part of this work. Thanks for all that

midnight oil. You have been a great friend.

I am thankful to Dr. Giridhar Chikkapalli and Dr. Amitav Majumdar at San Diego

super computer center for there collaboration on brain deformation project. You

guys had been a great help.

xv

I am thankful to faculty and staff at structural engineering department. It was a

pleasure and an honor to have a chance to work with so many highly regarded

people in the field.

Fred, Bao Zhu, Bill, Daniel, Paul, Dawn, Sara, Sebastian, Howard: Thanks for

making my stay at UCSD so much fun.

xvi

VITA

 Education

 Ph.D. , University of California, San Diego, Adaptive mesh refinement for
Dynamics of solids, Structural Engineering, University of California, San Diego

 M.S. , Structural Engineering, University of California, San Diego

 Employment History

 Sept. 1999 – Sept. 2001 , Transoft International SA, Paris, France
 Feb 2005 – Present, Solidworks Corp., Santa Monica, CA, USA

 Publications
 Krysl, P., Trivedi, A., and Zhu, B., 2004, “Object-oriented hierarchical refinement

with CHARMS,” Int. J. Numer. Meth. Engng., 60(8), pp. 1401-1424.

 Trivedi, A., Krysl, P., McNamara, J., and Lanza di Scalea, F., 2004, “Adaptive

simulation of ultrasonic guided waves in railroad tracks using CHARMS,” Proc.
6th World Conference on Computational Mechanics , Springer - Verlag.

 Majumdar, A., Birnbaum, A., Choi, D. J., Trivedi, A., Warfield, S. K., Balridge,

K., Krysl, P., 2005, “A Dynamic Data Driven Grid System for Intra-operative
Image Guided Neurosurgery,” ICCS 2005, LNCS 3515 pp 672-679, Springer-
Verlag

 Krysl, P., Damaser, M., Chukkapalli, G., Majumdar, A., Choi, D. J., Trivedi, A.,

Warfield, S. K., Hoyte L., 2006, “Computational model of levator ani muscle
stretch during natural birth,” Int. J. of Biomechanics, To Appear

 Krysl, P., Trivedi, A., 2005, “Instructional Use of Matlab Software Components

for Computational Structural Engineering Applications”, International Journal for
Engineering Education, Vol 21 (5), 778 – 783,

xvii

ABSTRACT OF THE DISSERTATION

An Adaptive Mesh Refinement Technique for Dynamics of Solids

by

Abhishek Trivedi

Doctor of Philosophy in Structural Engineering

University of California, San Diego, 2007

Professor Petr Krysl, Chair

 Simulation of dynamics problems generally is heavily dependent on mesh size

for convergence and accuracy. In many cases, the requirement of mesh size reaches to

such proportions that the problem becomes unsolvable for the available computational

resources. We perceive that such problems can be solved by refining and unrefining

mesh adaptively during time stepping. Adaptive mesh refinement techniques available

in popular literature are marred by various limitations, such as element-specific

techniques, algorithm-specific techniques, etc. We utilize Conforming Hierarchical

xviii

Refinement Methods (CHARMS) [32] for our purpose since it relies on the refinement

of finite element basis instead of geometric sub-division of elements. Refinement in

this fashion produces conforming meshes during adaptive mesh refinement for a wide

range of elements. We improve CHARMS to incorporate time stepping problems. In

order to show the effectiveness of such an algorithm, we modify an explicit Newmark

solver to incorporate it within the adaptive mesh refinement framework. We perform

the analysis of conservation properties of the modified algorithm to understand its

limitations. Later, we demonstrate application of such development with a very

practical example, simulation of an NDE experiment using ultrasonic guided waves.

Details presented in [76] has shown that such a simulation would otherwise not have

been possible. We further study the guided wave experiment and optimize various

parameters of the algorithm to validate experimental results.

 1

OUTLINE AND CONTRIBUTIONS

Chapter 2

 This chapter establishes the foundation for the refinement of basis functions

as suggested in [36] for discrete computational mechanics applications. Research such

as this, where alteration in conventional numerical techniques is evident, requires

development of software tools and implementation of ideas to study and demonstrate

its impact. Although [32] highlights many of these ideas in detail, it was necessary to

include the details of the modification in software framework for dynamic activation

and deactivation during adaptive steps in the direct time integration scheme not

published in [32]. Other major contributions in theoretical understanding presented in

this chapter are attributed to the development of a procedure to properly interpolate

data over refined mesh by Zhu and Krysl [34] and refinement of tetrahedral mesh by

Enders and Krysl [33]. Following this development, many modifications in the data

structure of our software were made based on object oriented adaptive framework. For

example, a pointer to a container template class called “bucket” was introduced to

automatically increase and decrease in size and reshuffle the basis function set

efficiently during refinement and unrefinement. We used “in house” post processing

tools to visualize the results; a graphics library called Elixir was utilized to create

snapshots during time progression of the adaptive solver. Watch points were

introduced to visualize XY plots during time marching. We also experimented and

modified the math library PETSC for linear equation solvers and pre-conditioners,

2

since dynamic problems can often be computationally very expensive. All the

applications shown in this chapter were modified and tested using this new

framework.

Chapter 3

 The general hyperbolic equation of the form ucu tt Δ= 2, has many applications

in computational mechanics. For example, if we can assume a time harmonic motion,

it leads to parabolic Helmholtz’s equation, which is used for certain types of wave

propagation problems. In discrete mechanics its weak form (or Galerkin formulation)

leads to initial value problem for elastodynamics applications including, vibration and

wave propagation problems. There are various ways to solve this problem in a time or

frequency domain. Its solution in a frequency domain often relies on normalization of

the mass and stiffness matrix with respect to natural modes. Participation of more

natural frequencies corresponding to higher modal mass leads to a more accurate

result. In a time domain it is solved using various direct time integration schemes. The

Newmark family of solvers are industry wide and are the most established and most

popular techniques to solve this problem. The Newmark family of solvers includes

several implicit schemes and one explicit scheme, the central difference method.

Implicit schemes such as the average acceleration method and the Fox-Goodwin

method are computationally very expensive, unconditionally stable, and designed to

conserve mass, momentum, and energy. On the other hand, the central difference

method is relatively cheap computationally, conditionally stable, and designed to

3

conserve only momentum. The explicit method imposes various restrictions on the

solution process, time step, mesh size, etc., and its construction in certain fashions

very often is reflected in the conservation properties. However its general economy for

a wide variety of elastodynamics applications without the sacrifice of accuracy has

made it ubiquitous in the commercial software, and much research effort has been

spent to analyze its general behavior. In our case, we are utilizing it to demonstrate use

of our adaptive scheme in dynamic solvers. Past work done on analysis of such

schemes [81,88] relies on the fact that discrete space essentially does not change

during the time marching algorithm. However, in our case discrete space is altered by

our adaptive scheme. Therefore, various established assumptions and conservation

properties must be reevaluated to account for such changes. We study the conservation

properties of such a scheme, establish its limitations, and derive conclusions for some

of the targeted applications, such as the one presented in chapter 5. An investigation of

properties of integration, using such a scheme over refined mesh, brings our attention

to several related issues such as: data transfer from coarse mesh to finer mesh and the

necessity of imposing a partition of unity. Implementation issues related to such a

solver are discussed to support the adaptive data structure discussed in chapter 4. An

example from such implementation is discussed at the end of the chapter.

Chapter 4

 A guided wave propagates in the axial direction of a layer, while behaving as a

standing wave through the thickness of the layer. Long range ultrasonic guided waves

4

are often preferred for their use in inspection of cracks in long slender geometries,

such as railroad tracks. This is because conventional NDE techniques such as the

pulse-echo method suffer from the problem of the complicated nature of reflected

wave forms, making it very difficult to produce real time analysis. Apart from that,

inspection of engineering structures using long-range guided waves is attractive,

because it is possible to investigate complete material volumes in regions over 100

meters away from the point of measurement. Effective inspections require a good

understanding of the different vibration modes. Finite element modeling is a powerful

tool in assessing the feasibility of guided wave inspections.

 Several conclusions are derived in chapter 3, and all point towards a robust

application of the CHARMS-based adaptive dynamics solver for simulation of guided

wave problems for many reasons. For one, solution of wave propagation problems

leads to very fine mesh using a direct time integration scheme if we are looking for

response of intermediate frequencies, as mesh size is related to wavelength and

frequency. Very often this is the case in NDE applications. The problem becomes

especially complex in practical NDE applications where predominant frequencies,

which can provide useful information, are not know a priori. Analysis in this case

cannot be performed in a frequency domain. We have all the ingredients to perform

such an analysis: a lumped mass matrix which stays symmetric, positive definite with

refinement, a momentum conserving, explicit adaptive Newmark solver where

adaptivity does very little to kinetic energy (in small strain problems), and a mesh

where refinement and unrefinement together are chasing the energy wave front. As a

5

result, the effect of a moving and reflected wave front can be clearly seen with

several-fold reduction in computational effort. Analysis of frequency content in the

reflected wave front reveals startling similarity to experimental NDE results. This

chapter describes this verification problem in great detail.

Chapter 5

 Work done so far opens the door for solutions of various complicated

engineering problems. Because of our immediate involvement in biomechanics [78]

and NDE applications [76] during this research work, these areas have been the main

beneficiaries of our research. We highlight similar developments in this chapter. This

chapter also presents ideas for the potential improvement in the algorithm presented in

this thesis, such as what can be done about a non-interpolating basis resulting from

CHARMS, how lossy unrefinement may be handled, or what can be done to apply

similar techniques in nonlinear dynamic problems. Some of these ideas are borrowed,

while others are completely our own. The full range of such ideas is long, so we

conclude this chapter with the most important, and hope that future research will shed

more light on these topics.

6

CHAPTER 1: BACKGROUND AND

MOTIVATION

 Necessity is the mother of all invention. The need for computational resources

is as old as the invention of the computer itself. Numerical simulations of practical

engineering problems especially consume a lot of computational effort, even with a

small amount of complexity. Therefore, it is safe to assume that the idea of automatic

increase or decrease in a computational grid to achieve better quality results using

adaptive mesh refinement is as old as the notion of finite elements. Although a large

volume of literature is available on this topic, adaptive solvers for general finite

element problems have not been employed broadly because of the huge

implementation effort. This chapter highlights current understanding of improvement

of a solution over a discrete domain using adaptive mesh refinement. We present a

brief review of existing techniques and argue in favor of a technique based on

refinement of shape functions [31,36].

7

1.1 Introduction

 In order to numerically simulate a physical problem represented by partial

differential equations, the domain of interest must be discretized into a set of elements.

A numerical simulation approximates the differential equations with algebraic

equations, which in turn are solved to give an approximate solution for the field. In

order to be a valid approximation, the discretization must conform to all boundary

conditions of the original problem. Therefore, the mesh generation step is extremely

important, since it dictates the convergence of the computational schemes as well as

the accuracy of the numerical approximations of the solution.

 There are many algorithms for creating meshes, ranging from geometry

specific to general context techniques. Methods to create these meshes include user-

driven, semiautomatic, and fully automatic methods which can create structured,

unstructured, and mixed meshes. There is software [1] as well as a large group of

literature [2,3] that deals with structured meshing (“grid generation”). A structured

mesh is defined by all interior nodes of the mesh having equal numbers of adjacent

elements. Commonly, the structured meshes generated are predominantly quadrilateral

or hexahedral in nature. The meshing algorithms to generate structured meshes usually

utilize complex iterative smoothing techniques in order to align elements with the

boundary conditions of the problem. “Block-structured” techniques can be utilized to

break up the domain into topological blocks where non-trivial boundary conditions

exist.

8

 Unstructured meshes differ from structured meshes in that the numbers of

adjacent elements need not be equal. Triangle and tetrahedral meshing are the most

commonly used forms of unstructured meshing; however, quadrilateral and hexahedral

meshing may also be unstructured. As far as generation of the meshes, there is a great

deal of overlap with regard to the technologies involved. The main difference is that

structured mesh generators utilize iterative smoothing algorithms in the creation of the

mesh.

 Broadly, elements can be classified as structural elements and continuum

elements. Whereas in the formulation of continuum elements the displacements u, v,

and w are interpolated in terms of nodal point displacements of the same kind, in the

formulation of structural elements, the displacements u, v, and w are interpolated in

terms of mid-surface displacements and rotations. In addition to that, a major

assumption is made that the stress normal to mid-surface is zero in formulation of

structural elements. Examples of structural elements are beam, plate, and shell

elements, while examples of continuum elements are triangle and tetrahedra elements.

 Depending on the requirement of the problem, a combination of different types

of elements can be used to solve a finite element problem to provide maximum

accuracy with the least amount of computational effort. For example, mass elements

can be used in problems such as frequency analysis of a PCB (Printed Circuit Board),

with heavy components to simulate the mass of a component when the structural

response of that component is of no interest. Spring elements can be used to simulate a

flexible support condition of a part in shock isolators and flexible mounts. Gap

9

elements can be used to simulate contact/separation between two disjointed bodies

when closed, normal, and shear forces are transmitted. Truss and beam elements can

be used to simulate space frame structures where the joint connections are strong.

While beam elements can resist axial tension, compression, bending, and torsion, truss

elements resist axial tension and compression only. For 2-dimensional analyses, 2D-

planar and triangular elements can be used when all loads and displacements are in the

analysis plane. Shell elements can be used to model thin members where the geometry

or forces/displacements are not planar and the structure is so thin that meshing with

solid elements leads to either poor aspect ratios or an impractical number of elements.

Three dimensional elements such as tetrahedral and hexahedral elements are used for

full-blown three dimensional analyses. While practically any solid model can be

automatically meshed with tetrahedral elements, many models involving bricks must

be meshed manually along with the geometry.

 As the number of elements is increased, a valid finite element approximation

must converge to the analytical solution of the differential equation. Usually, this

convergence should show all the properties of the analytical scheme being

approximated. This is true since the differential equations modeling the domain of

interest show all of the necessary conditions that the solution must satisfy (e.g. stress,

strain, displacement, etc.). While approximating the analytical solution, the

convergence of the finite approximation must adhere to all physical constraints known

to exist for the problem of interest. Depending on the finite elements used to analyze

10

the model, the approximation may converge monotonically or non-monotonically to

the exact solution as the number of elements is increased.

 To converge monotonically, elements must be complete and compatible.

Completeness is satisfied when the element’s displacement functions are able to

represent the rigid body displacement and constant strain states. Compatibility requires

that displacement within and between the elements is continuous. In order to

understand convergence, understanding of the following properties of finite elements

is essential [4]:

1. If the exact solution of the governing partial differential equation is represented

by u and the corresponding finite element solution using mesh by uh , the error

eh has the following property:

 eh = -uh + u

 a(eh , vh) = 0 for every vh ∈ Vh

 Here a(. , .) is a symmetric bilinear form and Vh is the space of finite element

displacement functions which correspond to the displacement interpolations contained

in all element displacement interpolation matrices. As the space Vh increases, the

solution accuracy will increase since large spaces consist of smaller spaces.

2. a(uh , uh) ≤ a(u , u)

This indicates that the strain energy corresponding to finite elements is always

less than or equal to the strain energy corresponding to the exact solution.

11

3. a(eh , eh) ≤ a(u - vh, u - vh) for every vh ∈ Vh

This shows that the finite element solution uh is chosen such that the strain

energy due to the difference in the actual and finite element solutions is the

minimum.

 The above properties provide clear evidence of the convergence of the solution

as the mesh is refined. Furthermore, from properties 2 and 3 above, it is clear that the

strain energy corresponding to the finite element will approach the exact strain energy

as the mesh is refined.

 The rate of convergence depends on the order of the polynomial used to

construct the shape function. The following expression relates the error due to

discretization to the order (k) of the approximation polynomial:

 k
hh chuue ≤−= (1-1)

 Here constant c is independent of mesh size h but depends on material

properties. In some cases when constant c becomes very large, mesh size h should be

appropriately small to achieve convergence. Using the above relation, it can be shown

that displacements converge one order higher than stresses. In the above convergence

relationship, it is assumed that the solution of the partial differential equation is

smooth. However, this is not the case in most of the practical problems. Sudden

changes in geometry, material properties, loads, and boundary conditions produce a

solution which is not smooth over the entire domain. Hence mesh needs to be fine in

the areas where stresses or displacements are unusually high. The equation of

convergence therefore should account for lack in smoothness and can be rewritten as:

12

 ∑ +
≤−

m
mk

k
mh uhcuu 2

,1
22

1 (1-2)

Here m denotes the individual element, hm is the corresponding mesh size, and k is the

degree to which the polynomial used in the displacement assumption is complete. In

this sequence mesh size is uniformly reduced in the required areas. This approach is

referred as the “H method of analysis”. Alternatively, solutions can be improved by

increasing the order of approximation k. Such techniques are called P methods.

1.2 Mesh Improvement and Adaptive Mesh Refinement

 In most practical finite element problems, the initial mesh does not provide an

optimum solution of the governing differential equations. It needs to be improved to

achieve a solution with a certain level of accuracy. After creation of the initial mesh,

techniques such as smoothening or coarsening of mesh are employed to get elements

with the correct size and aspect ratio. In the case of a static problem (after initial

analysis is complete), the difference between the exact solution and the discrete

solution provides a basis for mesh improvement. Typically remeshing and/or adaptive

mesh refinement are used to improve the solution in consecutive iterations. Remeshing

is typically done manually by regenerating the mesh with mesh controls and/or

increasing the order of approximation in the areas where the solution is not sufficiently

smooth or does not have the minimum required accuracy. The method of mesh

improvement can be chosen based on either the experience of the analyst or using an

error indicator algorithm.

13

 Instead of using remeshing adaptive mesh refinement, an automatic mesh

improvement process may be employed. The mesh improvement process is typically

guided by an error indicator. Adaptive techniques can be divided into the following

groups:

1. Specialized Adaptive Techniques

2. H Type Techniques

3. P Type Techniques

4. HP Type Techniques

1.2.1 Specialized Adaptive Techniques

 The volume of literature published for adaptive techniques for specific types of

problems is enormous. This type of literature can be broadly categorized as problem-

specific, element-type, order-specific, or a combination of any or all of the three.

During the first developmental stages, most adaptive techniques were developed for

specific non-transient problems for specific types of elements. Works done by

researchers such as Shephard, Babuška, and Berger [11,27,42,54,57,59] represent a

chronology of developments in adaptive mesh refinement techniques. Probably the

most interesting works in this category appeared in the early 1990s and later in the

areas of highly nonlinear and dynamic problems. Here are the highlights of some of

the papers.

 To improve step size dependent approximations, Richardson’s extrapolation is

quite often utilized. With this, better approximation can be achieved for a polynomial

A, where A(h) depends on a positive step size h by subtracting the largest term in the

14

error, O(hko). For better appoximations, this algorithm can be done repeatedly to

remove further error terms.

 One of the more widely used adaptive mesh refinement algorithms using

Richardson’s extrapolation was developed by Berger [11]. It starts with the entire

computational Hdomain H overlayed with a coarsely resolved base-level regular Hcartesian

gridH. As the calculation progresses, individual cells within the grid are tagged for

refinement using a criterion that can either be user-supplied or based on the

HRichardson extrapolationH. For example, constant Hmass H per cell for a criterion can be

used since higher HdensityH regions are more highly resolved.

 All tagged cells then proceed through refinement. This means that a finer grid

is overlayed on top of the coarser grid. After refinement, individual grid patches on a

single fixed level of refinement are integrated, advancing those cells in Htime H. Finally, a

correction procedure is implemented to fix transfers along coarse-fine grid interfaces.

This is done to ensure that the amount of any conserved quantity transferred between

bordering cells is exactly the same. At some point, if the level of refinement in a cell is

greater than required, then the high resolution grid can be replaced with a coarser one.

 Another interesting series of papers were published by Ortiz’s group at the

California Institute of Technology. One of the most broad-based efforts to create a

general scheme for highly nonlinear and possibly dynamic problems was a paper

published by Radovitzky and Ortiz in 1999 [12]. The idea utilized the fact that most

nonlinear problems (nonlinear elastic, elasto-plastic, visco-plastic solids, compressible

Newtonian fluids, etc.) follow a minimization principle which may be used as a basis

15

for mesh refinement. For example, a stress update having the requisite potential

structure can be procured by integrating the constitutive relationship along the path of

minimization, i.e. along such deformation histories which minimize the incremental

work of deformation. This minimization principle may be utiliized as a criterion for

estimating error. Optimal distribution of mesh size then follows from an error

indicator. One of the obstacles for mesh adoption in time-dependent problems is that

mesh at time t(n+1) results from error indication at time t(n). However mesh fields

differ at t(n+1) and t(n). This was solved by taking advantage of a piecewise constant

representation for the state variables and the transfer operator that resulted. Whole

collections of state variables are transferred as blocks from one quadrature point to

another, which maintained all internal constraints and compatibility between the

various state variables. Another paper published by Molinari and Ortiz [13] made use

of a similar technique for dynamic plasticity by creating an asymptotic error bound

and mesh refinement by edge collapse.

 Papers by Selman, Hinton, Bićanić [14], and others focused on developing

reliable adaptive mesh refinement technique via remeshing. Adaptive mesh refinement

use in plate bending problems with boundary layers, strain softening problems, and

two-dimensional dynamic problems has been shown [14], and it benchmarks against

various well-known applications in engineering.

16

1.2.2 H Type Techniques

The H type techniques can be broadly subdivided into four categories:

1. Techniques Based on Remeshing [8-10,14]

2. Fixed Order Mesh Modification Procedures [24-30]

3. Techniques Based on Element Splitting and Edge Collapse [16-20]

4. Techniques Based on Basis Refinement [15,31-35]

1.2.2.1 Techniques Based on Remeshing

 Adaptive remeshing methods regenerate the entire mesh using an automatic

mesh generation algorithm, which uses element shape and size information for

constraints. The INRIA group [38-41] applied adaptive remeshing in terms of adaptive

Delaunay Kernal, and use of adaptive remeshing based on anisotropic advancing front

mesh generation was done both by Peraire et al. [10] and Möller et al. [37]. Such

advantages of adaptive remeshing include the ability of curved domains to be

considered by mesh generation algorithms, and coarsening of mesh is taken into

account. However, these methods prove very inefficient for the refining of only a few

elements on an already refined mesh. Also, it tends to introduce additional

complexities when solution fields are transferred between meshes.

1.2.2.2 Fixed Order Mesh Modification Procedures

 In this type of adaptive mesh refinement, the local mesh is modified in a

certain order. For example, de Cougny and Shephard [27], de l’Isle and George [28],

and Joe [29] have all improved the existing mesh quality using four different mesh

17

modification procedures: swap, collapse, split, and relocation. For adaptivity in both

two dimensions [24-26] and three dimensions [30], applications were made of these

local mesh modification operations using desired mesh size and shape distribution as

governing factors. Advantages of this type of method include: it is a local process for

which curved geometry domain may be accounted [42], coarsening of collapse-based

mesh may be applied [27], and as each modification is applied, solution field transfer

can be done incrementally. Despite these benefits, the effectiveness of the local mesh

modification procedure in three dimensions (as far as efficiency and quality are

concerned) is largely related to how the various mesh modifications are taken into

account.

1.2.2.3 Techniques Based on Element Splitting and Edge Collapse

 In these algorithms, the driving concept is that geometric division of finite

elements is mandatory for refinement. However, the result of local refinement based

on element splitting shows that this usually does not ensure that the modified (refined)

mesh is compatible globally. Several methods currently used to resolve this issue

include: (i) unknowns of incompatibly placed nodes are constrained with respect to

other nodes to ensure that the resulting approximation is compatible, even though the

mesh is not; (ii) penalty methods or Lagrangian multipliers to treat incompatibility;

(iii) additional elements are split until the mesh is globally compatible. Several

specialized mesh refinement techniques have been devised for an array of practically

important cases: for triangular and quadrilateral meshes in two dimensions [36,42-44]

and tetrahedral [15,20,21,45-47] or hexahedral meshes in three dimensions [48].

18

1.2.2.4 Techniques Based on Basis Refinement

 These techniques depart from earlier mentioned element-by-element splitting

methods. In place of geometrically dividing elements, these techniques rely upon

division of approximation space with additional finer basis functions. Performance of

this style of refinement is accomplished by adding a dilated basis function in the

middle of an element in order to affect the same space as element bisection. The

solution stays the same if the coefficient of the introduced function is zero. Bases

constructed in this manner are precisely the classical hierarchical bases of the FE

(finite element) literature [51]. This approach forms the basis of work done in this

thesis and will be explained in great detail in the next chapter.

1.2.3 P Type Techniques

 P adaptive techniques, unlike H adaptive techniques, depend upon refinement

of finite element space by increasing the order of approximation on a fixed mesh.

Broadly, P adaptive refinement can be classified as either isotropic or orthotropic.

Orthotropic refinement is useful in situations where the solution to a boundary value

problem has a very strong gradient in one direction but is relatively flat in other

directions. In similar situations, refinement is performed by choosing different

polynomial orders for each enrichment direction. Construction of P orthotropic spaces

and their verification with the boundary layer problem of Reissner-Mindlin plates has

been demonstrated [52]. The P version converges at least as fast the H version with a

quasi-uniform mesh, and it converges twice as fast as the H version with a solution

having γr type singularity [54,55]. The convergence rate also depends on basis

19

functions chosen. [56] provides insight on selection of approximation functions for

various problems. Although significant progress has been made since the conception

of P adaptive techniques in the early 1980s, various important issues remain, such as:

1) lack of an effective a posteriori error estimation, 2) adaptive selection of piecewise

shape functions, and 3) an inverse approximation theorem derivation.

1.2.4 HP Adaptive Techniques

 It has been observed that P refinement is more efficient in areas where

solutions are smooth and H refinement is more efficient in regions near singularities.

In order to take advantage of the benefits of both H and P refinements, HP adaptive

schemes have been devised. Babuška and others [57,59] have shown that finite

element discretizations, where element size H and locally variable polynomial orders

P are optimally distributed, deliver exponential convergence rates in terms of error

versus degrees-of-freedom (d.o.f.). However, designing algorithms that deliver such a

sequence of optimally refined HP meshes along with exponential convergence in a

fully automatic mode (with no user interaction) has been the ‘holy grail’ of HP

computations for a decade and a half [60]. It has been proven that HP mesh

optimization is based on minimization of the projection-based interpolation error [62].

A comparison of various a posteriori error estimators has also been presented [63].

Despite various qualities such as exponential convergence, HP adaptive schemes are

still in their infancy and unpopular in commercial codes because of the enormous

effort to implement even the simplest of problems.

20

1.3 Adaptive Mesh Refinement in Commercial Software

 Seamless integration of discrete multi-physics simulations with a CAD system

is both lucrative and profitable, since it allows mechanical designers to perform

complicated numerical analyses with relatively little effort and a fairly shallow

learning curve. Therefore, an increasing number of corporations involved in the

production of commercial analysis software are investing in tight integration of their

software with popular geometrical modeling tools. However, difficulties with respect

to the proper representation of CAD geometry (such as issues related to defeaturing,

tolerance, and dirty geometry) present a major bottleneck in mesh generation and the

proper discrete representation of the problem. In these cases, mesh refinement

provides for the ability to capture the geometry with a considerably smaller number of

elements and grid points. In addition, it can help to improve mesh quality in areas

where rapid geometric change is observed. Adaptive mesh refinement that is used to

support proper discrete representation of geometry is known as geometry based mesh

adaptivity. This functionality involves both the ability of the adapted mesh to adhere

to the original geometry and mandates that access to the original geometry be present.

Mesh adaptivity that does not remain true to the original geometry is severely limited

by initial mesh geometric approximations. In fact, the sensitivity of the results to the

local geometric shape is so high that if the mesh geometric approximation does not

improve as the adaptive simulation process continues, the results would not just be a

poor approximation; they would be meaningless. In many cases, mesh edges and faces

are the same size as the small geometric features that are often critical to the analysis

21

(as in the case of the accelerator cavity). Simply moving new nodes introduced during

refinement to curved model surfaces can create invalid elements in these situations.

Procedures needed to effectively deal with these types of problems must include both

general mesh modification operations and a control algorithm that ensures the

procedure is correctly proceeding [42].

 Geometry based mesh adaptivity advantages include both the abilities to start

with initial meshes that are coarser and to ensure that the resulting model remains

within an appropriate level of accuracy for the design geometry. An additional benefit

that may not be obvious is the ability to combine geometry based mesh refinement

with small feature defeaturing as a function of target mesh size. This can create an

adaptive geometry representation for mesh adaptivity where small features are ignored

in the initial mesh, yet are accounted for as a function of target mesh size in the

following stages of the mesh adaptivity process. This combined approach greatly

reduces the defeaturing requirements associated with geometry access for mesh

generation and allows for initial coarse meshes of detailed geometric models.

 Adaptive mesh refinement as a tool to improve results of a numerical solution

is still at a very basic stage of development in most of the analysis software. This is

because of the lack of a universally applicable adaptive scheme. Most commercial

software provides adaptive schemes with various restrictions on mesh type or solver

type. H or P adaptive refinement schemes are most commonly implemented with

Zienkiewicz and Zhu type error indicators for structural analysis problems. For

example, in the case of Cosmos (an analysis package sold by Solidworks Corporation)

22

it is applied to only solid elements. For solutions of fluid flow problems with finite

volume methods, techniques developed by Berger [11] and others, which are based on

Richardson’s extrapolation, are more popular. This is true because these techniques

work very well with structured meshes and parabolic systems of partial differential

equations, which is very common in fluid flow analysis. In most of the black box

software, details of the adaptive technique are typically not revealed to the public

domain. Therefore, it is hard to provide further details about the adaptive solvers.

1.4 Case for a New Adaptive Technique

 A good mesh refinement algorithm should be fast, robust, efficient, and

applicable to a wide range of problems with minimal implementation effort. An

additional benefit is if it can generate nested meshes within the refinement hierarchy,

greatly simplifying the incorporation of multi-grid solvers [63,64]. The efficiency of

an adaptive mesh refinement technique refers to the fact that it should not become a

bottleneck of adaptive computations, and it should generate good quality geometric

meshes, i.e. elements must remain well-shaped upon refinement and unrefinement.

Robustness is usually expressed as the requirement of termination with a valid result

in finite time.

 H adaptive techniques based on element splitting, in general, do not ensure global

compatibility. In order to enforce compatibility, various methods were used in the

past. Such methods include enforcement of constraints, applying penalties to hanging

nodes, red green blue triangulation, etc. Apart from that, they are generally formulated

23

with one type of element in mind, and their application to different types of elements

involves special tricks. The same problem has been noticed with techniques based on

local remeshing [42]. Adaptive mesh refinement techniques need to be supplemented

with automatic mesh generation techniques, which is a big problem for structured

meshes. Despite the fact that these techniques may look simple enough, their

implementation is a formidable task.

 Conforming hierarchical refinement methods (CHARMS) [32] is designed to

incorporate the above mentioned needs. In [33], it is clear that this technique is both

much simpler and more general than current techniques. CHARMS exploits the

refinement of basis functions rather than elements. [33] demonstrates that this leads to

both the applicability of the algorithm to any number of spatial dimensions and a

greater variety of structured and unstructured element types than any standard mesh

refinement algorithm to date.

 However, work done so far [32-36] limits the use of this technique to non-

transient solvers. This thesis further enhances the technique by expanding its use to

transient solvers and both demonstrates and verifies its application in an explicit wave

propagation solver. An object-oriented code called FAMULS, developed by Petr

Krysl, was enhanced to incorporate the demand of dynamic solvers.

24

CHAPTER 2 : CONFORMING HIERARCHICAL

ADAPTIVE REFINEMENT METHODS (CHARMS)

2.1 Nested Spaces

 Given a set of linearly independent scalar basis functions supported on finite

elements such that the finite element space V has the following property:

 () () ()
⎭
⎬
⎫

⎩
⎨
⎧

== ∑
i

ii vxxvxvV φ: , (2-1)

where nRx ∈ , () mRxv ∈ , m
i Rv ∈)1,1(≥≥ mn and Rxi ∈)(φ . It is possible to

construct a refined mesh M ′ consisting of the set of functions '
)(xiφ such that using the

hierarchy of approximation spaces,)(jV can be obtained from the coarsest space in

the hierarchy,),0(V . Hence an infinite sequence of nested spaces can be constructed as

follows:

;..............)()2()1()0(mVVVV ⊂⊂⊂⊂ (2-2)

2.2 Refinement Equation

 From the above nesting relationship, it is clear that 1+⊂ jj VV . Hence

)()(xj
iφ on level j may be exactly resolved in basis with finer resolution {)()1(xj

i
+φ }:

 ∑ ++=
k

j
k

j
ik

j
i xx),()(11)(φβφ (2-3)

where 01 ≠+j
ikβ are the coefficients of the linear combination.

25

2.3 Construction of Meshes of Higher Resolution

 Let us assume that the initial mesh consists of an arbitrary number of element

types (for instance, triangles mixed together with quadrilaterals and tetrahedra in a

non-manifold geometry), but is compatible. Furthermore, we shall consider only nodal

basis functions, i.e. the basis functions are associated with nodes, and are composed of

pieces defined over the incident finite elements. On each level j of the nesting

hierarchy, it is assumed that the basis functions)(j
iφ verify the Kronecker delta

property, i.e.,

 () ikk
j

i x δφ =)(
, (2-4)

where kx is the location of the node associated with function)(j
kφ . In other words, we

assume that an approximation built of basis functions from any single level

interpolates the nodal values.

 Refining a basis function using Equation (2-3) will mean that basis functions

with higher resolution need to be constructed from pieces over “finer” finite elements.

Therefore, as one of the steps in our algorithm, we shall need to geometrically divide

coarse finite elements into finer ones. Our mesh hierarchy will be built up in such a

way that each element is divided into elements of the same type (triangles into

triangles, quadrilaterals into quadrilaterals, etc.), and elements at each level will be

divided using the same pattern (for instance, one triangle into four smaller triangles,

no matter which level in the hierarchy the parent triangle is).

26

Figure 2-1: Uniform division of mesh 0M that results in a compatible mesh 1M .

 Furthermore, we shall assume that refining uniformly one particular mesh in

the mesh hierarchy results in a compatible mesh one level higher; compare with Figure

2-1. Therefore, if for instance two finite elements in the mesh jM share an edge, we

shall use a division pattern that divides the shared edge in the same way in both

elements. The same principle applies to faces shared by three-dimensional elements,

27

or in general to d-dimensional faces shared by (d + 1)-dimensional elements. To

specialize the above to some familiar element types: two-node line elements will be

bisected, three-node triangles and four-node quadrilaterals will be quadrisected (which

bisects their edges, making them compatible upon refinement with line elements

attached along the edges of the quadrilateral or triangle), eight-node hexahedra will be

octasected (again, their edges are bisected, and the divided faces are compatible with

the refinement of a four-node quadrilateral).

 The same principle may be applied unchanged in higher-dimensional elements

of the Lagrange or Hermite type. For instance, if the basis function pieces over finite

elements are constructed through the master element in the parametric space, which is

then mapped to the physical space, the natural choice for refinement is uniform

division in the parametric space. As an example, consider the quadratic 8-node

quadrilateral element in Figure 2-2, where the isoparametric mappings are indicated

by (I), and the refinement process is indicated by (R).

 With this strategy there can be two possible ways to enrich the approximation

space. One way is to add a dilated shape function in the middle of an element. If the

coefficient of the introduced function is zero, the solution will remain unchanged.

However, in this setup there may be entries in the stiffness matrix corresponding to

basis functions with quite different refinement levels. We will refer to refinement in

this fashion as true hierarchical refinement.

28

Alternatively, shape functions can be substituted with their dilated version. If

coefficients of the substitution are correctly chosen, the solution again will remain

unchanged. We will refer to this alternate technique as quasi-hierarchical refinement.

Figure 2-2: Refinement of 8-node quadrilateral finite elements: (I) stands for isoparametric

mapping; (R) stands for refinement.

29

2.3.1 True Hierarchical Basis

 Equation (2-3) may be viewed also as a statement of equivalence: the left hand

side (the coarse function) is equivalent to the right hand side (the set of finer

functions) in the sense that if both sides of Equation (2-3) are combined, a linearly-

dependent set is obtained. Furthermore, it may be noted that there is just one function

too many in the combined set of the left and right hand side functions. Therefore, all

but one of the right hand side (finer) functions could be moved to the left hand side:

() () () () () () () ()xxx j

m
j

im
mk

j
k

j
ik

j
i

1111 ++

≠

++ =− ∑ φβφβφ (2-5)

This is a statement of the same kind as before, an equivalence, but now the function

that is being “reproduced” is on the finer level. Symmetry considerations dictate that

the function to leave on the right hand side is the one whose node “stems” from the

node of the coarse function. For instance, Figure 2-3 shows the patch (one triangle and

three quadrilaterals) that support the function indicated by the filled circle (left). In the

right hand part is shown the refined patch, where the filled circles indicate functions

on level j + 1 on the left hand side of Equation (2-5), and the empty circle stands for

the single function on the right hand side, () ()xj
m

1+φ ; in other words, the filled circles

indicate the linearly independent functions, the empty circle represents the one finer

function that is dependent upon the rest. We shall call the functions on level j + 1 that

were moved to the left hand side of Equation (2-5) the detail functions of () ()xj
iφ .

 The above discussion may suggest to the reader a way of constructing the

defined approximation spaces: To refine a function from the coarse space B, add its

30

detail functions to B to obtain B′ . The resulting approximation will be dubbed the true

hierarchical basis, and, indeed it is not a new concept in itself, since we get the well-

known hierarchical basis discussed, for example, by [52]. However, our use of this

concept for selective refinement is novel.

Figure 2-3: Illustration of Equation (2-6)

2.3.2 Quasi-Hierarchical Basis

 To formalize somewhat, we shall use the term active function for functions

selected from a given basis set, and the symbol ()kB̂ will be used for the set of active

functions from basis set ()kB . Now, the approximation basis function set B′ may be

written as

()∪

∞

=

=′
0

ˆ
j

jBB , (2-6)

that is as a union of active sets from all mesh levels. For the true hierarchical basis

described above, the active set on level j = 0 includes all the basis functions defined on

31

the initial mesh, and each active set on level j > 0 includes only the detail functions.

Now we shall describe an alternative refinement strategy, the quasi-hierarchical basis.

 As before, we proceed from the refinement equation (2-3). As opposed to the

true hierarchical approximation, we shall interpret the refinement equation as a recipe

for replacing coarse functions (left hand side) by “finer” (higher-resolution) functions

(right hand side). Thus, the refinement will delete (deactivate) coarse functions,

replacing them in a lossless manner by finer functions, and unrefinement will delete

(deactivate) fine functions and activate coarse functions. Clearly, if this type of

refinement is applied globally, all coarse functions are replaced by fine functions and

the interpolating partition of unity form of finite element approximation is recovered;

on the other hand, if the refinement is graded, transition needs to be made from coarse

to fine functions, and in the transition regions the resulting approximation resembles

the true hierarchical basis in that the basis functions do not necessarily add up to unity.

This is illustrated in Figure 2-4, where on the left we show the true hierarchical basis,

compared to the quasi-hierarchical basis on the right. Even though we replace coarse

functions instead of augmenting them with finer functions, the resulting approximation

basis is still written in the form of equation (2-6), the only change being that the active

sets ()jβ̂ may now include not only the detail functions, but rather all the functions

from the right hand side of the refinement equation (2-3).

32

Figure 2-4: Comparison of true hierarchical basis (left) with quasi-hierarchical basis (right).

2.4 Approximation on CHARMS-Refined Meshes

 Both the quasi-hierarchical and the true hierarchical approximation may be

expressed in exactly the same way, and in fact often it is possible to devise refinement

sequences that yield precisely the same spans for both basis types. This is not

surprising, since both basis types follow from the refinement equation, and as shown

in the next section, the construction of both types of bases may be expressed as the

activation or deactivation of basis functions from the conceptual hierarchy of nested

meshes. The equivalence of the quasi-hierarchical and the hierarchical basis allows us

to write the finite element approximation in the unified way

 () () ()

() () ()()
∑ ∑

≠ ∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0ˆ: ˆ:j jj
iBj Bxi

j
i

j
ih uxu

φ

φ , (2-7)

where ()jB̂ is the set of active functions on level j, and ()j
iu are the nodal parameters.

Evidently, it would be possible to express the finite element approximation with a

single sum, as usual, but the above form makes it clear that the basis functions “live”

on different refinement levels.

33

 The approximation properties of the CHARMS-adapted basis set are identical

for the discretization error to the classical finite element basis using the same type of

element. On the other hand, the hierarchical character of the basis may lead to

deterioration in the conditioning of the system matrices [65]. This will be more

pronounced for the true hierarchical basis than for the quasi-hierarchical basis. For a

small number of overlaps (up to about five levels of refined basis functions interacting

in the transition regions) the effect seems minor. However, so far this aspect has not

been studied in sufficient detail.

 It remains to formulate algorithms for the construction of the active sets, and

that is the goal of the next section.

2.5 Formal Statement of the Refinement and Unrefinement Algorithms

 It is advantageous for applications when the active functions constitute a basis,

i.e. when they are linearly independent. In order to make the present chapter self-

contained, we rephrase here the algorithms enunciated in [66], but without proofs.

These algorithms activate and deactivate functions from the nesting hierarchy, and

guarantee the linear independence of the active function set.

 For the finite element meshes we consider in this chapter, no basis function

support is entirely enclosed by the support of another basis function, i.e.,

 ()[] ()[]j
i

j
k φφ supsup ⊄ for ik ≠ and 0≥∀j . (2-8)

34

This is an important tool in our proofs [66]: Consider two functions on the same level;

because of the above property, the refinement set of either must contain at least one

function not present in the refinement set of the other.

 There are many possible algorithms for building adapted bases, and here we

present algorithms based upon three rules:

1. The refining/unrefining of a function on level j may affect that function

or any of its children on level j + 1; no other function may be involved.

2. A function on level j + 1 (j + 1 ≥ 1) may be refined only when all its

parents on level j have been refined.

3. A function on level j may become unrefined only if (a) it is currently

refined and (b) none of its children on level j + 1 are refined.

 If the basis functions are completely supported by one ring of elements around

a node, then rules 2 and 3 enforce the common rule of one-level-difference refinement

of neighbors; this rule has been applied to finite element meshes, as well as to spatial

data structures such as quadtrees and octrees in various contexts (graphics, mesh

generation, spatial searches, etc.) [67,68].

 We now show that if the (un)refinement is applied atomically, i.e. it is either

entirely executed or not at all, then linear independence of the adapted basis is

guaranteed. Furthermore, our algorithms ensure that the refinement step is lossless; the

span of the resulting set includes the span of the original set. (Unrefinement is not

lossless, in general: some information is always going to be lost, since the goal of

unrefinement is to decrease the span of the approximation space.)

35

2.5.1 Quasi-Hierarchical Basis

 We begin by discussing the quasi-hierarchical refinement strategy. We first

describe the refinement operation, and show that it preserves the linear independence

requirement and is lossless; we then describe the unrefinement operation, and show

that it too preserves the linear independence requirement.

2.5.1.1 Refinement

 The refinement set of the coarser function)(j
iφ supported by the mesh on level

j+1 is denoted by () ()[]j
i

jR φ1+ , and contains exactly those basis functions that contribute

to the right-hand side of the refinement equation with a non-zero coefficient:

 () ()[] () (){ }0111 ≠= +++ j
ik

j
k

j
i

jR βφφ . (2-9)

If ()1+j
kφ belongs to () ()[]j

i
jR φ1+ , we say that “ ()j

iφ is a parent of ()1+j
kφ ,” and “ ()1+j

kφ is a

child of ()j
iφ .”

 Given an initial basis function set, B, which contains ()j
iφ , and satisfies the

linear independence requirement, we choose to produce another function set B′ by

deactivating ()j
iφ and activating all of its children () ()[]j

i
jR φ1+ . We refer to this

algorithm, which maps B to B′ as quasi-hierarchical refinement.

 We claim that quasi-hierarchical refinement (a) preserves the linear

independence requirement and (b) is lossless. See reference [66] for proofs.

36

2.5.1.2 Unrefinement

 Given an initial basis function set, B, that satisfies the linear independence

requirement, and given a previously refined ()j
iφ , not in B and eligible for

unrefinement under rule 3, we choose to produce another function set B′ by activating

()j
iφ and deactivating those children of ()j

iφ which have no other currently refined (i.e.

inactive) parent. More concisely, the members of the following set are deactivated:

() () ()[] () () ()[] () (){ }jj
r

j
r

jj
m

j
i

jj
m BRirR ˆ1111 ∈→∈≠∀∧∈ ++++ φφφφφ . (2-10)

We refer to this algorithm, which maps B to B′ , as quasi-hierarchical unrefinement.

We claim that quasi-hierarchical unrefinement preserves the linear independence

requirement. (See reference [66] for proofs)

2.5.2 Hierarchical Basis

We have completed the algorithm of quasi-hierarchical refinement, which

treats refinement as the replacement of coarse-level functions by finer-level functions.

Let us turn to the alternative strategy for constructing adapted bases: hierarchical

refinement treats refinement as the addition of finer-level “detail functions” to an

unchanged set of coarse-level functions. Before we continue, let us formalize the

concepts of a detail function and a detail (function) set that had been introduced above.

Definition: Given a function ()j
iφ , construct the set of all functions () () ()[]j

i
jj

k R φφ 11 ++ ∈

such that they vanish at the location ix of node i

 () ()[] () () () ()[] ()(){ }011111 =∈= +++++
i

j
k

j
i

jj
k

j
k

j
i

j xandRD φφφφφ . (2-11)

37

The set () ()[]j
i

jD φ1+ is the detail set of ()j
iφ . Functions that belong to at least one detail

set are called detail functions.

 Note that our definition of the detail set guarantees that there is precisely one

fine function ()j
iφ such that () ()[] () ()[] ()111 +++ = j

i
j

i
jj

i
j DR φφφ ∪ .

2.5.2.1 Refinement

 Given an initial basis function set, B, which contains ()j
iφ , and satisfies the

linear independence requirement, we choose to produce a refined set B′ by

activating () ()[]j
i

jD φ1+ . We refer to this algorithm, which maps B to B′ , as hierarchical

refinement. As proved in reference [66], the hierarchical refinement (a) preserves the

linear independence requirement and (b) is lossless.

2.5.2.2 Unrefinement

 Given an initial basis function set, B, that satisfies the linear independence

requirement, and given a previously refined ()j
iφ , also in B and eligible for

unrefinement (rule 3), we choose to produce another function set B′ by deactivating

functions () () ()[]j
i

jj
m D φφ 11 ++ ∈ that are absent from all the refinement sets of currently

refined functions on level j. We refer to this algorithm, which maps B to B′ , as

hierarchical unrefinement. It is easy to show that hierarchical unrefinement preserves

the linear independence requirement [66].

38

2.6 Design of an Adaptive Solver

 In this section we will pursue the discussion of the CHARMS technology into

the design phase, which will be illustrated with UML diagrams [70]. Figure legends

use slanted type to indicate abstract classes; the inheritance and delegation

relationships are included with multiplicities.

2.6.1 Geometric Cell (GCELL)

 The computational domain is assumed to be a non-manifold object embedded

in a d-dimensional Euclidean space. The constituent manifolds are assumed to be

locally coordinatized by m Cartesian coordinates, dm ≤ , depending on the manifold

dimension.

 The domain is discretized into geometric cells. The manifold dimension of

these cells corresponds to the manifold being discretized. Geometric cell (GCELL) is

one of the basic classes in our implementation. However, GCELL is an abstract class,

and only its specializations are being instantiated. The specialization branches in the

direction of manifold dimension: thus there are geometric cells of manifold dimension

zero (0) (GCELL_POINT_P1), of one (1) (e.g. GCELL_LINE_L2), two (2) (for instance

GCELL_SURF_Q4, or GCELL_SURF_T3), and three (3) (GCELL_SOLID_H8, or

GCELL_SOLID_T4). Figure 2-5 shows the class diagram for the quadratic six-node

triangle (GCELL_SURF_T6).

39

Figure 2-5: Class diagram for a GCELL representing a six-node (quadratic) triangular finite

element. Note the use of the templated CONN class for the specification of the
connectivity.

 It is assumed that the cells in the physical space are images of “master” cells in

the parametric domain. The parametric coordinates constitute the charts for the pieces

of the manifolds embedded in the d-dimensional Euclidean space to which the master

cell maps. Each cell may be mapped into a different Cartesian coordinate system, but

for simplicity we shall assume in this chapter that all cells map to a single, global

Cartesian coordinate system.

 Geometric cells (GCELL’s) provide a number of services to the adaptive code.

Thus, they are the means of defining pieces of basis functions (in the master

parametric domain), but they are also carriers of the topological/geometrical

refinement hierarchy. In other words, the h-refinement involves division of a GCELL

into finer, nested GCELL’s. It is assumed here that this division results in GCELL’s of

the same type. The topological/geometrical refinement is applied recursively, resulting

in a tree of GCELL’s, the root being represented by the coarsest GCELL, and the leaves

being cells without children. To give an example, Figure 2-6 shows the hierarchy of

40

GCELL’s stemming from the root at the bottom, with the finest cells as the leaves at the

top, for a four-node quadrilateral.

Figure 2-6: Schematic refinement tree for a quadrilateral GCELL. Upward pointing arrows

symbolize the “child” relationship. Downward arrows point at the parent.

2.6.2 Connectivity and Refinement Nodes

 Connectivity CONN is a template class, parameterized with the manifold

dimension, number of connected nodes, and number of refinement nodes (Figure 2-5).

This allows us to distinguish between a line with 3 connected nodes, and a 3-node

triangle, etc. From a refinement point of view, a very important connectivity type is

the vertex (CONN<CONN_0_MANIFOLD,1,1>). All refinement nodes topologically

41

located at the nodes of the coarser levels are classified on the connectivity

CONN<CONN_0_MANIFOLD,1,1>, which encodes a topological division rule. In order

to maximize the number of element types that may be mixed in a single finite element

mesh, we adopt the strategy that views elements of manifold dimension d as

boundaries of elements of manifold dimension d + 1. This information is encoded in

the instantiations of the template class CONN. Thus, vertices of cells are topological

entities CONN<CONN_0_MANIFOLD,1,1>; that is their manifold dimension is zero, they

connect a single node, and they are refined with one node. The edges of cells are cells

in their own right, and vertices are their boundaries. For instance,

CONN<CONN_1_MANIFOLD,2,1> is a two-node line segment, which is refined with a

single node at the midpoint (origin of the parametric coordinates). Three-node

triangles (CONN<CONN_2_MANIFOLD,3,0>) and four-node quadrilaterals

(CONN<CONN_2_MANIFOLD,4,1>) are bounded by connectivities

CONN<CONN_1_MANIFOLD,2,1>, which makes it possible to mix those two in a single

mesh. Three-node triangles have no refinement nodes of their own (all refinement

nodes are located at the edges, none in the interior), whereas the four-node

quadrilaterals have one interior refinement node. As the last illustration, consider the

quadratic isoparametric triangle. The class diagram for the quadratic six-node triangle

in Figure 2-5 refers to the connectivity type CONN<CONN_2_MANIFOLD,6,3>, that is a

2-manifold that connects 6 nodes, and has 3 internal refinement nodes. The boundaries

of this cell are of type CONN<CONN 1 MANIFOLD,3,2>, and the connectivity of the

quadratic triangle is compatible with the refinement of the 10-node tetrahedron.

42

 The topological division starts with the connectivities of the lowest manifold

dimension; that is zero (vertices). Then edges are divided, followed by faces, and

finally volumes. Thus, an eight-node hexahedron would first divide its vertices, then

its edges, faces, and finally it would conclude the process by generating one

refinement node at its barycenter.

2.6.3 Field

 The class FIELD is a fundamental concept in our software framework. The term

“field” implies spatial variation [71], and in the present context, field u is represented

by the sum

 () ()∑=
j

jjh uxxu φ , (2-12)

where ()xuh is the usual finite element expansion of function ()xu , ()xjφ are the finite

element basis functions, and ju are the nodal parameters. The approximated function

may be a scalar, vector, or tensor function of a vector argument, e.g. the displacement

field over the domain (vector function of a vector argument) or the temperature field

(scalar function of a vector argument). Each term in the sum of equation (2-12) is

expressed through an object, the FIELD_PAIR. It relates two objects: the basis function,

BFUN, and the degree-of-freedom parameter (DOFPARAM for short). The value of

the DOFPARAM object may change freely, or some or all of its components might be

prescribed as an expression of an essential boundary condition. FIELD_PAIR is a class

parameterized with the number of components in the DOFPARAM object, and in that

way the current implementation is able to represent scalar degrees of freedom (one

43

component), or vectors in 3D space (three components), or an array of an arbitrary

number of components.

Figure 2-7: Class diagram for the field pair and field.

2.6.4 Basis Function (BFUN)

 Figure 2-8 shows the class diagram for the basis function and basis function set

types. BFUN serves as the abstract base class. BFUN_FE builds up the first concrete

class upon BFUN and provides access to the standard finite element basis functions.

BFUN_FE maintains a list of all the GCELL’s over which the individual pieces of the

given basis function are defined. As an example, the basis function associated with the

44

node indicated by the black dot in the coarse mesh in Figure 2-3 would include one

triangle (GCELL_SURF_T3) and three quadrilaterals (GCELL_SURF_Q4).

2.6.5 Basis Function Set (BFUN_SET)

 The basis function set (BFUN_SET) collects basis functions defined on a

particular geometric mesh. Any particular BFUN_SET maybe associated with any

number of fields. The BFUN_SET provides the field with a very important service: The

BFUN_SET generates an opaque identifier (BFUN_DOFPARAM_PAIR_ID) which may be

used to access a field pair in constant time (it is in fact implemented as an array

access). The BFUN_SET generates this identifier based on the pointer to an opaque,

system-wide unique identifier, which is carried by a finite element node. That in turn

implies that a one-to-one link exists between the unique identifier (finite element

node) and a basis function. For example, the BFUN_DOFPARAM_PAIR_ID identifier is

used by solvers to distribute computed solutions to the field pairs.

Figure 2-8: Class diagram for the basis function and basis function set.

45

2.7 Implementation of Refinement/Unrefinement

 The implementation of the refinement and unrefinement algorithms as

enunciated earlier is straightforward. However, it seems worthwhile to point out that

the refinement of a single basis function involves the generation of child GCELL’s,

which in turn requires the addition of refinement nodes. Some of these nodes are

shared by two or more GCELL’s, and care must be taken to introduce only a single

copy of each shared refinement node so that compatibility of the refinement functions

is ensured.

 To enable the sharing of refinement nodes during the creation of the child

geometric cells, we use the concept of a refinement context. It acts as the dispenser of

refinement nodes. The present code labels refinement nodes with an instance of the

connectivity object on which they are classified. For instance, for an eight-node

hexahedron, the refinement nodes are either located at the vertex nodes, at the mid-

points of the edges, at the barycenters of the faces, or at the barycenter of the volume:

compare with Table 2-1. The request to supply a refinement node on a given

connectivity object (for instance, on an edge connecting nodes I and J) is processed by

the refinement context: If the refinement node had not been created for the

connectivity object before, it is created, and the reference to the connectivity is

remembered for future lookups. Each GCELL may thus proceed with the refinement

independently of its neighbors; the sharing of refinement nodes is managed

transparently.

46

Table 2-1: Refinement Nodes of an 8-node Hexahedron

2.7.1 Example: Equation of Steady Diffusion

 To illustrate the adaptive code, we shall consider a simplified version of the

linear partial differential equation of steady diffusion. In strong form:

Given RgRf g ←Γ←Ω :,: , and Rh h ←Γ: , find Ru ←Ω:

 uΔ−κ = f in Ω

 u = g in gΓ

 u, ii n = h in hΓ ,

where Ω is the domain (two- or three-dimensional), hΓ and gΓ are disjoint parts of

the boundary, ΔΓΓ=Γ ,gh ∪ is the Laplace operator, “,i” in the subscript means

differentiation with respect to the i-th Cartesian coordinate, κ is the conductivity

(assumed to be constant in Ω), and the functions g and h are the prescribed boundary

values. A weak form of equation (2-13) is derived in a standard way [69] as

 () () ()
h

hwfwuwa Γ+= ,,, , (2-13)

where

 ()uwa , = ∫
Ω

Ωduw ii ,,κ , (2-14)

47

 ()fw, = ∫
Ω

Ωdwf , (2-15)

 ()
h

hw Γ, = ∫
Γ

Γ
h

hdwh . (2-16)

The functions u and w are the trial and test functions respectively, Su ∈ and Vw∈ ,

where S is the trial space and V is the test space.

 Next, we choose finite dimensional approximations of the trial and test spaces

as the span of some suitable finite element basis functions. Adopting a Galerkin

formulation, the test functions hh Vv ∈ will all vanish on the boundary gΓ , and the trial

functions hu will be decomposed as

 hhh gvu += , (2-17)

where hg will satisfy (approximately) the boundary condition gu = on gΓ ,

and hh Vv ∈ .

The homogeneous-part of the trial functions is written as

 ∑=
B

BB
h dv φ ,

which leads to the discrete system of linear equations

() () () ()∑ ∑
Γ∉ Γ∈

Γ −+=
h hB B

BBAAABBA gahfda φφφφφφ ,,,, , hA Γ∉ . (2-18)

On the left-hand side of (2-18) is the product of the conductivity matrix with the

vector of unknowns, and the source terms are all on the right-hand side.

48

2.7.1.1 Hexahedral Discretization in 3D

 Hexahedral finite elements are often preferred to tetrahedra because of their

slightly better performance in a number of applications. However, refining hexahedra

by introducing compatible edges, or by using a technique similar to the mesh

refinement of tetrahedra by bisection is a tough problem, since the element quality

tends to deteriorate very quickly and without bounds. Due to the regular division of

the elements by octasection, CHARMS has no problem with shape deterioration. The

implementation of mesh refinement with CHARMS also proves extremely easy, and

in fact it took the first author just a couple of hours to add the hexahedral refinement to

the CHARMS framework once the code had been debugged in one dimension. Most

of the implementation effort goes into the coding of the connectivity of the parent and

its children: the information about which nodes are connected by a given child needs

to be recorded.

 Figure 2-9 shows the mesh and the results of a sample simulation for a steady

diffusion problem solved on a polyhedral domain. The initial grid and a refined grid

are compared side-by-side. The integration cells are shown in Figure 2-9 and the

reader should take care to realize the apparently hanging nodes are a visualization

artifact: no active basis functions are associated with the incompatibly located nodes.

49

Figure 2-9: Steady diffusion equation solved in a three-dimensional domain. Left: initial

grid; middle: step after two adaptations; right: cut-off grid with a solution
contour. The integration cells are shown, with color coding corresponding to the
temperature distribution.

2.7.1.2 Refinement of Triangulations with Quadratic Triangles

 As an example of mesh refinement for higher-order approximations we discuss

here an implementation for the quadratic (6-node) triangles. Quadrisection is used to

divide each parent triangle into four children of the same type in the parametric space:

see Figure 2-10. The refinement nodes are numbered from 0 to 14. Refinement nodes

0 to 5 are classified at the nodes of the parent, nodes 6 to 11 are classified on the 3-

node edges of the parent, and the last three nodes (12, 13, and 14) are classified in the

interior of the parent element. An important piece of information that the refinement

algorithm needs is which functions at the nodes of the child refine a particular function

of the parent. For instance, function at node 0 of the parent is refined by functions at

refinement nodes 0, 6, 7, 13, 14, 10, 11 of the children (all but the function at node 0

50

are detail functions); function at node 4 of the parent is refined by functions at nodes

4, 8, 9, 12, 13, 14 of the children (all but the first are detail functions), etc. Figure 2-11

shows the contours of the solution of the Poisson equation for a “dipole” source

function. The results are displayed on the integration cells. The visualization

approximates the smooth quadratic variation by piecewise linear polygons. Figure 2-

12 illustrates the active basis function set for the refined mesh in the upper-left corner

of the domain from Figure 2-11 by showing the active functions as red balls, and the

geometric cells that support the active functions are filled triangles. Note that the

active functions on level j+1 vanish along the boundaries of the geometric cells of

level j. That is a visual confirmation of the preserved compatibility.

51

Figure 2-10: Refinement of the 6-node triangle

Figure 2-11: Dipole equation with homogeneous boundary conditions solved on a

triangulation of square domain with 6-node quadratic triangles. Color coding of
the field on three refined grids.

Figure 2-12: Dipole equation, 6-node quadratic triangles. The geometric cells from the upper-

left corner of the computational domain that support basis functions on different
levels: left to right, level 1, 2, 3, 4. The red balls indicate the active basis
functions.

52

2.7.2 Example: Equation of linear elasticity

In strong form, the equation of linear elasticity can be written as following: Given

RgRf g ←Γ←Ω :,: , and Rh h ←Γ: , find Ru ←Ω:

 ijij f+,σ = 0 in Ω

 iu = ig in
igΓ

 jij nσ = ih in ihΓ ,

Here Ω , hΓ , gΓ ,i, g and h are the same as defined in the section 2.2.3. A weak form

of equation (2-19) is derived in a standard way [69] as

 () () ()
h

hwfwuwa Γ+= ,,, , (2-19)

where

 ()uwa , = ∫
Ω

Ωducw lkijklji),(,),(, (2-20)

 ()fw, = ∫
Ω

Ωdfw ii , (2-21)

 ()
h

hw Γ, = ∑ ∫
= Γ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Γ

sd

h

n

i
hii dhw

1

. (2-22)

The functions u and w are the trial and test functions respectively, Su ∈ and Vw∈ ,

where S is the trial space and V is the test space.

 Next, we choose finite dimensional approximations of the trial and test spaces

as the span of some suitable finite element basis functions. Adopting a Galerkin

53

formulation, the test functions hh Vv ∈ will all vanish on the boundary gΓ , and the trial

functions hu will be decomposed as

 hhh gvu += , (2-23)

where hg will satisfy (approximately) the boundary condition gu = on gΓ ,

and hh Vv ∈ .

 The homogeneous-part of the trial functions is written as

 ∑=
B

BB
h dv φ ,

which leads to the discrete system of linear equations

() () () ()∑ ∑
Γ∉ Γ∈

Γ −+=
h hB B

BBAAABBA gahfda φφφφφφ ,,,, , hA Γ∉ . (2-24)

On the left-hand side of (2-24) is the product of the stiffness matrix with the vector of

unknowns, and the source terms are all on the right-hand side.

2.7.2.1 Refinement of Tetrahedra

 State of the art techniques refine tetrahedra through bisection or octasection.

However, the bisection pattern on a face shared by two tetrahedra can have three cuts.

Hence it is not unique. That would make it a necessity to communicate the refinement

information among neighbors. Moreover, bisection has the potential to severely

degrade the shape quality measure of the finer functions since the bisected element is

not similar to its offspring. Although octasection of tetrahedra avoids these problems,

the issue with the degrading shape quality is something that currently known

54

octasection based approaches are struggling with. However, since the use of

CHARMS ensures the construction of a conforming mesh a priori, shape quality

measure does not degrade even though the geometrical mesh (i.e. supports of the basis

functions) looks non-conforming. CHARMS uses Ong’s theory to produce an adaptive

strategy that guarantees shape quality without necessitating the restoration of

compatibility or other complications. Further details of this technique can be found in

[33].

55

Figure 2-13: Linear elastic model of human brain using tetrahedral mesh refinement. Color-
coded area shows distribution of Von Mises stresses.

56

CHAPTER 3 : ADAPTIVE SIMULATION OF

ELASTIC WAVE PROPAGATION IN SOLIDS

3.1 Equation of Elastic Wave Propagation

 In strong form, the equation of elastodynamics can be written as:

Given RTgRTf g →×Γ→×Ω [,0]:,[,0]: , and RTh h →×Γ [,0]: , find RTu →×Ω [,0]:

 ijij f+,σ = ttiu ,ρ in [,0] T×Ω (3-1)

 iu = ig in [,0] T
ig ×Γ (3-2)

 jijnσ = ih in [,0] Tih ×Γ (3-3)

)0,(xui =)(0 xu i Ω∈x (3-4)

)0,(, xu ti =)(0 xu i� Ω∈x (3-5)

 Here Ω , hΓ , gΓ ,i, g and h are the same as defined in section 2.2.3.

Ru i →Ω:0 and Ru i →Ω:0� are initial conditions of displacement and velocity as

described in equations 3-4 and 3-5, and klijklijkl C εσ = . Here ε is the strain tensor. For

isotropic materials, the material response tensor C may be written:

)(jkiljlikklijijklC δδδδμδλδ ++= .

 A weak form of equation (3-1) is derived in a standard way [69]:

Given 00 ,,,, uuhgf � , find],0[),(tttu ∈ such that for every Vw ∈

 () () ()
h

hwfwuwauw Γ+=+ ,,,),(��ρ , (3-6)

57

),())0(,(0uwuwh ρρ = (3-7)

),())0(,(0uwuwh �� ρρ = (3-8)

The functions u and w are the trial and test functions respectively; Su ∈ , S is the trial

space, and V is the test space.

 Next, we choose finite dimensional approximations of the trial and test spaces

as the span of some suitable finite element basis functions. Adopting a Galerkin

formulation, the test functions hh Vv ∈ will all vanish on the boundary gΓ , and the trial

functions hu will be decomposed as

 hhh gvu += , (3-9)

where hg will satisfy (approximately) the boundary condition gu = on gΓ , and hh Vv ∈ .

Therefore, the semi-discrete Galerkin formulation can be written:

 Given 00 ,,,, uuhgf � , find hhh gvu += , Ω∈)(tu h such that for every hh Vw ∈

),(),(),(),(),(),(hhhhhhhhhh gwagwfwfwvwavw −−+=+ Γ ���� ρρ (3-10)

))0(,(),())0(,(0
hhhhh gwuwvw ρρρ −= (3-11)

))0(,(),())0(,(0
hhhhh gwuwvw ��� ρρρ −= (3-12)

hv and hg can be written as:

 ∑
∉

=
kA

iaA
h
i tdxNtxv

τ

)()(),(

 ∑
∈

=
kA

iaA
h
i tgxNtxg

τ

)()(),(

58

This leads to the matrix form of the equation:

 Given eqnTF ℜ→[,0:] , find eqnTd ℜ→[,0:] such that

}{]][[]][[FdKdM =+�� . [,0] Tt ∈ (3-13)

0)0(dd = (3-14)

0)0(dd �� = (3-15)

where

 [M] = mass matrix =)(
1

e
n

e
m

el

=
Α , ∫

Ω

Ω==
e

dNNmm baij
e
pq

e ρδ][(3-16)

 [K] = stiffness matrix =)(
1

e
n

e
k

el

=
Α , ∫

Ω

Ω==
e

dDBBekk b
T
a

T
i

e
pq

e][je (3-17)

 F(t) =))(()(
1

tftF e
n

enodal

el

=
Α+ ,

 ∫ ∑∫
Γ =Ω

+−Γ+Ω==
e
ih

el
q
e

e
pq

n

q

q
e

e
pqiaia

e
p

e gmgkdhNdfNkf)(}{
1

�� (3-18)

If we account for viscous damping in the system equation (3-3) can be written as:

 }{]][[]][[]][[FdKdCdM =++ ��� (3-19)

where C is the damping matrix.

3.2 Solution with Adaptive Scheme

 In our case, there are three essential steps for an adaptive solver: predict, adapt

and solve. Our algorithm first divides the overall time interval into a number of

subintervals, depending upon the number of adaptive steps necessary. At the end of

each subinterval, the solver forces the mesh to adapt to the solution process by refining

and unrefining in the areas of higher and lower levels of strain energy (or using some

59

other error indicator). The solver than restarts from initial conditions at the end of the

previous subinterval and computes a little further in the time domain for a pre-

specified time. We call this procedure the "Look Ahead" algorithm and the pre-

specified time is called the back track time. The "Look Ahead" algorithm, combined

with the use of a partition of a unity basis function set, provides us a way to deal with

the loss of conservation involved in the addition and removal of basis functions from a

non-interpolating basis function set.

Figure 3-1: Progress of solver.

Given initial velocity 0v and initial displacement 0u

Calculate Effective Force: 000 RKuf +−= (3-20)

For n = 1, 2,

 Update u: 1
12

11 −
−

−− Δ+Δ+= nnnn fMttvuu (3-21)

 Calculate effective force: RKufn +−= (3-22)

 Update V: ()1
1

1 5.0 −
−

− +Δ+= nnnn fftMvv (3-23)

End

60

3.3 Required Resolution for Wave Propagation Problems

 In order to adequately model elastic waves, the spatial sampling rate must be

fine enough to provide adequate resolution. What “adequate resolution” may mean is

defined by the requirement of the physical experiment being investigated. In general,

researchers have developed ‘rules of thumb’ based on their experiences that indicate

appropriate ranges for both spatial and temporal sampling rates. Some have proposed

that the temporal sampling rate should be high enough to sample 20 points per cycle of

the highest frequency of interest, but may require being increased to 180 points per

cycle depending on the application [73]. The spatial sampling rate is determined by

the size of the elements being used (which is a function of the mesh size). Some have

proposed that 10 nodes per wavelength is enough for accurate results [74], while

others agree that 20 elements per wavelength would provide better results [75]. In the

end, the spatial and temporal sampling rates can only be justified by the results that

they produce. While these ‘rules of thumb’ for sampling rates do not guarantee

accurate results, they are a good starting point.

 As mentioned earlier, temporal resolution is dictated by spatial resolution.

Reducing the minimum mesh size will reduce the time step, causing the computational

cost to increase. Therefore, spatial resolution should be chosen wisely to produce

accurate results with minimum computational effort. This chapter presents an efficient

solution for this problem by refining mesh in the areas indicated by the error indicator

and unrefining in the areas where error in the strain energy norm falls below a

particular threshold (using CHARMS).

61

3.4 Adaptive Time Stepping

 Explicit solvers are generally conditionally stable. Time step is governed by a

sufficient condition for stability obtained from estimates of maximum eigenvalues of

individual elements. Using this condition, the stable time step for the central

difference method can be derived as

c
ht h =≤Δ

max

2
ω

 (3-24)

 Here h is smallest mesh size and c is highest wave velocity. In the case of

guided waves, spherical waves generally travel fastest, and their velocity, given

by ρκ in elastic isotropic media (where κ is Bulk modulus and ρ is density of

material), can be used to calculate a stable time step.

 For the adaptive mesh refinement scheme, the time step has to be calculated

during each adaptive cycle, since mesh size keeps changing due to both refinement

and coarsening of mesh.

3.5 Error Indicator

 Error in the strain energy norm is calculated at the end of each time subinterval

as the wave front proceeds in the time domain. Error is then distributed over the basis

functions on which the finite domain is supported. Dimensions of an ideal cube that

could hold this strain energy density are calculated. The approximate minimum mesh

size required to reduce this error below the prescribed limit is then calculated and

62

compared with the characteristic dimension of the basis function. Here the

characteristic dimension of a basis function refers to the maximum span of basis

functions over the elements on which it is supported. The prescribed limit is controlled

by parameters defined in the input files H_OVER_HBAR_REF (for refinement) and

H_OVER_HBAR_UNREF (for unrefinement). If the size of the characteristic

dimension of the basis function exceeds the approximate mesh size achieved from the

error associated with the basis function, the basis function refines itself. The reverse is

true for the unrefinement process.

 { } []{ }uKuSE T= (3-25)

 i
i

i V
SE
SEV ×= (3-26)

n
SE

SE i∑= (3-27)

 Here SE is the strain energy associated with the basis function and SE is the

amount of strain energy that a basis function can ideally hold within a cube equal to

the characteristic dimension of the basis function. iV and iV are volumes of cubes

made of the ideal characteristic dimension and the characteristic dimension,

respectively.

63

3.6 Partition of Unity basis

 Partition of unity on a given support in the refined mesh is defined as the

following:

 Let }{ iN be a collection of functions spanning over a given support. Then

normalization
∑

=
j i

i
i N

N
φ yields a partition of unity subordinate to cover the support.

In classical finite element analysis, shape functions are chosen such that they form a

partition of unity. Although this not a necessary requirement, construction of shape

functions in this fashion simplifies the problem considerably in many instances. For

example, consider the construction of a lumped mass matrix using the row sum

technique:

 ∑ ∫
= Ω

Ω=
en

e

n

b
ba

e
pq dNNm

1

ρ

If the basis function set follows a partition of unity, then 1
1

=∑
=

enn

b
bN ; leading to

 ∫∑ ∫
Ω= Ω

Ω=Ω
e

en

e

dNdNN a

n

b
ba ρρ

1

In simplified form, this can be written:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≠

=Ω
= ∫

Ω

ba

badN
m

e

aije
pq

,0

,ρδ
 (3-28)

Recent work done by Melenk and Babuska [86] on the ‘partition of unity finite

element method’ further highlights the fact that when any arbitrary finite element is

64

constructed from piecewise polynomial basis functions (if basis functions constitute a

partition of unity on each support), the displacement will converge towards the exact

value for elliptic boundary value problems as the mesh is refined.

 Refined meshes produced by CHARMS are not necessarily partition of unity

by nature because of their non-interpolating nature. Consider the refinement of a

simplistic one-dimensional mesh as shown in the Figure 3-2:

Figure 3-2: Quasi-hierarchical refinement of shape function)0(

jN with partition of unity

 Here a coarse basis function)0(
jN is replaced with three finer basis functions

)0(
1jN ,)1(

1jN , and)2(
1jN . Suppose we assume these functions to be simple hat functions as

classical finite element theory suggests. Summation of these basis functions over node

number 4 will be equal to:

2
31

2
1

1
=+=∑

=

enn

b
bN (3-31)

 Here a contribution of 0.5 is coming from)1(
jN . This is contrary to the

requirement of the row-sum technique. While using CHARMS for mesh refinement,

Initial Mesh

Level 0

Level 1

 1 1

1 4 2 5 3

 1 4 2 5 3

1/2 1/2

 1

 1 1 1

 1 2 3

)0(
jN

)1(
1jN

)0(
1jN)2(

1jN

)1(
jN

)2(
jN

65

activation and deactivation of basis functions make the finite element basis non-

interpolating [36]. Therefore, partition of unity is required to be enforced each time

that mesh refinement takes place. The simplest way to enforce this requirement in this

case, while preserving the requirement of linear independence, will be to modify the

coefficient of hat functions spanning over node number 4. Therefore, as shown in

figure 3-2, the summation of adjusted coefficients of hat functions spanning over node

number 4 will be:

 1
2
1

2
1

1
=+=∑

=

enn

b
bN (3-32)

While using CHARMS for mesh refinement, this condition is necessary to avoid major

computational complexity at a later stage.

3.7 Implementation of a wave propagation solver

3.7.1 Adaptive Algorithm

 Refinement or unrefinement follows an estimate of the error using an error

indicator. Our code uses residual-based estimates to compute per cell errors, which are

then processed to yield per-basis-function errors. As an example of such a procedure

we have used the error density, which is obtained as the ratio of the summed error

from all GCELL’s supporting the given basis function to their volume (area, in two

dimensions). Basis functions with high error density are candidates for refinement;

basis functions with low error density are considered for unrefinement.

66

 CHARMS make it very easy to reuse the solution from the coarse mesh in the

process of solving the fine mesh solution. The solution field from the coarse mesh is

transferred to the fine mesh (see next section), which is then passed along to the linear

equation solver as the initial guess of the fine mesh solution. Iterative solution

methods then can make use of this initial guess to converge to the fine mesh solution

more efficiently.

 Refinement is done by activation or deactivation of basis functions using the

refinement rules mentioned earlier. BFUN_SET stores active and inactive basis

functions in a data structure pointer called BUCKET. The top of the data structure

consists of active basis functions while the bottom consists of inactive basis functions,

according to their IDs (known as DOFPARAM_IDs). When a function is activated, it

is moved to top of the data structure and receives a new ID. Similarly, when a function

is deactivated, it is moved to the bottom of the data structure and receives a new ID.

 In order to control the extent of the refinement, several parameters are used.

REF_FRACTION, or refinement fraction, controls the percentage of eligible basis

functions that actually go through the refinement. MAX_REF_LEVEL decides the

maximum refinement levels that the refinement algorithm is allowed to refine.

H_OVER_HBAR_REF and H_OVER_HBAR_UNREF define the fraction of errors

per basis function; above or below this error range, basis functions are eligible for

refinement/unrefinement.

67

3.7.2 Field Transfer

 To satisfy the needs of an adaptive procedure, field transfer from one field (the

source) to another (the destination) is required. Data should be transferred from

coarser mesh to the refined mesh in a lossless fashion. Therefore, depending upon the

construction of the algorithm, different mesh refinement algorithms follow a unique

data transfer algorithm. For example, [86] devises a field transfer operator by

rendering the potential energy on a discrete basis for highly nonlinear and dynamic

problems. The transfer operator devised in this fashion preserves all the internal

constraints and compatibility between different state variables. Operators devised in

this fashion transfer data from quadrature point to quadrature point. [16,19,20,89]

present other examples of data transfer on integration points between source and target

fields. Strategies based on transfer of data over integration points make more sense for

algorithms based on physical bisection of elements. In our case, since we rely on

refinement of shape functions instead of elements, data can be directly transferred

from nodal points at the coarse level to nodal points at the finer level. The two fields

are defined on two distinct refined meshes, resulting from the refinement of the same

initial mesh. The field transfer operation is in general formulated as the computation

of the nodal parameters of the destination field from the condition that the destination

field be somehow “close” to the source field. Since our refinement algorithm is

lossless, we can transfer a field from a coarse mesh to a destination field on a fine

mesh exactly. However, if the destination field is defined fully or partially on a mesh

coarser than the source field, the transfer will involve some loss of information.

68

 Approximations generated by CHARMS are in general non-interpolating. This

makes it seemingly difficult to come up with an efficient computation of the nodal

parameters. A function given on the source field

 () ()∑=
k

kk uxxu ~~~ φ , (3-33)

where Bk
~~

∈φ and ku~ are the basis functions and nodal parameters of the source field,

is to be approximated by (transferred to) the destination field

 () ()∑=
j

jj uxxu φ , (3-34)

where Bj ∈φ and ju are the basis functions and nodal parameters of the destination

field. The parameters ku~ are known, but parameters ju are all unknown. Thus we have

a classical function approximation problem, and a number of schemes may be used to

solve for the unknown parameters; interpolation, and least square fitting being perhaps

the most often used. Instead of striving for the most general solution, we take

advantage of the special nature of the nested finite element spaces and use an

interpolating prolongation when transferring from coarse to fine; we drop details

during restriction in the opposite direction. The refinement equation (2-3), in

combination with the refinement and unrefinement algorithms of section 2.1.3, yields

an efficient algorithm for the computation of the nodal parameters in the destination

field as described previously. Therefore using the equation 2-8 system of linear

equations for evaluation at node k, which is active on level l, can be written as:

69

()() () () ()()

() ()()
∑ ∑

≠≤ ∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0ˆ: :jBli iBi

j
i

l
k

j
i

l
kh

j
i

uxxu
φ

φ (3-35)

This can be further simplified by using the Kronecker delta property described in 2-5:

 () () ()() ()

() () ()()
∑ ∑

≠ ∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

0ˆ: ˆ:

)()()(

j jj
iBj Bxi

j
i

l
k

j
i

l
khh

l uxxuxu
φ

φ (3-36)

 This shows that computation of the nodal parameter of node k on level l only

requires the information of nodal parameters on levels lower than the current level.

The computations of the nodal parameters of nodes on the same level are independent

of each other. Therefore, in order to solve for the nodal parameters, one can start with

the coarsest level, i.e. level 0, followed by sequentially higher levels in the hierarchy

[34].

algorithm field_transfer (source field, destination field)

1. Loop over refinement levels in destination field, and get the number of

field pairs in the destination field.

 2. Loop over field pairs in the destination field.

3. If the refinement level of the basis function corresponding to the

current field pair is the same as the refinement level of the destination

field, get the nodal parameter of the source field and calculate nodal

parameters of the target field using equation 3-35.

4. Go back to step number 2.

5. Go back to step number 1.

70

3.7.3 Evaluation Cell (ECELL)

 In our case, the mesh is needed for the evaluation of the integrals, which in

turn involves the basis function derivatives. Note that there are clearly two separate

and orthogonal operations here:

• Evaluate the basis functions (and their derivatives); and

• Use the computed basis function values or their derivatives to evaluate the

integrals.

The second task will change with each new problem. The first task (the evaluation of

the basis functions), on the other hand, will be independent of the problem to be

solved. Our design therefore separates the evaluation of the basis functions into a task

performed by the geometric cells, and all the other operations are factored into

responsibilities for the so-called evaluation cells (ECELL’s).

3.7.4 Protocols

 The protocol PROTO_WAVE for the problem at hand consists of various

functions: assemble_stiffness_matrix, assemble_mass_matrix, assemble_source_terms,

and solve using time stepping as described in section 3.4. The role of the protocol is

simply to bundle the functionality into a reusable component (creation of the

evaluation cells, looping over those cells to assemble the contributions to the left- and

right-hand sides of the linear dynamic system, and finally the solution of the system).

The protocol enlists the services of a linear dynamic equation solver component.

71

3.7.5 Calculation of Basis Function Tables

 When the basis function tables (the function value, and values of the

derivatives with respect to the spatial coordinates) are needed at a particular

quadrature point, they need to be computed for the hierarchy of overlapping basis

functions. The geometric cells on which the basis functions are defined are related

through the parent/child relationship.

Figure 3-3: Class diagram for wave propagation evaluation cell for 8-node hexahedron.

 To evaluate the spatial integrals, perform numerical quadrature on the

geometric cells that are the leaves of the refinement hierarchy. In other words, the

interaction of basis functions from different levels is evaluated over geometric cells

that support the finest basis function. An alternative approach that evaluates

interactions of pairs of basis functions over the support of the finer function had been

proposed in [36].

ECELL_WAVE_T4 ECELL_WAVE_H8

ECELL_WAVE

…

ECELL

+ gcell: GCELL

GCELL

72

 Because of our chosen quadrature scheme (all integrals are evaluated over the

leaf cells), we need to traverse the hierarchy from the leaf towards the root.

Furthermore, since all the parent/child relationships are transitive, it is sufficient to

consider in this discussion just two levels from the mesh hierarchy: the parent level

and the child level.

 Without loss of generality we may consider a particular element type, for

instance the isoparametric eight-node (serendipity) quadrilateral, Figure 2-2, [72]. The

basis functions of a single element are defined in the parametric coordinates in the

biunit square ()11,11 +≤≤−+≤≤− ηξ as

 ()

()()()
()()()
()()()
()()()
()()()
()()()
()()()
()()() ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−
++−
++−
−+−

−++−−
−−++−
+−−+−
++−−−

=Φ

ξηη
ηξξ
ξηη
ηξξ

ηξηξ
ηξηξ
ηξηξ
ηξηξ

ηξ

1112/1
1112/1
1112/1
1112/1

1114/1
1114/1
1114/1
1114/1

,T , (3-37)

where the superscript T indicates transpose. The derivatives of the basis functions with

respect to the spatial coordinates are evaluated as usual by the chain rule, which can be

put in matrix form as

()

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
Φ∂

∂
Φ∂

y

x
ηξ

ηξ

,

,

 = J-1

()

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
Φ∂

∂
Φ∂

η
ηξ

ξ
ηξ

,

,

, (3-38)

with the Jacobian matrix defined as

73

 J =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

ηξ

ηξ
yy

xx

. (3-39)

The elements of the Jacobian matrix are computed from the expansions of x and y in

terms of the basis functions

 () ()∑ ∑Φ=Φ=
i i

iiii yyxx ηξηξ ,,, , (3-40)

where ix and iy are the nodal geometry parameters.

 If we now consider approximation on a mesh with basis functions at several

levels, we may still keep equation (3-39), but the elements of the Φ matrix are now

functions ()j
iφ at various levels j. Similarly, the derivatives with respect to spatial

derivatives may be computed from equation (3-40), but it must be realized that the

geometric cells in the mesh hierarchy have their own parametric coordinates (i.e. they

are all mapped from the master element). To compute the Jacobian matrix,

equation (3-6), all the derivatives ξ∂Φ∂ i , etc. need to be computed in a single

coordinate system. In our implementation, we choose to compute all the derivatives in

the parametric coordinates of the leaf geometric cell (i.e. the finest cell in the

hierarchy). We use the notation ξ′ and η′ for the parametric coordinates of the parent,

and ξ and η for the parametric coordinates of the child, and ()j
iφ for the basis

function defined on the parent, and ()1+j
iφ for the basis functions defined on the child.

The parent (top row in Figure 2-2) is divided into four children (bottom row) in its

parametric space, and all elements, parent and the children, are mapped to the physical

74

space using the standard isoparametric mapping in their own coordinates. We express

the derivatives of the basis functions on the parent cell with respect to the parametric

coordinates of the child needed in equation (3-39) through the chain rule

() ()

ξ
ξ

ξ
φ

ξ
φ

∂
′∂

′∂
∂

=
∂

∂ j
i

j
i , (3-41)

and similarly for the relationship between η and η′ . For our particular example, the

mapping from the parent to the child is simple. For instance, for child 0 (compare with

Figure 2-2):

 ()12/1 −=′ ξξ

 ()12/1 −=′ ηη , (3-42)

and we get 2/1=∂′∂ ξξ and 2/1=∂′∂ ηη ; it is easy to show that this relationship

holds for all four children.

 We are ready to state the algorithm eval_bfun_set for the computation of the

values and derivatives with respect to the spatial coordinates of the basis functions

active at a particular quadrature point: The inputs are the leaf cell and the parametric

coordinates of a given quadrature point in that cell. Note that the tree needs to descend

from the leaf cell towards the root, and the algorithm may proceed by recursion or by

iteration.

75

algorithm eval_bfun_set

 1. Descend the refinement tree and find ()j
iφ , () ξφ ∂∂ j

i ,… for all active

 functions, j = 0,1,…from (Eq. 3-40).

 2. Compute the Jacobian matrix J of Equation (3-39), and then invert

 to obtain J-1

 3. Using () ξφ ∂∂ j
i ,. . . from step 1, and J from step 2, compute

 () xj
i ∂∂φ , j = 0,1,…, from Equation (3-38)

 Note that the task of evaluating the individual basis functions and their

derivatives in the parametric coordinates is performed by the GCELL’s, as usual in

standard finite element codes. The only difference is that the child’s coordinates need

to be related to the parent’s coordinates through the chain rule (the factor 1/2 in the

example discussed above).

3.7.6 Geometry

 A remark is in order concerning the definition of the geometry of the domain.

An isoparametric description of the finite element fields is used, and Equation (3-40)

makes it clear that in order to evaluate the geometry, i.e. the location of a point given

by its natural, parametric coordinates, the nodal parameters for the geometry are

needed. Our adaptive framework represents the geometry as an ordinary field. In other

words, the code makes no distinction between the unknown fields and the geometry.

However, one difference needs to be noted: the geometry needs to be initialized at the

beginning of the computation. Fortunately, that is an easy task, since the basis

76

functions on the initial (input) mesh interpolate. Therefore, the nodal parameters of the

initial geometry field are simply the coordinates of the nodes. However, the geometry

fields for the refined approximations need to be computed by field transfer, since the

approximation becomes non-interpolating upon refinement. If the initial mesh

describes the domain exactly, the geometry is also described exactly on any refined

mesh, because of the lossless character of field transfers from coarse to fine meshes.

On the other hand, if the geometry of the domain is only approximated by the mesh,

the nodal geometry parameters may be computed to improve the shape approximation

by fitting curved boundaries [34].

3.8 Conservation Laws

 In Newtonian mechanics success of a time-stepping scheme very often is

closely related to its capacity to preserve mass, momentum, and energy. Most of the

iterative schemes for time-dependent problems either preserve these quantities exactly,

as is the case of many implicit schemes, or these quantities are bounded. Therefore,

much research in the past went towards understanding the conservation behavior of

popular schemes such as Newmark’s algorithm and Wilson’s theta method [81,87]. In

our case, we are introducing adaptive mesh refinement within the framework of the

explicit Newmark’s algorithm. Conservation behavior for such an overall scheme is

demonstrated with the help of first a simple example and then with a numerical

experiment. A generalized proof is highly desirable, but left for future research in this

area.

77

 3.8.1 Conservation of Mass and Mass Matrix during Refinement

 The development of the mass matrix dates back to work done by Duncan and

Collar [90,91], where they showed a 3x3 diagonal “inertia matrix” for a triple

pendulum. Mass matrices can be broadly classified as lumped, consistent, and

template (lumped-consistent) mass matrices. In the early ’60s, the lumped mass matrix

was developed not just for simplicity and overall computational cost effectiveness, but

because of its diagonal nature, it was the obvious choice to account for nonstructural

masses. A lumped mass matrix can be constructed in various ways. Nodal quadrature,

row-sum technique, and HRZ lumping are some of the most popular techniques.

 While nodal quadrature has the tendency to generate negative and zero masses,

the row-sum technique does not produce zero masses. However, the row-sum

technique can generate negative masses in some cases, such as in the corner node for

the eight node serendipity element. HRZ lumping overcomes both of these problems;

however, more research work is required to prove its correctness for general elements.

Archer [92,93] first pointed towards the correctness of consistent mass, taking clues

from the Lagrange dynamics equation. Melosh [94] established the connection

between the Rayleigh-Ritz method and FEM and showed uses of the mass matrix in

similar analysis. Melosh’s work brought attention towards some of the problems with

the consistent mass matrix: namely, (1) it was prohibitively expensive and inefficient

for some solution processes. For example, in the case of explicit dynamics,

accelerations are computed at the global level by multiplying the inverse of the mass

matrix with effective dynamic force. This leads to a trivial solution of system of

78

equations. If a non-diagonal consistent mass matrix is used, the solution of the system

of equations will be nontrivial; (2) Non-structural masses were not automatically

accounted for. In fact, in many applications such as the analysis of aircraft and ships,

structural masses account for only 20-30% of total mass; (3) Other alternatives might

provide better results. If a stiffness matrix results from conforming displacement

interpolation, pairing it with a consistent mass matrix guarantees providing upper

bounds on natural frequency. This may or may not be a good thing. In practice, it is

observed that errors increase rapidly as one moves up the frequency spectrum. For

wave propagation problems, where response is strongly driven by intermediate and

high frequencies, the consistent mass matrix may give very poor results. There are

several qualities a mass matrix should have in order to be successfully used in

engineering problems:

 (1) It should be symmetric, and element symmetries should be reflected in the

mass matrix. Although this is not a necessary requirement as seen in the Petrov-

Galerkin procedure, computationally an unsymmetric mass matrix will be very

expensive and practically impossible to use in large engineering simulations.

 (2) Another important property of the mass matrix is that in semi-discrete

equations (ordinary differential equations), it complies with all conservation laws. One

consequence of this is that the sum of the elements of the mass matrix gives the total

mass.

 (3) Usually if the mass matrix is at least positive semi-definite, the numerical

problem becomes a lot easier to solve; i.e., for any non-zero velocity field v,

79

0}]{[}{ ≥vMv T . A positive definite mass matrix will lead to positive eigenvalues. A

negative eigenvalue means that the corresponding natural frequency of the structure is

complex (not real). A mass matrix is usually positive definite or positive semi-definite,

but in some applications, e.g., in buckling, the mass matrix is only nonnegative, or

even indefinite.

 In this section, we are going to study the construction of mass matrices using

various techniques. The accuracy of eigenvalues and eigenfunctions are measures of

the quality of both the stiffness and mass matrices. Although we already pointed out

that one of our targeted applications is wave propagation problems and that a

consistent mass matrix is not appropriate for wave propagation problems where

response of medium and high frequencies is desired, we are going to nevertheless

include a consistent mass matrix in our analysis. In our convergence analysis, we will

use a uniformly refined mesh as a benchmark to validate CHARMS results.

80

Figure 3-4 Uniformly Refined Mesh

3.8.1.1 Uniformly Refined Mesh

3.8.1.1.1 Using Lumped Mass (Row-sum technique)

Consider the initial mesh: Shape functions for the coarse mesh can be written as:

Table 3-1: Linear hat functions and their derivatives of coarse mesh.

Range Title Shape Function
x
N

∂
∂

lx <<0 1N
l
x

−1
l
1

−

lx <<0

lxl 2<<

2N
l
x

⎟
⎠
⎞

⎜
⎝
⎛ −

l
x
2

12

l
1

l
1

−

lxl 2<< 3N 1−
l
x

l
1

1 2 3

1 4 2 5 3

1 6 4 7 2 8 5 9 3

81

 The lumped mass matrix can be derived from the formulation shown in section

3.6. The mass matrix for elements 12 and 23 on the initial mesh can be written as:

 ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

212
lm ρ ⎥

⎦

⎤
⎢
⎣

⎡
=

10
01

223
lm ρ

Therefore, the global lumped mass matrix for the initial mesh will be:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
020
001

2
lM ρ

Similarly, the stiffness matrix can be assembled from the pieces of the finite element

(considering unit cross-sectional area):

dxBEBK
eln

j

l
T∑∫

=

=
1 0

][][

⎥
⎦

⎤
⎢
⎣

⎡
−

−
==

11
11

2312 l
Ekk

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

110
121

011

l
EK

Therefore eigenvalues can be written as]4,2,0[=λ . Here 0 frequency arises from the

singular stiffness matrix due to the presence of a rigid body mode.

 Now, uniformly refine the mesh by subdividing all the elements,

82

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−

=

22000
24200

02420
00242
00022

L
EK , and

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4/10000
02/1000
002/100
0002/10
00004/1

lM ρ

Eigenvalues can be written as]16,66.13,8,3431.2,0[=λ]4,2,0[=λ

Refined once again:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−−
−−

−−
−−

−

=

440000000
484000000

048400000
004840000
000484000
000048400
000004840
000000484
000000044

L
EK

Diagonal components of M are]8/1,4/1,4/1,4/1,4/1,4/1,4/1,4/1,8/1[=M

Eigenvalues can be written as:
]646154443275.193.94.20[=λ

3.8.1.1.2 Using Consistent Mass

The consistent mass matrix can be derived by taking the kinetic energy as part of the

governing functional. The kinetic energy of an element of mass density ρ that

occupies the domain eΩ and moves with velocity field evG is

 Ω= ∫
Ω

dvvT eTee

e

)()(5.0 GGρ

83

Following the FEM philosophy, the element velocity field is interpolated by shape

functions: ee uNv �G
= , where eu� are nodal velocities, and N is a shape function matrix.

Substituting this into the previous equation,

eeTeeTTee uMuudNNuT
e

����)(5.0)()()(5.0 =Ω= ∫
Ω

ρ

The element mass matrix follows as the Hessian of eT :

 ∫
Ω

Ω=
∂∂

∂
=

e

NdN
vv

TM T
e

e ρ
2

Therefore the consistent mass matrix for element 12 can be written:

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
= ∫ 21

12
6

1
1

012
ldx

l
x

L
x

l
x

L
x

m
L ρρ

The overall consistent mass matrix can be written as:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

210
141
012

6
lM ρ

The stiffness matrix, as defined in the previous section, will remain unchanged.

Therefore, eigenvalues can be written,]4,2,0[=λ , which are exactly the same values

derived from the coarse mesh using a lumped mass. Upon refining once, the consistent

mass matrix can be written as:

 M =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

6/112/1000
12/13/112/100
012/13/112/10
0012/13/112/1
00012/16/1

, and]48,7.31,12,6.2,0[=λ

84

Upon refining twice eigenvalues can be written:

]668.605.531.443245.1921.945.20[=λ

3.8.1.2 CHARMS Refined Mesh

Figure 3-5: Adaptive mesh refinement of shape function)0(

jN using CHARMS

Shape function and their derivatives are as follows:

 On coarse mesh, shape functions will be the same as the previous section.

Initial Mesh

Level 0

Level 1

 1 1

1 4 2 5 3

 1 4 2 5 3

1/2 1/2

 1

 1 1 1

 1 2 3

)0(
jN

)1(
1jN

)0(
1jN)2(

1jN

)1(
jN

)2(
jN

85

On the finer mesh, shape functions can be written:

Table 3-2: Linear hat functions and their derivatives of mesh refined using CHARMS.

Range Title Shape Function
x
N

∂
∂

lx <<0 1N
l
x

−1
l
1

−

lxl <<2/

2/3lxl <<

2N 12
−

l
x

⎟
⎠
⎞

⎜
⎝
⎛ −

l
x23

l
2

l
2

−

lxl 2<< 3N 1−
l
x

l
1

2/0 lx <<

lxl <<2/

4N
l
x

l
x

−1

l
1

l
1

−

3 / 2l x l< <

3 / 2 2l x l< <

5N 2 2x
l

⎛ ⎞−⎜ ⎟
⎝ ⎠

2 4x
l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

2
l

2
l

−

Unlike classical finite element practices, in a CHARMS refined mesh multiple shape

functions might be spanning over a given support, as discussed earlier. Therefore, one

should carefully integrate by parts while calculating pieces of the stiffness and mass

86

matrices. For example, various components of the consistent mass matrix can be

written as:

3/1
0

2

0

2
1 ldx

l
xN

ll

=⎟
⎠
⎞

⎜
⎝
⎛ −= ∫∫ 12/1

2/

22/

0

2

0

2
4 ldx

l
xdx

l
xN

l

l

ll

=⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛= ∫∫∫

3
2312 2/3 2

2/

22/3

2/

2
2

ldx
l
xdx

l
xN

l

l

l

l

l

l

=⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫∫

8/11
2/

22/

00
14 ldx

l
xdx

l
x

l
xNN

l

l

ll

=⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫∫

24/121
2/2/

24 ldx
l
x

l
xNN

l

l

l

l

=⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫ 24/121

2/2/
21 ldx

l
x

l
xNN

l

l

l

l

=⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫

The rest of the values can be obtained using symmetry. Different components of the

stiffness matrix can be calculated similarly:

1 1
2

0 0

1 1l lN N dx
x x l l

∂ ∂
= =

∂ ∂∫ ∫
/ 2

1 4
2 2

0 0 / 2

1 1 0
l l l

l

N N dx dx
x x l l

∂ ∂
= − + =

∂ ∂∫ ∫ ∫

1 2
2

/ 2 / 2

2 1l l

l l

N N dx
x x l l

∂ ∂ −
= − =

∂ ∂∫ ∫
3 / 2 3 / 2

2 2
2 2

/ 2 / 2

4 4 4l l l

l l l

N N dx dx
x x l l l

∂ ∂
= + =

∂ ∂∫ ∫ ∫

4 4
2 2

0 0 / 2

1 1 1l l l

l

N N dx dx
x x l l l

∂ ∂
= + =

∂ ∂∫ ∫ ∫ 1 2
2

0 / 2

2 1l l

l

N N dx
x x l l

∂ ∂ −
= − =

∂ ∂∫ ∫

87

3.8.1.2.1 Row sum technique

 The global stiffness and lumped mass matrices can now be assembled from the

element stiffness and mass matrices, as shown in previous section. The global lumped

mass, using the row-sum technique and the stiffness matrix can be written:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000
02/1000
00100
0002/10
00001

2
lM ρ K =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−−
−
−

10100
01100
11411

00110
00101

L
E

Eigenvalues for the structure using the above stiffness and mass matrices can be

written as [0,2,2.9,4,11]λ = . It is easy to see that the lumped mass matrix using the

row-sum technique conserves total mass, 1 1 1 1 1 2
2 4 2 4 2

M l lρ ρ⎛ ⎞= + + + + =⎜ ⎟
⎝ ⎠

, and it is

positive definite.

3.8.1.2.2 Consistent Mass

 The global consistent mass matrix for mesh refined using CHARMS can be

written:

1/ 3 1/ 8 1/ 24 0 0
1/ 8 1/12 1/ 24 0 0

1/ 24 1/ 24 1/ 3 1/ 24 1/ 24
0 0 1/ 24 1/12 1/ 8
0 0 1/ 24 1/ 8 1/ 3

M lρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

88

It is easy to see that the consistent mass matrix formed using CHARMS conserves

total mass: 4 2 3 22 2
24 8 3 12

M l lρ ρ⎛ ⎞⎛ ⎞= + + + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. Also, it can be verified that the

consistent mass matrix is positive definite since eigenvalues of the consistent mass

matrix are positive: [0.028,.0316,.2807,0.3851,0.4413]λ = . Using the stiffness matrix

from previous calculations, eigenvalues of the structure are [0,2.3,8,13,66]λ = .

3.8.1.2.3 HRZ Mass Lumping

Unlike the row-sum technique, HRZ lumping developed by Hinton, Rock and

Zinkiwicz [95] has been popular because it always produces positive lumped masses.

In this technique, first diagonal terms of the consistent mass matrix are computed, then

they are scaled so as to preserve total mass.

2

2

1

,

0
e

e

en

e

ij a
e
pq

n

a
a

N d a b
m

a b

d

N d

αδ ρ

ρ
α

ρ

Ω

Ω

= Ω

⎧ ⎫Ω =⎪ ⎪= ⎨ ⎬
⎪ ⎪≠⎩ ⎭

Ω

=
⎛ ⎞

Ω⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫

∑ ∫

 Using the consistent mass matrix developed in the previous section, HRZ

lumping for CHARMS refined mesh can be written:

4 0 0 0 0
0 1 0 0 0
0 0 4 0 0

7
0 0 0 1 0
0 0 0 0 4

lM ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

89

 Using HRZ lumping, eigenvalues of the structure are

[0,1.75,3.5,7,12.25]λ = . It is also obvious that the lumped mass matrix formed this

way conserves total mass, 4 1 4 1 4 2
14 14 14 14 14

M l lρ ρ⎛ ⎞= + + + + =⎜ ⎟
⎝ ⎠

, and it is positive

definite for any given problem.

3.8.1.2.4 Template Mass Lumping

 Template mass lumping is obtained by combining the lumped and consistent

mass matrices:

(1)template lumped consistentM M Mβ β= − +

Although it is observed that one might achieve superior accuracy by customizing a

mass matrix in this fashion [96], and dispersion of low and intermediate frequencies

can be controlled efficiently (β =1/2 will give optimal dispersion for low frequencies)

[90], the derivation is computationally very expensive, even for a one dimensional

system such as this. Therefore its use is impractical in any given algorithm.

90

3.8.1.3 Conclusion of Calculations

Eigenvalues achieved from each mass matrix are summarized as follows:

Table 3-3: Comparison of eigenvalues

Uniform Refined Mesh CHARMS Refined mesh

Unrefined Refined

Once

Refined

Twice

Mode

Number

AMR AMR AMR

Lumped

Masss

Consistent

Mass
Lumped

Mass
Consistent

Mass
Lumped

Mass
Consistent

Mass
 Lumped

Mass
Consistent

Mass
HRZ

Lumping

0

2

4

0

2

4

0

2.34

8

13.66

16

0

2.6

12

31.7

48

0

2.4

9.37

19.75

32

0

2.5

10.38

24.87

48

1

2

3

4

5

0

2

2.9

4

11

0

2.3

8

13

16

0

1.75

3.5

7

12.25

The following conclusions can be derived from the above calculations:

1. Different types of mass matrices studied in this section are symmetric,

produce positive definite mass matrices, and they conserve total mass

with mesh refined using CHARMS.

2. Although, the consistent mass matrix shows the fastest convergence in

eigenvalues, it is computationally very expensive in comparison to

row-sum and HRZ mass lumping.

91

3.8.2 Conservation of Momentum

 In order to arrive at a more conclusive point with our adaptive explicit

algorithm and make more intelligent choices, it is very important to understand if and

how it is modifying the underlying properties of the existing explicit algorithm. In this

section, we will first notice the momentum conservation behavior of the explicit

Newmark algorithm, and then we are going to study its behavior after introduction of

refinement using the same one-dimensional example as in the previous section.

3.8.2.1 Momentum Conservation with Central Difference Method

 The key equations of the Newmark method are as follows:

 ()[]1
2

1 2215.0 ++ +−Δ+Δ+= nnnnn tt aavdd ββ (3-43)

 ()[]11 1 ++ +−Δ+= nnnn t aavv γγ

Using 0=β and 5.0=γ for the central difference method, these equations may be

rewritten as follows:

 nnnn tt avdd 2
1 5.0 Δ+Δ+=+ (3-44)

)(5.0 11 ++ +Δ+= nnnn t aavv . (3-45)

Upon equating forces,

 nn KdMa =

 nn KdMa 1−= .

Substituting into equation (3-45), we get

)(5.0 1
1

1 +
−

+ +Δ+= nnnn t ddKMvv . (3-46)

92

Consider the scalar product where η is a rigid body mode:

 ∑∑=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅=⋅⋅
i j

jiji

nn

t
N

tttt
n vM

v

v
v

ηηηηηηη
#

… 2

1

4321],,,,[MvM (3-47)

By multiplying the above scalar product on both sides of equation (3-46),

)(5.0 11 ++ +Δ+= nnnn t ddKMvMv ηηη (3-48)

If there are no restraints, K will be singular because of presence of rigid body modes

in the problem. Therefore, 0),(=⋅= ηη KK T , since rigid body motion produces no

force. Hence from equation (3-48),

 nn vv MM ⋅=⋅ + ηη)1((3-49)

Therefore momentum will stay conserved. As a matter of fact, if all the rigid

body modes are not allowed, momentum cannot be conserved by any time

stepping algorithm exactly.

3.8.2.2 Momentum Conservation Property with Adaptive Mesh Refinement

 Consider an arbitrary time interval during the solution of the equation of

motion using the explicit Newmark method as explained in section 3.4. Suppose

refinement takes place between the time steps n and n+1. At the end of step n, the

error is calculated. Mesh is refined and the solution starts from a few time steps

behind. Conservation of momentum while going from step n to n+1 using the same

mesh has already been shown in previous section. Now let us look at the momentum

conservation before and after adaptive mesh refinement.

93

Figure 3-6: Adaptive mesh refinement of shape function)0(

jN using CHARMS

 In order to compare momentum before and after refinement, we will have to

calculate the velocity field at the refined mesh, given its values on the unrefined mesh.

This can done using a field transfer procedure, as described previously:

()() () () ()()

() ()()
∑ ∑

≠≤ ∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0ˆ: :jBli iBi

j
i

l
k

j
i

l
kh

j
i

uxxu
φ

φ (3-16)

Suppose the velocity field on the original mesh was: 321 ,, vvv

and the velocity field on the refined mesh was: 54321 ,,,, vvvvv ′′′′′

 From equation (3-16):

 214 5.05.0 vvv +=′
 325 5.05.0 vvv +=′
 11 vv =′
 22 vv =′
 33 vv =′

Initial Mesh

Level 0

Level 1

 1 1

1 4 2 5 3

 1 4 2 5 3

1/2 1/2

 1

 1 1 1

 1 2 3

)0(
jN

)1(
1jN

)0(
1jN)2(

1jN

)1(
jN

)2(
jN

94

Let P be momentum. Momentum of the different elements on the initial mesh will be:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

2/
2/

10
01

2 2

1

2

1
121212 lv

lv
v
vlvmP

ρ
ρρ ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

2/
2/

10
01

2 3

2

3

2
232323 lv

lv
v
vlvmP

ρ
ρρ

Therefore, momentum for the initial mesh:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2/

2/

3

2

1

lv
lv

lv
P

ρ
ρ

ρ

 If velocity was uniform in magnitude and direction vvvv GGGG

=== 321 , then

overall momentum of the structure using the initial mesh can be written:

 lvlvlvlv ρρρρ 22/2/ 321 =++ .

3.8.2.2.1 Using Row-Sum Technique

 Now let us consider the refined mesh. Momentum on the refined mesh can be

calculated:

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

0
2/

00
01

2
1

2

1
121212

lv
v
vlvmP

ρρ

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

2/
0

10
00

2 33

2
232323 lvv

vlvmP
ρ

ρ

() ()

⎥
⎦

⎤
⎢
⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡ +
⎥
⎦

⎤
⎢
⎣

⎡
==

4/
8/2/

10
01

4 2

21

2

21
424242 lv

vvl
v
vvlvmP

ρ
ρρ

 () () ⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
==

8/
4/

2/10
01

4 32

2

32

2
252525 vvl

lv
vv

vlvmP
ρ

ρρ

Therefore, overall momentum for the refined mesh will be:

95

()

()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

=

2/
8

44

8

2/

3

32

22

21

1

lv

vvl

lvlv

vvl
lv

P

ρ

ρ

ρρ

ρ
ρ

 Again, if velocity was uniform, vvvv GGGG

=== 321 , momentum of the structure

on the initial mesh can be written as:

 lvlvlvlvlvlv ρρρρρρ 22/
4

2/
4

2/ =++++

As mentioned above, conservation of momentum upon application of uniform velocity

also indicates the overall mass conservation property of the lumped mass matrix

during refinement.

3.8.2.2.2 Using Consistent Mass Matrix

The consistent mass matrix is calculated in previous section. Momentum using

consistent mass matrix can be written:

1 2

1 21

2 1
31 2

2

2 3
3 2

3

3

19 5
48 48

1/ 3 1/ 8 1/ 24 0 0
6 12() / 21/ 8 1/12 1/ 24 0 0
31/ 24 1/ 24 1/ 3 1/ 24 1/ 24

16 8 16() / 20 0 1/ 24 1/12 1/ 8
0 0 1/ 24 1/ 8 1/ 3 6 12

19 5
48

lv lv

lv lvv
v v

lvlv lvvP l
v v lv lv

v

lv

ρ ρ

ρ ρ

ρρ ρρ

ρ ρ

ρ

+

⎡ ⎤⎡ ⎤ +
⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = + +
⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥

+⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

+ 2

48
lvρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

96

 If velocities are uniform, vvvv GGGG
=== 321 , momentum of the structure on the

refined mesh can be written:

 19 5 32 2
48 48 6 12 16 8 16

v v v v lv lv lvl lvρ ρ ρρ ρ⎛ ⎞+ + + + + + =⎜ ⎟
⎝ ⎠

 Therefore momentum remains conserved using the consistent mass matrix

upon application of uniform velocity.

3.8.2.2.3 Using HRZ Lumping

 The HRZ lumped mass matrix is calculated in the previous section.

Momentum using HRZ lumped mass matrix can be written:

1

1 21

2 1
2

2

2 3
3 2

3

3

4
7

4 0 0 0 0
14 14() / 20 1 0 0 0

40 0 4 0 0
7 7

() / 20 0 0 1 0
0 0 0 0 4 14 14

4
7

lv

lv lvv
v v

l lvvP
v v lv lv

v

lv

ρ

ρ ρ

ρ ρ

ρ ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤ +⎢ ⎥⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥+⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

If velocities are uniform, vvvv GGGG
=== 321 , momentum of the structure on the refined

mesh can be written as:

 4 42 2
7 14 14 7
v v v lvl lvρρ ρ⎛ ⎞+ + + =⎜ ⎟

⎝ ⎠

97

 Therefore momentum remains conserved using the HRZ lumped mass matrix

upon application of uniform velocity.

3.8.3 Conservation of Energy

 The energy conservation property is another very important aspect of

numerical algorithms for parabolic-hyperbolic problems. In many cases, as pointed out

by West, Kane and Marsden [81,87], such algorithms do not conserve energy in an

obvious way. In the case of Newmark’s algorithm, the authors pointed out that for an

arbitrary β , 1/ 2γ < , Newmark algorithms will dissipate energy, 1/ 2γ > energy will

increase and 1/ 2γ = energy will remain oscillatory. Therefore, once mesh refinement

is introduced, kinetic energy should be closely monitored. A sharp rise or fall in

kinetic energy due to refinement or unrefinement reflects the weakness of the mesh

refinement algorithm.

3.8.3.1 Energy in Central Difference Method

 Define)(5.0,][11 nnnn vvVvvV +>=<−= ++ , and

 Strain Energy: nnn KddSE *5.0=

 Total Energy = Kinetic Energy + Strain Energy

 nnn KESETE +=

 Kinetic Energy: nnn MvvKE *5.0=

98

The difference of energies at time stations tn+1 and tn is given by:

][][][1 KESETETETE nn +==−+

The jump in strain energy is given by: [SE] = [d]k<d>. Similarly: [KE] = [v]M<V>.

Using the central difference method:

 nnnn attvdd 2
1 5.0 Δ+Δ+=+

)(5.0 11 ++ +Δ+= nntnn aavv

Hence,

 nnnn attvddd 2
1 5.0][Δ+Δ=−= +

 ><Δ=−= + atvvV nn 1][,

and nt atVd 25.0][Δ−><Δ= .

Using the equation of motion (M[a]=-k[d]),

 M<a>=-K<d>

we get: M<a>= M[v] tΔ/

Thus,][TE = ><+>< VMVdkd][][

 = ><><Δ+>< VMadKd t][

 = ><Δ><−>< VkddKd t][

 =)]([><Δ−>< vtdKd

 =])[5).(2 atKd Δ−><

 = 0][5.0 2 ≠><Δ aMat

Hence energy is not conserved by the central difference method.

99

3.8.3.2 Kinetic Energy Before and After Refinement

 As pointed out earlier, it is necessary to understand the kinetic energy

conservation property once refinement is introduced. We are going to use refinement

on the same one-dimensional mesh described in figure 3-2.

Kinetic Energy (KE) of the initial mesh:

 [] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

2

1
2112121212 2/0

02/
2
1

2
1

v
v

l
l

vvvmvKE T

ρ
ρ []2

2
2
14

1 lvlv ρρ +=

 [] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

3

2
3223232323 2/0

02/
2
1

2
1

v
v

l
l

vvvmvKE T

ρ
ρ []2

3
2
24

1 lvlv ρρ +=

Here we are ignoring the scalar ½ in the definition of kinetic energy since it does not

alter our conclusion and makes calculations easier to see.

Total Kinetic Energy of the initial mesh:

 []2
3

2
2

2
12312 2

4
1 lvlvlvKEKEKE ρρρ ++=+=

On application of uniform velocity vvvv === 321 , the total kinetic energy is:

 2lvKE ρ=

3.8.3.2.1 Row-Sum Technique:

Kinetic Energy of the refined mesh:

 [] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

2

1
2112121212 00

02/
2
1

2
1

v
vl

vvvmvKE T ρ 2
14

1 lvρ=

 [] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

3

2
3223232323 2/0

00
2
1

2
1

v
v

l
vvvmvKE T

ρ
2
34

1 lvρ=

100

() ()

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡ +

=
2

21

2
21

42 2

2
0

0
2

24
1

v

vv

l

l

v
vv

KE ρ

ρ
()

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

284
1 2

2
2

21 lvvvl ρρ

() ()

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡ +

=
22

0

0
2

24
1

32

2
32

225 vv
v

l

l
vv

vKE ρ

ρ
()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
+=

824
1 2

32
2
2 vvllv ρρ

Total Kinetic Energy of the refined mesh:

 25422312 KEKEKEKEKE +++=

() ()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
+++

+
++=

82284
1 2

32
2
2

2
2

2
212

3
2
1

vvllvlvvvllvlvKE
ρρρρ

ρρ

If vvvv === 321 , the total kinetic energy is: 2lvKE ρ=

 Thus if the structure is fairly rigid and velocity at every point is approximately

the same, refinement will not add any energy to the system. This is especially true for

most of the linear elastic small strain (strain < 5%) problems. This problem can be

seen as three balls connected by two consecutive springs in a straight line. The

difference in velocity of two consecutive points will cause strain in the element. Hence

the difference in velocity has to be relatively low to satisfy the small strain assumption

of the problem. It is also interesting to point out that,

1. For any arbitrary nonzero 321 ,, vvv , 0}]{[}{ >VMV T after refinement . As

pointed out in the section on mass matrix, this indicates that a lumped mass

matrix constructed on a refined basis will stay positive definite.

101

2. lv
v

KE ρ2)(
=

∂
∂ ; On application of uniform velocity, the first derivative of

kinetic energy with respect to velocity gives us momentum of the system with

uniform velocity.

Now consider the function,

 ()321 ,, vvvF = Energy after refinement - Energy before refinement

 ()321 ,, vvvF = () () 2
2

2
32

2
21

88
lv

vvlvvl
ρ

ρρ
−

+
+

+ (3-17)

It is easy to see that
() ()

88

2
3

2
1 vlvl ρρ

+ > ()321 ,, vvvF > - 2
2lvρ

()321 ,, vvvF = 0 will represent all the values of v1, v2 and v3 for which energy will

remain conserved.

Figure 3-7: Points representing no increase in energy on v1, v2, v3 Cartesian space

102

3.8.3.2.2 Using Consistent Mass Matrix

Consistent mass matrix is calculated in the previous section. Kinetic energy using a

consistent mass matrix can be written:

1 1

2 1 2 1

2 2

2 3 2 3

3 3

1/ 3 1/ 8 1/ 24 0 0
() / 2 () / 21/ 8 1/12 1/ 24 0 0

1/ 24 1/ 24 1/ 3 1/ 24 1/ 24
2

() / 2 () / 20 0 1/ 24 1/12 1/ 8
0 0 1/ 24 1/ 8 1/ 3

Tv v
v v v v

l v vKE
v v v v

v v

ρ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1 2 1 2 1 2 2 1 2 3 3 2 2 3 3 2 3

19 5 1 1 1 1 1 3 1 1 1 1 1 5 19(+)+(+)(+)+ (+ +)+(+)(+)+ (+)
48 48 2 2 6 12 16 8 16 2 2 12 6 48 48

v v v v v v v v v v v v v v v v v v=

 If velocities are uniform, vvvv GGGG

=== 321 , kinetic energy of the structure on

the refined mesh can be written:

219 5 1 1 1 1 1 3 1 1 1 1 1 5 19l (+)+(+)(+)+ (+ +)+(+)(+)+ (+) = lv
48 48 2 2 6 12 16 8 16 2 2 12 6 48 48

v v v v v v v v v v v v v v v v v vρ ρ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Therefore kinetic remains conserved using a consistent mass matrix on

application of uniform velocity.

Kinetic energy using unrefined mesh and a consistent mass matrix can be written:

 ()2 2 2
1 1 2 2 2 3 3

1 2 2 4 2 2
6

KE v v v v v v v= + + + +

Therefore gain in kinetic energy for any arbitrary v1, v2 and v3 can be written:

 ()2 2 2
1 1 2 2 2 3 3

1_ 7 2 10 2 7
48

KE gain v v v v v v v= − + + + −

Similar conclusions can be derived from kinetic energy gain as in the previous section.

Zero kinetic energy gain points can be plotted using a v1, v2, v3 coordinate axis,

103

Figure 3-8: Points representing no increase in energy on v1, v2, v3 Cartesian space for
consistent mass matrix

3.8.3.2.3 Using HRZ Lumping

 HRZ lumped mass matrix is calculated in a previous section. Kinetic energy

using HRZ lumped mass matrix can be written as:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
=

3

23

2

21

1

3

23

2

21

1

2/)(

2/)(

40000
01000
00400
00010
00004

2/)(

2/)(

14

ν
νν

ν
νν

ν

ν
νν

ν
νν

ν

ρlKE

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +

++⎟
⎠
⎞

⎜
⎝
⎛ +

+= 2
3

2
232

2

2
212

1 4
2

4
2

4
14

νννννννρlKE

If velocities are uniform, vvvv GGGG
=== 321 , momentum of the structure on the refined

mesh can be written as:

104

2 2

2 2 2 24 4 4
14 2 2

v v v vl v v v lvρ ρ
⎛ ⎞+ +⎛ ⎞ ⎛ ⎞+ + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 Therefore kinetic energy remains conserved using the HRZ lumped mass

matrix on application of uniform velocity. Kinetic energy using an unrefined mesh

and HRZ mass matrix can be written as: ()2 2 2
1 2 3

1 2
2

KE v v v= + +

Therefore gain in kinetic energy for an arbitrary v1, v2 and v3 can be written as,

 ()2 2 2
1 1 2 2 2 3 3

1_ 2 5 2 3
28

KE gain v v v v v v v= + − + +

 Similar conclusions can be derived from kinetic energy gain as in the case of

the row-sum technique. 0 kinetic energy gain points can be plotted as:

Figure 3-9: Points representing no increase in energy on v1, v2, v3 Cartesian space

3.8.3.3 Conclusion from Conservation Behavior

105

1. Conservation properties with different types of mass matrices show very

similar trends.

2. Although the consistent mass matrix shows superior convergence properties,

computationally it is very expensive in comparison to the HRZ technique and

row-sum technique. The HRZ technique is more expensive than the row-sum

technique, since it requires calculation of the diagonal elements of the

consistent mass matrix first. However, unlike the row-sum technique, the HRZ

technique does not produce negative masses and produces comparatively

reasonable results.

3. Energy and momentum almost stay conserved while solving small strain

problems with CHARMS. For large strain problems, more research is required

to understand the energy bounds produced with refinement and their impact on

the numerical solution.

3.8.4 Conservation of Mass, Momentum and Energy with Unrefinement

 In this simplistic example, it is easy to see that the difference in conserved

quantities before and after unrefinement will stay the same as refinement, because one

will end up with exactly the same mesh after deactivating finer functions and

activating coarser ones. However, in more complex problems this does not hold true.

Unrefinement by nature is lossy. However, numerical experiments have shown that

the gain in computational cost due to unrefinement far outweighs the error induced by

unrefinement.

3.9 Example

106

 A bar made of alloy steel is excited on one of it its ends with a half sinusoidal

forcing function. A linear elastic small strain material model is used. (Alloy steel

(AS.049 9310 nickel-chromium-molybdenum) yields about 4% strain)

Figure 3-10: Mesh refinement at different time steps as wave front travels through the bar.

107

Figure 3-11: Number of basis functions generated (top),

Conservation of momentum in this process (bottom)

108

We have already seen from momentum conservation properties of the Newmark

method that in the absence of an external load, momentum will remain conserved. The

problem presented here is a linear elastic small strain dynamic problem. Hence from

the conservation properties of the adaptive refinement method, momentum remains

almost conserved during refinement and unrefinement, as the applied load dies at the

1e-07 seconds. It is interesting to see that the adaptive refinement method keeps the

problem size in check. After adding the basis functions up to time = 2e-07 seconds,

the number of basis functions is almost kept constant by the process of refinement and

unrefinement.

109

CHAPTER 4 : A VALIDATION CASE

4.1 Background and Introduction

 Finite element methods have been extensively utilized to validate non

destructive evaluation and testing experiments on mechanical parts and assemblies.

As indicated in the previous chapter, a 3D solution of guided waves problem needs a

very fine mesh to capture the intermediate frequencies, which is very often the case

when validating nondestructive testing problems. In the past, in order to avoid a huge

computational cost, the researcher approached this problem by singling out the

response of individual frequencies, and if required, combined them together using

signal processing techniques. [74,75,98] used similar techniques for the simulation of

defect detection using lamb waves. Gaveric [96] developed a technique for efficiently

predicting mode shapes and dispersion curves between 1 KHz and 7 KHz frequency.

Wilcox [97] simplified Gaveric’s technique for a more general implementation in

finite element codes. However, none of the techniques presented so far was able to

simulate the full complexity of wave propagation problems related to NDE

experiments, and their use was limited to a small subset of problems. The complete

solution of the problem resulting from NDE experiments requires direct time

integration of the equation of motion instead of analysis of the response of an

individual set of frequencies. As pointed out in [73,75], in order to accurately capture

such a response, between ten and twenty elements per wavelength will be needed. For

problems involving an unsymmetric computational domain, such as the one mentioned

110

in this chapter, the problem size might become very large. We solve this problem by

beginning with a very coarse mesh and then tracking the wave front with the adaptive

dynamic technique developed in a previous chapter.

4.2 Experimental Setup

 The experimental setup is shown in Figure 4-2. Rails were placed on wood

sleepers (0.61-m spacing) with steel pads and no fasteners. An instrumented hammer

was used to excite a broadband signal at one end of the rail. Piezoelectric

accelerometers were used to detect the waves as they propagated past each sensor.

Two sets of accelerometer arrays were set up along the rail, each located four feet

away from the defect location and eight feet from the rail ends. The two arrays

measured reflection and transmission coefficients from the defects. Each array

consisted of three uniaxial ICPÂ® accelerometers. One accelerometer was mounted in

the vertical direction, another was mounted in the transverse direction, and the last was

mounted in the longitudinal (rail-running) direction. Three types of head defects were

manufactured by saw cutting: a transverse defect, an oblique defect at 20 degrees from

the rail transverse direction, and a second oblique defect at 35 degrees from the rail

transverse direction. Each defect type was cut to four increasing depths. The four

defect sizes, indicated in Figure 4-1 as 1Q, 2Q, 3Q, and 4Q, were each increased by

approximately one quarter of the head cross-sectional area. Three different tests were

run for each of the defects investigated. The first test was a vertical strike test to

generate a vertical bending mode. The second test was a transverse strike test to

111

generate a lateral bending mode. The last test was a longitudinal strike for the

generation of a longitudinal (axial) mode. For further information regarding the

experimental results for the other defect sizes and orientations refer to [76]. These

methods of wave generation have been previously shown to successfully isolate the

intended vibrating mode. The propagating signals were analyzed by a joint time-

frequency analysis based on the continuous wavelet transform (CWT). The advantage

of the wavelet transform over other time-frequency analyses is its multi-resolution

capability optimizes the time resolution and the frequency resolution within the limits

of the Heisenberg uncertainty principle. The Gabor wavelet transform (GWT), which

provides the best balance between time and frequency resolution, was used with center

frequency 2 and shaping factor 5.336. Such values are appropriate for the study of

dispersive multi-mode signals, including rail vibrations.

Figure 4-1: Different types of defects.

112

Figure 4-2: Experimental Setup.

4.3 Post Processing of Time Signal

 In order to derive a conclusion from the time signal achieved by the

experiment discussed in section 4.1, continuous wavelet transform was applied to the

time signal. The continuous wavelet transform of a time signal is calculated:

() ()∫
+∞

∞−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅= dt
s

ut
s

tfsuWf *1, ψ

where ()t*ψ is the complex conjugate of the mother wavelet. ()tψ is given by the

following equation:

()
s

ut
s

tsu
−

⋅= ψψ 1
,

Here u shifts the wavelet in time and s controls the wavelet frequency bandwidth.

Gabor wavelet provides the best balance between time resolution and frequency

resolution. Therefore, it was chosen as the mother wavelet for continuous wavelet

transform. In this case, Gabor wavelet is a Gaussian window defined as follows:

113

 () () ()titG
Gp

t
p

t s

s

⋅⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

−
⋅

⋅
= ηηη

σσ
ψ exp

2
exp1

2
exp1 22

42

2

4 2

where η is the wavelet center frequency, σ is the standard deviation of Gaussian

window and ησ ⋅=sG .

 The energy density spectrum of a continuous wavelet transform is defined as

() () 2,, suWfsufPW = and is commonly referred to as a scalogram. A scalogram

indicates the energy of signal f(t) in the Heisenberg box of each wavelet window

()tsu ,ψ around time t = u and angular frequency sη=Ω . The scalogram in our case is

normalized by a scaling parameter. Besides providing the time-frequency information

of the signal component, the scalogram retains the signal energy content.

 The scalogram was than used to calculate reflection coefficients for different

frequencies. In Figure 4-2, sensors are mounted at array no. 1 and array no. 2. Let iA

be the magnitude of the wave energy when it reaches array no. 1 and rA be the

magnitude of returning echo energy from the defect at array no. 1. Then the Reflection

coefficient R is given by,

i

r

A
AR =

4.4 Numerical Approximation

 From our discussion so far, we are clear that it is very difficult for us to utilize

the solution of the equation of motion in the frequency domain since we may not be

sure about reflecting frequncies from an unknown shape and size defect. We have a

better sense of the reflection coefficient. Therefore a direct time integration scheme is

114

the correct approach for us. We utilized the explicit solver based on CHARMS as

described in the previous chapter. The last chapter scrutinizes a variety of mass

matrices, their conservation properties and their role in convergence of natural

frequencies of the system. We decided to go with least expensive and computationally

proven row-sum technique to construct a mass matrix. The solution of the equation of

motion was achieved as described in the previous chapter.

4.5 Analysis of Numerical Results

 The purpose of this research was to determine how the adaptive mesh

refinement algorithm described in a previous chapter could successfully be used to

model the types of long range guided rail waves discussed in the experimental portion

of this chapter. The modeling of the interaction of these waves with defects similar to

those studied experimentally was of special interest. Determining the parameters

required for accurate modeling of guided rail waves was the primary goal. An

algorithm that could accurately predict these types of waves could be used to simulate

defects that are impossible to manufacture in the lab, thereby providing information

that could not otherwise be collected. Although it was known that the finest portion of

the mesh should produce elements that were somewhere between 7.5 mm and 3.75

mm, according to the conventions discussed in the previous chapter, the actual mesh

size that would produce good results was initially unknown. Mesh size is a function of

the number of adaptation levels used. The starting mesh was a uniform mesh

consisting of eight-node solid elements with longitudinal (in the direction of the wave

115

propagation) dimensions of 20 mm. This coarse (level zero) mesh was equivalent to

sampling the highest frequency waves 3.75 times per wavelength, which is a third of

the minimum required sampling rate of 10 samples per wavelength. This uniform

mesh could be run on a PC running Linux with a 1 GHz Pentium III processor and 512

MB of ram. One test (calculation of the reflection coefficients for one defect) could be

solved in roughly 24 hours. Unfortunately, this coarse mesh provided rather poor

results. An example of the results for a vertical strike test (4Q zero degree defect) is

shown in Figure 4-3. Although the scalogram for this test appears very similar to an

experimentally derived scalogram, the coarseness of the mesh could not adequately

simulate the higher frequencies where the reflection information would have been

found (Figure 4-4). Although the results were disappointing, they were expected

because it was already known that at least a 7.5 mm mesh would be required for the

higher frequencies. Other defect sizes and orientations were studied and similar results

were found. It was observed that with a 20 mm mesh size, about 425 MB RAM was

required for solution of the problem when symmetry and sparsity of the stiffness

matrix was used for calculation. Uniform division of the mesh to achieve half of the

mesh size will result in the division of each brick element into 8 brick elements. As

mentioned earlier, our required mesh size to capture all lengths was at least 7.5 mm or

lower. That will give rise to between 1,684,800 to 13,478,400 degrees of freedom with

eight node hexahedral elements. It was hard to reduce the size of the problem since the

frequency of the waves that were traveling was unknown and the finite domain was

asymmetric due to the presence of defects. This indicated a massive problem with

116

several million degrees of freedom and a requirement of over 50 GB of RAM. Use of

an implicit method is completely ruled out due to computational cost. Adaptive mesh

refinement seems to be the only solution in similar circumstances.

 The next round of tests used a mesh with one level of refinement like that

shown in Figure 4-5. Still, results were not as good as they were supposed to be. We

noticed that for small and medium size defects, the majority of the energy continued to

travel past the defects. The wave front needed to validate the results was the one that

traveled past the defects, not the smaller front that reflected back from the defect. This

led to errors due to the fact that the portion of the rail affecting the reflection was

unrefined because the larger wave front was far away, thereby reducing accuracy of

the reflected signal. The initial mesh was slightly modified and the solver was

modified to refine the mesh at the locations of highest strain energy only into the area

between the hammer impact and defect. These changes produced remarkable

improvement in reflection coefficients. At this stage, the reflection coefficients were

modified to account for losses during experiment. We decided to achieve the results

with even better precision by further increasing the level of refinement. Figure 4-7

shows results with two levels of refinement. Numerical values of reflection coefficient

are very close to experimental values. Results are good enough for all practical

purposes.

In order to produce results for various defect types in shorter period of time, a

parallel version of FAMULS was created on an IBM RS6000 cluster named as Blue

Horizon (http://www.sdsc.edu/Resources/bluehorizon.html) using MPI instructions.

117

Each node allowed access to 8 processors with 4GB of memory per node. Although

with the existing algorithm all the cases can be run on the PC, computational time was

significantly reduced this way.

4.6 Conclusion

 Simulation of NDE experiment using CHARMS opens the door for various

problems involving application of long range guided waves in a large computational

domain. Unlike different techniques published in the past, there is no practical

limitation in terms of frequency range. However, more work is required to reduce the

high frequency noise very often seen in these problems. One way is to use Raleigh

type damping as a design parameter. [69] shows a correlation of Raleigh damping

coefficients with high frequency noise. Another possibility is to use a template mass

matrix and solve the design coefficient for the least numerical noise. Use of composite

model damping might also help. Similar techniques can be utilized in shock wave

propagation problems where instantaneous response in a large finite domain is

required.

118

Figure 4-3: Scalogram using coarse mesh.

Figure 4-4: Comparison of reflection coefficients with coarse mesh.

119

Figure 4-5: Same-Mode Energy Reflection Coefficient Spectra Obtained for the Vertical

Test of Zero Degree Defects. (, 4Q Size Defect; , 3Q Size Defect; , 2Q Size
Defect; X, 1Q Size Defect; Dashed Lines Correspond to Numerical Results)

Figure 4-6: Wave Front Tracking and Mesh Refinement. (a) Rail with Refined Mesh,

(b) Rail illustrating Wave Front Tracking & Mesh Refinement and
Unrefinement. (One level of refinement is shown)

120

Figure 4-7: Same-Mode Energy Reflection Coefficient Spectra Obtained for the Vertical

Test of Zero Degree Defects. (, 4Q Size Defect; , 3Q Size Defect; , 2Q Size
Defect; X, 1Q Size Defect; Dashed Lines Correspond to Numerical Results)

121

CHAPTER 5 : OUTLOOK

 Moor’s law [82], which relates the number of transistors on integrated circuits

to time, has been quite successful in predicting evolution of computational resources

over time. Despite the dramatic improvement in computational hardware, demand for

computational resources for scientific applications has been unyielding. With powerful

computers in hand, more complex problems started looking possible, and a

dependence on computationally efficient algorithms to solve similar problems grew in

tandem. Fast growing economies, demanding consumers, and a competitive

marketplace have forced the products to be lean and more efficient. Creation of such

products requires fast and more accurate analysis. With this changing scenario, among

other aspects of analysis, much research effort is diverted towards the development of

adaptive mesh refinement techniques which can utilize state-of-the-art computational

resources optimally.

 The previous chapter presents one of many applications of adaptive mesh

refinement for dynamic solvers. The need for a general adaptive framework and

122

solution technique is industry wide. The following are some of the research works in

progress using CHARMS and a comment on what lies ahead.

5.1 Simulation of Tumor

5.1.1 Description

 Over the last decade there has been tremendous progress in visualization of

complex, hidden structures inside the human body during operation [85]. However, a

collaborative effort of clinicians, computer scientists, and engineers is required to

perform computer assisted image-guided therapy (IGT), and it generally takes place

only in research hospitals. This research is oriented towards exploring and simplifying

some of the issues that must be tackled in order to fulfill the full promise of these

prototype systems in the area of image-guided neurosurgery (IGNS).

 Some of the main challenges that neurosurgeons face during tumor resection

include removing as much tumor tissue as possible, minimizing the removal of healthy

tissue, and disruption of critical anatomical structures should be avoided at all costs.

They should also know when to stop the resection process. Apart from these problems,

the patient goes through intra-operative shape deformation of the brain as a result of

tissue resection, retraction, and loss of cerebrospinal fluid. This causes a steady

decline in the accuracy of the preoperative plan if it is not executed with the utmost

care. The goal of this research is to quantify and correct for these deformations while a

surgery is in progress by dynamically updating preoperative images in a way that

123

allows surgeons to react to changing conditions. This research is published in [78] in

great detail.

5.1.2 Role of CHARMS

 Finite element analysis using CHARMS is going to be instrumental in the

simulation of a patient’s brain by using images obtained from an intra-operative

scanner during surgery. The time constraint on this overall procedure is severe and

allows only about two minutes for the finite element biomechanical simulation.

Therefore, a parallel adaptive solver will be implemented to take advantage of the San

Diego super computer center’s hardware.

Figure 5-1: Finite element biomechanical model of cross-sectioned brain.

124

5.2 Pattern Recognition for NDE applications using Support Vector Machine

5.2.1 Description

 The set of related supervised learning methods used for classification and

regression is called Support vector machines (SVM). One of the highlights of this

research suggests that SVM can be used for binary classification or pattern recognition

to determine the type and size of defects in railroad tracks. Generally, the model

produced using support vector classification only depends upon a subset of the

training data, because the cost function for building the model does not consider

training points that lie beyond the margin. Therefore, a large amount of data is

required to produce a useful model. This work is described in [76] in great detail.

5.2.2 Role of CHARMS

 Creation of such a large volume of data may not be possible from the NDE

experiments, as explained in chapter 3, because of the requirement of enormous time

and resources. Therefore, after successful numerical verification of experimental

results with numerical results using CHARMS, the author proposed to create an SVM

model using numerical results instead of experimental results.

125

5.3 Future Work

5.3.1 Applications of CHARMS in Bio-Mechanics Simulations

 One of the challenging aspects of biomechanical problems is the fabrication of

an initial mesh from data achieved from a CT scan or MRI, which is a collection of

pixels inside the overall volume. Surfaces representing the domain boundary and

various internal organs can be calculated using techniques such as adaptive

deformation [77]. These surfaces are defined using surface triangulation instead of

geometric entities such as curves, regions, contours, and surfaces. Therefore, most of

the commercial meshing programs, which rely on the presence of geometric entities,

cannot be used. Instead, more primitive tools [6] that can utilize a surface mesh to

create a volume mesh are very often used. Creation of mesh using such tools requires

a massaging of the surface mesh to create well-shaped triangles. In many cases, after

the creation of the initial mesh, much manual patch work is required to replace bad

quality elements. Convergence analysis of the solution with remeshing can be a

nightmare in similar problems, since each iteration requires an increasing amount of

effort to achieve a good quality mesh. Therefore, use of an adaptive mesh refinement

technique for similar problems is almost essential during convergence analysis. Very

often in similar problems, the area of interest is a very small subset of the overall

domain [77, 78]. Adaptive mesh refinement techniques such as CHARMS can be very

useful in optimizing computational cost while capturing singularities accurately in

similar situations [31].

126

5.3.2 Links to Nonlinear Mechanics and Dynamics

 We are inspired by the work done by Hauth et al.[83] and others [nonlinear

graphics]. Much research has been published on visual simulation, computer graphics,

and animation of deformable bodies using complex nonlinear models to assist

surgeons by using hierarchical refinement. It seems that hierarchical schemes are very

well suited for time integrators, and lessons learned from such visual simulation can

be easily applied to nonlinear computational mechanics simulations. Transient

schemes, such as the one shown in this thesis, can be easily used to solve nonlinear

problems without major effort. However, more work is required to understand

conservation properties in similar circumstances, and computational models need to be

validated against experimental results.

5.3.3 Links to Visual Simulations

 Unlike visual simulation models, computational mechanics models based on

finite elements are generally tested rigorously for their numerical accuracy, and

relatively little effort is spent on the visual appeal of the results. However synergies

are happening both ways. Dynamic adaptive models such as the one developed during

this thesis can be successfully applied to create high resolution computer animation

and graphics [31]. However, the algorithm will have to be customized for both the

computational effort and the visual aspects of the results.

127

5.3.3 Use of Asynchronous Variational Integrators

 Asynchronous Variational Integrators, or AVIs [84], allow the selection of

independent time steps in each element, and the local time steps need not bear an

integral relation to each other. Their use of variational structure guarantees exact

conservation of energy and momentum. That would be a useful property for adaptive

simulation of elastodynamic problems, such as the one presented in this thesis.

5.3.4 Error Estimators

 Current error estimation implemented in FAMULS relies on lumping the

elemental error to each basis function. Therefore, any a posteriori error indicator that

calculates elemental error can be used. However, it will be useful to have an error

indicator that directly calculates error per basis function during refinement and

unrefinement.

5.3.5 Lossy Unrefinement

 Unrefinement is lossy by virtue. Replacement of finer shape functions with

coarser ones may cause loss of information and unexpected artifacts during

simulation. The approach described in [31] might work to alleviate this:

“The deactivation of)(xiφ is separated in two steps: (a) the solver no
longer considers as unknown coefficient, iu , and (b) the coefficient set
to zero. In smooth deactivation, (a) the unknown, iu , is immediately
removed from the solvers reach and considered as a prescribed
boundary condition, and (b) the value of the coefficient is prescribed
by a smoothly decaying function over some finite time interval.”

128

5.3.6 Implementation on Parallel Computers

Implementation of CHARMS based solvers on parallel computers was

achieved initially using PETSC’s support for MPI instructions on IBM RS6000 work

stations. We are inspired by the Distributed Adaptive Grid Hierarchy (DAGH) method

which supports the Burger-Olinger algorithm for parallel adaptive mesh refinement

[DAGH website]. Adaptive finite difference method based on the Burger-Olinger

algorithm [DAGH web site] is very similar in terms of data structure for CHARMS

activation/deactivation protocols. Hence incorporation of CHARMS with DAGH type

framework can produce an efficient parallel adaptive algorithm.

5.4 Conclusion

 This thesis opens the door for a practical, viable implementation of CHARMS

for time-dependent solvers in computational mechanics problems. The object oriented

framework FAMULS is modified to incorporate the needs of an explicit dynamic

solver. A consistent implementation of a wave propagation solver is studied and

implemented with CHARMS. Finally, verification of the numerical solver is

performed, with respect to experimental results from the NDE testing of railroad

tracks. A brief analysis of conservation properties of the adaptive dynamic solver is

also presented as a part of this thesis.

129

REFERENCES

[1] HOwen, S.J., Meshing Software Survey, Structured Grid Generation Software,
Uhttp://www.andrew.cmu.edu/user/sowen/software/structured.htmlU

[2] HThompson, J.F., 1985, Numerical Grid Generation: Foundation and
Applications, Elsevier Science Pub. Co., North-Holland. H

[3] HThompson, J.F., 1996, “A Reflection on Grid generation in the 90s: Trends
Needs and Influences,” 5th International Conference on Numerical Grid
Generation in Computational Field Simulations, Mississippi State University,
Mississippi State, MS, pp. 1029-1110H.

[4] Bathe, K.-J., 1996, Finite Element Procedures, Prentice-Hall, Upper Saddle
River, NJ.

[5] Belytscho, T., Liu, W.K., and Moran, B., 2000, Nonlinear Finite Elements for
Continua and Structures, John Wiley & Sons Ltd., Chichester, UK.

[6] Krysl, P. and Ortiz, M., 2001, “Variational Delaunay approach to the generation
of tetrahedral finite element meshes,” Int. J. Numer. Meth. Engng., 50(7), pp.
1681-1700.

[7] Geostar Software, SolidWorks Corporation,
HUhttp://www.cosmosm.com/pages/products/modules_GEOSTAR.htmlU

[8] Almeida, R.C., Feijóo, R.A., Galeão, A.C., Padra, C., and Silva, R.S., 2000,
“Adaptive finite element computational fluid dynamics using an anisotropic
error estimator,” Comput. Methods Apple. Mech. Engorge. 182(3-4), pp. 379-
400.

[9] Marvelous, D.J., 1990, “Adaptive mesh generation for viscous flows using
triangulation,” J. Comput. Phys., 90(2), pp. 271-291.

[10] Peraire, J., Period, J., and Morgan, K., 1992, “Adaptive remeshing for three
dimensional compressible flow computation,” J. Comput. Phys., 103(2),
pp. 269-285.

[11] Berger, M.J. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic
partial differential equations,” J. Comput. Phys., 53(3), pp. 484-512.

[12] Radovitzky, R. and Ortiz, M., 1999, “Error estimation and adaptive meshing in
strongly nonlinear dynamic problems,” Comput. Methods Apple. Mech. Engrg.,
172(1-4), pp. 203-240.

130

[13] Molinari, J.F. and Ortiz, M., 2002, “Three-dimensional adaptive meshing by
subdivision and edge-collapse in finite-deformation dynamic-plasticity problems
with application to adiabatic shear bending,” Int. J. Numer. Meth. Engng., 53(5),
pp. 1101-1126.

[14] Selman, A., Hinton, E., and Bićanić, N., 1997, “Adaptive mesh refinement for
localised phenomena,” Computers & Structures, 63(3), pp. 475-495.

[15] Arnold, D.N., Mukherjee, A., and Pouly, L., 2000, “Locally adapted tetrahedral
meshes using bisection,” SIAM J. Sci. Comput., 22(2), pp. 431-448.

[16] Bänsch, E., 1991, “Refinement in 2 and 3 dimensions,” Impact Comput. Sci.
Engrg., 3(3), pp. 181-191.

[17] Bey, J., 1995, “Tetrahedral grid refinement,” Computing, 55(4), pp. 271-288.

[18] Bornemann, F., Erdmann, B., and Kornhuber, R., 1993, “Adaptive multilevel
methods in three space dimensions,” Int. J. Numer. Meth. Engrg., 36(18), pp.
3187-3203.

[19] Kallinderis, Y. and Vijayan, P., 1993, “Adaptive refinement-coarsening scheme
for three-dimensional unstructured meshes,” AIAA J., 31(8), pp. 1440-1447.

[20] Liu, A. and Joe, B., 1995, “Quality Local Refinements of Tetrahedral Meshed
Based on Bisection,” SIAM J. Sci. Comput., 16(6), pp. 1269-1291.

[21] Liu, A. and Joe, B., 1996, “Quality local refinements of tetrahedral meshed
based on 8-subtetrahedron subdivision,” Math. Comp, 65(215), pp. 1183-2000.

[22] Rivara, M.-C., 1992, “A 3-D refinement algorithm suitable for adaptive and
multi-grid techniques,” Comm. Apple. Num. Meth., 8, pp. 281-290.

[23] Speares, W. and Berzins, M., 1997, “A 3D unstructured mesh adaptation
algorithm for time-dependent shock-dominated problems,” Int. J. Numer. Meth.
Fluids, 25(1), pp. 81-104.

[24] Buscaglia, G.C. and Dari, E.A., 1997, “Anisotropic mesh optimization and its
application in adaptivity,” Int. J. Numer. Meth. Engng., 40(22), pp. 4119-4136.

[25] Castro-Diaz, M.J., Hecht, F., Mohammadi, B., and Pironneau, O., 1997,
“Anisotropic unstructured grid adaptation for flow simulations,” Int. J. Numer.
Meth. Fluids, 25(4), pp. 475-491.

131

[26] Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., Habashi, W.G., 2002,
“Anisotropic mesh adaptation: towards user-independent, mesh-independent and
solver-independent CFD. Part III. Unstructured meshes,” Int. J. Numer. Meth.
Fluids, 39(8), pp. 675-702.

[27] De Cougny, H.L. and Shephard, M.S., 1999, “Parallel refinement and coarsening
of tetrahedral meshes,” Int. J. Numer. Meth. Engrg., 46(7), pp. 1101-1125.

[28] De l’Isle, E.B. and George, P.L., 1993, “Optimization of Tetrahedral Meshes,”
Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial
Differential Equations, I. Babuška, et al., eds., Springer-Verlag, Berlin, IMA
Vol. 75, pp. 97-128.

[29] Joe, B., 1989, “Three-dimensional triangulations from local transformations,”
SIAM J. Sci. Comput., 10(4), pp. 718-741.

[30] Pain, C.C., Umpleby, A.P., de Oliveria, C.R.E., and Goddard, A.J.H., 2001,
“Tetrahedral mesh optimization and adaptivity for steady-state and transient
finite element calculations,” Comput. Meth. Apple. Mech. Engrg., 190(29-30),
pp. 3771–3796.

[31] Grinspun, E., 2003, “The Basis Refinement Method,” Ph.D. Dissertation,
California Institute of Technology, Pasadena, CA.

[32] Krysl, P., Trivedi, A., and Zhu, B., 2004, “Object-oriented hierarchical
refinement with CHARMS,” Int. J. Numer. Meth. Engng., 60(8), pp. 1401-1424.

[33] Endres, L. and Krysl, P., 2004, “Octasection-based refinement of finite element
approximations on tetrahedral meshes that guarantees shape quality,” Int. J.
Numer. Meth. Engng., 59(1), pp. 69-82.

[34] Zhu, B. and Krysl, P., 2003, “Data fitting and shape approximation with
CHARMS mesh refinements.” in preparation.

[35] Trivedi, A., Krysl, P., McNamara, J., and Lanza di Scalea, F., 2004, “Adaptive
simulation of ultrasonic guided waves in railroad tracks using CHARMS,” Proc.
6th World Conference on Computational Mechanics , Tsinghua University,
Beijing, China.

[36] Grinspun, E., Krysl, P., and Schröder, P., 2002, “CHARMS: A simple
framework for adaptive simulation,” ACM Transactions on Graphics, 21(3),
pp. 281-290.

[37] Möller, P. and Hansbo, P., 1995, “On Advancing Front Mesh Generation in
Three Dimensions,” Int. J. Numer. Meth. Engrg. 38(21), pp. 3551-3569.

132

[38] Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E., 1997, “Delaunay
mesh generation governed by metric specifications. Part I: algorithms. Part II:
applications,” Finite Elements Anal. Design 25(1-2) pp. 61-83, 85-109.

[39] Frey, P.J. and George, P.L., Mesh Generation Application to Finite Elements,
HERMES Science Europe Ltd., Oxford, Paris, 2000.

[40] George, P.L., Borouchaki, H., and Laug, P., 2000, “An efficient algorithm for
3D adaptive meshing,” Finite Elements: Techniques and Developments, B.H.V.
Topping, ed., Civil-Comp Ltd., Edinburgh, UK, pp. 1-11.

[41] George, P.L. and Hecht, F., 1999, “Nonisotropic grids,” Handbook of Grid
Generation, Thompson, J. et al., eds., CRC Press, Boca Raton, FL, pp. 20.1-
20.29.

[42] Li, X., Shephard, M.S., and Beall, M.W., 2003, “Accounting for curved domains
in mesh adaptation,” Int. J. Numer. Meth. Engrg., 58(2), pp. 247-276.

[43] Rivara, M.-C. and Iribarren, G., 1996, “The 4-triangles longest-side partition of
triangles and linear refinement algorithms,” Math. Comp., 65(216), pp. 1485-
1502.

[44] Rivara, M.-C., 1997, “New longest-edge algorithms for the refinement and/or
improvement of unstructured triangulations,” Int. J. Numer. Meth. Engrg.,
40(18), pp. 3313-3324.

[45] Rivara, M.-C. and Inostroza, P., 1997, “Using longest-side bisection techniques
for the automatic refinement of Delaunay triangulations,” Int. J. Numer. Meth.
Engrg., 40(4), pp. 581-597.

[46] Wille, S.O., 1992, “A structured tri-tree search method for generation of optimal
unstructured finite element grids in two and three dimensions,” Int. J. Numer.
Meth. Fluids, 14(7), pp. 861-881.

[47] Plaza, A., Padrón, M.A., and Carey, G.F., 2000, “A 3D refinement/derefinement
algorithm for solving evolution problems,” Apple. Numer. Math., 32(4), pp. 401-
418.

[48] Plaza, A. and Carey, G.F., 2000, “Local refinement of simplicial grids based on
the skeleton,” Apple. Numer. Math., 32(2), pp. 195-218.

[49] Language, H.P., 1999, Computational Partial Differential Equations, Springer-
Verlag, Berlin.

133

[50] Zorin, D., and Schröder, P., 2001, “A unified framework for primal/dual
quadrilateral subdivision schemes,” Comput. Aided Geom. Des., 18(5), pp. 429-
454

[51] Zorin, D., and Schröder P., eds., 2000, “Subdivision for modeling and
animation,” ACM SIGGRAPH 2000 Course Notes.

[52] Yserentant, H., 1986. “On the Multi-Level Splitting of Finite Element Spaces,”
Numer. Math., 49(4), pp. 379-412.

[53] Duarte, C.A. and Babuška, I., 2002, “Mesh-independent p-orthotropic
enrichment using the generalized finite element method,” Int. J. Numer. Meth.
Engrg., 55(12), pp. 1477-1492.

[54] Babuška, I. and Guo, B., 2001, “Direct and inverse approximation theorems for
the p-version of the finite element method in the framework of weighted Besov
spaces. Part I: Approximability of functions in the weighted Besov spaces,”
SIAM J. Numer. Anal., 39(5), pp. 1512-1538.

[55] Dorr, M.R., 1984, “The Approximation Theory for the p-Version of the Finite
Element Method,” SIAM J. Numer. Anal., 21(6), pp. 1181–1207.

[56] Dorr, M.R., 1986, “The Approximation of Solutions of Elliptic Boundary-Value
Problems via the p-version of the Finite Element Method,” SIAM J. Numer.
Anal., 23(1), pp. 58–77.

[57] Babuška, I. Banerjee, U., and Osborn J.E., 2002, “On principles for the selection
of shape functions for the Generalized Finite Element Method,” Comput. Meth.
Apple. Mech. Engrg., 191(49-50), pp. 5595-5629.

[58] Devine, K.D. and Flaherty, J.E., 1996, “Parallel adaptive hp-refinement
techniques for conservation laws,” Apple. Numer. Math., 20(4), pp. 367-384.

[59] Babuška, I. and Suri, M., 1994, “The p and h-p Versions of the Finite Element
Method, Basic Principles and Properties,” SIAM Rev. 36(4), pp. 578-632.

[60] Demkowicz, L., Pardo, D. and Rachowicz, W., 2002, “3D hp-Adaptive Finite
Element Package (3Dhp90), Version 2.0: The Ultimate (?) Data for Three-
Dimensional, Anisotropic hp Refinements,” Technical Report No. 02-24,
TICAM, University of Texas at Austin, Austin, TX.

[61] Schwab, C., 1998, p and hp-Finite Element Methods, Clarendon Press, Oxford,
UK.

134

[62] Rachowicz, W., Pardo, D., and Demkowicz, L., 2006, “Fully automatic hp-
adaptivity in three dimensions,” Comput. Meth. Apple. Mech. Engrg., 195(37-
40), pp. 4816-4842.

[63] Oden, J.T., Demkowicz, L., Rachowicz, W., and Westermann, T.A., 1989,
“Toward a universal h-p adaptive finite element strategy, part 2. A posteriori
error estimation,” Comput. Meth. Apple. Mech. Engrg., 77(1-2), pp. 113-180.

[64] Zienkiewicz, O.C. and Zhu, J.Z., 1987, “A simple error estimator and adaptive
procedure for practical engineering analysis,” Int. J. Numer. Meth. Engrg., 24(2),
pp. 337-357.

[65] Yserentant, H., 1992, “Hierarchical bases,” Proc. ICIAM 1991, SIAM,
Philadelphia, PA.

[66] Krysl, P., Grinspun, E., and Schröder, P., 2003, “Natural hierarchical refinement
for finite element methods,” Int. J. Numer. Meth. Engrg., 56(8), pp. 1109-1124.

[67] Von Herzen, B. and Barr, A., 1987, “Accurate triangulations of deformed,
intersecting surfaces,” Proc. ACM SIGGRAPH’87, 21(4), pp. 103–110.

[68] Samet, H., 1995, Applications of Spatial Data Structures: Computer Graphics,
Imaging, and GIS, Addison-Wesley, Reading, MA, 2nd ed.

[69] Hughes, T.J.R., 2000, The Finite Element Method: Linear static and dynamic
analysis, Dover Publications, Mineola, NY, 2nd ed.

[70] Booch, G., Jacobson, I., and Rumbaugh, J., 1995, Unified Modeling Language
for Object-Oriented Development. Documentation Set, Version 0.91, Rational
Software Corporation, Santa Clara, CA.

[71] Beall, M.W. and Shephard, M.S., 1999, “An object-oriented framework for
reliable numerical simulation,” Engineering with Computers, 15(1), pp. 61–72.

[72] Zienkiewicz, O.C. and Taylor, R.L., 2000, The finite element method: The basis,
Volume 1, Elsevier Butterworth-Heinemann, Oxford, UK, 5th ed.

[73] ANSYS User’s Manual, 1992.

[74] Alleyne, D. and Cawley, P., 1991, “A two-dimensional Fourier transform
method for measurement of propagating multimode signals,” J. Acoust. Soc.
Am., 89(3), pp. 1159-1168.

[75] Moser, F., Jacobs, L.J., and Qu, J., 1999, “Modeling elastic wave propagation in
waveguides with the finite element method,” NDT&E Int., 32(4), pp. 225-234.

135

[76] McNamara, J.D., 2003, “Health Monitoring of Rail Road Tracks by Elastic
Waves based Non Destructive Testing,” Ph.D. Dissertation, University of
California, San Diego, San Diego, CA.

[77] Krysl, P., Cranford, T.W., Wiggins, S.M., and Hildebrand, J.A., 2006,
“Simulating the effect of high-intensity sound on cetaceans: Modeling approach
and a case study for Cuvier’s beaked whale (Ziphius cavirostris),” J. Acoust.
Soc. Am., 120(4), pp. 2328-2339.

[78] Majumdar, A., Birnbaum, A., Choi, D.J., Trivedi, A., Warfield, S.K., Baldridge,
K., and Krysl, P., 2005, “A Dynamic Data Driven Grid System for Intra-
operative Image Guided Neurosurgery,” Lecture Notes in Computer Science:
Computational Science - ICCS 2005, Springer, Berlin, 3515, pp. 672-679.

[79] Krysl, P., Damaser, M., Chukkapalli, G., Majumdar, A., Choi, D.J., Trivedi, A.,
Warfield, S.K., and Hoyte, L., 2006, “Computational Model of Levator Ani
Muscle Stretch during Natural Birth,” 5th World Congress of Biomechanics,
Munich, Germany.

[80] Lanza di Scalea, F. and McNamara, J., 2003, “Ultrasonic NDE of railroad tracks:
Air-coupled cross-sectional inspection and long range inspection,” INSIGHT –
Non-Destructive Testing and Condition Monitoring, 45(6), pp. 394-401.

[81] West, M., Kane, C., Marsden, J.E., and Ortiz, M., 1999, “Variational integrators,
the Newmark scheme, and dissipative systems,” International Conference on
Differential Equations, B. Fiedler et al., eds., Berlin, pp. 1009-1011.

[82] Moore, G.E., 1965, “Cramming more components onto integrated circuits,”
Electronics, 38(8).

[83] Hauth, M., Grob, J., and Straber, W., 2003, “Interactive physically based solid
dynamics,” Eurographics/SIGGRAPH Symposium on Computer Animation.

[84] Lew, A., Marsden, J., Ortiz, M., and West, M. “Asynchronous variational time
integrators,” Archive for Rational Mechanics and Analysis, 167(2), pp. 85-146.

[85] Warfield, S.K., Talos, F., Tei, A., Bharatha, A., Nabavi, A., Ferrant, M., Black,
P.M., Jolesz, F.A., and Kikinis, R., 2002, “Real time registration of volumetric
brain MRI by biomechanical simulation of deformation during image guided
neurosurgery,” J. Computing and Visualization in Science, 5, pp. 3-11.

[86] Melenk, J.M. and Babuška I., “The Partition of Unity Finite Element Method”
Comp. Meth. Appl. Mech. Eng., 152, pp. 73-84.

136

[87] Simo, J.C., Tarnow, N., and Wong, K.K., 1992, “Exact energy-momentum
conserving algorithms and symplectic schemes for nonlinear dynamics,” Comp.
Meth. Appl. Mech. Eng., 100(1), pp. 63–116.

[88] Ehlers, W., Ammann, M., Diebels, S., 2002, “h-adaptive FE methods applied to
single and multiphase problems,” Int. J. Num. Meth. Eng., 54(2), pp. 219-239.

[89] Felippa, C.A., 2007, Notes on Mass Matrix
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/

[90] Felippa, C.A., 2006, “Construction of customized mass stiffness pairs using
Templates,” J. Aerospace Engineering, 19(4), pp. 241-258.

[91] Archer, J.S., 1963, “Consistent mass matrix for distributed mass systems,” J. Str.
Div. Proc. ASCE, 89, pp. 161–178.

[92] Archer, J.S., 1965, “Consistent mass matrix formulation for structural analysis
using finite element techniques,” AIAA J., 3, pp. 1910–1918.

[93] Melosh, R.J., 1962, “Development of the stiffness method to define bounds on
the elastic behavior of structures,” Ph.D. thesis, University of Washington,
Seattle, WA.

[94] Hinton, E., Rock, T., and Zienkiewicz, O.C., 1976, “A Note on Mass Lumping
and Related Processes in the Finite Element Method,” Earthquake Engineering
and Structural Dynamics, 4, pp. 245-249.

[95] Goudreau, G.L., 1970, “Evaluation of Discrete Methods for the linear Dynamic
Response of Elastic and Visco elastic solids,” UC SESM Report 69-15,
University of California, Berkeley.

[96] Gaveric, L., 1993, “Dispersion Curves of I-Profiled Beams by a Finite Element
Method,” Proc. ACOUSTICS, 15(3), pp. 553-560.

[97] Wilcox, P., Evans, M., Diligent, O., Lowe, M., and Cawley, P., 2002,
“Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with
Arbitrary Cross Section,” Review of Quantitative Nondestructive Evaluation, 21,
pp. 203-210.

[98] Lowe, M., 1998, “Characteristics of the Reflection of Lamb waves from Defects
in Plates and Pipes,” Review of Progress in Quantitative Nondestructive
Evaluation, 17, pp. 113-120.

