
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
An adaptive mesh refinement technique for dynamics of solids

Permalink
https://escholarship.org/uc/item/5m90q7p4

Author
Trivedi, Abhishek

Publication Date
2007
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5m90q7p4
https://escholarship.org
http://www.cdlib.org/


i  

UNIVERSITY OF CALIFORNIA, SAN DIEGO 

 

An Adaptive Mesh Refinement Technique for Dynamics 

of Solids 

 

A Dissertation submitted in partial satisfaction of the requirements for the degree of 

Doctor of Philosophy 

 

in 

 

Structural Engineering 

 

by 

 

Abhishek Trivedi 

 

Committee in Charge: 
 
 Professor Petr Krysl, Chair 
            Professor David Benson 
            Professor Michael Holst  
 Professor Fransisco Lanza Di Scalea 
 Professor P. Benson Shiang 
 

2007



ii  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright   

Abhishek Trivedi, 2007 

All rights reserved.



 iii

 

The Dissertation of Abhishek Trivedi is approved, and it is acceptable in quality and 

form for publication on microfilm: 

 

 

 

 

         

          Chair 

 

 

 

 

 

 

 

 

University of California, San Diego 

2007 



 

iv  

 

 

 

 

 

 

 

 Dedicated to my belated uncle Mr. Nishkam Tripathi 

and grand mother Mrs. Shri Devi Tripathi.  

 

 

 

 



 

v  

TABLE OF CONTENTS 

 
SIGNATURE PAGE ............................................................................... iii 

DEDICATION ......................................................................................... iv 

TABLE OF CONTENTS ......................................................................... v 

LIST OF FIGURES.................................................................................. x 

LIST OF TABLES.................................................................................. xii 

PREFACE .............................................................................................. xiii 

ACKNOWLEDGEMENTS .................................................................. xiv 

VITA ....................................................................................................... xvi 

ABSTRACT .......................................................................................... xvii 

OUTLINE AND CONTRIBUTIONS ..................................................... 1 

CHAPTER 1 :   BACKGROUND AND MOTIVATION ..................... 6 

1.1 Introduction ............................................................................................7 

1.2 Mesh Improvement and Adaptive Mesh Refinement...........................12 

1.2.1 Specialized Adaptive Techniques.............................................13 

1.2.2 H Type Techniques...................................................................16 

1.2.2.1 Techniques Based on Remeshing.................................16 

1.2.2.2 Fixed Order Mesh Modification Procedures ................16 

1.2.2.3 Techniques Based on Element Splitting and Edge 
Collapse ........................................................................17 

1.2.2.4 Techniques Based on Basis Refinement.......................18 

1.2.3 P Type Techniques ...................................................................18 



 

vi  

1.2.4 HP Adaptive Techniques..........................................................19 

1.3 Adaptive Mesh Refinement in Commercial Software..........................20 

1.4 Case for a New Adaptive Technique....................................................22 

CHAPTER 2 :  CONFORMING HIERARCHICAL ADAPTIVE 
REFINEMENT METHODS (CHARMS) ............................................ 24 

2.1 Nested Spaces.......................................................................................24 

2.2 Refinement Equation ............................................................................24 

2.3 Construction of Meshes of Higher Resolution .....................................25 

2.3.1 True Hierarchical Basis ............................................................29 

2.3.2 Quasi-Hierarchical Basis ..........................................................30 

2.4 Approximation on CHARMS-Refined Meshes....................................32 

2.5 Formal Statement of the Refinement and Unrefinement Algorithms ..33 

2.5.1 Quasi-Hierarchical Basis ..........................................................35 

2.5.1.1   Refinement .................................................................35 

2.5.1.2 Unrefinement ................................................................36 

2.5.2 Hierarchical Basis.....................................................................36 

2.5.2.1 Refinement ...................................................................37 

2.5.2.2 Unrefinement ................................................................37 

2.6 Design of an Adaptive Solver...............................................................38 

2.6.1 Geometric Cell (GCELL) .........................................................38 

2.6.2 Connectivity and Refinement Nodes........................................40 

2.6.3 Field ......................................................................................42 

2.6.4 Basis Function (BFUN)............................................................43 

2.6.5 Basis Function Set (BFUN_SET).............................................44 



 

vii  

2.7 Implementation of Refinement/Unrefinement .....................................45 

2.7.1 Example: Equation of Steady Diffusion...................................46 

2.7.1.1 Hexahedral Discretization in 3D ..................................48 

2.7.1.2 Refinement of Triangulations with Quadratic Triangles
......................................................................................49 

2.7.2 Example: Equation of linear elasticity .....................................52 

2.7.2.1 Refinement of Tetrahedra.............................................53 

CHAPTER 3 : ADAPTIVE SIMULATION OF ELASTIC WAVE 
PROPAGATION IN SOLIDS ............................................................... 56 

3.1 Equation of Elastic Wave Propagation.................................................56 

3.2 Solution with Adaptive Scheme ...........................................................58 

3.3 Required Resolution for Wave Propagation Problems.........................60 

3.4 Adaptive Time Stepping.......................................................................61 

3.5 Error Indicator ......................................................................................61 

3.6 Partition of Unity basis.........................................................................63 

3.7 Implementation of a wave propagation solver .....................................65 

3.7.1 Adaptive Algorithm..................................................................65 

3.7.2 Field Transfer ...........................................................................67 

3.7.3 Evaluation Cell (ECELL) .........................................................70 

3.7.4 Protocols ...................................................................................70 

3.7.5 Calculation of Basis Function Tables.......................................71 

3.7.6 Geometry ..................................................................................75 

3.8 Conservation Laws ...............................................................................76 

3.8.1.1    Uniformly Refined Mesh...........................................80 

3.8.1.1.1 Using Lumped Mass (Row-sum technique) ..80 



 

viii  

3.8.1.2 CHARMS Refined Mesh..............................................84 

3.8.1.2.1 Row sum technique .......................................87 

3.8.1.2.2 Consistent Mass.............................................87 

3.8.1.2.3 HRZ Mass Lumping ......................................88 

3.8.1.2.4 Template Mass Lumping...............................89 

3.8.1.3 Conclusion of Calculations...........................................90 

3.8.2  Conservation of Momentum.....................................................91 

3.8.2.1 Momentum Conservation with Central Difference 
Method..........................................................................91 

3.8.2.2 Momentum Conservation Property with Adaptive Mesh 
Refinement ...................................................................92 

3.8.2.2.1 Using Row-Sum Technique ..........................94 

3.8.2.2.2 Using Consistent Mass Matrix ......................95 

3.8.2.2.3 Using HRZ Lumping.....................................96 

3.8.3 Conservation of Energy............................................................97 

3.8.3.1 Energy in Central Difference Method ..........................97 

3.8.3.2.1 Row-Sum Technique .....................................99 

3.8.3.2.2  Using Consistent Mass Matrix ...................102 

3.8.3.2.3 Using HRZ Lumping...................................103 

3.8.3.3 Conclusion from Conservation Behavior ...................104 

3.8.4 Conservation of Mass, Momentum and Energy with 
Unrefinement ..........................................................................105 

3.9 Example..................................................................................105 

CHAPTER 4 : A VALIDATION CASE............................................. 109 

4.1 Background and Introduction .............................................................109 



 

ix  

4.2 Experimental Setup ............................................................................110 

4.3 Post Processing of Time Signal..........................................................112 

4.4 Numerical Approximation..................................................................113 

4.5 Analysis of Numerical Results ...........................................................114 

4.6 Conclusion..........................................................................................117 

CHAPTER 5 : OUTLOOK.................................................................. 121 

5.1 Simulation of Tumor ..........................................................................122 

5.1.1 Description .............................................................................122 

5.1.2 Role of CHARMS ..................................................................123 

5.2 Pattern Recognition for NDE applications using Support Vector 
Machine ..............................................................................................124 

5.2.1 Description .............................................................................124 

5.2.2 Role of CHARMS ..................................................................124 

5.3 Future Work........................................................................................125 

5.3.1     Applications of CHARMS in Bio-Mechanics Simulations...125 

5.3.2 Links to Nonlinear Mechanics and Dynamics........................126 

5.3.3 Links to Visual Simulations ...................................................126 

5.3.3 Use of Asynchronous Variational Integrators ........................127 

5.3.4 Error Estimators......................................................................127 

5.3.5 Lossy Unrefinement ...............................................................127 

5.3.6 Implementation on Parallel Computers ..................................128 

5.4 Conclusion..........................................................................................128 

REFERENCES ..................................................................................... 129 



 

x  

LIST OF FIGURES 

 

Figure 2-1: Uniform division of mesh 0M  that results in a compatible mesh 1M .26 

Figure 2-2:  Refinement of 8-node quadrilateral finite elements:  (I) stands for 
 isoparametric mapping; (R) stands for refinement ...............................28 

Figure 2-3:  Illustration of Equation (2-6)................................................................30 

Figure 2-4:  Comparison of true hierarchical basis (left) with quasi-hierarchical 
 basis (right). ..........................................................................................32 

Figure 2-5: Class diagram for a GCELL representing a six-node (quadratic) 
 triangular finite element. Note the use of the templated CONN class for 
 the specification of the connectivity.....................................................39 

Figure 2-6: Schematic refinement tree for a quadrilateral GCELL.........................40 

Figure 2-7: Class diagram for the field pair and field .............................................43 

Figure 2-8: Class diagram for the basis function and basis function set. ................44 

Figure 2-9: Steady diffusion equation solved in a three-dimensional domain. Left: 
 initial grid; middle: step after two adaptations; right: cut-off grid with a 
 solution contour. The integration cells are shown, with color coding 
 corresponding to the temperature distribution......................................49 

Figure 2-10:   Refinement of the 6-node triangle........................................................51 

Figure 2-11: Dipole equation with homogeneous boundary conditions solved on a 
 triangulation of square domain with 6-node quadratic triangles. Color 
 coding of the field on three refined grids. ............................................51 

Figure 2-12: Dipole equation, 6-node quadratic triangles. The geometric cells from 
 the upper-left corner of the computational domain that support basis 
 functions on different levels: left to right, level 1, 2, 3, 4. The red balls 
 indicate the active basis functions. .......................................................51 

Figure 2-13:  Linear elastic model of human brain using tetrahedral mesh refinement. 
 Color-coded area shows distribution of Von Mises stresses. ...............55 

Figure 3-1: Progress of solver. ................................................................................59 



 

xi  

Figure 3-2: Quasi-hierarchical refinement of shape function )0(
jN with partition of 

 unity......................................................................................................64 

Figure 3-3: Class diagram for steady-diffusion evaluation cell for 8-node 
 hexahedron. ..........................................................................................71 

Figure 3-4: Uniformly Refined Mesh......................................................................80 

Figure 3-5:   Adaptive mesh refinement of shape function )0(
jN using CHARMS ...84 

Figure 3-6:   Adaptive mesh refinement of shape function )0(
jN using CHARMS ...93 

Figure 3-7: Points representing no energy increase on v1, v2, v3 Cartesian space 101 

Figure 3-8: Points representing no energy increase on v1, v2, v3 Cartesian space for 
 consistent mass matrix........................................................................103 

Figure 3-9: Points representing no energy increase on v1, v2, v3 Cartesian space 104 

Figure 3-10: Mesh refinement at different time steps as wave front travels through 
 the bar. ................................................................................................106 

Figure 3-11: Number of basis functions generated (top), Conservation of momentum 
 in this process (bottom) ......................................................................107 

Figure 4-1: Different types of defects ...................................................................111 

Figure 4-2: Experimental Setup ............................................................................112 

Figure 4-3:  Scalogram using coarse mesh.............................................................118 

Figure 4-4:  Comparison of reflection coefficients with coarse mesh ...................118 

Figure 4-5: Same-Mode Energy Reflection Coefficient Spectra Obtained for the 
 Vertical Test of Zero Degree Defects.................................................119 

Figure 4-6:  Wave Front Tracking and Mesh Refinement. (a) Rail with Refined 
 Mesh, (b) Rail illustrating Wave Front Tracking & Mesh Refinement 
 and Unrefinement. (One level of refinement is shown) .....................119 

Figure 4-7: Same-Mode Energy Reflection Coefficient Spectra Obtained for the 
 Vertical Test of Zero Degree Defects.................................................120 

Figure 5-1: Finite element biomechanical model of cross-sectioned brain...........123 



 

xii  

LIST OF TABLES 

 

Table 2-1: Refinement Nodes of an 8-node Hexahedron ......................................46 

Table 3-1: Linear hat functions and their derivatives of coarse mesh. ..................80 

Table 3-2: Linear hat functions and their derivatives of mesh refined using 
 CHARMS. ............................................................................................85 

Table 3-3: Comparison of eigenvalues ..................................................................90 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xiii  

PREFACE 
 

 

 

 

 

 

 

 

 

 

        This work is about adaptive mesh refinement and how it can be successfully 

utilized in dynamics problems. Adaptive mesh refinement technique focuses on 

refinement of the basis functions instead of subdivision of elements.  Refinement done 

in this fashion produces compatible and hierarchical meshes [66], the overall 

algorithm is easy to implement [32], and it can be applied to a wide range of 1D, 2D, 

and 3D elements. We apply this technique to numerically explicit, dynamic problems 

and verify our solution strategy by validating it against NDE experiments performed 

for simulated guided wave problems [35]. 

        There are already concrete, compelling applications of the current work [76]. A 

variety of complex simulation problems are likely to benefit from our adaptive 

framework [77-79].
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ABSTRACT OF THE DISSERTATION 

 

An Adaptive Mesh Refinement Technique for Dynamics of Solids 

 

by 

 

Abhishek Trivedi 

 

Doctor of Philosophy in Structural Engineering 

 

University of California, San Diego, 2007 

 

Professor Petr Krysl, Chair 

 

 

 Simulation of dynamics problems generally is heavily dependent on mesh size 

for convergence and accuracy. In many cases, the requirement of mesh size reaches to 

such proportions that the problem becomes unsolvable for the available computational 

resources. We perceive that such problems can be solved by refining and unrefining 

mesh adaptively during time stepping. Adaptive mesh refinement techniques available 

in popular literature are marred by various limitations, such as element-specific 

techniques, algorithm-specific techniques, etc. We utilize Conforming Hierarchical 
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Refinement Methods (CHARMS) [32] for our purpose since it relies on the refinement 

of finite element basis instead of geometric sub-division of elements. Refinement in 

this fashion produces conforming meshes during adaptive mesh refinement for a wide 

range of elements.  We improve CHARMS to incorporate time stepping problems. In 

order to show the effectiveness of such an algorithm, we modify an explicit Newmark 

solver to incorporate it within the adaptive mesh refinement framework. We perform 

the analysis of conservation properties of the modified algorithm to understand its 

limitations. Later, we demonstrate application of such development with a very 

practical example, simulation of an NDE experiment using ultrasonic guided waves. 

Details presented in [76] has shown that such a simulation would otherwise not have 

been possible. We further study the guided wave experiment and optimize various 

parameters of the algorithm to validate experimental results. 
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OUTLINE AND CONTRIBUTIONS  

 

Chapter 2  

   This chapter establishes the foundation for the refinement of basis functions 

as suggested in [36] for discrete computational mechanics applications.  Research such 

as this, where alteration in conventional numerical techniques is evident, requires 

development of software tools and implementation of ideas to study and demonstrate 

its impact. Although [32] highlights many of these ideas in detail, it was necessary to 

include the details of the modification in software framework for dynamic activation 

and deactivation during adaptive steps in the direct time integration scheme not  

published in [32].  Other major contributions in theoretical understanding presented in 

this chapter are attributed to the development of a procedure to properly interpolate 

data over refined mesh by Zhu and Krysl [34] and refinement of tetrahedral mesh by 

Enders and Krysl [33]. Following this development, many modifications in the data 

structure of our software were made based on object oriented adaptive framework. For 

example, a pointer to a container template class called “bucket” was introduced to 

automatically increase and decrease in size and reshuffle the basis function set 

efficiently during refinement and unrefinement. We used “in house” post processing 

tools to visualize the results;  a graphics library called Elixir was utilized to create 

snapshots during time progression of the adaptive solver. Watch points were 

introduced to visualize XY plots during time marching. We also experimented and 

modified the math library PETSC for linear equation solvers and pre-conditioners, 
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since dynamic problems can often be computationally very expensive. All the 

applications shown in this chapter were modified and tested using this new 

framework.   

 

Chapter 3 

 The general hyperbolic equation of the form ucu tt Δ= 2,  has many applications 

in computational mechanics. For example, if we can assume a time harmonic motion, 

it leads to parabolic Helmholtz’s equation, which is used for certain types of wave 

propagation problems. In discrete mechanics its weak form (or Galerkin formulation) 

leads to initial value problem for elastodynamics applications including, vibration and 

wave propagation problems. There are various ways to solve this problem in a time or 

frequency domain. Its solution in a frequency domain often relies on normalization of 

the mass and stiffness matrix with respect to natural modes. Participation of more 

natural frequencies corresponding to higher modal mass leads to a more accurate 

result. In a time domain it is solved using various direct time integration schemes. The 

Newmark family of solvers are industry wide and are the most established and most 

popular techniques to solve this problem.  The Newmark family of solvers includes 

several implicit schemes and one explicit scheme, the central difference method. 

Implicit schemes such as the average acceleration method and the Fox-Goodwin 

method are computationally very expensive, unconditionally stable, and designed to 

conserve mass, momentum, and energy. On the other hand, the central difference 

method is relatively cheap computationally, conditionally stable, and designed to 



 

 

3

 

conserve only momentum. The explicit method imposes various restrictions on the 

solution process, time step, mesh size, etc., and its construction in certain fashions 

very often is reflected in the conservation properties. However its general economy for 

a wide variety of elastodynamics applications without the sacrifice of accuracy has 

made it ubiquitous in the commercial software, and much research effort has been 

spent to analyze its general behavior. In our case, we are utilizing it to demonstrate use 

of our adaptive scheme in dynamic solvers. Past work done on analysis of such 

schemes [81,88] relies on the fact that discrete space essentially does not change 

during the time marching algorithm. However, in our case discrete space is altered by 

our adaptive scheme. Therefore, various established assumptions and conservation 

properties must be reevaluated to account for such changes. We study the conservation 

properties of such a scheme, establish its limitations, and derive conclusions for some 

of the targeted applications, such as the one presented in chapter 5. An investigation of 

properties of integration, using such a scheme over refined mesh, brings our attention 

to several related issues such as: data transfer from coarse mesh to finer mesh and the 

necessity of imposing a partition of unity. Implementation issues related to such a 

solver are discussed to support the adaptive data structure discussed in chapter 4. An 

example from such implementation is discussed at the end of the chapter.  

 

Chapter 4  

 A guided wave propagates in the axial direction of a layer, while behaving as a 

standing wave through the thickness of the layer. Long range ultrasonic guided waves 
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are often preferred for their use in inspection of cracks in long slender geometries, 

such as railroad tracks. This is because conventional NDE techniques such as the 

pulse-echo method suffer from the problem of the complicated nature of reflected 

wave forms, making it very difficult to produce real time analysis. Apart from that, 

inspection of engineering structures using long-range guided waves is attractive, 

because it is possible to investigate complete material volumes in regions over 100 

meters away from the point of measurement. Effective inspections require a good 

understanding of the different vibration modes. Finite element modeling is a powerful 

tool in assessing the feasibility of guided wave inspections.  

 Several conclusions are derived in chapter 3, and all point towards a robust 

application of the CHARMS-based adaptive dynamics solver for simulation of guided 

wave problems for many reasons. For one, solution of wave propagation problems 

leads to very fine mesh using a direct time integration scheme if we are looking for 

response of intermediate frequencies, as mesh size is related to wavelength and 

frequency. Very often this is the case in NDE applications. The problem becomes 

especially complex in practical NDE applications where predominant frequencies, 

which can provide useful information, are not know a priori. Analysis in this case 

cannot be performed in a frequency domain. We have all the ingredients to perform 

such an analysis: a lumped mass matrix which stays symmetric, positive definite with 

refinement, a momentum conserving, explicit adaptive Newmark solver where 

adaptivity does very little to kinetic energy (in small strain problems), and a mesh 

where refinement and unrefinement together are chasing the energy wave front. As a 
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result, the effect of a moving and reflected wave front can be clearly seen with 

several-fold reduction in computational effort. Analysis of frequency content in the 

reflected wave front reveals startling similarity to experimental NDE results. This 

chapter describes this verification problem in great detail.  

 

Chapter 5  

 Work done so far opens the door for solutions of various complicated 

engineering problems. Because of our immediate involvement in biomechanics [78] 

and NDE applications [76] during this research work, these areas have been the main 

beneficiaries of our research. We highlight similar developments in this chapter.  This 

chapter also presents ideas for the potential improvement in the algorithm presented in 

this thesis, such as what can be done about a non-interpolating basis resulting from 

CHARMS, how lossy unrefinement may be handled, or what can be done to apply 

similar techniques in nonlinear dynamic problems. Some of these ideas are borrowed, 

while others are completely our own. The full range of such ideas is long, so we 

conclude this chapter with the most important, and hope that future research will shed 

more light on these topics. 
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CHAPTER 1:   BACKGROUND AND 

MOTIVATION  

 

  

 

 

 

 

 Necessity is the mother of all invention. The need for computational resources 

is as old as the invention of the computer itself. Numerical simulations of practical 

engineering problems especially consume a lot of computational effort, even with a 

small amount of complexity. Therefore, it is safe to assume that the idea of automatic 

increase or decrease in a computational grid to achieve better quality results using 

adaptive mesh refinement is as old as the notion of finite elements. Although a large 

volume of literature is available on this topic, adaptive solvers for general finite 

element problems have not been employed broadly because of the huge 

implementation effort.   This chapter highlights current understanding of improvement 

of a solution over a discrete domain using adaptive mesh refinement. We present a 

brief review of existing techniques and argue in favor of a technique based on 

refinement of shape functions [31,36].     
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1.1 Introduction 

 In order to numerically simulate a physical problem represented by partial 

differential equations, the domain of interest must be discretized into a set of elements. 

A numerical simulation approximates the differential equations with algebraic 

equations, which in turn are solved to give an approximate solution for the field. In 

order to be a valid approximation, the discretization must conform to all boundary 

conditions of the original problem. Therefore, the mesh generation step is extremely 

important, since it dictates the convergence of the computational schemes as well as 

the accuracy of the numerical approximations of the solution. 

 There are many algorithms for creating meshes, ranging from geometry 

specific to general context techniques. Methods to create these meshes include user-

driven, semiautomatic, and fully automatic methods which can create structured, 

unstructured, and mixed meshes. There is software [1] as well as a large group of 

literature [2,3] that deals with structured meshing (“grid generation”). A structured 

mesh is defined by all interior nodes of the mesh having equal numbers of adjacent 

elements. Commonly, the structured meshes generated are predominantly quadrilateral 

or hexahedral in nature. The meshing algorithms to generate structured meshes usually 

utilize complex iterative smoothing techniques in order to align elements with the 

boundary conditions of the problem. “Block-structured” techniques can be utilized to 

break up the domain into topological blocks where non-trivial boundary conditions 

exist. 
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 Unstructured meshes differ from structured meshes in that the numbers of 

adjacent elements need not be equal. Triangle and tetrahedral meshing are the most 

commonly used forms of unstructured meshing; however, quadrilateral and hexahedral 

meshing may also be unstructured. As far as generation of the meshes, there is a great 

deal of overlap with regard to the technologies involved. The main difference is that 

structured mesh generators utilize iterative smoothing algorithms in the creation of the 

mesh.        

         Broadly, elements can be classified as structural elements and continuum 

elements. Whereas in the formulation of continuum elements the displacements u, v, 

and w are interpolated in terms of nodal point displacements of the same kind, in the 

formulation of structural elements, the displacements u, v, and w are interpolated in 

terms of mid-surface displacements and rotations. In addition to that, a major 

assumption is made that the stress normal to mid-surface is zero in formulation of 

structural elements. Examples of structural elements are beam, plate, and shell 

elements, while examples of continuum elements are triangle and tetrahedra elements.  

 Depending on the requirement of the problem, a combination of different types 

of elements can be used to solve a finite element problem to provide maximum 

accuracy with the least amount of computational effort.  For example, mass elements 

can be used in problems such as frequency analysis of a PCB (Printed Circuit Board), 

with heavy components to simulate the mass of a component when the structural 

response of that component is of no interest. Spring elements can be used to simulate a 

flexible support condition of a part in shock isolators and flexible mounts. Gap 
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elements can be used to simulate contact/separation between two disjointed bodies 

when closed, normal, and shear forces are transmitted. Truss and beam elements can 

be used to simulate space frame structures where the joint connections are strong.  

While beam elements can resist axial tension, compression, bending, and torsion, truss 

elements resist axial tension and compression only. For 2-dimensional analyses, 2D-

planar and triangular elements can be used when all loads and displacements are in the 

analysis plane. Shell elements can be used to model thin members where the geometry 

or forces/displacements are not planar and the structure is so thin that meshing with 

solid elements leads to either poor aspect ratios or an impractical number of elements. 

Three dimensional elements such as tetrahedral and hexahedral elements are used for 

full-blown three dimensional analyses. While practically any solid model can be 

automatically meshed with tetrahedral elements, many models involving bricks must 

be meshed manually along with the geometry.  

 As the number of elements is increased, a valid finite element approximation 

must converge to the analytical solution of the differential equation. Usually, this 

convergence should show all the properties of the analytical scheme being 

approximated. This is true since the differential equations modeling the domain of 

interest show all of the necessary conditions that the solution must satisfy (e.g. stress, 

strain, displacement, etc.). While approximating the analytical solution, the 

convergence of the finite approximation must adhere to all physical constraints known 

to exist for the problem of interest. Depending on the finite elements used to analyze 
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the model, the approximation may converge monotonically or non-monotonically to 

the exact solution as the number of elements is increased.  

 To converge monotonically, elements must be complete and compatible. 

Completeness is satisfied when the element’s displacement functions are able to 

represent the rigid body displacement and constant strain states. Compatibility requires 

that displacement within and between the elements is continuous. In order to 

understand convergence, understanding of the following properties of finite elements 

is essential [4]:  

1. If the exact solution of the governing partial differential equation is represented 

by u and the corresponding finite element solution using mesh by uh , the error 

eh has the following property: 

                       eh = -uh + u   

                       a(eh , vh) = 0            for every vh ∈  Vh       

            Here a( . , .) is a symmetric bilinear form and Vh is the space of finite element 

displacement functions which correspond to the displacement interpolations contained 

in all element displacement interpolation matrices. As the space Vh increases, the 

solution accuracy will increase since large spaces consist of smaller spaces.  

2. a(uh , uh ) ≤ a(u , u)  

This indicates that the strain energy corresponding to finite elements is always 

less than or equal to the strain energy corresponding to the exact solution.  
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3. a(eh , eh ) ≤ a(u - vh, u - vh)          for every vh ∈  Vh 

This shows that the finite element solution uh is chosen such that the strain 

energy due to the difference in the actual and finite element solutions is the 

minimum.  

 The above properties provide clear evidence of the convergence of the solution 

as the mesh is refined. Furthermore, from properties 2 and 3 above, it is clear that the 

strain energy corresponding to the finite element will approach the exact strain energy 

as the mesh is refined.  

  The rate of convergence depends on the order of the polynomial used to 

construct the shape function. The following expression relates the error due to 

discretization to the order (k) of the approximation polynomial: 

    k
hh chuue ≤−=     (1-1) 

 Here constant c is independent of mesh size h but depends on material 

properties. In some cases when constant c becomes very large, mesh size h should be 

appropriately small to achieve convergence. Using the above relation, it can be shown 

that displacements converge one order higher than stresses. In the above convergence 

relationship, it is assumed that the solution of the partial differential equation is 

smooth. However, this is not the case in most of the practical problems. Sudden 

changes in geometry, material properties, loads, and boundary conditions produce a 

solution which is not smooth over the entire domain. Hence mesh needs to be fine in 

the areas where stresses or displacements are unusually high. The equation of 

convergence therefore should account for lack in smoothness and can be rewritten as: 
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1    (1-2) 

Here m denotes the individual element, hm is the corresponding mesh size, and k is the 

degree to which the polynomial used in the displacement assumption is complete. In 

this sequence mesh size is uniformly reduced in the required areas. This approach is 

referred as the “H method of analysis”. Alternatively, solutions can be improved by 

increasing the order of approximation k. Such techniques are called P methods. 

 

1.2 Mesh Improvement and Adaptive Mesh Refinement   

 In most practical finite element problems, the initial mesh does not provide an 

optimum solution of the governing differential equations. It needs to be improved to 

achieve a solution with a certain level of accuracy. After creation of the initial mesh, 

techniques such as smoothening or coarsening of mesh are employed to get elements 

with the correct size and aspect ratio. In the case of a static problem (after initial 

analysis is complete), the difference between the exact solution and the discrete 

solution provides a basis for mesh improvement. Typically remeshing and/or adaptive 

mesh refinement are used to improve the solution in consecutive iterations. Remeshing 

is typically done manually by regenerating the mesh with mesh controls and/or 

increasing the order of approximation in the areas where the solution is not sufficiently 

smooth or does not have the minimum required accuracy. The method of mesh 

improvement can be chosen based on either the experience of the analyst or using an 

error indicator algorithm.    
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 Instead of using remeshing adaptive mesh refinement, an automatic mesh 

improvement process may be employed. The mesh improvement process is typically 

guided by an error indicator. Adaptive techniques can be divided into the following 

groups: 

1. Specialized Adaptive Techniques 

2. H Type Techniques 

3. P Type Techniques 

4. HP Type Techniques 

1.2.1 Specialized Adaptive Techniques 

 The volume of literature published for adaptive techniques for specific types of 

problems is enormous. This type of literature can be broadly categorized as problem-

specific, element-type, order-specific, or a combination of any or all of the three. 

During the first developmental stages, most adaptive techniques were developed for 

specific non-transient problems for specific types of elements. Works done by 

researchers such as Shephard, Babuška, and Berger [11,27,42,54,57,59] represent a 

chronology of developments in adaptive mesh refinement techniques. Probably the 

most interesting works in this category appeared in the early 1990s and later in the 

areas of highly nonlinear and dynamic problems.  Here are the highlights of some of 

the papers. 

 To improve step size dependent approximations, Richardson’s extrapolation is 

quite often utilized. With this, better approximation can be achieved for a polynomial 

A, where A(h) depends on a positive step size h by subtracting the largest term in the 
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error, O(hko). For better appoximations, this algorithm can be done repeatedly to 

remove further error terms. 

 One of the more widely used adaptive mesh refinement algorithms using 

Richardson’s extrapolation was developed by Berger [11]. It starts with the entire 

computational Hdomain H overlayed with a coarsely resolved base-level regular Hcartesian 

gridH. As the calculation progresses, individual cells within the grid are tagged for 

refinement using a criterion that can either be user-supplied or based on the 

HRichardson extrapolationH. For example, constant Hmass H per cell for a criterion can be 

used since higher HdensityH regions are more highly resolved. 

 All tagged cells then proceed through refinement. This means that a finer grid 

is overlayed on top of the coarser grid. After refinement, individual grid patches on a 

single fixed level of refinement are integrated, advancing those cells in Htime H. Finally, a 

correction procedure is implemented to fix transfers along coarse-fine grid interfaces.  

This is done to ensure that the amount of any conserved quantity transferred between 

bordering cells is exactly the same. At some point, if the level of refinement in a cell is 

greater than required, then the high resolution grid can be replaced with a coarser one.   

 Another interesting series of papers were published by Ortiz’s group at the 

California Institute of Technology. One of the most broad-based efforts to create a 

general scheme for highly nonlinear and possibly dynamic problems was a paper 

published by Radovitzky and Ortiz in 1999 [12]. The idea utilized the fact that most 

nonlinear problems (nonlinear elastic, elasto-plastic, visco-plastic solids, compressible 

Newtonian fluids, etc.) follow a minimization principle which may be used as a basis 
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for mesh refinement. For example, a stress update having the requisite potential 

structure can be procured by integrating the constitutive relationship along the path of 

minimization, i.e. along such deformation histories which minimize the incremental 

work of deformation. This minimization principle may be utiliized as a criterion for 

estimating error. Optimal distribution of mesh size then follows from an error 

indicator. One of the obstacles for mesh adoption in time-dependent problems is that 

mesh at time t(n+1) results from error indication at time t(n). However mesh fields 

differ at t(n+1) and t(n). This was solved by taking advantage of a piecewise constant 

representation for the state variables and the transfer operator that resulted. Whole 

collections of state variables are transferred as blocks from one quadrature point to 

another, which maintained all internal constraints and compatibility between the 

various state variables.   Another paper published by Molinari and Ortiz [13] made use 

of a similar technique for dynamic plasticity by creating an asymptotic error bound 

and mesh refinement by edge collapse.    

 Papers by Selman, Hinton, Bićanić [14], and others focused on developing 

reliable adaptive mesh refinement technique via remeshing. Adaptive mesh refinement 

use in plate bending problems with boundary layers, strain softening problems, and 

two-dimensional dynamic problems has been shown [14], and it benchmarks against 

various well-known applications in engineering. 
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1.2.2 H Type Techniques 

The H type techniques can be broadly subdivided into four categories: 

1. Techniques Based on Remeshing [8-10,14]  

2. Fixed Order Mesh Modification Procedures [24-30] 

3. Techniques Based on Element Splitting and Edge Collapse [16-20] 

4. Techniques Based on Basis Refinement  [15,31-35]  

1.2.2.1 Techniques Based on Remeshing 

 Adaptive remeshing methods regenerate the entire mesh using an automatic 

mesh generation algorithm, which uses element shape and size information for 

constraints. The INRIA group [38-41] applied adaptive remeshing in terms of adaptive 

Delaunay Kernal, and use of adaptive remeshing based on anisotropic advancing front 

mesh generation was done both by Peraire et al. [10] and Möller et al. [37]. Such 

advantages of adaptive remeshing include the ability of curved domains to be 

considered by mesh generation algorithms, and coarsening of mesh is taken into 

account. However, these methods prove very inefficient for the refining of only a few 

elements on an already refined mesh. Also, it tends to introduce additional 

complexities when solution fields are transferred between meshes. 

1.2.2.2 Fixed Order Mesh Modification Procedures 

 In this type of adaptive mesh refinement, the local mesh is modified in a 

certain order. For example, de Cougny and Shephard [27], de l’Isle and George [28], 

and Joe [29] have all improved the existing mesh quality using four different mesh 
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modification procedures: swap, collapse, split, and relocation. For adaptivity in both 

two dimensions [24-26] and three dimensions [30], applications were made of these 

local mesh modification operations using desired mesh size and shape distribution as 

governing factors. Advantages of this type of method include: it is a local process for 

which curved geometry domain may be accounted [42], coarsening of collapse-based 

mesh may be applied [27], and as each modification is applied, solution field transfer 

can be done incrementally. Despite these benefits, the effectiveness of the local mesh 

modification procedure in three dimensions (as far as efficiency and quality are 

concerned) is largely related to how the various mesh modifications are taken into 

account. 

1.2.2.3 Techniques Based on Element Splitting and Edge Collapse 

 In these algorithms, the driving concept is that geometric division of finite 

elements is mandatory for refinement. However, the result of local refinement based 

on element splitting shows that this usually does not ensure that the modified (refined) 

mesh is compatible globally. Several methods currently used to resolve this issue 

include: (i) unknowns of incompatibly placed nodes are constrained with respect to 

other nodes to ensure that the resulting approximation is compatible, even though the 

mesh is not; (ii) penalty methods or Lagrangian multipliers to treat incompatibility; 

(iii) additional elements are split until the mesh is globally compatible. Several 

specialized mesh refinement techniques have been devised for an array of practically 

important cases: for triangular and quadrilateral meshes in two dimensions [36,42-44] 

and tetrahedral [15,20,21,45-47] or hexahedral meshes in three dimensions [48]. 
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1.2.2.4 Techniques Based on Basis Refinement 

 These techniques depart from earlier mentioned element-by-element splitting 

methods. In place of geometrically dividing elements, these techniques rely upon 

division of approximation space with additional finer basis functions. Performance of 

this style of refinement is accomplished by adding a dilated basis function in the 

middle of an element in order to affect the same space as element bisection. The 

solution stays the same if the coefficient of the introduced function is zero.  Bases 

constructed in this manner are precisely the classical hierarchical bases of the FE 

(finite element) literature [51].  This approach forms the basis of work done in this 

thesis and will be explained in great detail in the next chapter. 

1.2.3 P Type Techniques 

             P adaptive techniques, unlike H adaptive techniques, depend upon refinement 

of finite element space by increasing the order of approximation on a fixed mesh. 

Broadly, P adaptive refinement can be classified as either isotropic or orthotropic. 

Orthotropic refinement is useful in situations where the solution to a boundary value 

problem has a very strong gradient in one direction but is relatively flat in other 

directions. In similar situations, refinement is performed by choosing different 

polynomial orders for each enrichment direction. Construction of P orthotropic spaces 

and their verification with the boundary layer problem of Reissner-Mindlin plates has 

been demonstrated [52]. The P version converges at least as fast the H version with a 

quasi-uniform mesh, and it converges twice as fast as the H version with a solution 

having γr  type singularity [54,55]. The convergence rate also depends on basis 
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functions chosen. [56] provides insight on selection of approximation functions for 

various problems. Although significant progress has been made since the conception 

of P adaptive techniques in the early 1980s, various important issues remain, such as: 

1) lack of an effective a posteriori error estimation, 2) adaptive selection of piecewise 

shape functions, and 3) an inverse approximation theorem derivation. 

 

1.2.4 HP Adaptive Techniques 

 It has been observed that P refinement is more efficient in areas where 

solutions are smooth and H refinement is more efficient in regions near singularities. 

In order to take advantage of the benefits of both H and P refinements, HP adaptive 

schemes have been devised. Babuška and others [57,59] have shown that finite 

element discretizations, where element size H and locally variable polynomial orders 

P are optimally distributed, deliver exponential convergence rates in terms of error 

versus degrees-of-freedom (d.o.f.). However, designing algorithms that deliver such a 

sequence of optimally refined HP meshes along with exponential convergence in a 

fully automatic mode (with no user interaction) has been the ‘holy grail’ of HP 

computations for a decade and a half [60]. It has been proven that HP mesh 

optimization is based on minimization of the projection-based interpolation error [62]. 

A comparison of various a posteriori error estimators has also been presented [63]. 

Despite various qualities such as exponential convergence, HP adaptive schemes are 

still in their infancy and unpopular in commercial codes because of the enormous 

effort to implement even the simplest of problems.    
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1.3 Adaptive Mesh Refinement in Commercial Software  

 Seamless integration of discrete multi-physics simulations with a CAD system 

is both lucrative and profitable, since it allows mechanical designers to perform 

complicated numerical analyses with relatively little effort and a fairly shallow 

learning curve. Therefore, an increasing number of corporations involved in the 

production of commercial analysis software are investing in tight integration of their 

software with popular geometrical modeling tools. However, difficulties with respect 

to the proper representation of CAD geometry (such as issues related to defeaturing, 

tolerance, and dirty geometry) present a major bottleneck in mesh generation and the 

proper discrete representation of the problem. In these cases, mesh refinement 

provides for the ability to capture the geometry with a considerably smaller number of 

elements and grid points. In addition, it can help to improve mesh quality in areas 

where rapid geometric change is observed. Adaptive mesh refinement that is used to 

support proper discrete representation of geometry is known as geometry based mesh 

adaptivity. This functionality involves both the ability of the adapted mesh to adhere 

to the original geometry and mandates that access to the original geometry be present. 

Mesh adaptivity that does not remain true to the original geometry is severely limited 

by initial mesh geometric approximations. In fact, the sensitivity of the results to the 

local geometric shape is so high that if the mesh geometric approximation does not 

improve as the adaptive simulation process continues, the results would not just be a 

poor approximation; they would be meaningless. In many cases, mesh edges and faces 

are the same size as the small geometric features that are often critical to the analysis 
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(as in the case of the accelerator cavity). Simply moving new nodes introduced during 

refinement to curved model surfaces can create invalid elements in these situations. 

Procedures needed to effectively deal with these types of problems must include both 

general mesh modification operations and a control algorithm that ensures the 

procedure is correctly proceeding [42].  

 Geometry based mesh adaptivity advantages include both the abilities to start 

with initial meshes that are coarser and to ensure that the resulting model remains 

within an appropriate level of accuracy for the design geometry. An additional benefit 

that may not be obvious is the ability to combine geometry based mesh refinement 

with small feature defeaturing as a function of target mesh size. This can create an 

adaptive geometry representation for mesh adaptivity where small features are ignored 

in the initial mesh, yet are accounted for as a function of target mesh size in the 

following stages of the mesh adaptivity process. This combined approach greatly 

reduces the defeaturing requirements associated with geometry access for mesh 

generation and allows for initial coarse meshes of detailed geometric models. 

 Adaptive mesh refinement as a tool to improve results of a numerical solution 

is still at a very basic stage of development in most of the analysis software. This is 

because of the lack of a universally applicable adaptive scheme. Most commercial 

software provides adaptive schemes with various restrictions on mesh type or solver 

type. H or P adaptive refinement schemes are most commonly implemented with 

Zienkiewicz and Zhu type error indicators for structural analysis problems. For 

example, in the case of Cosmos (an analysis package sold by Solidworks Corporation) 
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it is applied to only solid elements. For solutions of fluid flow problems with finite 

volume methods, techniques developed by Berger [11] and others, which are based on 

Richardson’s extrapolation, are more popular. This is true because these techniques 

work very well with structured meshes and parabolic systems of partial differential 

equations, which is very common in fluid flow analysis. In most of the black box 

software, details of the adaptive technique are typically not revealed to the public 

domain. Therefore, it is hard to provide further details about the adaptive solvers. 

 

1.4 Case for a New Adaptive Technique 

 A good mesh refinement algorithm should be fast, robust, efficient, and 

applicable to a wide range of problems with minimal implementation effort.  An 

additional benefit is if it can generate nested meshes within the refinement hierarchy, 

greatly simplifying the incorporation of multi-grid solvers [63,64]. The efficiency of 

an adaptive mesh refinement technique refers to the fact that it should not become a 

bottleneck of adaptive computations, and it should generate good quality geometric 

meshes, i.e. elements must remain well-shaped upon refinement and unrefinement. 

Robustness is usually expressed as the requirement of termination with a valid result 

in finite time. 

       H adaptive techniques based on element splitting, in general, do not ensure global 

compatibility. In order to enforce compatibility, various methods were used in the 

past. Such methods include enforcement of constraints, applying penalties to hanging 

nodes, red green blue triangulation, etc. Apart from that, they are generally formulated 
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with one type of element in mind, and their application to different types of elements 

involves special tricks.  The same problem has been noticed with techniques based on 

local remeshing [42]. Adaptive mesh refinement techniques need to be supplemented 

with automatic mesh generation techniques, which is a big problem for structured 

meshes. Despite the fact that these techniques may look simple enough, their 

implementation is a formidable task. 

           Conforming hierarchical refinement methods (CHARMS) [32] is designed to 

incorporate the above mentioned needs. In [33], it is clear that this technique is both 

much simpler and more general than current techniques. CHARMS exploits the 

refinement of basis functions rather than elements. [33] demonstrates that this leads to 

both the applicability of the algorithm to any number of spatial dimensions and a 

greater variety of structured and unstructured element types than any standard mesh 

refinement algorithm to date.      

           However, work done so far [32-36] limits the use of this technique to non-

transient solvers. This thesis further enhances the technique by expanding its use to 

transient solvers and both demonstrates and verifies its application in an explicit wave 

propagation solver. An object-oriented code called FAMULS, developed by Petr 

Krysl, was enhanced to incorporate the demand of dynamic solvers. 
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CHAPTER 2 :  CONFORMING HIERARCHICAL 

ADAPTIVE REFINEMENT METHODS (CHARMS) 

2.1 Nested Spaces 

 Given a set of linearly independent scalar basis functions supported on finite 

elements such that the finite element space V has the following property: 
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construct a refined mesh M ′ consisting of the set of functions '
)(xiφ  such that using the 

hierarchy of approximation spaces, )( jV  can be obtained from the coarsest space in 

the hierarchy, ),0(V . Hence an infinite sequence of nested spaces can be constructed as 

follows:   

;.............. )()2()1()0( mVVVV ⊂⊂⊂⊂    (2-2) 

 

2.2 Refinement Equation 

 From the above nesting relationship, it is clear that 1+⊂ jj VV  . Hence 
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where 01 ≠+j
ikβ are the coefficients of the linear combination.  
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2.3 Construction of Meshes of Higher Resolution 

           Let us assume that the initial mesh consists of an arbitrary number of element 

types (for instance, triangles mixed together with quadrilaterals and tetrahedra in a 

non-manifold geometry), but is compatible. Furthermore, we shall consider only nodal 

basis functions, i.e. the basis functions are associated with nodes, and are composed of 

pieces defined over the incident finite elements. On each level j of the nesting 

hierarchy, it is assumed that the basis functions )( j
iφ  verify the Kronecker delta 

property, i.e., 

  ( ) ikk
j

i x δφ =)(
,      (2-4) 

where kx  is the location of the node associated with function )( j
kφ .  In other words, we 

assume that an approximation built of basis functions from any single level 

interpolates the nodal values.  

 Refining a basis function using Equation (2-3) will mean that basis functions 

with higher resolution need to be constructed from pieces over “finer” finite elements. 

Therefore, as one of the steps in our algorithm, we shall need to geometrically divide 

coarse finite elements into finer ones. Our mesh hierarchy will be built up in such a 

way that each element is divided into elements of the same type (triangles into 

triangles, quadrilaterals into quadrilaterals, etc.), and elements at each level will be 

divided using the same pattern (for instance, one triangle into four smaller triangles, 

no matter which level in the hierarchy the parent triangle is). 
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Figure 2-1: Uniform division of mesh 0M  that results in a compatible mesh 1M . 

 Furthermore, we shall assume that refining uniformly one particular mesh in 

the mesh hierarchy results in a compatible mesh one level higher; compare with Figure 

2-1. Therefore, if for instance two finite elements in the mesh jM  share an edge, we 

shall use a division pattern that divides the shared edge in the same way in both 

elements. The same principle applies to faces shared by three-dimensional elements, 
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or in general to d-dimensional faces shared by (d + 1)-dimensional elements. To 

specialize the above to some familiar element types: two-node line elements will be 

bisected, three-node triangles and four-node quadrilaterals will be quadrisected (which 

bisects their edges, making them compatible upon refinement with line elements 

attached along the edges of the quadrilateral or triangle), eight-node hexahedra will be 

octasected (again, their edges are bisected, and the divided faces are compatible with 

the refinement of a four-node quadrilateral). 

 The same principle may be applied unchanged in higher-dimensional elements 

of the Lagrange or Hermite type. For instance, if the basis function pieces over finite 

elements are constructed through the master element in the parametric space, which is 

then mapped to the physical space, the natural choice for refinement is uniform 

division in the parametric space. As an example, consider the quadratic 8-node 

quadrilateral element in Figure 2-2, where the isoparametric mappings are indicated 

by (I), and the refinement process is indicated by (R).  

 With this strategy there can be two possible ways to enrich the approximation 

space. One way is to add a dilated shape function in the middle of an element.  If the 

coefficient of the introduced function is zero, the solution will remain unchanged. 

However, in this setup there may be entries in the stiffness matrix corresponding to 

basis functions with quite different refinement levels. We will refer to refinement in 

this fashion as true hierarchical refinement. 
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Alternatively, shape functions can be substituted with their dilated version. If 

coefficients of the substitution are correctly chosen, the solution again will remain 

unchanged. We will refer to this alternate technique as quasi-hierarchical refinement.   

 

 
Figure 2-2:  Refinement of 8-node quadrilateral finite elements: (I) stands for isoparametric 

mapping; (R) stands for refinement. 
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2.3.1 True Hierarchical Basis 

 Equation (2-3) may be viewed also as a statement of equivalence: the left hand 

side (the coarse function) is equivalent to the right hand side (the set of finer 

functions) in the sense that if both sides of Equation (2-3) are combined, a linearly-

dependent set is obtained. Furthermore, it may be noted that there is just one function 

too many in the combined set of the left and right hand side functions. Therefore, all 

but one of the right hand side (finer) functions could be moved to the left hand side: 
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This is a statement of the same kind as before, an equivalence, but now the function 

that is being “reproduced” is on the finer level. Symmetry considerations dictate that 

the function to leave on the right hand side is the one whose node “stems” from the 

node of the coarse function. For instance, Figure 2-3 shows the patch (one triangle and 

three quadrilaterals) that support the function indicated by the filled circle (left). In the 

right hand part is shown the refined patch, where the filled circles indicate functions 

on level j + 1 on the left hand side of Equation (2-5), and the empty circle stands for 

the single function on the right hand side, ( ) ( )xj
m

1+φ ; in other words, the filled circles 

indicate the linearly independent functions, the empty circle represents the one finer 

function that is dependent upon the rest. We shall call the functions on level j + 1 that 

were moved to the left hand side of Equation (2-5) the detail functions of ( ) ( )xj
iφ . 

 The above discussion may suggest to the reader a way of constructing the 

defined approximation spaces: To refine a function from the coarse space B, add its 
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detail functions to B to obtain B′ . The resulting approximation will be dubbed the true 

hierarchical basis, and, indeed it is not a new concept in itself, since we get the well-

known hierarchical basis discussed, for example, by [52]. However, our use of this 

concept for selective refinement is novel. 

 

 
Figure 2-3:  Illustration of Equation (2-6) 

2.3.2 Quasi-Hierarchical Basis 

 To formalize somewhat, we shall use the term active function for functions 

selected from a given basis set, and the symbol ( )kB̂ will be used for the set of active 

functions from basis set ( )kB . Now, the approximation basis function set B′  may be 

written as 

   
( )∪

∞

=

=′
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ˆ
j

jBB ,      (2-6) 

that is as a union of active sets from all mesh levels. For the true hierarchical basis 

described above, the active set on level j = 0 includes all the basis functions defined on 



31 

 

the initial mesh, and each active set on level j > 0 includes only the detail functions. 

Now we shall describe an alternative refinement strategy, the quasi-hierarchical basis. 

 As before, we proceed from the refinement equation (2-3). As opposed to the 

true hierarchical approximation, we shall interpret the refinement equation as a recipe 

for replacing coarse functions (left hand side) by “finer” (higher-resolution) functions 

(right hand side). Thus, the refinement will delete (deactivate) coarse functions, 

replacing them in a lossless manner by finer functions, and unrefinement will delete 

(deactivate) fine functions and activate coarse functions. Clearly, if this type of 

refinement is applied globally, all coarse functions are replaced by fine functions and 

the interpolating partition of unity form of finite element approximation is recovered; 

on the other hand, if the refinement is graded, transition needs to be made from coarse 

to fine functions, and in the transition regions the resulting approximation resembles 

the true hierarchical basis in that the basis functions do not necessarily add up to unity. 

This is illustrated in Figure 2-4, where on the left we show the true hierarchical basis, 

compared to the quasi-hierarchical basis on the right. Even though we replace coarse 

functions instead of augmenting them with finer functions, the resulting approximation 

basis is still written in the form of equation (2-6), the only change being that the active 

sets ( )jβ̂ may now include not only the detail functions, but rather all the functions 

from the right hand side of the refinement equation (2-3). 
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Figure 2-4:  Comparison of true hierarchical basis (left) with quasi-hierarchical basis (right). 

 
 
2.4 Approximation on CHARMS-Refined Meshes 

 Both the quasi-hierarchical and the true hierarchical approximation may be 

expressed in exactly the same way, and in fact often it is possible to devise refinement 

sequences that yield precisely the same spans for both basis types. This is not 

surprising, since both basis types follow from the refinement equation, and as shown 

in the next section, the construction of both types of bases may be expressed as the 

activation or deactivation of basis functions from the conceptual hierarchy of nested 

meshes. The equivalence of the quasi-hierarchical and the hierarchical basis allows us 

to write the finite element approximation in the unified way 
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where ( )jB̂ is the set of active functions on level j, and ( )j
iu are the nodal parameters. 

Evidently, it would be possible to express the finite element approximation with a 

single sum, as usual, but the above form makes it clear that the basis functions “live” 

on different refinement levels. 
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 The approximation properties of the CHARMS-adapted basis set are identical 

for the discretization error to the classical finite element basis using the same type of 

element. On the other hand, the hierarchical character of the basis may lead to 

deterioration in the conditioning of the system matrices [65]. This will be more 

pronounced for the true hierarchical basis than for the quasi-hierarchical basis. For a 

small number of overlaps (up to about five levels of refined basis functions interacting 

in the transition regions) the effect seems minor. However, so far this aspect has not 

been studied in sufficient detail. 

 It remains to formulate algorithms for the construction of the active sets, and 

that is the goal of the next section. 

 

2.5 Formal Statement of the Refinement and Unrefinement Algorithms 

 It is advantageous for applications when the active functions constitute a basis, 

i.e. when they are linearly independent. In order to make the present chapter self-

contained, we rephrase here the algorithms enunciated in [66], but without proofs. 

These algorithms activate and deactivate functions from the nesting hierarchy, and 

guarantee the linear independence of the active function set. 

 For the finite element meshes we consider in this chapter, no basis function 

support is entirely enclosed by the support of another basis function, i.e., 

 ( )[ ] ( )[ ]j
i

j
k φφ supsup ⊄   for ik ≠  and 0≥∀j .    (2-8) 
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This is an important tool in our proofs [66]: Consider two functions on the same level; 

because of the above property, the refinement set of either must contain at least one 

function not present in the refinement set of the other. 

 There are many possible algorithms for building adapted bases, and here we 

present algorithms based upon three rules: 

1. The refining/unrefining of a function on level j may affect that function 

or any of its children on level j + 1; no other function may be involved. 

2. A function on level j + 1 (j + 1 ≥ 1) may be refined only when all its 

parents on level j have been refined. 

3. A function on level j may become unrefined only if (a) it is currently 

refined and (b) none of its children on level j + 1 are refined. 

 If the basis functions are completely supported by one ring of elements around 

a node, then rules 2 and 3 enforce the common rule of one-level-difference refinement 

of neighbors; this rule has been applied to finite element meshes, as well as to spatial 

data structures such as quadtrees and octrees in various contexts (graphics, mesh 

generation, spatial searches, etc.) [67,68]. 

 We now show that if the (un)refinement is applied atomically, i.e. it is either 

entirely executed or not at all, then linear independence of the adapted basis is 

guaranteed. Furthermore, our algorithms ensure that the refinement step is lossless; the 

span of the resulting set includes the span of the original set. (Unrefinement is not 

lossless, in general: some information is always going to be lost, since the goal of 

unrefinement is to decrease the span of the approximation space.) 
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2.5.1 Quasi-Hierarchical Basis 

 We begin by discussing the quasi-hierarchical refinement strategy. We first 

describe the refinement operation, and show that it preserves the linear independence 

requirement and is lossless; we then describe the unrefinement operation, and show 

that it too preserves the linear independence requirement. 

2.5.1.1   Refinement 

 The refinement set of the coarser function )( j
iφ supported by the mesh on level 

j+1 is denoted by ( ) ( )[ ]j
i

jR φ1+ , and contains exactly those basis functions that contribute 

to the right-hand side of the refinement equation with a non-zero coefficient: 

 ( ) ( )[ ] ( ) ( ){ }0111 ≠= +++ j
ik

j
k

j
i

jR βφφ .     (2-9) 

If ( )1+j
kφ  belongs to ( ) ( )[ ]j

i
jR φ1+ , we say that “ ( )j

iφ is a parent of ( )1+j
kφ ,” and “ ( )1+j

kφ  is a 

child of ( )j
iφ .” 

 Given an initial basis function set, B, which contains ( )j
iφ , and satisfies the 

linear independence requirement, we choose to produce another function set B′ by 

deactivating ( )j
iφ and activating all of its children ( ) ( )[ ]j

i
jR φ1+ .  We refer to this 

algorithm, which maps B to B′ as quasi-hierarchical refinement. 

 We claim that quasi-hierarchical refinement (a) preserves the linear 

independence requirement and (b) is lossless. See reference [66] for proofs. 
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2.5.1.2 Unrefinement  

 Given an initial basis function set, B, that satisfies the linear independence 

requirement, and given a previously refined ( )j
iφ , not in B and eligible for 

unrefinement under rule 3, we choose to produce another function set B′  by activating 

( )j
iφ and deactivating those children of ( )j

iφ  which have no other currently refined (i.e. 

inactive) parent. More concisely, the members of the following set are deactivated: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ){ }jj
r

j
r

jj
m

j
i

jj
m BRirR ˆ1111 ∈→∈≠∀∧∈ ++++ φφφφφ . (2-10) 

We refer to this algorithm, which maps B to B′ , as quasi-hierarchical unrefinement. 

We claim that quasi-hierarchical unrefinement preserves the linear independence 

requirement. (See reference [66] for proofs) 

2.5.2 Hierarchical Basis 

We have completed the algorithm of quasi-hierarchical refinement, which 

treats refinement as the replacement of coarse-level functions by finer-level functions. 

Let us turn to the alternative strategy for constructing adapted bases: hierarchical 

refinement treats refinement as the addition of finer-level “detail functions” to an 

unchanged set of coarse-level functions. Before we continue, let us formalize the 

concepts of a detail function and a detail (function) set that had been introduced above. 

Definition: Given a function ( )j
iφ , construct the set of all functions ( ) ( ) ( )[ ]j

i
jj

k R φφ 11 ++ ∈  

such that they vanish at the location ix of node i 

 ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( )( ){ }011111 =∈= +++++
i

j
k

j
i

jj
k

j
k

j
i

j xandRD φφφφφ .                   (2-11) 



37 

 

The set ( ) ( )[ ]j
i

jD φ1+  is the detail set of ( )j
iφ . Functions that belong to at least one detail 

set are called detail functions. 

 Note that our definition of the detail set guarantees that there is precisely one 

fine function ( )j
iφ such that ( ) ( )[ ] ( ) ( )[ ] ( )111 +++ = j

i
j

i
jj

i
j DR φφφ ∪ . 

2.5.2.1 Refinement  

 Given an initial basis function set, B, which contains ( )j
iφ , and satisfies the 

linear independence requirement, we choose to produce a refined set B′  by 

activating ( ) ( )[ ]j
i

jD φ1+ . We refer to this algorithm, which maps B to B′ , as hierarchical 

refinement. As proved in reference [66], the hierarchical refinement (a) preserves the 

linear independence requirement and (b) is lossless. 

2.5.2.2 Unrefinement   

 Given an initial basis function set, B, that satisfies the linear independence 

requirement, and given a previously refined ( )j
iφ , also in B and eligible for 

unrefinement (rule 3), we choose to produce another function set B′  by deactivating 

functions ( ) ( ) ( )[ ]j
i

jj
m D φφ 11 ++ ∈  that are absent from all the refinement sets of currently 

refined functions on level j. We refer to this algorithm, which maps B to B′ , as 

hierarchical unrefinement. It is easy to show that hierarchical unrefinement preserves 

the linear independence requirement [66]. 
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2.6 Design of an Adaptive Solver 

 In this section we will pursue the discussion of the CHARMS technology into 

the design phase, which will be illustrated with UML diagrams [70]. Figure legends 

use slanted type to indicate abstract classes; the inheritance and delegation 

relationships are included with multiplicities. 

2.6.1 Geometric Cell (GCELL) 

 The computational domain is assumed to be a non-manifold object embedded 

in a d-dimensional Euclidean space. The constituent manifolds are assumed to be 

locally coordinatized by m Cartesian coordinates, dm ≤ , depending on the manifold 

dimension. 

 The domain is discretized into geometric cells. The manifold dimension of 

these cells corresponds to the manifold being discretized. Geometric cell (GCELL) is 

one of the basic classes in our implementation. However, GCELL is an abstract class, 

and only its specializations are being instantiated. The specialization branches in the 

direction of manifold dimension:  thus there are geometric cells of manifold dimension 

zero (0) (GCELL_POINT_P1), of one (1) (e.g. GCELL_LINE_L2), two (2) (for instance 

GCELL_SURF_Q4, or GCELL_SURF_T3), and three (3) (GCELL_SOLID_H8, or 

GCELL_SOLID_T4). Figure 2-5 shows the class diagram for the quadratic six-node 

triangle (GCELL_SURF_T6). 
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Figure 2-5: Class diagram for a GCELL representing a six-node (quadratic) triangular finite 

element. Note the use of the templated CONN class for the specification of the 
connectivity. 

 
 
 It is assumed that the cells in the physical space are images of “master” cells in 

the parametric domain. The parametric coordinates constitute the charts for the pieces 

of the manifolds embedded in the d-dimensional Euclidean space to which the master 

cell maps. Each cell may be mapped into a different Cartesian coordinate system, but 

for simplicity we shall assume in this chapter that all cells map to a single, global 

Cartesian coordinate system. 

 Geometric cells (GCELL’s) provide a number of services to the adaptive code. 

Thus, they are the means of defining pieces of basis functions (in the master 

parametric domain), but they are also carriers of the topological/geometrical 

refinement hierarchy. In other words, the h-refinement involves division of a GCELL 

into finer, nested GCELL’s. It is assumed here that this division results in GCELL’s of 

the same type. The topological/geometrical refinement is applied recursively, resulting 

in a tree of GCELL’s, the root being represented by the coarsest GCELL, and the leaves 

being cells without children. To give an example, Figure 2-6 shows the hierarchy of 
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GCELL’s stemming from the root at the bottom, with the finest cells as the leaves at the 

top, for a four-node quadrilateral. 

 
Figure 2-6: Schematic refinement tree for a quadrilateral GCELL. Upward pointing arrows 

symbolize the “child” relationship. Downward arrows point at the parent. 

 
 

2.6.2 Connectivity and Refinement Nodes 

 Connectivity CONN is a template class, parameterized with the manifold 

dimension, number of connected nodes, and number of refinement nodes (Figure 2-5). 

This allows us to distinguish between a line with 3 connected nodes, and a 3-node 

triangle, etc. From a refinement point of view, a very important connectivity type is 

the vertex (CONN<CONN_0_MANIFOLD,1,1>). All refinement nodes topologically 
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located at the nodes of the coarser levels are classified on the connectivity 

CONN<CONN_0_MANIFOLD,1,1>, which encodes a topological division rule. In order 

to maximize the number of element types that may be mixed in a single finite element 

mesh, we adopt the strategy that views elements of manifold dimension d as 

boundaries of elements of manifold dimension d + 1. This information is encoded in 

the instantiations of the template class CONN. Thus, vertices of cells are topological 

entities CONN<CONN_0_MANIFOLD,1,1>; that is their manifold dimension is zero, they 

connect a single node, and they are refined with one node. The edges of cells are cells 

in their own right, and vertices are their boundaries. For instance, 

CONN<CONN_1_MANIFOLD,2,1> is a two-node line segment, which is refined with a 

single node at the midpoint (origin of the parametric coordinates). Three-node 

triangles (CONN<CONN_2_MANIFOLD,3,0>) and four-node quadrilaterals 

(CONN<CONN_2_MANIFOLD,4,1>) are bounded by connectivities 

CONN<CONN_1_MANIFOLD,2,1>, which makes it possible to mix those two in a single 

mesh. Three-node triangles have no refinement nodes of their own (all refinement 

nodes are located at the edges, none in the interior), whereas the four-node 

quadrilaterals have one interior refinement node. As the last illustration, consider the 

quadratic isoparametric triangle. The class diagram for the quadratic six-node triangle 

in Figure 2-5 refers to the connectivity type CONN<CONN_2_MANIFOLD,6,3>, that is a 

2-manifold that connects 6 nodes, and has 3 internal refinement nodes. The boundaries 

of this cell are of type CONN<CONN 1 MANIFOLD,3,2>, and the connectivity of the 

quadratic triangle is compatible with the refinement of the 10-node tetrahedron. 
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 The topological division starts with the connectivities of the lowest manifold 

dimension; that is zero (vertices). Then edges are divided, followed by faces, and 

finally volumes. Thus, an eight-node hexahedron would first divide its vertices, then 

its edges, faces, and finally it would conclude the process by generating one 

refinement node at its barycenter. 

2.6.3 Field 

 The class FIELD is a fundamental concept in our software framework. The term 

“field” implies spatial variation [71], and in the present context, field u is represented 

by the sum 

   ( ) ( )∑=
j

jjh uxxu φ ,                                 (2-12) 

where ( )xuh  is the usual finite element expansion of function ( )xu , ( )xjφ  are the finite 

element basis functions, and ju  are the nodal parameters. The approximated function 

may be a scalar, vector, or tensor function of a vector argument, e.g. the displacement 

field over the domain (vector function of a vector argument) or the temperature field 

(scalar function of a vector argument). Each term in the sum of equation (2-12) is 

expressed through an object, the FIELD_PAIR. It relates two objects: the basis function, 

BFUN, and the degree-of-freedom parameter (DOFPARAM for short). The value of 

the DOFPARAM object may change freely, or some or all of its components might be 

prescribed as an expression of an essential boundary condition. FIELD_PAIR is a class 

parameterized with the number of components in the DOFPARAM object, and in that 

way the current implementation is able to represent scalar degrees of freedom (one 
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component), or vectors in 3D space (three components), or an array of an arbitrary 

number of components. 

 
Figure 2-7: Class diagram for the field pair and field. 

 

2.6.4 Basis Function (BFUN) 

 Figure 2-8 shows the class diagram for the basis function and basis function set 

types. BFUN serves as the abstract base class. BFUN_FE builds up the first concrete 

class upon BFUN and provides access to the standard finite element basis functions. 

BFUN_FE maintains a list of all the GCELL’s over which the individual pieces of the 

given basis function are defined. As an example, the basis function associated with the 
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node indicated by the black dot in the coarse mesh in Figure 2-3 would include one 

triangle (GCELL_SURF_T3) and three quadrilaterals (GCELL_SURF_Q4). 

2.6.5 Basis Function Set (BFUN_SET) 

 The basis function set (BFUN_SET) collects basis functions defined on a 

particular geometric mesh. Any particular BFUN_SET maybe associated with any 

number of fields. The BFUN_SET provides the field with a very important service: The 

BFUN_SET generates an opaque identifier (BFUN_DOFPARAM_PAIR_ID) which may be 

used to access a field pair in constant time (it is in fact implemented as an array 

access). The BFUN_SET generates this identifier based on the pointer to an opaque, 

system-wide unique identifier, which is carried by a finite element node. That in turn 

implies that a one-to-one link exists between the unique identifier (finite element 

node) and a basis function. For example, the BFUN_DOFPARAM_PAIR_ID identifier is 

used by solvers to distribute computed solutions to the field pairs. 

 
Figure 2-8: Class diagram for the basis function and basis function set. 
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2.7 Implementation of Refinement/Unrefinement 

 The implementation of the refinement and unrefinement algorithms as 

enunciated earlier is straightforward. However, it seems worthwhile to point out that 

the refinement of a single basis function involves the generation of child GCELL’s, 

which in turn requires the addition of refinement nodes. Some of these nodes are 

shared by two or more GCELL’s, and care must be taken to introduce only a single 

copy of each shared refinement node so that compatibility of the refinement functions 

is ensured. 

 To enable the sharing of refinement nodes during the creation of the child 

geometric cells, we use the concept of a refinement context. It acts as the dispenser of 

refinement nodes. The present code labels refinement nodes with an instance of the 

connectivity object on which they are classified. For instance, for an eight-node 

hexahedron, the refinement nodes are either located at the vertex nodes, at the mid-

points of the edges, at the barycenters of the faces, or at the barycenter of the volume: 

compare with Table 2-1. The request to supply a refinement node on a given 

connectivity object (for instance, on an edge connecting nodes I and J) is processed by 

the refinement context: If the refinement node had not been created for the 

connectivity object before, it is created, and the reference to the connectivity is 

remembered for future lookups. Each GCELL may thus proceed with the refinement 

independently of its neighbors; the sharing of refinement nodes is managed 

transparently. 
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Table 2-1: Refinement Nodes of an 8-node Hexahedron 

 

2.7.1 Example: Equation of Steady Diffusion 

 To illustrate the adaptive code, we shall consider a simplified version of the 

linear partial differential equation of steady diffusion. In strong form:  

Given RgRf g ←Γ←Ω :,: , and Rh h ←Γ: , find Ru ←Ω:  

    uΔ−κ  =   f in Ω  

    u =   g in gΓ  

    u, ii n  =   h in hΓ , 

where Ω  is the domain (two- or three-dimensional), hΓ  and gΓ  are disjoint parts of 

the boundary, ΔΓΓ=Γ ,gh ∪  is the Laplace operator, “,i” in the subscript means 

differentiation with respect to the i-th Cartesian coordinate, κ  is the conductivity 

(assumed to be constant in Ω ), and the functions g and h are the prescribed boundary 

values. A weak form of equation (2-13) is derived in a standard way [69] as 

 ( ) ( ) ( )
h

hwfwuwa Γ+= ,,, ,       (2-13) 

where 

 ( )uwa ,  = ∫
Ω

Ωduw ii ,,κ ,     (2-14) 
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 ( )fw,    = ∫
Ω

Ωdwf ,     (2-15) 

 ( )
h

hw Γ,  = ∫
Γ

Γ
h

hdwh .      (2-16) 

The functions u and w are the trial and test functions respectively, Su ∈ and Vw∈ , 

where S is the trial space and V is the test space. 

 Next, we choose finite dimensional approximations of the trial and test spaces 

as the span of some suitable finite element basis functions. Adopting a Galerkin 

formulation, the test functions hh Vv ∈ will all vanish on the boundary gΓ , and the trial 

functions hu will be decomposed as 

   hhh gvu += ,                               (2-17) 

where hg  will satisfy (approximately) the boundary condition gu = on gΓ , 

and hh Vv ∈ . 

The homogeneous-part of the trial functions is written as 

   ∑=
B

BB
h dv φ , 

which leads to the discrete system of linear equations 

( ) ( ) ( ) ( )∑ ∑
Γ∉ Γ∈

Γ −+=
h hB B

BBAAABBA gahfda φφφφφφ ,,,, , hA Γ∉ .                       (2-18) 

On the left-hand side of (2-18) is the product of the conductivity matrix with the 

vector of unknowns, and the source terms are all on the right-hand side. 
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2.7.1.1 Hexahedral Discretization in 3D 

 Hexahedral finite elements are often preferred to tetrahedra because of their 

slightly better performance in a number of applications. However, refining hexahedra 

by introducing compatible edges, or by using a technique similar to the mesh 

refinement of tetrahedra by bisection is a tough problem, since the element quality 

tends to deteriorate very quickly and without bounds. Due to the regular division of 

the elements by octasection, CHARMS has no problem with shape deterioration. The 

implementation of mesh refinement with CHARMS also proves extremely easy, and 

in fact it took the first author just a couple of hours to add the hexahedral refinement to 

the CHARMS framework once the code had been debugged in one dimension. Most 

of the implementation effort goes into the coding of the connectivity of the parent and 

its children: the information about which nodes are connected by a given child needs 

to be recorded. 

 Figure 2-9 shows the mesh and the results of a sample simulation for a steady 

diffusion problem solved on a polyhedral domain. The initial grid and a refined grid 

are compared side-by-side. The integration cells are shown in Figure 2-9 and the 

reader should take care to realize the apparently hanging nodes are a visualization 

artifact: no active basis functions are associated with the incompatibly located nodes. 
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Figure 2-9: Steady diffusion equation solved in a three-dimensional domain. Left: initial 

grid; middle: step after two adaptations; right: cut-off grid with a solution 
contour. The integration cells are shown, with color coding corresponding to the 
temperature distribution. 

2.7.1.2 Refinement of Triangulations with Quadratic Triangles 

 As an example of mesh refinement for higher-order approximations we discuss 

here an implementation for the quadratic (6-node) triangles. Quadrisection is used to 

divide each parent triangle into four children of the same type in the parametric space: 

see Figure 2-10. The refinement nodes are numbered from 0 to 14. Refinement nodes 

0 to 5 are classified at the nodes of the parent, nodes 6 to 11 are classified on the 3-

node edges of the parent, and the last three nodes (12, 13, and 14) are classified in the 

interior of the parent element. An important piece of information that the refinement 

algorithm needs is which functions at the nodes of the child refine a particular function 

of the parent. For instance, function at node 0 of the parent is refined by functions at 

refinement nodes 0, 6, 7, 13, 14, 10, 11 of the children (all but the function at node 0 
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are detail functions); function at node 4 of the parent is refined by functions at nodes 

4, 8, 9, 12, 13, 14 of the children (all but the first are detail functions), etc.  Figure 2-11 

shows the contours of the solution of the Poisson equation for a “dipole” source 

function. The results are displayed on the integration cells. The visualization 

approximates the smooth quadratic variation by piecewise linear polygons. Figure 2-

12 illustrates the active basis function set for the refined mesh in the upper-left corner 

of the domain from Figure 2-11 by showing the active functions as red balls, and the 

geometric cells that support the active functions are filled triangles. Note that the 

active functions on level j+1 vanish along the boundaries of the geometric cells of 

level j. That is a visual confirmation of the preserved compatibility. 
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Figure 2-10:   Refinement of the 6-node triangle 

 
Figure 2-11: Dipole equation with homogeneous boundary conditions solved on a 

triangulation of square domain with 6-node quadratic triangles. Color coding of 
the field on three refined grids. 

 
Figure 2-12: Dipole equation, 6-node quadratic triangles. The geometric cells from the upper-

left corner of the computational domain that support basis functions on different 
levels: left to right, level 1, 2, 3, 4. The red balls indicate the active basis 
functions. 
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2.7.2 Example: Equation of linear elasticity 

In strong form, the equation of linear elasticity can be written as following: Given 

RgRf g ←Γ←Ω :,: , and  Rh h ←Γ: , find Ru ←Ω:  

  ijij f+,σ  = 0 in Ω  

  iu   =    ig     in 
igΓ  

  jij nσ   =    ih   in ihΓ , 

Here Ω , hΓ , gΓ  ,i, g and h are the same as defined in the section 2.2.3. A weak form 

of equation (2-19) is derived in a standard way [69] as 

 ( ) ( ) ( )
h

hwfwuwa Γ+= ,,, ,       (2-19) 

where 

 ( )uwa ,  = ∫
Ω

Ωducw lkijklji ),(,),( ,    (2-20) 

 ( )fw,    = ∫
Ω

Ωdfw ii ,     (2-21) 

 ( )
h

hw Γ,  = ∑ ∫
= Γ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Γ

sd

h

n

i
hii dhw

1

.                (2-22) 

The functions u and w are the trial and test functions respectively, Su ∈ and Vw∈ , 

where S is the trial space and V is the test space. 

 Next, we choose finite dimensional approximations of the trial and test spaces 

as the span of some suitable finite element basis functions. Adopting a Galerkin 
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formulation, the test functions hh Vv ∈ will all vanish on the boundary gΓ , and the trial 

functions hu will be decomposed as 

   hhh gvu += ,                                      (2-23) 

where hg  will satisfy (approximately) the boundary condition gu = on gΓ , 

and hh Vv ∈ . 

 The homogeneous-part of the trial functions is written as 

   ∑=
B

BB
h dv φ , 

which leads to the discrete system of linear equations 

( ) ( ) ( ) ( )∑ ∑
Γ∉ Γ∈

Γ −+=
h hB B

BBAAABBA gahfda φφφφφφ ,,,, , hA Γ∉ . (2-24) 

On the left-hand side of (2-24) is the product of the stiffness matrix with the vector of 

unknowns, and the source terms are all on the right-hand side. 

 

2.7.2.1 Refinement of Tetrahedra 

 State of the art techniques refine tetrahedra through bisection or octasection. 

However, the bisection pattern on a face shared by two tetrahedra can have three cuts. 

Hence it is not unique. That would make it a necessity to communicate the refinement 

information among neighbors. Moreover, bisection has the potential to severely 

degrade the shape quality measure of the finer functions since the bisected element is 

not similar to its offspring. Although octasection of tetrahedra avoids these problems, 

the issue with the degrading shape quality is something that currently known 
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octasection based approaches are struggling with. However, since the use of 

CHARMS ensures the construction of a conforming mesh a priori, shape quality 

measure does not degrade even though the geometrical mesh (i.e. supports of the basis 

functions) looks non-conforming. CHARMS uses Ong’s theory to produce an adaptive 

strategy that guarantees shape quality without necessitating the restoration of 

compatibility or other complications. Further details of this technique can be found in 

[33]. 
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Figure 2-13:  Linear elastic model of human brain using tetrahedral mesh refinement. Color-
coded area shows distribution of Von Mises stresses.   
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CHAPTER 3 : ADAPTIVE SIMULATION OF 

ELASTIC WAVE PROPAGATION IN SOLIDS  

 
3.1 Equation of Elastic Wave Propagation 

 In strong form, the equation of elastodynamics can be written as: 

Given RTgRTf g →×Γ→×Ω [,0]:,[,0]: , and RTh h →×Γ [,0]: , find RTu →×Ω [,0]:  

  ijij f+,σ  = ttiu ,ρ  in [,0] T×Ω             (3-1) 

  iu   =    ig     in [,0] T
ig ×Γ           (3-2) 

  jijnσ   =    ih   in [,0] Tih ×Γ            (3-3)  

                        )0,(xui             =         )(0 xu i    Ω∈x                     (3-4) 

  )0,(, xu ti           =          )(0 xu i�    Ω∈x                     (3-5) 

 Here Ω , hΓ , gΓ  ,i, g and h are the same as defined in section 2.2.3.   

Ru i →Ω:0  and Ru i →Ω:0�  are initial conditions of displacement and velocity as 

described in equations 3-4 and 3-5, and klijklijkl C εσ = . Here ε  is the strain tensor.  For 

isotropic materials, the material response tensor C may be written: 

 )( jkiljlikklijijklC δδδδμδλδ ++= . 

 A weak form of equation (3-1) is derived in a standard way [69]:  

Given 00 ,,,, uuhgf � , find ],0[),( tttu ∈  such that for every Vw ∈  

             ( ) ( ) ( )
h

hwfwuwauw Γ+=+ ,,,),( ��ρ ,     (3-6) 
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  ),())0(,( 0uwuwh ρρ =      (3-7)  

  ),())0(,( 0uwuwh �� ρρ =      (3-8)                

The functions u and w are the trial and test functions respectively; Su ∈ , S is the trial 

space, and V is the test space. 

 Next, we choose finite dimensional approximations of the trial and test spaces 

as the span of some suitable finite element basis functions. Adopting a Galerkin 

formulation, the test functions hh Vv ∈ will all vanish on the boundary gΓ , and the trial 

functions hu will be decomposed as 

     hhh gvu += ,         (3-9) 

where hg will satisfy (approximately) the boundary condition gu = on gΓ , and hh Vv ∈ . 

Therefore, the semi-discrete Galerkin formulation can be written: 

 Given 00 ,,,, uuhgf � , find hhh gvu += , Ω∈)(tu h  such that for every hh Vw ∈  

 ),(),(),(),(),(),( hhhhhhhhhh gwagwfwfwvwavw −−+=+ Γ ���� ρρ    (3-10) 

 ))0(,(),())0(,( 0
hhhhh gwuwvw ρρρ −=         (3-11) 

 ))0(,(),())0(,( 0
hhhhh gwuwvw ��� ρρρ −=         (3-12) 

hv  and hg can be written as:  
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This leads to the matrix form of the equation: 

 Given eqnTF ℜ→[,0:] , find eqnTd ℜ→[,0:]  such that  

}{]][[]][[ FdKdM =+�� .   [,0] Tt ∈     (3-13) 

0)0( dd =        (3-14) 

0)0( dd �� =        (3-15) 

where  

 [M] =  mass matrix = )(
1
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e
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el

=
Α ,  ∫
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dNNmm baij
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e ρδ][  (3-16) 

 [K] =  stiffness matrix = )(
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e gmgkdhNdfNkf )(}{
1

��   (3-18) 

If we account for viscous damping in the system equation (3-3) can be written as:  

 }{]][[]][[]][[ FdKdCdM =++ ���      (3-19) 

where C is the damping matrix. 

 

3.2 Solution with Adaptive Scheme 

 In our case, there are three essential steps for an adaptive solver: predict, adapt 

and solve. Our algorithm first divides the overall time interval into a number of 

subintervals, depending upon the number of adaptive steps necessary. At the end of 

each subinterval, the solver forces the mesh to adapt to the solution process by refining 

and unrefining in the areas of higher and lower levels of strain energy (or using some 
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other error indicator). The solver than restarts from initial conditions at the end of the 

previous subinterval and computes a little further in the time domain for a pre-

specified time. We call this procedure the "Look Ahead" algorithm and the pre-

specified time is called the back track time. The "Look Ahead" algorithm, combined 

with the use of a partition of a unity basis function set, provides us a way to deal with 

the loss of conservation involved in the addition and removal of basis functions from a 

non-interpolating basis function set. 

 
Figure 3-1: Progress of solver. 

 

Given initial velocity 0v  and initial displacement 0u  

Calculate Effective Force:   000 RKuf +−=                                  (3-20) 

For n = 1, 2, 

 Update u:   1
12

11 −
−

−− Δ+Δ+= nnnn fMttvuu         (3-21) 

 Calculate effective force: RKufn +−=                                          (3-22) 

 Update V:   ( )1
1

1 5.0 −
−

− +Δ+= nnnn fftMvv       (3-23) 

End 
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3.3 Required Resolution for Wave Propagation Problems 

 In order to adequately model elastic waves, the spatial sampling rate must be 

fine enough to provide adequate resolution. What “adequate resolution” may mean is 

defined by the requirement of the physical experiment being investigated. In general, 

researchers have developed ‘rules of thumb’ based on their experiences that indicate 

appropriate ranges for both spatial and temporal sampling rates. Some have proposed 

that the temporal sampling rate should be high enough to sample 20 points per cycle of 

the highest frequency of interest, but may require being increased to 180 points per 

cycle depending on the application [73]. The spatial sampling rate is determined by 

the size of the elements being used (which is a function of the mesh size). Some have 

proposed that 10 nodes per wavelength is enough for accurate results [74], while 

others agree that 20 elements per wavelength would provide better results [75]. In the 

end, the spatial and temporal sampling rates can only be justified by the results that 

they produce. While these ‘rules of thumb’ for sampling rates do not guarantee 

accurate results, they are a good starting point. 

 As mentioned earlier, temporal resolution is dictated by spatial resolution. 

Reducing the minimum mesh size will reduce the time step, causing the computational 

cost to increase. Therefore, spatial resolution should be chosen wisely to produce 

accurate results with minimum computational effort. This chapter presents an efficient 

solution for this problem by refining mesh in the areas indicated by the error indicator 

and unrefining in the areas where error in the strain energy norm falls below a 

particular threshold (using CHARMS).  
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3.4 Adaptive Time Stepping 

 Explicit solvers are generally conditionally stable. Time step is governed by a 

sufficient condition for stability obtained from estimates of maximum eigenvalues of 

individual elements. Using this condition, the stable time step for the central 

difference method can be derived as  

                                            
c
ht h =≤Δ

max

2
ω

                                                             (3-24) 

 Here h is smallest mesh size and c is highest wave velocity.  In the case of 

guided waves, spherical waves generally travel fastest, and their velocity, given 

by ρκ  in elastic isotropic media (where κ  is Bulk modulus and ρ  is density of 

material), can be used to calculate a stable time step.  

 For the adaptive mesh refinement scheme, the time step has to be calculated 

during each adaptive cycle, since mesh size keeps changing due to both refinement 

and coarsening of mesh. 

 

3.5 Error Indicator 

 Error in the strain energy norm is calculated at the end of each time subinterval 

as the wave front proceeds in the time domain. Error is then distributed over the basis 

functions on which the finite domain is supported. Dimensions of an ideal cube that 

could hold this strain energy density are calculated. The approximate minimum mesh 

size required to reduce this error below the prescribed limit is then calculated and 
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compared with the characteristic dimension of the basis function. Here the 

characteristic dimension of a basis function refers to the maximum span of basis 

functions over the elements on which it is supported. The prescribed limit is controlled 

by parameters defined in the input files H_OVER_HBAR_REF (for refinement) and 

H_OVER_HBAR_UNREF (for unrefinement). If the size of the characteristic 

dimension of the basis function exceeds the approximate mesh size achieved from the 

error associated with the basis function, the basis function refines itself. The reverse is 

true for the unrefinement process. 

     { } [ ]{ }uKuSE T=    (3-25) 

     i
i

i V
SE
SEV ×=     (3-26) 

     
n
SE

SE i∑=     (3-27) 

 Here SE is the strain energy associated with the basis function and SE  is the 

amount of strain energy that a basis function can ideally hold within a cube equal to 

the characteristic dimension of the basis function. iV  and iV  are volumes of cubes 

made of the ideal characteristic dimension and the characteristic dimension, 

respectively. 
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3.6 Partition of Unity basis  

 Partition of unity on a given support in the refined mesh is defined as the 

following: 

         Let }{ iN  be a collection of functions spanning over a given support. Then 

normalization  
∑

=
j i

i
i N

N
φ  yields a partition of unity subordinate to cover the support.                     

In classical finite element analysis, shape functions are chosen such that they form a 

partition of unity. Although this not a necessary requirement, construction of shape 

functions in this fashion simplifies the problem considerably in many instances. For 

example, consider the construction of a lumped mass matrix using the row sum 

technique:  

    ∑ ∫
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In simplified form, this can be written: 
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   (3-28) 

Recent work done by Melenk and Babuska [86] on the ‘partition of unity finite 

element method’ further highlights the fact that when any arbitrary finite element is 
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constructed from piecewise polynomial basis functions (if basis functions constitute a 

partition of unity on each support), the displacement will converge towards the exact 

value for elliptic boundary value problems as the mesh is refined.  

 Refined meshes produced by CHARMS are not necessarily partition of unity 

by nature because of their non-interpolating nature. Consider the refinement of a 

simplistic one-dimensional mesh as shown in the Figure 3-2: 

 
Figure 3-2:   Quasi-hierarchical refinement of shape function )0(

jN with partition of unity 

 Here a coarse basis function )0(
jN  is replaced with three finer basis functions 

)0(
1jN , )1(

1jN , and )2(
1jN . Suppose we assume these functions to be simple hat functions as 

classical finite element theory suggests. Summation of these basis functions over node 

number 4 will be equal to: 

                                      
2
31

2
1

1
=+=∑

=

enn

b
bN      (3-31) 

 Here a contribution of 0.5 is coming from )1(
jN . This is contrary to the 

requirement of the row-sum technique. While using CHARMS for mesh refinement, 
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activation and deactivation of basis functions make the finite element basis non-

interpolating [36]. Therefore, partition of unity is required to be enforced each time 

that mesh refinement takes place. The simplest way to enforce this requirement in this 

case, while preserving the requirement of linear independence, will be to modify the 

coefficient of hat functions spanning over node number 4. Therefore, as shown in 

figure 3-2, the summation of adjusted coefficients of hat functions spanning over node 

number 4 will be:      

                                        1
2
1

2
1

1
=+=∑

=

enn

b
bN      (3-32) 

While using CHARMS for mesh refinement, this condition is necessary to avoid major 

computational complexity at a later stage.  

 

3.7 Implementation of a wave propagation solver 

3.7.1 Adaptive Algorithm 

 Refinement or unrefinement follows an estimate of the error using an error 

indicator. Our code uses residual-based estimates to compute per cell errors, which are 

then processed to yield per-basis-function errors. As an example of such a procedure 

we have used the error density, which is obtained as the ratio of the summed error 

from all GCELL’s supporting the given basis function to their volume (area, in two 

dimensions). Basis functions with high error density are candidates for refinement; 

basis functions with low error density are considered for unrefinement. 
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 CHARMS make it very easy to reuse the solution from the coarse mesh in the 

process of solving the fine mesh solution. The solution field from the coarse mesh is 

transferred to the fine mesh (see next section), which is then passed along to the linear 

equation solver as the initial guess of the fine mesh solution. Iterative solution 

methods then can make use of this initial guess to converge to the fine mesh solution 

more efficiently. 

            Refinement is done by activation or deactivation of basis functions using the 

refinement rules mentioned earlier. BFUN_SET stores active and inactive basis 

functions in a data structure pointer called BUCKET. The top of the data structure 

consists of active basis functions while the bottom consists of inactive basis functions, 

according to their IDs (known as DOFPARAM_IDs). When a function is activated, it 

is moved to top of the data structure and receives a new ID. Similarly, when a function 

is deactivated, it is moved to the bottom of the data structure and receives a new ID. 

 In order to control the extent of the refinement, several parameters are used. 

REF_FRACTION, or refinement fraction, controls the percentage of eligible basis 

functions that actually go through the refinement. MAX_REF_LEVEL decides the 

maximum refinement levels that the refinement algorithm is allowed to refine. 

H_OVER_HBAR_REF and H_OVER_HBAR_UNREF define the fraction of errors 

per basis function; above or below this error range, basis functions are eligible for 

refinement/unrefinement.                
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3.7.2 Field Transfer 

 To satisfy the needs of an adaptive procedure, field transfer from one field (the 

source) to another (the destination) is required. Data should be transferred from 

coarser mesh to the refined mesh in a lossless fashion. Therefore, depending upon the 

construction of the algorithm, different mesh refinement algorithms follow a unique 

data transfer algorithm. For example, [86] devises a field transfer operator by 

rendering the potential energy on a discrete basis for highly nonlinear and dynamic 

problems. The transfer operator devised in this fashion preserves all the internal 

constraints and compatibility between different state variables. Operators devised in 

this fashion transfer data from quadrature point to quadrature point. [16,19,20,89] 

present other examples of data transfer on integration points between source and target 

fields. Strategies based on transfer of data over integration points make more sense for 

algorithms based on physical bisection of elements. In our case, since we rely on 

refinement of shape functions instead of elements, data can be directly transferred 

from nodal points at the coarse level to nodal points at the finer level. The two fields 

are defined on two distinct refined meshes, resulting from the refinement of the same 

initial mesh. The field transfer operation is in general formulated as the computation 

of the nodal parameters of the destination field from the condition that the destination 

field be somehow “close” to the source field. Since our refinement algorithm is 

lossless, we can transfer a field from a coarse mesh to a destination field on a fine 

mesh exactly. However, if the destination field is defined fully or partially on a mesh 

coarser than the source field, the transfer will involve some loss of information. 
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 Approximations generated by CHARMS are in general non-interpolating. This 

makes it seemingly difficult to come up with an efficient computation of the nodal 

parameters. A function given on the source field 

    ( ) ( )∑=
k

kk uxxu ~~~ φ ,    (3-33) 

where Bk
~~

∈φ  and ku~  are the basis functions and nodal parameters of the source field, 

is to be approximated by (transferred to) the destination field 

    ( ) ( )∑=
j

jj uxxu φ ,    (3-34) 

where Bj ∈φ  and ju  are the basis functions and nodal parameters of the destination 

field. The parameters ku~  are known, but parameters ju  are all unknown. Thus we have 

a classical function approximation problem, and a number of schemes may be used to 

solve for the unknown parameters; interpolation, and least square fitting being perhaps 

the most often used. Instead of striving for the most general solution, we take 

advantage of the special nature of the nested finite element spaces and use an 

interpolating prolongation when transferring from coarse to fine; we drop details 

during restriction in the opposite direction. The refinement equation (2-3), in 

combination with the refinement and unrefinement algorithms of section 2.1.3, yields 

an efficient algorithm for the computation of the nodal parameters in the destination 

field as described previously. Therefore using the equation 2-8 system of linear 

equations for evaluation at node k, which is active on level l, can be written as:  
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This can be further simplified by using the Kronecker delta property described in 2-5: 
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 This shows that computation of the nodal parameter of node k on level l only 

requires the information of nodal parameters on levels lower than the current level. 

The computations of the nodal parameters of nodes on the same level are independent 

of each other. Therefore, in order to solve for the nodal parameters, one can start with 

the coarsest level, i.e. level 0, followed by sequentially higher levels in the hierarchy 

[34]. 

algorithm field_transfer (source field, destination field) 

1.  Loop over refinement levels in destination field, and get the number of 

field pairs in the destination field. 

            2.  Loop over field pairs in the destination field. 

3.  If the refinement level of the basis function corresponding to the 

current field pair is the same as the refinement level of the destination 

field, get the nodal parameter of the source field and calculate nodal 

parameters of the target field using equation 3-35. 

4.         Go back to step number 2. 

5.         Go back to step number 1.  
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3.7.3 Evaluation Cell (ECELL) 

 In our case, the mesh is needed for the evaluation of the integrals, which in 

turn involves the basis function derivatives. Note that there are clearly two separate 

and orthogonal operations here: 

• Evaluate the basis functions (and their derivatives); and 

• Use the computed basis function values or their derivatives to evaluate the 

integrals. 

The second task will change with each new problem. The first task (the evaluation of 

the basis functions), on the other hand, will be independent of the problem to be 

solved. Our design therefore separates the evaluation of the basis functions into a task 

performed by the geometric cells, and all the other operations are factored into 

responsibilities for the so-called evaluation cells (ECELL’s). 

 

3.7.4 Protocols 

 The protocol PROTO_WAVE for the problem at hand consists of various 

functions: assemble_stiffness_matrix, assemble_mass_matrix, assemble_source_terms, 

and solve using time stepping as described in section 3.4. The role of the protocol is 

simply to bundle the functionality into a reusable component (creation of the 

evaluation cells, looping over those cells to assemble the contributions to the left- and 

right-hand sides of the linear dynamic system, and finally the solution of the system). 

The protocol enlists the services of a linear dynamic equation solver component.   
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3.7.5 Calculation of Basis Function Tables 

 When the basis function tables (the function value, and values of the 

derivatives with respect to the spatial coordinates) are needed at a particular 

quadrature point, they need to be computed for the hierarchy of overlapping basis 

functions. The geometric cells on which the basis functions are defined are related 

through the parent/child relationship. 

 
Figure 3-3: Class diagram for wave propagation evaluation cell for 8-node hexahedron. 

 

 To evaluate the spatial integrals, perform numerical quadrature on the 

geometric cells that are the leaves of the refinement hierarchy. In other words, the 

interaction of basis functions from different levels is evaluated over geometric cells 

that support the finest basis function. An alternative approach that evaluates 

interactions of pairs of basis functions over the support of the finer function had been 

proposed in [36]. 

ECELL_WAVE_T4 ECELL_WAVE_H8 

ECELL_WAVE 

… 

ECELL 

+ gcell: GCELL 

GCELL 
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 Because of our chosen quadrature scheme (all integrals are evaluated over the 

leaf cells), we need to traverse the hierarchy from the leaf towards the root. 

Furthermore, since all the parent/child relationships are transitive, it is sufficient to 

consider in this discussion just two levels from the mesh hierarchy: the parent level 

and the child level. 

 Without loss of generality we may consider a particular element type, for 

instance the isoparametric eight-node (serendipity) quadrilateral, Figure 2-2, [72]. The 

basis functions of a single element are defined in the parametric coordinates in the 

biunit square ( )11,11 +≤≤−+≤≤− ηξ  as 

  ( )

( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( ) ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−
++−
++−
−+−

−++−−
−−++−
+−−+−
++−−−

=Φ

ξηη
ηξξ
ξηη
ηξξ

ηξηξ
ηξηξ
ηξηξ
ηξηξ

ηξ

1112/1
1112/1
1112/1
1112/1

1114/1
1114/1
1114/1
1114/1

,T ,   (3-37) 

where the superscript T indicates transpose. The derivatives of the basis functions with 

respect to the spatial coordinates are evaluated as usual by the chain rule, which can be 

put in matrix form as 
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with the Jacobian matrix defined as 



73 

 

    J    = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

ηξ

ηξ
yy

xx

.   (3-39) 

The elements of the Jacobian matrix are computed from the expansions of x and y in 

terms of the basis functions 

   ( ) ( )∑ ∑Φ=Φ=
i i

iiii yyxx ηξηξ ,,, ,   (3-40) 

where ix  and iy  are the nodal geometry parameters. 

 If we now consider approximation on a mesh with basis functions at several 

levels, we may still keep equation (3-39), but the elements of the Φ  matrix are now 

functions ( )j
iφ  at various levels j. Similarly, the derivatives with respect to spatial 

derivatives may be computed from equation (3-40), but it must be realized that the 

geometric cells in the mesh hierarchy have their own parametric coordinates (i.e. they 

are all mapped from the master element). To compute the Jacobian matrix,       

equation (3-6), all the derivatives ξ∂Φ∂ i , etc. need to be computed in a single 

coordinate system. In our implementation, we choose to compute all the derivatives in 

the parametric coordinates of the leaf geometric cell (i.e. the finest cell in the 

hierarchy). We use the notation ξ′  and η′  for the parametric coordinates of the parent, 

and ξ  and η  for the parametric coordinates of the child, and ( )j
iφ  for the basis 

function defined on the parent, and ( )1+j
iφ  for the basis functions defined on the child. 

The parent (top row in Figure 2-2) is divided into four children (bottom row) in its 

parametric space, and all elements, parent and the children, are mapped to the physical 
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space using the standard isoparametric mapping in their own coordinates. We express 

the derivatives of the basis functions on the parent cell with respect to the parametric 

coordinates of the child needed in equation (3-39) through the chain rule 

    
( ) ( )

ξ
ξ

ξ
φ

ξ
φ

∂
′∂

′∂
∂

=
∂

∂ j
i

j
i ,    (3-41) 

and similarly for the relationship between η  and η′ . For our particular example, the 

mapping from the parent to the child is simple. For instance, for child 0 (compare with 

Figure 2-2): 

    ( )12/1 −=′ ξξ  

    ( )12/1 −=′ ηη ,     (3-42) 

and we get 2/1=∂′∂ ξξ  and 2/1=∂′∂ ηη ; it is easy to show that this relationship 

holds for all four children. 

 We are ready to state the algorithm eval_bfun_set for the computation of the 

values and derivatives with respect to the spatial coordinates of the basis functions 

active at a particular quadrature point: The inputs are the leaf cell and the parametric 

coordinates of a given quadrature point in that cell. Note that the tree needs to descend 

from the leaf cell towards the root, and the algorithm may proceed by recursion or by 

iteration. 
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algorithm eval_bfun_set 

 1. Descend the refinement tree and find ( )j
iφ , ( ) ξφ ∂∂ j

i ,… for all active  

  functions, j = 0,1,…from (Eq. 3-40). 

    2. Compute the Jacobian matrix J of Equation (3-39), and then invert  

  to obtain J-1 

 3. Using ( ) ξφ ∂∂ j
i ,. . . from step 1, and J from step 2, compute  

  ( ) xj
i ∂∂φ , j = 0,1,…, from Equation (3-38) 

 Note that the task of evaluating the individual basis functions and their 

derivatives in the parametric coordinates is performed by the GCELL’s, as usual in 

standard finite element codes. The only difference is that the child’s coordinates need 

to be related to the parent’s coordinates through the chain rule (the factor 1/2 in the 

example discussed above). 

 

3.7.6 Geometry 

 A remark is in order concerning the definition of the geometry of the domain. 

An isoparametric description of the finite element fields is used, and Equation (3-40) 

makes it clear that in order to evaluate the geometry, i.e. the location of a point given 

by its natural, parametric coordinates, the nodal parameters for the geometry are 

needed. Our adaptive framework represents the geometry as an ordinary field. In other 

words, the code makes no distinction between the unknown fields and the geometry. 

However, one difference needs to be noted: the geometry needs to be initialized at the 

beginning of the computation. Fortunately, that is an easy task, since the basis 



76 

 

functions on the initial (input) mesh interpolate. Therefore, the nodal parameters of the 

initial geometry field are simply the coordinates of the nodes. However, the geometry 

fields for the refined approximations need to be computed by field transfer, since the 

approximation becomes non-interpolating upon refinement. If the initial mesh 

describes the domain exactly, the geometry is also described exactly on any refined 

mesh, because of the lossless character of field transfers from coarse to fine meshes. 

On the other hand, if the geometry of the domain is only approximated by the mesh, 

the nodal geometry parameters may be computed to improve the shape approximation 

by fitting curved boundaries [34].  

 

3.8 Conservation Laws 

 In Newtonian mechanics success of a time-stepping scheme very often is 

closely related to its capacity to preserve mass, momentum, and energy. Most of the 

iterative schemes for time-dependent problems either preserve these quantities exactly, 

as is the case of many implicit schemes, or these quantities are bounded. Therefore, 

much research in the past went towards understanding the conservation behavior of 

popular schemes such as Newmark’s algorithm and Wilson’s theta method [81,87]. In 

our case, we are introducing adaptive mesh refinement within the framework of the 

explicit Newmark’s algorithm. Conservation behavior for such an overall scheme is 

demonstrated with the help of first a simple example and then with a numerical 

experiment.  A generalized proof is highly desirable, but left for future research in this 

area. 
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 3.8.1 Conservation of Mass and Mass Matrix during Refinement 

 The development of the mass matrix dates back to work done by Duncan and 

Collar [90,91], where they showed a 3x3 diagonal “inertia matrix” for a triple 

pendulum. Mass matrices can be broadly classified as lumped, consistent, and 

template (lumped-consistent) mass matrices. In the early ’60s, the lumped mass matrix 

was developed not just for simplicity and overall computational cost effectiveness, but 

because of its diagonal nature, it was the obvious choice to account for nonstructural 

masses. A lumped mass matrix can be constructed in various ways. Nodal quadrature, 

row-sum technique, and HRZ lumping are some of the most popular techniques. 

 While nodal quadrature has the tendency to generate negative and zero masses, 

the row-sum technique does not produce zero masses. However, the row-sum 

technique can generate negative masses in some cases, such as in the corner node for 

the eight node serendipity element. HRZ lumping overcomes both of these problems; 

however, more research work is required to prove its correctness for general elements. 

Archer [92,93] first pointed towards the correctness of consistent mass, taking clues 

from the Lagrange dynamics equation. Melosh [94] established the connection 

between the Rayleigh-Ritz method and FEM and showed uses of the mass matrix in 

similar analysis. Melosh’s work brought attention towards some of the problems with 

the consistent mass matrix: namely, (1) it was prohibitively expensive and inefficient 

for some solution processes. For example, in the case of explicit dynamics, 

accelerations are computed at the global level by multiplying the inverse of the mass 

matrix with effective dynamic force. This leads to a trivial solution of system of 
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equations. If a non-diagonal consistent mass matrix is used, the solution of the system 

of equations will be nontrivial; (2) Non-structural masses were not automatically 

accounted for. In fact, in many applications such as the analysis of aircraft and ships, 

structural masses account for only 20-30% of total mass; (3) Other alternatives might 

provide better results. If a stiffness matrix results from conforming displacement 

interpolation, pairing it with a consistent mass matrix guarantees providing upper 

bounds on natural frequency. This may or may not be a good thing. In practice, it is 

observed that errors increase rapidly as one moves up the frequency spectrum. For 

wave propagation problems, where response is strongly driven by intermediate and 

high frequencies, the consistent mass matrix may give very poor results. There are 

several qualities a mass matrix should have in order to be successfully used in 

engineering problems: 

 (1) It should be symmetric, and element symmetries should be reflected in the 

mass matrix. Although this is not a necessary requirement as seen in the Petrov-

Galerkin procedure, computationally an unsymmetric mass matrix will be very 

expensive and practically impossible to use in large engineering simulations.  

 (2) Another important property of the mass matrix is that in semi-discrete 

equations (ordinary differential equations), it complies with all conservation laws. One 

consequence of this is that the sum of the elements of the mass matrix gives the total 

mass.      

 (3) Usually if the mass matrix is at least positive semi-definite, the numerical 

problem becomes a lot easier to solve; i.e., for any non-zero velocity field v, 
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0}]{[}{ ≥vMv T . A positive definite mass matrix will lead to positive eigenvalues. A 

negative eigenvalue means that the corresponding natural frequency of the structure is 

complex (not real). A mass matrix is usually positive definite or positive semi-definite, 

but in some applications, e.g., in buckling, the mass matrix is only nonnegative, or 

even indefinite.    

 In this section, we are going to study the construction of mass matrices using 

various techniques. The accuracy of eigenvalues and eigenfunctions are measures of 

the quality of both the stiffness and mass matrices. Although we already pointed out 

that one of our targeted applications is wave propagation problems and that a 

consistent mass matrix is not appropriate for wave propagation problems where 

response of medium and high frequencies is desired, we are going to nevertheless 

include a consistent mass matrix in our analysis.  In our convergence analysis, we will 

use a uniformly refined mesh as a benchmark to validate CHARMS results.  
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Figure 3-4 Uniformly Refined Mesh 

 

3.8.1.1    Uniformly Refined Mesh 

3.8.1.1.1 Using Lumped Mass (Row-sum technique) 

Consider the initial mesh:   Shape functions for the coarse mesh can be written as:  

Table 3-1: Linear hat functions and their derivatives of coarse mesh. 

Range Title Shape Function 
x
N

∂
∂  

lx <<0  1N  
l
x

−1  
l
1

−  

lx <<0  

 

lxl 2<<  

2N  
l
x  

⎟
⎠
⎞

⎜
⎝
⎛ −

l
x
2

12  

l
1  

l
1

−  

lxl 2<<  3N  1−
l
x  

l
1  

  

1         2     3

1         4          2       5     3

1   6    4     7    2 8    5    9    3
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 The lumped mass matrix can be derived from the formulation shown in section 

3.6.  The mass matrix for elements 12 and 23 on the initial mesh can be written as: 

 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

212
lm ρ  ⎥

⎦

⎤
⎢
⎣

⎡
=

10
01

223
lm ρ  

 
Therefore, the global lumped mass matrix for the initial mesh will be: 
                           

                       
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
020
001

2
lM ρ      

Similarly, the stiffness matrix can be assembled from the pieces of the finite element 

(considering unit cross-sectional area): 

dxBEBK
eln

j

l
T∑∫

=

=
1 0

][][  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
==

11
11

2312 l
Ekk  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

110
121

011

l
EK  

Therefore eigenvalues can be written as ]4,2,0[=λ . Here 0 frequency arises from the 

singular stiffness matrix due to the presence of a rigid body mode. 

 Now, uniformly refine the mesh by subdividing all the elements, 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−

=

22000
24200

02420
00242
00022

L
EK , and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4/10000
02/1000
002/100
0002/10
00004/1

lM ρ  

Eigenvalues can be written as ]16,66.13,8,3431.2,0[=λ ]4,2,0[=λ  

Refined once again: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−−
−−

−−
−−

−

=

440000000
484000000

048400000
004840000
000484000
000048400
000004840
000000484
000000044

L
EK  

Diagonal components of M are ]8/1,4/1,4/1,4/1,4/1,4/1,4/1,4/1,8/1[=M  

Eigenvalues can be written as: 
 ]646154443275.193.94.20[=λ  
 

3.8.1.1.2 Using Consistent Mass 

The consistent mass matrix can be derived by taking the kinetic energy as part of the 

governing functional. The kinetic energy of an element of mass density ρ  that 

occupies the domain eΩ  and moves with velocity field evG  is 

                                Ω= ∫
Ω

dvvT eTee

e

)()(5.0 GGρ  
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Following the FEM philosophy, the element velocity field is interpolated by shape 

functions: ee uNv �G
= , where eu� are nodal velocities, and N is a shape function matrix. 

Substituting this into the previous equation, 

eeTeeTTee uMuudNNuT
e

���� )(5.0)()()(5.0 =Ω= ∫
Ω

ρ  

The element mass matrix follows as the Hessian of eT :  

  ∫
Ω

Ω=
∂∂

∂
=

e

NdN
vv

TM T
e

e ρ
2

 

Therefore the consistent mass matrix for element 12 can be written:  

  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
= ∫ 21

12
6

1
1

012
ldx

l
x

L
x

l
x

L
x

m
L ρρ  

The overall consistent mass matrix can be written as:  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

210
141
012

6
lM ρ  

The stiffness matrix, as defined in the previous section, will remain unchanged. 

Therefore, eigenvalues can be written, ]4,2,0[=λ , which are exactly the same values 

derived from the coarse mesh using a lumped mass. Upon refining once, the consistent 

mass matrix can be written as: 

   M =  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

6/112/1000
12/13/112/100
012/13/112/10
0012/13/112/1
00012/16/1

, and ]48,7.31,12,6.2,0[=λ  
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Upon refining twice eigenvalues can be written: 

  ]668.605.531.443245.1921.945.20[=λ   

 

3.8.1.2 CHARMS Refined Mesh   

 
Figure 3-5:   Adaptive mesh refinement of shape function )0(

jN using CHARMS 

  

Shape function and their derivatives are as follows: 

 On coarse mesh, shape functions will be the same as the previous section.   

Initial Mesh 
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On the finer mesh, shape functions can be written:   

Table 3-2: Linear hat functions and their derivatives of mesh refined using CHARMS. 

Range Title Shape Function 
x
N

∂
∂  

lx <<0  1N  
l
x

−1  
l
1

−  

lxl <<2/  

 

2/3lxl <<  

2N  12
−

l
x  

⎟
⎠
⎞

⎜
⎝
⎛ −

l
x23  

l
2  

l
2

−  

lxl 2<<  3N  1−
l
x  

l
1  

2/0 lx <<  

 

lxl <<2/  

4N  
l
x  

l
x

−1  

l
1  

l
1

−  

3 / 2l x l< <  

 

3 / 2 2l x l< <  

5N  2 2x
l

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

2 4x
l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

2
l

 

2
l

−  

 
  

Unlike classical finite element practices, in a CHARMS refined mesh multiple shape 

functions might be spanning over a given support, as discussed earlier. Therefore, one 

should carefully integrate by parts while calculating pieces of the stiffness and mass 



86 

 

matrices. For example, various components of the consistent mass matrix can be 

written as:  

3/1
0

2

0

2
1 ldx

l
xN

ll

=⎟
⎠
⎞

⎜
⎝
⎛ −= ∫∫                               12/1
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22/
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⎠
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⎜
⎝
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The rest of the values can be obtained using symmetry. Different components of the 

stiffness matrix can be calculated similarly: 

1 1
2

0 0

1 1l lN N dx
x x l l

∂ ∂
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∂ ∂∫ ∫                       
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2 2
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1 1 0
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3.8.1.2.1 Row sum technique 

 The global stiffness and lumped mass matrices can now be assembled from the 

element stiffness and mass matrices, as shown in previous section.  The global lumped 

mass, using the row-sum technique and the stiffness matrix can be written:  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
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02/1000
00100
0002/10
00001

2
lM ρ    K = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−−
−
−

10100
01100
11411

00110
00101

L
E  

Eigenvalues for the structure using the above stiffness and mass matrices can be 

written as [0,2,2.9,4,11]λ = . It is easy to see that the lumped mass matrix using the 

row-sum technique conserves total mass, 1 1 1 1 1 2
2 4 2 4 2

M l lρ ρ⎛ ⎞= + + + + =⎜ ⎟
⎝ ⎠

, and it is 

positive definite.   

 

3.8.1.2.2 Consistent Mass 

 The global consistent mass matrix for mesh refined using CHARMS can be 

written: 

1/ 3 1/ 8 1/ 24 0 0
1/ 8 1/12 1/ 24 0 0

1/ 24 1/ 24 1/ 3 1/ 24 1/ 24
0 0 1/ 24 1/12 1/ 8
0 0 1/ 24 1/ 8 1/ 3

M lρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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It is easy to see that the consistent mass matrix formed using CHARMS conserves 

total mass: 4 2 3 22 2
24 8 3 12

M l lρ ρ⎛ ⎞⎛ ⎞= + + + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. Also, it can be verified that the 

consistent mass matrix is positive definite since eigenvalues of the consistent mass 

matrix are positive: [0.028,.0316,.2807,0.3851,0.4413]λ = . Using the stiffness matrix 

from previous calculations, eigenvalues of the structure are [0,2.3,8,13,66]λ = .  

 

3.8.1.2.3 HRZ Mass Lumping 

Unlike the row-sum technique, HRZ lumping developed by Hinton, Rock and 

Zinkiwicz [95] has been popular because it always produces positive lumped masses. 

In this technique, first diagonal terms of the consistent mass matrix are computed, then 

they are scaled so as to preserve total mass.      
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∫
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 Using the consistent mass matrix developed in the previous section, HRZ 

lumping for CHARMS refined mesh can be written:  

4 0 0 0 0
0 1 0 0 0
0 0 4 0 0

7
0 0 0 1 0
0 0 0 0 4

lM ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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 Using HRZ lumping, eigenvalues of the structure are  

[0,1.75,3.5,7,12.25]λ = . It is also obvious that the lumped mass matrix formed this 

way conserves total mass, 4 1 4 1 4 2
14 14 14 14 14

M l lρ ρ⎛ ⎞= + + + + =⎜ ⎟
⎝ ⎠

, and it is positive 

definite for any given problem.   

 

3.8.1.2.4 Template Mass Lumping 

 Template mass lumping is obtained by combining the lumped and consistent 

mass matrices:  

(1 )template lumped consistentM M Mβ β= − +  

Although it is observed that one might achieve superior accuracy by customizing a 

mass matrix in this fashion [96], and dispersion of low and intermediate frequencies 

can be controlled efficiently ( β =1/2 will give optimal dispersion for low frequencies) 

[90], the derivation is computationally very expensive, even for a one dimensional 

system such as this.  Therefore its use is impractical in any given algorithm.  
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3.8.1.3 Conclusion of Calculations  

Eigenvalues achieved from each mass matrix are summarized as follows: 

Table 3-3: Comparison of eigenvalues 

Uniform Refined Mesh  CHARMS Refined mesh 

Unrefined Refined 

Once 

Refined 

Twice 

Mode  

Number

AMR AMR AMR 

Lumped 

Masss 

Consistent 

Mass  
Lumped  

Mass 
Consistent 

Mass 
Lumped 

Mass 
Consistent 

Mass 
 Lumped 

Mass 
Consistent 

Mass 
HRZ 

Lumping

0 

2 

4 

0 

2 

4 

0 

2.34 

8 

13.66 

16 

0 

2.6 

12 

31.7 

48 

0 

2.4 

9.37 

19.75

32 

0 

2.5 

10.38 

24.87 

48 

 

1 

2 

3 

4 

5 

0 

2 

2.9 

4 

11 

0 

2.3 

8 

13 

16 

0 

1.75 

3.5 

7 

12.25 

 

The following conclusions can be derived from the above calculations: 

1.  Different types of mass matrices studied in this section are symmetric, 

produce positive definite mass matrices, and they conserve total mass 

with mesh refined using CHARMS.   

2.  Although, the consistent mass matrix shows the fastest convergence in 

eigenvalues, it is computationally very expensive in comparison to 

row-sum and HRZ mass lumping.   
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3.8.2  Conservation of Momentum  

 In order to arrive at a more conclusive point with our adaptive explicit 

algorithm and make more intelligent choices, it is very important to understand if and 

how it is modifying the underlying properties of the existing explicit algorithm. In this 

section, we will first notice the momentum conservation behavior of the explicit 

Newmark algorithm, and then we are going to study its behavior after introduction of 

refinement using the same one-dimensional example as in the previous section.  

 

3.8.2.1 Momentum Conservation with Central Difference Method  

 The key equations of the Newmark method are as follows: 

   ( )[ ]1
2

1 2215.0 ++ +−Δ+Δ+= nnnnn tt aavdd ββ     (3-43) 

   ( )[ ]11 1 ++ +−Δ+= nnnn t aavv γγ  

Using 0=β  and 5.0=γ  for the central difference method, these equations may be 

rewritten as follows: 

   nnnn tt avdd 2
1 5.0 Δ+Δ+=+     (3-44) 

   )(5.0 11 ++ +Δ+= nnnn t aavv .    (3-45) 

Upon equating forces, 

    nn KdMa =  

    nn KdMa 1−= . 

Substituting into equation (3-45), we get  

   )(5.0 1
1

1 +
−

+ +Δ+= nnnn t ddKMvv .   (3-46) 
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Consider the scalar product where η  is a rigid body mode: 

 ∑∑=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅=⋅⋅
i j

jiji

nn

t
N

tttt
n vM

v

v
v

ηηηηηηη
#

… 2

1

4321 ],,,,[ MvM            (3-47) 

By multiplying the above scalar product on both sides of equation (3-46), 

   )(5.0 11 ++ +Δ+= nnnn t ddKMvMv ηηη   (3-48) 

If there are no restraints, K will be singular because of presence of rigid body modes 

in the problem. Therefore, 0),( =⋅= ηη KK T ,  since rigid body motion produces no 

force. Hence from equation (3-48), 

    nn vv MM ⋅=⋅ + ηη )1(     (3-49) 

Therefore momentum will stay conserved.  As a matter of fact, if all the rigid 

body modes are not allowed, momentum cannot be conserved by any time 

stepping algorithm exactly.     

 

3.8.2.2 Momentum Conservation Property with Adaptive Mesh Refinement  
 
 Consider an arbitrary time interval during the solution of the equation of 

motion using the explicit Newmark method as explained in section 3.4. Suppose 

refinement takes place between the time steps n and n+1.  At the end of step n, the 

error is calculated. Mesh is refined and the solution starts from a few time steps 

behind. Conservation of momentum while going from step n to n+1 using the same 

mesh has already been shown in previous section. Now let us look at the momentum 

conservation before and after adaptive mesh refinement. 
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Figure 3-6:   Adaptive mesh refinement of shape function )0(

jN using CHARMS 

   

 In order to compare momentum before and after refinement, we will have to 

calculate the velocity field at the refined mesh, given its values on the unrefined mesh.  

This can done using a field transfer procedure, as described previously: 

  
( )( ) ( ) ( ) ( )( )
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∑ ∑
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uxxu
φ

φ  (3-16) 

 
Suppose the velocity field on the original mesh was:  321 ,, vvv  

and the velocity field on the refined mesh was:  54321 ,,,, vvvvv ′′′′′  

 From equation (3-16): 

   214 5.05.0 vvv +=′  
   325 5.05.0 vvv +=′  
   11 vv =′  
   22 vv =′  
   33 vv =′  
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Let P be momentum.  Momentum of the different elements on the initial mesh will be: 
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Therefore, momentum for the initial mesh: 
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⎥
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 If velocity was uniform in magnitude and direction vvvv GGGG

=== 321 , then 

overall momentum of the structure using the initial mesh can be written: 

 
  lvlvlvlv ρρρρ 22/2/ 321 =++ . 
 
 

3.8.2.2.1 Using Row-Sum Technique 

 Now let us consider the refined mesh.  Momentum on the refined mesh can be 

calculated: 
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Therefore, overall momentum for the refined mesh will be: 
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 Again, if velocity was uniform, vvvv GGGG

=== 321 , momentum of the structure 

on the initial mesh can be written as: 

  lvlvlvlvlvlv ρρρρρρ 22/
4

2/
4

2/ =++++  

As mentioned above, conservation of momentum upon application of uniform velocity 

also indicates the overall mass conservation property of the lumped mass matrix 

during refinement. 

 

3.8.2.2.2 Using Consistent Mass Matrix 

The consistent mass matrix is calculated in previous section. Momentum using 

consistent mass matrix can be written: 
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 If velocities are uniform, vvvv GGGG
=== 321 , momentum of the structure on the 

refined mesh can be written:  

  19 5 32 2
48 48 6 12 16 8 16

v v v v lv lv lvl lvρ ρ ρρ ρ⎛ ⎞+ + + + + + =⎜ ⎟
⎝ ⎠

 

 
 Therefore momentum remains conserved using the consistent mass matrix 

upon application of uniform velocity. 

 

3.8.2.2.3 Using HRZ Lumping 

 The HRZ lumped mass matrix is calculated in the previous section. 

Momentum using HRZ lumped mass matrix can be written:  
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If velocities are uniform, vvvv GGGG
=== 321 , momentum of the structure on the refined 

mesh can be written as:  

  4 42 2
7 14 14 7
v v v lvl lvρρ ρ⎛ ⎞+ + + =⎜ ⎟

⎝ ⎠
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 Therefore momentum remains conserved using the HRZ lumped mass matrix 

upon application of uniform velocity. 

 

3.8.3 Conservation of Energy  

 The energy conservation property is another very important aspect of 

numerical algorithms for parabolic-hyperbolic problems. In many cases, as pointed out 

by West, Kane and Marsden [81,87], such algorithms do not conserve energy in an 

obvious way. In the case of Newmark’s algorithm, the authors pointed out that for an 

arbitrary β ,  1/ 2γ < , Newmark algorithms will dissipate energy, 1/ 2γ >  energy will 

increase and 1/ 2γ =  energy will remain oscillatory. Therefore, once mesh refinement 

is introduced, kinetic energy should be closely monitored. A sharp rise or fall in 

kinetic energy due to refinement or unrefinement reflects the weakness of the mesh 

refinement algorithm. 

 

3.8.3.1 Energy in Central Difference Method 

 Define    )(5.0,][ 11 nnnn vvVvvV +>=<−= ++ , and  

 Strain Energy:  nnn KddSE *5.0=  

    Total Energy = Kinetic Energy + Strain Energy 

    nnn KESETE +=  

 Kinetic Energy: nnn MvvKE *5.0=  
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The difference of energies at time stations tn+1 and tn is given by: 

   ][][][1 KESETETETE nn +==−+  

The jump in strain energy is given by: [SE] = [d]k<d>. Similarly: [KE] = [v]M<V>. 

Using the central difference method: 

   nnnn attvdd 2
1 5.0 Δ+Δ+=+  

   )(5.0 11 ++ +Δ+= nntnn aavv  

Hence, 

   nnnn attvddd 2
1 5.0][ Δ+Δ=−= +  

   ><Δ=−= + atvvV nn 1][ , 

and    nt atVd 25.0][ Δ−><Δ= . 

Using the equation of motion (M[a]=-k[d]), 

    M<a>=-K<d> 

we get:    M<a>= M[v] tΔ/  

Thus,  ][TE  = ><+>< VMVdkd ][][  

   = ><><Δ+>< VMadKd t][  

   = ><Δ><−>< VkddKd t][  

   = )]([ ><Δ−>< vtdKd  

   = ])[5).( 2 atKd Δ−><  

   = 0][5.0 2 ≠><Δ aMat  

Hence energy is not conserved by the central difference method.  
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3.8.3.2 Kinetic Energy Before and After Refinement 

 
 As pointed out earlier, it is necessary to understand the kinetic energy 

conservation property once refinement is introduced. We are going to use refinement 

on the same one-dimensional mesh described in figure 3-2. 

 
Kinetic Energy (KE) of the initial mesh: 
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Here we are ignoring the scalar ½ in the definition of kinetic energy since it does not 

alter our conclusion and makes calculations easier to see.   

 
Total Kinetic Energy of the initial mesh: 
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On application of uniform velocity vvvv === 321 , the total kinetic energy is:

 2lvKE ρ=  

3.8.3.2.1 Row-Sum Technique: 

Kinetic Energy of the refined mesh: 
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Total Kinetic Energy of the refined mesh: 
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If vvvv === 321 , the total kinetic energy is: 2lvKE ρ=  
 
 Thus if the structure is fairly rigid and velocity at every point is approximately 

the same, refinement will not add any energy to the system. This is especially true for 

most of the linear elastic small strain (strain < 5%) problems. This problem can be 

seen as three balls connected by two consecutive springs in a straight line. The 

difference in velocity of two consecutive points will cause strain in the element. Hence 

the difference in velocity has to be relatively low to satisfy the small strain assumption 

of the problem. It is also interesting to point out that, 

1. For any arbitrary nonzero 321 ,, vvv , 0}]{[}{ >VMV T  after refinement . As 

pointed out in the section on mass matrix, this indicates that a lumped mass 

matrix constructed on a refined basis will stay positive definite. 
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2.   lv
v

KE ρ2)(
=

∂
∂ ; On application of uniform velocity, the first derivative of 

kinetic energy with respect to velocity gives us momentum of the system with 

uniform velocity. 

Now consider the function,  

 ( )321 ,, vvvF  =  Energy after refinement  - Energy before refinement 

             ( )321 ,, vvvF  =  ( ) ( ) 2
2

2
32

2
21

88
lv

vvlvvl
ρ

ρρ
−

+
+

+   (3-17) 

It is easy to see that  
( ) ( )

88

2
3

2
1 vlvl ρρ

+  >  ( )321 ,, vvvF >  - 2
2lvρ  

( )321 ,, vvvF  = 0 will represent all the values of v1, v2 and v3 for which energy will 

remain conserved.  

 
Figure 3-7: Points representing no increase in energy on v1, v2, v3 Cartesian space 
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3.8.3.2.2  Using Consistent Mass Matrix 

Consistent mass matrix is calculated in the previous section. Kinetic energy using a 

consistent mass matrix can be written: 

1 1

2 1 2 1

2 2

2 3 2 3

3 3

1/ 3 1/ 8 1/ 24 0 0
( ) / 2 ( ) / 21/ 8 1/12 1/ 24 0 0

1/ 24 1/ 24 1/ 3 1/ 24 1/ 24
2

( ) / 2 ( ) / 20 0 1/ 24 1/12 1/ 8
0 0 1/ 24 1/ 8 1/ 3

Tv v
v v v v

l v vKE
v v v v

v v

ρ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

 
1 1 2 1 2 1 2 2 1 2 3 3 2 2 3 3 2 3

19 5 1 1 1 1 1 3 1 1 1 1 1 5 19( + )+( + )( + )+ ( + + )+( + )( + )+ ( + )
48 48 2 2 6 12 16 8 16 2 2 12 6 48 48

v v v v v v v v v v v v v v v v v v=  

 
 If velocities are uniform, vvvv GGGG

=== 321 , kinetic energy of the structure on 

the refined mesh can be written:  

219 5 1 1 1 1 1 3 1 1 1 1 1 5 19l ( + )+( + )( + )+ ( + + )+( + )( + )+ ( + ) = lv
48 48 2 2 6 12 16 8 16 2 2 12 6 48 48

v v v v v v v v v v v v v v v v v vρ ρ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 Therefore kinetic remains conserved using a consistent mass matrix on 

application of uniform velocity. 

Kinetic energy using unrefined mesh and a consistent mass matrix can be written: 

 ( )2 2 2
1 1 2 2 2 3 3

1 2 2 4 2 2
6

KE v v v v v v v= + + + +  

Therefore gain in kinetic energy for any arbitrary v1, v2 and v3 can be written:  

 ( )2 2 2
1 1 2 2 2 3 3

1_ 7 2 10 2 7
48

KE gain v v v v v v v= − + + + −  

Similar conclusions can be derived from kinetic energy gain as in the previous section. 

Zero kinetic energy gain points can be plotted using a v1, v2, v3 coordinate axis,  
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Figure 3-8: Points representing no increase in energy on v1, v2, v3 Cartesian space for 
consistent mass matrix 

 

3.8.3.2.3 Using HRZ Lumping 

 HRZ lumped mass matrix is calculated in a previous section. Kinetic energy 

using HRZ lumped mass matrix can be written as: 
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If velocities are uniform, vvvv GGGG
=== 321 , momentum of the structure on the refined 

mesh can be written as:  
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v v v vl v v v lvρ ρ
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 Therefore kinetic energy remains conserved using the HRZ lumped mass 

matrix on application of uniform velocity.  Kinetic energy using an unrefined mesh 

and HRZ mass matrix can be written as:      ( )2 2 2
1 2 3

1 2
2

KE v v v= + +  

Therefore gain in kinetic energy for an arbitrary v1, v2 and v3 can be written as,  

 ( )2 2 2
1 1 2 2 2 3 3

1_ 2 5 2 3
28

KE gain v v v v v v v= + − + +   

 Similar conclusions can be derived from kinetic energy gain as in the case of 

the row-sum technique. 0 kinetic energy gain points can be plotted as: 

  

Figure 3-9: Points representing no increase in energy on v1, v2, v3 Cartesian space 

 

3.8.3.3 Conclusion from Conservation Behavior 
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1. Conservation properties with different types of mass matrices show very 

similar trends.  

2. Although the consistent mass matrix shows superior convergence properties, 

computationally it is very expensive in comparison to the HRZ technique and 

row-sum technique. The HRZ technique is more expensive than the row-sum 

technique, since it requires calculation of the diagonal elements of the 

consistent mass matrix first. However, unlike the row-sum technique, the HRZ 

technique does not produce negative masses and produces comparatively 

reasonable results.  

3. Energy and momentum almost stay conserved while solving small strain 

problems with CHARMS. For large strain problems, more research is required 

to understand the energy bounds produced with refinement and their impact on 

the numerical solution.      

3.8.4 Conservation of Mass, Momentum and Energy with Unrefinement 

 In this simplistic example, it is easy to see that the difference in conserved 

quantities before and after unrefinement will stay the same as refinement, because one 

will end up with exactly the same mesh after deactivating finer functions and 

activating coarser ones.  However, in more complex problems this does not hold true. 

Unrefinement by nature is lossy.  However, numerical experiments have shown that 

the gain in computational cost due to unrefinement far outweighs the error induced by 

unrefinement. 

3.9 Example 
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 A bar made of alloy steel is excited on one of it its ends with a half sinusoidal 

forcing function.  A linear elastic small strain material model is used. (Alloy steel 

(AS.049 9310 nickel-chromium-molybdenum) yields about 4% strain)             

  

  

  

Figure 3-10: Mesh refinement at different time steps as wave front travels through the bar. 
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Figure 3-11:  Number of basis functions generated (top),     

Conservation of momentum in this process (bottom) 
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We have already seen from momentum conservation properties of the Newmark 

method that in the absence of an external load, momentum will remain conserved. The 

problem presented here is a linear elastic small strain dynamic problem. Hence from 

the conservation properties of the adaptive refinement method, momentum remains 

almost conserved during refinement and unrefinement, as the applied load dies at the 

1e-07 seconds. It is interesting to see that the adaptive refinement method keeps the 

problem size in check. After adding the basis functions up to time = 2e-07 seconds, 

the number of basis functions is almost kept constant by the process of refinement and 

unrefinement.
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CHAPTER 4 : A VALIDATION CASE 

 

4.1 Background and Introduction 

 Finite element methods have been extensively utilized to validate non 

destructive evaluation and testing experiments on mechanical parts and assemblies.  

As indicated in the previous chapter, a 3D solution of guided waves problem needs a 

very fine mesh to capture the intermediate frequencies, which is very often the case 

when validating nondestructive testing problems. In the past, in order to avoid a huge 

computational cost, the researcher approached this problem by singling out the 

response of individual frequencies, and if required, combined them together using 

signal processing techniques. [74,75,98] used similar techniques for the simulation of  

defect detection using lamb waves. Gaveric [96] developed a technique for efficiently 

predicting mode shapes and dispersion curves between 1 KHz and 7 KHz frequency.   

Wilcox [97] simplified Gaveric’s technique for a more general implementation in 

finite element codes. However, none of the techniques presented so far was able to 

simulate the full complexity of wave propagation problems related to NDE 

experiments, and their use was limited to a small subset of problems. The complete 

solution of the problem resulting from NDE experiments requires direct time 

integration of the equation of motion instead of analysis of the response of an 

individual set of frequencies. As pointed out in [73,75], in order to accurately capture 

such a response, between ten and twenty elements per wavelength will be needed. For 

problems involving an unsymmetric computational domain, such as the one mentioned 
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in this chapter, the problem size might become very large. We solve this problem by 

beginning with a very coarse mesh and then tracking the wave front with the adaptive 

dynamic technique developed in a previous chapter.         

  

4.2 Experimental Setup 

 The experimental setup is shown in Figure 4-2. Rails were placed on wood 

sleepers (0.61-m spacing) with steel pads and no fasteners. An instrumented hammer 

was used to excite a broadband signal at one end of the rail. Piezoelectric 

accelerometers were used to detect the waves as they propagated past each sensor. 

Two sets of accelerometer arrays were set up along the rail, each located four feet 

away from the defect location and eight feet from the rail ends. The two arrays 

measured reflection and transmission coefficients from the defects. Each array 

consisted of three uniaxial ICPÂ® accelerometers. One accelerometer was mounted in 

the vertical direction, another was mounted in the transverse direction, and the last was 

mounted in the longitudinal (rail-running) direction. Three types of head defects were 

manufactured by saw cutting: a transverse defect, an oblique defect at 20 degrees from 

the rail transverse direction, and a second oblique defect at 35 degrees from the rail 

transverse direction. Each defect type was cut to four increasing depths. The four 

defect sizes, indicated in Figure 4-1 as 1Q, 2Q, 3Q, and 4Q, were each increased by 

approximately one quarter of the head cross-sectional area. Three different tests were 

run for each of the defects investigated. The first test was a vertical strike test to 

generate a vertical bending mode. The second test was a transverse strike test to 
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generate a lateral bending mode. The last test was a longitudinal strike for the 

generation of a longitudinal (axial) mode. For further information regarding the 

experimental results for the other defect sizes and orientations refer to [76]. These 

methods of wave generation have been previously shown to successfully isolate the 

intended vibrating mode. The propagating signals were analyzed by a joint time-

frequency analysis based on the continuous wavelet transform (CWT). The advantage 

of the wavelet transform over other time-frequency analyses is its multi-resolution 

capability optimizes the time resolution and the frequency resolution within the limits 

of the Heisenberg uncertainty principle. The Gabor wavelet transform (GWT), which 

provides the best balance between time and frequency resolution, was used with center 

frequency 2 and shaping factor 5.336. Such values are appropriate for the study of 

dispersive multi-mode signals, including rail vibrations. 

 
Figure 4-1: Different types of defects. 
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Figure 4-2: Experimental Setup. 

 

4.3 Post Processing of Time Signal 

 In order to derive a conclusion from the time signal achieved by the 

experiment discussed in section 4.1, continuous wavelet transform was applied to the 

time signal. The continuous wavelet transform of a time signal is calculated: 

( ) ( )∫
+∞

∞−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅= dt
s

ut
s

tfsuWf *1, ψ  

where ( )t*ψ  is the complex conjugate of the mother wavelet. ( )tψ  is given by the 

following equation: 

( )
s

ut
s

tsu
−

⋅= ψψ 1
,  

Here u shifts the wavelet in time and s controls the wavelet frequency bandwidth. 

Gabor wavelet provides the best balance between time resolution and frequency 

resolution. Therefore, it was chosen as the mother wavelet for continuous wavelet 

transform. In this case, Gabor wavelet is a Gaussian window defined as follows: 
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where η  is the wavelet center frequency, σ  is the standard deviation of Gaussian 

window and ησ ⋅=sG . 

 The energy density spectrum of a continuous wavelet transform is defined as 

( ) ( ) 2,, suWfsufPW =  and is commonly referred to as a scalogram. A scalogram 

indicates the energy of signal f(t) in the Heisenberg box of each wavelet window 

( )tsu ,ψ  around time t = u and angular frequency sη=Ω . The scalogram in our case is 

normalized by a scaling parameter. Besides providing the time-frequency information 

of the signal component, the scalogram retains the signal energy content.  

 The scalogram was than used to calculate reflection coefficients for different 

frequencies. In Figure 4-2, sensors are mounted at array no. 1 and array no. 2. Let iA  

be the magnitude of the wave energy when it reaches array no. 1 and rA  be the 

magnitude of returning echo energy from the defect at array no. 1. Then the Reflection 

coefficient R is given by, 

i

r

A
AR =  

4.4 Numerical Approximation 

            From our discussion so far, we are clear that it is very difficult for us to utilize 

the solution of the equation of motion in the frequency domain since we may not be 

sure about reflecting frequncies from an unknown shape and size defect. We have a 

better sense of the reflection coefficient. Therefore a direct time integration scheme is 
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the correct approach for us. We utilized the explicit solver based on CHARMS as 

described in the previous chapter.  The last chapter scrutinizes a variety of mass 

matrices, their conservation properties and their role in convergence of natural 

frequencies of the system. We decided to go with least expensive and computationally 

proven row-sum technique to construct a mass matrix. The solution of the equation of 

motion was achieved as described in the previous chapter.     

  

4.5 Analysis of Numerical Results 

 The purpose of this research was to determine how the adaptive mesh 

refinement algorithm described in a previous chapter could successfully be used to 

model the types of long range guided rail waves discussed in the experimental portion 

of this chapter. The modeling of the interaction of these waves with defects similar to 

those studied experimentally was of special interest. Determining the parameters 

required for accurate modeling of guided rail waves was the primary goal. An 

algorithm that could accurately predict these types of waves could be used to simulate 

defects that are impossible to manufacture in the lab, thereby providing information 

that could not otherwise be collected. Although it was known that the finest portion of 

the mesh should produce elements that were somewhere between 7.5 mm and 3.75 

mm, according to the conventions discussed in the previous chapter, the actual mesh 

size that would produce good results was initially unknown. Mesh size is a function of 

the number of adaptation levels used. The starting mesh was a uniform mesh 

consisting of eight-node solid elements with longitudinal (in the direction of the wave 
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propagation) dimensions of 20 mm. This coarse (level zero) mesh was equivalent to 

sampling the highest frequency waves 3.75 times per wavelength, which is a third of 

the minimum required sampling rate of 10 samples per wavelength. This uniform 

mesh could be run on a PC running Linux with a 1 GHz Pentium III processor and 512 

MB of ram. One test (calculation of the reflection coefficients for one defect) could be 

solved in roughly 24 hours. Unfortunately, this coarse mesh provided rather poor 

results. An example of the results for a vertical strike test (4Q zero degree defect) is 

shown in Figure 4-3. Although the scalogram for this test appears very similar to an 

experimentally derived scalogram, the coarseness of the mesh could not adequately 

simulate the higher frequencies where the reflection information would have been 

found (Figure 4-4). Although the results were disappointing, they were expected 

because it was already known that at least a 7.5 mm mesh would be required for the 

higher frequencies. Other defect sizes and orientations were studied and similar results 

were found. It was observed that with a 20 mm mesh size, about 425 MB RAM was 

required for solution of the problem when symmetry and sparsity of the stiffness 

matrix was used for calculation. Uniform division of the mesh to achieve half of the 

mesh size will result in the division of each brick element into 8 brick elements. As 

mentioned earlier, our required mesh size to capture all lengths was at least 7.5 mm or 

lower. That will give rise to between 1,684,800 to 13,478,400 degrees of freedom with 

eight node hexahedral elements. It was hard to reduce the size of the problem since the 

frequency of the waves that were traveling was unknown and the finite domain was 

asymmetric due to the presence of defects. This indicated a massive problem with 
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several million degrees of freedom and a requirement of over 50 GB of RAM.  Use of 

an implicit method is completely ruled out due to computational cost. Adaptive mesh 

refinement seems to be the only solution in similar circumstances. 

 The next round of tests used a mesh with one level of refinement like that 

shown in Figure 4-5. Still, results were not as good as they were supposed to be. We 

noticed that for small and medium size defects, the majority of the energy continued to 

travel past the defects. The wave front needed to validate the results was the one that 

traveled past the defects, not the smaller front that reflected back from the defect. This 

led to errors due to the fact that the portion of the rail affecting the reflection was 

unrefined because the larger wave front was far away, thereby reducing accuracy of 

the reflected signal. The initial mesh was slightly modified and the solver was 

modified to refine the mesh at the locations of highest strain energy only into the area 

between the hammer impact and defect. These changes produced remarkable 

improvement in reflection coefficients. At this stage, the reflection coefficients were 

modified to account for losses during experiment. We decided to achieve the results 

with even better precision by further increasing the level of refinement. Figure 4-7 

shows results with two levels of refinement. Numerical values of reflection coefficient 

are very close to experimental values. Results are good enough for all practical 

purposes. 

In order to produce results for various defect types in shorter period of time, a 

parallel version of FAMULS was created on an IBM RS6000 cluster named as Blue 

Horizon (http://www.sdsc.edu/Resources/bluehorizon.html) using MPI instructions. 
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Each node allowed access to 8 processors with 4GB of memory per node. Although 

with the existing algorithm all the cases can be run on the PC, computational time was 

significantly reduced this way. 

       

4.6 Conclusion 

 Simulation of NDE experiment using CHARMS opens the door for various 

problems involving application of long range guided waves in a large computational 

domain. Unlike different techniques published in the past, there is no practical 

limitation in terms of frequency range. However, more work is required to reduce the 

high frequency noise very often seen in these problems. One way is to use Raleigh 

type damping as a design parameter. [69] shows a correlation of Raleigh damping 

coefficients with high frequency noise. Another possibility is to use a template mass 

matrix and solve the design coefficient for the least numerical noise. Use of composite 

model damping might also help. Similar techniques can be utilized in shock wave 

propagation problems where instantaneous response in a large finite domain is 

required.  
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Figure 4-3:  Scalogram using coarse mesh. 

 
Figure 4-4:  Comparison of reflection coefficients with coarse mesh. 
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Figure 4-5: Same-Mode Energy Reflection Coefficient Spectra Obtained for the Vertical 

Test of Zero Degree Defects.  ( , 4Q Size Defect; , 3Q Size Defect; , 2Q Size 
Defect; X, 1Q Size Defect; Dashed Lines Correspond to Numerical Results) 

 
Figure 4-6:  Wave Front Tracking and Mesh Refinement. (a) Rail with Refined Mesh,         

(b) Rail illustrating Wave Front Tracking & Mesh Refinement and 
Unrefinement. (One level of refinement is shown) 
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Figure 4-7: Same-Mode Energy Reflection Coefficient Spectra Obtained for the Vertical 

Test of Zero Degree Defects.  ( , 4Q Size Defect; , 3Q Size Defect; , 2Q Size 
Defect; X, 1Q Size Defect; Dashed Lines Correspond to Numerical Results) 
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CHAPTER 5 : OUTLOOK 

 

 

 

 

 

 

 Moor’s law [82], which relates the number of transistors on integrated circuits 

to time, has been quite successful in predicting evolution of computational resources 

over time. Despite the dramatic improvement in computational hardware, demand for 

computational resources for scientific applications has been unyielding. With powerful 

computers in hand, more complex problems started looking possible, and a 

dependence on computationally efficient algorithms to solve similar problems grew in 

tandem. Fast growing economies, demanding consumers, and a competitive 

marketplace have forced the products to be lean and more efficient. Creation of such 

products requires fast and more accurate analysis. With this changing scenario, among 

other aspects of analysis, much research effort is diverted towards the development of 

adaptive mesh refinement techniques which can utilize state-of-the-art computational 

resources optimally.  

 The previous chapter presents one of many applications of adaptive mesh 

refinement for dynamic solvers. The need for a general adaptive framework and 
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solution technique is industry wide. The following are some of the research works in 

progress using CHARMS and a comment on what lies ahead. 

 

5.1 Simulation of Tumor 

5.1.1 Description 

  Over the last decade there has been tremendous progress in visualization of 

complex, hidden structures inside the human body during operation [85]. However, a 

collaborative effort of clinicians, computer scientists, and engineers is required to 

perform computer assisted image-guided therapy (IGT), and it generally takes place 

only in research hospitals. This research is oriented towards exploring and simplifying 

some of the issues that must be tackled in order to fulfill the full promise of these 

prototype systems in the area of image-guided neurosurgery (IGNS). 

 Some of the main challenges that neurosurgeons face during tumor resection 

include removing as much tumor tissue as possible, minimizing the removal of healthy 

tissue, and disruption of critical anatomical structures should be avoided at all costs. 

They should also know when to stop the resection process. Apart from these problems, 

the patient goes through intra-operative shape deformation of the brain as a result of 

tissue resection, retraction, and loss of cerebrospinal fluid. This causes a steady 

decline in the accuracy of the preoperative plan if it is not executed with the utmost 

care. The goal of this research is to quantify and correct for these deformations while a 

surgery is in progress by dynamically updating preoperative images in a way that 
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allows surgeons to react to changing conditions. This research is published in [78] in 

great detail.   

 

5.1.2 Role of CHARMS 

 Finite element analysis using CHARMS is going to be instrumental in the 

simulation of a patient’s brain by using images obtained from an intra-operative 

scanner during surgery. The time constraint on this overall procedure is severe and 

allows only about two minutes for the finite element biomechanical simulation.  

Therefore, a parallel adaptive solver will be implemented to take advantage of the San 

Diego super computer center’s hardware.  

      

Figure 5-1: Finite element biomechanical model of cross-sectioned brain. 
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5.2 Pattern Recognition for NDE applications using Support Vector Machine  

 

5.2.1 Description 

 The set of related supervised learning methods used for classification and 

regression is called Support vector machines (SVM). One of the highlights of this 

research suggests that SVM can be used for binary classification or pattern recognition 

to determine the type and size of defects in railroad tracks. Generally, the model 

produced using support vector classification only depends upon a subset of the 

training data, because the cost function for building the model does not consider 

training points that lie beyond the margin. Therefore, a large amount of data is 

required to produce a useful model. This work is described in [76] in great detail.  

 

5.2.2 Role of CHARMS 

 Creation of such a large volume of data may not be possible from the NDE 

experiments, as explained in chapter 3, because of the requirement of enormous time 

and resources. Therefore, after successful numerical verification of experimental 

results with numerical results using CHARMS, the author proposed to create an SVM 

model using numerical results instead of experimental results.   
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5.3 Future Work  

5.3.1     Applications of CHARMS in Bio-Mechanics Simulations   

  One of the challenging aspects of biomechanical problems is the fabrication of 

an initial mesh from data achieved from a CT scan or MRI, which is a collection of 

pixels inside the overall volume. Surfaces representing the domain boundary and 

various internal organs can be calculated using techniques such as adaptive 

deformation [77]. These surfaces are defined using surface triangulation instead of 

geometric entities such as curves, regions, contours, and surfaces.  Therefore, most of 

the commercial meshing programs, which rely on the presence of geometric entities, 

cannot be used. Instead, more primitive tools [6] that can utilize a surface mesh to 

create a volume mesh are very often used. Creation of mesh using such tools requires 

a massaging of the surface mesh to create well-shaped triangles. In many cases, after 

the creation of the initial mesh, much manual patch work is required to replace bad 

quality elements. Convergence analysis of the solution with remeshing can be a 

nightmare in similar problems, since each iteration requires an increasing amount of 

effort to achieve a good quality mesh. Therefore, use of an adaptive mesh refinement 

technique for similar problems is almost essential during convergence analysis. Very 

often in similar problems, the area of interest is a very small subset of the overall 

domain [77, 78]. Adaptive mesh refinement techniques such as CHARMS can be very 

useful in optimizing computational cost while capturing singularities accurately in 

similar situations [31].   
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5.3.2 Links to Nonlinear Mechanics and Dynamics  

 We are inspired by the work done by Hauth et al.[83] and others [nonlinear 

graphics].  Much research has been published on visual simulation, computer graphics, 

and animation of deformable bodies using complex nonlinear models to assist 

surgeons by using hierarchical refinement. It seems that hierarchical schemes are very 

well suited for time integrators, and lessons learned from such visual simulation can 

be easily applied to nonlinear computational mechanics simulations. Transient 

schemes, such as the one shown in this thesis, can be easily used to solve nonlinear 

problems without major effort. However, more work is required to understand 

conservation properties in similar circumstances, and computational models need to be 

validated against experimental results.  

 

5.3.3 Links to Visual Simulations       

 Unlike visual simulation models, computational mechanics models based on 

finite elements are generally tested rigorously for their numerical accuracy, and 

relatively little effort is spent on the visual appeal of the results. However synergies 

are happening both ways. Dynamic adaptive models such as the one developed during 

this thesis can be successfully applied to create high resolution computer animation 

and graphics [31]. However, the algorithm will have to be customized for both the 

computational effort and the visual aspects of the results.       
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5.3.3 Use of Asynchronous Variational Integrators  

 Asynchronous Variational Integrators, or AVIs [84], allow the selection of 

independent time steps in each element, and the local time steps need not bear an 

integral relation to each other. Their use of variational structure guarantees exact 

conservation of energy and momentum. That would be a useful property for adaptive 

simulation of elastodynamic problems, such as the one presented in this thesis.   

 

5.3.4 Error Estimators 

 Current error estimation implemented in FAMULS relies on lumping the 

elemental error to each basis function. Therefore, any a posteriori error indicator that 

calculates elemental error can be used. However, it will be useful to have an error 

indicator that directly calculates error per basis function during refinement and 

unrefinement. 

 

5.3.5 Lossy Unrefinement 

 Unrefinement is lossy by virtue. Replacement of finer shape functions with 

coarser ones may cause loss of information and unexpected artifacts during 

simulation.  The approach described in [31] might work to alleviate this:  

“The deactivation of )(xiφ  is separated in two steps: (a) the solver no 
longer considers as unknown coefficient, iu , and (b) the coefficient set 
to zero. In smooth deactivation, (a) the unknown, iu , is immediately 
removed from the solvers reach and considered as a prescribed 
boundary condition, and (b) the value of the coefficient is prescribed 
by a smoothly decaying function over some finite time interval.” 
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5.3.6 Implementation on Parallel Computers      

Implementation of CHARMS based solvers on parallel computers was 

achieved initially using PETSC’s support for MPI instructions on IBM RS6000 work 

stations. We are inspired by the Distributed Adaptive Grid Hierarchy (DAGH) method 

which supports the Burger-Olinger algorithm for parallel adaptive mesh refinement 

[DAGH website]. Adaptive finite difference method based on the Burger-Olinger 

algorithm [DAGH web site] is very similar in terms of data structure for CHARMS 

activation/deactivation protocols. Hence incorporation of CHARMS with DAGH type 

framework can produce an efficient parallel adaptive algorithm.     

 

5.4 Conclusion  

 This thesis opens the door for a practical, viable implementation of CHARMS 

for time-dependent solvers in computational mechanics problems. The object oriented 

framework FAMULS is modified to incorporate the needs of an explicit dynamic 

solver. A consistent implementation of a wave propagation solver is studied and 

implemented with CHARMS. Finally, verification of the numerical solver is 

performed, with respect to experimental results from the NDE testing of railroad 

tracks. A brief analysis of conservation properties of the adaptive dynamic solver is 

also presented as a part of this thesis. 



129 

REFERENCES 

[1] HOwen, S.J., Meshing Software Survey, Structured Grid Generation Software, 
Uhttp://www.andrew.cmu.edu/user/sowen/software/structured.htmlU 

[2] HThompson, J.F., 1985, Numerical Grid Generation: Foundation and 
Applications, Elsevier Science Pub. Co., North-Holland. H  

[3] HThompson, J.F., 1996, “A Reflection on Grid generation in the 90s: Trends 
Needs and Influences,” 5th International Conference on Numerical Grid 
Generation in Computational Field Simulations, Mississippi State University, 
Mississippi State, MS, pp. 1029-1110H.  

[4] Bathe, K.-J., 1996, Finite Element Procedures, Prentice-Hall, Upper Saddle 
River, NJ. 

[5] Belytscho, T., Liu, W.K., and Moran, B., 2000, Nonlinear Finite Elements for 
Continua and Structures, John Wiley & Sons Ltd., Chichester, UK. 

[6] Krysl, P. and Ortiz, M., 2001, “Variational Delaunay approach to the generation 
of tetrahedral finite element meshes,” Int. J. Numer. Meth. Engng., 50(7), pp. 
1681-1700. 

[7] Geostar Software, SolidWorks Corporation, 
HUhttp://www.cosmosm.com/pages/products/modules_GEOSTAR.htmlU 

[8] Almeida, R.C., Feijóo, R.A., Galeão, A.C., Padra, C., and Silva, R.S., 2000, 
“Adaptive finite element computational fluid dynamics using an anisotropic 
error estimator,” Comput. Methods Apple. Mech. Engorge. 182(3-4), pp. 379-
400. 

[9] Marvelous, D.J., 1990, “Adaptive mesh generation for viscous flows using 
triangulation,” J. Comput. Phys., 90(2), pp. 271-291. 

[10] Peraire, J., Period, J., and Morgan, K., 1992, “Adaptive remeshing for three 
dimensional compressible flow computation,” J. Comput. Phys., 103(2),     
pp. 269-285.  

[11] Berger, M.J. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic 
partial differential equations,” J. Comput. Phys., 53(3), pp. 484-512. 

[12] Radovitzky, R. and Ortiz, M., 1999, “Error estimation and adaptive meshing in 
strongly nonlinear dynamic problems,” Comput. Methods Apple. Mech. Engrg., 
172(1-4), pp. 203-240. 



130 

 

[13] Molinari, J.F. and Ortiz, M., 2002, “Three-dimensional adaptive meshing by 
subdivision and edge-collapse in finite-deformation dynamic-plasticity problems 
with application to adiabatic shear bending,” Int. J. Numer. Meth. Engng., 53(5), 
pp. 1101-1126. 

[14] Selman, A., Hinton, E., and Bićanić, N., 1997, “Adaptive mesh refinement for 
localised phenomena,” Computers & Structures, 63(3), pp. 475-495.   

[15] Arnold, D.N., Mukherjee, A., and Pouly, L., 2000, “Locally adapted tetrahedral 
meshes using bisection,” SIAM J. Sci. Comput., 22(2), pp. 431-448. 

[16] Bänsch, E., 1991, “Refinement in 2 and 3 dimensions,” Impact Comput. Sci. 
Engrg., 3(3), pp. 181-191. 

[17] Bey, J., 1995, “Tetrahedral grid refinement,” Computing, 55(4), pp. 271-288. 

[18] Bornemann, F., Erdmann, B., and Kornhuber, R., 1993, “Adaptive multilevel 
methods in three space dimensions,” Int. J. Numer. Meth. Engrg., 36(18), pp. 
3187-3203. 

[19] Kallinderis, Y. and Vijayan, P., 1993, “Adaptive refinement-coarsening scheme 
for three-dimensional unstructured meshes,” AIAA J., 31(8), pp. 1440-1447. 

[20] Liu, A. and Joe, B., 1995, “Quality Local Refinements of Tetrahedral Meshed 
Based on Bisection,” SIAM J. Sci. Comput., 16(6), pp. 1269-1291. 

[21] Liu, A. and Joe, B., 1996, “Quality local refinements of tetrahedral meshed 
based on 8-subtetrahedron subdivision,” Math. Comp, 65(215), pp. 1183-2000. 

[22] Rivara, M.-C., 1992, “A 3-D refinement algorithm suitable for adaptive and 
multi-grid techniques,” Comm. Apple. Num. Meth., 8, pp. 281-290. 

[23] Speares, W. and Berzins, M., 1997, “A 3D unstructured mesh adaptation 
algorithm for time-dependent shock-dominated problems,” Int. J. Numer. Meth. 
Fluids, 25(1), pp. 81-104. 

[24] Buscaglia, G.C. and Dari, E.A., 1997, “Anisotropic mesh optimization and its 
application in adaptivity,” Int. J. Numer. Meth. Engng., 40(22), pp. 4119-4136. 

[25] Castro-Diaz, M.J., Hecht, F., Mohammadi, B., and Pironneau, O., 1997, 
“Anisotropic unstructured grid adaptation for flow simulations,” Int. J. Numer. 
Meth. Fluids, 25(4), pp. 475-491. 



131 

 

[26] Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., Habashi, W.G., 2002, 
“Anisotropic mesh adaptation: towards user-independent, mesh-independent and 
solver-independent CFD. Part III. Unstructured meshes,” Int. J. Numer. Meth. 
Fluids, 39(8), pp. 675-702. 

[27] De Cougny, H.L. and Shephard, M.S., 1999, “Parallel refinement and coarsening 
of tetrahedral meshes,” Int. J. Numer. Meth. Engrg., 46(7), pp. 1101-1125. 

[28] De l’Isle, E.B. and George, P.L., 1993, “Optimization of Tetrahedral Meshes,” 
Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial 
Differential Equations, I. Babuška, et al., eds., Springer-Verlag, Berlin, IMA 
Vol. 75, pp. 97-128. 

[29] Joe, B., 1989, “Three-dimensional triangulations from local transformations,” 
SIAM J. Sci. Comput., 10(4), pp. 718-741. 

[30] Pain, C.C., Umpleby, A.P., de Oliveria, C.R.E., and Goddard, A.J.H., 2001, 
“Tetrahedral mesh optimization and adaptivity for steady-state and transient 
finite element calculations,” Comput. Meth. Apple. Mech. Engrg., 190(29-30),  
pp. 3771–3796. 

[31] Grinspun, E., 2003, “The Basis Refinement Method,” Ph.D. Dissertation, 
California Institute of Technology, Pasadena, CA. 

[32] Krysl, P., Trivedi, A., and Zhu, B., 2004, “Object-oriented hierarchical 
refinement with CHARMS,” Int. J. Numer. Meth. Engng., 60(8), pp. 1401-1424. 

[33] Endres, L. and Krysl, P., 2004, “Octasection-based refinement of finite element 
approximations on tetrahedral meshes that guarantees shape quality,” Int. J. 
Numer. Meth. Engng., 59(1), pp. 69-82. 

[34] Zhu, B. and Krysl, P., 2003, “Data fitting and shape approximation with 
CHARMS mesh refinements.” in preparation. 

[35] Trivedi, A., Krysl, P., McNamara, J., and Lanza di Scalea, F., 2004, “Adaptive 
simulation of ultrasonic guided waves in railroad tracks using CHARMS,” Proc. 
6th World Conference on Computational Mechanics , Tsinghua University, 
Beijing, China. 

[36] Grinspun, E., Krysl, P., and Schröder, P., 2002, “CHARMS: A simple 
framework for adaptive simulation,” ACM Transactions on Graphics, 21(3),    
pp. 281-290. 

[37] Möller, P. and Hansbo, P., 1995, “On Advancing Front Mesh Generation in 
Three Dimensions,” Int. J. Numer. Meth. Engrg. 38(21), pp. 3551-3569. 



132 

 

[38] Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E., 1997, “Delaunay 
mesh generation governed by metric specifications. Part I: algorithms. Part II: 
applications,” Finite Elements Anal. Design 25(1-2) pp. 61-83, 85-109. 

[39] Frey, P.J. and George, P.L., Mesh Generation Application to Finite Elements, 
HERMES Science Europe Ltd., Oxford, Paris, 2000. 

[40] George, P.L., Borouchaki, H., and Laug, P., 2000, “An efficient algorithm for 
3D adaptive meshing,” Finite Elements: Techniques and Developments, B.H.V. 
Topping, ed., Civil-Comp Ltd., Edinburgh, UK, pp. 1-11. 

[41] George, P.L. and Hecht, F., 1999, “Nonisotropic grids,” Handbook of Grid 
Generation, Thompson, J. et al., eds., CRC Press, Boca Raton, FL, pp. 20.1-
20.29. 

[42] Li, X., Shephard, M.S., and Beall, M.W., 2003, “Accounting for curved domains 
in mesh adaptation,” Int. J. Numer. Meth. Engrg., 58(2), pp. 247-276. 

[43] Rivara, M.-C. and Iribarren, G., 1996, “The 4-triangles longest-side partition of 
triangles and linear refinement algorithms,” Math. Comp., 65(216), pp. 1485-
1502. 

[44] Rivara, M.-C., 1997, “New longest-edge algorithms for the refinement and/or 
improvement of unstructured triangulations,” Int. J. Numer. Meth. Engrg., 
40(18), pp. 3313-3324. 

[45] Rivara, M.-C. and Inostroza, P., 1997, “Using longest-side bisection techniques 
for the automatic refinement of Delaunay triangulations,” Int. J. Numer. Meth. 
Engrg., 40(4), pp. 581-597. 

[46] Wille, S.O., 1992, “A structured tri-tree search method for generation of optimal 
unstructured finite element grids in two and three dimensions,” Int. J. Numer. 
Meth. Fluids, 14(7), pp. 861-881. 

[47] Plaza, A., Padrón, M.A., and Carey, G.F., 2000, “A 3D refinement/derefinement 
algorithm for solving evolution problems,” Apple. Numer. Math., 32(4), pp. 401-
418. 

[48] Plaza, A. and Carey, G.F., 2000, “Local refinement of simplicial grids based on 
the skeleton,” Apple. Numer. Math., 32(2), pp. 195-218. 

[49] Language, H.P., 1999, Computational Partial Differential Equations, Springer-
Verlag, Berlin. 



133 

 

[50] Zorin, D., and Schröder, P., 2001, “A unified framework for primal/dual 
quadrilateral subdivision schemes,” Comput. Aided Geom. Des., 18(5), pp. 429-
454 

[51] Zorin, D., and Schröder P., eds., 2000, “Subdivision for modeling and 
animation,” ACM SIGGRAPH 2000 Course Notes. 

[52] Yserentant, H., 1986. “On the Multi-Level Splitting of Finite Element Spaces,” 
Numer. Math., 49(4), pp. 379-412.    

[53] Duarte, C.A. and Babuška, I., 2002, “Mesh-independent p-orthotropic 
enrichment using the generalized finite element method,” Int. J. Numer. Meth. 
Engrg., 55(12), pp. 1477-1492. 

[54] Babuška, I. and Guo, B., 2001, “Direct and inverse approximation theorems for 
the p-version of the finite element method in the framework of weighted Besov 
spaces. Part I: Approximability of functions in the weighted Besov spaces,” 
SIAM J. Numer. Anal., 39(5), pp. 1512-1538. 

[55] Dorr, M.R., 1984, “The Approximation Theory for the p-Version of the Finite 
Element Method,” SIAM J. Numer. Anal., 21(6), pp. 1181–1207. 

[56] Dorr, M.R., 1986, “The Approximation of Solutions of Elliptic Boundary-Value 
Problems via the p-version of the Finite Element Method,” SIAM J. Numer. 
Anal., 23(1), pp. 58–77. 

[57] Babuška, I. Banerjee, U., and Osborn J.E., 2002, “On principles for the selection 
of shape functions for the Generalized Finite Element Method,” Comput. Meth. 
Apple. Mech. Engrg., 191(49-50), pp. 5595-5629.  

[58] Devine, K.D. and Flaherty, J.E., 1996, “Parallel adaptive hp-refinement 
techniques for conservation laws,” Apple. Numer. Math., 20(4), pp. 367-384. 

[59] Babuška, I. and Suri, M., 1994, “The p and h-p Versions of the Finite Element 
Method, Basic Principles and Properties,” SIAM Rev. 36(4), pp. 578-632. 

[60] Demkowicz, L., Pardo, D. and Rachowicz, W., 2002, “3D hp-Adaptive Finite 
Element Package (3Dhp90), Version 2.0: The Ultimate (?) Data for Three-
Dimensional, Anisotropic hp Refinements,” Technical Report No. 02-24, 
TICAM, University of Texas at Austin, Austin, TX. 

[61] Schwab, C., 1998, p and hp-Finite Element Methods, Clarendon Press, Oxford, 
UK. 



134 

 

[62] Rachowicz, W., Pardo, D., and Demkowicz, L., 2006, “Fully automatic hp-
adaptivity in three dimensions,” Comput. Meth. Apple. Mech. Engrg., 195(37-
40), pp. 4816-4842. 

[63] Oden, J.T., Demkowicz, L., Rachowicz, W., and Westermann, T.A., 1989, 
“Toward a universal h-p adaptive finite element strategy, part 2. A posteriori 
error estimation,” Comput. Meth. Apple. Mech. Engrg., 77(1-2), pp. 113-180. 

[64] Zienkiewicz, O.C. and Zhu, J.Z., 1987, “A simple error estimator and adaptive 
procedure for practical engineering analysis,” Int. J. Numer. Meth. Engrg., 24(2), 
pp. 337-357. 

[65] Yserentant, H., 1992, “Hierarchical bases,” Proc. ICIAM 1991, SIAM, 
Philadelphia, PA. 

[66] Krysl, P., Grinspun, E., and Schröder, P., 2003, “Natural hierarchical refinement 
for finite element methods,” Int. J. Numer. Meth. Engrg., 56(8), pp. 1109-1124. 

[67] Von Herzen, B. and Barr, A., 1987, “Accurate triangulations of deformed, 
intersecting surfaces,” Proc. ACM SIGGRAPH’87, 21(4), pp. 103–110. 

[68] Samet, H., 1995, Applications of Spatial Data Structures: Computer Graphics, 
Imaging, and GIS, Addison-Wesley, Reading, MA, 2nd ed. 

[69] Hughes, T.J.R., 2000, The Finite Element Method: Linear static and dynamic 
analysis, Dover Publications, Mineola, NY, 2nd ed. 

[70] Booch, G., Jacobson, I., and Rumbaugh, J., 1995, Unified Modeling Language 
for Object-Oriented Development. Documentation Set, Version 0.91, Rational 
Software Corporation, Santa Clara, CA. 

[71] Beall, M.W. and Shephard, M.S., 1999, “An object-oriented framework for 
reliable numerical simulation,” Engineering with Computers, 15(1), pp. 61–72. 

[72] Zienkiewicz, O.C. and Taylor, R.L., 2000, The finite element method: The basis, 
Volume 1, Elsevier Butterworth-Heinemann, Oxford, UK, 5th ed. 

[73] ANSYS User’s Manual, 1992. 

[74] Alleyne, D. and Cawley, P., 1991, “A two-dimensional Fourier transform 
method for measurement of propagating multimode signals,” J. Acoust. Soc. 
Am., 89(3), pp. 1159-1168. 

[75] Moser, F., Jacobs, L.J., and Qu, J., 1999, “Modeling elastic wave propagation in 
waveguides with the finite element method,” NDT&E Int., 32(4), pp. 225-234. 



135 

 

[76] McNamara, J.D., 2003, “Health Monitoring of Rail Road Tracks by Elastic 
Waves based Non Destructive Testing,” Ph.D. Dissertation, University of 
California, San Diego, San Diego, CA. 

[77] Krysl, P., Cranford, T.W., Wiggins, S.M., and Hildebrand, J.A., 2006, 
“Simulating the effect of high-intensity sound on cetaceans: Modeling approach 
and a case study for Cuvier’s beaked whale (Ziphius cavirostris),” J. Acoust. 
Soc. Am., 120(4), pp. 2328-2339. 

[78] Majumdar, A., Birnbaum, A., Choi, D.J., Trivedi, A., Warfield, S.K., Baldridge, 
K., and Krysl, P., 2005, “A Dynamic Data Driven Grid System for Intra-
operative Image Guided Neurosurgery,” Lecture Notes in Computer Science: 
Computational Science - ICCS 2005, Springer, Berlin, 3515, pp. 672-679. 

[79] Krysl, P., Damaser, M., Chukkapalli, G., Majumdar, A., Choi, D.J., Trivedi, A., 
Warfield, S.K., and Hoyte, L., 2006, “Computational Model of Levator Ani 
Muscle Stretch during Natural Birth,” 5th World Congress of Biomechanics, 
Munich, Germany. 

[80] Lanza di Scalea, F. and McNamara, J., 2003, “Ultrasonic NDE of railroad tracks: 
Air-coupled cross-sectional inspection and long range inspection,” INSIGHT – 
Non-Destructive Testing and Condition Monitoring, 45(6), pp. 394-401. 

[81] West, M., Kane, C., Marsden, J.E., and Ortiz, M., 1999, “Variational integrators, 
the Newmark scheme, and dissipative systems,” International Conference on 
Differential Equations, B. Fiedler et al., eds., Berlin, pp. 1009-1011. 

[82] Moore, G.E., 1965, “Cramming more components onto integrated circuits,” 
Electronics, 38(8). 

[83] Hauth, M., Grob, J., and Straber, W., 2003, “Interactive physically based solid 
dynamics,” Eurographics/SIGGRAPH Symposium on Computer Animation. 

[84] Lew, A., Marsden, J., Ortiz, M., and West, M. “Asynchronous variational time 
integrators,” Archive for Rational Mechanics and Analysis, 167(2), pp. 85-146.  

[85] Warfield, S.K., Talos, F., Tei, A., Bharatha, A., Nabavi, A., Ferrant, M., Black, 
P.M., Jolesz, F.A., and Kikinis, R., 2002, “Real time registration of volumetric 
brain MRI by biomechanical simulation of deformation during image guided 
neurosurgery,” J. Computing and Visualization in Science, 5, pp. 3-11. 

[86] Melenk, J.M. and Babuška I., “The Partition of Unity Finite Element Method” 
Comp. Meth. Appl. Mech. Eng., 152, pp. 73-84.  



136 

 

[87] Simo, J.C., Tarnow, N., and Wong, K.K., 1992, “Exact energy-momentum 
conserving algorithms and symplectic schemes for nonlinear dynamics,” Comp. 
Meth. Appl. Mech. Eng., 100(1), pp. 63–116. 

[88] Ehlers, W., Ammann, M., Diebels, S., 2002, “h-adaptive FE methods applied to 
single and multiphase problems,” Int. J. Num. Meth. Eng., 54(2), pp. 219-239. 

[89] Felippa, C.A., 2007, Notes on Mass Matrix  
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/ 

[90] Felippa, C.A., 2006, “Construction of customized mass stiffness pairs using 
Templates,” J. Aerospace Engineering, 19(4), pp. 241-258. 

[91] Archer, J.S., 1963, “Consistent mass matrix for distributed mass systems,” J. Str. 
Div. Proc. ASCE, 89, pp. 161–178. 

[92] Archer, J.S., 1965, “Consistent mass matrix formulation for structural analysis 
using finite element techniques,” AIAA J., 3, pp. 1910–1918. 

[93] Melosh, R.J., 1962, “Development of the stiffness method to define bounds on 
the elastic behavior of structures,” Ph.D. thesis, University of Washington, 
Seattle, WA. 

[94] Hinton, E., Rock, T., and Zienkiewicz, O.C., 1976, “A Note on Mass Lumping 
and Related Processes in the Finite Element Method,” Earthquake Engineering 
and Structural Dynamics, 4, pp. 245-249. 

[95] Goudreau, G.L., 1970, “Evaluation of Discrete Methods for the linear Dynamic 
Response of Elastic and Visco elastic solids,” UC SESM Report 69-15, 
University of California, Berkeley. 

[96] Gaveric, L., 1993, “Dispersion Curves of I-Profiled Beams by a Finite Element 
Method,” Proc. ACOUSTICS, 15(3), pp. 553-560.  

[97] Wilcox, P., Evans, M., Diligent, O., Lowe, M., and Cawley, P., 2002, 
“Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with 
Arbitrary Cross Section,” Review of Quantitative Nondestructive Evaluation, 21, 
pp. 203-210. 

[98] Lowe, M., 1998, “Characteristics of the Reflection of Lamb waves from Defects 
in Plates and Pipes,” Review of Progress in Quantitative Nondestructive 
Evaluation, 17, pp. 113-120. 




