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Emergent Mental Lexicon Functions in ChatGPT 

Christopher Kello (ckello@ucmerced.edu) and Polyphony Bruna (pbruna@ucmerced.edu) 
Cognitive and Information Sciences, University of California, Merced 

5200 North Lake Rd., Merced, CA 95343 USA 
 
 

Abstract 
Traditional theories of the human mental lexicon posit 
dedicated mechanisms of processing that develop as sustained 
functions of brain and mind. Large Language Models (LLMs) 
provide a new approach in which lexical functions emerge 
from the learning and processing of sequences in contexts. We 
prompted lexical functions in ChatGPT and compared numeric 
responses with averaged human data for a sample of 390 words 
for a range of lexical variables, some derived from corpus 
analyses and some from Likert ratings. ChatGPT responses 
were moderately to highly correlated with mean values, more 
so for GPT-4 versus GPT-3.5, and responses were sensitive to 
context and human inter-rater reliability. We argue that 
responses were not recalled from memorized training data but 
were instead soft-assembled from more general-purpose 
representations. Emergent functions in LLMs offer a new 
approach to modeling language and cognitive processes. 

Keywords: large language models; emergent functions; 
mental lexicon; soft-assembly 

 
LLMs have developed a surprising and impressive ability 

to perform a wide range of prompted tasks on which they 
were not directly trained (Wei, Tay, et al., 2022). Training is 
primarily based on learning sequences through prediction in 
the context of surrounding tokens (e.g. words), and training 
data consists of many long sequences of text and symbols 
culled from various corpora. After training, a prompt can be 
written to begin a context, and then an LLM like that used in 
ChatGPT can continue and expand the context by 
autoregressively predicting and producing subsequent tokens 
until an end of response is predicted. As a result, LLMs can 
generalize from their training data to produce responses to 
prompts that answer questions, perform tasks, solve 
problems, and generate plausible text and/or numbers given 
the context (OpenAI, 2023). Continuations can be 
sometimes bizarre, offensive, biased, untruthful, or otherwise 
unhelpful, so LLM responses are also fine-tuned to be more 
helpful and appropriate, often through reinforcement learning 
based on targeted sets of prompts and responses (Ouyang et 
al., 2022). 

LLM functions assembled from prompts are often referred 
to as emergent because they are untrained and become 
available as training corpora and model parameters become 
larger (Bommasani et al., 2021). Fine-tuning plays a role in 
shaping LLM responses, especially those targeted by human 
feedback, but this feedback is limited relative to the 
remarkable breadth and scope of emergent functionality. 

Investigations are underway to understand how LLM 
functions emerge from transformer networks. One technique 
is to prompt them with examples of the desired function so 
the LLM may generalize by similarity and analogy (Wei, 

Wang, et al., 2022). Such few shot learning protocols can be 
effective, but functions can also be assembled with no 
examples, so-called zero shot learning or reasoning (Kojima 
et al., 2022). Few and zero shot learning suggests that 
transformer networks learn general-purpose representations 
that serve as pre-trained “building blocks” ready for on-the-
fly assembly directed by prompting (Jiang & Bansal, 2021).  

Emergent function stands in contrast with the idea that 
prompts serve as cues for locating and recalling functions in 
training data memorized in ChatGPT’s weight matrices 
(Reynolds & McDonell, 2021). Indeed, LLMs can memorize 
sequences from their training data (Carlini et al., 2022), and 
the function of memorization may be as emergent as any 
other LLM function (Biderman et al., 2023). We aim to test 
emergence versus memorization as a window into how LLMs 
may serve as models of human language and cognition. 

The Mental Lexicon 
We investigate the emergence versus memorization 

hypotheses by prompting ChatGPT with tests of the human 
mental lexicon, which refers to a person’s knowledge of, and 
facility with, the words of their language, including spelling, 
sound, meaning, and grammar (Aitchison, 2012). The mental 
lexicon has long been a testbed for theoretical frameworks of 
cognition and information processing, most notably in 
debates between rule-based versus connectionist processing 
(Coltheart et al., 1993; Smolensky, 1988). 

LLMs are founded on connectionist processing, but they 
offer a different theory of the human mental lexicon, and of 
human cognition more generally, compared with prior 
connectionist or rule-based theories. For instance, the Dual-
Route Cascade model (Coltheart et al., 2001) of word and 
nonword reading posits several rule-based mechanisms for 
mapping letters to sounds, accessing the stored meanings and 
sounds of words, and producing sequences of phonemes. By 
contrast, the distributed connectionist (Plaut et al., 1996; 
Seidenberg & McClelland, 1987) posits learned mappings 
between the spellings, sounds, and meanings of words. 

The theories espouse different principles of word and 
nonword reading, but they make the same implicit 
assumption that the posited mechanisms and mappings are 
dedicated functions of sustained structures in the brains and 
minds of readers. Model outputs can be shaped by task 
demands and context if enabled by the mechanisms or 
mappings, but the model architectures cannot reorganize 
themselves for different purposes under different conditions. 
Assumptions of dedicated functions and sustained structures 
are held by most models of language of cognitive functions.  

LLMs offer a different approach to theorizing about the 
mental lexicon, and language and cognition in general. 
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Rather than dedicated functions or sustained structures, 
lexical processing emerges as a potential in learning a 
generative model of language. The potential is realized in 
prompted contexts and task conditions. Simple Recurrent 
Networks provided an early glimpse into this emergent 
approach in that they showed how lexical processes could 
emerge from learning sequences of linguistic units (Elman, 
2005; Sibley et al., 2008). LLMs greatly expand on the 
emergent approach by enabling the assembly of potentially 
any function of the mental lexicon, as just one of many 
domains of function assembly enabled by sequence learning 
in transformer networks.  

We used zero shot prompts in ChatGPT to elicit several 
lexical functions whose outputs are numeric and can be 
compared with corpus statistics and human word ratings. As 
LLM responses more closely match the data, functions come 
closer to constituting a model of the human mental lexicon 
created by sequence learning in LLMs. Mental lexicon 
models are often tested against measures of online lexical 
processing such as response times or event-related potentials 
(ERPs), but LLM processing is generally not theorized to 
simulate mental or neural processing dynamics in humans. 
Therefore, only lexical statistics and ratings are tested herein. 

Experimenting with Lexical Functions in LLMs 
We conducted experiments with ChatGPT designed to test 

emergence versus memorization as the basis of its ability to 
perform lexical functions. Words and associated data came 
from the South Carolina (SCOPE) Psycholinguistic metabase 
(Gao et al., 2023). We chose SCOPE corpus variables that 
are known to correlate with measures of human lexical 
processing such as response times and error rates. This choice 
allowed us to prompt ChatGPT for corpus values as a proxy 
for online measures of human lexical processing. We also 
chose rating variables, whose values could be prompted from 
ChatGPT as they were prompted from participants. We 
focused on the Glasgow norms (Scott et al., 2019) because 
they tap into a range of lexical variables, from a word’s age 
of acquisition and familiarity to its arousal and dominance. 
We added two additional rating variables from other studies 
to further expand the range and test outside the Glasgow 
study for comparison. 

We tested and compared GPT-3.5 responses versus GPT-4 
responses in chat mode, and we expected GPT-4 responses to 
more closely match corpus statistics and human ratings 
compared with GPT-3.5. GPT-4 is reported to be much larger 
in terms of model parameters and training data, with more 
fine-tuning of its responses. A given lexical function may be 
effectively absent in GPT-3.5 and present in GPT-4, or 
present in both models but more human-like in GPT-4.  

Both emergence and memorization lead us to expect more 
human-like responses from GPT-4, but for different reasons. 
On emergence, lexical functions are assembled from general-
purpose representations (Bender et al., 2021), and these 
learned representations would better reflect patterns of 
human behavior that are better captured by larger models 
trained on larger corpora. On memorization, larger training 

corpora would be more likely to explicitly include the values 
of lexical variables, and larger models would be better able 
to recall those values from its weight matrices (Bender et al., 
2021).  

The emergent and memorization hypotheses diverge, 
however, when one considers correlations with specific 
lexicon variables. Memorization predicts a comparable 
degree of correlation for different variables from the same 
study—if the LLM can recall ratings for one variable from 
the Glasgow norms, it should similarly be able to recall 
ratings for other Glasgow variables. It is possible that some 
variables may serve as better cues to recall than others, but a 
process akin to random access memory would either recall 
values as memorized, or not. Approximated values would 
necessarily come from an assembled process that involves 
more general knowledge about the meanings of variables, 
usages of words, and how to map variables and words onto 
values. Therefore, we argue that different degrees of 
correlation for different variables from the same study would 
stand as evidence against the memorization hypothesis.  

In contrast, the emergent hypothesis allows for variability 
in how each lexicon function is assembled depending on the 
lexical variable and words being probed. This variability is 
context-dependent (Kello et al., 2007), which means that 
more ambiguous lexicon variables and words may lead to 
more variability across contexts and hence more varied 
response values. Human ratings should also be more varied if 
the human mental lexicon is similarly affected by ambiguity. 
Therefore, the emergent hypothesis predicts that the strength 
of LLM correlations will correspond with the reliability of 
human responses. We can test this prediction because the 
Glasgow study includes not only mean word ratings for each 
lexicon variable, but also the standard deviation (SD) across 
individual raters for each word and variable, i.e. measures of 
inter-rater reliability. The emergent hypothesis predicts lower 
LLM correlations for words and lexicon variables with lower 
human inter-rater reliability. 

Experiment 1 
The SCOPE corpus currently contains more than 250 
variables and over 100,000 words and 81,000 nonwords 
gathered from dozens of psycholinguistic studies. Any given 
word may have data for only a subset of the variables, so we 
selected all and only the words that had data for all variables 
chosen for inclusion in this study. We chose 4 variables 
derived from corpus statistics and 12 variables of mean 
human word ratings for a total of 16 variables and 390 words 
(the selected words were also required to include data on 5 
additional variables chosen for future study). The variables 
are listed in Table 1 and the words can be found at 
https://github.com/pjbruna/chatgpt-soft-assembly along with 
prompts and data collection and analysis scripts. 

Each prompt was designed to elicit estimated values for 
just one of the 16 SCOPE variables for a given set of words, 
and ChatGPT was prompted separately for each variable. The 
GPT models used through the OpenAI API were gpt-4-
0613 and gpt-3.5-turbo-16k-0613. Preliminary 
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testing showed that GPT-3.5 was not always able to provide 
valid responses for large sets of words, so for both models, 
we randomly divided the selected sample of 390 words into 
5 batches of 78 words each, with words ordered randomly.  

 
Table 1: SCOPE Sources, Variables, and Value Types  

 
Source Variable Type 
Brysbaert & New 
(2009), corpus 

Word Frequency Int [1, 1M] 
Contextual Diversity Int [1, 1000] 

Hoffman et al. 
(2013), corpus 

Semantic Diversity Real [0, 2.5] 

Webster’s Dict. Num. Meanings Int [1, N] 
Kuperman et al. 
(2013) 

Age of Acquisition Int [1, N], 
ratings 

Scott et al. (2019) 
Glasgow norms 

Age of Acquisition Real [1, 7], 
ratings Concreteness 

Familiarity 
Gender Association 
Imageability 
Semantic Size 
Arousal Real [1, 9], 

ratings Dominance 
Valence 

Diveica et al. 
(2022) 

Socialness Real [1, 7], 
ratings 

Engelthaler & 
Hills (2018) 

Humor Real [1, 5], 
ratings 

 
Prompts for word ratings closely followed the prompts 

given to human raters. Small edits were made to adjust for 
responding with a set of ratings at a time, rather than 
individual words and ratings. Prompts for the corpus 
variables directed the LLM to estimate the statistic based on 
the method by which it was computed. For instance, word 
frequency and contextual diversity were based on a corpus of 
film subtitles, so the prompts asked for estimates based on an 
“imagined” corpus of film subtitles. The imagined size was 
changed to indicate a standardized 1,000 films with 1M 
words, and responses were scaled and logged to match the 
size of the corpus. 

Some of the rating prompts for humans made references to 
the rater in a personal tone of voice. For ChatGPT, the tone 
of the prompt tends to evoke a similar tone of response, and 
preliminary tests indicated that such a tone may increase the 
chance of some embellished narrative being included with 
responses for which only words and ratings are requested. To 
set a formal, task-oriented tone, ChatGPT prompts for both 
human ratings and corpus statistics were written in a directive 
register, mostly using the imperative tense. 

A separate ChatGPT user prompt was created for each of 
the 16 SCOPE variables, followed by each of the 5 batches 
of words. In addition to the user prompt, ChatGPT includes a 
system prompt that sets a prior, overarching context for a 
given chat interaction. We wrote a single system prompt as 
context for all user prompts that directed the LLM to encode 

the upcoming task and respond with words and values in a 
specific format. The system prompt and example user 
prompts (excluding words) are shown in Table 2. 

 
Table 2: System Prompt and 3 Example User Prompts  

 
System Prompt: “Encode the task and then for each and 
every word listed after the task instructions, respond with its 
corresponding value, one 'word,value' pair per line.” 
Contextual Diversity: “The contextual diversity of a word is 
based on the number of different contexts that the word 
appears in. Contextual diversity is measured from the 
subtitles of films, where each film is a different context, and 
a word may or may not appear in the subtitles of a given film. 
Imagine a sample of one thousand films with American 
English subtitles, and a given word may appear in some 
number of different films based on their subtitles. Estimate 
the number of films, from 1 to 1000, that each of the following 
words appears in:” 
Number of Meanings: “Dictionaries list all the known 
meanings of words in a language. For a typical English 
language dictionary, provide a whole number estimate of the 
number of meanings for each of the following words:” 
Dominance: “Dominance is a measure of the degree of 
control felt by a person. A word can make a person feel 
DOMINANT, influential, in control, important, or 
autonomous. In contrast, a word can make a person feel 
CONTROLLED, influenced, cared-for, submissive, or 
guided. Indicate how each word makes a person feel on a 
continuous scale of 1.0 (VERY CONTROLLED) to 9.0 (VERY 
DOMINANT), with the midpoint being neither controlled nor 
dominant:” 

 
ChatGPT enables users to also set the size of the context 

window, in number of tokens, used by the LLM transformer 
network and the temperature parameter on the autoregressive 
next-token prediction output layer. We set the window size to 
be large enough to encompass each system and user prompt 
and its ChatGPT response (5,000 tokens), and we set the 
temperature to zero, which means that the maximally 
activated token is always chosen on each step of processing. 
ChatGPT has one or more other sources of randomness not 
visible or accessible to the user, so ChatGPT responses are 
not fully deterministic even with temperature set to zero. We 
ran each prompt twice to measure the average deviation in 
response values due to stochasticity. GPT-4.0 always 
responded with numeric values for all words, GPT-3.5 gave 
non-numeric (e.g. “?”) or anomalous (values well outside the 
possible range) on a few rare occasions. Another prompting 
was sufficient in these cases to yield valid responses.  

Results 
Analyses were performed in the R environment (v. 4.2.2), 

using the tidyverse (Wickham et al., 2019), ggplot2 
(Villanueva & Chen, 2019), lmerTest (Kuznetsova et al., 
2017), and emmeans (Lenth, 2023) packages. Table 3 
presents correlations between SCOPE and GPT values for 
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each variable and corresponding GPT prompt, for each of two 
model runs. Each correlation is based on the same 390 words 
divided into the same 5 randomized batches. The average 
increase in correlation from GPT-3.5 to GPT-4 is in the right-
most column, and rows are sorted by average increase. 

 
Table 3: Correlations between SCOPE and GPT values 

 
 GPT-3.5 GPT-4  

Avg 
Inc. 

Run 1 Run 2 Run 1 Run 2 

Imageability 0.03 0.05 0.82 0.79 0.77 
Gender 0.28 0.32 0.84 0.86 0.55 
Semantic Div. -0.01 -0.04 0.42 0.51 0.49 
AoA Glasgow 0.46 0.52 0.88 0.88 0.39 
Frequency 0.22 0.23 0.64 0.58 0.39 
AoA Kuper. 0.56 0.55 0.87 0.86 0.31 
Semantic Size 0.51 0.47 0.79 0.78 0.30 
Socialness 0.59 0.62 0.87 0.87 0.27 
Context Div. 0.51 0.42 0.69 0.78 0.27 
Concreteness 0.66 0.68 0.92 0.92 0.25 
Familiarity 0.50 0.47 0.72 0.72 0.24 
Humor 0.36 0.37 0.57 0.56 0.20 
Meanings 0.55 0.61 0.66 0.66 0.08 
Dominance 0.55 0.55 0.62 0.63 0.08 
Valence 0.87 0.88 0.94 0.94 0.07 
Arousal 0.48 0.48 0.52 0.50 0.03 
MEAN 0.45 0.45 0.74 0.74 0.29 
 
Table 3 shows little difference between runs, indicating 

very minor effects of stochasticity at zero temperature. In 
general, correlations indicate that ChatGPT responses were 
consistent with corpus values and human responses from 
SCOPE. That said, there was a wide dispersion in effect sizes 
across variables and GPT models, from uncorrelated to nearly 
perfectly correlated. GPT-4 responses were substantially 
more correlated with SCOPE data than GPT-3.5 responses 
for most variables, and there was also wide dispersion in the 
jumps in correlation, from no appreciable increase to a full 
jump from uncorrelated to highly correlated. 

The wide dispersion in correlations across variables in the 
SCOPE corpus is evidence that lexical functions were 
assembled rather than recalled from memory. Wide 
dispersion in the size of correlation jumps is evidence that the 
emergence of lexical functions in GPT models is a 
heterogeneous process—jumps in correlation for some 
functions were discontinuous like a phase transition, jumps 
for others were more gradual, and still others showed no 
detectable change in correlation. 

To test whether heterogeneity in emergence may be partly 
explained by variation in the ambiguity of lexical variables, 
we averaged the human item-level standard deviations (SDs) 
for each Glasgow variable, and we plotted their relationship 
with correlations between corresponding mean ratings and 
ChatGPT responses (Figure 1). Scatter plots show a strong 
correspondence between SDs and ChatGPT correlations for 
GPT-4, but not GPT-3.5 (r = -0.81 and -0.03, respectively, 

using the Fisher Z transform on ChatGPT correlations). To 
test whether this effect might instead come from variation in 
Glasgow means (i.e. an effect of restricted range), we 
removed variability in item SDs that was accounted for by 
variability in mean SDs. The result held up, albeit slightly 
weakened (r = -0.63 and 0.10 for GPT-4 and GPT-3.5). 
 

 
Figure 1: Relationship between ChatGPT correlations and 

inter-rater reliability for the Glasgow norms 
 
The above results show that assembly of lexical functions 

in GPT-4 was better for variables with greater human inter-
rater reliability, as measured by mean item SDs. We tested 
the same effect at the individual word level by pairing words 
that had equivalent mean ratings for a given Glasgow variable 
but differed by at least 0.1 in their item SDs, thereby creating 
high versus low SD word groups for each variable.  
Correlations with mean Glasgow ratings for GPT-3.5 and 
GPT-4 are shown in Table 4, for high and low SD groups. 
Differences in correlations between high and low SD groups 
are also shown, where positive numbers are in the predicted 
direction of stronger correlations for words with greater inter-
rater reliability. 

 
Table 4: Correlations between Glasgow and GPT  

for Words with High vs Low Item SDs  
 

 GPT-3.5 GPT-4 
High 
SD 

Low 
SD 

Diff 
 

High 
SD 

Low 
SD 

Diff 
 

AoA 0.49 0.47 −.02 0.88 0.90 +.02 
Arousal 0.49 0.46 −.03 0.47 0.55 +.08 
Concrete 0.66 0.64 −.02 0.93 0.90 −.03 
Dominant 0.53 0.60 +.07 0.59 0.69 +.10 
Familiar 0.51 0.50 −.01 0.70 0.74 +.05 
Gender 0.30 0.34 +.04 0.81 0.87 +.07 
Imageable .007 0.05 +.04 0.79 0.80 .004 
Size 0.48 0.53 +.05 0.77 0.81 +.04 
Valence 0.86 0.88 +.02 0.92 0.95 +.02 
MEAN 0.48 0.50 +.01 0.76 0.80 +.04 
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Results at the word level of analysis followed the same 
pattern as results at the variable level: The assembly of lexical 
functions in GPT-4 was better for words with greater human 
inter-rater reliability, as measured by mean item SDs, 
whereas this effect was less clear for GPT-3.5. We tested the 
effect of reliability (high versus low item SD) using a one-
sample paired t-test on the differences for each GPT model, 
with the Fisher Z transform of correlations as the dependent 
measure. We found that correlations for the low SD words 
were significantly higher than those for high SD words for 
GPT-4 (t(8) = 2.44, p = 0.02) but only marginally for GPT-
3.5 (t(8) = 1.29, p = 0.12). In conclusion, function assembly 
in GPT-4 is sensitive to inter-rater reliability, which we 
interpret as further evidence for the emergence of a model of 
the human mental lexicon in GPT-4. 

Experiment 2 
Experiment 1 showed that ChatGPT can be prompted to 

assemble lexical functions that closely follow corpus and 
human response data, more so in GPT-4 compared with GPT-
3.5. The ability of ChatGPT to assemble myriad other 
functions, lexicon and otherwise, suggests that assembled 
functions will tend to be highly context sensitive. The reason 
is that even small changes in prompts must have the 
possibility of causing substantial modifications in the 
assembled function. For example, how words are judged in 
terms of arousal could vary based on subtle cues in the 
prompt, including the context of other words being judged. 
Such word list composition effects are well-documented in 
human responses (e.g. Dorfman & Glanzer, 1988), and in 
ChatGPT, they would provide evidence against the existence 
of a pre-determined function for each lexical variable. 

In Experiment 2, we investigate the contextuality of lexical 
functions by testing for effects of list composition. Words in 
Experiment 1 were placed in the same 5 batches and listed in 
the same random order for all prompts. In Experiment 2, we 
ran the same variable prompts for the same 390 words but in 
two different arrangements. One was a different randomized 
order from Experiment 1, resulting in 5 different batches of 
randomized words. In the other arrangement, words were 
sorted according to the mean values of each SCOPE variable, 
and then 5 sorted batches were extracted by taking every fifth 
word in the sorted lists. Thus, unbeknownst to ChatGPT, each 
prompt called for responses to be in numeric order, from 
lowest to highest value. 

If assembled lexical functions are sensitive to context, then 
ChatGPT responses should vary more between different 
batches and orders compared with two runs of the same 
batches and orders at zero temperature. As noted in 
Experiment 1, some variability can be attributed to 
stochasticity even at zero temperature, so we compared 
different batches and orders against a baseline of stochastic 
variability. If the sensitivity to context specifically affects 
each assembled lexical function, then the sorted condition 
should vary more from baseline compared with the random 
condition because words were sorted according to the 
SCOPE variable for each respective prompt. 

Results 
To measure the degree of GPT variability, we calculated 

the absolute difference between ratings for each word, for 
both Run 1 and 2 in Experiment 1, and the two new runs:  the 
newly randomized (Rnd) and sorted (Srt) word orders. The 
absolute difference between the two runs from Experiment 1 
was used as a control (Crl).  

Table 5 presents the mean absolute difference for each 
SCOPE variable, averaged over the Run 1 and 2 baselines for 
Rnd and Srt conditions. As predicted, the table shows greater 
differences for different batches and word orders (Rnd and 
Srt) compared with the baseline of ChatGPT stochastic 
variability (Crl). The differences also appear greater for Srt 
vs. Rnd, and greater for GPT-3.5 vs. GPT-4. 

 
Table 5: Average absolute differences in Experiment 2 

 
 GPT-3.5 GPT-4 

Crl Rnd Srt Crl Rnd Srt 
Imageable 0.12 0.73 0.70 0.17 0.52 0.77 
Gender 0.19 0.67 0.80 0.09 0.45 0.86 
Sem. Div 0.12 0.60 0.52 0.28 0.37 0.45 
AoA Glas. 0.16 0.66 0.73 0.11 0.62 0.67 
Frequency 0.77 1.07 1.02 0.55 0.75 0.40 
AoA Kup. 0.30 1.66 2.68 0.23 1.13 1.39 
Sem. Size 0.06 0.71 0.92 0.16 0.57 0.77 
Social 0.28 0.87 1.19 0.14 0.60 0.63 
Context Div 0.32 0.31 0.49 0.15 0.20 0.20 
Concrete 0.13 0.59 0.68 0.25 0.45 0.60 
Familiar 0.10 0.75 1.03 0.31 0.44 0.65 
Humor 0.13 0.38 0.43 0.10 0.44 0.57 
Meanings 0.23 1.49 0.99 0.06 0.57 0.57 
Dominance 0.09 0.76 0.92 0.26 0.78 0.99 
Valence 0.11 0.56 0.77 0.08 0.48 0.91 
Arousal 0.06 0.78 1.62 0.30 0.77 0.67 
MEAN 0.20 0.79 0.97 0.20 0.57 0.69 

 
We tested the apparent effects using a linear mixed-effects 

regression model with comparison type (Crl/Rnd/Srt) and 
GPT model (3.5/4) as fixed effects, and SCOPE variable and 
word as random effects. Here we report results with Run 1 as 
the baseline (these findings replicated when Run 2 was used 
instead). We found a main effect of comparison type but not 
model type. Averaging over GPT models, both Rnd and Srt 
differences were greater than the Crl stochastic baseline (b = 
0.59, p < 2e-16 for Rnd; b = 0.77, p < 2e-16 for Srt), and Srt 
differences were greater than Rnd differences (b = 0.15, p < 
0.0001). 

In addition, the means in Table 5 suggest that context 
effects may have been stronger for GPT-3.5 vs. GPT-4. In 
support of this apparent interaction, we ran pairwise 
comparisons and found that Rnd and Srt differences were 
greater for GPT-3.5 compared with GPT-4 (b = 0.21, p < 
0.0001 for Rnd; b = 0.28, p < 0.0001 for Srt). 

ChatGPT Assembly Consistency. The interaction result 
suggests that the assembly of lexical functions in GPT-4 is 

5456



more robust to context effects compared with GPT-3.5, as if 
the functions are based on more stable “concepts” underlying 
the words and lexical variables. We tested this hypothesis by 
comparing the consistency of GPT responses across the two 
age of acquisition (AoA) prompts, where one requested age 
estimates in years, and the other requested ratings on 7-point 
scale where each number corresponded to an age range. If 
GPT-4 has a more stable concept of AoA, then its responses 
should be more self-consistent compared with GPT-3.5. As 
predicted, Values for the two different AoA response formats 
were more highly correlated for GPT-4 (r = 0.91) compared 
with GPT-3.5 (r = 0.55). This result provides evidence for 
greater consistency across contextual variations in assembled 
functions, and it calls for further investigation into the notion 
of lexical and conceptual stability in ChatGPT. 

Conclusions and Discussion 
Our experiments demonstrate the emergence of a model of 

the human mental lexicon in ChatGPT, with more human-
like lexical functions in GPT-4. Correlations with corpus 
variables suggest that LLMs can estimate lexical statistics, 
either directly or indirectly from training corpora, but not by 
recalling specific values from memory. Correlations with 
mean human ratings were surprisingly strong for some lexical 
variables, and for GPT-4, correlations were stronger for 
Glasgow variables and words with greater human inter-rater 
reliability. These results further support emergence over 
memorization and indicate how LLMs can provide a different 
kind of model of human language and cognition compared 
with prior connectionist and rule-based models. 

First and foremost, an LLM mental lexicon does not exist 
outside of tasks that trigger the assembly of specific lexical 
functions in particular contexts (Elman, 2009). The diversity 
of response correlations across lexical variables and between 
GPT models indicated that lexical functions were soft-
assembled (Kello & Van Orden, 2009) from more general-
purpose distributed representations learned in the service of 
next-token prediction. Prompts provided context to guide and 
constrain the process of soft assembly, which can be highly 
sensitive to even subtle changes in context, which was 
evidenced by ChatGPT word list composition effects. 

Prior to context, lexical functions only exist as latent 
potentials, which means that they may manifest in different 
ways when soft-assembled from prompts that differ even 
superficially in the requested response format. We found 
evidence for this sensitivity in the comparison of GPT-3.5 
responses for two different response formats for age of 
acquisition, which showed only a moderate correlation 
despite using the same word lists. Given that stochasticity 
inherent to ChatGPT was not sufficient to explain the 
unaccounted variability, we can conclude it came from 
differences in the soft-assembled age of acquisition function. 
GPT-4 showed more consistent function assembly, in that 
different response formats for age of acquisition were highly 
correlated with each other. 

For mental and neural activity, soft-assembly has been 
based on a balance of interdependence and independence 

among the system components from which functions arise 
(Tognoli & Kelso, 2014). This balance is hypothesized to 
result from dynamical metastability in neural and behavioral 
patterns of activity and their associated functions. LLM 
dynamics appear to be very different from human cognitive 
dynamics, and LLM models currently are not used to 
simulate human language learning or the time course of 
processing. Nevertheless, metastability may be a property of 
LLMs that arises from learning to predict tokens for an 
enormous range of trained contexts. In support of this 
conjecture, Hopfield networks with metastable states were 
recently incorporated with LLMs (Ramsauer et al., 2020), 
resulting in flexibility in the degree of assembly versus 
memorizations.  

The emergent nature of LLM functions means that we do 
not have direct access to an assembled model of the mental 
lexicon because it is buried in the LLM parameters, along 
with the activation values triggered by the prompted contexts 
and responses. Detailed model information is not made 
available by OpenAI for ChatGPT, but even for open-source 
LLMs of sufficient size, the weight matrices and unit 
functions make it daunting to isolate a complex emergent 
function like the mental lexicon. A promising direction of 
research on mechanistic interpretability seeks to reverse 
engineer the functionality of LLMs and other large-scale 
deep learning models (Nanda et al., 2023). Progress on 
mechanistic interpretability will be critical in using LLMs as 
models of the human mental lexicon, and language and 
cognition in general.  

In lieu of direct investigations into transformer 
mechanisms and learned representations, researchers may 
use experimental methods with LLMs and compare results 
with human experiments, as we have done herein. Some soft-
assembled LLM functions can be compared directly against 
measures of language and cognition, such as those based on 
Likert ratings herein. Other functions are abstracted or 
implemented differently in LLMs and so require more 
indirect comparisons, such as LLM estimates of corpus 
statistics as measures of effects on human on-line processing. 
Foundation models may evolve to provide more direct 
measures on on-line processing in the future. 

Lastly, it is an open question whether LLMs provide 
models of language and cognition at the level of individuals 
or populations (Aher et al., 2023; Andreas, 2022). Our 
prompts elicited ChatGPT responses as if it was an 
individual, but we compared its responses to sample means 
and SDs intended to represent a population. Further 
experiments may inform this issue and others at the 
intersection of LLMs and human language and cognition. 
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