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1.  Introduction
The use of unsupervised clustering methods for analysis and interpretation of geodetic data was discussed 
in (Granat & Donnellan, 2000), and the specific use of k-means and hierarchical agglomerative cluster-
ing methods to analyze Global Navigation Satellite System (GNSS) velocity observations was presented in 
some detail in (Simpson et al., 2012) and subsequent papers (Savage & Simpson, 2013a, 2013b; Thatcher 
et al., 2016). Here we build upon this previous work to extend unsupervised clustering to GNSS observations 
of both velocity and displacement using a wide variety of clustering methodologies. This approach contrasts 
with that of (Meade & Hager, 2005) and (Johnson, 2013), which fit the California region GNSS velocities 
with translations and rotations of dozens of small pre-defined blocks based on prior mapped faults. Our 
method complements theirs, by exchanging rigid block definitions for data-driven clusters; their methods 
have an advantageous side product of reasonably determined fault slip rates at the boundaries. Our ap-
proach has the advantage of allowing us to discover regional boundaries purely based on the GNSS velocity 
observations independent of any geophysical model. This facilitates the discovery of novel boundary fea-
tures and/or the independent confirmation of other models or theories.

We present a Python implementation of our approach, built upon the open source machine learning pack-
age scikit-learn (Pedregosa et al., 2011), that provides considerable flexibility in experimental design. The 
software returns the GNSS stations labeled by group in both tabular form and as a color coded KML file for 
easy visualization in Google Earth or Google Maps. Our implementation is designed to work with the GNSS 
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displacement and velocity information available from GeoGateway (Donnellan et al., 2021), a map-based 
science gateway supported by NASA, but is easily extendable to other data sources or output formats. Ve-
locities available from this source are estimated over the lifetime of each station, excluding detected breaks 
(Heflin et al., 2020).

2.  Methods
The goal of any clustering method is to group the available observations such that the members of each 
group are objectively similar to each other while being different from members of all other groups. So-called 
unsupervised clustering methods attempt to do this with little or no a priori information about the “true” 
group membership. Our hypothesis is that there are natural groupings of crustal displacement reflective of 
underlying physical processes, and so to test we apply unsupervised clustering methods to GNSS observa-
tions. A summary flowchart of our procedure is shown in Figure 1.

When performing unsupervised clustering, certain key questions need to be answered. What is the metric 
used for self-similarity and cluster differentiation (e.g., Euclidean distance)? What features of the obser-
vations will be used, and will they be normalized (typically yes)? What is the expected number of clusters 
(usually referred to as “k”), or should the clustering method attempt to estimate the number? The answers 
to these questions inform our experimental design.

As a specific example, consider clustering cosesismic GNSS velocities using the k-means (Lloyd, 1982) algo-
rithm. In k-means clustering, the algorithm attempts to partition the n observations into k clusters in which 
each observation belongs to the cluster with the nearest mean. The final result is the partitioning of the ob-
servation space into Voronoi cells. The problem is computationally difficult (NP-hard), but efficient iterative 
heuristic algorithms have been developed that usually converge quickly to a local optimum (Elkan, 2003; 
Hamerly & Drake, 2015). When using k-means, our computational setup for conducting experiments is as 
follows:

1.	 �Our similarity metric is Euclidean distance in the feature space of our observations, set by our choice of 
algorithm.

2.	 �We know that we need at least one partition of the data, but our choice of geographical area for the 
study also places a likely upper bound on the number of partitions, kmax. So we can run experiments for 
k = 2,…,kmax.

3.	 �We can include or exclude any direction of velocity observations in our feature set, although in general 
we usually include horizontal velocities while choosing to include or exclude the vertical velocities de-
pending on what sort of phenomena we wish to study.

4.	 �We can choose to normalize the features with respect to one another; our implementation normalizes 
features to have zero mean and unit variance. Depending on the data, this may enhance the influence of 
small displacements on the resulting groupings.

5.	 �We can include or exclude the geographical position information (latitude, longitude) of each station 
in the feature set. Including geographical information biases the algorithm toward creating spatially 
continuous clusters, while excluding it means clusters are based solely on velocities. If we decide to 
include geographical information, we must normalize the observation vectors so that each feature can 
be considered unitless.

In this work, we focus our discussion on results obtained from application of Gaussian mixture modeling 
(GMM) (McLachlan & Peel, 2004) to GNSS data from California. The GMM approach is very similar to 
k-means, but allows us to account for variance in the data through assignment of observations to Gaussi-
an probability distributions in the feature space. However, since our software implementation is based on 
scikit-learn, we were able to easily include a wide variety of other clustering options for use by investigators 
who wish to explore further:

1.	 �K-means clustering.
2.	 �Affinity propagation clustering.
3.	 �Mean-shift clustering.
4.	 �Spectral clustering.
5.	 �Agglomerative clustering.
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6.	 �DBSCAN.
7.	 �Gaussian mixture modeling.
8.	 �Variational inference Gaussian mixture modeling.

Wherever possible, we provide the user with reasonable default values for the necessary parameters used by 
each algorithm, although users may pass their own parameter values using optional command flags.

3.  Experimental Results and Discussion
We carried out a series of experiments using this approach designed to identify major crustal deformation 
boundaries in California. We used as our experimental input velocity and displacement observations calcu-
lated using the data from the GNSS processed using the GIPSY software package (Heflin et al., 2020). Our 
velocity clustering results for California are in good general agreement with those presented previously in 
(Thatcher et al., 2016). However, we extend our analysis to include several classes for long-term velocities, 
cosesismic offsets, post-seismic motions, and specific time intervals (Figure 2).

We employed two different clustering algorithms, k-means (discussed above) and Gaussian mixture mode-
ling for more robust results, and stepped up the number of classes for each from two to ten. We found that 
when we included horizontal and vertical motions in the analysis the results were a mixture of subsurface 
fluid motions that dominate the vertical motions and tectonic motions that dominate the horizontal mo-
tions. Since we were primarily interested in tectonic motion in these experiments, we excluded vertical 

Figure 1.  Flowchart showing the clustering procedure for Global Navigation Satellite System velocity data.
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motion from our study to avoid contamination by strong subsidence signals in the vertical direction. The 
software allows for inter-station distance to be included or excluded in the analysis. This biases the results so 
that stations within a cluster tend to be adjacent. After performing several experiments, we discovered that 
for this data set, inclusion of the station locations caused the geometry to dominate the clustering results. 
We note that plate boundaries naturally produce fault parallel extended clusters, which would never be 
contiguous when geometry is included in the feature set. As a result, we excluded geometry information so 
as not to obscure the signal arising from motion.

Figure 2.  Velocities (green) and coseismic offsets for the 2010 El Mayor–Cucapah earthquake and 2019 Ridgecrest earthquake sequence (red). Stations 
are small green icons. Circles show uplift (red) or subsidence (blue) for both cases. The larger vertical uplift in the north was removed as an outlier. Station 
locations are marked by small green icons. Arrowheads have error ellipses, but in most cases are too small to be shown at this scale.
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We performed the following experiments. For the results presented here we used a Gaussian Mixture Model 
on the feature space of the E-W and N-S velocity components only for 919 GNSS stations in and around 
California, with no geometric constraint. We solve for 2–10 classes for each. We used GeoGateway (Don-
nellan et al., 2021; Heflin et al., 2020) to compute a table of values for the following using a bounding box 
surrounding California (Latitude 37.1903, width 9.5335°, Longitude −119.1311, width 11.3379°).

1.	 �Long-term velocities
2.	 �Coseismic motions for the 2010 Mw7.3 El Mayor - Cucapah Earthquake (EMC; Rymer et al., 2010).
3.	 �Coseismic motions for the 2019 Mw 6.4 and Mw7.1 Ridgecrest Earthquake Sequence (R; Liu et al., 2019)
4.	 �Postseismic motions for the 2010 Mw7.3 El Mayor - Cucapah Earthquake for 18 days to 2 years after the 

event.
5.	 �Postseismic motions for the 2019 Mw 6.4 and Mw7.1 Ridgecrest Earthquake Sequence for 17 months 

after the events (July 22, 2019–December 1, 2020).
6.	 �Modeled motions (displacement) from January 1, 2000–2001 April 2010 or before the El Mayor - Cu-

capah earthquake. Modeled motions remove annual terms and jumps in the time series.
7.	 �Modeled motions (displacement) from April 10, 2010–July 1, 2019 or between the El Mayor - Cucapah 

and Ridgecrest earthquakes.
8.	 �Modeled motion (displacement) from July 10, 2019–December 1, 2020 or after the Ridgecrest earthquake 

sequence.

In classifying long-term velocities there is one boundary for k = 2, which generally follows the San Andreas 
fault system (Figure 3). The Eastern California Shear Zone (ECSZ) is identified when k ≥ 3 or for three or 
more classes with two or more boundaries suggesting that the San Andreas fault system is the dominant 
Pacific - North American plate boundary and that the ECSZ is the next most dominant. We hand drew 
boundaries between classes k = 2–10 (Figure 4). Overlaying all of the boundaries shows a distributed set of 
boundaries sub-parallel to the San Andreas fault system, the ECSZ/Owens Valley/Walker Lane and a north-
south boundary further east, which may mark the stable North American Plate. The location of the latter 
two (eastern) boundaries is consistent and irrespective of the number of classes. Aside from two off-shore 
zones the class boundaries concentrate near the Salton Trough in the southernmost part of California. The 
Central Valley forms its own cluster. Cluster boundaries are less consistent in the southern Central Valley, 
but we attribute this in part of horizontal motion induced by subsidence.

The boundary for k = 2 is straighter than the San Andreas fault, likely indicating that it is controlled by 
deeper plate tectonic motions or structures (e.g., Fuis et al., 2012). From south to north, the boundary begins 
at and follows the Imperial fault, then follows the western side of the Salton Sea passing west of San Gorgo-
nio Pass and east of Cajon Pass. From there the boundary follows the San Gabriel section of the San Andreas 
fault ∼6 km north, passing east of Tejon Pass, and following the western edge of the San Joaquin Valley. 
The boundary joins the San Andreas fault at the south end of the Parkfield section and extends north-
west through the creeping section. The boundary then joins the Calaveras fault veers slightly east in San 
Pablo Bay and joins the Maacama fault. The Maacama fault turns northward near Cloverdale as does the 
boundary, which makes a sharper northward bend and jogs east and north of Redwood Valley and Ukiah. 
At the north end of the Maacama fault the boundary joins the Garberville - Briceland fault before turning 
westward to the Pacific coast shore. Boundaries converge at the creeping section of the San Andreas fault 
regardless of the number of classes. The boundaries fan outward at the north and south end of the creeping 
section into sub-parallel boundaries. We interpret this to indicate distributed deformation north and south 
of the creeping section of the San Andreas fault with deformation concentrated at the creeping section. A 
set of boundaries extends south through offshore Channel Islands parallel to the coast.

The eastern margin of the Pacific-North American plate boundary is present for k ≥ 5 and the location of 
the boundary is consistent for k = 5–10. Originating in the Salton Trough the boundary extends northward 
from Bombay beach at the southernmost San Andreas fault. It extends northward east of the Mojave Block 
(Glazner et al., 2002), through the mountains east of Death Valley and along the Walker Lane (Bennett 
et al., 2003; Hammond & Thatcher, 2004) into Nevada. The boundaries turn northward to join the 1954 Dix-
ie Valley earthquake sequence ruptures (Caskey et al., 1996) and 1915 Pleasant Valley earthquake rupture 
(Jones, 1915).
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Figure 3.  Clusters of velocities for number of clusters k = 2 to 10 starting row wise at top left. Yellow lines indicate faults from the Uniform California 
Earthquake Rupture Forecast model (UCERF-3; Field et al., 2014).
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The ECSZ emerges at Bombay beach, departing from the San Andreas fault and trending northward through 
the Mojave block in a zone bounded by the 1992 M7.3 Landers (Hauksson et al., 1993) and 1999 M7.1 Hec-
tor Mine (Behr et al.,  2000) earthquake ruptures. Rather than follow the Blackwater fault as previously 
suggested (i.e., Peltzer et al., 2001), the boundaries follow the Goldstone Lake fault (Glazner et al., 2002; 
Schermer et al., 1996) or Paradise fault 33 km to the east of the Blackwater fault, and joins with the Wilson 
Canyon fault about 20 km east of the 2019 M7.1 Ridgecrest rupture. From there it extends northward along 
the Owens Valley and Walker Lane. The boundaries divert around a 30–35 km radius area spanning the 
Mono Craters between Mammoth Lakes and Mono Lake. They continue along the Eastern Sierra to Carson 
City. Just north of Lake Tahoe the class boundaries follow a northwest trend to Mount Lassen and then 
continue west along the northern boundary of the Great Valley. Most of the boundaries converge at the 
coast due east of the Mendocino Triple Junction (Silver, 1971). North of Mendocino there is a boundary that 
separates the northern coast of California from the Coast Ranges 50 km inland.

Figure 4.  Hand drawn boundaries between clusters for long term velocities for number of clusters k = 2 to 10.



Earth and Space Science

GRANAT ET AL.

10.1029/2021EA001680

8 of 19

Figure 5.  Clusters for cosesismic motions from the 2010 M7.3 El Mayor - Cucapah earthquake with the number of clusters k = 2 to 10 increasing row wise. 
Yellow lines show UCERF-3 faults. Red line shows the El Mayor - Cucapah (EMC) rupture location. Red arrow points to the EMC rupture.
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Figure 6.  Clusters for cosesismic motions from the 2019 M6.4 and M7.1 Ridgecrest earthquake sequence with the number of clusters k = 2 to 10 increasing 
row wise. Yellow lines show UCERF-3 faults. Red line shows the El Mayor - Cucapah (EMC) rupture location. Red arrow points to the EMC rupture. Only one 
station, colored yellow, near Searles Dry Lake, southeast of the junction of the two ruptures, and below the arrow, is in the second class. The rest of the stations 
fall into the first class.
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Clusters for the 2010 M7.3 El Mayor - Cucapah earthquake (EMC) show a distinct class near the earthquake 
rupture (Figure 5). Additional classes show different characteristics between the Salton Trough and Penin-
sular ranges with coseismic offsets detected into Mojave block and north. The 2019 Ridgecrest earthquake 
sequence, better centered in the middle of the GNSS network, shows far reaching cosesismic offsets to the 
GNSS stations (Figure 6). Stations within the Brawley Seismic Zone in the Salton Trough show breaks in 
the time series at the time of the Ridgecrest earthquakes. Classes for increasing k indicate local cosesismic 
offsets, classes that define the central California coast ranges and Transverse ranges, and that partition the 
eastern and western Mojave Desert along a zone mapped by Schermer et al. (1996). Showing the boundaries 
of each earthquake separately and combined (Figure 7) shows that stations are classified in groups that 
roughly follow the ECSZ and the boundaries take up more of the region to the east of both ruptures. Perhaps 
future earthquakes will affect stations along the San Andreas fault system to a greater extent.

We next computed the classes for postseismic motions for each earthquake (Figures 8 and 9). GNSS station 
breaks are routinely identified in the time series (Heflin et al., 2020) and the GNSS tools sum the breaks over 
a given time period. The default is 2 years, however given the data of this writing we had to use 15 months 
for the Ridgecrest earthquake sequence. While the assumption is that breaks are associated with each event 
sequence it is likely that breaks can be identified due to other causes. As a result, the farther field stations 
that are identified are effectively noisy and more classes are not helpful to the interpretation. Using up to 5 
classes is informative, however, and focuses attention on features local to the events (Figure 10). The Salton 
trough is clearly affected by the EMC earthquake in the postseismic timeframe with sharp boundaries to the 
east and west that follow the general fault directions as well as the topographic fabric. The rupture is in the 
western third of the clusters, suggesting that there is more postseismic deformation on the northeast side 

Figure 7.  Coseismic boundaries for the El Mayor - Cucapah (EMC) and R earthquakes. Top left shows classes k = 2 to 10 for R and the bottom left for EMC. 
Coseismic classes for both are shown in the right plot illustrating that large events of the last decade affected the ECSZ.
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Figure 8.  Classes for El Mayor - Cucapah cumulative postseismic motion for two years from April 22, 2010 with the number of clusters k = 2 to 10 increasing 
by rowe. Yellow lines are UCERF3 faults.
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Figure 9.  Classes for R cumulative postseismic motion from July 23, 2019–December 1, 2020 with the number of clusters k = 2 to 10 increasing by row. Yellow 
lines are UCERF3 faults.
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of the EMC rupture. The R rupture shows a similar result with the fault located toward the west side of the 
central/local cluster groups. Interestingly, the local cluster groups are bounded by the Garlock fault to the 
south. While postseismic motions did occur south of the Garlock fault the clustering algorithm identifies 
those stations as having different feature characteristics.

Finally, we divided the network time series into three time frames and computed the modeled displace-
ments for each. The three time frames were 2000 to before the 2010 EMC earthquake, the time period be-
tween the 2010 EMC and 2019 R earthquakes, and the post R time frame (Figures 11–13). Qualitatively the 
results are not particularly different than for the long-term velocities. This suggests that the crust responds 
within a few years.

Figure 10.  Boundaries for postseismic motions for El Mayor - Cucapah (EMC) and R earthquakes that are found in close proximity to each respective rupture. 
Class boundaries distant to each earthquake are not shown as they are inconsistent across the number of classes. The far field motions are subtle and the results 
are unlikely to be geophysically meaningful. Red lines show ruptures and red arrows point to the ruptures. Top of figure shows class boundaries for for R and 
the bottom shows boundaries for EMC for classes k = 2 to 5 in both cases.
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Figure 11.  Clusters determined from modeled displacements in the decade before the El Mayor - Cucapah earthquake with the number of clusters k = 2 to 10 
increasing row wise.
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Figure 12.  Clusters determined from modeled displacements in the decade between the El Mayor - Cucapah and R earthquakes with the number of clusters 
k = 2 to 10 increasing row wise.
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Figure 13.  Clusters determined from modeled displacements for the 15 months after the R earthquake with the number of clusters k = 2 to 10 increasing row 
wise.
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4.  Conclusions
Our experiments indicate that not constraining the clustering algorithm by location or geometry results 
avoids domination by geometric features and allows for clusters that better correlate with faults and tectonic 
features, since the plate boundary naturally produces fault parallel extended clusters. Omitting the vertical 
results in clusters that better align with tectonic features and are not affected by subsidence associated with 
oil and groundwater withdrawal or recharge. Future work will explore the use of vertical results for study 
of non-tectonic crustal deformation signals.

The San Andreas fault system dominates crustal deformation of the Pacific - North American plate bound-
ary in California. However, cluster boundaries for fewer clusters show a slightly straighter main plate 
boundary zone of deformation than the San Andreas fault. In particular, no cluster boundaries connect the 
fault north of the southern bend/San Gorgonio Pass across the Coachella Valley near Palm Springs to the 
Coachella segment of the San Andreas fault. Boundaries east of the Salton Sea connect with the ECSZ and 
boundaries associated with the San Andreas system are found from the center of the Salton Sea to the west. 
As the number of clusters increases there are an increasing number of cluster boundaries distributed to the 
west that can be associated with the San Jacinto fault, Elsinore fault, and faults offshore in the San Diego 
Trough. The finding that the classes cut across the San Andreas fault is consistent with observations of 
fragile geologic features near Cajon Pass, suggesting that joint ruptures of the San Andreas and San Jacinto 
faults propagate through the Pass (Grant Ludwig et al., 2015; Lozos, 2016). A pattern of joint rupture implies 
that the San Andreas and San Jacinto faults are connected at seismogenic depths and the San Jacinto fault is 
the main branch of the San Andreas system in southern California south of Cajon Pass. Older branches of 
the San Andreas fault extending through the San Gorgonio Pass have complex geometry (Yule & Sieh, 2003) 
and are being actively offset by sinistral conjugate faults (Kendrick et al., 2015).

The creeping section of the San Andreas fault concentrates the boundaries, which fan out on either side. 
The weak Franciscan rock facilitates creep (Irwin & Barnes, 1975). Presumably when the creeping section 
closes and there are fewer compliant rocks the zone of deformation will broaden in Central California. Fur-
ther north as in southern California the boundaries become distributed as the number of clusters increases.

The ECSZ is a throughgoing boundary that begins in the eastern Salton Trough and trends north through 
the Mojave block. The ECSZ identified in this clustering methodology is further east than the Landers 
rupture and Blackwater fault. Instead, it follows the Goldstone Lake or Paradise fault bounding a set of east-
west striking faults on the west side. Another persistent set of cluster boundaries bounds the same east-west 
striking faults on the east side as well as the eastern end of the Garlock fault. The presence of the boundaries 
and the fault geometry of the Mojave Desert area suggest that the east Garlock fault is transferred south 
along the right-lateral ECSZ.

For long-term velocities and coseismic motions for large earthquakes at least with Mw ≥ 7 a range of clus-
ters k from 2 to 10 is informative. For postseismic motions k ≤ 5 is informative. It may be that more classes 
are not useful because fewer stations are typically affected by postseismic motions. In general, postseismic 
motions are fairly localized to within one fault dimension, but for the EMC and Ridgecrest earthquakes 
classes identified in postseismic motion are weighted more to the east of each rupture. The Garlock fault 
creates a clear barrier for Ridgecrest postseismic motion confining it to the north of the fault. Future exper-
iments should test whether including geometry as a constraint improves the results.

Selecting decadal long subsets of the GNSS time series proved less useful other than to identify that classes 
computed from several years of data are similar to those for the long-term velocities. This suggests that most 
postseismic motion occurs within a few years of earthquakes, which is similar to other observations (e.g., 
Donnellan et al., 2018; Pollitz et al., 2000; Ross et al., 2017; Shen et al., 1994).

Data Availability Statement
The data products can be accessed at http://geo-gateway.org. The clustering software used for these experi-
ments can be accessed at https://github.com/GeoGateway/GNSS_clustering. © 2021. California Institute of 
Technology. Government sponsorship acknowledged.
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