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Abstract

Humans exhibit savings in skills. A skill is rarely forgot-
ten completely, even if it remains unused for long peri-
ods. Also, the reacquisition of a skill to its previous level
of competence is faster than initial skill learning. Tradi-
tional artificial neural network models of skill learning
have been unable to exhibit savings comparable to that
seen in humans because they suffer from catastrophic in-
terference. They are commonly trained to perform only
one specific task, and when trained on a new task, they
forget the original task completely. A number of special-
ized connectionist architectures and learning rules have
been suggested as means to avoid catastrophic interfer-
ence. Instead of introducing such a new mechanism,
we have investigated the degree to which the founda-
tional neurocomputational principles embodied by the
Leabra cognitive modeling framework are sufficient to
ameliorate catastrophic interference. In particular, this
framework includes both fast lateral inhibition and a
local synaptic plasticity model that incorporates both
Hebbian and error-based dynamics, grounded in known
properties of cortical circuits. In this paper, we provide
evidence that these fundamental computational proper-
ties of neural circuits can support savings during sequen-
tial learning of multiple motor skills.

Introduction

Learned motor skills are central to many activities, from
bicycle riding to piano playing, from typing to playing
ping-pong. To maintain and improve our motor skills,
we need practice. If a ping-pong player does not play
for a while, it is likely that his proficiency will wane,
but the skill will not be forgotten completely. Further-
more, reacquistion of proficiency will typically be rapid,
as compared to the period of initial learning. This re-
tention of skill knowledge, sometimes in a latent form, is
called savings.

Why do skills degrade when unpracticed? What is
the neural basis of skill savings? A common explana-
tion of proficiency loss involves interference. The ini-
tial acquisition of a skill is driven by synaptic plasticity
shaped by experience. Plasticity continues once practice
on that skill ceases. Thus experience with other activ-
ities continues to shape neural circuits, often in a way
that interferes with the proper performance of the orig-
inal skill. The interfering task experience may modify
the response properties of neurons that are directly in-
volved in the performance of the original skill, or the
interference might take the form of a strengthening of
the response of competing neurons that encode the new
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behaviors. From this perspective, savings arise when
the interference produced by experience with new be-
haviors is insufficient to completely erase the synaptic
modifications introduced by the initial learning of the
skill. This lack of “unlearning” could be due to neu-
ral specialization, with some neurons being employed by
the first skill but not by subsequent activities. To the
degree that the sets of neurons associated with differ-
ent skills are disjoint, learning one skill will not affect
the synapses associated with another. When neurons
are shared between skills, savings could be due to sub-
threshold residual synaptic weights associated with the
initial skill — weights that have been driven down by
interfering experiences to below the threshold for neural
firing, but not all the way down to their initial values.
Finally, skills may share components or “sub-tasks”. To
the degree that such components have isolated neural
representations, learning a new skill may actually rein-
force portions of a previously learned skill.

Traditional artificial neural network models of skill ac-
quisition fail to display savings when skills are learned se-
quentially. Instead, these networks exhibit “catastrophic
interference”, where the later learning of a second re-
lated skill obliterates essentially all knowledge of an ini-
tially acquired skill (McCloskey and Cohen, 1989). Re-
searchers have proposed a number of specialized neu-
ral network architectures and learning algorithms de-
signed to reduce catastrophic interference (French, 1994;
Brashers-Krug et al., 1995; McClelland et al., 1995).
Most of these proposed mechanisms involve isolating the
sets of neurons associated with different skills, either
through some form of explicit architectural modulariza-
tion, or through the use of learned sparse representa-
tions, where only a few neurons in some internal layer of
the network are highly active at any one time.

We have explored the possibility that computational
models of skill acquisition need not posit dedicated
mechanisms for shielding from catastrophic interference.
Instead, it is possible that biological constraints im-
posed by the structure of cortical circuitry may em-
body the necessary properties to promote skill savings.
Specifically, we have examined the neurocomputational
principles forming the Leabra cognitive modeling frame-
work (O’Reilly and Munakata, 2000), and we have found
that these biologically motivated principles give rise to
savings without the need for auxiliary mechanisms. We
trained a Leabra network to produce motion trajectories



for a three joint planar arm. After an initial trajectory
was mastered, an interfering trajectory was taught, and
savings was assessed on the retention of knowledge con-
cerning the initial trajectory. Our findings suggest that
Leabra’s implementation of fast acting lateral inhibition
acts in concert with its synaptic plasticity mechanism
in order to produce adequately sparse representations to
support skill savings.

In the next section, we provide a brief overview of re-
lated work. We follow that with a description of our
model simulation experiments. Then, we offer the re-
sults of our experiments, and we close with a general
discussion.

Background

Leabra

The Leabra framework offers a collection of integrated
cognitive modeling formalisms that are grounded in
known properties of cortical circuits but are sufficiently
abstract to support the simulation of behaviors aris-
ing from large neural systems (O’Reilly and Munakata,
2000). It includes dendritic integration using a point-
neuron approximation, a firing rate model of neural
coding, bidirectional excitation between cortical regions,
fast feedforward and feedback inhibition, and a mecha-
nism for synaptic plasticity. Of particular relevance to
skill savings are Leabra’s lateral inhibition formalism and
its synaptic learning rule.

The effects of inhibitory interneurons tend to be strong
and fast in cortex. This allows inhibition to act in a
regulatory role, mediating the positive feedback of bidi-
rectional excitatory connections between brain regions.
Simulation studies have shown that a combination of
fast feedforward and feedback inhibition can produce
a kind of “set-point dynamics”, where the mean firing
rate of cells in a given region remains relatively constant
in the face of moderate changes to the mean strength
of inputs. As inputs become stronger, they drive in-
hibitory interneurons as well as excitatory pyramidal
cells, producing a dynamic balance between excitation
and inhibition. Leabra implements this dynamic using
a k-Winners-Take-All (kWTA) inhibition function that
quickly modulates the amount of pooled inhibition pre-
sented to a layer of simulated cortical neural units based
on the layer’s level of input activity. This results in a
roughly constant number of units surpassing their fir-
ing threshold. The amount of lateral inhibition within a
layer can be parameterized in a number of ways, with the
most common being the percentage of the units in the
layer that are expected, on average, to surpass thresh-
old. A layer of neural units with a small value of this &k
parameter (e.g., 10-25%) will produce sparse representa-
tions, with few units being active at once.

With regard to learning, Leabra modifies the strength
of synaptic connections in two primary ways. An error-
correction learning algorithm changes synaptic weights
so as to improve network task performance. Unlike
the backpropagation of error algorithm, Leabra’s error-
correction scheme does not require the biologically im-
plausible communication of error information backward
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across synapses. In addition to this error-correction
mechanism, Leabra also incorporates a Hebbian corre-
lational learning rule. This means that synaptic weights
will continue to change even when task performance is
essentially perfect. This form of correlational learning
allows Leabra to capture certain effects of overlearning.
We have investigated the degree to which the sparse
representations enforced by Leabra’s lateral inhibition
mechanism, in conjunction with Leabra’s synaptic learn-
ing rule, cause Leabra simulations of cortical circuits
to escape the pitfalls of catastrophic interference when
those circuits are required to sequentially learn multiple
temporally-extended motor trajectories.

Catastrophic Interference

Many past studies have shown that artificial neural net-
works suffer from catastrophic interference in a manner
uncharacteristic of human performance. The seminal ex-
ample involves an AB-AC paired-associate list-learning
task, in which the learning of a second list of paired-
associates was shown to interfere with memory for an
initially studied list in a much more mild way than pre-
dicted by a backpropagation network model (McCloskey
and Cohen, 1989).

Since this observation was made, a number of com-
putational mechanisms have been proposed for avoiding
catastrophic interference. Some of these involve segre-
gating the neural units associated with different skills in
order to avoid the damage caused by “reuse” of synaptic
weights (French, 1999). For example, forcing layers of
neural units to form sparse representations reduces the
probability that a given unit will be active while per-
forming multiple skills and thereby reduces the probabil-
ity of interference when learning the skills in sequence.
Leabra offers a biologically justified mechanism for pro-
ducing sparse representations. With a low k parameter,
Leabra’s kWTA lateral inhibition implementation limits
the overlap between the neural representations used for
different skills. This has been shown to improve per-
formance on the AB-AC list-learning task (O’Reilly and
Munakata, 2000). We have found that the benefits of
kWTA inhibition extend to the learning of motor se-
quences, and we have systematically studied the effects
of varying sparsity and layer size on savings.

One extreme form of segregation between neurons de-
voted to different skills involves isolating them into dis-
crete modules. Modular artificial neural network ar-
chitectures have been proposed in which differences be-
tween skills are explicitly detected during learning, and
a “fresh” module of neural units is engaged to learn the
skill, protecting previously trained modules from inter-
ference (Brashers-Krug et al., 1995). Importantly, over-
learning of a skill can strengthen its consolidation in a
module, increasing resistance to interference, as is ob-
served in humans (Brashers-Krug et al., 1996; Shadmehr
and Holcomb, 1997). While such modular models can ex-
hibit robust savings and appropriately limited forms of
interference, we question the biological plausibility of a
reserve of untrained neural modules awaiting assignment
when a new skill is to be learned.



Modular approaches of this kind should be distin-
guished, from the hypothesis that the hippocampus and
the neocortex form distinct learning systems (McClel-
land et al., 1995). This hypothesis asserts that catas-
trophic interference is alleviated through the use of a
fast hippocampal learning system that uses sparse rep-
resentations. While neocortical systems are assumed to
use a less sparse representations, making them more vul-
nerable to interference, problems are avoided through a
hippocampally mediated process of consolidation, where
neocortical networks receive interleaved “virtual” prac-
tice in multiple skills. In addition to explicit hippocam-
pal models, this strategy has also been embodied in
pseudo-pattern models, in which savings is facilitated by
a process of knowledge transfer between multiple sep-
arate networks (Robins, 1995). While we see this ap-
proach as extremely promising, there is evidence that
humans can continue to learn new motor skills even af-
ter complete removal of the hippocampus (Jenkins et al.,
1994). From our perspective, this suggests that neocorti-
cal representations may be sufficiently sparse to support
savings in motor skills. Thus, we report the results of
simulations exploring the effects on savings of varying
sparsity of representation. We have also tested the abil-
ity of Leabra’s learning rule to account for overlearning
effects without recourse to a separate memory consoli-
dation mechanism.

While sparsity may play an important role in sav-
ings, other neurocomputational mechanisms may also
contribute. It is possible that synaptic changes dur-
ing the learning of an interfering skill may drive certain
neurons associated with a previously learned skill below
their firing threshold — but just below — allowing them
to recover quickly once practice of the previous skill is
resumed. This is exactly the mechanism posited for sav-
ings after extinction in a biophysically detailed model of
the role of the cerebellum in eye blink conditioning (Med-
ina et al., 2001). Savings through subthreshold respond-
ing is consistent with the Leabra learning rule, and it
will be the focus of future analysis.

Lastly, it is worth noting that savings might be facili-
tated if the multiple skills to be learned share some com-
mon structure, such as a shared sub-task. In this case,
training in a skill may reinforce components of a previ-
ously learned skill. Artificial neural networks trained
in an interleaved manner to produce multiple motor
sequences have been found to generate internal repre-
sentations that reflect common sub-sequences, allowing
knowledge of those sub-tasks to be generalized across
tasks (Botvinick and Plaut, 2004). We have found sim-
ilar generalization of sub-tasks when skills are learned
sequentially by a Leabra network, and we have found
that this has a positive effect on savings. Thus, Leabra’s
support for sparse representations does not prevent neu-
ron sharing across skills when doing so is appropriate.

Methods
The Tasks

We have performed simulation experiments involving the
learning of motion trajectories of a three joint planar arm
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Figure 1: Left: A three joint planar arm. The state of
the arm at any point in time is given by the vector of
joint angles: (ql, q2, q3). Right: The Leabra network.

Task 2 | Nothing in common with Task 1.

Task 3 | Joint 1 matches Task 1 at all steps.
Task 4 | Joints 1 & 2 match Task 1 at all steps.
Task 5 | For steps 6-10, all joints match Task 1.
Task 6 | For steps 615, all joints match Task 1.

Table 1: Similarities between various tasks as compared
to Task 1, over the 18 time steps that make up each task.

by a Leabra network (Figure 1). The state of the arm at
any point in time is represented by the three joint angles.
The position of a joint can range from 0° to 90°. Six dif-
ferent motion trajectories were used in our simulations:
Task 1 to Task 6. Each trajectory is discretized into 18
time steps. Thus, motion trajectories are represented as
a sequence of arm states at successive points in time.
Each of the six trajectories were non-Markovian with re-
gard to individual joint angles but were Markovian with
regard to the complete state of the arm. In other words,
it is not possible to reliably predict the future position
of a joint given only its current position, but the set of
three joint angles is always sufficient to predict the arm
configuration at the next time step.

Task 1 was used as the primary task in all the simula-
tions. The network was always trained on this task first.
Then, the network was trained on one of the other tasks.
Finally, we measured the extent to which the network
remembered Task 1. Table 1 describes the similarities
between tasks.

Each of the joint angles was encoded in the Leabra
network over a pool of 12 neural units. Each of the 12
units had a preferred angle, ranging from —10° to 100°
in 10° increments. If the angle to be encoded was a mul-
tiple of ten, the corresponding unit, as well as its two
neighbors, were set to their maximal firing rates. Oth-
erwise, the two units with preferred angles that straddle
the angle to be encoded were set to fire maximally, and
their neighbors were set to an intermediate activation
level. Similarly, patterns of activity over the 12 units
were decoded by locating the three or four adjacent units
that were all active and computing the weighted sum of
the preferred angles of those units, weighted by their ac-
tivity (i.e., normalized firing rate). Other patterns of



activity were considered ill-formed. With each joint an-
gle encoded over 12 units in this way, the complete arm
configuration could be encoded over a layer of 36 units.

The Network

Figure 1 shows the Leabra network used in our simula-
tions. On each time step, the network was provided with
a 36 unit input that encodes the current state of the
arm. Complete interconnections from this input layer
to a hidden layer produced an internal representation of
the current arm state, with the sparsity of this repre-
sentation controlled by lateral inhibition within the hid-
den layer. Complete bidirectional excitatory connections
map this internal representation to an output layer that
is intended to encode the next arm state in the current
trajectory. Lateral inhibition in the output layer was
set to encourage well-formed angle codes (i.e., approx-
imately 9 units highly active out of the 36). During
training, the output layer was also provided with a tar-
get signal, indicating the correct arm configuration for
the next time step. The arrow on the right side of Fig-
ure 1 indicates that the output on a given time step be-
came the network’s input on the subsequent time step,
matching other recurrent network architectures (Jordan,
1986). The context layer contained two units, each cor-
responding to one of the two learned tasks, indicating
which trajectory was to be produced by the network.
This context information was not initially included in
our simulations and is described later.

Most of the parameters used in our simulations were
Leabra default values. Hebbian learning was strength-
ened in our simulations, contributing to 1% of synaptic
weight changes rather than the default 0.1%. An error
tolerance of 0.25 was used, treating outputs within 0.25
normalized firing rate of their targets as correct. A small
amount of activation noise was also added to the input
layer, sampled uniformly from [-0.05, +0.05].

There are two common measures of savings: ezact
recognition and relearning (French, 1999). The exact
recognition measure assesses the percentage of the origi-
nal task that the network performs correctly after it has
learned a second task. The relearning measure exam-
ines how long it takes the network to relearn the original
task. The two measures are usually correlated. We used
an exact recognition measure to assess savings. In par-
ticular, we measured the sum-squared error (SSE) of the
network output on the first task after training the second
task. In order to contrast this SSE value with “complete
forgetting” of the first task, the SSE was also recorded
prior to the first task training, and we report the ratio of
SSE after interference training to SSE of the untrained
network. A value of one or more for this ratio indi-
cates complete forgetting of the initial task, while lower
values indicate savings. We repeated each experimental
condition five times in order to deal with stochastic vari-
ations in our simulations. We report the average of these
repetitions. For comparison, we have also reported the
results of running all the experiments on a traditional
backpropagation (BP) artificial neural network.
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Figure 2: Savings as a function of sparsity. An SSE
ratio of one or more indicates no savings, while lower
values indicate retention of Task 1 knowledge. The k
parameter roughly equals the percentage of active units
in the hidden layer. Error bars display standard errors
of the mean.

Results

Sparse Representations

In this set of experiments, we explored the contribution
of sparse representations to savings. For this set of ex-
periments, the size of the hidden layer was set to 100
units, but the amount of lateral inhibition was varied.
Tasks were trained until a zero SSE (within error toler-
ance) was achieved for three successive trajectory execu-
tions. Using Task 2 as the second task, the SSE Ratio as
a function of the hidden layer Kk WTA parameter is shown
in Figure 2.

Savings were greater (lower SSE ratio) when sparser
representations were used (lower k value). The likely
reason for this effect is a decrease in the overlap between
Task 1 and Task 2 hidden layer activation patterns as
representations become more sparse. To test this hy-
pothesis, we counted the number of hidden layer units
that were active (at least 0.05 activation) during one task
but not during the other. This number of discriminating
units was high for sparse representations (e.g., about 30
for k = 10) and very low for dense representations (e.g.,
about 2 for kK = 50). Thus, increasing inhibition pro-
duced more distinct internal representations between the
tasks and resulted in improved savings. The BP network
performed worse than the sparse Leabra network. This
was as expected, since there was no explicit mechanism
to facilitate non-overlapping hidden layer representation
in the BP network.

We also manipulated sparsity by fixing the number
of active units in the hidden layer to 10 while varying
the absolute number of units in the layer to 25, 100 and
1000. Once again, savings, as measured by the SSE ra-
tio, increased substantially with sparsity in the Leabra
network. With a layer size of 25 units, the SSE ratio was
about 0.6, but it dropped to less than 0.2 with 1000 hid-
den units. The SSE ratios for the BP network dropped
from 0.63 to 0.28 as hidden layer size increased.



Savings with similarity in tasks
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Figure 3: Savings as a function of sparsity and task sim-
ilarity. The three shaded bars correspond to the use
of Task 2, Task 5, and Task 6, respectively, for the in-
terfering task. Low SSE ratio values indicate increased
savings. Error bars display standard errors of the mean.

Generalization Due To Shared Sub-Tasks

We also explored the effects of similarity between the
initial task and the interfering second task. In particu-
lar, we considered second tasks that shared a common
sub-task with Task 1, assessing the contribution of this
common task component to savings. We examined three
different second tasks — Task 2, Task 5, and Task 6
— which varied in the number of time steps for which
their trajectories exactly matched that of Task 1. We
expected shared task components to improve savings, as
the shared sub-task would be reinforced by training on
the second task. Using a network with 100 hidden units
produced the confirmatory results shown in Figure 3.

We also counted hidden units whose activity discrim-
inated between the tasks, and found that the number of
such units dropped substantially during the time steps
corresponding to shared motion between the tasks. For
the maximally sparse networks, the number of discrim-
inating units fell from as many as 27 units during time
steps involving differing motion to as few as 2 units dur-
ing shared sub-tasks. Thus, the same neural units were
used to encode shared sub-tasks, even when tasks were
learned sequentially.

Next, we examined the case in which the first and sec-
ond tasks share common motion for only a subset of the
joints. This is another way in which two tasks might be
seen as sharing a common sub-task. We compared sav-
ings when the interfering second task was Task 2 (noth-
ing in common), Task 3 (joint 1 in common), or Task 4
(joints 1 and 2 in common). We were surprised to find
that there were no reliable effects of this form of task
overlap (Figure 4). It is interesting to note that since
our tasks are non-Markovian with regard to individual
joint angles, the network is forced to integrate informa-
tion about all joint angles in order to produce correct
output. This could be the reason for the lack of savings
in this case. The control of a joint having common mo-
tion across the two tasks had to be learned differently for
the two tasks, because its motion depended on the posi-
tion of other joints in different ways for the two tasks.
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Figure 4: Savings as a function of sparsity and shared
joint motion. The three shaded bars correspond to the
use of Task 2, Task 3, and Task 4, respectively, for the
interfering task. Low SSE ratio values indicate increased
savings. Error bars display standard errors of the mean.

Contextual Cues

In the simulations presented so far, the network received
no information about the appropriate trajectory to pro-
duce except for the current position of the arm. In most
real-world situations, however, there are distinct sensory
or internal control cues that are associated with different
skills. The presence of such cues may not only assist in
the selection of a known skill, but they may help shape
internal representations so as to separate the representa-
tions for different skills. This could improve savings. In
order to investigate this possibility, we included a two-
unit context layer (Figure 1). One unit in this layer was
active for each of the two tasks that were learned. These
two units were randomly connected to the units in the
hidden layer, with an 80% probability of any particular
connection being formed. The magnitudes of the synap-
tic weights were determined by standard Leabra learn-
ing mechanisms. The use of this contextual cue greatly
increased savings, though savings remained sensitive to
sparsity. The results of using Task 2 as the interfering
task are shown in Figure 5. Analysis of hidden layer
activation patterns found many more units whose activ-
ity discriminated between the tasks when the cue was
present. For k = 10, the number of discriminating units
rose from about 30 to over 60 when a contextual cue was
incorporated. The BP network showed no improvement
in savings due to the incorporation of a contextual cue.

Overlearning

Humans display increased savings in motor skills when
the initial skill is overlearned (Shadmehr and Holcomb,
1997). In order to assess if this effect is captured by
Leabra’s biologically-based learning rule, we performed
a set of experiments in which training time on the two
tasks was varied. Specifically, we varied the number of
consecutive task executions that had to be performed by
the network with zero SSE (within error tolerance) in or-
der for the task to be considered mastered. In order to
simulate overlearning, this number of successes was in-
creased to 10. We also examined “weak learning” by re-



Savings due to context layer
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Figure 5: Savings as a function of sparsity and inclusion
of a contextual cue. Low SSE ratio values indicate in-
creased savings. Error bars display standard errors of
the mean.

quiring only one successful execution. We expected that
Leabra’s Hebbian learning mechanism would strengthen
synaptic weights during the overlearning period, making
them more difficult to perturb during the learning of the
second task. Using Task 2 as the interfering task and
k = 10, we found that savings improved in the Leabra
network when both tasks were overlearned, and it im-
proved even more substantially when the first task was
overlearned and the second was “weakly learned”. Thus,
the effect of overlearning on savings falls out of Leabra’s
learning mechanism. As expected, overlearning did not
improve savings in a BP network.

Conclusion

We have shown that the neurocomputational principles
embodied by the Leabra modeling framework are suf-
ficient to exhibit substantial savings in the sequential
learning of temporally-extended motor skills. No auxil-
iary computational mechanisms are needed in order to
avoid catastrophic interference. Savings was found to be
sensitive to the amount of lateral inhibition in internal
network layers, with sparser representations encourag-
ing skill savings. Interestingly, our data actually show
noteworthy savings even for internal representations that
aren’t very sparse, suggesting that some amount of mo-
tor skill savings may be directly supported by dense rep-
resentations in neocortex. We found generalization to
sub-sequences of motor actions, but not to individual
joint motions, but this has been in the context of tasks
that require a tight interdependence between joints. It is
likely that a similar lack of generalization would be seen
in humans who are learning skills that involve many syn-
chronized component motions, like swimming or typing.
Contextual cues were found to greatly benefit savings in
Leabra. Also, the general pattern of overlearning effects
observed in humans were reproduced.

We have focused on an error ratio measure of sav-
ings in this work, but retraining time in Leabra would
also be interesting to assess. Initial simulation experi-
ments have found savings in the form of reduced retrain-
ing times, but we have found this measure to be insen-
sitive to the sparsity of internal representations unless
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training is made more stringent by reducing the error
tolerance. Future simulation experiments will focus on
understanding the relationship between retraining time
and lateral inhibition in Leabra, with the goal of col-
lecting additional evidence concerning the suitability of
Leabra’s biologically-based modeling framework for ex-
plaining skill acquisition and skill savings.
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