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Statistical stability of correlation based imaging
algorithms

M. Leibovich∗,G. Papanicolaou†and C Tsogka‡

March 20, 2024

Abstract

We consider imaging of an airborne target and study the stability of correlation based
imaging methods to random fluctuations in the target’s motion. The imaging system
consists of a ground based emitter, and several passive receivers. By migrating the cross
correlations of the received signals the two-point interference matrix is obtained. An
image is then formed either by taking the diagonal of this matrix or by computing the
eigenvector corresponding to the largest eigenvalue of the matrix. We call the latter the
rank-1 imaging method. We show that the rank-1 image exhibits exceptional stability
with respect to fluctuations in the platform’s motion. We relate that to the stability of
the first eigenvector of a matrix perturbed by multiplicative random phase noise. We
provide simulations as well as an analytical model that demonstrates the robustness of
the rank-1 imaging method to random fluctuations in the target’s motion.

1 Introduction

Accurate radar imaging of moving airborne targets by ground based receivers is of great
importance in many defence and civilian applications. Energy and operational signal to noise
ratio constraints favor the use of inverse synthetic aperture radar (iSAR) systems, where the
target is probed by a train of consecutive pulses sent from a source located at xE and the
echoes are recorded at receivers with positions xR, as illustrated in Figure 1. The received
echoes are then processed coherently to form an image [6, 5, 13]. A commonly used method is
migration, where the echoes are translated by the travel time to a candidate target location,
coherently interfering when there is indeed a scatterer at that location.

A major challenge for SAR systems is the motion of the target in between different probing
pulses. The motion needs to be compensated in order to achieve a high resolution image [9].
In this paper, we consider the robustness of different migration imaging schemes to random
fluctuations in the target trajectory.
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Figure 1: iSAR imaging schematic. A network of receivers with positions xR, is randomly
distributed over a certain area. The source xE is on the ground, and the target xT is moving
at an altitude.
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1.1 Correlation based imaging methods

Correlation based imaging has been motivated by its robustness to random medium fluctu-
ations as well as because it enables the use of asynchronous sources for probing [1, 8]. In
previous work [10], we have shown that from the cross correlation measurements a natural
cross-correlation data structure emerges, that in turn can be migrated to a two-point interfer-
ence function. The interference function, i.e., a matrix when evaluated on the imaging region
of interest, can be used to form an image in one of several different ways. The diagonal of
this matrix is the imaging method analyzed in [1, 8], we call this the single point migration
while the top eigenvector of this matrix is the rank-1 method proposed and analyzed in [10].
Specifically, we showed that the rank-1 method achieved high resolution while maintaining
the favorable properties of cross correlation imaging. Recently, the two-point interference
function was also considered for imaging in random media using coherent interferometry
(CINT) [3]. Several other extensions alongside the top eigenvector where examined, includ-
ing an optimization method based on a Wigner-like transform of the two point interference
function.

1.2 Motion compensation and SAR autofocus methods

Migration imaging is based on a travel time estimate from the source to a search point in the
image domain and then from this point to the receivers. This estimate in general includes
both the targets’ positions and velocities. One possibility is therefore to construct an image
that estimates position and velocity at the same time [2]. The main disadvantage of such an
approach is that the dimension of the image domain is doubled and with it the associated
computational cost of generating an image is squared. Prior information can mitigate some
of the computational burden, and reduce the size of the image window in the velocity space
[4].

Another set of algorithms that have been used for treating target motion is autofocus
[7]. These algorithms exploit the fact that target motion introduces phase errors in the data,
which can be estimated and corrected by spatio-temporal adaptive processing.

More recently, autofocus has been applied to sparsity driven imaging methods both using
conventional methods [4] and deep learning [11, 12]. While these methods can achieve high
resolution, for iSAR they still require a good initial estimate of the target’s motion followed
by intensive computations.

1.3 Main result

In this paper we study the statistical stability of correlation based imaging algorithms with
respect to perturbations in the moving target’s flight path. We show that the rank-1 method,
in addition to achieving superior resolution, also proves to be robust to random fluctuations
in the target’s motion. This is illustrated with numerical simulations for single and multiple
target scenarios. We also provide a theoretical analysis based on a simplified model that
explains the rank-1 method’s enhanced stability. Note that as the strength of the fluctuations
increases, all imaging methods eventually become unstable. However, the rank-1 method
remains stable for a larger range of the fluctuations strength compared to the single point
migration, while traditional migration imaging (i.e., not correlation based) loses its coherence
immediately.
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The rest of the paper is as follows. In Section 2 we briefly review the SAR data model,
the cross correlation data structure, and the migration imaging methods used. In Section 3.1,
we present simulations that demonstrate the robustness of the rank-1 method with respect to
random platform fluctuations. In Section 3.2, we present an analytical model that explains
the observed robustness. We conclude with a summary and conclusions in Section 4.

2 iSAR data model and imaging methods

In this section we describe the iSAR data model used, and the different imaging methods
considered.

2.1 Statement of the problem

We are interested in an inverse synthetic aperture radar (iSAR) setup, where an array of
ground based receivers is used to image a moving target with velocity vT, as illustrated in
Figure 1. The object of interest is moving and its position at time s is

xT(s) = xT + vTs. (1)

The data is the collection of signals recorded at NR ground based receivers, with positions
xR. Successive pulses are emitted at a slow time s by a source located at xE on the ground.
The source emits a series of limited support pulses f(t) = cos(ωot)e

−B2t2/2χ{−3/B≤t≤3/B}, at
slow time intervals of ∆s, with a total aperture size S, such that the recorded signal at the
receiver location xR due to a pulse, f(s+ t), emitted at slow time s ∈ [−S/2, S/2], is, in the
single scattering (Born) approximation,

uR(s, t) = −ρ
f ′′(s+ t− tR(xT(s),xE,vT))

(4π|xT(s)− xR|)2
. (2)

The derivation of (2) was carried in [10]. tR(xT(s),xE,vT) is the total travel time from the
emitter to the target at location xT(s) and from the target to the receiver R. In [10], a
Doppler factor γR was considered, which becomes significant for targets in Keplerian orbit,
where |vT|/c0 is not insignificant, with c0 the speed of light. For simplicity, we assume for
the rest of this paper that γR = 1, and no Doppler correction is needed. As was shown in
[10], the use of finite sized imaging windows allows one to take a fixed γR, and define similar
data structures to the ones used in this work.

2.2 The cross-correlation data structure in iSAR

Imaging with direct receiver data requires knowing many parameters to a high degree of
accuracy to achieve a synchronous synthesis of all receiver data, including the receiver position
and its waveform [8, 10]. The data is also sensitive to any medium fluctuations that affect
the travel time between the source and the target and/or the target and the receivers. For
that purpose, a cross correlation data structure is introduced.

We cross-correlate the measurements uR(s, t) to construct CRR′(s, τ), a cross correlation
data structure, for any receiver pair R,R′ dependent on the slow time s and τ , the offset
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between receiver data,

CRR′(s, τ) =

∫
uR(s, t+ tR(x0 + sv0,xE,v0))×

uR′(s, t+ tR′(x0 + sv0,xE,v0) + τ)dt.

(3)

Here tR(x0 + sv0,xE,v0) is the total travel time from the source at xE to the center of
the image window, x0 moving at a speed v0 and then from x0 to receiver R. Translating
both terms by tR, tR′ , respectively, is a process known as range compression. It generates a
compact data structure with limited support around τ = 0 that is easier to store. We will
assume that v0 = vT and seek to recover only the position of the target. Both CRR′(s, τ)
and uR(s, t) can be used in migration schemes to image.

2.3 Imaging with migrated data

We summarize here the main migration methods used. For a detailed presentation see [10].
Assume we have discretized the image window relative to its moving center xT(s), with

grid points yk, k = 1, . . . , K. The center of the window corresponds to the point 0. The
unknown reflectivity is discretized by its values on this grid

ρk = ρ(yk), k = 1, . . . , K.

The unknown reflectivity vector has dimension K, which is the number of pixels in the image
window. Imaging is the estimation of the location of the reflectors and their strength.

The signal recorded at receiver location xR can be written as

ũR(s, t) ≈ −
K∑
k=1

ρk
f ′′(s+ t− (tkR(s)− tR(s)))

(4π|xT(s)− xR|)2
, (4)

where

tkR(s) = tR(xT(s) + yk,xE,v)

=
|xT(s) + yk − xE|

c0
+

|xT(s) + yk − xR|
c0

,

tR(s) = tR(xT(s),xE,v),

(5)

tR is the travel time to the center of the imaging window, and tkR is the travel time to a
discretized pixel yk. The difference in travel time is equivalent to range compression, making
the support of the travel time distance compact around 0. In the frequency domain, the
recorded signal is

ûR(s, ω) ≈
K∑
k=1

ω2f̂(ω)

(4π|xT(s)− xR|)2
AR,k(s, ω)ρk,

AR,k(s, ω) ≡ eiω(t
k
R(s)−tR(s)).

(6)

The phase AR,k(s, ω) comes from the reduced travel time from the target to the receiver,
relative to that of the image window center.
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We assume the distance from the reflector to the different receivers doesn’t vary greatly
across different receivers, hence we can approximate

ω2f̂(ω)

(4π|xT(s)− xR|)2
≈ ξ(ω, s), (7)

independent ofR. By neglecting the dependence of the amplitude factor on a specific receiver,
the accuracy with which the amplitude of the reflector can be retrieved is compromised but
not its support.

Using this notation, and the fact that correlation in time is equivalent to multiplication
in frequency, we get that

ĈRR′(s, ω) = ûR(s, ω)ûR′(s, ω)

≈|ξ(ω, s)|2
K∑

k,k′=1

AR,k(s, ω)AR′,k′(s, ω)ρkρk′
(8)

This is our model for the cross-correlation data in the frequency domain.
Denote by ρρρ the unknown reflectivities in vector form

ρρρ = [ρ1, . . . , ρK ]
T ∈ RK .

Denote A(s, ω), our model for the sensing matrix. It has dimensions NR × K and entries
AR,k(s, ω) defined in (6). This matrix A(s, ω) acts on the reflectivities and returns data.
Denote the recorded signal data as an NR vector ûR(s, ω) whose entries are given by (6).
The cross-correlation data is also a matrix, of dimension NR × NR, Ĉ(s, ω) with entries
ĈRR′(s, ω) as in (8).

Combining these, we have in matrix form the following model for the recorded signal data
vector ûR(s, ω) and cross-correlation data matrix Ĉ(s, ω)

ûR(s, ω) = ξ(s, ω)A(s, ω)ρρρ, (9)

Ĉ(s, ω) = ûR(s, ω)ûR(s, ω)
T

= |ξ(ω, s)|2(A(s, ω)ρρρ)(A(s, ω)ρρρ)
T

= |ξ(ω, s)|2A(s, ω)ρρρρρρTA(s, ω)
T
.

(10)

Denoting by X = ρρρρρρT , Xkk′ = ρkρk′ , the outer product of reflectivities, then our model for
the cross-correlation data in matrix form is

Ĉ(s, ω) = |ξ(ω, s)|2A(s, ω)XA(s, ω)
T
. (11)

The cross-correlations depend on the reflectivities ρρρ through their outer product X = ρρρρρρT . As
a result, there can be several different extensions of Kirchhoff migration to cross-correlations,
which we investigate in the next section. We note that up till now we assumed the measure-
ments to be continuous functions of s, ω. In practice, both these arguments are discretized
by finite sampling rates.
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2.4 Imaging functions for cross-correlation data

Given the data ûR(s, ω) and the model ûR(s, ω) = A(s, ω)ρρρ, Kirchhoff migration of the data
ûR(s, ω) is given by

ρ̃ρρ =
∑
s,ω

A(s, ω)
T
ûR(s, ω). (12)

It was shown in [10] that a natural extension of (12) for migrating cross-correlations is
the matrix X̃

X̃ =
∑
s,ω

A(s, ω)
T
Ĉ(s, ω)A(s, ω), (13)

with elements
X̃kk′ =

∑
s,ω,R,R′

AR,k(s, ω)ĈR,R′(s, ω)AR′,k′(s, ω). (14)

The result of this two-point migration is an estimation of X rather than ρρρ, as our model
is quadratic with respect to the reflectivities. X̃ is a square matrix with dimensions K ×K,
whereK is the number of search points in the imaging domain. If points yk,yk′ are associated
with reflectivities ρk, ρk′ , we can think of X̃ as a two-variable generalized cross-correlation
imaging function

IGCC(yk,yk′) = X̃kk′ . (15)

Note that X̃ ∈ CK×K is Hermitian positive definite by definition. We will refer to it as the
two-point interference pattern from which the image will be obtained. We next consider how
in fact an image of the reflectivity can be extracted from IGCC . The functional IGCC defined
in (15) lacks a direct physical interpretation. It evaluates the outer product of reflectivities
rather than the reflectivities themselves. We examine next two ways to extract an image
from X̃:

1. Reconstruct an image of |ρk|2 = X̃kk. This is equivalent to the migration functional
proposed and analyzed in [8] since the diagonal terms of IGCC(yk,yk′) recreate the
image generated by migrating the data to the same point yk = yk′ . In terms of (15)
the image is evaluated by plugging in the same search point in both variables

ICC(yk) = IGCC(yk,yk). (16)

2. Reconstruct an image of |ρk|2 = |v1(X̃)|2k, i.e., calculate the top eigenvector of X̃.
In terms of (15) the image is evaluated by taking, V(yk), the first eigenvector of
IGCC(yk,yk′), thought of as a matrix

IR1CC(yk) = V(yk). (17)

We call this the rank-1 image.

The performance of the different imaging functions derived from the two-point interference
pattern were analyzed in [8, 10], where it was shown that the rank-1 image gives rise to
better resolution. In the following section we show that another favorable property of the
rank-1 image is robustness to fluctuations in the target’s linear motion, a critical feature in
any operational system. We first show this through numerical experiments, and then provide
theoretical analysis.
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3 Cross correlation imaging in the presence of target’s

motion fluctuations

In this section, we assume the target’s motion fluctuates beyond the linear motion, so that
its position at time s is given by

xT(s) = xT + svT + σεεε(s),

where εεε(s) ∈ R3 is a vector-valued random Gaussian process. We assume

εi(s) ∼ N (0, 1), E(εi(s1)εj(s2)) = δijκ(s1 − s2),

where κ(s) is a finite-support correlation function. The fluctuations are not compensated
for by the imaging function, hence as σ increases, we expect a degradation in the image
quality. We first observe the behavior of the different imaging methods through numerical
experiments and then follow with analysis.

3.1 Numerical experiments

We consider an iSAR system with 16 ground based receivers, randomly distributed over a
region of 230m × 230m which is a realistic scenario for imaging airborne targets. The num-
ber of receivers is based on numerical experiments (not shown here) which suggest that 16
is an adequate number for randomly distributed receivers to generate a resolution compa-
rable to the area they span in a synthetic aperture system. A target located initially at
[0m, 1500m, 1500m] is moving along a straight line in the x direction with a velocity of 33
m/s. The probing signal, modeled by f(t), has a carrier frequency of 960MHz, and a narrow
bandwidth B of 50 MHz, with a pulse repetition frequency of 100Hz. The total recording
time is 15s. The receivers positions are given in Table 1. The ground based source is located
at the center of the receiver domain. As discussed in [10], correlation based imaging methods
can be used without knowing the exact source position and profile.

We simulate the performance of three different imaging algorithms: Kirchhoff Migration
(KM) as defined in (12), diagonal (single point) correlation based migration as in (16), and
rank-1 imaging as in (17). The platform motion is perturbed by random fluctuations in all
directions.

The fluctuations εεε(s) have variance (rms) of 1. Their correlation length is controlled by
low pass filtering of their Fourier transform (see Figure 2)

εεελ(s) = F−1
{
F{εεε(s)}χ|ω|<λ

}
.

For each value of the cutoff we generate images of the moving platform using the three
imaging algorithms. To measure the effect of σ, we compute the angle between the vectorized
unperturbed image (obtained for σ = 0), I0, and the image obtained by a perturbed platform
motion (σ > 0), Iσ,

α(σ) =
⟨Iσ, I0⟩
∥Iσ∥∥I0∥

. (18)

The closer this angle is to one, the more robust the imaging method is.
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R1 60.0413m 199.5452m 0m
R2 168.5368m -64.8699m 0m
R3 187.9234m -184.5065m 0m
R4 -49.0642m -190.9474m 0m
R5 88.0487m 59.0542m 0m
R6 72.8453m -221.0745m 0m
R7 -221.6383m -208.1462m 0m
R8 38.6497m -76.9780m 0m
R9 -59.8492m 66.5584m 0m
R10 188.9418m 168.5459m 0m
R11 -205.3496m -54.3540m 0m
R12 -201.4751m 207.9233m 0m
R13 -71.7330m -54.9372m 0m
R14 -185.6708m 93.6254m 0m
R15 -72.3121m 196.3306m 0m
R16 189.9755m 30.8248m 0m

Table 1: The receiver positions used in the simulations

Figure 2: Platform fluctuations in meters, as a function of time for different values of the
cutoff: Top 50; Bottom 200. We can see that as the cutoff increases the process becomes
more oscillatory, and as a result the correlation length of the fluctuations decreases.
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(a) Cutoff 50 (b) Cutoff 200

Figure 3: Comparison of the angle between perturbed image, Iσ, and original image, I0.
The rank-1 image, generated by the eigenvector of the two-point interference matrix, remains
correlated with the unperturbed image until it exhibits a relatively sharp decay. The diago-
nal (single point) migration image becomes uncorrelated with the unperturbed image more
gradually as σ increases. Increasing the cutoff decreases the correlation length of the platform
fluctuations, resulting in an extended robustness for the rank-1 image.

As illustrated in Figure 3, Kirchhoff migration loses its correlation with the unperturbed
image fairly rapidly as σ increases, signifying a deterioration in the image quality (see Fig-
ure 4-bottom row). Diagonal (single point) migration becomes uncorrelated with the unper-
turbed image more gradually, but still begins to lose resolution with the onset of fluctuations
(see Figure 4-middle row). The rank-1 image, on the other hand, remains stable as σ increases
and then a phase transition is observed as the angle decays rapidly around a value of σ which
increases as the fluctuations become less correlated.

Observing the actual images generated in Figure 4-top row, we can see that indeed the
rank-1 image retains its original resolution for higher values of σ than the single point mi-
gration. This motivates further investigation. In the next section we provide analysis that
demonstrates that the reason for this enhanced resolution is the particular effect of the ran-
dom fluctuations on the two-point interference pattern.

In Figure 5, we observe a similar behavior in a more complex setting that consists of four
point scatterers. These results are encouraging and suggest that the rank-1 method has the
potential of being useful for imaging more complex target geometries. More realistic scenarios
including anisotropic scattering will be considered in future work.

3.2 Analysis of enhanced stability

In this section we present an analytical model to investigate the performance of the rank-1
image in the presence of motion fluctuations. We specifically show that the fluctuations affect
the migrated data in a particular way, accentuating its anisotropy. As was shown in [10], The
two-point interference pattern generates peaks around positions yk,yk′ that correspond to
actual scatterers, with principal axes aligned with the diagonal (yk − yk′) and anti-diagonal
(yk + yk′) directions. The resolution of the rank-1 image is approximately the harmonic
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Rank-
1

Diagonal

KM

Figure 4: From top to bottom rank-1, diagonal (single point) migration and KM images for
increasing rms of fluctuations. All images are normalized to take values between 0 and 1.
From left to right σ increases σ = 0, 0.4, 0.8, 1.2. Note that the rank-1 image remains stable
for higher values of σ, while distortion in the image appear immediately for KM. For diagonal
(single point) migration the deterioration is more gradual but present event for smaller values
of σ. Here cutoff equals 50, similar results (not shown here) were obtained for other cutoff
values.

mean of the two principal axes of the two-point interference pattern peak. This promotes
resolution as the harmonic mean is heavily biased towards the smaller, anti-diagonal axis,
while the single-point migration relies on the diagonal axis, which has poorer resolution.

Denote the travel time to receiver R at time s from target at position x+ σεεε(s) as

τxR(s) =
1

c
|x+ σεεε(s) + x0(s)− xR|

≈ 1

c
|x0(s)− xR|+

1

c

x0(s)− xR

|x0(s)− xR|
· (x+ σεεε(s))

= τx0
R (s) +

1

c

x0(s)− xR

|x0(s)− xR|
· (x+ σεεε(s))

(19)

and denote,

d̂R(s) =
x0(s)− xR

|x0(s)− xR|
,

the direction from receiver R to the imaging window. The random phase that multiplies the
x,y term in the interference pattern at time s and frequency ω is
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i
ω

c
(d̂R(s)− d̂R′(s)) · σξξξ(s). (20)

We wish to compute I(yk,yk′ ; s, ω), the two-point interference pattern generated from receiver
measurements at time s and frequency ω.

I(yk,yk′)

=
∑
s,ω

∑
R,R′

e−iω(τ
yk
R (s)−τ

yk′
R′ (s))ũR(s, ω)ũR′(s, ω)

≈
∑
s,ω

∑
R,R′

e−iω((τ
yk
R (s)−τxR(s))−(τ

yk′
R′ (s)−τx

R′ (s)))

=
∑
s,ω

∑
R,R′

ei
ω
c
d̂R(s)·(yk−x)ei

ω
c
d̂R′ (s)·(yk′−x)

× ei
ω
c
(d̂R(s)−d̂R′ (s))·σξξξ(s)

(21)

We further assume d̂R(s) can be linearized in s

d̂R =
x0 − xR

|x0 − xR|
+

vTs

|x0 − xR|

≈ x0 − xR

HT

+
vTs

HT

= dR + dTs

We then perform the s summation first

I(yk,yk′) =∑
ω

∑
R,R′

ei
ω
c
dR·(yk−x)e−iω

c
dR′ ·(yk′−x)×∑

s

ei
ω
c
(dR−dR′ )·σξξξ(s)+iω

c
dTs·(yk−yk′ )

(22)

The s summation reduces to an averaging or a weak law of large numbers computation. If we
assume ξ(s) ∼ N (0, I3×3), and that the sampling rate is high enough, so that the fluctuations
are averaged on a time scale much smaller than the linear phase term, we can substitute the
random phase term in (21) by its mean∑

s

ei
ω
c
(dR−dR′ )·σξξξ(s) ∝ E

[
ei

ω
c
(dR−dR′ )·σξξξ(s)]

= e−
ω2σ2

2c2
∥dR−dR′∥2

(23)

Our numerical simulations for the one dimensional imaging model presented in the next
section are in agreement with this (see figures 6 and 7). This means we are limiting our
integration region over R,R′ to a smaller region around dR = dR′ . Therefore we can further
approximate the receiver summation in (21) as∑

R,R′

ei
ω
c
dR·(yk−x)e−iω

c
dR′ ·(yk′−x)e−

ω2σ2

2c2
∥dR−dR′∥2×

sinc
(ω
c
dT · (yk − yk′)

)
.

(24)

12



Note that the argument in (24) can be recast as

dR · (yk − x)− dR′ · (yk′ − x)

=
1

2
(dR − dR′) · (yk + yk′ − 2x)

+
1

2
(dR + dR′) · (yk − yk′).

(25)

Define µ1 =
1
2
ω
c
(dR − dR′), µ2 =

1
2
ω
c
(dR + dR′). Then (24) can be recast as∑

µ1,µ2∈D

eiµ1·(yk+yk′−x)eiµ2·(yk−yk′ )e−2σ2∥µ1∥2

sinc
(ω
c
dT · (yk − yk′)

) (26)

The summation domain D is not cartesian so at least formally the sum is not separable, but
it is so approximately. We see from (26) that resolution is different in the two directions
yk + yk′ and yk − yk′ . Resolution is better in the yk + yk′ direction which favors the rank-1
image. We remark that the diagonal ICC(yk) image is obtained for yk = yk′ in which case
the resolution is determined by the integration over µ1 which is affected by the variance of
the motion’s fluctuations σ2. The effect of the Gaussian weight is that we’re decreasing the
spectral integration domain along the yk − yk′ direction, making the spot large, and losing
resolution.

It is shown in [10] that the resolution for the rank-1 image is approximately the harmonic
mean of the resolution along the two directions yk +yk′ and yk −yk′ . As the harmonic mean
is always closer to the smaller of the two values, it is expected that the rank-1 image will be
robust to the fluctuations and less affected by the loss in resolution in the yk − yk′ direction.
This deterioration of resolution along the yk − yk′ direction is well illustrated with the one
dimensional imaging model we consider next.

3.3 One dimensional imaging model

To support our analysis we considered a one dimensional imaging model, where the target is
moving along a straight line, with fluctuations added in the transverse direction

xT(s) = (vTs, 0), εεε(s) = (0, ξ(s)). (27)

As illustrated in Figure 6, looking at the angle between the unperturbed 1D image and the
image in the presence of fluctuations we see that the results remain qualitatively the same
when the complex phase is substituted for its mean.

In Figure 7, we see that the analysis of the two-point interference function agrees with
the simulations. As explained earlier, the fluctuations extend the anisotropic nature of the
two-point interference pattern, which favors the rank-1 image.

We further looked at the performance of the 1D model when the noise fluctuations are
correlated (matching a particular cutoff value). As illustrated in Figure 8, the qualitative
behavior extends even to fluctuations with a finite correlation length, justifying our analysis.
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4 Summary & Conclusions

We have considered the problem of imaging moving objects using inverse synthetic aperture
radar (iSAR), when the object motion fluctuates around a linear trajectory. We considered
an array of ground based receivers, where either the data recorded at each receiver or their
cross correlations are used for imaging. In Section 2, we reviewed the data model and different
methods that can be used for imaging, namely the Kirchoff migration (KM) that uses direct
measurements to image, and two correlation based methods: the diagonal (single point),
introduced in [8], and the rank-1, introduced in [10].

In Section 3 we introduced a model for the object’s fluctuations. We showed through
simulations that the rank-1 image enjoys an enhanced stability region, as a function of the
strength of the fluctuations σ. The rank-1 image remains localized and is not affected by
the target fluctuations, in contrast with the other methods, which exhibit a greater degree
of sensitivity. We further provided an analytical model that explains the observed behavior.
We also provided a one dimensional simulation that demonstrates the validity of the model.

The results presented in this paper demonstrate the favorable properties of correlation
based imaging, that go beyond the original rationale for using them. Important applications
to be studied further include the introduction of more sources of uncertainty in the model
such as medium fluctuations and uncertainty in receiver positions, as well as further possible
extensions of the correlation based imaging function.
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Rank-1

Diagonal

KM

Figure 5: We consider here the case of four scatterers and show results obtained with the
three imaging methods as the rms of fluctuations increases. All images are normalized to
take values between 0 and 1. From top to bottom: rank-1, diagonal (single point) migration
and KM images. From left to right σ = 0.25, 0.55, 1.2. We observe that the rank-1 image
remains stable for higher values of σ compared to the two other methods.
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(a) 1D simulation.
(b) 1D simulation with
mean phase approxima-
tion

Figure 6: (a) Angle between perturbed image and original image as a function of σ for the
1D simulation. (b) Same as (a) but where the complex phase is substituted for its mean (see
(23)).
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(a) Two point interference function 1D simulation

(b)Two point interference function 1D simulation with mean phase approximation

Figure 7: (a) I(yk,yk′) for σ = 0, 1.6, 2 for 1D simulation; (b) I(yk,yk′) for σ = 0, 1.6, 2 for
1D simulation when complex phase is substituted for its mean. All images are normalized
to take values between 0 and 1. We can see that the approximation by the mean is well
justified by the simulations. Increased fluctuation levels increase the anisotropy, degrading
the resolution in the yk − y′

k direction, finally to a point where the target is not localized in
the image domain and the rank-1 image breaks down.
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(a) correlation length
200 samples

(b) correlation length
500 samples

Figure 8: Angle as a function of σ for 1D simulation. Noise is now correlated with correlation
length of 200 samples (a) and 500 samples (b). The results still exhibit the same behavior
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