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Abstract 

 
This paper investigates whether a curiosity-based strategy 

could be beneficial to word learning. Children are active 

conversation partners and exert considerable influence over the 

topics that are discussed in conversation with their parents. As 

the choice of topics is likely to be intrinsically motivated, a 

formalization of curiosity is implemented in a word learning 

model. The model receives annotated Flickr30k Entities 

images as input, and is trained in two conditions. In the curious 

condition, the model chooses objects to talk about from the 

scene according to the curiosity mechanism, whereas in the 

random condition, the model receives randomly chosen objects 

as input. The goal of this study is to show how a curious, active 

choice of topics by a language learner improves word learning 

compared to random selection. Curiosity is found to make word 

learning faster, increase robustness, and lead to better accuracy. 

Keywords: word learning; curiosity; interaction; connectionist 
model. 

Introduction 

Language learning research focuses more and more on child-

parent interaction and the social aspects of early 

conversation. Children are active learners and have 

considerable agency as conversational partners. We will 

argue that curiosity is a plausible mechanism for the child to 

come up with new topics to talk about within this 

conversational context. While AI researchers have become 

inspired by the curiosity displayed by children, and have 

implemented intrinsically motivated exploration in computer 

models, this formalized curiosity has not been applied to 

computational models of language learning. At the same 

time, the implementations of curiosity in computer models 

are often not cognitively plausible or the degree of 

plausibility is unknown (as in reinforcement learning), or the 

input to the model lacks the complexity of the stimuli 

encountered by the word learner.  

Curiosity can be seen as a viable mechanism in language 

learning if it provides an advantage to the word learning 

child. In order to see whether curiosity is beneficial to the 

word learning process, we propose a curiosity-based model 

that chooses which object in a scene to talk about next. The 

model chooses its object of interest from among a number of 

objects in an image, and triggers the adult to provide 

linguistic input related to that object. The curiosity 

mechanism suggested by Twomey and Westermann (2018), 

which maximizes the product of subjective novelty and 

plasticity, was implemented to select the objects. To reflect 

the complexity of visual scenes encountered by the child, the 

model takes Flickr30k images as input, which depict 

everyday scenes and objects and have been annotated with 

captions. The accuracy and loss of the model with a curiosity-

based selection of topics were compared to those of a model 

that received the topics randomly. 

Related Work 

Interaction and Intentionality 

Given the social nature of early conversation, language 

should not be seen as a product but as a dynamic system for 

communication (Clark, 2016). Language is used and learned 

in order to convey and receive information. This means that 

the child is a conversation partner first, and a language learner 

second. Furthermore, young children are active speakers and 

language learners. Bloom et al. (1996) observed that children 

aged 9 through 24 months are most likely to speak first in 

conversation with their mother, and the mother to speak after 

the child. Their evidence did not support the scaffolding 

model, in which the parent takes a prominent role in the 

conversation by providing a framework that controls the 

elements beyond the capacity of the learner and lets the 

learner concentrate on those elements they are capable of 

producing. Rather, children initiate conversations and, as 

shown in several studies (Chapman, Miller, MacKenzie & 

Bedrosian, 1981; Bloom et al., 1996), mothers are likely to 

adopt the topic proposed by the child, and continue to talk 

about it.  

These studies show a pattern of turn-taking with a clear 

role division. Often, the child wants to discuss a certain topic 

and starts by talking about it. The parent makes sure they 

understand what the child is referring to by rephrasing what 

the child has said, which functions as feedback to the 
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language-learning child at the same time (Chouinard and 

Clark, 2003). The child then assesses whether the parent has 

understood the initial message, after which the conversation 

can continue. When children initiate conversations and their 

parents adopt the proposed topics, children can exert 

considerable influence on the topics that are discussed and 

consequently on the feedback they receive.   

Because children initiate conversations, and continue 

discussing the topic when they feel they have been 

understood, their choice of topics is unlikely to be random. 

As the language learner decides on the topic themself, taking 

in the current surroundings and situation, the choice is likely 

to be intrinsically motivated. Our study investigates whether 

a curiosity-based selection of the topics to be discussed 

enhances word learning through comprehension of the 

symbol-referent pair. 

Curiosity 

Curiosity is a form of intrinsic motivation. Intrinsic 

motivation can be defined as doing “an activity for its 

inherent satisfaction rather than for some separable 

consequence. When intrinsically motivated, a person is 

moved to act for the fun or challenge entailed rather than 

because of external products, pressures, or rewards” (Ryan 

and Deci, 2000, p. 56). In the 1950s, psychological research 

assumed that human behavior is mostly extrinsically 

motivated, by physical drives such as those to alleviate 

hunger and minimize pain. A major shortcoming of this 

theory was that it did not account for exploratory and other 

curious behavior in humans and animals—behavior that does 

not seek immediate reward (Oudeyer & Kaplan, 2007). 

When formalized to be programmed into a computer 

model or robot, intrinsic motivation and curiosity are often 

conflated (e.g. Pathak et al., 2017). Intrinsic motivation has 

mostly been applied in reinforcement learning, providing 

agents (robots and models) with an intrinsic desire to explore 

their environments and build better models and 

representations of them (Schmidhuber, 2010). Studies that 

implemented intrinsic motivation have shown that 

intrinsically motivated exploration increases the performance 

of a model when generalizing to other tasks (Pathak et al., 

2017), and this is likely to be the case for humans as well 

(Twomey & Westermann, 2018).  

Reinforcement learning implements a variety of 

formalizations of intrinsic motivation, such as maximizing 

the decrease of prediction errors, maximizing or minimizing 

predictability, or choosing the action that maximizes the 

agent’s ability to perform a task. Some approaches use 

predefined rewards or external signals that provide feedback 

on motor functions, both of which are certainly not 

cognitively plausible. Of other approaches, it is simply not 

known how cognitively plausible they are (Oudeyer & 

Kaplan, 2007; Twomey & Westermann, 2018). In fact, not a 

lot is known for certain about the workings of curiosity in 

human cognition in general and children’s cognitive 

development in particular.  

What is clear is that children are natural explorers, 

displaying a novelty preference from an early age. Novel 

stimuli have most potential to yield new insights upon 

exploration, as little is known about them yet. As a stimulus 

is perceived, it becomes less interesting over time 

(habituation), and other stimuli become more interesting 

relative to the current stimulus as they remain novel when not 

examined (Mather, 2013). 

Under various circumstances, however, children display 

familiarity preferences. While completely novel stimuli leave 

a lot to be explored, they can be uninteresting nonetheless as 

they differ greatly from the child’s state of knowledge. Some 

have suggested that a moderate discrepancy between a 

stimulus and the child’s representation of it could define the 

optimally interesting stimulus. What moderate means in this 

context, however, is not a trivial question. How familiarity 

and novelty preferences influence learning is little 

understood as of yet (Mather, 2013). 

In a recent publication on curiosity-based categorization in 

infants, Twomey and Westermann (2018; henceforth T&W) 

simulate infant categorization using an autoencoder, a model 

that learns to reproduce the input after reducing it to a 

compact representation. They defined curiosity as 

maximizing 

(i – o)o(1 – o)  (1) 

where i stands for the model input and o for the model output. 

(i – o) reflects the difference between the input and the 

output, which is the error of the autoencoder in response to a 

particular stimulus. o(1 – o) is the derivative of the sigmoid 

activation function. As such, this part of the formula reflects 

the potential update made to the model in response to this 

stimulus, when it is trained using gradient descent. The 

formula favors stimuli which the model is predicting least 

accurately (the difference between input and output is large), 

and stimuli where a small adjustment in representation has 

the greatest effect on the prediction in terms of accuracy (the 

sigmoid derivative is large). In T&W, the curiosity condition 

learned the most robust category, followed by the objective 

complexity condition. 

T&W provide a cognitively plausible mechanism of 

curiosity, that produced results that fit their empirical data 

well. That the implementation of curiosity outperformed the 

other three mechanisms shows that a learner would benefit 

from applying this strategy. The inputs used in the study are 

very interpretable, but also rather simple, consisting of eight 

training instances and three test instances that differed on four 

features. The present model will use the same curiosity 

mechanism, and see how it performs when provided with 

more complex input, consisting of a sizable set of images to 

approximate the complexity of the language learner’s 

surroundings. 

The model of T&W went through the stimuli without 

replacement, so that the model encountered every stimulus 

once per epoch. A drawback of this setup is that it does not 

correspond to how children encounter stimuli in real life, as 

children have no control over the order in which stimuli are 
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presented to them. It is also unlikely for children to come 

across a string of examples of a certain category presented 

one after the other. Objects and living things are often seen in 

isolation from other category members, and amid objects of 

a wide variety of other categories. Our model was therefore 

presented scenes containing multiple objects it could choose 

from. The model would pick one object, skipping the other 

objects as it went on to the next scene. It was free to look at 

the same or any other object in the scene during the next 

epoch, meaning that some objects could be ignored 

altogether. This made the input sequences of our two 

experimental conditions more different, and perhaps less 

comparable than in T&W’s case, but it also better 

approximated a word learning context, in which only certain 

aspects of a scene are in focus at any time.  

Methodology 

Model 

Our language learner model is inspired by a model of 

referential expression resolution (Rohrbach et al., 2017), 

which incorporates an expression generation module as well 

as the main expression resolution component, which allows 

it to learn under self-supervision. We implement a similar 

complementary setup, consisting of a listener and a speaker 

module. The listener represents a child learning which words 

represent which objects in the visual modality, by receiving 

linguistic input from an oracle, which represents an adult 

conversation partner. The listener learns through supervision, 

comparing the true referent of a word to the referent it 

expected, and updating its language knowledge accordingly.  

The incorporation of a speaker module in principle allows 

the model to be used in a conversational set-up, but in the 

current work, the emphasis is on comprehension. As we 

describe in more detail in the section on ‘Curiosity’, the 

model’s curiosity about an object is calculated based on the 

ability of the listener to comprehend the label the speaker 

would give it. The oracle labels the object the learner model 

is most curious about. In analogy, a parent might name an 

object their child points out. Learning, however, is not simply 

mapping the label to the correct object: just like in the random 

condition, the model learns by predicting the referent of the 

given word and getting feedback on this prediction. The 

curiosity mechanism affects only the order the stimuli are 

presented in, but not the learning process itself. Figure 1 

illustrates the architecture of the model. The listener learns to 

map a given word to its referent in the visual context. A visual 

scene consists of a number of objects. We extract a visual 

feature vector for each object using the VGG-16 object 

recognition model presented by Simonyan & Zisserman 

(2015), pretrained on ImageNet. We use the last fully 

connected 4096-dimensional layer, which contains high-level 

visual information. For each object in a given scene, the 

embedding of the word given by the oracle was concatenated 

to the object representation, which was input to the listener. 

The listener further consists of a 256-unit hidden layer 

followed by a sigmoid activation function, which is fully 

connected to a single output unit, also followed by sigmoid 

activation. Softmax applied to the concatenation of the output 

values for all the objects in a scene gives a distribution 

reflecting the probabilities of each object being the referent. 

The listener was trained under supervision using cross-

entropy loss on the concatenated output values. The loss 

function is a quantification of how far off the model’s 

prediction is from the actual target distribution. Hence, a 

lower loss value means a better performing model. 

 

Figure 1: Simplified graphical representation of the model. 

The speaker module learns to output a word, given an 

object.  Input to the speaker is a VGG vector, which is fed to 

a  256 unit hidden layer followed by sigmoid activation, and 

fully connected to the vocabulary-sized output layer. The 

speaker was trained using cross-entropy in a self-supervised 

manner. Rather than training on a single object VGG vectors, 

it was fed the sum of the VGG vectors of all objects in the 

scene, weighted by the Softmaxed output vector of the 

listener (using it as attention). The self-supervision signal 

consists of the original input word to the listener. Therefore, 

the speaker can be thought of as learning in an unsupervised 

manner, although its performance is dependent on that of the 

listener, which is trained under supervision.  

The model was trained using Adam optimization 

(Kingma & Ba, 2014) in batches of 40 images, for a 

maximum of 40 epochs. To decide on an initial learning rate, 

we ran both the ‘curious’ and the ‘random’ model, with 

learning rates ranging from .1 to .00001 for 20 epochs. We 

ran each condition-learning rate combination with 5 different 

random initializations. We found that the best scores on the 

validation data were sometimes obtained in epoch 20, which 

suggested the model might not have fully converged yet. We 

therefore decided to report on models trained for 40 epochs. 

A learning rate of .001 yielded the best results on validation 

data for both the listener and the speaker. The results reported 

reflect 20 different runs of both conditions, with learning rate 

set to .001. The model was implemented in PyTorch (Paszke 

et al., 2017). The code is available at 

https://github.com/DaanKeijser/Curious-Topics. 
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Data 

The Flickr30k dataset (Young et al., 2014) was used as visual 

input to the model. The dataset consists of 31,783 images 

taken from Flickr, annotated with five captions per image 

(158,915 in total) via crowdsourcing. The images depict 

everyday activities and scenes.  Plummer et al. (2015) 

expanded the dataset with Flickr30k Entities, by identifying 

which words in the captions refer to which entities in the 

images. They provided annotation for 244,035 such 

coreference chains, and located the entities they referred to in 

the images, resulting in 275,775 bounding boxes. It should be 

noted that this data has a high level of complexity, but the 

captions are not child-directed speech. 

Figure 2 gives an example of the data our model was 

trained on. On the visual side, we simplified the learning 

problem by excluding any referring expressions that 

described multiple objects, such as ‘plants’ and ‘pots’ in 

Figure 2.  Processing multi-word expressions requires a 

recurrent neural network and a cross-situational learning 

model, which is outside the scope of the current work. We 

therefore simplified the referring expressions to single words. 

The Flickr30k Entities “Sentences” files containing the 

annotated captions for each image were searched to find all 

descriptions for every object ID. From the expressions for 

every object ID, the most frequent word was chosen as the 

single word most likely to describe the object in the image. 

This required that at least two descriptions of the image 

mentioned the object by the same term, otherwise the object 

was excluded. The word selection was done after omission of 

very frequent, irrelevant words such as articles (‘a’, ‘an’, 

‘the’), third-person possessive determiners (‘his’, ‘her’, 

‘their’), the cardinal numbers one through ten, and primary 

and secondary colors (e.g. ‘orange’), including ‘silver’ and 

‘gold’. If multiple objects in an image had been labeled with 

the same word, only one of them was selected (the first one 

in the loop, not randomly). Finally, images were removed that 

contained fewer than two objects after preprocessing. 

This yielded a total of 86,748 word-object pairs, resulting 

in a vocabulary of 4,237 unique words. It should be noted that 

objects paired to the same word could still display great 

visual variability. The least frequent words (e.g. ‘beak’ and 

‘paste’) occurred only once, whereas the most frequent word 

occurred 7,891 times. The five most frequent words were 

man (7,891 times), shirt (4,536 times), woman (4,378 times), 

boy (1,477 times), and girl (1,428 times). The average 

frequency was 20.47 (SD = 172.33), and the median 

frequency was 2. After preprocessing, 24,670 images 

remained, of which 1,000 were set aside as validation data, 

and another 1,000 as test data. 

Table 1: Number of objects and baselines per split. 

 

Table 1 shows the total number of objects in the train and 

test splits of the data, as well as the baselines for the listener 

and speaker respectively. The listener baseline is one divided 

by the average number of objects per scene. The speaker 

baseline is the majority baseline of the most frequent word. 

The baselines represent the average accuracy obtainable by 

chance, which serves as the minimal performance expected 

of the model. High accuracy is only an indication of good 

performance if the model performs better than its baseline. 

Since many words occur only once or twice, there are 80 

words in the test set that do not occur in the training set, with 

a token frequency of 80, and 776 words, with a token 

frequency of 3413 in the test set, that do occur in the training 

set. These numbers might suppress test accuracy. 

Curiosity Mechanism 

In order to measure the effect of active and curious learning, 

the model which performed curiosity-based object selection 

was compared to a model that received the next object to 

learn about randomly. In the first condition, curiosity values 

were calculated for each object using T&W’s curiosity 

mechanism, and the object with the highest value was chosen  

to learn about. In the second condition, objects were 

randomly chosen from the scenes. The main purpose of the 

speaker part of the model was to produce a word guess as 

input to the listener so that the model could run without the 

input provided by the oracle. This way, the model could run 

(without weight updates) to compute curiosity values and 

Split Objects Listener baseline Speaker baseline 

Train 79,749 0.284 0.091 

Test   3,493 0.286 0.089 

Figure 2: Example image with captions and selected words. 
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choose the most interesting object to talk about, before 

running (with weight updates) to learn about the form-

meaning pair with feedback from the oracle. 

T&W’s curiosity mechanism (see equation (1)) was used 

to produce the curiosity values, where i was the object 

representation given as input to the speaker, and o was the 

object prediction produced by the listener. The curiosity 

values were computed element-wise, and the mean of the 

absolute values of the curiosity vector was taken as the 

curiosity value for an object in the scene. The object with the 

highest curiosity value was chosen as the next input for the 

speaker and target for the listener. 

The random and curious conditions were compared on 

listener loss and accuracy, which indicate the models’ ability 

to choose the appropriate referent of a word form. The loss 

and accuracy patterns produced over the 40 epochs were 

plotted to be interpreted as learning curves and compared 

between conditions. 

Results 

Figure 3 shows the value of the loss and accuracy of the 

listener, after each epoch of training. Curious listeners (the 

blue lines in all plots) show a consistent pattern: after one 

epoch of training, accuracy on the test set ranged from .49 

to .61, far above the baseline of .286. The accuracy on the test 

set steeply increased in the first few epochs, and kept 

increasing more slowly, but steadily over later epochs, 

converging somewhere around epoch 20 with accuracy 

from .71 to .74. At epoch 40, accuracy ranged from .72 to .75.  

The exception to this pattern is one particular run, which 

shows a similar learning trajectory but started and ended with 

a much lower accuracy, of .32 and .58, respectively. The 

general pattern is reflected in the plots of the loss on the test 

data.  

On the training data, accuracy also plateaued around epoch 

20, with accuracy from .80 to .83 for 19 runs, and only small 

gains in accuracy until epoch 40, with scores from .83 to .84. 

Note that the training loss continued to decrease after epoch 

20. This indicates the curious listeners started to overfit at that 

point, fitting to specific characteristics of the training set, that 

did not translate to accuracy or improvements on the test data. 

As we saw on the test data, one run shows a different pattern 

and reaches a maximum of .76 in accuracy on the training 

data. 

The pattern for listeners in the random condition (the 

orange lines in all plots) is more erratic. After one epoch of 

training, all random listeners started around or just above the 

baseline accuracy of .286. Some listeners in this condition 

barely outperformed the baseline at epoch 40. Others 

outperformed the baseline, but plateaued after 10-20 epochs, 

eventually reaching maximum accuracy scores ranging 

from .39 to .48 on test data. For 6 runs, the accuracy after 

epoch 1 was around the baseline, but increased steeply until 

epoch 20, and continued to increase slowly after that. At 

Figure 4. Test and train results of the speaker. 

Figure 3. Test and train results of the listener. 
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epoch 40, performance of 8 runs is slightly below that of most 

runs in the curious condition, with test accuracy ranging 

from .68 to .73, and train accuracy from .78 to .81. The same 

patterns are reflected in the loss plots. 

Test accuracy of speakers trained in the curious condition 

peaked somewhere between epoch 10 and 25 around .23, with 

the exception of the one run in which the listener was also 

less successful, which peaked at epoch 12, with an accuracy 

of .19. The loss value was lowest around epoch 8. After this 

epoch, the training loss was still consistently going down, and 

training accuracy going up. After epoch 8-10, the curious 

speakers were overfitting rather than learning. 

As with the listeners, initially, speakers in the random 

condition learned more slowly, as is reflected in the lower 

accuracy between epochs 1 and 20. In all random runs, the 

speaker outperformed the baseline. However, as was the case 

with the listeners in this condition, there are large differences 

between runs. Most runs plateaued relatively quickly, and 

peaked between .16 and .19, whereas in 8 of the 20 runs, 

accuracy continued to increase, eventually matching 

performance of the speakers in the curious condition, with 

accuracy peaking around .23. Although the training 

trajectories in the random condition are more discernable 

than for the curious condition, in all runs, performance on the 

training data continued to improve until epoch 40. As in the 

curious condition, all random speakers overfitted. 

Discussion 

Did curiosity increase the performance of the word learning 

model compared to the random choice of objects? Yes, the 

listener test loss decreased faster and the listener test accuracy 

increased faster in the curious condition than in the random 

condition. Whereas the curious model converged at a similar 

point on every run, the random model eventually equaled or 

approached the curious model on some runs, but learned 

nothing or was stuck in a local optimum on others. 

A pattern that can be discerned is that curiosity, aggregated 

over the different initializations, performs better from the 

start and learns faster than random selection. In this 

experiment, the random initialization of the weights meant 

that the first objects selected in the curious condition were 

just as random as those in the random condition. This 

changed after a few weight updates when the curiosity 

formula took effect—the difference in performance 

becoming apparent after a single epoch. This behavior is 

different from what is typically proposed, as intrinsic 

motivation is expected to make learning slower initially, but 

make up for that with increased performance and better 

generalization in the long run (Oudeyer & Kaplan, 2007). 

Another pattern that can be observed is that learning 

trajectories of curious learners were more similar to each 

other than those of random learners were. Curiosity seems to 

provide ‘robustness’, making learners less prone to being 

stuck in a local optimum.  

The near instant performance advantage of curiosity may 

be explained by the inherent advantage it has over random 

selection when dealing with token frequency. Having a good 

word representation for the corresponding object brings an 

increase in overall accuracy equivalent to its token frequency. 

Whereas random selection is prone to select objects with a 

high token frequency, curious selection can focus on highly 

frequent word-object pairs first, and ignore them later once 

their representation is already accurate. Further research 

could establish whether the selection by the curiosity 

mechanism matches this strategy. 

This would correspond to the notion that language is not a 

product, but a means for social interaction, where the child’s 

initial interest is to get the message across and language 

learning follows (Clark, 2016). The intentionality theory of 

language learning describes how such intrinsically motivated 

behavior can drive language learning (Bloom, 2000). As of 

yet, there is no empirical data on what criteria or strategies 

children use to pick topics to talk about. 

Whereas the model was evaluated on the listener 

performance (comprehension), the speaker’s main purpose 

was to enable the curiosity mechanism, which was used to 

train the curious model. The high train accuracy of the 

curious speaker increased the accuracy of the curiosity 

mechanism, thereby improving the curious listener’s 

comprehension. However, the speaker overfitted in both 

conditions, and did not generalize well to test data. The 

speaker test results therefore do not help to understand how 

improved comprehension leads to improved language 

production.  

We have shown that modeling the language learner as an 

active solicitor of input, rather than a passive receiver, can 

lead to different learning outcomes. When objects in the 

context are selected as a topic according to curiosity, word 

learning is faster and more robust than when topics are 

selected at random. Future work may explore the 

distributional properties of the topics selected by curiosity 

over the course of the learning process. 
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