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Abstract

In this note we show that for some structural equation models (SEM), the classical
chi-square goodness-of-fit test is unable to detect the presence of interaction (non-linear)
terms in the model. Not only the model test has zero power against that type of misspec-
ifications, but even the theoretical (chi-square) distribution of the test is not distorted
when severe interaction term misspecification is present in the postulated model. We ex-
plain this phenomenon by exploiting results on asymptotic robustness (AR) in structural
equation models. The importance of this paper is to warn against the conclusion that if
a proposed linear model fits the data well according to the chi-quare goodness-of-fit test,
then the underlying model is linear indeed; it will be shown that the underlying model
may in fact be be severely nonlinear. In addition, the present paper shows that such
insensitivity to interaction terms is only a particular instance of a more general problem,
namely, the incapacity of the classical chi-square goodness-of-fit test to detect deviations
from zero correlation among exogenous regressors (either being them observable, or la-
tent) when the structural part of the model is just saturated.

Keywords: structural equation modeling, testing model fit, nonlinear relations, in-
teraction terms, equivalent models, asymptotic robustness, saturated model
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Introduction

In this paper we deal with nonlinear relationship between the latent variables. Such
nonlinearity may come from the existence of interaction or quadratic factors. It will be
shown that standard chi-square goodness-of-fit test are not always capable of indicating
that the underlying model is a nonlinear model. An explanation for this phenomenon
will be given. The theory of asymptotic robustness (AR) (as described in Satorra 2002,
and references therein) will be used to explain this insensitivity of the model test to
non-linear terms misspecification. A key assumption for applying the theory of AR is
that the variance matrix of non-normal constituents of the model is unrestricted by
the analyzed model. Even though this condition does do not hold for the model under
investigation, a reparameterization will be given under which conditions for AR are
fulfilled and consequently asymptotic robustness do hold for the considered model.

The structure of the paper is as follows. Next section illustrates the issue to be discussed
using a small Monte Carlo study. The Kenny-Juddy’s (1984) model will be used in the
Monte Carlo set-up. It will be shown that in a factor model in which one of the factors
is a product of two other factors, the normal theory (NT) chi-square goodness-of-fit
test is still chi-square distributed despite the interaction term and non-normality of the
observed variables. In Section 3 we recast a general model set-up for which the Kenny-
Juddy’s (1984) model is a special case, and we develop conditions under which results
of AR apply on that general model set-up. In Section 4 we show that interaction terms
misspecification is just a particular instance of a more general type of misspecification
that is undetected by the chi-square model test when certain conditions on the model
apply. Finally, Section 5 we discuss what the alternatives are if a researcher wants to
take seriously the possibility that some of the factors are nonlinear.

Monte Carlo evidence

In this section a small Monte Carlo study will be used to highlight the issue to be
discussed in the paper.

Consider a population for which the following regression equation holds

y = β̄0 + β̄1ξ1 + β̄2ξ2 + β̄12ξ1ξ2 + ζ (1)

where y is an observed variable, ξ1 and ξ2 are latent regressors, β̄12ξ1ξ2 is an interaction
term, and ζ is the disturbance term. The β̄s are parameters with specific values, and ξ1,
ξ2 and ζ have a trivariate joint distribution. Let us assume that ζ is independent of the
ξs.

Consider also observable indicators for the latent regressors ξ1 and ξ2, with each fac-
tor having two indicators; so, in addition to the regression equation (1), the following
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measurement equations are specified

xj = ᾱj + λ̄jξ1 + δj j = 1, 2 (2)

xj = ᾱj + λ̄jξ2 + δj j = 3, 4 (3)

where δj are measurement errors. Assume the measurement errors δs are independent of
the ζ and of the ξs. The ᾱs and λ̄s are parameters with specific values. For the moment,
no assumption is made about the statistical distribution of the random variables in the
model except for the described independence among sets of variables.

In the last two decades, model (1) to (3) has been studied extensively, in particular after
the seminal paper by Kenny and Judd (1984), and the seminal discussion of Kenny and
Judd’s model by Jöreskog and Yang (1996).

In the Monte Carlo study considered here, a model M0 is specified where instead of the
non-linear equation (1), we specify the linear equation

M0 : y = β0 + β1ξ1 + β2ξ2 + ζ (4)

with the βs being now parameters to be estimated. We also consider the equations
of (2) and (3) with the ᾱs and λ̄s substituted by free parameter to be estimated, α
and λs respectively. For purposes of model identification, for each ξ one of the λs is
set to 1. Model M0 specifies as unrestricted parameters the variances and covariances
corresponding to random constituents of the model (i.e., the variances and covariances
of the ξs, as well as the variances of ζ and of the δs). To make the specification of the
model more fully, let us even assume that M0 specifies normality for the distribution of
the vector of observed variables (this to be called the NT assumption).

Note that the specification M0 ignores the interaction term β̄12ξ1ξ2, whatever the mag-
nitude of β̄, as well as the non-normality of the distribution of y induced by the product
term ξ1ξ2 of the data generating process of (1).

The basic question we investigate in this paper is the following: when analyzingM0 using
data that comes from (1) to (3) with β12 6= 0, do we get any indication of misspecification
of the model? Note that such an analysis can be done by the regular normal theory (NT)
analysis since normality of observable variables are assumed in M0. More specifically,
we ask ourselves whether the NT chi-square model test of M0, i.e. the likelihood ratio
test (LRT) of M0 against a model that sets the mean vector and covariance matrix
unconstrained, has the capacity to detect the presence of the interaction term β̄12ξ1ξ2.
This is of practical importance, because if there is not such an indication a researcher
may tend to adopt the incorrect conclusion that there is just a linear relationship between
the variables, and conclude that M0 is the true model.

To make the investigation more concrete, consider the population of equations (1) to (3)
with the same parameter values as in Jöreskog and Yang (1996); that is, ᾱ1 = . . . = ᾱk =
0, β̄0 = 1, β̄1 = .2, β̄2 = .4, β̄12 = .7, λ̄1 = 1, λ̄2 = .6, λ̄3 = 1, λ̄4 = .7, ψ̄ = .2, φ̄11 = .49,
φ̄12 = .2352, φ̄22 = .64, θ̄δ1 = .51, θ̄δ2 = .64, θ̄δ3 = .36, θ̄δ4 = .51, where we used the
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notation ψ̄ = var (ζ), φ̄ij = cov (ξ1, ξ2) and θ̄δk
= var (δk) for the corresponding variances

and covariances. Note that in the population considered there is a substantial interaction
term. The Monte Carlo illustration considers replicating 1000 times iid sampling, sample
size n = 500, from this population.

For each of the 1000 replications, we computed the corresponding value of the chi-square
model test (the LRT). This produces 1000 replicates of the LRT which distribution can
be inspected. This whole process is carried out under 5 different data generating process
(DGP) that just differed in the distribution of the ξs: DGP 1− 4 set ξ1 and ξ2 to be a
chi-square distribution with degrees of freedom 1, 2, 5 and 10, respectively, centered to
have zero mean; DGP 5 sampled the ξs from a normal distribution. In all the cases, the
ζ and the εs were iid sampled from a Normal distribution. So DGP 1−4 do have skewed
latent variables (DGP 1 is the most skewed), while the DGP 5 has Normal distribution
latent variables.1.

Table 1 reports the mean and variance of the Monte Carlo distribution of the LRT for
the different DGPs conditions.

Table 1: Monte Carlo distribution of the model test statistic

DGP (varying the distribution of the ξs)

Distribution of LRT 1 2 3 4 5

mean 3.042 2.997 2.995 3.027 3.115
variance 5.755 6.391 6.371 6.299 6.041

From Table 1 we see that, although a) the model M0 is seriously misspecified (it ignores
the presence of an interaction term of a substantive size) and b) the model M0 assumes
normality (NT) when the data is skewed (even for DGP 5), the NT LRT has a mean and
variance close to what should be expected if the test statistic were chi-square distributed.
For the specified M0, the LRT has 3 degrees of freedom (df), so were the distribution
LRT chi-square, the mean and variance reported in Table 1 should be approximately
3 and 6 respectively (the theoretical values of mean and variance for a χ2

3). This is
certainly the case if we look at the numbers in the table. Inspection of the qq-plot for
the fit of the empirical distribution to a χ2

3 in the worst case scenario (the most skewed
data) DGP 1, shows also an accurate fit to a χ2

3 (points lying close to the diagonal line).

Thus, the interaction term misspecification do not seem to induce distortion of the null
distribution of the LRT. From this small Monte Carlo study we thus conclude that the
LRT (for all the DGP conditions) has the same distribution, χ2

3, as when no misspec-
ification is present in the model, including the assumption of Normal distribution for
observable variables. This is disturbing since we would like the model test to be sensi-

1Note that even for DGP 5, that samples from a normal distribution, the distribution of y will be
non-normal, due to the interaction term present in the equation (1) of the data generating process.
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tive to the severe misspecifications implicit in modelM0, such as ignoring an interaction
term of substantive size.

This surprising result of lack of sensitivity of the chi-square model test to substantial
interaction terms in the model, will now be explained using results of the theory of
asymptotic robustness of structural equation models. This will be done in a general
context of structural equation models in which the the Kenny and Judd’s model, of our
Monte Carlo study, is a special case.

Models and assumptions

In this section we develop analytic conditions under which the phenomenon reported for
the Kenny and Judd’s model necessarily extends to general model set-up when certain
conditions on the model hold. For that we will apply results of the theory of asymptotic
robustness (AR). For the sake of completeness, results of AR to be used are reproduced
in Appendix A.

General model set-up

Consider M0 to be the general LISREL model with mean structures (see Jöreskog and
Sörbom, 1984)

η = α+B0η + Γξ + ζ (5)

y = τy + Λyη + ε (6)

x = τx + Λxξ + δ (7)

where α, τy and τx are vectors of constant intercept terms, and B, Γ, Λy and Λx are
matrices of parameters. Terminology in econometric would call (5) a “simultaneous
equation model”; SEM terminology refers to this equation as the “structural” part of
the model; equations (6) and (7) are referred as “measurement” (or factor analytic) part
of model.

We assume that B = (Im−B0) is invertible, ε is uncorrelated with η, and δ is uncorrelated
with ξ. Typically, it is assumed that ζ is uncorrelated with ξ, so no new parameter
matrix matrix need to be introduced regarding the covariance matrix Φξζ between ξ and
ζ. Unless it is said the contrary, M0 assumes that Φξζ = 0.2 We also assume that ζ,
ε and δ have mean zero. The mean of ξ is a vector of parameters denoted as κ. The
variance matrices of ξ, ζ, ε and δ are denoted respectively as Φξ, Φζ , Φε and Φδ. Under
a specific model M0, the above vectors and matrices of parameters are expressed as a
function of the vector θ of parameters of the model. Define Π = B−1Γ, the matrix of

2Below we see that deviations from that assumption are in fact untestable within the classical SEM
framework, unless we introduce sufficient restrictions on Γ.
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“reduced form” coefficients of the “simultaneous equation” part of the model. For the
results to be developed, we require the modelM0 satisfies the following condition below.

Condition U: The matrices Π, Φξ and B−1ΦζB
−T are unrestricted, except for Φξ

and Φζ to be symmetric and positive definite.

The above model M0 can be re-written in the following vector equation form

z = A0 +

(
ΛyB

−1Γ
Λx

)
ξ +

(
ΛyB

−1

0

)
ζ +

(
ε
δ

)
(8)

where z is the vector z = (y′, x′)′ of observed variables and

A0 =

(
τy + ΛyB

−1α
τx

)
.

Associated to M0 there is a specific structure (i.e., vector- and matrix-valued functions
of a parameter θ) for A0, κ, B, Γ, and the variance matrices Φξ, Φζ , Φε and Φδ.

Re-write (8) as

z = A0 +

(
Λy 0
0 Λx

)(
B−1Γ B−1

I 0

)(
ξ
ζ

)
+

(
ε
δ

)

so that

z = A0 +A1

(
Πξ +B−1ζ

ξ

)
+

(
ε
δ

)
with

A1 =

(
Λy 0
0 Λx

)
.

Set ξ∗ = Πξ + B−1ζ (= η − B−1α), and consider the alternative factor-analysis repre-
sentation

M∗
0 z = A0 +A1 υ +

(
ε
δ

)
. (9)

where

υ =

(
ξ∗

ξ

)
.

Letting

Φυ(= cov (υ)) =

(
Φ∗

11 Φ∗
12

Φ∗
21 Φ∗

22

)
,

we obtain

Φυ =

(
Π B−1

I 0

)(
Φξ Φξζ

Φζξ Φζ

)(
Π B−1

I 0

)′
(10)

=

(
ΠΦξΠ

′ +B−1ΦζB
−T + ΠΦξζB

−T +B−1ΦζξΠ
′ ΠΦξ +B−1Φζξ

ΦξΠ
′ + ΦξζB

−T Φξ

)
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in terms of the parameters of M0. We added the parameter matrix Φξζ = cov (ξ, ζ) to
represent the (possible) covariance among ξ and ζ in the population.3

InM∗
0 we assume that the vector κ, the matrices A0, A1 and the variance matrices of Φξ,

Φε and Φδ have the same model structure as under M0. We also let the variance matrix
Φξ∗ of ξ∗, and the (m × n) covariance matrix among ξ∗ and ξ, Φξ∗ξ, to be parameter
matrices of the model M∗

0. In parallel to Condition U above, we define

Condition U∗: The matrices Φξ, Φξ? and Φξ∗ξ are unrestricted parameters of the
model, except for Φξ, Φξ? to be symmetric and positive definite.

The following Lemma 1 will be needed.

Lemma 1 Consider the matrix Φυ defined in equation (10). Assume that Φξ is non-
singular, then

1. Conditional to any arbitrary matrix Φξζ, Φυ is unrestricted iff the matrices Π, Φξ

and B−1ΦζB
−T are unrestricted.

2. Conditional to any arbitrary matrix Π, Φυ is unrestricted iff the matrices Φξζ, Φξ

and B−1ΦζB
−T are unrestricted.

Proof Due to the identity, Φ∗
22 is unrestricted iff Φξ is unrestricted. Now, given the

expression of Φ∗
12 in the last equality of (10) , it is clear that given Φξζ (idem, given Π),

Φ∗
21 is unrestricted iff Π (idem Φ∗

21) is unrestricted. Now, given Φξζ , Π and Φξ , Φ∗
11 is

(symmetric) and unrestricted iff B−1ΦζB
−T is (symmetric) unrestricted.

Two models are equivalent at the moment structure level, if they reproduce the same
set of moments matrices. When two models are equivalent, the chi-square model test
coincide. So the distribution of the model test for one model is the same as the distribu-
tion of the chi-square model test of an equivalent model. See for a detailed discussion of
equivalent models Luijben (1991). In his paper a sharper definition of equivalent models
than in our paper is given. The reason of this sharper definition is that Luijben is also
dealing with non-identified and locally-identified models. These points are not an issue
of our paper. The following Lemma 2 follows as immediate consequence of 1. of Lemma
1.

Lemma 2. The model M0 under Condition U, and the model M∗
0 under condition

U∗ are equivalent at the mean and covariance structure level.

Even though M0 Condition U implies M∗
0 under condition U∗, the reverse is not true.

In fact, there are a general class of models that are equivalent to the factor analysis
model M∗

0 under Condition U∗ . In fact, by 2. of Lemma 1, we see that restricting Π
can be interchanged with allowing free covariances among ξ and ζ, something which is
not contemplated within the frame of the LISREL model M0 specified above.

3Note that M0 assumes Φξζ = 0.
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The models M0 and M∗
0 are said to be equivalent on their covariance matrix structure,

since they parameterize the same set of covariance matrices for z, and therefore they
have the same value of the chi-square goodness-of-fit test statistic. So the distribution
of the model test for M0 is the same as the distribution of the model test of M∗

0.

We now will see that when, in addition to equivalence at the moment structure level, the
random components υ and (ε′, δ′)′ are independent, further properties for the chi-square
model test arises.

Insensitivity of the model test

In this section we will show that when Condition U holds, the model test for the LISREL
model posited above has a fundamental insensitivity to severe misspecifications of the
model, in particular to non-linear interactions terms as the one reported in Section 2.

Let r be the degrees of freedom associated to the LISREL model M0 above (i.e., that is,
r is the number of independent moments minus the number of independent parameters).
The following Corollary applies.

Corollary 1. Consider the LISREL model formulation as above. Let T be any of
the NT chi-square model test mentioned above (for a precise definition, see (12) of the
Appendix A1). Let the model be identified with degrees of freedom r > 0. Assume further

1. The random vector (ξ′, ζ ′)′ is independent of (ε′, δ′)′, not only uncorrelated.

2. The vector (ε′, δ′)′ is normally distributed

3. Condition U holds.

Then, T
L→ χ2

r, as n→∞.

Proof: It follows as direct consequence of Theorem 1 of Appendix and Lemma 2.

This Theorem explains the Monte Carlo results of Section 2. Indeed, for the DGPs
being considered, the presence of the interaction term β̄12ξ1ξ2 is an omitted variable in
the structural part of the model that induces a non-null correlation of ζ with the ξs.
Despite that correlation, however, the model estimated in each replication of the Monte
Carlo study is a model M0 with the conditions of the Corollary 1 being verified, so the
NT chi-square test is indeed asymptotically chi-square distributed. That is, the model
test statistic is not only insensitive to the correlation among ξ and ζ (i.e., there is no
noncentrality shift on the distribution), but neither the chi-square distribution itself gets
distorted. This explains Table 1 and the qq-plot showing a close fit of the empirical
distribution of the LRT to the χ2

3 despite the gross misspecification in the model.

We should stress the implication of Corollary 1 when Condition U holds: a) the asymp-
totic distribution is chi-square; b) the test will have no power, i.e. the non-centrality
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parameter for the power of the test (cf., Satorra and Saris, 1985) will be zero, regardless
the size of the the coefficients of the non-linear terms.

The phenomenon of the model test being insensitive to the the interaction term is just
one example of an omitted correlation among regressors and disturbance terms not being
detected by the model test. In fact, this insensitive of the model test to fundamental mis-
specifications arise when the model ignores variables that can cause spurious correlation
among the disturbance terms of regression equations and exogenous variables (variables
whose distribution is not being explained by the model). In practice this is a serious
limitation of the chi-square goodness-of-fit test in SEM, when Condition U holds.

Note that Condition U ensures that the structural part of the model is saturated (i.e.
we have a set of unrestricted regression equations). We see that under Condition U, the
degrees of freedom (df) of the model test do not assess any restriction on the structural
part of the model. In fact, we could express Condition U saying that the degrees of
freedom associated to the structural part of the model is just zero. This is made precise
in the following lemma.

Lemma 3. Consider a model specification M0 as in equations (5) to (7). Assume
the model is identified and there is no cross-restrictions among the sets of parameters
B, Γ, Φξ and Φζ with the other parameter vectors and matrices. Then, Condition U
holds iff the model restricted to equation (5) (supposing η and ξ observable) has degrees
of freedom (df) equal to zero.

Proof: If there are no cross restrictions as the one mentioned in the conditions of the
theorem, the model is identified, and Condition U holds, the model reduced to equation
(5) has necessarily 0 degrees of freedom (since it is an identified model, df ≥ 0, but df
= 0, otherwise some of the matrices would have an exceess of restriction, so Condition
U would not hold). Conversely, it follows easily that when the model is identified and df
= 0 then Condition U is necessarily satisfied.

When Condition U holds, we will say the structural part of the model is saturated. Note
that a particular instance where Condition U holds is when B0 = 0, i.e. B = Im with
Φζ unrestricted and when Γ is fully unrestricted also. There are other models for which
Condition U holds, as for example, when B0 is lower triangular, Φζ diagonal and Γ fully
unrestricted. In all the cases, however, we have the situation where the model at the level
of the structural equations is just saturated. Of course, a trivial model where Condition
U holds, is the case of a regression model with all the variables observable. Clearly,
another way of reading the consequences of Condition U, is that M∗

0 is a factor model
with the variance matrix of the common factors unrestricted.

For the sake of simplicity, Corollary 1 has been formulated for the single-group case
only, and with the restriction of the εs and δs to be normally distributed (see 2 of
the Corollary). Exactly the same type of results extend in the case of multiple-group
models, and also when the εs and δs are possibly non-normal, provided their components
are independent (not just uncorrelated) with unrestricted, and variances. Note that in
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a multiple group set-up it is essential not to have restrictions that may restrict across
groups the matrix of variances and covariances of the vector υ, even though in each group
such a matrix Φυ is left unrestricted (see Satorra (2002) for details on AR for multiple
group models).

Discussion

It has been shown that in SEM assuming linear relationships between the latent variables
and testing the fit of the model by NT likelihood ratio test, may lead to the conclusion
that the model fits the data and to the wrong conclusion that the relationship is linear.
This was illustrated in a small Monte Carlo study by using a well-known example which
has been studied by several authors, e.g. Kenny and Judd (1984) and Jöreskog and Yang
(1996). The conclusion of our finding is that if there may be a nonlinear relationship
between the latent variables, it is not sufficient to use a test which is based on means
and variances only, like the Normal Theory Likelihood ratio test does. Therefore it
is recommended to use other tests. The last decades such tests are in development.
Roughly, two groups of approaches can be distinguished. In the first approach product
of observed variables are used as indicators for the interaction factors. This method is
applied in the method as suggested by Kenny and Judd (1984) and after that by Jöreskog
and Yang (1996), and many others. In this approach the choice of the product indicators
is an important issue. We refer to a discussion of this approach to Marsh, Wen, and Hau
(2004).

Another approach of dealing with nonlinear relationships in SEM is to use a maximum
likelihood method in which it is assumed that the observed predictors are normally
distributed. Defining the joint density of the latent and the observed variables is not
very difficult, however, integrating out the latent variables to get the proper likelihood
function, results in a rather unattractive multivariate integral. There are several ways to
tackle this problem. To mention just a few publications: Klein and Moosbrugger (2000),
Lee and Zhu (2002), and Klein (2007). Also the computer package Mplus, Muthén and
Muthén (1998-2007) has a possibility to deal with these kinds of interaction models,
however it is unclear to the present authors which method is actually used in Mplus.

We have also seen that the problem with the non-linear terms is a specific instance of a
more general problem of the model test in SEM, namely the insensitivity of the model
test to correlation among the disturbance terms in the equation and the regressors when
the structural equation part of the model has been specified so that Condition U holds.
If we were dealing with regression with observed variables, the degrees of freedom of
the model test would just be zero under an standard (“saturated”) regression model.
It is well known however that in that instance moment structure analysis (standard
OLS analysis) is unable to detect omitted variables that cause spurious correlations of
disturbance terms and regressors.
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In the case we have considered of modelM0 under Condition U, all the degrees of freedom
r of the model test correspond to restrictions on other vector/matrices of parameters
(such as α, τx, τy, B, the Λs, the Φε or Φδ), none to restrictions of zero correlation
among regressors and the disturbance term. By saturating the structural part of the
model, the model test gets free of non-normality and covariances misspecification. The
model test do not carry any restriction on that part of the model. This is more general
than just misspecification of interaction terms, and may have larger implications for
general SEM analysis.

We restricted the formulation to the single group case. It can easily be seen (attending
to the general formulation of the conditions of AR that we describe in the Appendix)
that also the case of multiple group analysis could be considered. Also the case where
the ε and δ are not normally distributed, but their components are independent with
unconstrained variances. We did not discuss those generalities for the sake of keeping
the presentation simple.

We have just considered conditions of the model that make the test insensitive to model
misspecification, such as not accounting for the interaction terms. The key condition
was the structural part of the model to be saturated, i.e. Condition U. When Condition
U does not hold, the model test is likely to loose such insensitivity property. Research
on the extend of the distortion of the distribution of the standard chi-square goodness-
of-fit test, when there are non-accounted interaction terms (or other forms of correlation
among regressors and disturbance terms) and Condition U does not hold, is a matter of
extreme interest. We feel however that such additional issues would get us beyond the
intended scope of the present paper.
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Appendix

Asymptotic robustness in multiple group analysis

In this section we review briefly asymptotic robustness (AR) results for the NT chi-square
goodness-of-fit test as derived in Satorra (2002). We will only give the implications for
the distribution of the test statistics and not for the standard errors of the estimates
of the model parameters. AR shows that the basic result that the likelihood ratio test
statistic of the model is chi-square distributed holds under more general assumptions
than just normality of the observable variables.

Consider a multiple group data set-up of {zgi}, where zgi is a pg × 1 vector of observ-
able variables, i = 1, . . . , ng, indexes individuals and g = 1, . . . , G, indexes groups (the
dimension of zgi is allowed to vary with g). When clear from the context, the subindex
i is suppressed.

We define n =
∑G

g=1 ng and we assume that limn→∞
ng

n
= πg > 0. Consider the pg × pg

matrix of (uncentered) sample cross-product moments Sg = 1
ng

∑ng

i=1 zgizgi
′, and let s =

(s′1, . . . , s
′
G)′, where sg = vech (Sg) be the overall p?×1 vector of (non-redundant) sample

moments, where p? =
∑G

g=1 p
?
g and p?

g = pg(pg + 1)/2. Let Σg be the probability limit

of Sg as ng → ∞, and the p? × 1 vector σ = {(vech (Σ1))
′, . . . , (vech (ΣG))′}′ be the

probability limit of s.

A structural equation model corresponds to the a particular moment structure M0 :
σ = σ(ϑ), where σ(.) is continuously differentiable and ϑ is an unconstrained vector of
parameters that vary in an open set Θ.

Consider the NT minimum distance (MD) estimator

ϑ̂ = argminϑ∈Θ {s− σ(ϑ)}′ V {s− σ(ϑ)} , (11)
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where

V = ⊕G
g=1πgV

?
g , with V ?

g =
1

2
D′(Sg

−1 ⊗ Sg
−1)D.

For this NT-MD analysis, the NT chi-square goodness-of-fit test statistic is

T = n
{
s− σ(ϑ̂)

}′
V
{
s− σ(ϑ̂)

}
, (12)

An alternative approach to NT-MD estimation is pseudo-maximum likelihood (PML),
where the function to be minimized is an affine transformation of the log-likelihood
function (under NT). A likelihood ratio test statistic for the postulated model is defined
that is asymptotically equivalent to the test statistic defined in (12) .

The following theorem gives the results that ensure the robustness of the statistic T and
the NT LRT statistic (see Satorra (2002, p. 306-307) for a more general version of this
theorem).

Theorem 1a. Suppose that M0 is a model specification with parameter vector ϑ,
degrees of freedom r, and estimable by NT-MD. Assume

1. zg = µg +
∑j=Jg

j=1 Agjξjg where the µg are vectors, the Agj are matrices, and the ξjg
are random vectors with finite variance matrices, Φjg = cov (ξjg)

2. µg = µg(ϑ), Ajg = Ajg(ϑ), Φjg = Φjg(ϑ), with µg(.), Ajg(.) and Φjg(.) continuously
differentiable

3. The ξjg’s have finite fourth-order moment and are independent across j and g

4. Either (for any g and j):

a) ξjg is normally distributed, or/and

b) φj = vechΦj is a sub-vector of the parameter vector ϑ

Then, T of (12) is asymptotically χ2
r .




