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CHAPTER 1

INTRODUCTION

This report is the second in a series of reports dealing with
the behavior, analysis and design of rib- or girder-supported bridge
decks of a variety of shapes. A program of study extending in several
phases over approximately a six year period has been envisaged. The proposed
activities include literature surveys, development of refined techniques
for analysis and design, and laboratory and field studies of model and
prototype structures.

The first report in the series [1]* described a computer oriented
method of analysis for skew bridges, in which the bridge structure was
idealized as a thin plate with eccentrically connected ribs, and was ana-
lyzed by the finite element method. Since the completion of that report,
work has continued on the development of analytical techniques and computer
programs. The techniques being investigated and compared include extensions
of the ribbed plate method, and also methods in which the structure is
idealized as an anisotropic plate, as a discrete gridwork, and as a simple
beam.

In this report, these methods are reviewed briefly. However, the
main purpose of the report is to investigate the anisotropic plate method
of analysis, and to use this method to study the behavior of skew bridges.
The report is therefore arranged as follows.

In Chapter 2, several analytical methods of both historical and

contemporary importance are reviewed and contrasted. Particular attention

* See References



is given to the anisotropic plate method, as it is used extensively in the
later chapters. In Chapter 3, the theory of the anisotropic plate method
is presented, and a computer program to apply the method is described.
In Chapter 4, a typical class of skew bridges is selected, and a study is
carried out in which the angle of skew, diaphragm layout and loading are
varied. The results are discussed extensively, with the aim of demonstrating
how skew bridges behave, and how they differ from right bridges. In
Chapter 5, the behavior of a skew, two-span slab bridge is investigated
both analytically and experimentally, and the results are compared. In
Chapter 6 a study of the local behavior of skew-supported deck slabs is
carried out, in order to determine whether skew supports significantly
influence deck slab behavior. Conclusions about specific aspects of
behavior are presented at the end of each chapter.

In future reports, other methods will be described in detail
and will be critically compared on the basis of accuracy and suitability

for both research and design use.



CHAPTER 2

REVIEW OF METHODS OF BRIDGE DECK ANALYSIS

2.1 INTRODUCTION

A number of important methods of highway bridge deck analysis
are reviewed in this chapter. To assist in this review, the methods have
been classified according to the type of mathematically idealized model
selected to represent the real structure, and according to the method used
to analyze the idealized model.

Three major classes of idealized model, and one miscellaneous class,
can be recognized. These are:

1. Equivalent plate model.

2 Equivalent grid model.

3. Ribbed plate model.

4 Miscellaneous models.
In each case, the model is obtained by making assumptions about the
character and behavio; of the real structure. The accuracy with which the
results obtained from analyses of the model can be applied to the real
structure dependsstherefore, on the accuracy of the assumptions, and it
is important for the analyst to bear this fact constantly in mind.

The analysis techniques which have been applied to the idealized

models also fall into four classes. These are:

1. Series solution of a differential equation.

2 Finite difference solution of a differential equation.

3. Analysis of an assemblage of discrete structural members.
4 Analysis by empirical or semi-empirical methods.



In the following sections, methods of both historical and
contemporary importance are reviewed according to the idealized model and
analytical technique used. The equivalent anisotropic plate idealization
is given particular attention because it is used in later chapters of this
report. Other idealization procedures, such as the grid and ribbed plate
techniques, will be considered in future reports of this series, and

will be explained in greater detail in those reports.

2.2 EQUIVALENT PLATE IDEALIZATION
2.2.1 Idealization

The basis of the equivalent plate procedure is the idealization
of the bridge deck as an equivalent elastic plate with anisotropic properties.
The stiffnesses of the plate are obtained by "smearing" the stiffnesses of
the girders and diaphragms, as explained in detail in Chapter 3. The major
sources of inaccuracy in the idealization are as follows:

1. If either the girders or diaphragms of the actual deck
are widely spaced, the '"smearing" of their stiffnesses may not be justified.
However, this problem can be overcome, as noted subsequently, by representing
the girders or diaphragms as discrete beams.

2. It may be difficult to assign an appropriate torsional stiffness
to the equivalent plate.

3. The real deck is actually a three dimensional structure, with
ribs eccentrically connected to a deck slab. However, this three dimension
aspect is ignored when the structure is idealized as a thin plate. In particular,

shear lag effects in the deck slab are essentially ignored.



The methods reviewed in this section are believed to be represent-
ative of the many investigations which have been reported. The analytical
techniques used and the methods of presenting the results are described in
general terms for each case, for the purposes of comparison and contrast.
However, for detailed explanations of the methods, the original reports
should be studied. Where different workers have adopted different pro-
cedures for idealizing the deck structure this fact is noted, but details
are not presented. A recommended procedure for idealization of the structure

is presented in Chapter 3.

2.2.2 Distribution Coefficient Method

The distribution coefficient method is a variation of the series
solution technique applied to orthotropic plates. The method is treated
separately here because it forms the basis of an extensively used book by
Rowe [2].

The term "distribution coefficient" refers to the particular method
used to present the results of the analysis. The method is based on the
Guyon-Massonet solution of the governing differential equation for rectangular

orthotropic plates (Huber's equation), namely

3w *w 3w _
DXW + ZHW + Dy'é—!r‘q (x,y) (2.1)

in which: DX and Dy are the flexural stiffnesses per unit width of the idealized
plate in the x and y directions respectively;

H is a constant depending on the equivalent flexural and



torsional stiffnesses selected for the
plate;
w 1is the Tateral displacement;

and q 1is the applied load per unit area.

The initial idealization was made by Guyon [3], who ignored
torsional stiffness. Massonet [4] subsequently proposed a method of
accounting for torsion. The solution technique was then refined by Morice,
Little and Rowe [2,5].

The solution technique is the single series procedure of Levy [6],
in which displacements in the x direction are expanded in Fourier series,
with the effect that the partial differential equation in x and y is reduced
to an ordinary differential equation in y only. This equation can then be
solved comparatively easily. The technique is well known, and has been
applied in recent years to a wide variety of plate and shell problems. Its
overwhelming disadvantages are that the properties of the idealized plate
must be uniform in the direction of the span (the x direction), the plate
must be simply supportgd along two opposite edges, and only rectangular
plates can be considered. However any pattern of loading on the bridge
can be taken into account, by expanding the load function in Fourier series.
Loads corresponding to each term of the series are applied separately, and
the final results are then obtained by superposition.

Morice, Little and Rowe observed that the displacement variation
across the width of the bridge caused by any loading pattern was generally
similar to the displacement distribution caused by only the first term of

the Fourier series for that loading pattern. Accordingly, they carried out



parameter studies for the comparatively simple case of loading by the first
Fourier term only, and presented the results as a series of "distribution
coefficients.” For a plate with specified stiffness properties, the
deflection at a point, x = a, y = b, on the bridge due to a 1ine of wheel

loads applied along a line, y = c, can be calculated as

w = kW (2.2)

deflection at point (a,b);

in which: w
k] = the distribution coefficient, which depends on the properties
of the slab and the values of b and c;

and W

average deflection of the complete bridge cross section at
X = a, caused by the actual line of wheels and computed by
treating the complete bridge as a simple beam.
By this procedure, the deflections due to any combinations of wheel loads
can be estimated.

An exactly similar procedure, using essentially the same distribution
coefficients, is applied to determine the longitudinal plate bending moment
per unit width at a point. However, the distributions of bending moment
across the bridge width caused by the actual wheel loads and the first Fourier
term respectively are not as closely similar as the distributions of deflection
(mathematically, this is because the series for bending moment converges less
rapidly than the series for deflection). As a result, the method is less
satisfactory for moment computations. The procedure recommended by Rowe et al

[2,5] is to apply the equation

m, = 1.1 k Mx (2.3)

1



in which: m is the plate bending moment per unit width at point (a,b);
] is the distribution coefficient, as before, and the 1.1 is
is an approximate correcting factor;

and M, 1is the average bending moment on the bridge section at x = a,
caused by the actual line of wheels and computed by dividing the
simple beam moment by the bridge width.

A procedure for the computation of transverse bending moments is also presented

but in a much less convenient form.

The distribution coefficient method was developed for use in England,
where the critical design loadings for short span bridges are exceptionally
heavy wheel Toads representing special vehicles, and where the ability of the
bridge deck to distribute such heavy loads is of primary importance. The
method can be applied fairly easily, and has been widely used in England.

In the United States, however, design loadings are specified differently,
and different methods of analysis have evolved. It is doubtful whether

the distribution coefficient method will have much application in the United
States, except for special problems.

The weaknesses of the distribution coefficient method should also
be emphasized. The method is strictly applicable to simple span right bridges
only, and must be treated with caution if applied to skew or continuous bridges.
Equally important is the fact that transverse diaphragms must be "smeared", in
order to produce uniform equivalent plate properties. If the diaphragms are
widely spaced, considerable error may result, as noted in Chapter 4 of this

report.



2.2.3 Other Series Solutions of the Differential Equation

The Guyon-Massonnet solution of the equivalent plate assumed that
the plate had free longitudinal edges, and hence did not permit edge beams
to be taken into account. Cornelius [7] presented a solution of the plate
equation for the case where the plate edge was supported by an edge beam
possessing flexural stiffness but no torsional stiffness. A Levy type of
solution was still used, but different boundary conditions were inserted in
the solution of the ordinary differential equation in y. It may be observed
that this did not represent a major theoretical advance, as a general theory
of edge beam-structure interaction, including both torsional effects and
eccentric connection, had been presented earlier for the more complex
cylindrical shell problem by Jenkins [8].

The Cornelius solution was improved and applied to bridges by
Chu and Krishnamoorthy [9]. They emphasized the importance of integrating
the plate moments to estimate the moments in the girders of the actual deck,
and discussed practical problems of assigning flexural and torsional stiff-
nesses to the plate. They also showed that the transverse distributions of
moment and deflection in a plate differed substantially, thus contradicting
a key assumption of Rowe's distribution coefficient method. They further
pointed out that the transverse bending moments computed for the equivalent
plate do not provide a good measure of the slab moments in the actual bridge.
Giencke [10,11] improved the methods of idealizing the structure by proposing
more realistic definitions for the properties of the equivalent plate than
those which had been previously used. Heins and Looney [12,13] have extended
the theory of interacting plates and beams to consider more complex geometrical
configurations.

A variation of the series solution technique, which combines the

series procedure with the finite element method has been described by
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Cheung [14] and Powell and Ogden [15]. This technique actually eliminates
the need to set up and solve the differential equation of the orthotropic
plate, and is rather more general than other procedures. However, it is
most appropriately classified as a series technique, and suffers from most of
the restrictions of the other series methods.

An elegant application of orthotropic plate theory to the
special problem of orthotropic steel plate deck bridges has been presented
by Pelikan and Esslinger [16]and has been adopted in the A.I.S.C. Design
Manual [17] for these structures. Mathematical idealizations specifically
suited to steel decks with open and closed ribs are first developed. The
analysis is then carried out by forming expressions for the influence
surfaces of orthotropic plates which are continuous over rigid beams,
and determining from these the maximum effects due to truck loadings. In
the A.1.S.C. Design Manual, charts permitting easy computation of maximum

effects are presented.

2.2.4 Finite Differenge Solution of Differential Equation

Because of the limitations of series solutions, the finite
difference method has been extensively applied to obtain approximate
solutions of the differential equation of equivalent plates. The method
was developed by Jensen [18] for solid isotropic plates with both skew
and right supports, and was used for the analysis of flat slabs. The theory
was then extended by Newmark and Siess [19] and by Chen, Siess and Newmark [20]
to the analysis of right and skew bridge decks. The method used was to idealize
the structure not as ananisotropic plate, but as an isotropic plate in which
discrete beams were imbedded. This idealization is actually superior to

the anisotropic plate idealization as it avoids the problem of "smearing"
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the girder and diaphragm stiffnesses. However, similar assumptions are made

in reducing the bridge deck to an equivalent thin plate system. In the first
report by Newmark and Siess [19], analyses for a variety of right angled decks
were carried out, and as a result of these analyses recommendations leading to
the well known S/5.5 rule were made [19,21]. In the later application to

skew decks [ 20] similar recommendations were made, whiech modified the rule

to allow for the effects of skew. The finite difference technique has recently
been extended and applied to a variety of structures by Heins and Looney [22,23].

Finite difference analyses of skew bridge decks idealized as
equivalent orthotropic plates have been carried out by Naruoka and Ohmura
[24]. An attempt was made to present the results as distribution coefficients
of the type used by Rowe. However, because of the larger number of parameters
which can be varied in skew decks, the coefficients did not cover a
sufficiently wide range of cases to be of practical value. Finite difference
analyses of orthotropic plates have also been carried out by Heins and
Looney [12,13].

Although a much wider range of structures can be analyzed by the
finite difference method than by the series solution method, the finite
difference technique is still rather inflexible. In particular, difficulties
arise at the edges of the structure, especially if the edge is not straight
or is supported in a complex fashion. The finite difference equations may
also be poorly conditioned for solution, and significant inaccuracy may

result.

2.2.5 Finite Element Analysis
The finite element method is a modern, computer oriented method

which can be applied to the analysis of an extremely wide variety of
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complex structural systems. The method can be applied to both anisotropic
plates and plates with imbedded beams. Plates of virtually any shape and
with arbitrary support conditions can be analyzed. The method is not
exact, but will generally yield more accurate results than the finite
difference method. It should be remembered, however, that the results of
the analyses are still no better than the assumptions made in setting up
the equivalent plate idealization.

The finite element method has been used in later chapters of
this report to conduct a parameter study of skew bridge decks. The theory

used is described in Chapter 3.

2.3 EQUIVALENT GRID IDEALIZATION

The equivalent plate method of idealization replaces the bridge
deck by an equivalent continuum. By contrast, the grid method replaces
the bridge by a framework of discrete beam elements. Each beam is assigned
flexural and torsional stiffnesses selected to represent the strip of deck
structure which it replaces. The idealized structure is then analyzed as a
discrete element system, and the member forces are used to estimate
the forces in the actual deck.

Early attempts to apply grid methods of analysis to bridge decks
were handicapped by the amount of numerical calculation involved.
Frequently, series types of solution were sought, and in some cases discrete
grids were actually converted to either equivalent plates or plates with
imbedded beams to permit series solution techniques to be applied.

With the introduction of digital computers, however, the analysis of
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grids by the displacement method became a routine task. The technique

was pioneered by Hendry and Jaeger [25] and Lightfoot and Sawko [26]. More
recently Bouwkamp and Powell [27] have idealized orthotropic steel plate
deck bridges as large grids with excellent results. The technique generally
avoids the complex mathematics of other idealizations and can be expected

to have wide application in bridge deck analysis. The method will be

investigated in detail in future reports of this series.

2.4 RIBBED PLATE IDEALIZATION

Both the equivalent plate and equivalent grid procedures reduce
the three-dimensional bridge deck to essentially a plane system. Ribbed
plate idealizations, however, attempt to treat the structure as a plate
with eccentrically connected ribs.

Trenks [28], Pfluger [29] and Vitols, Clifton and Au [30], havealso
"smeared" the rib stiffnesses, but by accounting for the rib eccentricity
they have developed 8th order differential equations to represent the system.
These equations can be solved for simple cases by series techniques, but the
method is mathematically complex and not of practical importance. Massonnet [31]
has sought a compromise solution which incorporates the effects of eccentric
ribs into equivalent orthotropic plate equations of 4th order. Basically,
the technique is to allow the positions of the neutral axes in the ribs of
the combined rib and plate system to vary, and to determine those positions of the
neutral axes which lead to minimum total potential energy of the complete
plate. By contrast, in the usual equivalent plate method the positions of
the neutral axes are estimated in advance and are fixed. Some increase in

accuracy is achieved, but the mathematics of the problem is made considerably
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more complex, and the basic assumptions, restrictions and errors of the
equivalent plate idealization are retained. In can be concluded, there-
fore, that this type of method is also not of practical importance.

Ribbed plates can also be analyzed by the finite element method
without “smearing" the rib stresses. The idealized structure in this case
consists of a thin isotropic plate possessing both flexural and extensional
stiffness, representing the deck slab, to which discrete ribs, also with
both flexural and extensional stiffness, are connected. For composite
action, compatibility of both the in-plane and out-of-plane displacements
at the interface of the plate and ribs is then established during the
analysis, whereas for noncomposite action compatibility of only the out-
of-plane displacements is established.

The application of this method to skew bridges has been investigated
by Mehrain [1] in a previous report in this series, and a somewhat similar
procedure has been reported independently by Gustafson and Wright [32].
Although the method is not strictly "exact" (for example, the cracking
of concrete sections is not taken into account), the procedure is the most
precise one currently available. However, because it is time consuming,
and therefore costly, to use, it does not appear to be feasible to apply the
method in design at present, except in unusual cases. Nevertheless, the
method is extremely valuable because it can be used to check simpler and
more approximate methods. A considerably extended version of Mehrain's
computer program has been developed, which permits stringer-supported
decks of completely arbitrary plan shape and with arbitrary properties and

loading to be analyzed. This program is being used to analyze curved
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bridges and bridges with varying skew to study their behayior and to check
results obtained by other methods of analysis. This work will be reported

in detail in a future report in this series.

2.5 OTHER IDEALIZATIONS
2.5.1 General

In this section three other methods of idealization are considered,
namely the equivalent beam method (AASHO "S/6" rule), the multibeam method

and model testing.

2.5.2 AASHO "S/6" Rule

One of the major difficulties faced by the bridge designer is that
the loads (whether design loads or actual loads) can be placed anywhere on
the structure, often in combination, and the absolute maximum effects
of these loads must be determined. A1l of the methods of analysis described
in this chapter require substantial numerical effort to determine the
effects of loads acting in any one position on the structure, and may
require tremendous effort if all possible load positions are to be investi-
gated. Even if the method is one in which influence surfaces are generated,
substantial simplification will result only if there are a few critical
sections in the bridge which can be easily identified, so that only
Timited numbers of influence lines have to be constructed. It may happen
that as computer programs for use by the bridge designer are developed,

it will be possible for maximum effects to be determined from rational
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theories automatically with moderate cost and effort. Indeed, programs

of this type are being studied as part of the investigations being carried
out by the authors. At present, however, such programs do not exist. As
a result, the use of a simplified idealization such as the "S/6" rule is
essential.

The "S/6" type of rule can be criticized because it takes into
account only one parameter, the girder spacing, out of several parameters
which may influence the load distribution in the bridge. Thus, Scordelis
and Meyer [33] have proposed that additional parameters be considered in
establishing this type of rule for box girder bridges. It is noted, however,
that the original recommendations of Newmark et al [19,20,21] on which the
“S/6" rules appear to be based, also took account of parameters other than
the girder spacing. It has not been firmly established whether the rules
now in use are accurate for skew bridges or bridges of other shapes, and
part of the work being carried out by the authors is to review these rules.
It can be anticipated that rules of this type offer the bestcompromise
between simplicity and accuracy for typical bridges, especially considering
the lack of knowledge about the true loading patterns on bridges. However,
for bridges of unusual shape it is probable that more rational investigations

are warranted.

2.5.3 Multibeam Idealization

Multibeam bridges, consisting of discrete precast beams connected
by longitudinal "hinges", can be analyzed as beam-hinge systems. Series
solutions have been proposed by Pool, Arya, Robinson and Khachaturian [34]

and by Powell, Ghose and Buckle [35], and a transfer matrix method by Buckle [36].

Because the hinges are usually assumed to transfer no moment, load is transferred
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from beam to beam essentially by shear only, and the degree of load transfer
depends on the torsional stiffness of the beams. Nevertheless, approximate
analyses of stringer supported bridges with monolithic deck slabs can be
carried out by multibeam theory if the transverse flexural stiffness of the
bridge is small. A feature of the method described by Powell, Buckle and
Ghose is that nonzero flexural stiffnesses can be assigned to the hinges,

so that decks with significant transverse flexural stiffness could also be

analyzed.

2.5.4 Model Tests

If there is no analytical technique available which can be applied
with sufficient confidence by the designer, resort to model testing is
usually necessary. Frequently, the information sought from the physical
model is the same as that which might have been found from a mathematical
model, namely elastic deflections and stresses. As the range of structures
which can confidently be analyzed increases, however, the need for this type
of model test decreases. Such tests are therefore used mainly to check
the theoretical results obtained in research programs rather than as aids
to design.

At the same time that small scale elastic models have less use,
however, prototype or large model testing, aimed at studying the true
behavior of actual structures, is required more and more. Such tests are
required to determine the deflections and stresses in real structures under
actual loading and environmental conditions, and to determine whether the
analytical methods being used or proposed for use in design are adequate.

As safety factors are reduced, and as structures become more complex and
analytical techniques become apparently more refined, more large scale tests

are essential.
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2.6 SUMMARY
2.6.1 Review of Idealized Models

The major types of idealized model for use in bridge analysis

are:
a. The equivalent plate model;
b. The equivalent grid model;
c. The ribbed plate model;

and d. The equivalent beam model.

The equivalent plate method should be satisfactory for the
analysis of bridge decks with closely spaced stringers or ribs, but can be
expected to be inaccurate if the ribs are widely spaced. In sach cases,
the method can be extended by idealizing the structure as a plate in which
discrete beams are imbedded.

Whereas the equivalent plate method idealizes the actual structure
as a continuum, the equivalent grid method idealizes it as an assemblage
of discrete beams, but otherwise the level of approximation is very
similar. The grid method has the advantage of simplicity, yet permits
very complex systems to be analyzed, provided judgement is exercised in
the selection of the equivalent beam properties. Whereas a grid analysis
can be shown to give poor results for solid isotropic plates, good results
can be expected for ribbed plates, especially if they are strongly anisotropic.
For bridge structures, the accuracy achieved should generally be comparable
with the accuracy with which the loading and bridge properties are known,
and the grid method can be expected to have wide application in bridge

analysis.
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The ribbed plate method attempts to idealize the structure in
as accurate a manner as possible, and to account for effects which are
ignored in the simpler plate and grid methods. The increased refinement
is achieved, however, at the expense of greater complexity. Hence,
although the method is valuable as a tool for research and investigation,
it is doubtful whether it will become a standard method for use in design.
The equivalent beam method has the advantage of extreme simplicity,
and has served designers well for many years. There is no doubt that it
will continue in use. Nevertheless, the method in its current form can
be criticized because it does not take account of many important parameters
which influence bridge deck behavior. Accordingly, the method deserves
to be re-examined, in order to determine whether a more rational form should

be developed.

2.6.2 Techniques of Analysis

In certain restricted cases, equivalent plate models can be
analyzed by series solution of the differential equation, either directly
(in which case a computer is desirable) or with the aid of design charts.
For a wider variety of cases, the finite difference method can be used,
but the use of a computer is virtually essential. The finite element
method, for which a computer is absolutely essential, can be applied to
a still wider variety of cases, and is generally superior to the finite
difference method. It is therefore recommended for cases in which series
solution or charts can not be used. It may be observed that there is no
reason why a computer should not be as common a design office tool as a

slide rule. Many analysis and design techniques which are currently in use
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have been developed more with regard to simplicity for hand computation than
with regard to rationality. There can be no doubt that in the near future
virtually all routine calculation will be performed by machine, and that
more elaborate and rational techniques will be commonly used.

The grid method also requires the use of a computer, as do the
finite element techniques for the analysis of ribbed plate models. Even the
analysis of equivalent beam models may require a great deal of numerical
computation, and can profitably be carried out by computer. In all cases,
however, appropriate computer programs, which are easy to use in the design

office, must be developed.
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CHAPTER 3

ANISOTROPIC PLATE THEORY

3.1 INTRODUCTION

The equivalent plate model can be used for the analysis of bridge
decks having closely spaced ribs in a variety of configurations. In this
chapter, a procedure for idealizing a bridge deck as an equivalent aniso-
tropic plate is presented, and the theory of the anisotropic plate is
developed. A computer program developed to analyze skew plates is then
described. This program is subsequently used for the parameter studies
in Chapter 4.

The equivalent plate method can be extended to bridge decks which
have widely spaced beams (or a combination of widely spaced girders with
closely spaced ribs), by idealizing the structure as an isotropic or aniso-
tropic plate with imbedded discrete beams. This type of model can also

be analyzed by the computer program described in this chapter.

3.2 BRIDGE PROPERTIES
3.2.1 Bridge Axes

Fig. 3.1 shows a plan of a skew bridge. Axes Ox and Ox' act
parallel to one pair of edges of the bridge (in this report, the span
direction), as shown. Axis Oy' is then defined normal to Ox', so that
coordinates x',y' are in a rectangular system. However, axis Oy is defined
parallel to the other pair of edges of the bridge (in this report, paraliel

to the supports), so that coordinates x, y are in a skew system. The angle
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B 1is the "external" angle of skew, as shown.

3.2.2 Beam Systems
The beam systems in a skew bridge may follow several patterns,
three of which are shown in Fig. 3.2. These are as follows:
a. Girders and diaphragms paraliel to the skew axes, Ox and
Oy (Fig. 3.2.a) This system is most common in concrete
bridges, and is not orthotropic.
b. Girders and diaphragms parallel to the rectangular
axes, Ox' and Oy' (Fig. 3.2.b) This system is
equivalent to that commonly used in steel bridges and
is orthotropic.
c. Girders and diaphragms at right angles to the skew axes,
Ox and Oy (Fig. 3.2.c). This system, or other systems,
might be used in special cases. It is included here
to show that the method is not restricted to the two
cases above.

Note that in right bridges these three systems are all identical.

3.2.3 Beam Axes

In each of the above three cases, the beam directions define
a pair of beam axes in the bridge, which are identified as directions 1 and
2 respectively, as shown in Fig. 3.2. Each set of beams will have both
bending and torsional moments acting on it. The bending moments are
identified respectively as M] and M2’ as shown in Fig. 3.3, and the torsional

moments as M3] and M32.
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3.2.4 Bridge Properties in Beam Axes

The stiffness properties of the bridge depend on the elastic
constants of the structural material and the dimensions of the beams
and slab. Let Young's modulus and Poisson's ratio be E and v, so that
the shear modulus is G = E/2(1+v). Let I, and I, be the moments of inertia
of single beams in the 1 and 2 directions respectively. If the beams are
closely spaced, that part of the deck slab which is tributary to each
beam should be assumed to be a part of the beam cross section. If the
beams are widely spaced, and effective width of slab should be assumed,
commonly one third of the total beam length, but not exceeding the beam
spacing. This procedure allows approximately for shear lag effects in the
slab. If the beams and slab are not composite, their I values should be
computed separately and added. Let J] and J2 be the effective torsional
inertias in the 1 and 2 directions respectively. These are usually deter-
mined by dividing the effective beam sections into rectangles and summing
the St. Venant torsional inertias of the individual rectangles. However, for
rectangles representing_the deck slab, the equivalent torsional inertia should
be put equal to bh3/6,in which h = slab thickness and b = rectangle width.
This procedure is rather crude, but in view of other approximations in the
methods of analysis, and because the torsional behavior of an actual bridge

deck is extremely complex, the method is believed to be justified.

3.2.5 Bridge Moment-Deformation Relationships in Beam Axes
Moment-curvature and moment-twist relationships are assumed to

be expressible in the following form:



24

/' \N [ N AR
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< M2 s D]2 022 0 0 < Xo $ (3.1)
M31 0 0 By 0 X31
M .0 0 0 D X
2] 32 32
\ "/ L I
in which: X and Xp are beam curvatures;
X31 and X3p are beam rates of twist;
D]] and 022 = EI] and EI2 respectively;
D3] and D32 = GJ] and GJ2 respectively;
and D]2 represents the coupling, through Poisson's

effect, between the flexural behavior in the 1

and 2 directions.
The assumption that actions M] and M2 are coupled only by Poisson's effect
and M3] and M32 are uncoupled is reasonable for the orthotropic system in
Figs. 3.2.b. However, the situation is more complex in the skew systems
shown in Figs. 3.2.a apd 3.2.c, and coupling among the flexural and torsional
actions must be expected through shear effects in the slab. Such coupling
effects are, however, very difficult to determine, and for simplicity it is
assumed that Eq. 3.1 applies for this case also. If a more accurate analysis
is required, then a more refined idealization of the structure, such as a

ribbed plate model, should be selected.

3.3 EQUIVALENT PLATE PROPERTIES
3.3.1 Plate Axes
Axes Ox', Oy' and Ox, Oy, as in Fig. 3.1, are selected for the

equivalent plate as well as the actual bridge.
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3.3.2 Plate Moment Coordinate Systems

The equivalent plate which will be analyzed is (with the exception
of certain torsional features, as noted later) conceived as a solid plate
of orthotropic material. If a segment of the plate, as shown in Fig. 3.4.a
is removed, then the normal stresses and shear stresses acting on a unit
length of the plane face, AB, combine to give a resultant moment per unit
length, shown as the vector R in Fig. 3.4.b. This resultant moment can
now be resolved into component moments in several different ways, some of
which are significant in the development of skew plate theory and in the
interpretation of the results of skew plate analyses.

The simplest component moment vectors are those taken normal and
parallel to the face AB, as shown in Fig. 3.4.c, and are respectively the
torsional moment and bending moment per unit length on AB. The component
vectors might also, however, be taken normal to the rectangular axes, Ox'
and Oy', as shown in Fig. 3.4.d, or normal to the skew axes, Ox and Oy, as
shown in Fig. 3.4.e. It happens that the system shown in Fig. 3.4.c is
most convenient for interpreting the results of skew plate analyses, because
the bending and torsional moments on the rib cross sections can be deter-
mined from this system. However, for the development of skew plate theory
the system shown in Fig. 3.4.e is commonly selected for the reason given
in the next paragraph. It should be noted that the component moment
vectors are not orthogonal in this case, and therefore must be treated with
care.

Fig. 3.5 shows a rectangular element and a skew element in a
skew plate. Anisotropic plate theory can be developed using the system

shown in Fig. 3.5.a, and for the particular case of orthotropic slabs
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it will lead to a simple formulation. However, it is difficult to insert
the skew boundary conditions in an analysis being conducted with this
system. Further, the displacement compatibility characteristics of finite
elements for skew plate analysis can be improved substantially if the
displacement degrees of freedom are expressed in the skew coordinate
system. Hence, the skew system shown in Fig. 3.5.b is more convenient,

and has been adopted for the finite element solutions used in this report.

3.3.3 Plate Moment-Deformation Relationships in Beam Axes
In order to convert from bridge beam stiffnesses in the 1 and 2
directions to equivalent plate stiffnesses in these same directions, put
I
i;= (3.2)
1
in which S] is the spacing of the girders and i] is therefore the plate

stiffness in the 1 direction per unit width of plate. Similarly, put

I
. 2
i, = — (3.3)
2 52
.Y
= (3.4)
J
. _ 2
Jo = 5_2' (3.5)

Assume, now, that plate moment-deformation relationship in beam axes can

be written as:
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/ W B 1 ¢ )
m dy Oy 0 0 X)
g’“z \ - diz 00 ﬁxz \ (3.6)
M3 0 0 djy 0 X31
m 0 0 0 d y
32 32 32
\ "/ L AN
B B B
or {mg} = [dB] {xg} (3.7)

in which d]] and d22 Ei] and Ei2 respectively;

d,, and d32 = Gj] and sz respectively;

31
d]2 represents the coupling, through Poisson's effect,

between the flexural behavior in the 1 and 2 directions;

and m, ,m, are the bending and M3y, Mg, are the torsional moments

in the beam axes per unit length of plate in each direction.

3.3.4 Plate Moment-Deformation Relationships in Rectangular Axes
For convenien;e, the rectangular axes Ox' and Oy' are selected
as reference axes, and the plate moment deformation relationships for
each of the three cases shown in Fig. 3.2 are transformed from the beam
axes to these reference axes. If the analysis is to be carried out in
the skew axes, Ox and Oy, a further transformation can then be made.
The plate moments in the rectangular axes are shown in Fig. 3.5.a.

The relationship between the moments in the rectangular and beam axes can be

written as:
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/ \ S
mxl m-l
m . m
< y - [t]]J 2 } (3.8)
mxlyl m3-|
m o m
y XJ 32
\ \ B
or {mR} = [t]] {mB} (3.9)
in which: {mR} are the moments in therectangular axes O0x', Oy' ;
{mB} are the moments in the beam axes;
and [t]] is a transformation matrix, which is as follows for
each of the cases shown in Fig. 3.2.
(a) For the case in Fig. 3.2.a
= -
1 0 0 0
0 1 s S
[t,] = ©c ¢ (3.10)
A 0 0 1 0
s s
< ¢ 9 1
in which s = sin B;
c = cos B;
and B = external angle of skew.

(b) For the case in Fig. 3.2.b.
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1 0o o 0
0 1 0 0
[41= Jo o 1 o (3.1)
_p 0 0 ‘L
(c) For the case in Fig. 3.2.c
ﬁ ——
s S
L
) 0 1 0 0 (3.12)
[tl] N s s
-= = 1 0
c c
0 0 0 1
The moment-deformation relationships in the rectangular axes can now
be written as:
( \ \
mX' (XXI
‘m b X ]
¢y = Lol (VN (3.13)
mxayl xxlyl
m . J X, 1!
\y'x L %y 'x)Y
or {me} = [dR] {xR} (3.18)
In which, for each case:
_ T
[d] = [t4] [dg] [t,] (3.15)

where [dB] is given by Eq. 3.6.
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Because the equivalent plate theory implicity assumes that the
plate is a solid slab with anisotropic material properties, it now
follows that the torsional moments, mx‘y‘ and my'X' are equal in magnitude
but opposite in sign. The rates of twist, Xx'y' and Xy'x" are also equal
in magnitude, each being numerically equal to 32%w/5x'dy'. Hence, the

4 x 4 matrix, [dR], in Eq. 3.14 can be reduced to a 3 x 3 matrix, [&R],

in order to get an expression of the type generally used in plate theory,

namely:

mxl Xxl

m - X,

M = [dp] Y (3.16)
mxlyl 2xxlyl

in which [aR] is obtained from [dR] by the transformation

[d5] = [t,] [dg] [t,]" (3.17)
and
o0 o 0]
[t,]= |0 1 0 0 (3.18)
1 1
SO A




31

3.3.5 Plate Moment-Deformation Relationships in Skew Axes

As noted in section 3.3.2, it is convenient, for the analysis
of plates on skew supports, to work in the skew coordinate system. An
element of plate in this system, and the plate moments acting on it, are
shown in Fig. 3.5.b. Note that these plate moments are not the same as
the moment in the beam axes, and that the moment components on any face are
not orthogonal. In this system the "torsional" moments, m_ and m__ are

Xy yX
also numerically identical, which allows the following expression to be

written:
My Xx
m, = [ds] Xy (3.19)
My S 2Xxy S
or {m¢} = [dS] {xs} (3.20)
, i T - T
in which [ds] = cosB [t3] [dR] [t3] (3.21)
— -
s? 2s
and i 1 Ez' C—-
[tg] = |0 ‘;I':'z 0 (3.22)
S 1
° e T

3.3.6 Output Coordinate System
Regardless of whether the rectangular or skew coordinate system
is used in the analysis, the final moments should be computed as bending and

torsional moments in the beam coordinate system. Transformations from
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the moments {mR} or {ﬁs}, in rectangular or skew axes respectively, to

the moments {mB}, in beam axes, are therefore needed. The transformations

are as follows:

(a) From the skew system, {ﬁs}, to the reduced rectangular

system, {ﬁR} :

{mR} = [t4] {ms} (3.23)
- —y
in which 1 sz _2s
c c c
[t,] = 0 c 0 (3.24)
0 -s 1
- -
(b) From the rectangular system, {ﬁR}, to the beam system of
Fig. 3.2.a:
{mB} = [t5] {ﬁR} (3.25)
in which ! 0 0
s2 c? -2sc
[ts] = o 0 1 (3.26)
sc -sc (c2-s?)
p— d

From the skew system, {ﬁs}, to the beam system of Fig. 3.2.a:

tmg} = [t] [t,] (i)

(3.27)



(d)

in which

(e)

(f)

in which
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From the rectangular system, {ﬁR}, to the beam system

of Fig. 3.2.b:

[tg] =

o o o —-'l
—
o

From the skew system, {ﬁs}, to the beam system of

Fig. 3.2.b:

(mgd = [t] [t,] {ig)

From the rectangular system, {ﬁR}, to the beam system

of Fig. 3.2.c:

(mg} = [t,] {mp)

r-c-2 s? -2sc }
0 1 0

[t - sC  -sC (c2-s?)
o o 1

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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(g) From the skew system, {ﬁs}, to the beam system of
Fig. 3.2.c:
{mg} = [t,] [t,] {mg} (3.33)

The final beam moments in any case are obtained by integrating the

plate moments over the widths which are tributary to the beams.

3.4 DIFFERENTIAL EQUATION
Although the differential equation is not required for the finite

element method of analysis, it is of interest to note its form, as follows:

*w dw 3w 3w d*w  _
diy 5% i3 5T gy T Adyp t 2g3) Fmpe - Moggrmys t dop gy T alxwy)

(3.34)
For the rectangular coordinate system shown in Fig. 3.5.a, the constants
d]], d]2 etc. are the terms of [&R], as defined by Eq. 3.16: For
the special case in which the beams are also at right angles, as in Fig. 3.2.b,
d]3 = d23 = 0, and hence the differential equation reduces to the well known

orthotropic plate equation:

3w 3w 'w
Dx —a—x—n- + 2H 'ax—zayz + Dy b—y—“— = q(X,y) (3.35)
in which: Dx = d]] ;
Dy = d22 :
and H = d]2 + 2d33 :

For the skew coordinate system shown in Fig. 3.5.b, the constants d1], d12

etc. are coefficients of [&S], as defined by Eq. 3.20.
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Although the equivalent anisotropic plate is, by implication,
a solid plate, the true structure is ribbed, and hence has a much Tower
torsional stiffness than a solid plate. Because they have begun with the
differential equation, Eq. 3.35, a number of workers have introduced a
modifying factory, or » to account for the reduced torsional stiffness.

This factor is defined for an orthotropic plate as

(3.36)

Early attempts at using Eqn. 3.35 required arbitrary estimates
of ar ranging from 0.0 for torsionless slabs to 1.0 for solid isotropic
slabs. Subsequently, Rowe et al [2,5], gave an explicit expression for
o in terms of the bridge deck properties. If Eqs. 3.6 and 3.35 are
substituted into Eq. 3.36, it can be shown that:

(3.37)

The equation given by Rowe is similar to this but assumes v = 0. It
should be noted however, that the essential equations of the anisotropic
plate are Egns. 3.1 through 3.33, and that ar needs to be introduced only

if the differential equation method of solution is employed.
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3.5 FINITE ELEMENT ANALYSIS

Details of a finite element technique for the analysis of skew
isotropic plates have been presented in a previous report by Mehrain. The
extension of the theory to include anisotropic plates is straightforward,
requiring simply that the moment-deformation relationship for the anistropic
plate, Eq. 3.19, be used in place of Mehrain's relationship for the isotropic
plate. A major advantage of the finite element method is that an extension
such as this can be made comparatively easily.

A computer program has been developed to analyze skew anisotropic
plates, and has been used for the studies presented in this report. The
program is named FEASAP (Finite Element Analysis of Skew Anisotropic Plates),
and possesses the following features:

1. Optional input of either

(a) the plate inertias per unit length (i],iz,j] and j,
as defined in Eqns. 3.2, 3.3, and 3.4), together with
the elastic constants (E and v), or
(b) the elastic moduli, Poisson's ratios, and thickness of
the plate (E],Ez,v],\)2 and h).
2. Specification of either of the two beam systems shown in
Fig. 3.2.a and 3.2.b.

3. Provision for discrete beams, imbedded in the plate.

4, Provision for single concentrated loads, patch loads and truck

loads.

5. Ability to consider curved bridges over parallel supports

by varying the angle of skew along the bridge.
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6. Output of:

=1}

displacements at all nodal points;

b. reactions at the supported nodal points;

c. moments per unit length at all nodal points
and all element centers, which may be output
in the skew, rectangular or beam coordinates;

d. effective shear force distributions along the
supported boundaries;

and e. beam moments and shears if beams are present
in the plate.
A listing of the program and detailed instructions for its use
will be included in a future report. In the meantime, a copy of the program

and a tentative set of instructions are available on request.

3.6 EQUILIBRIUM CHECK IN SKEW PLATES

In skewed plates , which are simply supported on two opposite
edges, it is a requirement of equilibrium that the integral of the plate
bending moments across.any transverse section, must equal the attacking
couple of the applied load acting at that section.

Fig. 3.6.a shows, in plan, a single span skew plate of span L,
measured normal to the support lines. Under the action of a point load P
acting at a distancea from one support, the attacking couple on any
section, Z-Z, cut parallel to a support and at distance z from it, will be
P(L-a)z/L. For a uniformly distributed load of total weight W, this same
couple will be Wz(1-z/L)/2.
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If the plate represents a bridge, this couple can be termed the
"total bridge moment" at the particular section. If analyses are being
carried out by the finite element method, this equilibrium requirement
provides a useful means of checking the solution.

Fig. 3.6.b shows one half of the skew plate of Fig. 3.6.a. For
the midspan cross section, €-C, the attacking couples are PL/4 and WL/8
for the point and distributed loads respectively. The integral of the
computed bending stress resultants on section C-C must therefore equal
these values. This check has been carried out for the structures considered
in Chapter 4, and in all cases the agreement was excellent.

In a right-angled bridge, the moment MC-C is also equal to the
sum of the girder moments, and may be termed the "total bridge moment". In
order to study the load distribution in skew bridges, it is convenient to
define a corresponding "total bridge moment", but in this case the problem
is rather more complex, as follows.

Fig. 3.6.c shows an element cut from a skew plate at some point
along the section C-C.. The bending and torsional stress resultants per
unit length on C-C, and also on lines parallel to the axes Ox' and Oy', are
shown. It follows from the relationships presented in this Chapter, that the
girder bending moments are obtained by integrating the plate moment m. .,over
the tributary widths of the girders. Hence, the sum of the midspan girder
moments in a skew bridge does not equal the moment M. .. Rather, the

following equilibrium relationship can be written:
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M-~ = m,, cosg dy'
C-C =0 X

+2 [  m,, . sing dy' (3.38)

b
Mo_c secB = é m.. dy'
b
+ [ m ., tan?g dy'
0o Y
b
+ 2% mx'y' tang dy (3.39)

The first term on the right hand side of Eq. 3.39 is the sum of the girder
midspan moments, and the left hand side is the total bridge moment which
would be present in a right bridge of span Lsecg (the skew span) subjected to
the same loading. The quantity MC_CsecB is therefore conveniently regarded
as the "total bridge moment" for a skew bridge.. This definition has been
used in Chapter 4 in studies of the load distribution in skew bridges. In

a bridge which has negligible torsional stiffness and transverse bending
stiffness, the last two terms on the right hand side of Eq. 3.39 will be
negligible, and the sum of the girder moments will equal the total bridge

moment. In other cases, however, this will not apply, as discussed in Chapter 4.
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3.7 VERIFICATION OF FEASAP PROGRAM

To check the accuracy of the results available with the FEASAP
program, an analysis has been carried out of a right-angled orthotropic
plate previously studied by Clifton, Chang and Au [37]. These workers have
analyzed this structure using an equivalent plate theory proposed by Giencke
[10,11] and by a ribbed plate theory based on an eigth order differential
equation. The structure has been described in detail in their paper. It
consisted of a steel deck plate reinforced by two sets of orthogonal ribs.
The panel was simply supported on four sides and loaded with a patch load

at the center of the panel. The principal, results are shown in Table 3.1.

TABLE 3.1
Check on FEASAP Program
Method Deflection | ____Xx-Stresses  ___ y-Stresses

Under Top Plate | Bottom Rib |Top Plate | Bottom Rib

Load Fiber Fiber Fiber Fiber
Giencke .00426 -220 937 -280 999
Clifton et al] .00451- -163 1059 -230 1092
FEASAP .00455 =177 1148 -242 1056

The FEASAP program is seen to be within 10% of the more
refined method of Clifton et al, and significantly better than the method

of Giencke for this structure.
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CHAPTER 4
BEHAVIOR OF SINGLE SPAN SKEW BRIDGE DECKS

4.1 PARAMETER SELECTION

Although the behavior of right bridge systems has been
thoroughly studied, there are certain unusual features of skew systems
which are not well understood. In this chapter the results of a
parameter study of skew bridge decks are presented. The aim is to
emphasize the important characteristics of skew systems and to show
how they differ from right systems.

The parameters which characterize a bridge are large in number,
including such primary variables as span, width, angle of skew and loading,
and also such variables as girder and diaphragm type and spacing, degree
of composite action, etc. For the purposes of the parameter study
described herein, the parameters of major importance were assumed to be
the angle of skew, the ratio of girder to diaphragm stiffnesses (degree of
anisotropy) and the type of loading. Accordingly, only these parameters
were varied.

The analyses were carried out using the program FEASAP, described
in Chapter 3. The parameters used in the analyses were selected following
an examination of several bridges constructed in California in recent years.
It was found that the essential parameters did not vary widely, even between
bridges with quite different types of construction. Hence, a "typical"
bridge, which gave "typical" values of the essential parameters, was selected.
This bridge was a four lane single span bridge of 52'-6" span, with seven
precast prestressed girders at 7'-6" centers acting compositely with an

in-situ deck slab, as shown in Figs. 4.1 and 4.2.
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The external angle of skew of this bridge, B, was assigned
values of 0°, 20°, and 40°. As this angle was varied, the right (short)
span and width were both held constant. That is, the roadway widths at
both the elevated and grade levels were fixed.

The degree of anisotropy, 61 = 11/12, was assigned values of
1, 12 and 163, by holding 1, (a measure of the girder stiffness) constant
and varying i, (a measure of the diaphragm and slab stiffness). The value
61 = 1 represents an unusual case with very closely spaced diaphragms,
the value 61 = 12 represents a typical case with one or two diaphragms in
the span, and the value 61 = 163 represents a case with no diaphragms at
all. Two additional cases were also studied. The first was a solid
isotropic slab, which also has 61 = 1 but a much larger torsional

stiffness than the ribbed slab with 61 1. This case was included to

demonstrate the differences between solid and ribbed slabs and is designated
61 = SLAB. The second case was a plate with 61 = 163, but with a single
concentrated beam (diaphragm) imbedded in the plate at midspan, and
assigned a stiffness giving an overall 61 of 12. This case was included
to study errors which are introduced when widely spaced diaphragms are
"smeared", and is designated as §; = 163 + D. In all cases the diaphragms
were assumed to be composite with the deck slab, to have full continuity
over the girders, and to be parallel to the supports. A summary of the
anisotropic parameters for bridges of the same general type as that
investigated is shown in Table 4.1. This table indicates how the 8
values were selected.

In the equivalent plate analyses an elastic modulus of 5000.0

k/in? and a Poisson's ratio of 0.15 were assumed for the bridge material,
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except that for selected cases the effect of reducing Poisson's ratio
to zero was studied. This effect was found to be negligible except for
certain analyses with &, = 1, in which case unusual behavior near the edge
of the plate was observed for v = 0.15. Accordingly, the case 61 = 1 was
analyzed with Poisson's ratio equal to zero, and it is recommended that this
value be generally used for the analysis of concrete bridge decks by the
equivalent plate method.

Three loading cases were examined, namely a point load of 18 k
at midspan on the bridge centerline, a point load of 18 k at midspan
over the edge girder, and a uniform load of 64 1b. per sq. ft. over the

whole bridge.

4.2 FINITE ELEMENT SUBDIVISION

The finite element subdivision used in the analysis is shown in
Fig. 4.3. The mesh is basically 8 elements by 9 elements (width by length),
with longitudinal divisions corresponding to the seven longitudinal girders.
However, the mesh was refined both longitudinally and transversely under
the loads, in order to determine the peak moments more accurately. The mesh
was also refined at the edges, in order to provide small elements near the
obtuse corners of the skew plate, at which points thin plate theory may
predict high bending moment intensities. The final mesh was therefore
14 elements by 14 elements, giving a total of 196 elements and 225 nodal
points.

The concentrated loads were applied at nodes 113 and 108, as
shown in Fig. 4.3. The uniform load was applied at the nodal points

according to the tributary area of each point.
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4.3 PRESENTATION OF RESULTS

As noted in Chapter 3, care must be taken when interpreting the
bending moment results of an equivalent skew plate analysis. In the
discussion of the analyses considered in this chapter, the moment m,

(see Fig. 3.5a) has been chosen as the most important quantity, because
the girder bending moments for design are obtained by integrating m . over
the girder widths.

The variations of m. at a midspan cross section of the plate for
varying angles of skew, degrees of anisotropy and load positions are first
studied. The influence of the different parameters on these variations are
discussed. The values of girder moment, obtained by integration of the
m variation, are also examined and compared with the "total bridge moment."
The sums of all girder moments are similarly determined and compared with
the total bridge moment. The deflections at the midspan cross section are
also studied.

Following the discussion of effects at midspan, the behavior of
the complete plate, and in particular the behavior at the obtuse corner, is
examined for the cases with 40° skew. The characteristics of plates with
different anisotropic ratios are compared, and the significance of the

moments in the obtuse corner is discussed.

4.4 BEHAVIOR AT MIDSPAN
4.4.1 General

In the discussion of effects at midspan, the three cases 61 =1,
12, and 163 permit the influence of a progressive change in degree of

anisotropy to be investigated. Comparisons between the cases 6i = 12
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and 163 + D then demonstrate the effects of smearing the diaphragms. In
each case, the effects of varying 8 from 0° to 20° and to 40° show

how the behavior is influenced by the angle of skew, and each of the
different loading conditions emphasizes a different aspect of the structural

behavior,

4.4,2 Influence of Degree of Anisotropy on Load Distribution by the Deck
For point loads at both the centerline of the bridge (Figs. 4.4

through 4.6) and near the edge (Figs. 4.7 through 4.9) it can be seen that

as ., varies from 1 to 12 to 163, the moment and deflection variations all

become more sharply peaked. This is an obvious result, and simply reflects

the decreasing ability of the plate to distribute loads transversely as

61 increases. The same effect is seen if the m values are integrated over

the width of the loaded girders to obtain the girders bending moments, as

shown in the following table for the case of zero skew.

TABLE 4.2
BENDING MOMENT IN LOADED GIRDER (k.in.)
POINT LOAD. B = 0°.

Load at centerline | Load at edge

6; = 1 751 1541
§; = 12 1125 1909
§; = 163 1584 2185

It can be seen that the girder moments are larger when the
load is applied near the edge of the bridge, obviously because the ability

of the deck to distribute the load is reduced by the presence of the free
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edge. It can also be seen that the bending moment in the loaded girder
as the load moves from the centerline to the edge increases more for

6; = 1 than for 6; = 163. This is because in the case with 61 = 163 the
ability of the deck to distribute load transversely is already small, and

is proportionately less strongly affected by the free edge.

4.4.3 Effect of Torsional Stiffness on Peak Moment and Deflection Values
Under Center Load

With a point load at the bridge centerline and 8 = 0° (Fig. 4.4),
the difference between the peak values of m for the cases 6; = 1 and
61 = SLAB is rather small. The difference reflects the greater ability of
the solid slab to distribute load transversely. The deflections, w, under
the load are also fairly close. However, as the angle of skew increases to
20° (Fig. 4.5) and 40° (Fig. 4.6), the differences in both m.o and w
increase significantly. The moment changes are summarized in the
following table.

TABLE 4.3 PLATE MOMENT UNDER CENTER POINT

LOAD FOR VARYING ANGLE OF SKEW
Moment in k. in./in.

g = 0° g = 20° B = 40°
61 =] 10.4 10.0 8.4
61 = SLAB 8.9 8.3 6.5
% difference 14.4 17.0 22.6

The reason for the difference is that the solid slab, having
equal flexural stiffnesses in all directions, carries the load to the

supports by the shortest possible route, namely a path normal to the supports.
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On the other hand, the ribbed plate does not have equal flexural stiffnesses
in all directions, but is very flexible under the action of diagonally
applied bending. This is because diagonally applied bending is largely
carried by torsion in the ribs, and their torsional stiffnesses are small.
As a result, the ribbed plate can not readily span normal to the supports,
and must essentially span in the skew direction, along the ribs.

This fact can be emphasized if the principal moments in the plate
are examined, rather than the moments m - The following table shows both
the principal bending moments, mp, and the moments m under the load for
a plate with 40° skew. The angle from the x axis to the p axis is also

shown.

TABLE 4.4 MOMENTS UNDER CENTER POINT
LOAD IN SKEW PLATE

Moment in k. in./in.; B = 40°
6; =1 §; = SLAB
Moment my s 8.5 6.5
Moméht mp 8.5 8.3
Angle 9.3° 49.6°

It can be seen that for the ribbed plate the principal moment
is only 10° away from the rib direction, indicating that the Toad is being
carried essentially in this direction. It may be noted that for the
higher values of 61, this angle was less than 1°. For the solid slab,
however, the principal moment direction is nearly normal to the supports,

indicating that the slab is spanning in this direction. The angle of
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49.6° actually indicates a direction of span which lies between the x
axis and the diagonal between the obtuse corners. It appears, therefore,
that there is also a tendency to span between the corners.

The deflections under the load reflect similar behavior, as

summarized in the following table.

TABLE 4.5 DEFLECTION UNDER CENTER
LOAD FOR VARYING ANGLE OF SKEW
Deflections in inches

61 = SLAB §, =1

B = 0° 0111 .0129
B = 20° .0109 .0139
g = 40° .0104 .0179

The deflections in the solid slab actually decrease slightly,
presumably because of the stiffening effects originating in the obtuse
corners. The deflections in the ribbed plate, however, increase as the
skew span increases.

The manner in which the load travels to the supports is of
interest to the designer, especially if solid slab bridges are being
designed. It would obviously be incorrect to reinforce a solid concrete
slab for the bending moments mvs because the larger principal moments
would cause the concrete to crack, and hence would invalidate the solid
slab analysis. Thus, unless the influence of cracking on the distribution

of slab moments is taken into account, the slab should be reinforced to
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resist the principal moments. In a rectangular slab bridge the principal
moment directions are known, and essentially do not change if the slab
cracks. In a skew slab, however, the principal moment directions are more
difficult to determine, and the influence of cracking on both the directions

and magnitudes of the moments may be considerable.

4.4.4 Effect of Torsional Stiffness On Peak Moment and Deflection Values
Under Edge Load

When a point load is applied near the edge of the plate, the
differences in both moments and deflections for 61 =1 and 61 = SLAB are
large for all angles of skew (see Figs. 4.7 through 4.9). The following

table can be compared with Table 4.3.

TABLE 4.6 PLATE MOMENT UNDER EDGE POINT LOAD
FOR VARYING ANGLE OF SKEW
Moment in k. in./in.

g=0°| g=20° | g-=40°
61 = ] 19.3 18.1 16.4
8, = SLAB_ 12.6 12.1 1.0
% difference 34.7 33.1 32.9

It can be seen that the difference is larger than for the center
load case, but that it remains essentially constant for all angles of skew.
The moments. in the solid slab cases are substantially smaller because the
load, being applied eccentrically on the bridge, applies a torsional moment
to the bridge as a whole. Because the solid slab is much stiffer in torsion
it deflects less, and also carries less load by bending and more by pure

torsion. Note that in practice, this behavior assumes that the torsional
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strength of the solid slab is adequate. If it is not, then the analysis
is not correct.

The differences between the behavior in the ribbed and solid
slab cases remain essentially constant because the solid slab can not
now span normal to the supports, but must span essentially parallel to
the free edge. This action can be seen from the following table, which
can be compared with Table 4.4, and which shows that the principal
moment direction in the solid slab case is fairly closely parallel to

the plate edge.

TABLE 4.7 MOMENTS UNDER EDGE POINT
LOAD IN SKEW PLATE

Moments in k. in./in.; B = 40°
61 =] 61 = SLAB
Moment m 16.7 11.0
Moment mp 16.7 11.7
Angle = 0.3° 17.6°

4.4.5 Effect of Angle of Skew and Degree of Anisotropy on Peak Plate and
Girder Moments Under Point Loads

For a central point load on plates with varying angles of skew
and degrees of anisotropy, the peak m s values can be obtained from Figs. 4.4

through 4.6. These values are summarized in the following table.



52

TABLE 4.8 PLATE MOMENT UNDER CENTER POINT LOAD FOR
VARYING SKEW AND DEGREE OF ANISOTROPY

Moments, m . in k. in./in.

B = 0° B = 20° B = 40°

§; = 1 10.4 10.0 8.4
6; = 12 19.1 18.5 16.7
8, = 163 29.9 30.0 30.1

The unusual result here is that the peak moments for 61 =]
and 12 decrease as the angle of skew increases, and that even the moments
for 61 = 163 barely increase. Because the ribbed plates span essentially
along the x direction, an increase in moment would be expected as the skew
span increases, especially for the 61 = 12 and 163 cases. It must be
remembered, however, that the plate moments are obtained by finite element
theory, and that the peak values are merely approximations to the values
predicted by "exact" thin plate theory under a point load. The values
are not completely unréliable, because similar meshes have been used for
all the analyses, and hence comparative studies should still have some
meaning. For the bridge engineer, however, the quantity which is of much
greater importance is the bending moment in the loaded girder, which is
obtained by integrating the m 4 distribution. These girder moments are
shown in the following table. In each case both the girder moment and its

percentage of the "total bridge moment" are given.



TABLE 4.9 MOMENT IN LOADED GIRDER UNDER CENTER POINT
LOAD FOR VARYING SKEW AND DEGREE OF ANISOTROPY
Moments in k. in.

g = 0° B = 20° B = 40°
8; =1 751 (26.5%) | 748 (24.8%)| 665 (18.0%)
8, = 12 1125 (39.7%) | 1112 (36.9%) | 1084 (29.3%)
6; = 163 1584 (55.9%) | 1607 (53.3%) | 1673 (45.2%)
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It can be seen that for both §; = 1 and §; = 12 bending
moments decrease as the angle of skew increases, although at a slower
rate than the peak m values, and that the girder moment for Gi = 163
increases modestly as the angle of skew increases. More importantly,
the percentage of the total bridge moment carried by the loaded girder
decreases consistently as the angle of skew increases, with percentage
decreasing less rapidly as 51 = increases. It has already been shown
in Section 4.4.4 that these plates appear to span in the skew direction,
and yet there is undouﬁtedly some effect present in the skew plates which
make them different from the plates with zero skew. This effect is in two
parts, as follows.

First, a skew plate appears to posses an inherently greater ability
to distribute loads transversely than an equivalent plate without skew.

In Figs. 4.4 through 4.6 this can be seen as a tendency for flattening of
the m distributions as the angle of skew increases. Second, it must be
remembered that the m, moments are not the only moments which resist the

"total bridge moment", but the moments my. and mx'y' are also effective
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as noted in Chapter 3. The effects of my. and mx'y' can be seen if the

m distribution is integrated over the full width of the bridge (that is,
if the moments in all of the girders are added), and the resulting

moment is compared with the total bridge moment. The difference between
the two will represent the effects of m_, and m_,

y x'y'’
shown in the following table, in whieh the total integrals of m . are given

These values are

and are expressed as percentages of the total bridge moment.

TABLE 4.10 SUM OF MOMENTS IN
ALL GIRDERS FOR CENTER POINT LOAD.
VARYING SKEW AND DEGREE OF ANISOTROPY.
Moments in k. in.

B = 0° B = 20° g = 40°
85 =1 2835 (100.0%) | 2897 (96.0%) 2871 (77.6%)
8; = 12 2835 (100.0%) | 2962 (98.2%) 3342 (90.3%)
8; = 163 2835 (100.0%) | 2999 (99.4%) 3575 (96.6%)

Total Bridge
Moment 2835 3017 3701

It can be seen that as the angle of skew increases, the percentage
of the total bridge moment carried by the girder moments decreases. It
follows that the girder moments in a skew bridge deck under a central point
load will be overestimated if the skew deck is replaced by a right deck
with a span equal to the skew span. Similar conclusions are drawn
subsequently for edge loads and uniform loads. It is possible that some
reduced equivalent span can be determined, which is sufficiently accurate for

design purposes when abusolute maximum effects are considered. However,
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procedures for selecting the equivalent span remain to be determined.
From Table 4.10 it can be seen that the difference between the
girder moments and the total bridge moment is decreasing for increasing
values of 61. It is interesting to note that for 61 = 1 the girder
moments reach a maximum absolute value between B = 20° and 40°, and
thereafter appear to decrease.
Similar conclusions follow for the effects due to a point
The following tables correspond to

load near the edge of the bridge.
Tables 4.8, 4.9 and 4.10, but are for this different loading case.

TABLE 4.11 PLATE MOMENT UNDER EDGE
LOAD FOR VARYING SKEW AND DEGREE OF ANISOTROPY

Moments , mis in k. in./in.

B = 0° B = 20° g = 40°
6, =1 19.3 18.1 16.4
6, = 12 27.6 27.6 27.2
6, = 163 36.5 37.3 39.6

TABLE 4.12 MOMENT IN LOADED GIRDER UNDER
EDGE POINT LOAD FOR VARYING SKEW AND

DEGREE OF ANISOTROPY
Moments in k. in.

g = 0° g = 20° B = 40°
6; =1 |1541 (54.4%) | 1461 (48.4%) | 1372 (37.1%)
8, =12 |1909 (67.3%) | 1936 (64.2%) [ 2003 (54.1%)
6, =163 [2185 (77.1%) | 2264 (75.1%) | 2519 (68.1%)
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TABLE 4.13 SUM OF MOMENTS IN ALL GIRDERS
FOR EDGE POINT LOAD.
VARYING SKEW AND DEGREE OF ANISOTROPY.
Moments in k. in.

B = 0° B = 20° B = 40°
6; = 1 2835 (100.0%) 3102 (102.8%) 3617 ( 97.7%)
8; = 12 2835 (100.0%) 3033 (100.5%) 3703 (100.0%)
6, = 163 2835 (100.0%) 3387 (112.3%) 3629 ( 98.1%)
Total Bridge
Moment 2835 3017 3701

Again, the values in Table 4.11 are not particularly meaningful
to the bridge designer. In Table 4.12 it can be seen that the percentages
of the total bridge moment carried by the loaded girder decrease as the
angle of skew increases, but that the rate of decrease is somewhat slower
than for the central point load. Surprisingly, Table 4.13 shows that
the sum of the girder moments may actually exceed the total bridge moment.
From this it follows that the reduction in the percentages in Table 4.11
must result from an improved ability of the skew bridge to distribute load
transversely. This can be seen in a general flattening of the curves

from Fig. 4.7 through Fig. 4.9.

4.4.6 Effects of Uniformly Distributed Load
Fig. 4.10 shows that for a plate without skew both the plate
moments and the deflections are unaffected by the degree of anisotropy, and

are constant over the bridge width with the exception of small pertubations
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near the free edges. However, as the angle of skew increases, substantial
differences in behavior develop, as shown in Figs. 4.11 and 4.12.

The most noticeable difference is that the solid slab becomes
much stiffer than the ribbed slabs, and that m, in the solid slab is much
less than m. in the ribbed slabs. It should be remembered, however, that
my o in the solid slab is substantially less than the maximum principal
moment. A tendency for the solid slab to deflect more at the edges than
near its center is also seen. This is because the center portion of the
slab can span directly between supports, whereas the edge portions
must span essentially along the edges, and are therefore less stiff.

This tendency for both moments and deflections to be smaller in
the center than near the edge is most marked for the 61 = 1 case, indicating
that it is more sensitive to the presence of the free edge than the solid
slab. The tendency is much less for §; = 12 and 163 because these cases
span essentially in the x direction in any case, whether the load is near
the center or the edge of the bridge.

A comparsion.of the sums of the girders moments is presented

below, for comparison with Tables 4.10 and 4.13.

TABLE 4.14
SUM OF MOMENTS IN ALL GIRDERS FOR UNIFORM LOAD
VARYING SKEW AND DEGREE OF ANISOTROPY
Moments in k. in.

g =0° B = 20° B = 40°
61 =1 13890 (100.0%) | 15620 ( 99.2%) | 21030 ( 88.9%)
§; = 12 13890 (100.0%) | 15610 ( 99.2%) | 22450 ( 94.9%)
Gi = 163 13890 (100.0%) | 15650 ( 99.5%) | 22980 ( 97.1%)
Total Bridge
Moment 13890 15730 23670
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It can be seen that the sum of the girder moments is still significantly
below the total bridge moment, but that the differences are smaller than

for the point load cases.

4.4,7 Effect of Smearing Widely Spaced Diaphragms

The case 61 = 12 was selected to represent a bridge with one
intermediate diaphragm, at midspan of the bridge. It might, however, also
represent a bridge built, for some reason, with a larger number of small
transverse ribs. In the case where the diaphragms are closely spaced,
the results obtained from an equivalent anisotropic plate analysis should
be of ample accuracy for use in design. However, if the diaphragms are
widely spaced, "smearing" their properties may introduce considerable error.
Because a bridge with a single midspan diaphragm is a case where error may
occur, the case Gi = 163 + D has been investigated. The moment and
deflection curves for this case are shown in Figs. 4.4 through 4.12.

The obvious observation is that there is a marked difference between the
cases 61 = 12 and di = 163 + D.

For the central point load, (Figs. 4.4 through 4.6) the deflections
in the two cases are closely similar for B = 0°, with the 61 = 12 case
being slightly stiffer. However, as the angle of skew increases the
difference in deflection becomes very marked. The same difference also
develops under the action of the edge point load (Figs. 4.7 through 4.9).

For the central point load, the peak plate moments are consistently
larger for the 6i = 12 case, but because of the considerable differences
in the distributions of the plate moments in the two cases, a comparison

must be made on the basis of girder moments . The girder moments and the

sums of the girder moments are given in the following two tables.
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TABLE 4.15 MOMENT IN LOADED GIRDER UNDER
CENTER POINT LOAD FOR VARYING ANGLE OF SKEW
Moments in k. ins.

g = 0° B = 20° B = 40°
8; = 12 1125 (39.7%) | 1112 (36.9%)| 1084 (29.3%)
5; = 163 + D| 892 (31.5%) | 941 (31.2%)] 1107 (29.9%)

TABLE 4.16 SUM OF MOMENTS IN ALL GIRDERS
FOR CENTER POINT LOAD. VARYING ANGLE OF SKEW
Moments in k. ins.

8 = 0° 8 = 20° 8 = 40°

55 = 12 2835 (100.0%) | 2962 (98.2%) 3342 (90.3%)

65 =163 + D | 2835 (100.0%) | 3004 (99.6%) 3606 (97.4%)

Total Bridge [ ,g45 3017 3701
Moment

These tables -immediately demonstrate the danger of smearing
the diaphragms. In Table 4.15, whereas the girder moment decreases in
value with increasing skew for 61 = 12, it increases for 61 = 163 + D.
The percentage of the total bridge moment in the case 61 = 163 + D remains
essentially constant as the skew increases, whereas the corresponding
percentage for 6,i = 12 drops considerably. For zero skew the loaded girder
in the case 61 = 163 + D carries less moment than that in the case Gi =12,
but for B = 40° the situation is reversed. In Table 4.16, the percentage
of the total bridge moment balanced by the girder moments is consistently

higher for Gi = 163 + D than for 61 = 12. It is obvious, therefore,
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that for a midspan load, applied directly above the diaphragm, the
theoretical results assuming smeared and discrete diaphragms are
inconsistent with each other. Differences for other load positions
(for example, at quarter span) can be expected. There is not doubt that
the 61 = 163 + D analysis is more accurate for an actual bridge, and
hence it can be concluded that widely spaced diaphragms should not be
smeared in an analysis.

Tables of moment in the loaded girder and of the sum of all
girder moments for a point load near the edge are given below. Similar

conclusions follow.

TABLE 4.17 MOMENT IN LOADED GIRDER UNDER
EDGE POINT LOAD FOR VARYING ANGLE OR SKEW
Moments in k. ins.

B = 0° B = 20° B = 40°
6, = 12 1909 (67.3%) | 1936 (64.2%) 2003 (54.1%)
8§, =163+ D | 1831 (64.6%) | 1930 (64.0%) 2265 (61.2%)

TABLE 4.18 SUM OF MOMENTS IN ALL GIRDERS UNDER
EDGE POINT LOAD VARYING ANGLE OF SKEW
Moments in k. ins.

g = 0° g = 20° g = 40°

6; = 12 2835 (100.0%) 3033 (100.5%) 3703 (100.0%)
6; = 163 + D | 2835 (100.0%) 3012 ( 99.8%) 3669 ( 99.1%)

Total Bridge
Momenit 9 2835 3017 3701
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The sums of all girder moments are given for the uniform load

case in the following table.

TABLE 4.19 SUM OF MOMENTS IN ALL GIRDERS
FOR UNIFORM LOAD. VARYING ANGLE OF SKEW.
Moments in k. ins.

B =0° B = 20° B = 40°
i = 12 13890 (100.0%) | 15610 (99.2%) 22450 (94.9%)
6; = 163 + D | 13890 (100.0%) | 15680 (99.7%) 23240 (98.2%)
Total Bridge
Moment 13890 15730 23670

A conclusion which now be drawn from Tables 4.16, 4.18 and 4.19
is that virtually all of the total bridge moment is resisted by the girder
moment in each case, and hence it should be possible to reduce the skew
bridge to a right bridge with a span equal to the skew span. While this
may be true, it should be noted that the three loads considered were all
applied symmetrically with respect to the diaphragm, and are therefore
special cases. Analyses for a wider range of load positions are needed

before definite conclusions can be drawn.

4.5 BEHAVIOR OF COMPLETE DECK
4.5.1 General

Figs. 4.13 through 4.26 show pictorial views of the surfaces for
moment m . over the whole plate for plates with an angle of skew of 40°,

for 61 = SLAB, 1, 12, 163 + D and 163 respectively, and for each of the three load
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cases previously considered. The aim of these diagrams is to show the
behavior of the complete structure, rather than just the behavior at the
midspan cross section, and in particular to show the moments developed in
the obtuse corners of the plate.

The diagrams for the central point load are shown in Figs. 4.13
through 4.17. It can be seen that for all degrees of anisotropy the moments
developed in the obtuse corners are not significant for this loading. In
each of the cases 61 = 12, 163 + D, and 163, a tendency for the plates to
span normal to the supports can be seen at the quarter span sections, where
the maximum moments are not at the bridge centerline, but are displaced
towards the obtuse corners. In the cases 61 = SLAB and 1, the tendency is
for the maximum quarter span moments to be right at the edge of the plate.
This behavior is difficult to explain, but is presumably associated with
the torsional properties of the structure and effects originating at the
free edge. The effect is probably not important in the design of actual
bridges.

The diagrams_for the point load near the edge of the plate are
shown in Figs. 4.18 through 4.22. 1In all cases, it can be seen that the
plate must span parallel to the edge towards the obtuse corner, but
may tend to span normal to the support towards the acute corner. Significant
negative moments at the obtuse corners are also developed for the cases
Gi = SLAB, 1 and 12, but the ratio of corner moment to midspan moment
decreases as 61 increases, and the corner moments are insignificant for the
cases 61 = 163 + D and 163.

Figs. 4.23 through 4.26 show the moment surfaces for the case of

uniform load. The behavior of the plate under this load has already been
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discussed and nothing more need be added except to note that the corner
moments are again significant. Also, the moment surface for the case

of Gi = 163 + D has been omitted since it closely resembles the 61 = 163
surface - the addition of the midspan diaphragm has little effect on the

moment distribution in the plate for this type of loading.

4.5.2 Corner Moments

The corner moments originate with the boundary conditions
specified along the supported edges. Where the edge is constrained to
remain perfectly straight, as in the analyses carried out, the corner
constraint leads to the development of negative moments in plates which
have either significant torsional stiffness or significant transverse
bending stiffness. The large moments occur only in the obtuse corner
because such plates are able to span normal to the support at the acute
corner and in all other parts of the plate. In plates which possess
both Tow torsional stiffness and low transverse flexural stiffness, the
distortions introduced at the supports do not lead to large moments,
although such plates can not span normal to the supports to any great
extent.

Because the analyses reported in this chapter have been carried
out for idealized thin plate structures, results for localized effects such
as the corner moments should be interpreted cautiously for application in
bridge design. In an actual bridge the support is not constrained to remain
perfectly straight, but rather consists of a diaphragm and a finite number
of bearings. In the practical case, therefore, the constraint may be greatly

reduced. Further, in the thin plate theory shearing deformations are ignored,
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whereas if high moment gradients try to develop in a real situation, the
resulting shearing deformations may not be negligible and the effective
degree of constraint may be reduced. The local geometry of an actual bridge,
consisting of a deck slab with discrete girders and diaphragms, is also
quite different from an ideal solid slab, and the local behavior is likely

to be greatly affected by these geometric details.

Accordingly, conclusions regarding the behavior in the obtuse
corner can not be made from the results shown, and the problem must be
investigated using better idealizations of the structure. Such investigations
are being made using the ribbed plate finite element analysis procedure
noted in Chapter 2, and will be described in detail in a future report.
It is hoped to draw conclusions about the influence of the end diaphragm
stiffness, the spacing of supports, and the thickness of the deck slab on
the distribution of support reactions for skew bridges and on the development
of negative girder moments at the support.

One important point can, however, be noted at this time, namely
that the high corner moments represent a very Jlocalized effect. Plate
analyses have been carried out in which the support, instead of holding the
plate edge perfectly straight, merely prevented vertical deflection at a
discrete number of points and allowed the edge to bend between these points.
The effect of changing the support condition was to decrease the edge
constraint and to greatly reduce the negative corner moment. At the same
time, however, the deflection and positive moment under the load showed
almost negligible increases. Also, the rotations at the support points
which were required to release the edge constraint were found to be very

small. This indicates that the corner effect is localized and is associated
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with only a small amount of strain energy in the structure. It follows
that in an inelastic structure only a small amount of yielding or cracking
would be needed to eliminate the corner effects, and hence that they may
not be critical in design. However, this conclusion remains to be confirmed

following more detailed studies.
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CHAPTER 5

BEHAVIOR OF TWO-SPAN CONTINUQUS SKEW BRIDGE SLABS

5.1 GENERAL

The mathematical complexity of deriving an analytical close-form
solution of single span skew plates has prevented an accurate evaluation of
the slab behavior under even the most simple load conditions. Hence, initially,
incidental and experimental systematic studies have been carried out [38].
Only, through the use of finite difference methods and the more recent devel-
opment of computer programs, with a finite element subdivision of the skew
slab, has it become possible to solve this problem analytically [18][39][1].

The solution of the even more complex problem of continuous skew
plates has also been pursued, first through experimental means. However,
recent developments in computer programming (e.g. FEASAP) now also permits
the solution of continuous slabs.

In the following sections the results of a systematic analytical
study of two-span cont;nuous isotropic bridge slabs is presented. The
objective of this study is to evaluate the significant behavior of these
slabs as influenced by the bridge skew and the width-span ratio. In addition
to a study of these slabs under uniformly distributed loads over the entire
plate an evaluation of the maximum moments under lane load conditions is
also presented. Finally, a successful comparative study between experimental
results, obtained through the Moiré-method [40], and analytical values is

discussed.
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5.2 ANALYTICAL STUDIES

5.2.1 Structural Configuration

In this study, nine, two-span continuous bridge slabs were selected
and analyzed for a variety of loading conditions. These skewed slabs were
assumed to be isotropic and of constant thickness, but the angle of skew
and the width were varied.

Whenever possible unit values were assigned to these parameters,
in order that the results of the ananlyses may be simply applied to other
structures of different proportions. Consequently both span lengths,
measured along the free edge, the thickness and the elastic modulus of the
slab material were each set equal to 1.0. A Poisson's ratio of 0.3333 was
assumed. The parameters studied were the angle of skew B, and the skew width
of the slab measured along the support. Both parameters were studied in
three steps, namely B = 0°, 30° and 45° and the skew width = 2.0, 1.0 and
0.5, thus resulting in a total of nine slabs. It can be noted that as the
skew is varied the width is maintained constant.

Figure 5.1 shows a typical plan view of the continuous bridge slab
with the x, y and x', y' axes, and illustrates the important geometric

parameters.

5.2.2 Load Conditions

To effectively study the behavior of each two-span slab, six load
cases were selected. Each load case consisted of a uniformly distributed
load of unit intensity (load per unit area). The area of slab subjected to
this load varied, as shown in Figure 5.2, and resulted in the following

basic load cases:



68

1. Uniform load over entire slab (both spans).

Uniform load over entire left span, only.

Uniform load over first-quarter strip of the left span.
Uniform Toad over second-quarter strip of the left span.

Uniform Toad over third-quarter strip of the left span.

o O AW N

Uniform load over fourth-quarter strip of the left span.

The above load cases represent not only the overall load conditions

(Cases 1 and 2) but also the conditions encountered under traffic lane loads.

5.2.3 Method of Analysis

Again the FEASAP computer program, described in Chapter 3, was used
for the analyses. Since the slab was isotropic, the solid plate option of
the program was selected. The finite element subdivision of the bridge slab
used for the analysis is shown on Fig. 5.3. Also indicated are the longitud-
inal sections A, B, C, D, E and F and the transverse sections L, C, R for
which plate response will be plotted. A finer subdivision in areas of high
moment variation (near the obtuse corners and over the intermediate support)

-

can be noted. The mesh comprised 578 elements and 630 modal points.

5.2.4 Analytical Results

The analytical results are presented in the form of curvature plots
for Xy ts Xy' and Xx'y' along both longitudinal (A, B, C, D, E) and transverse
(L, C, R) sections. Figures 5.4 to 5.6 present Xy ! plots along these
longitudinal sections for a two-span slab with a width-to-span aspect ratio

of 2.0 and angles of skew (B) of 0° (rectangular plate), 30° and 45°.

Similar results are presented in Figures 5.9 to 5.11 and 5.14 to 5.16
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for slabs with width-to-span aspect ratios of 1.0 and 0.5 respectively. The
transverse curvature plots for Xy' along the slab mid span L and R and center
support C for each of the six load conditions are presented in Figures 5.7,
5.12, and 5.17. These figures represent the results for two-span slabs with
aspect ratios of 2.0, 1.0 and 0.5 respectively. For the same slab configura-
tions the angle of twist values Xty along the transverse sections (L, C, R)
for the several load cases studied are presented in Figures 5.8, 5.13 and
5.18 respectively. Identification in general is by section (A, B, C, D,

E, F, L, C, R) and load-case numbers.

To evaluate the plate moments m_,, m , and mx'y' the following

x'* Ty
applies:
mxl = -D (Xxl + v Xyl)
L D (xy. * v X,) and
. E td
|T|..=-D(]-\))x.|w1th D=__—
Xy Xy 12(1-v?)

E and t are respectively the modulus of elasticity and plate thickness.
Considering the assumptions used in the analysis that E and t are both
unit values and that v = 0.333 the curvature values x can be directly
used to evaluate the moments for these analytical models by substituting
for D =§%&4%%7§3377- = 0.09375 k-ft (assuming units of kips for load and
feet for length). For slabs with the same width-to-span aspect ratios
as those analysed but with a load of q k/ft? and a span length of L ft
the additional conversion factor for the moments evaluated by the above
indicated procedure is qu.

Tables 5.1, 5.2 and 5.3 present, for each of the two-span plates

studies the moments m e my. and mx'y' along the section at mid-span of
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the loaded span for both Toad cases 1 and 2. It should be noted immediately
that the computed m, . moments along this section for 8 = 0°, are in
excellent agreement with the corresponding average moments of 0.0625 qL? and
0.09375 qL? respectively for cases 1 and 2 as derived from statics. The
average moments along this section are graphically represented, in Figure
5.19. It is interesting to note that the m moments reduce rapidly under
increasing angle of skew. This reduction is basically due to the reduction
in the gross moments at mid-span because of the shorter normal-span length
between supports as compared to the skew span along the free edge. Since
this phenomenon will be more effective for a wide plate (aspect ratio 2.0)
than for a narrow plate (aspect ratio 0.5) the minimum reduction is most
pronounced for a plate with a 2.0 aspect ratio. This is clearly illustrated
by the m graphs in Figure 5.19.

While the m moments show a considerable variation with varying
angle of skew, the my s moments remain relatively constant. As expected
from the fact that in general, the transverse moments in a plate with
increasing width increase due to the predominant influence of the
longitudinal curvature through a Poisson's ratio effect, the calculated my.
moments are indeed larger for the plate with a 2.0 aspect ratio than for the
plate with a 0.5 aspect ratio. The magnitude of the my. moments under
increasing width and uniform in load are therefore greatly influenced by the
magnitude of v. For a zero value of v the average transverse moment,
contrary to the results shown in Figure5.19, would decrease for increasing
width.

The average twisting moments, at mid-span, are becoming relatively

significant under increasing angle of skew. For an angle of skew of 30°
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Table 5.1 Moments m, . my. mx'y' at Midspan, Loaded Span, Load Cases 1 and 2
Width-to-Span Ratio 2.0
g =0°
Load Case 1 Load Case 2

Xy ! Xy Xx'y' | My f&' "&'y' Xyt Xy' Xx'y' My my' mx'y'

1073] 1073] 1073 [107%1b | 107%ib | 10746 ) 1073] 1073] 1073 [10 %6 107410 ] 10740
Af -795[ +265 - |+662 0 - -1200( +400 - |+1000 0 -
B| -665| + 42 - [|+610 +169 - -1010] + 75 - [+ 923 | +246 -
C| -655( + 04 - |+613 +201 - - 980 + 10 - |+ 915 | +297 -
Dl -655( + 04 - |+613 +201 - - 980 + 10 - [+ 915 [ +297 -
E| -665) + 42 - [+610 | +169 - -1010| + 75 - |+ 923 | +246 -
F{ -795| +265 - |+662 0 - -1200| +400 - |+1000 0 -

B = 30°
A| -860| +287 [-225 |+715 0 +141 -980( +326 |-285 [+815 0 +178
B| -575| -025 [-308 [+546 +204 +192 -713| -070 |-388 |+690 +288 +242
C| -435{ -106 |-268 |[+440 +235 +167 -610| -168 [-358 (+625 +348 +223
D| -380f -125 |-228 ;396 +236 +142 -575| -178 [-335 [+594 +347 +209
E| -350] -095 |-174 {+358 +199 +108 -590| -110 [-327 (+587 +287 +204
F| -290| + 97 }+030 [+241 0 - 19 -680| +227 [-180 [+567 0 +112

B = 45°

-615 |+205 [-244 |+513 0 +152 -635 [+212 |-265 |+560 0 +165
B| -345 {-105 |-340 [+356 +206 +212 -382 |-155 [-390 |+406 +264 +243
C| -205 [-183 [-242 }+249 +235 +151 -282 1-260 |-303 |+346 +332 +189
D| -175 |-175 {-190 |+218 | +218 +118 -250 |-250 |-270 |+312 +312 +168
E| -180 |-128 |-150 |+209 +176 | + 94 -288 | -175 | -282 |+324 | +252 +176
FI -125 |+ 42 |+ 50 |+105 0 - 31 -350 [+117 {-125 [+292 0 + 78
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Table 5.2 Moments m, . my. Mty at Midspan, Loaded Span, Load Cases 1 and 2
Width-to-Span Ratio 1.0
g = 0°
Load Case 1 Load Case 2

X Xyt Kxryl M My Myt 0 X Xy [ Xxy' ] ™ My Mty

1073 1073 1073 1074 [ 10746 {10746 | 1073 {1073 [1073 [104b [107Mb] 1074
A| -792| +264 - | +660 0 - -1185 | +395 - |+988 0 -
B| -705| +107 - | +626 +120 - -1060 | +180 - |+937 +162 -
C| -665| + 52 - | +607 +159 - -1012 | + 98 - |+916 +225 -
D| -665] + 52 - | +607 +159 - -1012 [ + 98 - |+916 +225 -
E| -705| +107 | - | +626 +120 - -1060 | +180 - | +937 +162 -
F| -792] +264 - | +660 0 - -1185 | +395 - | +988 0 -

B = 30°
A} -838| +279 |-212 +698 0 +132 -950 | +317 | -262 { +790 0 +164
B| -685| + 75 |-276| +618 +143 +172 -807 | + 75| -360 | +733 +182 +225
C| -550] - 23 |-280| +524 +193 +175 -695 | - 50| -388 | +667 +264 +242
D] -460} ~ 50 (-240 -+447 +190 +150 -655| - 62 | -373 | +635 +262 +233
El -410| - 5 |-153{ +386 +133 + 96 -675 ] + 37 | -322 | +622 +176 +201
F| -340] +113 0] +283 0 0 -714 | +238 | -196 | +595 0 +122

B = 45°
A| -600| +200 {-220| +500 0 +137 -620 | +207 | -245| +516 0 +153
Bl -492| + 22 |(-330} +455 +133 +206 -520 0| -376 | +487 +162 +235
C| -335| -100 {-336{ +345 +199 +210 -370| -145| -410| +382 +251 +256
D| -262| -127 |-267| +285 +201 +167 -3381 -170} -375| +370 +265 +234
E| -230] - 56 |-158| +234 +125 + 99 -387| - 45| -310| +377 +163 +194
F{-150 | + 50 [+ 25} +125 0 - 16 -378| +126| -145| +315 0 - 90




Table 5.3 Moments m_, m_, m_, .

at Midspan, Loaded Span, Load Cases 1 and 2

73

x' My' Tx'y
Width-to-Span Ratio 0.5
g = 0°
Load Case 1 Load Case 2

X [ Xy Xyl M M [Mey [ X Xy ey x| My Mty

1073 1073 1073 {107 [107%1b [10741b ] 1073|1073 [1073 {10746 {10746 [107Hb
A|-750 |+250 | - |+635 0 - |-1150 |+383 | - |+958 0 -
B|-700|+178 | - |+600 |[+52 = | -1087 |+283| - [+930 |+ 74 -
c|-685|+140 | - |+599 |+83 - ll-1060 |+237 | - |+920 |+109 -
D|-685]+140 | - |+599 |+83 - |-1060|+237| - [+920 |+109 -
E|-700|+178 | - [+600 |[+52 = f-1087 [+283| - |+930 |+ 74 -
Fl-750 | +250 | - |+635 0 - -1150 [+383 | - |+958 0 -

B = 30°
Al -790 | +263 | -190 | +658 0 | +119 || -945 | +315 | -278 | +788 0 |+174
B| -720| +164 | -220 | +623 | +71 | +138 || -887 | +206 | -330 [ +767 | + 84 | +206
c| -655| +115 | -225 [+578 | +97 | +141 || -845 |+157 | -360 [ +744 | +117 | +225
p| -590( +100 | -200 | +522 | +91 | +125 || -800 | +158 | -355 | 4700 | +102 | +222
£l -535] +120 | -145 | +a65 | +584 | + o1 || -780|+182|-313|+673 | + 73 |+195
F| -470] +157 | - 65 | +392 0 | +41 | -760|+253 | -250 | +634 0 | +156

g = 45°
A| -690 | +230 | -254 | +575 0 | +150 | -725 |+242| -338 +604 o | +2m
Bl -645 | + 75| -320 | +581 | +131 | +200 [ -700 |+148| -232| +610 | + 81 | +270
c| -575 |+ 74| -355 | +515 | +110 | +222 || -670 |+110] -493 | +504 | +106 | +308
p| -490 | +100| -330 | +a28 | + 59 | +206 | -630 |+102| -493 | +558 | +101 | +308
el -305| +145| -250 | +325 | - 12 | +156 || -590 |+126| -422|+514 | + 67 | +264
F| -300 | +100| -130 | +250 o | +81 | -545 [+182] -310 | +454 0 | +i04
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the mx.y.moments average approximately 25% of the my moments. With B
reaching 45° this percentage approaches approximately 50%.

The above observations indicate the complexity of the moment
distribution in skew continuous plates. However the results cléarly
illustrate the fundamental behavior of such plates as affected by the
geometry and subsequent preferential load transferring response.

An observation of the Xy ¥ curvature values for the lane loads
(cases 3 to 6) in comparison with the curvature value for the full-width
loads (cases 1 and 2) distinctly show the effective transverse load dis-

tributing capacity of the skew slab.

5.3 EXPERIMENTAL STUDIES

The objective of the experimental study was to determine the
accuracy of the formulation of the mathematical model and the method of
analysis employed in evaluating the curvature and moment distribution in

these skew continuous slabs under the given loads.

5.3.1 Method of Experimental Analysis

The experimental procedure used to evaluate the plate curvatures
and subsequently the plate moments is the so-called Moiré effect method
[40] [41]. This method incorporates in general a plastic sheet as model
material. The actual plate model is placed in a horizontal position, see
figure 5.20.a, with a reflective surface facing down. By using a black
plexiglass sheet the model surface is automatically reflective. Observing
the unloaded model through a camera the photographic plate records through

reflection from the model surface and mirror an image of the ruled screen.
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Figure 5.20.b illustrates this phenomenon where, by observing point A of the
model surface, an image of the screen at point B will be recorded on the
photographic plate at C. Observing the entire model plate the camera will
record a reflective image of the ruled screen. When the model subsequently
deflects under load the plate surface will reflect into the camera another
image of the ruled screen then previously recorded for the unloaded case.
Us%ng the first - unloaded model - image as a reference grid and super
imposing on the same photographic plate the distorted grid image, reflected
from the loaded model, one obtains through interference of the two grid
images a so-called moiré - pattern in which each line represents a

contour line of constant slope (3w/9x' or 3w/dy'). The closer these lines
are spaced the greater the curvature values are. For a pattern of dw/ox'
contour lines the curvature 32%w/dx'2 or Xy 1 is inversely proportional

to the distance between lines measured perpendicular to the initial reference
grid lines. The distance between 1ines measured along these reference grid
lines is inversely proportional to the angle of twist 3%w/9x'dy' or Xx'y' .
By rotating the ruled screen 90° the photographic procedures repeated.

The moiré - line picture thus obtained shows 3w/dy' contour lines. Again
the distances between these lines, measured perpendicular and parallel to the
reference grid lines are inversely proportional to the curvature values
32w/3y'? (or xy.) and 3%w/3xd3y' (or xx‘y') respectively. An example of two
such photographic images are presented in Figures 5.21 and 5.22, each

showing the slope contour lines dw/3x' and dw/3dy' for a uniformly distributed

load over the entire two-span skew plate.
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5.4 COMPARATIVE ANALYTICAL-EXPERIMENTAL STUDIES

To evaluate the accuracy of the analytical results in comparison
with the experimental values obtained by use of the moiré - effect method
two continuous slabs are studied under uniformly distributed loads on both
spans (case 1) and on a single span (case 2). The selected slabs have
respectively an angle of skew of B = 30° and a width-to-span aspect ratio
of 1.0, and an angle of skew of B = 45° and an aspect ratio of 0.5. For
each case the curvature values Xy are compared along the longitudinal
sections A, B, C, D, E and F.

For the 30° and 45° skew, fully loaded, bridge slabs the results
along sections A, B, and C are presented in Figures 5.23 and 5.24
respectively. For the 30° skew slab with a uniformly distributed load on
one span only (load case 2) the theoretical and experimental curvature
values Xy along sections A, B, C, and D, E, F, are presented in Figures
5.25 and 5.26 respectively. Similarly the results for the 45° skew slab
under load case 2 are presented in Figures 5.27 and 5.28 respectively.

A general comparison of these results show an excellent agreement
between the theoretical and experimental values. Considering the fact that
the accuracy of the moiré - method has been proven to be within 1%, the
comparative results of the study presented in this chapter clearly indicate
that the FEASAP computer program is an excellent tool to analyze accurately

the moment distribution in skew isotropic slabs.



77

CHAPTER 6

6.1 PANELS STUDIED

Because of the unusual behavior of complete bridges on skew
supports, it is of interest to study individual deck slab panels which
are supported by skew girders and diaphragms.

For this study, a deck slab has been idealized as a solid isotropic
plate which is continuous over rigid line supports, representing the girders
and diaphragms. That is, it is assumed that the concrete slab can be idealized
as a thin isotropic plate, that the girders and diaphragms are sufficiently
narrow to be represented as line supports, that the effects of composite
action are not significant for the study proposed, and that the relative
deflections of the girders and diaphragms do not significantly affect the
slab. It is further assumed that a wheel load can be represented as a point
Toad on the plate. Although these assumptions might not be justified if
a detailed analysis of an actual deck slab were required, they are satisfactory
for the purposes of a parameter study.

The plate which has been analyzed, and the finite element sub-
division used, are shown in Figs. 6.1 and 6.2. The supports parallel to
the y axis have been assumed to represent girders, and those parallel to
the x axis to represent diaphragms. The angle of skew is 40°, as shown.

The thickness is 6 in., and E and v are respectively 5,000 ksi and 0.15.

The following analyses have been carried out, using the FEASAP program.
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1. With supports at both the girder and diaphragm lines:
a. load in the middle of the center panel;
b. 1load in the middle of an edge panel;
c. load in the middle of an obtuse corner panel.
2. MWith supports at the girder lines only:
a. load near the edge, away from the corners;
b. Tload near an obtuse corner.
In addition, a similar plate with zero skew and with supports
along both the girder and diaphragm lines has been analyzed for comparison.
In all cases a point load of 16 k has been applied, and the
principal bending moments in the plate have been calculated. The results
are shown in Figs. 6.3 through 6.8. The double 1ine in each case represents
the negative plate bending moment (tension on the top of the slab) and the
single line the positive moment. The lengths of the lines represent the
moment magnitudes, in k. in./in. The directions of the lines indicate the
"directions" of the moments in the sense that they indicate the strips of
slab on which the moments act. That is, the lines are not moment vectors,

but are drawn normal to the moment vectors.

6.2 DISCUSSION OF RESULTS
6.2.1 Support by Girders and Diaphragms

Fig. 6.3 shows the principal moment pattern for a load at the
middle of a skew panel which is continuous on all four sides. The tendency
is clearly for the plate to span between the obtuse corners. The largest

moment is the positive moment under the load.
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Fig. 6.4 shows the pattern for the load at the middle of an edge
panel. Here again the tendency is for the plate to span between the obtuse
corner, and the largest moment is under the load. This moment is of virtually
the same magnitude as that in the previous case. However, the negative moments
at the discontinuous edge are significantly larger than the previous negative
moments.

Fig. 6.5 shows the pattern for the load at the middle of a
corner panel. The plate again spans between the corners, and the positive
moment under the load is of essentially the same magnitude as in the
two previous cases. However, the largest moment is now the negative
moment in the obtuse corner.

For the purposes of comparison, Fig. 6.6 shows the moment pattern
for the load in the corner panel of a plate with no skew. It can be seen
that the negative moment in the discontinuous corner is now much smaller than
the positive moment under the load. The large corner moment in the skew
case is therefore due to the shape of the plate.

The question which is of importance to the designer is whether the
large negative moment in the obtuse corner can lead to serious cracking
of the deck slab. As was done in Chapter 4, it is possible to modify the
support conditions in the finite element analysis, in order to permit free
rotation of the system at the corner support, while still preventing this
support from deflecting. The effect of making this modification is startling,
as the negative moment in the corner changes from -8.29 k.in./in. to +1.93 k.
in./in. Of equal importance, however, is the fact that the positive moment
under the load increases by only a very small amount, from 3.88 k.in./in. to
3.89 k.in./in., and the deflection under the load also increases only
very slightly. This demonstrates that the strain energy released

when corner rotations are permitted is very small, and hence
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that the large negative moments occur over only a small region of the
plate. Further, if the rotations at the corners are examined, it is
found that they are so small that they would correspond to a crack width
of only .00017 inches at the surface of the plate. That is, the large
negative moments are so localized and have so little strain energy
associated with them, that it would require a negligible amount of
cracking in a concrete slab to eliminate these moments completely. It
appears, therefore, that there is no need to provide reinforcement to
resist these moments, and that any cracking associated with them will be
unimportant.

From the results of thin plate theory, similar conclusions can
be drawn about corner effects in complete bridges. However, it is
dangerous to draw conclusions about the behavior of particular details of
a bridge from the results of a thin plate analysis, because the thin plate
idealization is inadequate. Rather, if the behavior of the corner regions
of skew bridges is to be studied analytically, a refined model such as
the ribbed plate model should be used. An investigation of this aspect
of skew bridge behavior will be presented in a future report. In particular,
the membrane shearing behavior in the deck slab near obtuse corners will be
studied, to determine whether the distortions are sufficient to lead to

significant cracking of a concrete structure.

6.2.2 Support by Girders Only

Fig. 6.7 shows the principal moment pattern for a load applied

to an elongated slab panel supported at all of the girder lines

but at only the two end diaphragm lines. With this type of geemetry,
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one-way slab behavior is expected, and indeed this type of behavior is
essentially predicted. However, these results show a tendency for the
slab to span towards the obtuse corners, rather than directly between

supports, and the principal moments under the load are inclined at 13°
to the supports.

Fig. 6.8 shows the moment pattern for a load applied near the
obtuse corner. The behavior in this case is rather similar to that in
Fig. 6.5, with a large negative moment in the obtuse corner, and as
before it can be concluded that this large moment is actually unimportant

in practice.

6.2.3 Positive Moment Magnitudes
The magnitudes of the maximum positive principal moments under
the loads for each of the cases in Figs. 6.3 through 6.8 are shown in the

following table.

TABLE 6.1

Maximum Positive Plate Moments Under Load

Figure No. Positive Moment (k.in./in.)
6.3 3.65
6.4 3.75
6.5 3.88
6.6 3.87
6.7 4.40
6.8 4.21

It is interesting to note that the moment values from Figs. 6.3

through 6.5 are all very similar. The moment in the corner panel, which
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is discontinuous on two edges, is only 6% larger than the moment in the

fully continuous panel. The result from Fig. 6.6 also indicates that

the maximum positive moment may not be greatly affected by the angle

of skew.

The maximum positive moments from Figs. 6.7 and 6.8 are 17%

and 9% higher, respectively, than for the corresponding load positions

with support at the diaphragm lines. Because of the added corner constraint,

the moment in Fig. 6.8 is slightly lower than that in Fig. 6.7.

6.3 CONCLUSIONS

The results of this investigation may be of importance in the

design of concrete deck slabs on skew supports. The conclusions which

can be drawn are as follows:

1.

Although thin plate theory predicts negative moments of

high intensity at discontinuous obtuse corners, these moments
are very local, and are eliminated by very slight cracking

of the concrete. .

For skew slabs which are of approximately rhomboidal shape

the largest positive and negative bending moments act essentially
parallel to lines joining the obtuse corners. In the design of
such slabs it may therefore be desirable to align the rein-
forcement in this direction. However, this should be determined
by test.

For skew slabs which are very long, one-way slab behavior occurs
for loads applied away from the ends. However, if the load

is applied near the end the largest positive moment is inclined



substantially to a line normal to the supports. It may
be desirable to align the reinforcement in this direction,

but again this must be determined by test.
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