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ABSTRACT: 

* TRANSITION RADIATION 

Joseph V. Lepore and Robert J. Riddell, Jr. 

I.awrence Berkeley I.aboratory 
University of California 

Berkeley, California 94720 

August 71 1972 

When a charged pl.rticle travels through a material medium 

Cerenkov radiation is emitted if the velocity of the pl.rticle is 

greater than that of light in the medium. An accompl.nying effect is 

radiation emitted when the pl.rticle enters or leaves the medium. This 

is called transition radiation. In this pl.per the theory of transition 
':"J 

radiation is presented in considerable detail. The work constitutes a 

C.) 
review of earlier studies but some new results are presented. In 

) particular, the case in which the pl.rticle enters the medium obliquely 

'i is treated and equations are developed for the situation where the 

J boundaries of the medium are not sharp. These equations are then used 

0"- to show that the sharp boundary approximation is always valid for 

>? relativistic pl.rticles since the distance over which the radiation 

~:) develops is always large compl.red to the thickness of the boundary. 

* ~·;, This work was supported by the u. s. Atomic Energy Commission. 
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1. Introduction 

The Cerenkov radiation which can be emitted when a charged 

particle moves with constant velocity through a material medium occurs 

because of the acceleration of the bound charges in the medium by the 

forces exerted by the :r;e.rticle as it pl.sses by. Transition radiation, 

which was predicted by Ginzburg and Frank1 ) in 1946, arises for similar 

reasons when a particle crosses a boundary between different media. 

Much of the later work on transition radiation has been carried out by 

Garibian, although many other authors have contributed to its theoret

ical development. Garibian2 ) has written an excellent review of the 

subject which contains an exhaustive list of references to other work 

on transition radiation. This pl.per is strongly recommended to the 

reader, 

The transition radiation is of great interest to high energy 

physicists since it depends on the energy (r) of the charged :r;e.rticle 

rather than its velocity as in the Cerenkov radiation. Furthermore, 

over an interesting range of energies (r's in the tens of thousands 

range) the radiation is approximately proportional to 'Y • It thus 

offers a useful method for pl.rticle detection which is being widely 

studied)). 

In view of the widespread interest and the potential of methods 

using this phenomenon for experimental purposes, the theory of transi-

tion radiation is presented in considerable detail in the following 

sections so that it may be as widely accessible as possible. The case 

of arbitrary pl.rticle incidence angles on the interface between two 

media is presented and this is then used to study the radiation from a 

slab imbedded in another medium. It is shown that the radiation 
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vanishes as the slab thickness goes to zero, due to cancellation of 

the fields radiated from the two surfaces. The significance of the 

so-called "formation zone" for transition radiation is also discussed. 

Since there has been considerable interest in the question of 

modification of the theory when the boundaries are not sharp, equations 

which cover this case are developed in Section 8 and it is shown that 

due to the size of the formation zone the sharp boundary theory remains 

applicable. 

2. Equations and boundary conditions 

We begin by considering the radiation emitted at the interface 

of two different media (1 and 2) by a charged particle traveling from 

the left in medium 1 across the boundary into mediUIIl 2. The charge and 

current densities of the particle are 

(1) 

-+ 
where o is the Dirac delta function, v is the particle velocity and 

e is its charge. These densities have been chosen so that the particle 

crosses the interface point, taken as the origin of the spatial coord-

inate system, when t is zero. 

The Maxwell equations, which govern the process, are: 

-+ -+ 1 on 41r -+ -+ -+ 
'V l( H dt + -j 'V·B 0 

c c 
(2) 

-+ 1 oB -+ 
'V X E dt 'V•D 41rP • 

c 

The Gaussian system of units is employed. 
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The constitutive relations between E and D, and B and H 
are expt'essed in terms of spectral components, so we first make this 

decomposition: 

n(Z:, t) 

J E(k,ID) ei(k·Z:-cot) d3k dal 

J D(i,ID) ei(k.Z:-cot) ~k dal 

J B(k,ID) ei(k• Z:-(j)t) d3k dal 

-+(-+ ) J -+H(-k,ID) ei(k.Z:-(l)t) d3kdal. H r,t = 

For convenience we have used the same label far a function and its 

Fourier transform. All. integrals are over the infinite domain. 

The constitutive relations are 

D(k,ID) e(k,ID) E(k,ID) 

B(k,ID) IJ(k,ID) H(k,ID), 

(3) 

(4) 

where e and 1-1 represent the dielectric constant and permeability 

of the medium in question [either ( e1 , 1-1_) or ( €2' 1-12) ]. 

The spectral decomposition of the charge and current gives 

p(k,ID) 

-+ -+ . 1 j· ~(- ) -i (k· X: -cot) d3 dt 
j (k,ID) = -;:-:1i: J r, t e r 

(21t) 

so that the Maxwell equations become: 

e -+-+ 
-- o(ID- k·v) 
(21r)3 

(5) 
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This bas a particular solution 
-+ -+ 

i k )( H 
ro-+ 4n-+ 

-i c € E + (! v p i i . liJ. Ii) 0 

(6) 41tip (k X :; ) .6.-1 (12) 
c 

1 i x "E i ~ 11 Ii 
c 

i k • ( € E) = 4np • 
due to the charge as well as plane wave solutions satisfying equation 

-+ 
,The equation for E obtained by combining these equations in the usual 10. 

fashion is Let us now consider the boundary conditions to be imposed. We 

-~k· 2 (J)2) -+ 41tip (_-+ 
\ - 1-L € c2 E = -€- \-k + 

first note that there must be no radiation coming from co in any 
(7) 

direction. In addition, at a plane boundary between the two media 

passing through the origin and perpendicular to the z axis we have 
Solutions of this equation correspond to a linear combination of the 

~ field due to the charge and a field of plane waves which satisfy the 
the usual electromagnetic ~ontinuity conditions across the boundary: 

::·:) homogeneous equations. These must be suitably chosen to satisfy the (DJ.)l (D~)2 

-} boundary conditions at the inbarl'ace, The field due to the charge is 
(EII)l (EI1)2 

(8) 
(13) 

(B.I.)l (B .1.)2 

::-,.,. where we ba ve set (HI!\ (HII)2 

X = € 1-L The subscripts .L and I! refer to the components perpendicular and 

and (9) 
parallel to the boundary. These imply that no surface charges or 

2 
- k .• currents are present. 

The plane waves which make up the solution of the homogeneous equation 
3. Determination of the electric and magnetic fields 

have a propagation vector which satisfies 
Let us now consider the electric field in medium 1 as inferred 

(10) from. equations 3 and 8. First, the field due to the charge is 

The equation for the magnetic field H obtained from equation -+ (1)(-+ ) E0 r,t = 

6 is 

41tip (k )( :; ) . (11) 
(14) 

c 
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... ... 
We divide k into a component K lying parallel to the plane of the 

boundary and a component kz lying perpendicular to it. Thus 

3 2 dk=dKdk •. z 

The integration over k may be carried out to give z 

... (1) ... 4dp J ... ... co -1 i(;·~ +kzz-<.Ot) 2 dal 
E0 (r,t) = -e- (k - x

1 
v 2 ) t:::, e d K - • 

1 c 1 ~ 

In this expression k has the value z 
...... 

(J) - K•V 

v z 

We thus write 

... (1) ... }il {1) i(-;.~ +kzz-c.ot) 2 dal 
E

0 
(r,t) = c;, (K,ro) e d K -

0 vz 

where 
,;: (1) ... 
~O (K,ro) is easily obtained from equation 16. 

radiation field, in which 

we have a corresponding expression: 

... (1)(-+ ) J_E. (1)... i(K·~ +~z-<.Ot) 2 dal 
Er r,t = v {K,ro) e d K-

r vz 

For the 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

... (1) ... 
This expression defines e ( K1 ro)1 Which must yet be determined. r 

Similar equations hold in medium 2 for E
0 

(2 ) and Er (2 ), with kiz 

replaced by ~z • The total field in medium 1 is thus 
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-+(1)(-+ ) E r,t 

~ (1) ... i(i(."~L. ~z-mt)) 2 dal 
+ (.j (K1 c.o)e d K-

r ~ 
(2l.) • 

... (2) 
and a similar expression involving & , 

-+(2) 0 

t: (2) 
(/ and ~z holds 

r 
in the second region for E (r,t). 

The boundary conditions which E and D must satisfy at 

z = o, equation 13, yield 

erz 
(1) e (2) 6 (1) e (2) 

el - e2 -el + e2 Oz rz Oz 
(22) 

... <l (1) e (2) > ... < e (1) - e (2)> • 
K • -K • 0 0 r r 

The second of this pair may be combined with the radiation conditions 

... 
K • 

E. (1) j:'_ (1) 
r + ~ '-'rz = 0 

... 
K • 

e {2) s (2) 
r + ~z rz 0 

to give 

6 (1) 
-~z rz 

5 (2) 
+ ~z . rz 

-1 · <t (l) 
0 

~ (2) 
0 ). 

0 

(23) 

(24) 

Equations 22 and 24 may now be solved for the radiation fields:, 

C (l) and ;: (2 ) One finds: 
rz ~rz • 



,. (1) 
~ 

Urz 
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-ie 

)( l (~/w)[kz(K•-;)- ~vJ + (€/€1 )[~- x1w(-;.;)/l] 

X 2/ 2 k2 1 (I) c -

(":,/ m) ( k, (K.;) - ./' v J + ( ./' - ')_ m(K. ~)/ c2 J ! 
and 

... ~. (2) 
'.J 4z 

x2 w2/c2 - k2 J 

ie 

The reader may note that ~z (2 ) may be obtained from &rz (l) 

simply by exchanging the labels 1 and 2. 

(25) 

At this point, we may also note that for normal incidence of 

the particle, Erz fully determines the Poynting vector. This is 

easily seen by observing that the magnetic analogs of equations 22 

and 24 (equations 30 and 32) have zero on the right-hand side because 

-10-

then Ha. c:c [k )( -;] = [/( x -+v] Th f H 0 • ere ore rz = 1 and from 

-+ -+ -+ -+ 
the orthogonality of k, E, and H in the radiation field, E is in 

the plane of K and z, and 

=. _El E (1) 
~ rz 

with a similar result for medium. 2. Thus, since € -1 = IJ. If for 

plane waves, the magnitude of the Poynting vector., S , in region i 

is 

Thus, if the reader is not interested in oblique incidence the balance 

of this section may be ignored. 

We now turn.to the determination of the magnetic fields B 
and H • We first write, in analogy with equation 16 

-+ (1)-+ ie J-+ H0 (r,t)=- -
2
- (k 

2:n: c 

In this expression k is given by equation 17. We then define z 

by 

-+ (1) -+ J-)j (1) -+ . i(K·~ +k Z-<llt) 2 d!D 
H

0 
( r, t ) = <R

0 
( K, w) e z d K v . 

z 

The radiation field, which satisfies equation 19, is defined in 

analogy with ~quation 20 by 

-+ (1) ' J-+ (1) -+ i(K.;J.. +~ Z-<llt) 2 dm 
H (r,t) = }{ (K1 cb) e z d K 

r r vz 
-+ (2) -+ (2) 

Similar expressions for }{
0 

and }{ r hold in region 2. 

(29 
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The boundary conditions which B and H must satisfy at 

z = 0, equation 1), lead to 

;w(l) 
1'1. rz 

-+ (1) -+ (2) 
"K· (:W - ;w ) 

r r 

.... ,~ (1) -+ (2) 
-K cHO - ;wO ) 

Again the radiation conditions analogous to equation 2), 

... ~(1) 11(1) 
K"cH + k._ cH = 0 

r ~ rz 

-+ ~ (2) 1..1(2) 
K"cH + k~ cH = 0 , 

r """"2z rz 

may be combined with the second member of equation 30 to give 

(30) 

(32) 

Equations 30 and 32 may be solved for the radiation fields 
(1) 

;w 
rz 

and 

(2) 
and lt . One finds rz 

---=-ie_(_k _x_ ... _v ) .... z __ \ ~z 1-1_ - kz ~ 
2 ( ) Xl('"2/c2) - k2 2rc c 1\~z- ~~ ....., 

-+ ... , 
-ie(k x v )z 

\ 
i 

j<33) 

(2) 
As in the case of the electric fields, ;wrz may be obtained from 

;w(l) by interchanging the labels 1 and 2. 
rz 
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-+ 

We must now find the other components of ~~ and ;w • It is 

convenient for this purpose to introduce the set of unit vectors 
AA A A _,._,.. 

z, K, z 'lC K along the z, K directions and the direction mutually 

perpendicular to them. We thus have for the radiation field in region 1 • 

-+ -+ " k=K+k z. 
lz 

The Maxwell equation 6 may thus be written 

~ (1) -+ ~ (1) " ixc; =Kxv +k._z r r ~z 

X t (1) 
r 

Upon taking the scalar product of this equation with ~ one finds 

(35) 

(36) 

~ . (;; )( e (1)) = ~ ~ • ~ (1) = ~ ;w(l) (37) 
r c r · crz 

. -+ (1) 
ThUS the COmponent Of e along the unit vector ~ X 'K is 

r 

~ (1) ~ 11(1) 
(~ )( 'K)· v = - cH r cK rz ' 

-+ 
where K is the magnitude of K • The component parallel to 'K is 

given by equation 23 and is 

-+ (1) 
'K • q. (39) 

One thus finds 

er<l) = sr<lz) z - ~ c<l) 'K + Ollll ;w<l) <z )( 'K). (4o) 
K Urz cK rz 

The remaining fields may be obtained in an identical manner. One finds 
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~ (2) z - ~z 0(2) 'K + Cll!2 Ji(2) z x 'K 
~z K rz cK rz ( ) • (41) 

The magnetic fields may be obtained similarly by using equation 6 for 

• medium 1, i.e., 

One thus finds for the magnetic fields, 

-+ (1) 
Ji 

r 
Ji(l) z - ~z Ji(l) 'K roel (1) 

rz rz - - D. (z x 'K) 
K cK rz 

( 42) 

"~ ii (2} - Ji(2) A ~Z Ji(2) (l)€2 c(2) 
) . r - rz z - 7 rz 'K - -;;- C/rz (z x 'K). 

_,.,'1 

This completes the determination of the electric and magnetic fields. 

4. Wave zone fields for a :t:article normal to media interface 

In order to obtain the energy radiated in the transition 

radiation process, it is necessary to integrate the results of the 

previous section using equations 18 and 28 when r, t -+ oo. The 

general, oblique-incidence case will be dealt with in Appendix A, 

while in this section we review in detail the case of normal incidence 

similar to that treated by Garibian 4) except that we choose to evaluate 

the radiation in medium 2. Thus it is necessary to evaluate the fields 

f 
-+ (2) 

Or (iC,ro) ( 43) 

and 
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-+ (2)(-+ ) Hr · r,t (44) 

for large values of IZ: I • This analysis will be carried out in the 

conventional way using the method of steepest descent • 

It is convenient to introduce a rectangular coordinate system 

specified by unit vectors x, y, ~' with its origin at the interface 

of the two media. The vectors k, ; and their projections on the 

2, y plane are illustrated in fig. 1. In this case one has cylindrical 

symmetry so there is no loss of generality in choosing the observation 

-+ 
vector r in the x, ~ plane with 

-+ A 
p its projection along the x 

axis. Following Garibian we write 

-+ A 
p = r sin ex 

(45) 

-+ A 

z = r cos e z 

-+ -+ '1; 
and we take the angle between P . and K to be 1! • 

Consider now the components of the electric field vector 
r;..ti (2: 
L/r 

These are 

8(2) ~z ~:) cos J 
rx K 

2,(2) ~z p(2) 
sinj (46) -- vrz ry K 

c;:) 2 [<•,1•2 )- 'a v/w 1 - ~ v /ro l ie K z z 

2 - e k ) I 2 2 X {ro
2
/c

2
) - k

2 
21! ( el~z 2lz 

X
2

(ro2 c ) - k 
1 J 
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These are to be substituted into equation 43. The integral over K 

may be written with surface element: K dK d}, so since the expo

nential is an even function of p only the terms involving cos J 
make any contribution. Thus E(2 ) vanishes and 

ry 

J ~z (2 ) i(Kp cos J+~zz-wt) - - 0 cos J e dK dj dro 
vz rz 

J
e(2) 

rz 
v z 

(41) 

(48) 

The electric field thus lies in the plane including the vector to the 

point of observation and the velocity. As we shall soon see it is, of 

course, perpendicular to the direction of observation. 

The integrals over the azimuthal angle J may now be carried 

out using the integral representation for the Bessel function,5 ) J n' 

:n: 

J 
iz cos p 

e cos nJ a§. (49) 

0 

We thus find 

J ~ ~(2) i(~ Z-<.Ot) 
-2:n:i ~ Vrz J

1 
(Kp) e z dK dro , 

z 
(50) 

2 1~(2) i(lL z-wt) 
E( ) = 2:n: _E_ J

0
(Kp) e ~z K dK dro 

rz v 
(51) 

z 

In order to find the wave zone fields we must evaluate these equations 

for very large values of r. This may be done by using the asymptotic 

formulae for the Bessel functions
6

): 
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.l. 

Jn(z)"' (:n:
2
z )

2 

cos (z- n:n:/2 -:n:/~. (52) 

We thus have 

(2) 
Erx 

k_ (2) 1 i(k_ Z-<.Ot) 
~ I!~ K-2 cos(Kp - 3:n:/4)e ~z dK dro 
v ~z z 

~-(2) 
V .!. i(~ Z-<.Ot) 

vz 
rz K2 cos(KO - :n:/4)e z _ dK dro • 

Following Garibian, we now express the cosines in the integrand in 

terms of exponentials so that for we have 

-i(kp-3:n:/4)l i(~ z-wt) 
+ e I e z dK dro • 

l 

(53) 

(54) 

(55) 

As one sees from equations 19, 26, 53, and 54, our integrand contains 

both branch cuts and poles so we now turn to a discussion of haw 

these are to be treated. The branch points are determined by 

? 2/ 2 ~ X
1

coc, 

and 

2/ 2 x
2 

co c , 
(56) 

K o, 
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while the poles are given by 

~ 
2 2 en 

(x2 
v - 1) , 2 2 

v c 

or (57) 

l 
2 2 en v 1) , 2 2 -

v co 

where c0 is the speed of light in the. medium, 

Consider now the pole contributions only and imagine that we are to .. :) 

carry out the integration over cn first. We are, of course, interested 

in the retarded fields; i.e., for t -+ -co the field must vanish. The .,. 
~ 

) 
pole contributions to the integrand given by equation 57 are at either 

real or imaginary values of cn according to whether the speed of the 

particle exceeds or is less than the speed of light in the medium. In 
')" 

the latter case, one easily finds that the field is exponentially small 

as ltl-+oo. In the former case; however, as is well known, if 

t < 0 the field will vanish if the contour is taken ~ the poles 

... .., and this, then, is the desired integration p:~.th for the retarded 

·-:, solution. 

en 

or 

K 

In the latter case we have 

1 
2 2 -2 

± i K v (1 - v /c0 ) z z 

while in the former case 

(59) 

K - 1) 

1 
2 

(60) 

With this requirement established, let us now return to the 

evaluation of the integral over K in equation 55. As we have just 

seen, an off-the-real-axis pole does not contribute to the radiation. 

On the other hand, a pole on the positive real K axis does contribute 

and for positive K one readily finds that a contour in cn which 

goes above the pole translates into a contour in K which goes below 

the pole. This term gives the Cerenkov radiation. 

We now turn to the question of the branch points encountered 

in the integrand of equation 55. First, if the integral over K is 

to converge, the value of ~z on the real axis when K is large 

must be given by 

~z = i(~ 
1 

2 2 2 
x

2 
cn /c ) 

Cuts associated with the branch points of this function at 
1 

K = t x
2

2 cn/ c may be taken along the real axis to ± oo. 

(61) 

Branch points and cuts associated with ~z may be dealt with 

in a similar manner but the reader must be careful to note that since 

·~ represents a reflected wave its value between the branch points, 
1 

± x
1

2 cn/c , is negative, in contrast to ~z which is positive between 

the branch points. Unfortunately, the arguments used for the pole and 

. the branch point in ~z do not apply to the branch point in ~z • 

We have already deduced that the p:~.th of integration in K around the 

pole and the branch point from ~z must go below the singularities. 
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To deduce the requirement for the . ~z branch point, we introduce the 

physical argument that, because of radiation damping effects in the 

medium, X will in fact be complex rather than real, so that the 

singularities are slightly displaced from the real axis. When it is 

noted that Im(coX) > 0 , the previous results are obtained, and in 

addition one :f'inds that the contour desired goes below the ~ branch 

point as well. Except for the effect of defining the :IBth, the ima.g-

inary IBrt of X is negligibly small in the region of interest, so we 

will assume X is real from this point on. Finally a cut may be 

placed along the negative real K axis to deal with the branch point 
1 

associated with K2. 

An integral of the form encountered in equation 55 may now be 

evaluated by deforming our integration :IBth to the :IBth of steepest 

descent. In what follows the poles corresponding to the Cerenkov 

radiation will be ignored and only the transition radiation will be 

treated. 

The functions in the exponential of the two terms in the 

integrand of equation 55 are 

f(K) ir(K sin 9 + ~z COS 9) 

(63) 

g(K) ir(-K sine+ ~z cos e) 

Consider now the integration of each term se:IBrately. Saddle points 

for these terms are determined by 

and 

df 
dK 

~ 
dK 
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K 
ir(sin e - -cos e) 

~z 

ir(-sin e K 
- cos e) • 
~z 

In the first case 

K = ~Z tan 9 

so that K and ~z have the same sign, while iJ, the second 

K 

In either case it is easy to see that 

1 

~z = X/ ~cos e . 

(64) 

(65) 

(66) 

(67) 

When equation 65 holds, the saddle point is on the positive K axis at 

K 
1. co 

= + x2 2 c sin e , 

while if equation 66 holds it lies on the negative K axis at 

K 

1 

-X 2 co sin 9 . 
2 c (70) 

The values of the functions f and g at their respective 

saddle points are equal and are 

f g = ir 
1 

X 2 co/c 2 
(71) 

This implies that in the ro integration only the retarded time, T , 

1 

T = t - X2
2 r/c 1 (72) 

occurs. Note that the values of the second derivatives at either 

saddle point are 
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" f 
l 

-ire/ (x
2 

2 w cos3 e) • (73) " g 

The paths of steepest descent through the saddle points thus make an 

angle of -rc/4 with the real K axis. 

Let us now concentrate on the integral involving f. Note that 

the value of f at the origin is pure imaginary 

1 

f(O) + ir x22 (w/c) cos e' 

and that in the neighborhood of the ori~in 

A path of constant phase (steepest descent) is thus given by 

or 

1 1 
( ~ c cos 9/2 x

2
2 w)l 

. J 0 

where '<R and KI "are the real and imaginary parts of K. 

(74) 

(75) 

(76) 

The branch of this hyperbola which passes through the origin 

lies on a path of steepest descent which goes to oo along the upper 

side of the left-branch cut. See fig. 2. To obtain a path which 

finally ends at +oo under the right-hand cut a possible path of integra.-

tion is along OABS. The contribution (since 

only small values of K contribute, we use only the small K approx-

imation for the integrand) is proportional to the integral 

1 

(r sin e)2 

ioo 
r 

~ 
(77) 

It thus falls off as r-3 and makes no contribution to the wave zone 

fields. Next, the contribution of the path AB is also small since 

the real part of the integrand is small and slowly varying while the 

phase is rapidly varying. Let us now examine the main contribution 

from the path; i.e., the part through the saddle point ( F._ss) • Near the 

saddle point we have approximately 

F._ss e 
-~ 

K 

where 
r 

a 

2 
-at 

1 

·-iw(t-X
2

2 r/c) 
dt e dt dill, 

(78) 

(79) 

and all slowly varying quantities can be evaluated at K
0

. We have 

also written 

K = t 
-i 11/4 e • 

Upon integrating over the saddle point from -oo to oo 

where 

5 (w) 
f ( €/ E2 ) - ~z v / w l X2(w2/c2) - K2 - w2/vz2 

1- ~z 

2/ 2 x
1 

(w c ) -

v /w z 

K 2 2/ 2 
- (l) v . z 

(80) 

we find 

(81) 

l 

(82) 

J 



and 
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1 

+X 2 (ro/c) cos e 2 

l 

-(ro/c)(x
1 

- x
2 

sin2 e)2 

* This result is in complete agreement with the case considered in 

(83) 

Garibian's paper
4

) (equation 27) in which the particle passes from 

* 
The reader will note that we have corrected a misprint since· 

cos e should be squared in Garibian's equation 27. 

medium to vacuum and when 

€ ' 

The result is (not including the Oerenkov term), 

. 2 2 
. e (3 sin e cos 

1tr vz 
9 j e -iro{t-r/c) [ 

€ cos 

[ 
e + t:1 ( e - sin2 e)~ 

)( 2 2 
1 - t:~ cos e 

where t:1 = v /c. 
z. 

1 

1 - t:l( E - sin
2 

(84) 

1 

e + ( € - sin2 

We now turn to the evaluation of the integral in equation 55, 

which involves the function g{K). In this case, as we have seen, the 

saddle point is on the negative K axis. Reasoning silililar to that 

in the foregoing analysis leads to the picture of possible contours of 

integration given in fig. 3. 
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In this case the path of steepest descent connecting the origin 

to CD follows along the branch of the hyperbola, through the origin, 

which lies along the bottom of the cut in the right-half plane. It 

::hruldoot l:edeformed to pass through the saddle point. Arguments silililar 

to those given in the discussion of the contribution of the path OA 

to the former integration involving f(K) show that, as in equation 77, 

such contributions fall off as r-3 and do not contribute to the 

wave zone field. The entire radiation field is thus given by equation 

81 since the g term does not contribute. 

The expression for E(
2

) , equation 54, may be treated in a 
rz 

silililar manner but the calculation is unnecessary since we only need 

to know the magnitude of the radiation field 

to E(2 ) by 

This is related 

-Thus 

rx · 

E(2 ) cos e . 
r 

e J -iro{t-r/c) 
e sin e cos s(ro) e dill • 

1£ r vz 

The magnitude of the magnetic field may also be evaluated 

(86) 

directly but it is easily obtained from the fact that for a radiation 

field e Ff = 1.1 i!. Electric and magnetic fields in the wave zone 

are, of course, perpendicular to each other and to k . 

·In the case when the particle passes from vacuum into the 

medium, equation 82 yields 



• ~ (ill) 
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-1 

1 

cos e + ~(1 - € sin2 e)2 ll + (3~(1 - ~ sin2 e)~ 
1 - (32 ~ col e 

2 .l 
€ + (3~(1 - € sin ·Q) 2 

1- (32 (1·- ~ sin2 e) 1· 
(88) 

This may be used to obtain the radiation field from the first surface. 

5. The radiated energy 

The total radiated energy is given by the time integral of the 

Poynting vector, (c/4n)(E(2 ) X H(2 )) We thus have for the energy 

radiated into a given solid angle 

dW 
dQ 

For the. case in which the IBrticle IBsses from vacuum into the 

medium, for which ~ = 1, we have 

(90) 

we find 

The reader will note that in equation 89 the contribution from 

negative ill has been combined with that from positive ill so that the 

integration goes from zero to infinity. 
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When the IBrticle IBsses from medium to vacuum we find the 

result obtained by Garibian 
4

): 

2 
I~ (ill) I 

4 ( € - 1) fl (32 - f3 ( € -
c 

[e cos e + (€- sir?e) 2 1[1 

6. The formation zone for transition radiation 

In this section we consider the fields produced when a IBrticle 

IBSses through a strip of dielectric of thickness d , from vacuum to 

dielectric and back to vacuum. It will be assumed that the dielectric 

constant differs but little from 1. We write 

(93) 

Only the leading terms in 5 in the expressions for in terms of 5 

will .be retained. We find 

(94) 

where the upper sign is to be chosen for the forward field produced 

in the dielectric at the vacuum-dielectric interface and the lower for 

the forward field produced in the vacuum at the second, dielectric-

vacuum interface. 

The field produced in the dielectric will be subject to many 

internal reflections and transmissions all of which are determined by 
7) 

the Fresnel formulae • A backward field will also be produced at the 
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second interface and this ·will be subject to the same phenomena. We 

know, however, that when the dielectric thickness tends to zero the 

total field must be zero. Equation 94 is the precise expression of 

this fact in the limit in which the secondary fields are neglected. 

The opposite signs of ~ given by equation 94 give the required 

cancellation. 

Let us now turn to the case of finite thickness, d, in the 

limit where o is very small so that we may neglect the secondary 

fields described above. Equation 47 describes the radiation field and 

we shall base our discussion on it. As bas been shown the principal 

contribution to the integrand comes from the saddle point, where . C: (
2

) Drz 

is proportional to £ • We may thus write for the value of the field 

produced at the first surface, 

J (k... ))\ i(~· "P+l<- z-c.ot) 
- ~z _ 0~) cos J e """2z dK aJ diD (95) 

where the subscript denotes evaluation at the saddle point. 

The field produced at the second boundary is similar to this 

except that the sign of e~;) is changed and the phase of the 

exponential must be corrected, if our formulas are to be applicable, 

since the formulas have been developed assuming that the surface of 

discontinuity is at z = O, and the particle passes through it at 

t = o, so that 

t ... t 
d 
v z 

z ... z - d • 

(96) 
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We thuo find that the total field, E~~), evaluated at the second 

interface (z = d) is proportional to 

i (-;; •p+k d-c.ot) 
e ~z (97) 

The condition that the two fields will reinforce each other is 

that 

1 (98) 

where k = m/ c. We thus find that 

[l 
~/2 . ] ~ 

- f3-{E 
. (99) 

cos 

When 9 is small and f3 is close to one this may be written as 

1 

"f - (1 - f32 )-2 

(100) 

The "formation zone" for transition radiation i d fi ed b !L s e n y ~ • As 

will be seen in Section 9, there is a cutoff frequency in the radiation 

spectrum where 5 ~ - 1/l. Evidently for high energies ~ will 

be very large compared to the wavelength under eonsideration. For this -

reason, as we shall see in the last section; sharp dielectric bound-

aries require no special treatment when the wavelength of the radiation 

being considered is comparable to the region over which the dielectric 

constant varies rapidly. 
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7. Transition radiation f'rom multiple layered media 

We now treat the case of transition radiation f'rom N 

dielectric layers of dielectric constant E and thickness d 

sepu-a.ted by vacuum regions of thickness D. Our aim is to find the 

modification of / ~ /2 
which is to be substituted in equation 89. This 

new factor will be denoted by /:=: /
2 

• The same approximations which 

l:B-..e been used in the previous section will be used. As an example, we 

consider the electric field evaluated at a distance 3d + 3D. The 

six interfaces will contribute fields proportional to the exponential 

factor in equation 95, where the phases, ¢ , are {see fig. 4) 

Jl 3~zd + 3~ZD 1 

j2 2~zd + 3~ZD + kd + 1{ , 
z 

}3 2~zt + 2~ZD + k (d +D) 1 z 

-~4 ~Zd + 2~ZD + k (2d +D) + 1{ ' z 

j5 ~zd + ~D + k (2d + 2D) , 
z 

(101) 

If we introduce the notation 

A (102) 

and 

B i(kz - ~z)D (103) 

we find 
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This may be written as 

If N dielectric strips are considered and the field is evaluated at 

N(d + D) we evidently have 

(104) 

The first factor (1 - eA) is just that encountered in the previous 

section dealing with the formation zone. The second factor may be 

summed. We thus find 

l - eN(A+B) j 2 

l 
A+B . " 

- e 

If our basic variables are inserted in this expression it becomes 

sin
2 ~ [ (kz - ~z)d + (kz - ~)D] 

sin2 ~ [(kz- ~z)d + (kz- ~)D1 
(105) 

In the foregoing no account has been taken of. absorption of 

radiation. We may treat this case by writing 

where 

and 

A+B = ia-b, 

a = i [(k - k_ )d + z · ~z 

(lo6) 

(107) 
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b = a d. (lo8) 

The absorption coefficient a is expected to be a strong function 

of frequency. If we neglect absorption in the first region and 

assume the number of dielectric regions, N, to be very large we 

find that J ~ 12 must be replaced by 

[cosh Nb 
cosh b 

• cos .. J 
cos a 

(109) 

This reduces exactly to the value given by equation 105 when absorption 

is negligible (b = 0). 

8. Continuously varying dielectric constant 

In the foregoing sections we have employed the idealization 

of a sharp dielectric boundary. This does not exist in nature so the 

reader may enquire whether our formulae must be significantly altered 

when the wavelength of the radiation becomes comparable to the distance 

over which the dielectric constant varies rapidly. (For high energy 

applications, the wavelength of important radiation becomes of the 

order of atomic sizes.) In what follows we will treat the case of 

normal particle incidence at the dielectric boundary and, as a model, 

the dielectric constant will be taken to be a continuous function of z. 

One might question whether the medium can be treated as continuous, or 

whether one must deal with a collection of electron-atom interactions. 

If the formation zone is large, as is true even when the important wave-

lengths become small, it seems reasonable that such a collection of 

atoms may be described in terms of S];ace-time average properties such 

as the dielectric constant- and the permeability. This belief is 
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reinforced by the result from our model that the formation zone 

provides the appropriate scale of length for evaluating the effects 

of diffuseness of a medium boundary. In our model. we assume t.bat the" 

change in the dielectric constant takes place in a distance t which ~ 

is small compared to the length of the formation zone. 

In our 11100e1., the permeability 1-1 will be taken to be unity • 

Thus we write 

D(:;,ro) = e(z,ro) E(:;,ro) • (llO) 

The Maxwell equations, specialized to the case of frequency ro, may 

then be combined to give differential equations for E and B. For 

-+ 
E we find: 

2 -+ -+(E·V e) v( 4:p)- iaJp-+ if .... Q) (lll) E +- eE + \7 -e- 41( 2 v. 
2 

c c 

In this equation 

5(x)5(y) ikz 
p(:;,Q)) e z (112) = 21f 

e v 

If we now write 

J E(K,ro,,] 

-+ .... 

E(:;,ro) 
iK•r.J. 

d2 K 1 (ll3) = e 

we obtain the following equations far EJ. ("K,ro,z) and E (K,cn,z): 
z 

~E 2 (e' E ) dz/ + (e :2 - l)iJ. + i-; 7 (iJ.4) 

and 

41fp !...(~)-~ 
ik z 

0 dz e 

I 
,.i' 
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.... 
In a similar manner,· one may obtain the equation for B. If the 

direction of observation is taken to lie in the x,z plane, the only 

nonvanishing component of the magnetic field is then B : 
y 

d2B dB 2 2 ikz 
____L- ~ _z + ( E CD2 - K )B 4:n:p

0 
i 13 z 

dz2 e dz 
K e 

c y X 

In the above equations, 

el dE e 
and 13 

v 
=dz' p = 

(2:n:)3 
=-

0 c v 

(ll6) 

(ll7) 

In principle, a discussion of the emitted radiation may be 

based either on equation 115 or on equation ll6. However, in what 

follows we wish to demonstrate the adequacy of the sharp boundary 

approxiliia~ion when e is small, as is true in cases of interest, and 

when the formation zone is large compared to t. In making this 

approximation we must be sure that the radiation field is divergenceless, 

i.e. 
.... 
K 

(2) 
dE 

+ ~ 
dz 0 (ll8) 

. (2) 2 
The reader will note that equation 26 for Erz is proportional to K 

(2) 
so' that when K = o, Erz vanishes. Our approximation must also lead 

to this result since it follows generally that there is no radiation 

as e .... 0. We see that if' we work with equation ll5, care must be 

taken to satisfy equation ll8. On the other hand, if' we choose to work 

with equation ll6 for BY , the divergence condition for the radiation 

field 

0 , 

is autauatically satisfied. When K 0, the right-hand side of 
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equation ll6 vanishes. For this methodological reason we choose to 

work with the magnetic field. 

We now turn to a discussion of' the solution of equation ll7. 

The direction of observation will be chosen in the x, z plane so we 

will write K = Kx in the following. It will be assumed that e is 

a continuous function of' e which changes from unity in region 1 to a 

value £ in region 2 • If' we define A. by 

2 
e (.!L -

2 c 

2 
K 

\ 

(ll9) 

then in region 1, A.= -~z' and in region 2, A.= ~z· Since ~z 

2 2 2 l 
is in fact -[(en /c ) - K ]2 , A. is positive in both regions and has 

a small change between the two regions. We then have 

-e 

ik z 
4:n:p

0 
i K 13 e z (120) 

To solve this inhomogeneous equation we first construct a 

Green 1 s function, ./J , for which 

5(z - z 1 ). (121) 

In this equation 5 represents the Dirac delta :f\mction, and /: 

be constructed in terms of' the two solutions x
1 

and x
2 

of' the 

homogeneous part of' equation 121. These satisfy 

may 

el 
e 0 . (122) 

Because of' the asymptotic behavior of' X in regions 1 and 2 we write: 
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X f A.(z' )d.z ') + b(z )exp(-i f A.(z' )d.z) • 
0 0 . (l23) 

Furthermore a and b are expected to be approximately constant in 

the case of interest. In calculating dX/dz (= X') we write 

x• 1 z ) . z \] 
i A. Ia exp(i J A.(z' )d.z' - b exp( -i J A.(z' )d.z '/ , 

L o , o 
(l24) 

and thus impose the condition that 

a' exp (1 [ •(z')dz') + b' exp01 i Mz')dz) = 0. 

(l25) 

We then find the equations for a and b: 

a' + ~ (~' - : ') [· - b exp ( -21 [ *' )dz) ] 0 
(l26) 

-b' + ~(r _ :·) [. exp Ei { ,(,·)dz) - ~ 0 

where primes denote differentiation with respect to z. The substitu-

tions 

a = A 

* then lead to 

b 
€ 1 

B ( ~ )2 (l27) 

The well-known W.K.B. approximation follows from these transforma

tions by noting that if A.' /A. << 1 , a rapidly oscillating 

exponential makes A, B approximately constant. 
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A' } (~' - :;) B exp (-21 / A.(z 1 )d.z) 
0 

(128) 

and 

B' = ~ ~' - :) A exp ~i i '(z')dz) (l29) • 

Our object is to construct two linearly independent solutions 

of equation l22 from which we can obtain the Green's function. These 

may be defined by choosing solutions \ and x
2 

of the form given 

by equation l23 with 

0 ' (130) 

and 

We ~ here that the Wronskian, W, of these two solutions 

(131) 

has the value 

W = - 2iE(z) • (132) 

We choose to construct a Green's function which then gives a 

particular solution of equation l20 for B in the farm 
y 

B (z) 
y Jz M. rAJ (z, z') R(z' )d.z' 

0 

(133) 

where R(z') denotes the right-hand side of equation 120. The Green's 

function may be written as8 ) 



·~. 

'') 

J (z, z 1
) 

4 ( I) ::/.) z, z 

The 1\mction F 

~ (z,z 1
) 

dz 
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> Z I 

(134) 

= 0 ' for z ~ z 1 
• 

is determined by the condition: 

1 . (135) 

z=z 1 

One finds that for our choice of X1 s , 
£. 

-1 
F = -W , where W is the 

Wronskian. Thus d) is given by: 

,jr (z, z 1 ) (136) 

The general solution of equation 120 may now be written as 

B (z) 
y 

z 

+ J f (z, z 1
) R(z 1 )dz 1 

0 

(137) 

In this expression c1 and c2 are constants which must be chosen to 

fit the boundary conditions. 

In What follows it will be convenient to introduce the 

functions, ~ and X2A which represent the asymptotic behavior of 

x1 and X2 far large positive values of z: 

xlA c~J [ A,(ro) 
i(o+~zz) -i(o+~ z) -~ 

- e + B1 (co) e z J 

(~./ [ A,(oo) 

-. (138) 

i(o+~zz) -i(o+~ z) I 
x2A = + B2 (co.) z I e e ! 

where 

t 

a - 1 [ ~(z I) ' 
~z j dz I • (139) 

0 

It is also useful to introduce the function l' A (z, z 1
) , defined by 

.t, 
When z becomes very large (z -+ oo ), '~'A has the value 

2z 
e 
-ik (z-z 1 

)] 

z > z 1 • 

(14o) 

(141) 

We now turn to the determination of the constant c1 in 

equation 137. Consider the case when z-+ -oo. Since E is constant 

for z < 0 , and then ~ = -~z , one easily finds that 

B (z) 
y 

1 

- 2i~z 

We now define 

R(z 1
) -

where 

f (e -i~z (z-z I) 

0 

r e 
ik z' 

z 

r = 4~ Po i K ~ • 

Equation 142 may be integrated to yield 

+i~z (z-z I) l 
e J R(z 1 )dz 1 

(142) 

(143) 

(144) 
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B (z) 
y 

+ 

r ~ 1 .. )le-iklzz 

k + k_ ! 
z ~z J 

r 
+ --

2~z 

ik z 
z r e 

(k 2 - k 2) 
z lz 

(145) 

The terms in B (z ), in the order in which they appear, represent 
y 

incoming radiation from z = -co , outgoing radiation and the field of 

the particle. Since there is no incoming radiation 

r 1 
0 . (146) 

This determines the constant cl • 

To determine the constant c2 it is necessary to consider the 

field as z -+ co ~ Since we are interested here in the asymptotic 

fields it is convenient to write 

B (z) 
y 

+ 

z 

J r f: (z, z 
1

) 

0 ' 

J
z J.. ikz 1 

+ ~IA(z,a 1 )r e z 

0 

r e 
ik Z 1 

z dz 1 
• 

dz' 

(147) 

Between the two integrals, the major term in the asymptotic field is 

~iven by the first integral involving j;A , since the difference 

l .}\ ( z, z 1 ) - ~A. (z, z 1 ) l vanishes when z and z 1 are in the region 
L J 

z,z 1 > t. This will be shown in detail in what follows, but first let 

us consider the contributions from J A and the free-field terms. to 

B (z ): 
y 

... 

(c1x1 (z) + c2x
2

(z) J + dz 1 
• 

(148) 

When z is large we have 

A E i { [ i(cr+~ z) -i(cr+~ z)] 
•, (•) • ( ",,) c1 ",(oo) e ' + "o_(oo) e 

1
' 

r i(cr+~ z) -i(cr+~ z) l } 
+ c2l A2 (co ) e . z + B2 (co ) e z J 

1 

+ 2i~z 
[ [ e ~z (z-z 1) -~z (z-z 1 ) l 

e \ r e 
1 

ik z 1 

z dz 1 
• 

0 (149) 

In this equation we have written E for the value of the dielectric 

constant in the second medium. The integral for cr (equation 139) is 

of the order t/~ , where ~ is the "formation zone" length and so 

by assumption is exceedingly small and may be neglected. We thus have 

•:(•) , ( ~' )t { c
1 

[ '\ (oo) e "',,' + "o_ (oo) e -t>,,• ] 

[ 

i~ z -i~ zll ikz z 
+ c2 ~ (co ) e z + B2 ( oo ) e z ~ - --=r~e ---,-

J J (kz 2 - ~z 2) 

+ 
2k_ (k - k_ ) 
~z z ~z 

2k_ (k + k_ ) 
~z z ~z 

a result which may be comiSred with equation 145. As there, the 

(150) 
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various terms represent incoming and outgoing radiation and the field 

of' the charge. 

The condition that there be no incoming radiation f'rom +a> is 

1 

• ( ~z )2 [clBl(oo) + C2B2(a>) 1 - 2~z(k: + ~z) 

The field of' the charge is again given by 

ik z z , r e 

and the radiation field, B (2 ) (z) , is 
ry 

+ 
2k~ (k - k ) 
~z z ~z 

B (z) 
oy 

0 . (151) 

(152) 

Since a detailed com];arison of' these results would be both tedious and 

unrewarding we now note that two simplifications may be made. First, 

f'or the case of' interest the change in dielectric constant between the 

two media is extremely small and second, (kz + ~z) is very large 

com];ared to kz - ~z. Accordingly the com);S.rison which we shall make 

between these two results will be to first order in oe , the change in 

dielectric constants, and terms involving (kz + ~z)-l will be 

neglected. 

Let us new. consider the approximate solution of' equations 128 

and 129 f'or A
1 

and B
1

. The region over which r..• is different 
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f'rom zero is t. It is easily seen that the. quantity (r..•/r.. - E'/e) 

is a monotonic f'unction of' z if' e(z) is monotonic. Therefore, 

since 

IdA I 
dz 

we see that 

1 r..• E' I I I 2 ~-e . B' 

1 ()1.' e' \ 
-2 ~-e-J·B, 

assuming that B > 0, and that r../ E is monotonic decreasing. The 

latter is true if' e < 45°, and f'or e > 45° the sign of' the 

inequality must be reversed. A similar relation holds f'or B. Both 

A and B will be bounded if the inequalities are replaced by 

E:qwJities, in which case the equations can be integrated to obtain: 

A(z) $. 

and (153) 

B(z) ~ 

In this case we have assumed that B
0 

= 0. A similar result holds if' 

A
0 

= o. Since B reaches its final value B(a>) at t we have 

~(oo) < (-,::)t] (154) 

The quantity [~/ ( e~z ) 12 
may be written as 

1 -
( e - 1) j rl 2 l 
2 2 L' E C2 - ( E + 1) K J. 

e ~z 
(155) 
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so that B1 is proportional to ( E - 1) 5t1 and 

i(E - 1) I ro2 

4E2 ~z2 c2 • 
(156) 

Since B1 is proportional to 5E it follows that the change in A
1

, 

B~, is proportional to (5E)
2 

and so may be neglected. A similar 

result holds for ~ and B2 with the roles of A and B inter

changed. Thus, to first order in 5E we my take A
1

(oo) = B2 (oo) = 1 

.and replace B1 (oo) = ~ (oo) by the value given in equation 156. 

With the approximations discussed above we find from equation 

151: 

(157) 

Thus c2 is of order BE • If we now turn to the expression for 

2 
B/z ), the term involving c2A2 is proportional to (5E) and may be 

neglected. Thus 

(158) 

Upon combining this with equation 146 one finds 

ike r i?z 
2e 

(159) 

It is interesting but not surprising to note that the "backward" 

radiation given in equation 145 is very small comp~.red to the "forward" 

radiation since it contains no small denominator like those in equation 

159· This completes the determination of 
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We may now find E(2 ) (z) using the Maxwell equation for 
rz 

radiation as used to obtain equation 42,to obtain 

E(2) K c B(2). 
rz E ru rz 

The final result is 

2 
i e K 

4:i k v z z 

1 
+ 

(-a k~ )2 (k 
~zi?z z 

This is now to be comp~.red with the result, for this case, which 

follows from equations 20 and 26: 

2 l (-1/E)(k - ~ ) 
E(2 )(z)= i e K 1 1 z z 

' + 

(160) 

1 
I 
j [<.,, 2 (k 2 ~z2) i rz 

-~)I k 211: v k i - + ~ I z z z j ._ z z z .c 

To make the comp~.rison, we note that kz' 

approximately equal. Furthermore, 5E :::: 

-k1z and ~z are 

2/ 2 - ru ru where ru p p 

(161) 

is the 

plasma frequency for the atomic electrons, and, as will be shown in 

the next section (see equations 174 and 175 ), the important frequency 

region for the radiated power lies below rru, so that in this region 
p 

j5EI > r-2, and as loEI ~ r-2 
the radiation falls to an insignif-

icant value. 

We now consider the terms (k + k_ ) and (k - k~ ) in z ~z z ~~z 

either of the above expressions. We have, since Ko = (et ru(c)sin e, 

and 



-1 
(k - k2 ) z z 
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2c 

( -2 2) w r + 5€ + e 

Thus the terms involving (k + k_ )-l are much larger than those z ~z -

• involving (kz - ~z)-l and we conclude that equations 160 and 161 

agree to a high degree of precision. This is the major result of this 

section. 

Our remaining task is to justify the neglect of the terms in 

equation 146 which involve [J: (z,z')- /~(z,z')] These are given by 

B .6-(z 1 ) 
y [ r J~ l, J ikz' = 

0 
l V (z,z')- ~t:.JA(z,z') r e dz' • 

Consider a typical term in this expression: 

2i 

( x
1 

(z I) I __ _ 

!. e(z') 
I 

ik z' 
e z dz' . 

If we now use equations 123 and 138, I may be written as 

I 

exp (-i 

Z I 

( 

J 
0 

(162) 

(163) 

l ik Z I 

~r e z 

J 
(164) 

It is to be. noted that the integral extends only to z = t since the 

integrand vanishes beyond that point. Consider first the term I1 
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arising from the. A's in equation 164: 

x
2

(z) 

2i 
{ { [ <(z ' )A(z ' ) ]~ 

• .. 

r expl~i(k Z I+ k_ Z I + 0) 1 dz I 
., z ~z _, 

(165) 

We see that the terms in the exponential multiplying ~ (z') are 

negligible if the formation zone is large so that 

i(k +k )z 1 

x r e z ~z dz' (166) 

As k z becomes small compared to t, this term will become very sma.il 

because of the cancelling oscillations associated with the exponential. 

Even if the cancellations are ignored, however, in this expression one 

can demonstrate that e(z) ~(z) is monotonic in e, and thus the 

integral is less than ~ { ( -:~z) -~ - ( € ~z) -~ } rt 

A 
the corresponding terms in By , this term is of order 

Compared to 

t5 € whereas 

the other is of order ~ 5€ . Hence the integral is .small compared . 

to those. terms which have been discussed above and so may be neglected. 

Next consider the terms, I
2

, arising from the B's in equation 164. 
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x2(z) f 
2i 

0 

r 1. r J' ~l l [•(•' )k(•') r "',,') exti( "'")d•" +>,,• '-1J 

":! (oo )t exp[i(k,''- ",,'' - a ) ] "-'' • 

{ (167) 

Using the same approximations which led to equation 165 we have 

1 
2 

(E~z) 
i(k -k

2 
)z' 

e z z dz' • 

The exponential may be set equal to one since it depends on the 

(168) 

formation zone ~ Further, since 5E << 1, and B1 is of order 

5E , the remaining integral is of order t 5E and hence can be 

neglected as well. Corresponding arguments can be applied to the other 

parts of B 6. to show that they too are negligible in our approx-y 

imation. We thus conclude that when the formation zone is large 

compared to the region over which the dielectric constant varies, the 

simple result, obtained by assuming a sharp dielectric boundary, is 

valid. 

* 9. The dependence of transition radiation on particle energy 

To determine the total energy radiated into a given frequency 

range, dw, when the particle passes from vacuum into a medium we must 

All the results of Section 9 are contained in ref. 2. We include 

them here for completeness. 
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integrate equation 90 .using the expression for I; ( w) /
2 

in equation 

91. For an extremely relativistic particle we may take vz ~· c, and 

we expect that radiation will be mainly confined to small angles 

( 2 2) ( 2 2 2) because of the terms, 1 - ~ E cos e and 1 - ~ + E ~ sin Q 

in the denaninator of ; , which becane very small in the forward 

direction. In all but these rapidly varying factors we take e .. to be 

zero. Also since ; is proportional to 5E we set E = 1, except in 

these rapidly varying factors. We thus have 

and 

cos e + 
2 : 2 ""' 

[ 

, .l 

E(l - E sin e) j 2 , 

so that 

<D 1( J dw J de sin
3 e cos 

2 
e 

0 0 

X 

To further simplify this integral one may write 

sin Q ~ e J 

(l - ~2 + E~ sin e) "' 
2 2 

(l - ~ + e ) 

With these approximations W is given by 

-2 , 



where 

dill r 
0 0 
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1
2 

( e - 1) 

(1 - f32E + Q2)(1 - f32 + 92) I 

In the X-ray frequency range e may be expressed as 

e = 1 -

ill is the plasma frequency 
p 

(170) 

(171) 

In this. expression, N is the number of electrons per unit volume 

and e and m are the electron charge and mass, respectively. Since 

the imaginary part of e is negligible the absolute value signs in 

equation 170 may be ignored and the integration over e may be 

carried out to yield 

00 

w J 
0 

(l72) 

Before carrying out the integration over ill we note that equation 172 

holds only when ill >> ill 
p 

In the X-ray region ill "' 1~ ill • There 
p 

will also be a selection or cut-off effect at the lower limit because 

of the X-ray detector efficiency. Beyond this we note that there is a 

high energy cut-off frequency, illc' in equation 172 

When ill<< ill 
c 

ill 
c 
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ill 
_ __.P.__--rx • 

(1 - f32)2 

the integrand behaves as 

dW - 2e2 
tn (:c) , dill n:c 

while when ill>> ill it becomes c 

dW 2 (:· )4. e 
dill biCC 

(173) 

(174) 

(175) 

Since the low frequency part of the integral contributes little and 

because of the natural high frequency cut-off, we conclude that 

equation 174 may be integrated to give the radiated energy, 

w (176) 

Thus W is proportional to 

1 
2 -2 

(l - f3 ) or the ratio E/m for the 

incident particle. This is the basis for studies of the use of 

transition counters9) in high energy physics. It should be noted that 

this result assumes that the X-ray detection efficiency is unity. If 

the detector becomes inefficient for an ill < ill , .the total transition 
X C 

radiated energy detected will only be proportional to log r , rather 

than r , as given in equation 176. 
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APPENDIX 

In this appendix we will complete our treatment of the case 

when the JEXticle is not incident normally to the dielectric boundary. 

Consider the expression for E~2 ) , equation 43. The 

integrand is a function of cos} and K so we may write (fig. la) 

(X) dro r d~ /:rr _,;r: E~) J " ¥ G(~t1 cos j) 
-(X) 0 0 

x exp [ i(Kr sine cos_/ + \zr cos e - wt)] . (Al) 

where G is given by (we choose ~ = ~ = l). 

G(K, cos p) (A2) 
(2) 

;):{ sin J. rz 

We have suppressed the dependence of G on co, a., 13 for. convenience. 

The integrations over both § a~ K will now be carried out using 

the saddle-point method described in the main part of this paper. 

Consider first the J integration denoted by I :. 

I 
iz cos J 

a$ G(K:, cos j) e 

Here z is given by 

z = K r sin e 

If I is divided into two parts, I 1 and I2~ 
:rr iz cos§ 

I 1 = ~ G(~t, cos j) e dj 1 

and 

(A3) 

(A4) 

(A5) 
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2:rr 

J 
iz cos} 

G(K, cos j) e dj 1 (A6) 

:rr 

we see that upon changing p to J + 1!1 I
2 

is given by 

-iz cos§ 
-cosj) e dp. (A7) 

We thus see that 

J
:rr iz cosj 

0 

G(K, -cos /) e dj (A8) 

Let us now apply the saddle-point method to evaluate I
1

• · If 

we write 

iz cos J, (A9) 

then 

dw J dJ = - iz sin • (AlO) 

The saddle points are located at 

(All) 

Our region of integration thus begins and ends at a saddle point. The 

second derivative of w is 

= - iz cos J (Al2) 

so we may write for the contribution from the saddle points 
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Upon writing 

-b/4 
p = e t, 

in the first integral of this equation and 

in/4 
.J=e t, 

in the seccmd we have 

i(z-n/4) 
I
1 

~ e G(K1 l) 

co 1 2 

1 
-2Zt 

e 

0 

dt 

(A13) 

-i(z-:rc/4) 
+ e G(K,-1) 

0 1 2 J e -2Zt dt 

-CD 
(A14) 

.") Thus: 

1 l [ i(z-:rc/4) -i(z-:rc/4) l 
Il ~ 2 (2Jt/z) 2 e G(K1 l) + e G(K,-1) • 

(A15) 

:::.;J When the same method is applied to equation A8 we find 

1 r i(z-:rc/4) -i(z-:rc/4) ]' 
! (2:rc/z)2 . e G(K,-1) + e G(K,l) 
2 L 

Thus 

.(Al6) 

and 
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l [ i(z-:rc/4) i(z :rc/4) l 
I = (2:rc/z) 2 e G(K1 1) + e- - G(K,-l)j • 

E(2) 
rx The expressicm for becomes 

1 
-2 

K 

r i(Kr sin Q-:rc/4) -i(Kr Sin Q-:rc/4) l 
x le G(K,l) + e · G(K, -1) 

(A17) 

(AlB) 

This result rray be comp3.red with equaticm 55 of the rrain J;art of this 

p3.per. The more detailed arguments given there show that only the 

first term in the integrand of equation A18 will contribute to the 

asymptotic behavior of E(2 ). 
rx 

In what follows we must take care to note that kz is given 

now by --k W- K•V 
z v z 

or 
W - KV 

k X (A19) z v z 

when J is set equal to zero. 

Since only the terms involving :/ = 0, :rc contribute to E(2 ) rx 

we see that the term in equation A2. involving 
(2) 

to the radiation field, Erx 

;u(2) 
rz does not contribute 
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The saddle-point method used to evaluate the K integration 

in equation 55 may be also used to evaluate equation AlB. We thus 

find the analogue of equation B1 

2 
. e sin e cos 9 

n r vz 
J g{m) exp [-im(t - x2~ ric) J dm 

(A20) 

where g is now given by 

w K\w 22} 
1 - ~zvz + vx (~zkz - X m2\) 

xl {m2lc2) - k2 c. 

(A21) 

This reduces to equation 82 when v is zero. 
X 

We now turn to a new facet of our problem. Since it no longer 

bas axial symmetry about the direction of the particle velocity, E(2 ) . ry 

does not vanish. For E~) we find an. expression identical in form to 

equation Al but with G replaced by 

G(K; cos]) 
cq.L2 

+ --cv z 

(2) 
ll cos§ • rz 

(2) 
The expression for ll , equation 34, is proportional to rz 

• ~ = d v cos § - v sin jJ . y X 

(A22) 

(A23) 

since terms in sin J do not contribute, E(2 ) is proportional to ry 

KVY • For the case when 1-1. = ~ = 1, G may therefore be replaced by 

[ 22 2[ 22 2. 
El ((I) I c ) - k l E2 ((I) I c ) - k ] 

(A24) 

Evaluation of the expression for leads to the analog of 

equation AlB 

1 
-oo 0 

.., r i(Kr sin e - n/4) -i(Kr sin e - n/4) I 
x Le G(K1 1) + e G(K, -l)j 

(A25) 

As before we apply the saddle-point method to carry out the integration 

over K and find 

e v J -iw(t - J- ric) 
~ cos 9 ~(m) e dw 

nr vz 

where TJ is given by 

(w/c) 4 E~ ( E - l){k - k_ ) z ~z 

[ 2/2 2 2/2 2 (~z - ~z) {m c ) - k ] [E{m c ) - k ] 

The integral for E(2 ) may be simi~rly evaluated. rz · We find 
1 

-iill(t- E2 r/c) 
e cos e 

sin 9 Urn) e dm, 

(A26) 

(A27) 

(A2B) 
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where t; is given by 

t; (ill) 
-+-+ 2J - Eill(K•V)/c 

(~/ill)[kz (;.:;) - tr..
2
vJ 

l<ill2 /c2) 

(A29) 

The foregoing equations allow us to calculate Er 
2

• As before Hr 
2 

may be calculated by using the relation, valid for radiation fields, 

€ E 2 
r 

H2 
1-1 r 

The magnitude of the Poynting vector is therefore 

lsi 

In view of the complicated equations for the components of E we will r 

not present an analytic expression for Is I . The evaluation of the 

radiated energy using our equations is best handled directly by 

computer. 
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FIGURE CAPI'IONS 

Fig. 1. The wave number k 1 observation vector -; 1 and their 

projections ; and P on the " " x, y plane. -; is normal 

to the x, y media interface. 

Fig. 2. Shows saddle point, paths of steepest descent (arrows show 

·direction of the increasing function), branch points and 

values of ~z' along the real axis, all involved in 

integration of f term. 

Fig •. 3· Shows saddle point, paths of steepest descent (opposite to 

arrows), branch points and values of ~z' along the real 

axis, all involved in integration of g term. 

Fig. 4. Shows three dielectric media. Field is evaluated at a 

distance D from the last. dielectric slab, the point P. 

Fig. lA. Shows the various angles involved when the particle is not 

normally incident on the dielectric boundary. The velocity 

is described by polar angle a and aximuth f3. The other 

angles are the same as for the case of normal incidence. 
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