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An Empirical Study of I/O Separation for Burst Buffers in HPC Systems
Donghun Koo,Jaehwan Lee,Jialin Liu,Eun-Kyu Byun,Jae-Hyuck Kwak,Glenn K. Lockwood,Soonwook Hwang,Katie Anty-
pas,Kesheng Wu,Hyeonsang Eom

• Develop an I/O separation scheme using multi-stream feature of solid state drives, which reduces garbage collection
overheads, improves I/O throughput, and extends device lifetime.

• Design a stream-aware scheduling policy to work with the I/O separation scheme and improve overall I/O throughput.
• Improves performance without require users to change their I/O functions.
• Increases I/O throughput by 44% and reduce Write Amplification by 20%.
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ABSTRACT
To meet the exascale I/O requirements for the High-Performance Computing (HPC), a new I/O
subsystem, Burst Buffer, based on solid state drives (SSD), has been developed. However, the diverse
HPC workloads and the bursty I/O pattern cause severe data fragmentation that requires costly garbage
collection (GC) and increases the number of bytes written to the SSD. To address this data fragmentation
challenge, a new multi-stream feature has been developed for SSDs. In this work, we develop an I/O
Separation scheme called BIOS to leverage this multi-stream feature to group the I/O streams based
on the user IDs. We propose a stream-aware scheduling policy based on burst buffer pools in the
workload manager, and integrate the BIOS with the workload manager to optimize the I/O separation
scheme in burst buffer. We evaluate the proposed framework with a burst buffer I/O traces from Cori
Supercomputer including a diverse set of applications. Experimental results show that the BIOS could
improve the performance by 1.44x on average and reduce the Write Amplification Factor (WAF) by up
to 1.20x. These demonstrate the potential benefits of the I/O separation scheme for solid state storage
systems.

1. Introduction
Recently, the data-intensive scientific domains have be-

come a new application field, due to the increasing volume
of scientific data of up to several petabytes and the complex-
ity of the scientific workload, the I/O has become more and
more challenging. Consequently, existing HPC Parallel File
Systems (PFSs) based on disk cannot satisfy the I/O require-
ments. In response to the demand for high I/O performance
in an HPC environment, many supercomputers have been
introduced with SSD-based file systems. For example, Cray
has developed a DataWarp which is a fast storage tier based
on NVMe SSDs, and deployed it at NERSC (National En-
ergy Research Scientific Computing Center) since 2015[1].
As a high-performance storage layer, burst buffers[2] have
effectively handled the burst I/Os in many commercial HPC
systems.

Unfortunately, all burst buffers based on SSDs have the
same problem arising from a characteristic of the NAND
flash memory: Garbage Collection (GC) overheads caused
by a difference in the operation unit between write/read (page
level) and erase (block level). The GC overhead is an addi-
tional copy operation for preserving valid pages in the GC
operation that secures the empty block, which adversely af-
fects the performance and the lifetime of a flash device when
frequent GC operation occur[3][4]. Specially, SSDs in burst
buffer must process a large amount of concurrent and com-
plex I/Os from a lot of scientific applications, because burst
buffers are used for absorbing the bursty I/O traffic as a shared
resource in HPC systems[5]. As a result, these SSD’s used in
such HPC environments, would be exposed to frequent GC

∗Corresponding author
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operations, which could lead to the losses in performance
and endurance [6].

In relation to research on burst buffers, the research has
mainly focused on studies addressing the I/O bottleneck prob-
lems in HPC systems[2, 1, 7], on burst buffers in local nodes
for scalable write performance[8, 9], on I/O scheduling in
burst buffer[10, 6], or on burst buffer resourcemanagement[11].
To the best of our knowledge, no existing studies focused
on improving performance and endurance of the burst buffer
itself except for our own previous work[12]. To mitigate
the GC overheads for SSDs in burst buffer, our previous
work proposed the user-level I/O isolation by using a multi-
streamed SSD[13] that allocates same flash block for I/Os in
the same stream ID. In that work, we uncovered the expected
performance reduction in an SSD based burst buffer and
demonstrated the that effectiveness of user-level I/O isolation
in the burst buffer. However, that work was not integrated
into a actual burst buffer on a HPC system.

In this work, we implement the burst buffer named BIOS,
to transparently support I/O separation, and to validate its
performance in an active HPC environments. To take full
advantage of this I/O separation scheme, we design a stream-
aware scheduling policy for the workload manager. Based
on this implemented system, we explore the benefits and lim-
itations of the BIOS and the framework through extensive
experimentation. To implement the burst buffer with I/O
separation scheme, we leverage the multi-streamed SSDs to
group the I/O streams based on the user stream mapping.
This burst buffer is to assign the flash memory blocks exclu-
sively to each user being performed transparently to users. In
HPC burst buffer environments, we found that the benefits of
I/O separation scheme can be reduced due to user ID-based
stream allocation and a limited number of available streams
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(e.g., 4 to 16) in a multi-streamed SSD[13],[14],[15]. To
overcome these problems, we propose managing the burst
buffer resource as burst buffer pools and the stream-aware
scheduling policy in workload manager and finally, imple-
ment the framework by integrating these with the BIOS. This
framework optimizes the benefits of I/O separation scheme
by alleviating the interference caused by data striping and
the problem of skewed stream allocation.

To validate the effectiveness of the BIOS framework in
the HPC environment, we use not only synthetic workloads
but also real HPC applications as well as burst buffer I/O
traces obtained from the Cori supercomputer at NERSC. In
our tests, the BIOS shows the up to 44% increase in I/O
throughput and up to 20% decrease in write amplification
factor (WAF) compared to an existing burst buffers.

Our main contributions are as follows: (1) We implement
the burst buffer framework with an I/O separation scheme
for multiple devices and multiple nodes; (2) We design an
resource efficient workload manager with a stream-aware
scheduling policy to take advantage of the I/O separation
framework; (3) Users do not have to change their I/O func-
tions in order to benefit from our burst buffer framework. (4)
Through extensive evaluations with HPC applications and
burst buffer I/O traces from the Cori supercomputer, we ob-
serve up to 44% increase in I/O throughput and 20% descrease
in write amplification.

In the rest of this paper, Section 2 presents the background
and challenges of the work presented in this paper and Section
3 and 4 describe the I/O separation scheme and framework.
Section 5 shows the experiment results to demonstrate the
effectiveness of proposed scheme and framework compared
with legacy burst buffer. Section 6 summarizes findings and
insights from the evaluation. Section 7 and 8 show the dis-
cussion and related work respectively, and finally Section 9
summarizes our conclusions and future studies.

2. Background And Challenges
2.1. Burst Buffer

With the emergence of massive HPC systems and cor-
responding dramatic increase in computing resource perfor-
mance, traditional HPC systems with disk based PFSs are
unable to satisfy the I/O requirements. Burst buffer tech-
nology has emerged in recent years as a result of demands
for better I/O performance in HPC environments. The burst
buffer as a high-performance SSD tier efficiently handles
bursty I/O that is not handled by the PFSs, located between
the compute node and the PFS. In accordance with the pur-
pose of the burst buffer, it efficiently handles the traditional
HPC checkpoint restart workloadswhich have large streaming
I/Os, and recently, is also being used for temporary staging
space and in-transit data processing recently[16]. However,
due to these various demands, a burst buffer faces a perfor-
mance challenge with small files and varied I/O patterns [1].
In HPC burst buffer, currently, there are two representative
burst buffer architectures: the local burst buffer and the shared
burst buffer. One is to be implemented in each compute node
as a local burst buffer and the other used a shared resource
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Figure 1: Impact on multi-streamed SSD when the stripe count
number is different for the same load

such as dedicated burst buffer nodes. With benefits from ease
of maintenance and deployment, shared burst buffer architec-
ture is commonly used in state of the art commercial burst
buffers such as Cray’s DataWarp[17] and DDN’s IME[18].
Specifically, on Cori supercomputer at NERSC, DataWarp
burst buffer is treated as high-speed storage resources and
managed by a batch scheduler, SLURM[19]. Through the
workload manager, the shared burst buffer is allocated to
users on a per-job or short term basis.
2.2. Write Amplification in SSDs

The NAND flash memory used as a storage for burst
buffer has an inherent characteristic that erase has coarser
granularity (block-level) compared to granularity (page-level)
of write and read operations. To secure the free blocks, the
garbage collection is performed in SSD, causing a redundant
copy operation for keeping valid pages. The characteristics
of out place update and differences in block erase and page
write/read operations in flash memory are the cause for un-
necessary copy operations. So the amount of data written to
the storage media is amplified in SSD when GC operation
occurs. This phenomenon is called write amplification[20]
and the amplification ratio is denoted as write amplification
factor (WAF). This write amplification factor is calculated as
follows:

WAF = the amount of data written in NAND flash
the amount of data sent from the client (1)

The cost of the erase operation is considerably expensive
due to the write amplification caused by the GC operation.
When an SSD is being used excessively, an SSD incurs more
frequent GC operations at the same time, degrading the write
performance of an SSD. Therefore, SSDs that are used as a
shared resource to handle the burst I/O are more affected by
the number of GC operations performed.
2.3. Multi-streamed SSD

A multi-streamed SSD has been proposed to reduce the
garbage collection(GC) overheads in flash memory by map-
ping the data with different lifetimes to different streams.
To map the data to stream ID, a multi-streamed SSD makes
the host system to send write request with stream ID to an
SSD since the host can provide adequate information about
data lifetime. Therefore, the stream ID may be a hint about
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data lifetime, which allowing an SSD to place the data with
the same stream ID into the same flash blocks. With this
mechanism, all data associated with stream is expected to
be invalidated at the same time in the same flash blocks,
and thus this feature increases the probability of the data
within the blocks to be removed together, which reduces the
probability of a number of copy operations during the GC
operation. A multi-streamed SSD, as a result, provides not
only an enhanced device lifetime but also improved perfor-
mance and constant latency via the multi-stream mechanism.
In the NVMe 1.3 specification[21], the multi-stream feature
is introduced as a form of directives. This feature is defined
for write commands, allowing the host system to carry the
stream to the controller by using NVMe commands. As the
multi-stream feature is officially adopted in the NVMe inter-
face, the multi-stream feature is expected to be available in
many future NVMe devices.
2.4. Challenges of Multi-stream Feature in Burst

Buffers
In this search, we seek to implement a robust burst buffer

from a large amount of I/Os using a multi-stream feature. In
other words, by separating the user’s I/Os from the others’
I/Os via multi-streamed SSDs, we target to minimize the GC
overheads in SSDs of burst buffers. The number of streams
supported by the device, therefore, is important in reducing
the number of GC overheads. For example, if multi-streamed
SSD can provide an unlimited number of streams, all I/O
streams can be allocated to exclusive flash blocks, which
can remove the GC overheads completely. Unfortunately, a
multi-streamed only SSD supports a number between 4 to
16 streams due to implementation constraints related to the
write buffering mechanism in an SSD[22]. In HPC environ-
ments, as a result, each stream ID is shared by multiple I/O
streams, resulting in data mixed in flash blocks associated
with same stream IDs and eventually weakens the benefits
of the multi-stream feature. To address this problem, most
research on multi-streamed SSD has tried to devise a method
for stream allocation which maps data with a similar life-

time to the stream IDs[14],[23],[15], [24]. In this paper, we
present intuitive and effective criteria for stream allocation
considering the burst buffer environments.

In this paper, we consider a shared burst buffer system
located in a dedicated node that uses striping I/O for high
performance. Assuming we build a burst buffer using multi-
streamed SSDs in this system, in theory, we can use a number
of streams equal to # of devices * # of supported streams to
completely isolate the I/O stream from other I/O streams
in this burst buffer. However, the number of streams that
can actually be used would be decreased since the striping
I/O segments the file and stores each segment on different
SSDs. Each file uses a stream assigned to that file in all
multi-streamed SSDs, which brings the effect like using only
the number of streams supported by a single multi-streamed
SSD when all SSDs participate in striping I/O.

To demonstrate the impact of data striping on multi-
streamed SSD, we perform the workload with 8 FIO[25]
threads in each of the 4 nodes to local SSD and grouped SSDs
with RAID 0 respectively, and these results about the local
SSD (SSD with stripe count 1) and one of the grouped SSDs
(SSD with stripe count 4) after preconditioning to warming
up the devices are showed in figure 1. Since we use 8 stream
IDs to isolate the I/O threads, the local SSD perfectly sepa-
rates the I/O threads in each node, while each SSD grouped
with RAID 0 handles the 32 I/O threads due to striping I/O;
all stream IDs in SSD are shared by 4 I/O threads each. As
a result, WAF in SSD with SC4 is increased as time passed,
adversely affecting the performance despite using the multi-
stream feature. In this context, it showed that simply applying
the stream allocation strategy in burst buffer is insufficient to
keep up the maximum benefits of the multi-stream feature.

3. I/O Separation Scheme in Burst Buffer
In this section, we first present the intuitive and effective

criterion to distinguish the data lifetime in burst buffer envi-
ronments and using this criterion, we implement the burst
buffer providing a multi-stream feature to user transparently,
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Algorithm 1 A User ID-based Stream Management
1: streamID = getStreamID_from_table(userID)
2:
3: if !streamID then
4: if F ind_idle_streamID then
5: Allocate the streamID
6: else
7: Allocate the least used streamID
8: end if
9: Register the (userID, streamID) pair to table
10: end if
11:
12: fadvise(fd, streamID)
13: update_access_time(userID)
14: threshold++
15:
16: if tℎresℎold > setting_value then
17: Check all registered user’s stream ID access time
18: if Not_recently_accessed then
19: Retrieve the streamID
20: Remove the (userID, streamID) pair in the table
21: end if
22: Init threshold
23: end if

named BIOS. Before addressing the challenge of multi-stream
feature in the burst buffer environment, it is important the
implementation of an effective burst buffer must come first
in order to maximize multi-stream capability.
3.1. Stream Allocation Criteria

The mapping method between data and stream ID is the
most important factor in optimizing the multi-stream mecha-
nism. In shared burst buffer systems, burst buffer is assigned
to a user on a per-job basis through the workload manager.
The output data of the job are stored in the burst buffer while
the job is running, but both burst buffer and output data are
deleted together when the job is completed. Namely, the life-
time of the user’s data stored in the burst buffers is generally
equal to the job execution time[26]. The user ID can be the
key to intuitively and effectively distinguish the data lifetime
in the burst buffer environments. Therefore, we take the user
ID as a classification unit for mapping the data with a differ-
ent lifetime to disparate stream IDs. Based on this insight,
we present user ID-based stream management in burst buffer,
I/O separation scheme.

To prove the effectiveness of an I/O separation scheme,
we assume a situation where a user’s data is deleted while
other users are still writing data to burst buffer; this situa-
tion is commonly found in shared burst buffer environments.
Figure 2 illustrates the effect of an I/O separation scheme
compared to the legacy system. More specifically, it shows
the different flash memory block layout in a legacy and an I/O
separation system when GC operation is performed on block
#2 respectively. In case of the legacy system, to perform
the GC operation for block #2, it needs 4 copy and 1 erase

operation. On the other hand, the I/O separation system can
complete the GC operation with just 1 erase operation. It’s
intuitive that the I/O separation system can reduce the GC
overheads efficiently compared to the legacy system in burst
buffer environments.
3.2. Implementation

To implement the burst buffer with I/O separation scheme,
we modified the open source based distributed file system,
BeeGFS [27], to allow it to allocate stream IDs by leveraging
user IDs, uid in Linux, and to pass the stream IDs by using
fadvise() which passes it down to SSDs through file inode; a
stream allocation is performed per file descriptor when a file
is opened.

The logic for implementing I/O separation scheme is
represented by algorithm 1 that describes the user ID-based
stream management in the BeeGFS storage daemon located
in each node. In the algorithm 1, the stream and access
time mapping table are used for stream management; these
are data structure for managing the stream IDs efficiently,
returning the stream ID and access time corresponding to
user ID respectively. When a user writes the data, a BeeGFS
checks the list to see whether the user ID is registered in the
stream mapping table or not. If not, the BeeGFS attempts
to find the idle stream ID first. If all stream IDs are in use,
it finds the least used stream ID as an alternative. Next,
the BeeGFS registers the (user ID, stream ID) pair to the
stream mapping table. After the stream allocation process,
the selected stream ID is applied to file descriptor through the
modified fadvise(). And then, user’s stream ID access time
is updated in the access time mapping table and a threshold
value is incremented; these variables are used as a criterion
for whether or not the stream ID will be reclaimed and to
periodically perform a retrieval function respectively. When
the threshold value reaches the setting value, the retrieval
function is performed. The retrieval function checks the all
registered user’s stream ID access time, removing all data
related to corresponding to the user ID such as the (user ID,
stream ID) pair in the stream mapping table when user has
not used the stream ID for a certain period of time. After
the retrieval function is finished, the threshold value is then
initialized.

In summary, the overall process of data flow fromBeeGFS
to multi-streamed SSDs is as follows. When the user writes
the file to a BeeGFS, it divides the file into chunks for data
striping, sending the chunks to nodeswhich belong to BeeGFS.
Then, a BeeGFS storage daemon which services the stor-
age function in all nodes belonging to BeeGFS assigns the
stream ID for chunk using algorithm 1; next the chunks with
stream ID are passed down to a multi-streamed SSD in each
node. Then, each SSD stores the received chunk into the flash
blocks associated with each stream ID. Therefore, this sys-
tem, named BIOS, which provides an I/O separation scheme
offers a multi-stream feature to users transparently, so that
all users in the BIOS can experience these benefits without
modifying the application’s code.
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3.3. Limitations of User ID-based Stream
Allocation

As discussed above, a user ID is the most suitable infor-
mation about data lifetime when we considered burst buffer
environments. However, a problem can occur when the same
user submits multiple jobs because the burst buffer support-
ing user ID-based stream allocation assigns the same stream
ID to all jobs from the same user. In this case, skewed stream
allocation can occur in the BIOS. In summary, the problems
of skewed stream allocation along with the reduction of avail-
able streams incurred by data striping are factors which limit
the benefits of I/O separation scheme.

4. BIOS Framework
In this section, we propose the burst buffer system, BIOS

Framework, which optimizes the I/O separation scheme by
integrating the BIOS with workload manager. Through inte-
grating with the workload manager, we can treat burst buffer
as high-speed storage resource, optimizing the use of burst
buffer (e.g., Cray DataWarp). To improve the limitations
of I/O separation scheme in the BIOS framework, we orga-
nize resource unit for burst buffer allocation by grouping the
devices together in a burst buffer pools and design the stream-
aware scheduling policy which evenly balances the load to
SSDs while decreasing the contention of stream resource in
workload manager.
4.1. Support in Workload Manager

In existing HPC systems such as supercomputers, the
workloadmanager is an integral component for cluster/resource
management and job scheduling. Most resources including
the burst buffer in HPC systems, are managed and assigned
to a user for a set amount of time by the workload manager.
For example, in the case of ephemeral burst buffers as of

Algorithm 2 A Stream-Aware Scheduling Policy
1: pool_ID = get_idle_pool_id()
2:
3: if pool_ID then
4: Return pool_ID
5: else
6: user_ID = get_uid_from_job_id(jobID)
7: pool_ID = not_overlap_pool_id(userID)
8:
9: if !pool_ID then
10: pool_ID = min_used_pool_id()
11: Return pool_ID
12: else
13: Return pool_ID
14: end if
15: end if

NERSC Cori, the allocation process is mainly managed by
the SLURM workload manager. Therefore, supporting the
burst buffer in the workload manager is essential for imple-
mentation of the real burst buffer system.

To implement a framework that supports the BIOS, we
used the SLURM workload manager with some modification.
Specifically, in order for SLURM to support the BIOS, we
added the SLURM directive for the BIOS. As an argument
of the directive, it includes a directory name, dirname, and
the size of burst buffer, capacity. In the dirname argument,
it’s used for the directory name of burst buffer; the directory
name for job is created as a "user/dirname" to prevent the
problem of name duplication between the users. A capacity
is used for the size of burst buffer and for a baseline of setting
the stripe count which is the number of SSDs to use. In
current burst buffer on Cori, the allocation granularity is 20G,
for example, when the capacity is set to 80GB, the stripe
count will be 4 (four burst buffer nodes will be allocated).
In our BIOS framework, we configured the maximum stripe
count as 4. By specifying the BIOS directive, #BIOS, in a
SLURM batch script, users can be assigned the ephemeral
burst buffer with an I/O separation scheme from the workload
manager.
4.2. Burst Buffer Pools

In order to reduce the contention caused by data striping
and to prevent skewed stream allocation when a lot of jobs are
submitted from the same user, we utilized the storage pools
function [28] in BeeGFS to split the burst buffer resources
into different burst buffer pools, as shown in figure 3. By
utilizing the burst buffer pools, we can limit the range of
data striping and choose the physical storage device for burst
buffer, which gives a chance to mitigate the contention from
data striping and to solve the skewed stream allocation via
scheduling technique. Figure 3 shows the BIOS framework
with 4 burst buffer pool IDs composed of 16 storage devices.
In this framework, the workload manager determines the pool
ID first (see next subsection for details) and then creates the
burst buffer within the pool for each job.
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But, using a burst buffer pools may result in the inefficient
use of burst buffer resources when demand for burst buffer is
usually low because burst buffer resource per job is limited
in burst buffer pool even if there are idle resources remaining.
However, since the utilization of the burst buffer has recently
been increasing [29], the inefficiency from low utilization
is negligible. Next we discuss the stream-aware scheduling
policy based on burst buffer pools.
4.3. Stream-Aware Scheduling Policy

Ultimately, we implement the real burst buffer system
which manages the burst buffer resource by the workload
manager. To efficientlymanage the resource, it is important to
use an appropriate scheduling scheme. For example, in burst
buffer system, a round robin scheduling is used to assign it to
the user[30]. In resource scheduling, themost important thing
is to ensure that resources are used evenly. In order to design
the scheduling policy to optimize the I/O separation scheme
in the burst buffer system, we first consider distributing the
load evenly to the SSDs in burst buffer pools. Moreover, we
also consider the stream ID-use-state to mitigate the problem
of skewed stream allocation and contention in stream ID.
Based on these considerations, we propose the stream-aware
scheduling policy which considers not only load balancing,
but also a user ID-based stream allocation in the burst buffer
system.

The algorithm 2 describes a stream-aware scheduling
policy in the workload manager. When jobs are submitted,
the workload manager first tries to find an idle pool and
creates the burst buffer on it. If an idle pool does not exist,
the workload manager allocates a pool that is not used by
the same user ID by checking each stream ID-use-state. As
discussed in Section 3.1, we use the user ID-based stream
allocation in the BIOS, thus jobs from the same user are
assigned the different pool IDs, guaranteeing that each job
uses their own stream IDs on different SSDs. If all pool IDs
are being used from the same user, the workload manager
assigns the least used pool ID to the job in order to minimize
interference as much as possible.
4.4. Workflow of BIOS Framework

Figure 3 shows the overall structure of a BIOS framework
which includes the BIOS, the workload manager, and parallel
file system (PFS). The BIOS framework also supports the
staging function: stage-in/out which moves the data between
burst buffers and PFSs. When jobs are submitted to the
workload manager, it figures out the user ID of job and the all
pool IDs use-state, assigning a burst buffer to the job. Before
starting the job execution, stage-in is performed when the
user demands this function; stage-in is necessary if files of
frequently accessed or large size are needed. After stage-
in, a job starts to run. When output files are written to an
allocated burst buffer after job execution, BeeGFS storage
daemon in each node assigns the stream ID to the output files
by identifying the user ID. Then, when the job is terminated,
the workload manager performs the stage-out transferring the
files stored in the burst buffer to the PFS and terminates the
job by removing the burst buffer. The above process is simply

performed by specifying a BIOS directive in the SLURM
batch script. As a result, the BIOS framework we implement
provides the service of a complete burst buffer system.

5. Evaluation
5.1. Experiment Setup

For conducting the experiments, we used the testbed
which consists of 4 nodes. Each of its nodes has an Intel
Xeon E5-2620 v4 processor with 2-way 8-core and 64GB
RAM. For the multi-streamed SSD, we used four 960GB
Samsung PM963 SSD supporting eight configurable streams
with modified firmware to support the multi-stream feature.
Before the start of every experiment, we initialized all SSDs
using NVMe command: nvme format. To collect the steady
state I/O throughput and WAF, we measured the results after
30 minutes in all experiments. To measure I/O throughput
and WAF, we used nmon [31] and nvme command, and nvme
smart-log, respectively.
5.2. Evaluation with Synthetic Workload

In order to understand the effect of I/O separation scheme
in burst buffer, we generated the synthetic workload with
bursty I/O by using FIO [25] benchmark and compared that
to existing burst buffer, Legacy BB, on various metrics. The
synthetic workload simulates 8 users on each node, 2 threads
per user; our testbed consists of 4 nodes, so the total of users
is 32. Each user is assigned a different burst buffer capacity
and each thread writes the 64MB file repeatedly during the
runtime. If a user exceeds the allocated burst buffer capacity,
15% files are removed from the oldest one; therefore, we can
consider users who are allocated a similar size of burst buffer
capacity, as having a similar data lifetime.

As mentioned before, we consider shared burst buffer
architecture which aggregates the bandwidth across multiple
devices via data striping. We configured a shared burst buffer
with four nodes having a single multi-streamed SSD. Despite
using four multi-streamed SSDs supporting 8 streams, we can
actually use not 32 streams but 8 streams in this burst buffer
due to data striping. Each stream ID, therefore, is shared
by 4 users in this experiment, thus it is important to know
how users, who have different data lifetimes, are grouped
into stream IDs. Depending on the degree of grouping, those
users who have similar data lifetime are grouped into the
same stream ID, we configured three grouping configurations
which are described below.

• Configuration 1; all users in each stream ID have the
same data lifetime

• Configuration 2; half of users in each stream ID have
the same data lifetime

• Configuration 3; all users in each stream ID have dif-
ferent data lifetime

Under these configurations, we evaluated the BIOS and
Legacy BB on synthetic workload for an hour, respectively.
For each configuration, figure 4 illustrates the WAF sequence
of Legacy BB and the BIOS. On the Legacy BB, WAF is

Donghun Koo et al.: Preprint submitted to Elsevier Page 6 of 14



I/O Separation Scheme for Burst Buffers

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

W
rit

e 
Am

pl
ifi

ca
tio

n 
Fa

ct
or

 (W
AF

)

Time (minute)

Legacy BB

BIOS

(a) Results for Configuration 1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

W
rit

e 
Am

pl
ifi

ca
tio

n 
Fa

ct
or

 (W
AF

)

Time (minute)

Legacy BB

BIOS

(b) Results for Configuration 2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

W
rit

e 
Am

pl
ifi

ca
tio

n 
Fa

ct
or

 (W
AF

)

Time (minute)

Legacy BB

BIOS

(c) Results for Configuration 3
Figure 4: WAF sequence of Legacy BB and BIOS with different configuration
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Figure 5: Comparison write tail latency between the BIOS and
Legacy BB with configuration 2

increased up to almost 2 times or more as time goes on re-
gardless of grouping configurations. The meaning of data
lifetime in Legacy BB is the degree of change of trend in
WAF. As the randomness of the data deletion increases, the
degree of copy overhead for a valid page in a block may vary
when GC occurs. The Legacy BB in configuration 3 shows
such a result. Actually, from the perspective of Legacy BB,
grouping users who have similar data lifetime is meaningless
because all data is eventually combined into the SSD block
regardless of these configurations. This suggests that the
Legacy BB constantly suffered GC overheads, which hurts
the SSD’s endurance and performance. On the contrary, the
BIOS shows low and stable WAF value except for the result
in configuration 3. But, even though WAF is increased by
about 1.4× in configuration 3 due to 3 oversubscription for
each stream, its average WAF is lower than in all case of
Legacy BB because the contention of these SSD blocks is
less than in the SSD blocks of Legacy BB shared by 32 users.
The I/O separation scheme which decreases the degree of
block sharing from multiple users in SSD offers benefits for
improving the endurance in an SSD. Besides, if stream ID
mapping is well optimized by considering the data lifetime,
its benefits can be maximized.

Another benefit of the BIOS is to reduce the long-tail la-
tency. To present the effect of the I/O separation scheme for
tail latency, we measured the latency for every 64MB write
request in this workload. Figure 5 shows the results of latency
on Legacy BB and BIOS with configuration 2. As shown in
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Figure 6: Results of average performance and WAF on Legacy
BB, BIOS, and optimal BIOS

Figure 5, write requests in the BIOS become 1.27×, 2.75×,
1.96× and 2.28× faster compared to Legacy BB, at the 95th,
99th, 99.9th and 99.99th percentiles, respectively. Since the
GC operation blocks the processing of incoming I/O requests
until this operation is done[3], long-tail latency occurs in
Legacy BB with severe GC overhead in this experiment. As
a result, burst buffer with I/O separation scheme which miti-
gates the GC overheads provides up to 2× improved long-tail
latency compared to existing burst buffer systems.

To assess the I/O separation scheme in burst buffer from
a throughput point of view, we measured the throughput in
these experiments performed by Legacy with configuration
2, BIOS with configuration 2, and BIOS with configuration 1
as a Legacy BB, BIOS, and optimal BIOS respectively, and
calculated the average throughput after 30 minutes from the
start of experiment to understand the degree of impact of
GC overheads on performance. Figure 6 shows the results of
average throughput and WAF from the time GC operation is
fully generated in earnest. These results indicate that apply-
ing the I/O separation scheme to a conventional burst buffer
can improve the endurance and performance by 1.51× and
1.83× and if stream mapping is optimized by considering
data lifetime. Only then, can optimal the BIOS improve the
benefits of endurance and performance up to 1.74× and 2.66×
compared to Legacy BB.
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Figure 7: Average throughput and WAF while performing experiments using HPC applications
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Figure 8: Average throughput and write amplification factor when emulating supercomputing workload and disk-busy and WAF
sequence of Legacy BB and BIOS during runtime

5.3. Evaluation with HPC Applications
As a next step for a more realistic evaluation, we used

three HPC applications: EBAMRINS [32], IOMI [33] and
Nyx [34]. Among them, EBAMRINS and IOMI are built
on Chombo which is a high-performance block structured
adaptive mesh refinement framework for solving partial dif-
ferential equations in complex geometries. Nyx is N-body
hydrodynamic cosmological simulation application that uses
a massively parallel AMR code for computational cosmol-
ogy. These are representative scientific applications in HPC
environments. The output files generated by each application
are described as follows.

• EBAMRINS : single checkpoint and plot file with
41MB and 65MB size respectively

• IOMI : single hdf5 file around 292MB size
• Nyx : checkpoint and plot directory consisting of 13

and 10 files, total size of each directory is 131MB and
117MB respectively

To load enough I/O to the burst buffer, we configured
workloads to generate output files after each step of computa-
tion. We assumed the 8 users per node in total of four nodes

and performed the experiments three times for each appli-
cation. Therefore, a total of 32 users perform the striping
I/O to the burst buffer which consists of four nodes and each
stream ID is shared by 4 users in that our multi-streamed
SSD supports the 8 streams. For the method of file deletion
and the burst buffer capacity allocation, it is the same as for
the evaluation of the synthetic workload as described in Sec-
tion 5.2. In the case of EBAMRINS experiments, we used 3
threads per user in order to provide sufficient I/O load.

Figure 7 compares the BIOS with Legacy BB in terms of
average WAF and write throughput on representative HPC
applications. The results in EBAMRINS show that average
WAF and throughput for Legacy BB are 1.5 and 395MB/s
whereas WAF for BIOS are 1.2 (1.25×) and 652MB/s (1.65×)
respectively. In EBAMRINS, the BIOS shows relatively
higher performance deviation compared with other applica-
tion’s results since we used more total threads than other
application experiments; stream ID is shared by more threads
in EBAMRINS experiment. Therefore, depending on how
well the users with similar data lifetime can be grouped to-
gether, the BIOS performance in EBAMRINS may show
variable performance trends. Despite large performance devi-
ations, the BIOS guarantees better performance than Legacy
BB even in the worst case. In the IOMI application, the
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Figure 9: Average throughput and WAF with different striping configurations

BIOS shows that 1.07 and 810MB/s for WAF and through-
put respectively, whereas Legacy BB shows results of 1.37
and 534MB/s respectively. The BIOS in IOMI represents
a far greater performance compared to experimental results
in other applications due to the simple I/O characteristic of
IOMI that generates a large single file, which allows the BIOS
to keep on the benefits even though each stream ID is shared
by multiple users. On the other hand, the Legacy BB results
indicates that existing burst buffer can be troubled in han-
dling the concurrent I/Os from many users many in spite of
a simpler I/O pattern. Consequently, the BIOS compared
to Legacy BB improves WAF and throughput by 1.27× and
1.51× on average respectively. In the case of the Nyx ex-
periment, both burst buffers show approximately the same
experimental results for WAF and throughput. In the Nyx
experiment, we observed that GC overheads on the BIOS go
up to the same level as Legacy BB, since the Nyx application
generates multiple small files frequently and concurrently.
The BIOS did not show any advantage over Legacy BB in
the Nyx application. However, we expect this case to be im-
proved in the BIOS framework. Overall, these results show
that the average WAF and I/O throughput in all application
experiments are improved by 1.17× and 1.37× in the BIOS
when compared to the Legacy BB.
5.4. Evaluation with Emulated Workload

For a more realistic evaluation beyond the synthetic work-
load, we evaluated the BIOS with Darshan logs of Cori’s
burst buffer provided by NERSC. Darshan can profile the
application’s POSIX and MPI-IO function calls with mini-
mum overheads. The Darshan log can accurately report the
I/O pattern and I/O cost over the job’s lifetime. More im-
portantly, the emulated workload can represent the real I/O
pattern on a production burst buffer at a national HPC facility.
We selected 32 workloads which are write-intensive from
the Darshan logs; the average size of write operations ranged
from 1KB to 10MB. To replay these workloads, we used the
workload emulator [12] and assumed that 32 users randomly
select a workload and they are granted a burst buffer with a
different capacity. Since the darshan log doesn’t record the re-

move operation which is triggered by the workload manager
instead of the application itself, we simply remove the data in
the same way as in the synthetic tests. With the combination
of different workloads for each test, we were able to reveal
a different HPC workload pattern. In this subsection, we
formed four combinations of workloads and conducted the
experiments separately.

Figure 8a illustrates the average WAF and throughput
on emulated workloads. In the case of the WAF results, the
average WAF in Legacy BB is 1.16 and it is improved to 1.01
by the BIOS. Moreover, I/O throughput is improved by 1.20×
with the BIOS. Even though the emulated workloads do not
have enough I/O to saturate the burst buffer bandwidth, we
observed that the WAF starts to increase in Legacy BB even
when the disk-busy is only around 40% to 50%, as shown
in Figure 8b. This phenomenon is arises from the complex
I/O patterns in HPC and the concurrent I/Os from multiple
users. These results indicate the BIOS prevents the degra-
dation of performance and the device lifetime by reducing
the GC overheads in such complex I/O workloads. Currently,
the burst buffer has been introduced and experimentally oper-
ated in the HPC systems without being fully utilized yet[35].
However, the complete introduction and generalization of the
burst buffer technology in the near future will result in more
bursty I/O, and the benefits of the BIOS will become more
significant.
5.5. Evaluation with Different Striping

Configuration
In general, most burst buffers use the data striping which

is the ability to stripe data across multiple storage devices for
providing high-performance. Although striping I/O provides
high-performance, it accelerates the data fragmentation in
the SSD blocks, which can adversely affect the performance
and lifetime of SSDs in the burst buffer. To identify the
impact of data striping on the burst buffer, we performed
the experiments by changing the stripe settings in regards to
stripe count and stripe size. In order to give the same I/O load
to each SSD regardless of the stripe count, we configured
the ratio of the number of SSDs to the number of I/O users
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Figure 10: BIOS framework on our testbed

equally; 8 users per SSD perform I/O. In the experiment for
stripe count, we set the stripe size and RDMA buffer size
to the value of 512KB and 768KB separately, and for the
stripe size experiment, we fixed the value of stripe count and
RDMA buffer size to 4MB and 16MB respectively.

Figure 9a illustrates the average throughput and WAF
while changing the stripe count. On the Legacy BB, as
stripe count increases to 1,2 and 4, WAF is increased to 1.53,
1.69 and 1.74 and throughput shows that it is decreased to
477MB/s, 397MB/s and 358MB/s respectively. Each SSD
handles the same amount of I/O regardless of the stripe count,
but as the stripe count increases, the number of users pro-
cessed by each SSD increases, resulting in more data being
mixed in the SSD block. As a result, this leads to an in-
crease of GC overheads as the stripe count increase. For the
same reason, when the stripe count is 4 in the BIOS, WAF is
increased up to 1.15 and its throughput is also decreased. Nev-
ertheless, the WAF and throughput in the BIOS show 1.53×,
1.66× and 1.51×, and 2×, 2.3× and 1.83× improvement in
case of 1,2 and 4 stripe count respectively.

Figure 9b shows the experimental results when the stripe
size is 512KB, 1MB, 2MB and 4MB. Regardless of stripe
size, the results in both Legacy BB and the BIOS show around
the same WAF and throughput. Although we did not present
the results for different RDMA size in this paper, we also
performed the same experiment with 768KB RDMA size.
But, RDMA size also did not affect performance. These
results demonstrate that stripe size and RDMA size show
little impact on SSD performance and lifetime in bursty I/O
environments.
5.6. Evaluation on BIOS Framework

Until now, we have evaluated the BIOS directly with ex-
tensive experiments. From those experiments, we verified
that the I/O separation scheme is effective and also has a lim-
itation due to a limited number of streams. In this subsection,
we confirm whether or not the BIOS framework optimizes
the I/O separation scheme in burst buffer environments.

To evaluate the BIOS framework, we configured the real-
istic supercomputing environments using multi component
workload composed of five workloads: Nyx-MiniSB, Nyx-
Santabarbara, Chombo-EBAMRINS, Chombo-IOMI, and

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

node 1 node 2 node 3 node 4

W
rit

e 
Am

pl
ifi

ca
tio

n 
Fa

ct
or

 (W
AF

)

Legacy BB BIOS

(a) Average WAF

0

100

200

300

400

500

600

700

800

900

1000

node 1 node 2 node 3 node 4

Th
ro

ug
hp

ut
 (

M
B/

s)

Legacy BB BIOS

(b) Average Throughput
Figure 11: Average WAF and throughput for the storage device
of each node in real burst buffer environments

IOR benchmark[36]. We assume the 8 users each submitting
the 4 jobs to the workload manager; a total 32 jobs are sub-
mitted and running on the BIOS framework together while
performing the IOR applications with large files in order to
fill the burst buffer capacity. As shown in Figure 10, we built
the BIOS framework on our testbed which has four nodes.
Due to the limited number of nodes in our testbed, we con-
figured the four burst buffer pools using four SSDs; each
burst buffer pool consists of single SSD, so each job only
uses a single SSD in this framework. For example, when a
job is submitted to the workload manager, the BIOS frame-
work assigns the burst buffer pool ID based on stream-aware
scheduling policy and provides burst buffer using the single
SSD in the allocated pool ID.

Figure 11 illustrates the average WAF and throughput
for all SSDs in the framework. In Figure 11a and 11b, the
WAF and throughput in BIOS show 1.04 and 914MB/s on
average while presenting the 1.21 and 675MB/s in Legacy
BB respectively. The BIOS compared with Legacy BB im-
proves WAF and throughput by 1.17× and 1.35× respectively,
which indicates that the BIOS framework effectively works
as designed in realistic supercomputing environments. Under
the BIOS framework, each job can exclusively use the SSD
without interference from other jobs, so the BIOS removes
the GC overheads in the SSD despite operating with a lot of
jobs, providing consistent benefits of I/O separation scheme.

In Figure 11, the performance results show slight differ-
ences between nodes. This is because each node handles
a different combination of applications due to the pool ID
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allocation by the workload manager. In addition, an interest-
ing finding is that the WAF in the BIOS is not 1.00 but 1.04
even though each job uses its own stream ID. 0.04% copy
overheads come from the different timing which marks the
invalid state about deleted data between the file system and
an SSD. When a user deletes the data, the file system marks
data block as not in use, but the SSD does not know which
SSD’s page should be marked as invalid until the operating
system notifies it. This results in unnecessary copy operation
for worthless data, and it causes the GC overheads despite
using the SSD completely alone. However, such a degree of
overheads is negligible and can be completely removed by
using trim command [37].

6. Summary and lessons learned
In this section, we summarize the findings and insights

from an extensive evaluation performed in the burst buffer
with an I/O separation scheme and the BIOS framework.
6.1. An I/O Separation Scheme in Burst Buffer
6.1.1. Evaluation with Synthetic Workload

Applying I/O separation scheme to the burst buffer can
mitigate garbage collection overheads efficiently, improving
I/O throughput, device lifetime, and service level objective.
When data grouping is precisely grouped according to data
lifetime, the benefits of I/O separation scheme are maximized.
6.1.2. Evaluation with HPC Applications

In real HPC applications with diverse I/O patterns, the
I/O separation scheme demonstrates that GC overheads are
mitigated in SSDs of the burst buffer. Although a burst buffer
with an I/O separation scheme provides inconsistent bene-
fits depending on the I/O pattern, it ensures better, overall
performance than do existing burst buffers.
6.1.3. Evaluation with Emulated Workload

Currently, the I/O load in real supercomputing workloads
is not enough to saturate the SSDs of the burst buffer, repre-
senting 40% to 50% disk-busy since burst buffers have been
introduced and experimentally operated in HPC systems. De-
spite insufficient loads, the complex I/O patterns bring the
GC overheads in existing burst buffers, whereas the BIOS
completely eliminates the GC overheads incurred by complex
I/O patterns.
6.1.4. Evaluation with Striping Configurations

The striping I/O pattern used in the shared burst buffer
accelerates the data fragmentation in SSD blocks, undermin-
ing the benefits of the I/O separation scheme. Management
is required to maintain on the benefits of the I/O separation
scheme in burst buffers. Without addressing the problem
of GC overheads in SSD, trivial optimization such as stripe
size or RDMA buffer size is negligible in optimizing the I/O
separation scheme in burst buffer environments.

6.2. A BIOS Framework
6.2.1. Evaluation with Real Burst Buffer

Environments
The real burst buffer system, the BIOS framework, demon-

strates that the I/O separation scheme can be optimized in
burst buffer environments through the burst buffer pools and
stream-aware scheduling policy. The burst buffer pools re-
duce interference caused by data striping. The stream-aware
scheduling policy solves the skewed stream allocation for
jobs of the same user while balancing the load. The BIOS
framework can reduce the GC overhead which is no longer
reduced by limitations from the BIOS.

7. Discussion
7.1. Limited Number of Nodes

In this paper, even though we conducted the evaluation
of the BIOS framework on a small-scale cluster consisting
of a limited number of nodes, the effectiveness of BIOS can
be expanded to large-scale clusters. Because the function of
the BIOS framework is to manage the burst buffer resource
by burst buffer pools, it can be adapted to any size cluster by
adjusting the size of the burst buffer pools. For example, if
we assume the scaled-up cluster with 16 burst buffer nodes,
the BIOS framework will look like Figure 3. We can con-
figure the four burst buffer pool IDs grouped into four SSDs
considering the scale of the system. Assuming multiple jobs
are running in same pool ID in this cluster, we can consider
this pool ID to be equivalent to the same circumstances in
the BIOS experiments of Section 5.2 to 5.4, because these ex-
periments are performed on four nodes using the striping I/O.
Although we use a limited number of nodes to demonstrate
the effect of BIOS framework, its benefits can be generalized
to a large-scale cluster.

Best above all, using multi-stream with burst buffers in a
supercomputing system requires collaboration from device
builders and system designers.
7.2. Advanced BIOS Framework

In this paper, we configured the fixed number of storage
device for each burst buffer pool ID. The management of
the BIOS in uniform pool IDs allows us to make it easier to
allocating burst buffer resources and to ensure a certain level
of performance. However, as a demand of the I/O requirement
of each HPC application varies, the framework with uniform
pool IDs can lose the chance to be used more efficiently
such as grouping the I/O streams with similar characteristic
into pool IDs. Therefore, by organizing the pool IDs with
a variable number of SSDs, we expect our framework will
manage storage more efficiently and further improve overall
system performance.

We can also utilize the information of a job’s lifetime in
the workload manager in order to predict when the data of the
job will actually be erased. If we use this information well, we
can ideally group the data into the stream IDs; Theoretically,
all data in the same stream will be erased at the same time,
which will show the same BIOS results shown in Figure 4a.
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We expect that utilizing the job’s lifetime information enable
users to make BIOS more effective.

8. Related work
As a beginning of the burst buffer study, Liu et al. ex-

plored the potential of burst buffer and demonstrated its effec-
tiveness in a large-scale HPC system. In subsequent studies,
the study for handling the I/O bottleneck problem in HPC
systems[1, 7], the study of new burst buffer architecture[8, 9]
and the study of scheduling policy for I/O between burst
buffer and PFSs, or burst buffer resource[6, 10, 11] have
continued progress. Our work is based on the burst buffer
architecture represented in Bhimji et al.[1], and we improve
the performance and endurance problem that might arise in
this system by mitigating the GC overheads.

The multi-streamed feature has been introduced for mit-
igating the GC overheads of SSD. A large body of prior
research has been conducted on how to effectively leverage
this multi-stream mechanism. There are some strategies to
leverage the multi-stream feature, which typically includes
mapping data from the applications level [14], [38], file sys-
tems layer [23], and the block layer [15]. In case of appli-
cation level customization, the multi-stream feature can be
optimized via the understanding of data lifetime of the ap-
plication although it comes at a cost; a compatibility issue
to all applications requiring the multi-stream feature. The
others using abstracted information support multi-stream fea-
ture with transparency to applications but have limitations
in optimizing all applications compared to application level
customization. A recent study by Kim et al. has proposed
the automatic stream management based on application level
information, program context. Our work also provides auto-
matic streammanagement in burst buffer by utilizing intuitive
and effective data lifetime information based on burst buffer
I/O characteristics.

9. Conclusions
With emerging burst buffers, the HPC systems with disk-

based PFSs could satisfy the I/O requirement. However, the
burst buffers also cannot completely meet the I/O require-
ment since some I/O characteristics of the HPC environment
may cause the write amplification in SSDs of the burst buffer,
leading to the performance degradation of the entire burst
buffer system. To address this problem, we have proposed the
BIOS, a Burst Buffer with an I/O separation scheme based on
multi-streamed SSDs and a framework managing the BIOS
efficiently in burst buffer environments. By assigning the
stream to each user transparently, the BIOS provides the illu-
sion that each user is using their own SSDs; actually, each
user uses exclusive NAND blocks in the same SSD, this miti-
gates the write amplification in the SSDs, possibly enhancing
the performance by an average of 1.44× and reducing WAF
by 1.20×, as shown in our extensive experiments. In addi-
tion, the framework manages the BIOS using stream-aware
scheduling policy based on burst buffer pools, optimizing
the I/O separation scheme regardless of cluster scale. Al-

though our experimental setup uses 4 nodes due to lack of
multi-streamed SSDs available on current burst buffer imple-
mentation, our diverse experiments and scalable feature of
the BIOS framework let us uncover and analyze the benefits
and limitations of the I/O separation scheme in the real burst
buffer environments. Therefore, the results of all those tests
demonstrate a very promising future of using the BIOS frame-
work in HPC environments. For future studies, we plan to
enhance our framework by improving the stage in/out using
dcp[39] or gnu parallel[40] utility for large files. In addition,
to support this transparent viewing, we will ultimately im-
plement the BIOS framework which supports the transparent
caching mode.
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