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ABSTRACT

Management of soil biological resources to optimise plant production, 
efficiency of nutrient inputs, and system sustainability is an emerging 
opportunity for pastoral agriculture. To achieve these goals, suitable tools 
that can assess the functional state of the soil ecosystem must be developed
and standardised approaches to their application adopted. Towards this end, 
we have undertaken comprehensive, high-density functional-gene 
microarray analysis (GeoChip5) of environmental DNA (eDNA) extracted from
50 pastoral soils. When combined with soil, environmental and management 
metadata, the information can be used to provide insights into soil biological 
processes spanning greenhouse gas emissions, through to natural 
suppression of plant root diseases. To provide an example of a structured 
workflow of analysis in a pastoral system context, we analysed the GeoChip 
data using a combination of approaches spanning routine univariate 
methods through to more complex multivariate and network-based analysis. 
Analyses were restricted to comparing effects of land-use (dairy or ‘other’ 
farming systems), and exploring relationships of the GeoChip data with the 
soil properties from each sample. These exemplar analyses present a 
pathway for the application of eDNA approaches (GeoChip or others) to 
deliver outcomes for pastoral agricultural in New Zealand.

KEYWORDS: Data analysis; eDNA; environmental genomics; GeoChip; soil 
ecosystem function

Introduction

Biology and biological processes occurring in soils have many direct links to 
plant productivity. Most importantly, the diversity of soil microbiology 
constitutes the primary reservoir of beneficial and deleterious organisms 
with which plants interact. These associations can be so important that 
introduction of a key microbial group to natural and managed soil 
ecosystems can have major impacts on plant production and above-ground 



ecosystem productivity (van der Heijden et al. 1998; Anderson et al. 2004; 
Herridge et al. 2008).

Soil biology not only directly affects plant production, but regulates soil 
formation, cycling of important nutrients (carbon [C], nitrogen [N], 
phosphorus [P], sulphur [S]), provides a source and sink of greenhouse gases
and affects water quality (e.g. nitrate-N, enteric pathogens) (Roper & Gupta 
1995). In New Zealand, approximately 30% of the land area is used for high-
producing pastoral agriculture (Statistics New Zealand 2012). As such, there 
is not only potential to increase the productive capacity of pastures through 
management of soil biology, but as a consequence of the large extent of land
area under pasture, there are strong opportunities to achieve environmental 
outcomes linked to the range of ecosystem services supported by soils 
(Coleman & Whitman 2005; Ogunseitan 2005). Given this, it is bewildering 
that soil ecosystem services work to date has not explicitly studied ‘soil 
biology’.

Productive gains in farming systems have been achieved through genetic 
gain in pasture and livestock breeding (Barrett et al. 2015; Santos et al. 
2015). In both cases, advances have been underpinned by fundamental 
knowledge of organisms’ genetics, physiology and phenotypes, which 
collectively allow for breeding and selection across multiple phenotypes. For 
the other major biological component of farming systems, i.e. the soil 
biology, the same primary requirements need to be met, but gaining this 
knowledge is vastly more difficult. The diversity and number of organisms in 
soils is massive (>104 to 105 species/g soil; Curtis et al. 2002; Torsvik et al. 
2002), traits are not usually visually scorable and phenotypes (e.g. a soils 
with enhanced disease suppression or greater nitrogen-use efficiency) are 
the result of the interaction of a multitude of species, often spanning phyla 
and/or trophic groups. There is often an idiosyncratic relationship between 
species and function (Nielsen et al. 2011) that needs to be considered 
alongside issues of size and scale. Furthermore, the soil system is not static; 
functions such as disease suppression, nutrient cycling and ecosystem 
stability (resilience and resistance) are emergent properties (Cardinale et al. 
2003; Konopka 2009). Thus, an ecosystem approach is clearly required to 
identify opportunities for achieving gains in soil function. Given the unique 
issues associated with soil biology (species and diversity, organisms’ size, 
often unknown associations between biological elements [e.g. species] and 
function), ecological genomics is being as an important integrative tool 
(Nesme et al. 2016; Myrold et al. 2014; Nannipieri et al. 2014). In this 
context, ecological genomics refers to analysis of the soil environmental DNA
(eDNA) as a ‘metagenome’ (harbouring the pooled DNA from many 
thousands of species), and understanding relationships to both the wider 
abiotic and biotic environment.

The comprehensive assessment of soil ecosystems—and, more importantly, 
functional genes associated with ecosystem processes—is rapidly becoming 
cost effective. This is principally through the development of a range of high-



throughput genomics-era tools such as next generation DNA sequencing 
(NGS) and the development of various microarray platforms (Nannipieri et al.
2014). One such example is the GeoChip functional microarray system (He et
al. 2007). This platform allows for the simultaneous detection of genes 
spanning a broad range of functions associated with biogeochemical cycling 
of nutrients, through antibiotic resistance and plant growth regulation (He et 
al. 2007). Thus, an assessment of the functional capacity of the soil 
ecosystem is obtained and this can be compared with samples collected over
time, space and/or following change in management (and so forth). 
Collectively, this information can be used to understand how soil ecosystems
vary with soil properties, environment (e.g. climate change), management 
and land-use alteration (He et al. 2007; Yergeau et al. 2009; Wakelin et al. 
2013a; Paula et al. 2014). The standardised application of GeoChip (or one of
a number of other ecological genomics tools) can aid in providing a 
functional understanding of soil ecosystems and deliver the productive and 
environmental potential underlying pastoral faming systems.

The aim of this investigation is to demonstrate a pipeline of analysis of soil 
environmental genomics for New Zealand’s pastoral agricultural sector 
based on the GeoChip5 functional microarray (Tu et al. 2014). The sample 
data set is comprised of eDNA from 50 well-characterised New Zealand 
pastoral soils. The pastoral soils were collected from across varying soil 
types, geographic zones and under a range of system intensities, spanning 
high stocking rate dairy through to expansive sheep grazing systems. For 
simplicity, relationships between the functional gene data and farm 
management were compared only for dairy vs ‘other’ grazing systems (see 
later definition) in this work. A comprehensive set of soil physicochemical 
properties and long-term environmental conditions from the sites (Wakelin et
al. 2013b) enables the assessment of the soil ecological genomics against a 
set of appropriate metadata, and these can be used in future studies to 
assess, for example, influences of intensification more precisely. Overall, the 
two sets enable changes in functional soil biology to be interpreted alongside
soil, climatic and farm-management influences.

Materials and methods

Sample sites and eDNA

Environmental DNA was extracted from 50 representative samples of 
pasture soil collected from across New Zealand. Soils were collected from 11 
major soil groups and spanned 10 geographic zones. There were sufficient 
numbers of samples taken from Brown, Pallic and Recent soil groups to allow
for structured analysis of ‘soil type’ effects. Soils were also collected from 
under high- and low-intensity land use. These were arbitrarily defined as 
pasture being used for dairy or ‘other’ grazing purposes, and this is 
supported by changes in soil nutrient status (Wakelin et al. 2013b). A full 
description of the sites, soil sampling, analysis of soil physicochemical 



properties, and DNA extraction and purification are given in Wakelin et al. 
(2013b). The eDNA samples are archived (−80 °C) at AgResearch, Lincoln.

GeoChip functional microarray analysis

A subsample of eDNA from each of the pasture sites was transported on dry-
ice to the Institute for Environmental Genomics, University of Oklahoma for 
analysis on GeoChip5 (Yan et al. 2015). The quantity of eDNA in samples 
from soil sites 2, 18, 29, 33 and 35 were below minimum requirements for 
direct analysis (500 ng). In order to increase the total amount of DNA in 
these samples, the eDNA was amplified using whole community genome 
amplification (WCGA) using the phi29 enzyme system (Wu et al. 2006; Wang 
et al. 2011). Processing of the DNA then followed the standard system: 
labelling, hybridisation, scanning and noise reduction/quality control of the 
data. These steps have been described in full detail elsewhere (Paula et al. 
2014; Tu et al. 2014; Yan et al. 2015). Briefly, DNA for all samples was 
labelled with Cy-3 (using random primers) and the Klenow fragment, purified,
dried and rehydrated in hybridisation solution (scaled up to 125 uL) along 
with Cy5-labelled universal standards. The mixtures were hybridised to the 
GeoChip5 array, washed and scanned on a NimbleGen MS200 array system 
(Roche) and the spot intensity data recorded. Probe spots with a signal to 
noise ratio <2 were removed.

Data handling and pre-treatment

The complete data set contained 87,678 variables (arrays-spot intensity 
values) for each of the 50 soil samples (4.83 million values). These were log-
transformed and preliminary groupings of the samples according to similarity
(Euclidean distances) were made with hierarchical clustering (group average 
method). The significance of cluster groupings was tested using the similarity
profile test (SIMPROF; Clarke et al. 2008) at α = 0.05. Samples from sites 2, 
18, 29, 33 and 35 distinctly out-grouped with respect to the wider data set. 
As these were the only samples pre-processed for WCGA, it is highly likely 
that this was due to amplification bias when using phi29 (Wang et al. 2011). 
As there was strong evidence for experimentally added bias into these 
samples, they were removed from further analysis, reducing the sample size 
from 50 to 45.

The GeoChip5 array embodies a range of gene categories spanning nutrient 
cycling to metal resistance. The underlying microbial processes affecting the 
distribution and abundances of the different categories in soils may be 
dissimilar. As such, combined (total array) analysis may result in a high 
degree of total ‘noise’; i.e. the responses within any one category may 
possibly obfuscate others. As such, analysis was performed on six different 
‘gene set’ groupings. These included: (1) the total array data (all probe sets);
and then broad groups of functions associated with (2) nutrient cycling (C, N,
P, S, etc); (3) organic remediation; (4) metal homeostasis; (5) stress and 
secondary metabolism; and (6) others (virulence, movement, phylogenetic 



markers, clustered regularly interspaced short palindromic repeats [CRISPR], 
electron transfer and any others).

In addition, for each gene set, the data were considered at three 
‘aggregation levels’: the probe level (e.g. probe #365896421; this is for the 
nirK gene from Bradyrhizobium sp. strain STM 3843); up to the gene level 
(e.g. all probe spots covering detection of nirK genes); and subcategory 1 (all
metabolic genes associated with denitrification).

The aggregation of data to higher levels may potentially result in unintended
bias. For example, for some processes (usually not well understood at a DNA 
level), only a few probe sets are represented on the array. The aggregation 
of these data has little total effect, and adds bias when compared with the 
aggregation of processes for which many probe sets are represented. To 
deal with this, the data were put on equivalent scales using normalisation (x 
= o, σx = 1).

The relative effects of grouping data to gene sets and at different levels of 
aggregation were investigated. For the data at the ‘probe set’ aggregation 
level, the data were compared with and without normalisation of the 
variables. For each of the 24 data sets, a distance matrix of functional gene 
similarity between the soil samples was generated using Euclidean 
distances. Correlations were made among these distance matrices using 
Spearman’s rank method, and a 2nd stage resemblance matrix generated 
(Clarke et al. 2006). Distances among samples (2nd stage) were visualised 
by non-metric multidimensional scaling (nMDS) ordination. The importance 
of ‘gene set’ and aggregation were formally tested by two-way analysis of 
similarities (ANOSIM; Clarke 1993), with effects tested for significance 
against a permutation generated null-distribution (999 times).

In subsequent analysis, the data for the 45 soil samples were investigated at 
probe, gene and subcategory aggregation levels for each of the six gene 
sets. When testing was conducted with the associated soil edaphic and 
environmental properties, this was conducted on the entire set of 43 
variables described by Wakelin et al. (2013b). The following variables were 
corrected for skewing by ln-transformed prior to analysis: Olsen P, sulphate-
S, Al (CaCl extractable), C:N ratio, eMn, eZn, eCu, eCo, total P, total Ca, total 
Cu, total Co, K, Mg, Na, rainfall and elevation (elev). The variables were 
normalised as before.

The generation of resemblance matrices, clustering, SIMPROF testing, 2nd 
stage analysis, ANOSIM and nMDS ordination were conducted in PRIMERv7 
(PRIMER-E).

Analysis approach

The latest versions of the GeoChip array (generation 5) have 161,962 probe 
sets covering more than 150,000 genes and spanning 410 gene categories 
from nutrient cycling to antibiotic resistance (Tu et al. 2014). As such, the 
information provided through analysis of various subsets of the GeoChip data



can provide information for a wide range of different studies, several of 
which are under way. In order to describe a structured approach for data 
analysis, spanning multiple levels (probe, gene and family), analysis of 
GeoChip data within this study was deliberately generalised for the analysis 
of the alpha and beta community diversity. Then, a specific subset of genes 
associated with microbial production of plant growth regulatory compounds 
(e.g. hormones) was used to model abundance-based and network analysis.

Alpha diversity

Alpha diversity effectively reduces the entire data for each sample (many 
thousands of data points) into a single ‘diversity’ value, generally indicative 
of ecosystem richness, evenness or a composite value. The resulting statistic
can then be evaluated using univariate approaches. To demonstrate this, 
alpha diversity for each sample was measured through calculation of the 
Shannon (H’; log e) and Simpson’s (1-λ) indices; these were derived from the) indices; these were derived from the
total GeoChip data sets. Unbalanced ANOVAs were used to test whether 
alpha diversity varied between levels of land-use intensification and soil 
type. For land-use intensification, there were 18 dairy and 27 ‘other’ 
samples. Testing for soil-type influences was conducted only on soils that 
were represented with a reasonable level of replication: Brown (13), Pallic (7)
and Recent (16) (Hewitt 1998).

Environmental and edaphic variables that explain the most variation in the 
Shannon index were selected using stepwise linear regression, for a 
maximum of 10 steps. At each step, variables were added or dropped based 
on the ratio of residual mean squares. Stepwise regressions were performed 
for each of the gene-set groupings and at each level of aggregation, and the 
results synthesised into a summary probabilities table. These analyses were 
conducted in Genstat 17 (VSN International 2014).

Beta diversity

In comparison with alpha diversity, beta diversity considers the multivariate 
composition (assemblage of species or functions) within the ecosystem. 
Resemblance matrices (Euclidean distance on normalised variable data) 
were generated for each of the gene sets across the aggregation levels. 
Permutational, multivariate analysis of variation (PERMANOVA) was used to 
determine the influence of land use and soil type on beta diversity (i.e. 
compositional variation) in functional genes across the samples. The model 
included land use and soil type as fixed factors, and tested for main and 
interactive effects of these under a reduced model with type III sums of 
squares and fixed effects sum set to zero for mixed terms. A full description 
of the approach is outlined by Anderson et al. (2008).

Links between the GeoChip data sets to soil and environmental variables 
were made using multivariate stepwise analysis, BVSTEP (Clarke & Warwick 
1998). BVSTEP uses a combination of forward selection and backward 
elimination to stepwise select combinations of explanatory variables that 



maximise correlation (Spearman’s rho) to the fixed GeoChip resemblance 
data matrix. As for the alpha-diversity stepwise regression, summary output 
tables were generated by identifying variables contributing to each of the 
final models. Analyses were conducted in PRIMERv7 (PRIMER-E).

Gene abundance analysis: plant growth regulatory genes

The abundance of the plant growth regulatory genes (PGRGs) was used as an
example gene set for analysis. The genes comprising these include sped 
(spermidinie synthase), Ipya (indole-3-pyruvate decarboxylase), spe 
(spermine), Eth (ethylene cycling), Nep (necrosis- and ethylene-inducing 
protein-inducing proteins) and Cks (xanthine dehydrogenase). The 257 probe
intensity values for the individual genes were aggregated (summed) to a 
single PGRG value from each soil.

Assessment of soil group and land-use effects on PGRGs was conducted in 
GenStat 17 using unbalanced ANOVAs. For the soil group test, only 
comparisons between Pallic, Brown and Recent soils were made as the other 
groups had low representation. Associations between plant hormone genes 
with individual soil and environmental variables were made using linear 
regresssion (as before).

Molecular ecological network analyses

Ecological networks are an interpretation of biological interactions where the 
nodes (species/biological component) are connected according to strength of
association. These are often used for analysis of among-species 
relationships, but are increasingly used for functional interpretation of 
ecosystem networks, including those generated by molecular approaches 
(summarised in Deng et al. 2012). As a demonstration of functional 
molecular ecological network (fMEN) analysis, the gene set associated with 
plant growth regulatory genes was analysed (see previous section) and 
comparison between the two farming systems (dairy vs ‘other’) undertaken.

For analysis, genes were excluded that were not present in >50% of the 
samples. An adjacency matrix was created based on random matrix theory 
(Deng et al. 2012) with threshold (cut off) of 0.81 for ‘other’ and 0.89 for 
dairy. These thresholds were then used to cut off over the correlation 
matrices. The network plots were produced in Cytoscape (Shannon et al. 
2003) and spaced according to the Spring-Electric algorithm of the 
AllegroLayout app.

Results

We demonstrate a range of methods for the analysis of functional molecular 
ecology data with the focus on application to pastoral (and other agricultural)
farming systems. The analysis approach spans simple reduction of the 
complex data sets to a single (univariate) statistic (e.g. a diversity index) for 
each sample (and the relatively straightforward analysis of this datum), 
through to more complex analysis that preserves the inherent multivariate 



nature of the data and explores relationships among the various functional 
elements (probes to gene families) of the system. Combined with a thorough
understanding of the farming system and monitoring of the desired functions
(e.g. disease suppression or nutrient-use efficiency), the approach provides a
structured pathway in which functional soil molecular ecology can increase 
on-farm profitability and sustainability (Figure 1).

Figure 1. Pipeline of analysis of environmental genomics for applied pastoral productive and 
environmental outcomes. Collection of soil for environmental genomics can (and should) be made 
alongside analysis of other soil properties (pH, C, N, P, S, etc). Standard field sampling (corer with 
numerous subsamples across the field) and homogenisation of the soil sample allows for 
representative ‘DNA’ to be extracted. Extraction of eDNA from soils is now routine, with commercially 
available kits and service providers. Analysis of eDNA can be conducted using a range of different 
methods, most of which are accessible through service providers. Routine analysis, such as qPCR, can 
be conducted by most biologically focused research institutes. The approach for data will be highly 
dependent on the intended use for the researcher or farmer. For example, understanding how farm 
management pathways result in emergence of soil-borne disease suppression; this will require highly 
complex analysis based on ecosystem reconstruction. Many farmers, however, maybe interested in 
detection of key genes of interest for their farming system; e.g. are there sufficient rhizobia in the soil 
to enable clover nodulation, or what is the disease and pathogen load of a soil before pasture 
renovation (allowing for targeted pesticide use)? These analyses, therefore, enable ‘informed decision 
making’ that takes into consideration soil biological resources. The use of this approach builds, over 
time, an understanding of the normal operating range of farming systems, identifies new opportunities
to alter the trajectory of emergence of functions, and provides a basis to benchmark performance and 
ideally build genetic gain.

To demonstrate the approach, we undertook exemplar analysis of GeoChip5 
data from 50 New Zealand pasture soils (Wakelin et al. 2013b). Given the 
importance of ecosystem-based approaches in translating soil functional 
ecology to impacts on ecosystem processes, analysis pipelines that can 



preserve the complexity of the ecosystem and map this against soil and 
environmental variables will have far greater power than less complex 
analysis. A conceptual approach to ecological genomics for pasture farming 
systems is presented in Figure 1. This needs to be underpinned by 
appropriate considerations of data handling and pre-treatment.

Data handling and pre-treatment

Clustering of the entire GeoChip5 data set showed the samples pre-treated 
for WCGA significantly out-grouped from the wider data set (P < 0.05; Figure 
2A). As the influence of the phi29 amplification was highly significant (P < 
0.01) there was justification for removal of these five samples from ongoing 
analysis.

Figure 2. A, Clustering (group average, hierarchical agglomerative method) of samples showing the 
very strong effect of whole community genome amplification on the similarity and grouping of 



samples; B, second-stage nMDS ordination showing effects of separation of the data into different gene
sets, and aggregation from probe values to subcategories. Treatments with an ‘N’ suffix indicate the 
data have been normalised. SC1, subcategory level 1 aggregation of the data.

Gene sets and aggregation level were both significant factors affecting 
similarity in the GeoChip data sets. PERMANOVA analysis indicated that the 
aggregation of the data from probe through to subcategory level was a 
stronger driver (√CV = 0.127, P = 0.001) than partitioning the entire data set 
into separate gene sets (√CV = 0.033, P = 0.032). The influences of these can
be seen in the 2nd stage nMDS ordination (Figure 2B). The influence of 
aggregation separates the data across the ‘x-axis’, and the separation of 
data into different gene sets has an influence within each aggregation group 
(diagonal separation).

The order of separation among the gene sets was conserved among the 
‘gene’ and ‘subcategory’ aggregation groups; it is likely that analysis of the 
functional array data at either of these levels will result in similar outcomes. 
At the probe level of aggregation, there was little influence of separation of 
the data into gene groups. An approach based on analysis of the data at 
gene and/or subcategory levels, with separation into the different gene 
families, provides the greatest separation among samples and allows for 
analysis with the most power to discriminate effects.

Alpha diversity

For all six gene set groupings, there was a very high degree of correlation 
(Pearson) between Simpson’s and Shannon diversity indices. The mean 
correlation (r) among the comparisons was 0.972 and all were highly 
significant (P < 0.0001). As such, only the data for the Shannon index (H’) 
were considered.

The effect of land-use intensification (dairy vs ‘other’) on Shannon’s diversity
was compared across the six gene sets at the probe levels. There was no 
evidence of land-use effects on diversity for 17 of the 18 tests. The exception
was stress and secondary metabolism at the subcategory level, where a P 
value of 0.077 was calculated. However, the differences in mean diversity 
between the dairy (H’ = 2.634) and ‘other’ (H’ = 2.633) were trivial. Similarly,
there was no evidence for soil-type influences on Shannon’s diversity. 
Indeed, the average P value across the 18 tests was 0.839.

The summary results for the regressions of the Shannon index to soil and 
environmental variables are given in Table S1. Of the 43 variables, there was
a highly consistent relationship with total cobalt (Co) and solar radiation to 
diversity (H’) across the gene sets and aggregation levels (Table S1). These 
relationships were positive; i.e. diversity increased with total Co and sunlight 
(a driver of plant growth and below ground potential productivity).

Beta diversity

The summary influences of land use, soil type and their interaction on 
GeoChip array data are given in Table 1. There was strong support for the 



influence of land use type (dairy compared with other input systems) on 
functional genes (Table 1). This effect was weakest when the entire data set 
was considered, however when partitioned into different gene sets, a 
consistent influence of land-use intensification was observed across the soil 
functional groups (Table 1). Furthermore, the likelihood of land use having a 
significant effect on the soil gene groups (Pperm values) was generally greater 
when tested at probe or gene level compared with data aggregated to 
subcategory level (Table 1). Across all data sets analysed, the treatment 
factor ‘soil type’ did not contribute to explaining a significant component of 
the variation (Table 1).

A subset of soil and environmental variables were found to be correlated 
with variation in GeoChip data (Table 2). The most frequently contributing 
variables were total calcium, total cobalt and sulphate sulphur. The total 
correlations declined as the data were aggregated from probe to 
subcategory level, indicating loss of connection of the data with 
environmental properties.



Gene abundance analysis: plant growth regulatory genes

The abundance of PGRGs genes did not vary between the major soil types 
(Pallic, Brown or Recent; P = 0.91), nor between high- and low-intensity land 
uses (P = 0.419) (Figure 3A). However, there was a significant (P = 0.034), 
albeit weak, positive relationship between PGRG abundances and the total 
cobalt content of soils (P = 0.034; Figure 3B).



Figure 3. A, Influence of soil type and land use on abundance of genes associated with production and 
catabolism of microbially produced plant growth regulatory genes (PGRGs). Error bars represent SEM; 
B, linear regression between soil total cobalt concentration and PGRGs. The 95% confidence interval is 
given in the shaded area.

Molecular ecological network analysis

Analysis of the functional molecular ecological networks showed strong 
differences in connectivity (association) of the plant growth regulatory genes
between the two land uses. The genes in pastoral farming systems other 
than dairy (‘other’) co-occurred in samples to a much greater degree than 
those in dairy soils (Figure 4). These differences in degree of fMEN 
associations are supported by various metrics, such as average connectivity 
and total links among each network.



Figure 4. Network analysis of plant growth regulatory genes (PGRGs) in soils from under dairy or 
‘other’ land use. Each node signifies a PGRG. The correlation (heat maps) underpinning the network 
graphs, with hierarchical clustering of the genes, are given below.

Discussion

We describe a pathway of analysis that may be adopted to provide 
structured analysis of functional soil molecular data, and identify important 
points of consideration when conducting the analysis. The exemplar data 
were based on a high-density, DNA microarray system; these data provide a 
wealth of information on the functional properties of New Zealand pastoral 
soil ecosystems. The analysis of this data set can be used to provide insights 
into soil functions associated with productivity and environmental 
sustainability of pastoral agriculture. In addition to understanding the 
responses of individual gene sets of interest to a research project, the 
approach can be used to benchmark the health of soil ecosystems, and 
following from this build genetic gain in soil ecosystems. Given the extent of 
pastoral agriculture as a percentage of New Zealand’s total land area (c. 
30%), even minor gains will translate to large influences if widely adopted. 
Furthermore, benchmarking and managing soil ecosystems for optimal 
outcomes can provide the evidence base to support the use of 
environmental provenance as a value-enhancing attribute for export 
markets.

While GeoChip is used as the research tool in this study, there are a range of 
ecological genomics methods available. These include various next 
generation sequencing platforms through to high-density oligonucleotide 
arrays for phylogenetic or other functional analysis (van Straalen & Roelofs 
2007; Nannipieri et al. 2014). The various advantages, limitations and 



opportunities afforded by these have been widely described (Thomas et al. 
2012; Myrold et al. 2014; Nesme et al. 2016). These include technology 
accessibility, coverage (e.g. number or range of genes detectable), various 
bias (e.g. detection limited to gene present on an array platform), through to
generated data quality, and ability to manage, analyse, interpret and share 
data.

The GeoChip, for example, is currently not well suited for high-throughput or 
routine diagnostic use; it has a single provider of the technology and the per-
array costs are relatively high. However, as a research tool it is excellent as 
a single provider ensures high consistency of data quality generated among 
samples, allowing for valid comparisons both within and among studies. 
Furthermore, being an array-based technology, the GeoChip is restricted to 
detection of the range of genes present on the array; detection of novel 
functions is not possible and care must be taken to statistically control for 
bias associated with over-representation of well-characterised or highly 
common genes. However, using an array-based system expedites analysis of
the data as the probes, genes and functions are already characterised. 
Accordingly, the bioinformatic analysis has a clear path, is fast and produces 
consistent results. Overall, the most appropriate platform for pasture soil 
ecological genomics will depend on multiple factors and there are significant 
trade-offs among the various technology platforms. Regardless of the 
platform used, a highly standardised approach to the analysis and 
processing of data within an experimental study is critical. We provide an 
example of this (Figure 1); however, it requires validation across other data 
sets and may require adaptation based on application of different technology
platforms (e.g. NGS).

The analysis of large multivariate data sets can be daunting. However, we 
show that a range of methods can be used, from simple reduction of the 
complex data sets to a single (univariate) statistic (e.g. a diversity index) for 
each sample and the relatively straightforward analysis of this, through to 
more complex analysis that preserves the inherent multivariate nature of the
data and explores relationships among the various functional elements 
(probes to gene families) of the system. The data analysis in this paper is 
aimed at providing examples of the approach in a structured manner. 
However, while not a specific goal of this work, the results from the 
indicative analysis pathways reveal some interesting insights into soil 
ecosystem function. In particular, we demonstrate the importance of farm 
system intensification (land use) as a key factor linked with shifts in soil 
functional ecology. The groupings of samples by land use were simply based 
on dairy or ‘other’ grazing systems (Wakelin et al. 2013b). This is a 
reasonably arbitrary surrogate for high- and low-input systems, but is 
reflected by a general trend for increased nutrients (primarily N and P) in 
dairy classified soils (Wakelin et al. 2013b). There is, however, a continuum 
of intensification between low- and high-input systems, where high rates of 
stock grazing and inputs occur outside of dairy and vice versa. As such, the 



emergence of consistent ‘land-use’ effects from this preliminary analysis is 
important, as it demonstrates how farm management directly impacts on 
below-ground ecosystem functional composition. The challenge is to link 
these data to processes within the soil ecosystem and then develop models 
based on these relationships within a farming-systems context.

Another key outcome was the complete lack of association of ‘soil group’ as 
a driver of soil ecosystems (although not formally investigated for the fMEN 
analysis). Although soil functions did not consistently vary between groups, 
the results should be interpreted with caution. Only three major soil groups 
were assessed (Brown, Pallic and Recent), as these had suitable levels of 
representation among the total samples which comprised 11 soil groups. 
Although soil functions were similar when tested among the three soil 
groups, differences are likely to be evident when comparisons are made 
between soils that strongly differ in pedogenesis, such as Allophanic, Pumice 
or organic soils.

The results showed a consistent association between a few soil properties 
and variation in ecosystem function. Of interest was the link with sulphate-S. 
When comparing the influence of grassland intensification on soil ecosystem 
function (using GeoChipV3), Wakelin et al. (2013c) also identified sulphate-S 
as one of the key edaphic properties linked with alteration of the soil 
ecosystem. The consistency of findings across these two studies builds 
strength that these associative findings may have a true mechanistic basis.

The association between the functional genes data and sulphate-S maybe a 
general indicator of land-use intensification and concomitant increases in 
fertiliser inputs. However, to support this we would expect strong 
associations between sulphate-S and other indicators of fertiliser use, 
particularly phosphorus. Indeed, while we find a reasonable association 
between total P and total S (R2 = 0.45), the link between total P and sulphate-
S is very weak (R2 = 0.08), as is the association between total S and 
sulphate-S (R2 = 0.28). As such, although considerable total sulphur has been
added to farming soils through anthropogenic inputs, and is therefore a 
useful indicator of system intensification, these inputs have not linearly 
translated to increased soil sulphate-S, the biologically available form that is 
associatively linked with wider functional genomics of the soils. As such, the 
association with the GeoChip data and sulphate-S indicates that soil 
biogeochemical processes affecting sulphur availability may affect wider 
nutrient cycling processes.

Environmental properties had little associative links with the soil biology 
under pastures. However, key variables associated with rainfall (e.g. soil 
moisture deficit) confounded inputs of irrigation into many of the farms. 
Detailed information on these inputs, along with stocking rate, botanical 
composition, pasture age and rotation, and frequency and types of other 
farm inputs will add essential knowledge to support further studies. Indeed, 
the inclusion of as much metadata as practicable will be key to increasing 



interpretability of future eDNA data from soils. In order to provide 
opportunities for the pastoral sector, the ecologists, bioinformaticians and 
statisticians must use farming system knowledge and work alongside 
farmers.

The coupling of GeoChip data with network analysis provides a powerful 
means to assess functional interactions with soil ecosystems. In the example
given, analysis was made within a single set of genes associated with 
production of plant growth regulating hormones. Strong changes in network 
topology, along with differences in degree of network connectivity, were 
evident between soils from dairy and ‘other’ land uses. These results show 
the importance of farming management (intensification) on this single set of 
genes potentially influencing plant growth. However, the wider analysis of 
the data set will provide much deeper insights into soil ecosystem function. A
particularly important goal is understanding interactions among a number of 
gene families (e.g. all nutrient cycling genes) to assess how a wider 
ecosystem state, such as reduced emissions of N2O, develops as an 
emergent property of many interactions. Currently, for example, 
quantification of individual N-cycling genes is used to infer the potential of 
soils to denitrify and release N2O (e.g. Cui et al. 2016). However, the activity 
of organisms responsible for these N-cycling processes is also directly 
integrated with the wider flux of C, P and other elements in the soil 
ecosystem, and may even be particularly sensitive to microelements such as
copper (Cu) (Sullivan et al. 2013) that are essential components of several N-
cycling metalloenzymes. Understanding the ecology of N-cycling taxa using 
N-cycle specific genes thus provides only a relatively narrow view of the 
wider ecology associated with the N-cycle. It is how these organisms exist 
and function within a wider ecosystem context that is important. By 
understanding interactions at this level, critical links (genes or gene families)
within networks can be identified that are sensitive to farm management 
(Figure 1). Given the level of complexity within soil ecosystems, and the low 
current level of understanding that has focused on individual components, 
such critical interactions may currently be entirely unpredictable without 
application of such approaches.

Conclusion

Analysis of eDNA offers many opportunities for farmers to monitor and then 
manage soils for increased system productivity and/or sustainability. The 
adoption of such tools requires careful application of standardised 
approaches, extending from the gene-assessment technology, analytical 
approach, through to interpretation of the genetic data as a predictor of 
ecosystem function. An approach based on DNA microarrays, such as the 
GeoChip tool addresses several of these issues, in particular the 
standardisation of the gene-assessment technology. Based on this, a range 
of analytical approaches can be used for analysis of the data (as described) 
and, given the standardised technology basis, a generic pipeline developed. 
This will enable robust comparison of results across samples, thereby 



increasing the ability to interpret results against a large database. Currently 
the array technology described is prohibitively expensive for routine 
assessment of farm soils. However, given the potential benefits of the 
approach, the development of an inexpensive ‘open-array’ system for New 
Zealand would be of much benefit.
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