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Abstract of the Dissertation

Balancing Behavioral Privacy and Information

Utility in Sensory Data Flows

by

Supriyo Chakraborty

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Mani Srivastava, Chair

The democratization of computing and sensing through smart phones and em-

bedded devices has led to widespread instrumentation of our personal and social

spaces. The sensor data thus collected, has embedded in them minute details of

our daily life. On the one hand, this has enabled a multitude of exciting applica-

tions where decisions at various time-scales are driven by inferences that are com-

putationally derived from the shared sensory information and used for purposes

such as targeted advertisements, behavior tailored interventions and automated

control. On the other hand, the ability to derive rich inferences about user be-

haviors and contexts and their use in critical decision making also present various

concerns of personal privacy. Prior approaches to handling the privacy concerns

have often been ad hoc and focused on disassociating the user identity from the

shared data, thus preventing an adversary from tracing a sensitive inference back

to the user. However, in many application domains (e.g., mHealth, insurance)

user identity is an inalienable part of the shared data. In such settings, instead of

identity privacy, the focus is on the more general inference privacy problem, per-

taining to the privacy of sensitive inferences that can be derived from the shared

sensor data. The objective of this research has been to develop a principled un-

derstanding of the inference privacy problem and design formalisms, algorithms,
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and system mechanisms to effectively address it.

The contributions of this dissertation are multi-fold. First, using information-

theoretic notions we formulate the inference privacy problem in terms of a whitelist

of utility providing allowed inferences, and a blacklist of sensitive inferences. We

define utility and privacy parameters, derive bounds on the feasible region spanned

by these parameters, and provide constructive schemes for achieving the boundary

points of the feasible region. Second, using insights from the theoretical explo-

ration, we design and implement ipShield, a privacy-enforcing system by mod-

ifying the Android OS. ipShield, is a step towards reducing the user burden of

configuring fine-grained privacy policies. It does so by changing the basic privacy

abstraction, from access control on sensors to privacy preferences over higher level

possible inferences. The user preferences are then used by a rule recommender to

auto-generate privacy rules on sensors. Finally, we present iDeceit, a framework

that implements model-based plausible falsification of sensor data to protect the

privacy of sensitive inferences while maximizing the utility of the shared data. A

graphical model is used to capture the temporal and spatial patterns that exists in

user behavior. The model is then used, together with privacy and utility metrics

and a novel plausibility metric, to generate falsified data stream that conforms to

typical user-behavior ensuring perfect privacy. Extensive evaluation results are

detailed for both ipShield and iDeceit to validate their efficiency and feasibility

on mobile platforms.
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CHAPTER 1

The Predicament of Privacy

The canonical privacy problem for databases can be summed up as: given a col-

lection of personal records from individuals, how do we disclose either the data

or “useful” function values such as correlations, population characteristics com-

puted over the data, without revealing any individual information. This notion

of absolute privacy is analogous to the principle of semantic security (which it-

self is the computational complexity counterpart of Shannon’s perfect secrecy

concept) formulated for cryptosystems [GM82]. However, the notion of utility as-

sociated with the shared data in conjunction with adversarial access to auxiliary

information makes it impossible to design a scheme which will achieve absolute

privacy [Dwo06]. Current research in database privacy has thus evolved into a

study of the tradeoff involving degradation in the quality of information shared,

owing to privacy concerns, and the corresponding effect on the quality of ser-

vice [LL09, SRP13].

While database privacy has been extensively studied over the past decade,

the proliferation of smartphones with embedded and wireless connected wear-

able sensors has added a new dimension to the problem. Smartphones today

are capable of tracking our locations and social neighborhoods, monitoring phys-

iological markers, and learning about our evolving social dynamics. The per-

sonal sensor data, richly annotated with both temporal and spatial informa-

tion, is in turn acquired by a growing ecosystem of often untrusted context-

aware third-party apps [sag], to provide us with personalized app experiences
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such as behavior-tailored insurance plans, mobile health (mHealth) diagnostics

and customized recommendations to enrich our social and personal interactions

(or targeted advertising). We refer to the benefit to the user of such person-

alization as utility. However, the same data can also be used to make sensi-

tive inferences such as addictions, stress, emotions, passwords, travel trajecto-

ries [RGK11, RMM10, CC11, LFR12, PRH11, RAP11, MVB12, Kru09, HON12]

– ones the user would want to keep private. Sensory data also presents unique

privacy challenges. Due to high temporal and spatial granularity, strong correla-

tion between samples, and different modalities, sensory data offers great potential

for data mining while making it harder to obfuscate and preserve privacy.

Thus, from the users’ perspective there is a tension that exists between the

amount of data she would want to share to obtain the maximum utility from the

apps and services while at the same time maintaining the desired level of privacy

and it is this tension that forms the crux of the privacy problem.

1.1 Privacy: Reality or Myth

Is privacy something that people really care about? Surveys conducted to under-

stand user privacy expectations [RGK11, FHE12, Kru09] summarize interesting

opinions about privacy from multiple independent studies. While people in gen-

eral are oblivious to privacy violations and amenable to sharing their data, the

perception quickly morphs into one of concern when apprised of the various sen-

sitive inferences that can be drawn and the resulting consequences.

Recent fiascos have further established privacy as an important sharing con-

straint. Examples include the de-anonymization of the publicly released AOL

search logs [aol] and the movie-rating records of Netflix subscribers [NS08]. The

large datasets in question were released to enable data-mining and collabora-

tive filtering research. However, when combined with auxiliary information the
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anonymized datasets were shown to reveal identity information of individual users.

Different types of sensory data have also been exploited for privacy violations.

For example, households in the U.S. are being equipped with smart meters to col-

lect temporally fine-grained report of energy consumption. This will allow utility

to better estimate the domestic power consumption leading to optimized distri-

bution and control of the grid. However, as shown in [MSF10, RMX12], several

unintended and sensitive inferences such as occupancy and lifestyle patterns of

the occupants can be made from the data in addition to total power consump-

tion. Smart meter data has been used to infer multimedia context in [GJL12]. In

fact, privacy has been identified as a major challenge in fine-grained monitoring

of residential spaces [KSS09].

Similarly, in medical research the continuous physiological data collected by

wearable sensors can be used to infer potentially sensitive information such as

smoking or drinking habits, food preferences. While “informed consent” of the

data source is the currently used sharing policy, it can be easily overlooked caus-

ing privacy violations as exemplified in [dna]. The DNA information, collected

from blood samples of a particular tribe, was originally meant for type-2 diabetes

research. But was later used to further research in schizophrenia - a condition stig-

matized by the tribe - causing extreme anguish and sense of dissatisfaction. Re-

cently, de-anonymization of personal genomes was done using surnames [GMG13].

Activity recognition algorithms [BI04, RMB10] are used by various fitness and

wellness apps to infer the users’ Transportation Mode (e.g., predict one of three

labels: walking, motorized or still). For example, the Ambulation app in [RMB10]

combines accelerometer and GPS data to infer the labels with over 90% accuracy.

However, data collected for inferring Transportation Mode can also be used to

infer other labels sensitive to the user. For example, the same accelerometer when

combined with gyroscope data can be used to infer Onscreen Taps and capture

keystrokes on the soft keyboard [MVB12] (and also Location [HON12]) with over
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80% accuracy. This could lead to leak of sensitive information like password and

PIN entered on the phone.

Thus, privacy threat during data disclosure is real and unless adequate miti-

gation steps are taken it could cause a delay in the adoption of various ubiquitous

sensing based applications.

1.2 Privacy Problem Characterization

Depending on how data is shared by the source we can group the various privacy

problems into two broad classes [CCS11]:

Identity Privacy: The data is syntactically sanitized by stripping it of per-

sonally identifiable information (PII) before sharing - a process called anonymiza-

tion. The shared data is intended for research pertaining to population-level

statistics. However, privacy violation occurs when the data in presence of auxil-

iary information is de-anonymized to reveal identity information. Netflix [NS08]

and AOL [aol] fiascos fall under this category.

There are two important challenges in using PII based anonymization. First,

the definition of PII is inadequate for many types of datasets [NS10], including

sensory data. For example, while sharing sanitized location traces, the location

data itself can be used to re-identify an individual. Hence, it is hard to clearly

demarcate the PII’s from the other attributes shared. Second, it is assumed

that the non-PII attributes cannot be linked to an individual record. However,

auxiliary information has been used along with non-PII attributes to de-anonymize

large datasets [NS08, Ohm09].

Inference Privacy: For this class of problems the source’s identity is not

concealed in the shared data. Instead, there exists a specific set of inferences

which the source wants to protect. For example, in Section 1.1, data is shared

for inferring the Transportation Mode. These desirable inferences form a whitelist
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which the user wants to allow. However, the same data can be used to infer

keystrokes and sensitive locations – inferences sensitive to the user. The sensitive

inferences form the blacklist which the user wants to keep private. The privacy

problem is to design a system which will take as input the whitelist and blacklist

of inferences and translate them into privacy actions on the shared sensors such

that the conditions on the lists are satisfied.

1.3 Our Contribution

In this dissertation, we focus on the inference privacy problem and make the

following primary contributions.

1.3.1 Protecting Data Against Unwanted Inferences

D M

Provider

M Recipient

X

Y

p(M |D) sends

determined by:

X = f(D)

determined by:

Y = g(D)

good inference:

H(X|M) ≈ 0

bad inference:

I(M ;Y ) ≈ 0

Utility Domain

Privacy Domain

Figure 1.1: The inference privacy problem where the utility domain consists of the whitelist and

the privacy domain contains the blacklist.

In Chapter 3, we study the competing goals of utility and privacy as they arise

when a provider delegates the processing of its personal information to a recipient
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Figure 1.2: ipShield: A privacy enforcing system implemented on the Android OS.

who is better able to handle this data. A whitelist describes the inferences that are

desirable, i.e., providing utility and a blacklist describes the unwanted inferences

which the provider wants to keep private (see Fig. 1.1). We formally define utility

and privacy parameters using elementary information-theoretic notions and derive

a bound on the region spanned by these parameters. We provide constructive

schemes for achieving certain boundary points of this region. Finally, we improve

the region by sharing data over aggregated time slots.

1.3.2 ipShield: A Framework For Enforcing Context-Aware Privacy

In Chapter 4, we present a realization of a privacy-aware framework ipShield [CRJ13,

CSR14] that builds on the insights provided by the theoretical results. ipShield

performs monitoring of every sensor used by an app, uses this information to

perform a privacy risk assessment, provides recommendation of possible privacy

actions in the form of which sensors to enable and which to disable, and finally,
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provides with an option to override the generated actions and manually config-

ure context-aware fine-grained privacy rules with actions such as data suppression,

noise addition and faking of data streams. We implemented ipShield by modifying

the internals of the Android operating system (OS) (see Fig. 1.2).

1.3.3 iDeceit: A Framework For Model-Based Data Falsification

We describe our approach towards model-based privacy in Chapter 5. Growing

use of location-aware apps that require sharing of user’s location necessitate find-

ing methods to protect users’ location privacy. Users often visit locations that

are sensitive to them and need to be kept private. Existing mitigation techniques

include the addition of random noise to the data, which is inadequate because

location data often exhibit known temporal and spatial correlation patterns that

can be exploited by an adversary to perform denoising. The technique of selec-

tive suppression also does not work well as the very act of suppression reveals

sensitive information and often apps are not designed to handle data suppres-

sion. Finally, manually configuring fine-grained privacy rules may help protect

location privacy, but it is cumbersome and hard to remember in every sensitive

situation. We present iDeceit (see Fig. 1.3), a framework that implements substi-

tution of sensitive data segments with synthetic data to protect sensitive locations
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while ensuring the plausibility of the entire location trace. To ensure plausibility

while preserving utility, iDeceit employs a user-behavior model to find candidate

segments for substitution that captures the temporal correlation between the dif-

ferent locations visited by the user over time. We show that our model-based

substitution ensures zero loss to privacy. The specific model used in iDeceit is a

Markov chain (MC).

In addition to comprehensively addressing location privacy, we show that the

iDeceit framework is also applicable to other widely used sensor data such as for

activity monitoring. To demonstrate real-life usage, we implemented iDeceit on

the Android OS by introducing a new data flow path for pushing synthetic sensor

data to the apps. We evaluate the efficacy of iDeceit by applying it to protect

randomly chosen location data from about 6 million data points collected from

a week-long field study with 22 participants. Our evaluation shows that iDeceit

protects locations marked sensitive, and its released data (that include substituted

segments) are plausible (around 80%) as per user behavior, and it preserves high

utility (around 90%), all while incurring zero-loss to privacy.

1.4 Organization of the Document

We start with a review of previous work on privacy and establish the inference

privacy problem in Chapter 2. The theoretical aspects of the problem are dis-

cussed in Chapter 3. The design and implementation of ipShield is presented in

Chapter 4. Model-based privacy is discussed in Chapter 5. We conclude and

outline future work in Chapter 6.
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CHAPTER 2

Inference Privacy and Review of Prior Work

2.1 Introduction

Smartphones with onboard and externally connected body-worn sensors are used

to collect and share personal data with a wide variety of untrusted third-party

apps. Information flow from users to apps is summarized in Fig. 2.1. Broadly

speaking, the shared sensor data D has: (a) a set of personal identifiers P , such

as name and SSN associating it to the user; (b) a set of quasi-identifiers Q, such as

age, gender, zip code, which when combined with auxiliary information sources can

possibly identify the user; and (c) a set V , containing data values corresponding

to the measurement. Shared data is represented by M and is used by the apps

to compute various inferences, some of which can be sensitive (i.e., are such that

the user wishes them to remain private). Consider the following examples:

E1: A user shares her accelerometer data D with an mHealth app to monitor her

overall activity level and activity type f(M) but faces the risk of revealing

D:= (P, Q, V) M
Privacy

Mechanism

White List

Black List

Data Inferences

{f1(M),..., fn(M)}

{g1(M),..., gn(M)}

Figure 2.1: Sensor information flow between user and apps.
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her passwords g(M), which is also inferable from the same data.

E2: A user desiring a safe driver discount f(M) on insurance rates may be

willing to share her location and accelerometer data D. However, periodic

location releases may reveal visits to places leading to sensitive inferences,

g(M), such as religious preferences, drinking habits, and health conditions.

E3: A user is required to share EKG and respiration data D with an insurance

company which uses the data to check for heart and respiratory disorders

f(M), and provide discounted rates. However, the same data can be used

to detect onset of stress g(M), a behavior the user wants to keep private.

If M is the same as D, the presence of set P implies that the inferred sensitive

behaviors may now be traceable back to the user, violating her privacy.

Prior work on privacy mechanisms is centered around two design objectives:

data anonymization and incomplete reconstruction. The process of anonymiza-

tion includes the removal of P and the suitable obfuscation of Q present in D

to break the association between the data and the user. In a multi-user setting

where privacy of an entire database of user data is desired, measures such as k-

anonymity [Swe02] and l-diversity [MKG07] are used to determine the level of ob-

fuscation required to make the user anonymous or indistinguishable within a sub-

population, achieving privacy-in-numbers. However, the breakdown of anonymiza-

tion in the face of auxiliary information [NS08, GP09, SH12] has prompted the

design of measures such as differential privacy [Dwo06] which, in a multi-user

setting, recommend use of structured noise to perturb aggregate query responses

and protect the membership (i.e., presence or absence) of an individual within a

database. The second objective is to prevent complete reconstruction of D from

M . To achieve this in addition to anonymization, the measurements in V are

also adequately perturbed [SRP13]. By preventing reconstruction, the goal is to

protect against private inferences which could be made from D alone. However, it
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has been shown that partially reconstructed data can be used to make inferences

about private behaviors [SH12, GP09].

Now, consider the setting in which a single user shares a time-series of sensor

data annotated with identity information, as illustrated in examples E1−E3. This

motivates the question: what are the privacy and utility goals appropriate to such

a setting? The traditional notion of protecting user identity is no longer a concern

because the apps under consideration (e.g., mHealth, customized insurance plans)

require user identity for providing personalized services (utility). Thus, instead

of identity, a user is interested in protecting the privacy of sensitive behaviors

which can be inferred from the shared data. Another consequence of this single-

user setting is that privacy measures relying upon privacy-in-numbers within a

subpopulation do not apply.

In this chapter, we provide a very general privacy model in which two sets

of inferences (the white and black lists shown in Fig. 2.1) constitute utility and

private behaviors, respectively. These inferences are marked as f(M) and g(M)

in examples E1 − E3. The use of inference functions allows us to establish a

terminology to unify prior notions of anonymization- and reconstruction-based

privacy as special cases of the more general problem. We review prior work in

various areas of privacy within the constructs of our model.

We then identify several information disclosure regimes, each corresponding

to a specific privacy-utility tradeoff, and indicate privacy mechanisms that can be

used to realize these tradeoff points. We describe how the implementation versus

privacy consideration at each of the tradeoff points lead us to the design of our

privacy system in Chapter 4.
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2.2 Inference Privacy Problem

We define an inference function as a machine learning algorithm that uses shared

data together with a model of the data to make predictions. For example, in E1,

accelerometer data together with gyroscope data is used to predict the keystroke

and hence infer password [MVB12]. In E2, proximity or regular visit to a religious

place is used to infer religious preferences, visit to a specific hospital could be used

to infer medical condition [Kru09]. Finally, in E3, respiration data can be used

to infer onset of stress [PRH11, LFR12]. These machine learning algorithms use

supervised, unsupervised, reinforcement modes to learn a model of data and use

it to make predictions about user behavior.

The problem of protecting the privacy of sensitive inferences can be char-

acterized as a tradeoff between the users’ need to derive utility together with

her need to control the information shared for protecting privacy. As shown in

Fig. 2.1, our privacy notion is defined in terms of what can be extracted from

the shared data M . The user specifies her privacy preferences as a blacklist of

inferences, {g1(M), . . . , gn(M)}, and the utility requirements as a whitelist of in-

ferences, {f1(M), . . . , fn(M)}. The privacy mechanisms are designed to ensure

the app can effectively compute whitelisted inferences to some degree of accu-

racy, but where the app cannot draw the blacklisted inferences. Ideally, any data

shared with an app should not reveal any more information than what is already

known to the app about the blacklisted inferences from prior (population-scale)

knowledge or side-channels. We remark that this is a general formulation of the

privacy problem, and that the previously mentioned privacy mechanisms such as

anonymization and protection against reconstruction attacks can be thought of as

carefully chosen blacklist inferences.
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2.2.1 Information Disclosure Regimes

The various possible tradeoff points for the utility and privacy objectives define

a spectrum of information disclosure regimes that a user can operate in. At one

extreme, corresponding to zero disclosure, the user shares no information at all,

ensuring complete privacy but at the cost of complete loss in utility. At the

other extreme, corresponding to full disclosure, all information is shared. In this

case, the user achieves full utility at the cost of complete loss of privacy. Other

points in this spectrum are realizable by choosing appropriately designed privacy

mechanisms. Below we discuss two operating points of particular interest.

1. Maximum Utility Under Perfect Privacy max
perfP

U: We release infor-

mation (some transformation of D) such that only the desired utility (whitelisted

functions, and consequences inferable from them) can be computed from the re-

leased information. This point corresponds to targeted disclosure.

2. Maximum Privacy Under Perfect Utility max
perfU

P: We release infor-

mation which preserve all characteristics of D, except those which can be used to

violate privacy (blacklisted functions). This point corresponds to targeted hiding.

We define these terms more precisely in mathematical terms in Chapter 3.

2.3 Prior Work on Privacy Mechanisms

We define a privacy mechanism as a two-step process: first step is to identify the

data that is to be shared (e.g., the subset of features, specific samples, inferences).

The second step involves applying obfuscation actions on the data before their

release. In this section, we summarize various mechanisms that have been used to

protect privacy. We indicate how these mechanisms can all be expressed within

the framework of whitelisted and blacklisted inference functions.
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{f1(M),..., fn(M)}

{g1(M),..., gn(M)}

{h1(D),.., hn(D)} White List

Black List

D Feature Selection

Feature Perturbation

Data Features Privacy Mechanism Inferences

M

Figure 2.2: Feature selection and perturbation steps for max
perfP

U and max
perfU

P respectively.

2.3.1 Feature Selection

Instead of the high-dimensional data D, from which information flow is hard to

control [NS10, NS08] we extract a set of features F = {h1(D), . . . , hn(D)} and use

them to represent the data in a lower-dimensional space. The functions hi(D) can

represent features like mean, variance, Fourier coefficients, etc., extracted from

the data samples over time. Inferences typically operate in the feature space and

use a subset of F to perform their classification.

To implement max
perfP

U, we observe that by using features we can better control

the information shared. The privacy mechanism (see Fig. 2.2) selects a subset of

features that are required by the whitelisted inferences but does not contribute to

the blacklisted ones [CRS12]. The obfuscation step either suppresses all the other

features and shares only the selected features or synthesizes data M preserving

only selected features (and their consequences) and nothing else. This mechanism

requires the app to specify the features it needs to compute the inference.

2.3.2 Sharing Whitelisted Inferences

Another privacy mechanism which also implements max
perfP

U is that of sharing

whitelisted inferences (or suppressing blacklisted ones). The idea is to compute

the inferences on the phone, obfuscate the results such that they do not reveal

any information about the blacklisted inferences and share the obfuscated results
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Figure 2.3: SFE and Homomorphic encryption for computation of whitelist functions.

instead of D. For this to work, the apps need to provide the exact implementation

of the inference algorithm to the user, which may be proprietary and difficult to

share. An alternate strategy for evaluating the whitelisted inference functions is

to use cryptographic techniques. We suggest two such techniques (see Fig. 2.3).

• One-sided Secure Function Evaluation (SFE) can applied (using, e.g., Yao’s

garbled circuit [Yao86]) to evaluating the inference function. Both parties

provide their inputs (the user provides her sensor data, and the app the

inference function), and the function is evaluated. Since the protocol is

one-sided, only the user obtains the result of the computation; and the app

knows nothing about the user input. The user can then obfuscate the result

before sharing it with the app.

• Homomorphic Encryption [GH11] allows computation to be carried out on

the cipher text directly, yielding an encrypted result of the operations per-

formed on the plain text. The user performs homomorphic encryption on

the data and sends it to the app, which can then perform function evalua-

tion on the encrypted data and return the encrypted result to the user, who

decrypts it to obtain the result. The second step is to perform obfuscation

of the result before sharing with the app.
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• Functional Encryption: A recent technique proposed in [BSW11] supports

restricted secret keys that enable a key holder to learn a specific function of

the encrypted data and nothing more about the data. Functional Encryption

takes a different approach towards public key encryption. Traditionally,

encryption is targeted towards a specific consumer bearing a secret key and

the access to the encrypted data is all or nothing - either one can decrypt and

read the entire plain text or nothing at all. Instead in functional encryption,

the provider does not encrypt for a specific consumer, but only specifies how

to share the data. Also a decryption key allows a consumer to learn only a

function of the encrypted data.

While the above techniques allow computation of the inference functions with-

out their disclosure, there is no way for the user to know if the results computed

are for the whitelisted inferences only. Thus the privacy mechanism must use

other techniques (such as zero knowledge proofs [GMR89], random spot checks,

etc.), to ensure that the correct functions are being evaluated. In addition, while

feasible in theory, these techniques are extremely computationally expensive and

thus energy-intensive.

2.3.3 Random Projection

Following this mechanism (see Fig. 2.4), we share projections of the features in-

stead of the features themselves [LKR06]. That is, we project the features into

a lower dimensional space before sharing. To ensure that privacy is maintained,

the transformation is kept private and is known only to the user.

For utility goals, the user furnishes training labels so that the app can learn a

classifier, based on the projected features and associated labels, for the whitelisted

inferences (and their consequences) but nothing else. In order to learn the labels in

the embedded space, the key property required is that pairwise distances between
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Figure 2.4: Random Projection for computing whitelisted functions. Both projection

and the corresponding whitelist labels are shared.

points in the original feature space be preserved. Fortunately, when the trans-

formation is derived from randomly generated basis vectors drawn from an i.i.d.

normal distribution, the Johnson Lindenstrauss lemma states that this property

holds with high probability when the dimensionality of the new projected feature

space satisfies a certain size constraint [KKM12, LKR06].

This mechanism eliminates the need to know a priori the mapping between the

inferences and features as required by the feature selection approach. It places

a significant burden on the app, however, which must now learn the classifier

or the whitelisted inference. An advantage of using this mechanism is that we

can guarantee privacy when there is no side-channel information, as only the

whitelisted inference labels are shared.

2.3.4 Feature Perturbation

We use this mechanism to realize max
perfU

P (see Fig. 2.2). We select and transform

a specific set of features, and share everything else. For example, for an audio

signal we can choose pitch as the feature to transform and use perturbation to

obfuscate it. While inferences such as identification of the speaker, which rely

on pitch, are affected, other inferences not depending on pitch remain accurately

computable. One of the drawbacks of this mechanism is that it does not protect

against blacklisted inference functions, which can learn a classifier using the set
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of released features instead of the transformed ones.

2.3.5 Differential Privacy

Proposed in [Dwo06] with strong provable privacy guarantees, differential privacy

aims to replace the mostly ad-hoc obfuscation strategies with a principled data

release mechanism for statistical databases. To achieve differential privacy it is

required that the response to a query including or excluding a particular database

entry is indistinguishable in the probabilistic sense. This in turn guarantees that

an adversary gains negligible information on individual records upon observing

the output of a computation regardless of the auxiliary data available to him.

Formally, consider any two databases D1, D2 ∈ Rn that differ in exactly one

entry. Let κf (D1) and κf (D2) be the responses from D1 and D2, respectively,

where κf is the mechanism used to respond to an arbitrary query f(). Randomized

mechanism κf provides ε-differential privacy if

P (κf (D1) ∈ S)

P (κf (D2) ∈ S)
≤ eε (2.1)

where S ⊆ Range(κf ). The ratio in Eqn. (2.1), represents the “knowledge gain”

for an intruder moving from one version of the database to the other. In order

to achieve differential privacy, [Dwo06] suggest the use of Laplace based noise

addition. However, the calibration of noise magnitude to simultaneously main-

tain data utility while preserving privacy is an important issue that needs to be

addressed for making it practically relevant [SM11].

Predicated on aggregate query/response systems, differential privacy protects

against a specific inference, the membership disclosure of an entry in a population-

scale database. However, behavioral privacy is due to a set of private inferences

drawn over individual (not population-scale) data streams shared by providers.
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2.4 Discussion

The general form of the privacy problem in which we want to protect a set of

behavioral inferences while revealing another set involves a complex interaction

of information theory and machine learning. The problem is well-defined only

when the blacklisted inferences are not completely contained within the whitelisted

inferences. Otherwise, releasing the whitelisted inferences would violate privacy.

For well-defined settings, the challenge lies in finding the right subset of features

that will enable the whitelisted inferences but have low mutual information with

the blacklisted inferences.
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CHAPTER 3

Protecting Against Unwanted Inferences

3.1 Introduction

In this chapter, we study the competing goals of utility and privacy preferences

of a user in an information theoretic setting. We formulate the goals in terms of

the inferences which can be drawn using the shared data. A whitelist describes

the inferences that are desirable, i.e., providing utility. A blacklist describes the

unwanted inferences which the provider wants to keep private. We formally define

utility and privacy parameters using elementary information-theoretic notions, de-

rive a bound on the region spanned by these parameters and provide constructive

schemes for achieving certain boundary points of this region.

3.2 The Basic Model

3.2.1 Definitions

In our model (see Fig.3.1), a data provider senses a discrete RV D. The provider

cooperates with the recipient by sharing information about the whitelist, as spec-

ified by the RV X = f(D) (e.g., X can be mute, ring, or vibrate). The provider

also wants to keep the blacklist, specified by Y = g(D) (e.g., Y can be work,

home, theater, etc.) private. We consider X and Y to be deterministic functions

of D. In this work, we focus on provider strategies for generating message M

from D, represented by the distribution p(M |D), such that the desired tradeoff
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between utility (M gives a lot of information about X) and privacy (M provides

no information about Y ) can be achieved.

D M

Provider

M Recipient

X

Y

p(M |D) sends

determined by:

X = f(D)

determined by:

Y = g(D)

good inference:

H(X|M) ≈ 0

bad inference:

I(M ;Y ) ≈ 0

Utility Domain

Privacy Domain

Figure 3.1: The provider senses an RV D and wants to send a message M to the recipient, so

that recipient can estimate X = f(D) from M without being able to estimate Y = g(D). If f ,

g and the distribution of D are fixed, the recipient can only choose the conditional distribution

p(M |D).

Formally, for a given choice of distribution p(M |D) of message M knowing

data D, we define a utility parameter δU(M) and a privacy parameter δP (M) as:

δU(M)
∆
=
H(X|M)

H(X)
, δP (M)

∆
=
I(M ;Y )

H(Y )
.

(3.1)

When there is no ambiguity, we omit the argument M of δU and δP . Depend-

ing on the application, various other utility metrics could be useful, for instance

Hamming or Euclidean distortions [SRP13]. Most of our analysis directly trans-

lates under any distortion metric for utility: for reasons of simplicity we choose

to present it here under the equivocation metric δU .

These parameters expressed in terms of elementary information-theoretic no-

tions conveniently capture the tradeoff between utility and privacy. The smaller
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δU(M) is, the more useful M is in determining X, and the smaller δP (M) is, the

more private M is about Y . We refer to δU = 0 as the perfect utility case (in

which H(X|M) = 0 and therefore X can be perfectly inferred from M) and to

δP = 0 as the perfect privacy case (in which I(M ;Y ) = 0 and therefore Y is

independent from M). In general, it is not possible to achieve perfect utility and

perfect privacy at the same time. In the following, we provide a lower bound on

the achievable (δU , δP ) pairs:

Theorem 1. Let D, X and Y be fixed. For any choice of conditional distribution

p(M |D), the following lower bound holds:

δU(M)H(X) + δP (M)H(Y ) ≥ I(X;Y ). (3.2)

For a given choice of M , equality in (3.2) holds if and only if H(X|M,Y ) =

I(M ;Y |X) = 0.

Proof. We prove that for any three RVs M , X and Y , H(X|M) + I(M ;Y ) ≥

I(X;Y ), where δU(M)H(X) = H(X|M) and δP (M)H(Y ) = I(M ;Y ):

I(M ;Y ) +H(X|M)− I(X;Y )

= H(M) +H(Y )−H(M,Y ) +H(X|M)− I(X;Y )

= H(M,X) +H(X, Y )−H(M,Y )−H(X)

= H(M) +H(X|M) +H(X) +H(Y |X)

−H(M) +H(Y |M)−H(X)

= H(X|M) +H(Y |X)−H(Y |M)

= H(X|M) + I(M ;Y |X) +H(Y |M,X)−H(Y |M)

= H(X|M,Y ) + I(M ;Y |X) ≥ 0.

(3.3)

Because H(X|M,Y ) and I(M ;Y |X) are both non-negative, equality holds if and

only if they are both zero.
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From Theorem 1, we deduce that it is possible to achieve perfect utility and

perfect privacy at the same time only if I(X;Y ) = 0 (in fact, one can observe

that reciprocally, if I(X;Y ) = 0 then we can always achieve perfect utility and

perfect privacy simultaneously, e.g. by transmitting M = X).

A more intriguing question is, when I(X;Y ) > 0, what are the achievable

pairs (δU , δP )? In this case, we consider that D, X and Y are fixed, and we want

to find RVs M that achieve good tradeoffs between δU and δP . We denote the

respective alphabets of D, X, Y and M by D, X , Y and M. While the former

three alphabets are fixed by the problem setup, we have the choice of the alphabet

M of M .

To answer the posed question, we first define the maximum privacy under

perfect utility max
perfU

P and maximum utility under perfect privacy max
perfP

U points by

max
perfU

P = (0, δ∗P ) where δ∗P
∆
= min

M :
δU (M)=0

δP (M),

max
perfP

U = (δ∗U , 0) where δ∗U
∆
= min

M :
δP (M)=0

δU(M).
(3.4)

In the next sections, we consider strategies for points max
perfU

P and max
perfP

U.

3.2.2 Maximizing Privacy under Perfect Utility

Using the fact that X is a deterministic function of D, we provide a simple strategy

to achieve max
perfU

P, and show that the strategy reaches the bound from Theorem 1.

Lemma 2. For fixed D, X and Y , sharing M = X achieves max
perfU

P and δ∗P =

I(X;Y )
H(Y )

.

Proof. Follows directly from the definition of δU(M) and δP (M) in (3.1) and the

bound in Theorem 1.

Sharing M = X is not useful when the computation of X by the recipient is

the only reason the provider agrees to release data. However, it is a valid strategy
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when the provider has additional incentive to share data, or when X is only an

intermediate variable which requires further processing by the recipient.

3.2.3 Maximizing Utility under Perfect Privacy

As shown in Section 3.2.2, achieving max
perfU

P is straightforward as it does not depend

on Y . However, achieving max
perfP

U is more involved as it depends on both X and Y .

This section aims at providing necessary conditions on p(D,M) for M to achieve

point max
perfP

U. Combining these conditions greatly restricts the space over which

distributions p(D,M) may achieve max
perfP

U; in fact, it allows us to express the

maximization of utility under perfect privacy as a linear programming problem.

3.2.3.1 Necessary Conditions on p(D,M) for Maximum Utility under

Perfect Privacy

We provide three conditions. The first one is a necessary and sufficient condition

for perfect privacy (with no constraint on utility). It is a simple consequence of

our definition of perfect privacy, but we state it formally as it is convenient for

our analysis. The remaining two are necessary conditions for maximum utility.

Condition 1. For all m ∈M and y ∈ Y,∑
d∈g−1(y)

p(d,m) = p(m)p(y). (3.5)

Lemma 3. RV M achieves perfect privacy if and only if M meets Condition 1.

Proof. By definition of perfect privacy, I(M ;Y ) = 0 and for all m ∈M and y ∈ Y

we have p(m, y) = p(m)p(y). The statement follows by noting that

p(m, y) =
∑

d∈g−1(y)

p(d,m). (3.6)

We now try to maximize utility when Condition 1 is satisfied. Suppose that for

every m ∈ M there is a unique x ∈ X such that p(m,x) > 0. Then, M achieves
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D X Y 1 2 3 4

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 1 3

7 3 3

Ma
D X Y 1 2 2′ 3 4

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 1 3

7 3 3

Mb
D X Y 1 2 2′ 3 4

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 1 3

7 3 3

Mc

(a) While Condition 2 is

met, Condition 3 is not:

we split column m = 2

into 2 and 2′, and obtain

Mb that violates Condi-

tion 2.

(b) While Condition 3

is now met, Condition 2

is not. We rearrange

the highlighted probabili-

ties and gain utility with-

out losing privacy.

(c) Lastly, Conditions 1–3

are met, the table is a can-

didate for maximum util-

ity under perfect privacy

(and does in fact achieve

it).

Figure 3.2: Illustration of the impact of Conditions 2 and 3 on the joint distributions p(D,M),

when M already meets Condition 1. Each ◦ represents a measure of 1
49 . Starting from Ma (left

panel) which does not meet Condition 3, we reach Mb (center panel) with δU (Mb) = δU (Ma)

and δP (Mb) = δP (Ma) = 0, where Mb does not respect Condition 2. From Mb, we reach Mc

(right panel) which still has δP (Mc) = 0, and has δU (Mc) < δU (Mb).

perfect utility. This observation leads to the intuition that utility is increased

when each value m ∈ M jointly occurs only with a limited number of different

values of x ∈ X . Therefore, starting from a given RV M that achieves perfect

privacy, we might be able to improve utility by performing local rearrangements

of the joint distribution p(D,M). The goal is to reduce the number of different

values of X that can jointly occur with each value of M while preserving perfect

privacy. We identify local patterns in the joint distribution p(D,M) that can be

manipulated for a guaranteed increase in utility at no cost in terms of privacy:

if for a given M , p(D,M) shows one of these patterns, then M does not achieve

max
perfP

U.

Condition 2. Given d1 6= d2 in D and m1 6= m2 in M such that f(d1) 6= f(d2)
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and g(d1) = g(d2), there exists a pair (i, j) ∈ {1, 2}2 such that p(di,mj) = 0.

Lemma 4. If M achieves max
perfP

U, then M meets Condition 2.

Proof. Suppose that M achieves max
perfP

U but does not meet Condition 2. Then,

there exist d1, d2, m1 and m2 so that all of the p(di,mj) terms, (i, j) ∈ {1, 2}2,

are non-zero. We show that this leads to a contradiction by building an RV Mα

which also achieves perfect privacy, but with better utility than M .

For a real number α in a well-chosen range, we define the RV Mα by its joint

distribution pα(D,M):

pα(d,m) =



p(d,m) + α if (d = d1 ∧m = m1)

or (d = d2 ∧m = m2),

p(d,m)− α if (d = d1 ∧m = m2)

or (d = d2 ∧m = m1),

p(d,m) otherwise.

(3.7)

Notice that the joint distribution pα(D,Mα) is a locally perturbed version

of p(D,M). We now consider how H(X|Mα) varies with α. Because pα(d,m)

must remain between 0 and 1, α can only vary in some line segment [αmin, αmax].

Note that the constraints that the probabilities must remain non-negative are

sufficient to find the bounds: taking for instance p(d1,m1) + α > 1 would imply

that p(d1,m2)−α < 0. Therefore, αmin = −min(p(d1,m1), p(d2,m2)) and αmax =

min(p(d2,m1), p(d1,m2)).

We now prove that H(X|Mα) is a concave function of α and therefore reaches

its minimum for α = αmin or α = αmax (so that one of the pα(di,mj) = 0). We

use the following notation shortcuts

pij
∆
= p(mj, xi) =

∑
d∈f−1(xi)

p(d,mj), (3.8)

pijα
∆
= pα(mj, xi)=

∑
d∈f−1(xi)

pα(d,mj), (3.9)
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where xi = f(di), and decompose H(X|Mα) into a term that depends on α and a

constant. We use the fact that for all m and all x, pα(m) = p(m) and pα(x) = p(x).

After some lengthy derivations we obtain

H(X|Mα) =

− p11
α log p11

α − p12
α log p12

α − p21
α log p21

α − p22
α log p22

α + C.
(3.10)

Differentiating twice, we get

∂2

∂α2
H(X|Mα) = − 1

p11
α

− 1

p12
α

− 1

p21
α

− 1

p22
α

< 0. (3.11)

Thus, there exists an Mα such that δU(Mα) < δU(M).

Also, pα(m, y) =
∑

d∈g−1(y) pα(d,m), thus for m 6∈ {m1,m2} or for y 6= g(d1) =

g(d2), we have pα(m, y) = p(m, y) because for these values of d and m, pα(d,m) =

p(d,m). For m ∈ {m1,m2} and y = g(d1) = g(d2), we have

pα(m, y) =
∑

d∈g−1(y)

pα(d,m) =
∑

d∈g−1(y)

p(d,m) + α− α = p(m, y). (3.12)

Therefore, δP (Mα) = δP (M) = 0, which together with δU(Mα) < δU(M) contra-

dicts the fact that M achieves max
perfP

U.

Condition 3. For all m0 ∈M and d1, d2 ∈ D such that g(d1) = g(d2),

d1 6= d2 ⇒ p(d1,m0) = 0 ∨ p(d2,m0) = 0. (3.13)

Lemma 5. If M achieves max
perfP

U, then M meets Condition 3.

Proof. Suppose that M achieves max
perfP

U but does not meet Condition 3. Then,

there exist m0, d1 and d2 such that g(d1) = g(d2) and both p(d1,m0) > 0 and

p(d2,m0) > 0. Now consider the RV M ′ on alphabet M′ = M∪ {m′0} (where

m′0 6∈ M is a new symbol), obtained by splitting symbol m0 into m0 and m′0.

Formally,

p′(d,m) =

p(d,m) if m 6∈ {m0,m
′
0},

p(d,m)/2 if m ∈ {m0,m
′
0}.

(3.14)
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Let us first notice that δU(M ′) = δU(M):

H(X)δU(M ′) =
∑
m∈M′

p′(m)H(X|M ′ = m)

=
∑

m∈M\{m0}

p(m)H(X|M = m) + 2
p(m0)

2
H(X|M = m0)

= H(X)δU(M).

(3.15)

Similarly, δP (M ′) = δP (M) = 0. As M ′ does not satisfy Condition 2 (for m0,

m′0, d1 and d2), by Lemma 4, M ′ does not achieve max
perfP

U, and so neither does

M .

Under the assumption that Condition 1 is satisfied, Fig. 3.2 illustrates for a

simple synthetic example of D, X and Y how better utility can be obtained once

Conditions 2 and 3 are met.

3.2.3.2 Linear Programming Approach for Maximum Utility under

Perfect Privacy

We now use Conditions 1–3 to formulate the maximization of utility under perfect

privacy as a LP problem to compute p(D,M) so that M achieves max
perfP

U.

We start by defining the support of D given M = m as the set S(m) = {d ∈

D : p(d,m) > 0}. Condition 3 can be written in terms of S as follows:

∀m ∈M,∀y ∈ Y , |S(m) ∩ g−1(y)| = 1. (3.16)

Without loss of generality, we only consider those M ’s for which no distinct

m1 and m2 have the same support. Otherwise, m1 and m2 can be merged into a

single symbol with no effect on δU and δP (for the same reason for which we could

split m0 into two symbols in the proof of Lemma 5).

We denote by S the set of all possible supports S so that (3.16) is met. For the

same instance of D, X and Y as in Fig. 3.2, we show in Fig. 3.3 the structure of the
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DXY 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 a1 a2 a3 a4 0 0 0 0 0 0 0 0

2 2 1 0 0 0 0 a5 a6 a7 a8 0 0 0 0

3 3 1 0 0 0 0 0 0 0 0 a9 a10 a11 a12

4 1 2 b1 b2 0 0 b5 b6 0 0 b9 b10 0 0

5 2 2 0 0 b3 b4 0 0 b7 b8 0 0 b11 b12

6 1 3 c1 0 c3 0 c5 0 c7 0 c9 0 c11 0

7 3 3 0 c2 0 c4 0 c6 0 c8 0 c10 0 c12

M

Figure 3.3: General structure of the joint distribution for M satisfying Conditions 1–3 (for an

example choice of X and Y ). For each m ∈ {1, . . . , 12}, am

3 = bm
2 = cm

2 . The table is thus

entirely determined by the choice of the values p(m) = am + bm + cm for each m ∈ {1, . . . , 12}.

candidate joint distributions for max
perfP

U. Notice that for any given m, Condition 1

requires that am
3

= bm
2

= cm
2

, which in turn determines the conditional distribution

of Y given M = m. Also, |S| =
∏

y∈Y |g−1(y)| = 3× 2× 2 = 12. For M achieving

Conditions 1–3, we can therefore characterize the joint distribution p(D,M) with

only |S| values (the vector (p(m))m∈M with M = {1, . . . , |S|}). This greatly

reduces the dimensionality of the space of the candidate joint distributions for

max
perfP

U.

We therefore formulate achieving max
perfP

U as the problem of finding (p(m))m∈M ∈

[0, 1]|M| which minimizes

H(X|M) =
∑
m∈M

p(m)H(X|M = m), (3.17)

(whereM is chosen so that {S(m) : m ∈M} = S with each support represented

exactly once), under the constraints that for each d ∈ D,∑
m:d∈S(m)

p(d,m) = p(d), (3.18)

which can be written in terms of the p(m):∑
m:d∈S(m)

p(m)Pr(Y = g(d)) = p(d). (3.19)
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The above LP has an average-case complexity which is polynomial in |S|,

where |S| is upper bounded by
(
|D|
|Y|

)|Y|
.

3.3 Model Extension

3.3.1 Obtaining Better Results by Grouping Samples

While max
perfU

P always achieves the bound from Theorem 1 as discussed in Sec-

tion 3.2.2, max
perfP

U in general does not. We try to reduce the gap between max
perfP

U

and the theoretical bound by simultaneously using multiple time-slots. Rather

than considering three RVs D, X and Y , we consider that they are part of three

i.i.d. random processes (Dt), (Xt) and (Yt). If we send a message Mt indepen-

dently at every time slot t, the analysis remains the same as before. Hoping to

reach better privacy and utility, we decompose the processes into groups of T time

slots and treat each of these groups as a whole.

For an RV M (T ), we define the utility and privacy parameters corresponding

to a group of T time slots:

δ
(T )
U (M (T ))

∆
=
H(XT

1 |M (T ))

H(XT
1 )

, δ
(T )
P (M (T ))

∆
=
I(M (T );Y T

1 )

H(Y T
1 )

. (3.20)

While M (T ) plays the same role as M did before, we include a superscript

(T ), to indicate that M spans T time slots. We may omit this superscript when

T = 1. The following lemma provides a way of obtaining RVs M (T ) using an RV

M designed for a single time slot.

Lemma 6. Let f and g be two (deterministic) functions, and (Dt), (Xt) and (Yt)

be three i.i.d. random processes so that for each t, Xt = f(Dt) and Yt = g(Dt).

Then, for any RV M given by the joint distribution p(D,M), consider the i.i.d.

random vector MT
1 over MT given by its joint distribution with DT

1 ,

p(T )(dT1 ,m
T
1 ) =

T∏
t=1

p(dt,mt). (3.21)
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0

0.274

0 0.274 0.5 δ
(T )
U

δ
(T )
P

D X Y 1 2

1 1 1 1/3 0

2 2 1 0 1/3

3 2 2 0 1/3

M

max
perfU

P for T = 1

?

D X Y 1 2

1 1 1 1/3 0

2 2 1 0 1/3

3 2 2 1/6 1/6

M

max
perfP

U for T = 1Provably
Unachievable (∀T )

Provably
Achievable

Bound from Theorem 1
Points for T = 1
Points for T = 2
Points for T = 3

Figure 3.4: Points (δ
(T )
U , δ

(T )
P ) for max

perfU
P, max

perfP
U and tradeoffs between the two, for T from 1 to

3, on an example with |D| = 3. While max
perfU

P does not change with an increase in T , max
perfP

U is

shifted leftwards, and better tradeoff points are achieved for T = 2, 3 than for T = 1.

Here, MT
1 conserves the utility and privacy parameters of M :

δ
(T )
U (MT

1 ) = δU(M), δ
(T )
P (MT

1 ) = δP (M). (3.22)

Proof. The proof follows from elementary information-theoretic properties of i.i.d.

processes.

Lemma 6 ensures that the optimal (δ
(T )
U , δ

(T )
P ) pairs are no worse than the

optimal (δU , δP ) pairs. It is in fact possible to build RVs for T time slots that

achieve results strictly better than the best that can be obtained for a single time

slot. For instance, in Fig. 3.4, we consider a small example with D = {1, 2, 3},

f(1) = f(2) = g(1) = 1, f(3) = g(2) = g(3) = 2. We plot the bound from Theo-

rem 1, which delimits a provably unachievable region. For each T ∈ {1, 2, 3}, we
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also plot the points max
perfU

P and max
perfP

U obtained using respectively Sections 3.2.2

and 3.2.3, and use a heuristic algorithm to achieve and plot tradeoffs between

utility and privacy by combining the joint distributions of max
perfU

P and max
perfP

U.

Combining these two distributions requires computing “compatibility scores” be-

tween elements of the alphabets for the extreme points and using these scores to

carefully construct a common alphabet. The detailed description of this proce-

dure is left for an extended version of the paper. For each T , these tradeoffs form

a curve that delimits a region of provably achievable pairs (δU , δP ). The maxi-

mum utility that can be reached under perfect privacy using a single time slot is

δ
(1)∗
U = 0.5. However, with two time slots, it can be reduced to δ

(2)∗
U = 0.468, and to

δ
(3)∗
U = 0.452 for three time slots. It appears challenging to establish whether the

points in the area in between the theoretical bound and the heuristically obtained

tradeoffs are achievable or not (except for the points (δ
(T )
U , 0) with δ

(T )
U < δ

(T )∗
U ,

which are unachievable by definition).

The bound from Theorem 1 remains the same regardless of T because of the

assumption that the processes are i.i.d.: for any T , δ
(T )∗
U ≥ I(X;Y )

H(X)
= 0.274. An

interesting question is to determine if δ
(T )∗
U approaches this bound when T goes

to infinity. The time complexity of the method from Section 3.2.3.2 prohibits the

computation of max
perfP

U for T > 3, even for examples like the one in Fig. 3.4.

3.3.2 Performance with Imperfect Knowledge of the Joint Distribu-

tion

Until now, we considered that the process of determining a good masking protocol

was conducted with perfect knowledge of the distribution of D. However, in more

practical scenarios, one would probably only have access to an estimate of that

distribution by sampling it. It is therefore relevant to wonder how much the

(δU , δP ) for critical point such as max
perfP

U and max
perfU

P evolve when our knowledge of

the distribution of D only comes from sampling it.
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Figure 3.5: Privacy loss δP resulting by using a sampled distribution of D to determine max
perfP

U,

compared to the ideal case in which perfect knowledge of the distribution of D. The experiment

is conducted for two distributions of D over an alphabet of size 7: the uniform distribution and

a non-uniform one.

For max
perfU

P, since our strategy is to simply transmit M = X, as long as we

have perfect knowledge of the (deterministic) function f that relates X to D, the

masking protocol does not depending on the distribution of D and is therefore

unaffected by an imperfect knowledge of that distribution. However, this is not

the case for max
perfP

U.

In the following, we consider the same example choice of D, X and Y as

in Fig. 3.2 under two distributions of D: uniform distribution over {1, . . . , 7}

and the distribution given by the vector [0.1, 0.05, 0.4, 0.01, 0.1, 0.1, 0.24] (referred

to as “Non-uniform distribution”). For both, we apply the linear programming

approach from Section 3.2.3 to compute the max
perfP

U masking strategy, but instead

of using the distributions themselves for the computations, we sample them and
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Figure 3.6: Pairs (δU , δP ) obtained by sampling a distribution n = 20, 40, . . . , 500 times and

using that empirical distribution to determine max
perfP

U. The experiment is conducted for two

distributions of D over an alphabet of size 7: the uniform distribution and a non-uniform one.

use the resulting empirical distributions instead.

Fig. 3.5 shows how the sample size affects the δP parameter of the protocol

generated with this imperfect knowledge, for n up to 5000. For each value of

n, we averaged δP over a thousand draws of a sample distribution of size n.

We observe that for both original distribution of D, as few as 200 samples are

sufficient to reach a δP below one percent. We conclude that our method is

resilient to imperfect knowledge of the distribution of D and can therefore be

used on empirically determined distributions at almost no performance cost.

δU is in average mostly unaffected. Fig. 3.6 reports the (δU , δP ) pairs obtained

by sampling the same two distributions as in Fig. 3.5 over 20, 40, . . . , 500 samples,

as well as the tradeoff curves derived with perfect knowledge of the distributions

as references (points closer to δP = 0 correspond to more samples). There is
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a very slight gain in utility in the uniform case and a very slight loss in the

non-uniform case, but both are negligible, and futher decrease as the number of

samples increases.

3.4 Discussion

In this chapter, we present both theoretical and practical results with the goal of

improving user privacy without preventing legitimate inferences from being made.

Our theoretical framework allows the user to specify the inferences to pro-

tect and those to allow. Universal metrics are defined to quantify the utility and

privacy-leakage that a given masking protocol provides. Application-dependent

metrics (e.g., suitable distortions) are also compatible with our model. We pro-

vide schemes that maximize privacy under a perfect utility constraint and vice

versa. We propose methods to reach heuristic tradeoffs in between these two

extreme scenarios, and derive theoretical bounds to the achievable region of the

utility/privacy tradeoffs.
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CHAPTER 4

ipShield: A Framework For Enforcing

Context-Aware Privacy

4.1 Introduction

Smartphones have evolved from mere communication devices into sensing plat-

forms supporting a sprawling ecosystem of apps which thrive on the continuous

and unobtrusive collection of personal sensory data. This data is often used by the

apps to draw inferences about our personal, social, work and even physiological

spaces [sag, LPL09, BI04, RMB10, run, ZCC12, PRH11, RAP11] often under the

pretext of providing personalized experiences and customized recommendations.

However, not all app developers are equally trustworthy, and this coupled with

user näıveté leads to data misuse and privacy concerns.

To safeguard user privacy, Android requires developers to specify the per-

missions needed by their apps. At install time, the user can either grant ac-

cess to all the requested resources or opt to not use the app at all. But de-

spite these provisions, cases of privacy violations by third-party apps are ram-

pant [HHJ11, pau, TK]. We observe multiple problems with the current privacy

mechanism in Android. First, only a select set of sensors such as GPS, cam-

era, bluetooth are considered to be privacy-prone and have their access mediated

through protected APIs [sec]. Other onboard sensors such as accelerometer, gy-

roscope, light, etc. are considered to be innocuous, requiring no user permission.

This specific vulnerability of unrestricted access to accelerometer and gyroscope
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data has been exploited to mount keylogging attacks [MVB12], and reconstruction

of travel trajectories [HON12]. Second, various studies [RGK11, FHE12] to under-

stand users’ perception of privacy in general and their understanding of Android

permissions in particular reveal that users are often oblivious to the implications

of granting access to a particular type of sensor or resource on their phone at

install time. However, the perception quickly changes to one of concern when

apprised of the various sensitive inferences that could be drawn using the shared

data. Finally, users only have a binary choice of either accepting all the requested

permissions or not installing the app at all. Once installed, users do not have any

provision to revoke or modify the access restrictions during runtime.

Prior research has tried to address some of the above problems. TaintDroid

[EGC10], extends the Android OS by adding taint bits to sensitive information

and tracking the flow of those bits through third-party apps to detect malicious

behavior. However, tainting sensor data continuously for all apps has high run-

time overhead, and is often conservative as data sensitivity typically depends on

user context. Moreover, TaintDroid stops at detection and does not provide any

recommendation on countering the privacy threat. MockDroid [BRS11], is a mod-

ified Android OS designed to allow users the ability to mock resources requested

by the app at runtime. Mocking is used to simulate the absence of resources

(e.g., lack of GPS fix, or Internet connectivity), or provide fixed data. However,

MockDroid only works for resources explicitly requested by an app (no innocuous

sensors), is binary because a user can either mock a resource or provide full ac-

cess to it and finally MockDroid falls short on providing any guidance to the user

regarding which sensors to mock. PMP [AH13], is a system that runs on iOS and

allows users to control access to resources at runtime. It uses a crowdsourced rec-

ommendation engine to guide users towards effective privacy policies. However,

PMP does not handle sensor data.

In this chapter, we present ipShield [ipS], a privacy-enforcing framework on the
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Android OS. ipShield allows users to specify their privacy preferences in terms of

semantically-meaningful inferences that can be drawn from the shared data and,

if required, also configure fine-grained privacy rules for every accessed sensor on a

per app basis at runtime. We build on prior work in [pdr, BRS11] and make the

following contributions.

• We modify the Android OS to monitor all the sensors accessed by an app

regardless of whether they are specified explicitly by the app at install time. As

per our knowledge, ours is the first system that tracks innocuous sensors.

• We take an important step towards presenting the privacy risks in a more

user-understandable format. Instead of listing sensors, we list the inferences

that could be made using the accessed sensors. Users can specify their privacy

preferences in the form of a prioritized blacklist of private inferences and a

prioritized whitelist of allowed inferences.

• We implemented a recommendation engine to translate the blacklist and the

whitelist of inferences into lower-level privacy actions (suppression, allow) on

individual sensors.

• Finally, we provide the user with options to configure context-aware fine-grained

privacy actions on different sensors on a per app basis at runtime. These actions

range in complexity from simple suppression to setting constant values, adding

noise of varying magnitude, and even play-back of synthetic sensor data.

ipShield is open source and implemented by modifying Android Open Source

(AOSP) [aos] version 4.2.2 r1. We evaluated it using computation intensive apps

requiring continuous sensor data. Our results indicate that ipShield has negligible

CPU and memory overhead and the reduction in battery life is around ∼ 8%.
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4.2 Case Studies

Using two typical scenarios we illustrate below how ipShield would help app users

protect their privacy.

4.2.1 Transportation Mode and KeyLogging

Activity recognition algorithms [BI04, RMB10] are used by various fitness and

wellness apps to infer the users’ Transportation Mode (e.g., predict one of three

labels: walking, motorized or still). For example, the Ambulation app in [RMB10]

combines accelerometer and GPS data to infer the labels with over 90% accuracy.

However, data collected for inferring Transportation Mode can also be used to

infer other labels sensitive to the user. For example, the same accelerometer when

combined with gyroscope data can be used to infer Onscreen Taps and capture

keystrokes on the softkeyboard [MVB12] (and also Location [HON12]) with over

80% accuracy. This could lead to leak of sensitive information like password and

PIN entered on the phone.

Using ipShield, a user would add the Transportation Mode and the Onscreen

Taps to the whitelist and the blacklist, respectively. This will block the accelerom-

eter and gyroscope data from reaching the Ambulation app preventing keylogging.

However, this will also cause the app to stop performing activity recognition. In

Section 4.8 we show how ipShield allows users to configure fine-grained rules to

maximize the utility of the app.

4.2.2 Saga: Location

Saga [sag] is a life logging app which runs in the background and keeps track of

the places a user has visited. By analyzing the location trace of a user, Saga

can infer useful information such as average daily commute time, time spent at

work, etc. However, it can also derive sensitive inferences about locations such
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Figure 4.1: Left: Saga app showing actual trace of the user. Right: Both actual trace

and spoofed trace on the map.

as home, office, hospital private to the user. Fig. 4.1(left) shows a mobility trace

recorded using Saga. The user starts from home, picks up her friend and drives

to school for class; later she also visits a nearby bar and wants to keep the visit

private. In addition to this direct privacy requirement, there is also an indirect

privacy concern. Saga reveals the home location of the user’s friend. The location

information can be coupled with other online resources to identify the home owner,

and infer that the friend had gone to the bar too. Thus, privacy of both the user

and her friend is compromised, even though the friend is not using Saga. We

therefore want ipShield to allow spoofing of location traces to protect visits to

sensitive places. A plausible spoofed trace is shown on the map in Fig. 4.1(right).

We illustrate how ipShield achieves this in Section 4.8.
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4.3 Revisiting The Inference Privacy Problem

Inferences are labels associated with data. We group labels of a similar (semantic)

type into an inference category. The category names and the grouping are based

on prior work (Table 4.3). For example, hospital, home, office are grouped under

Location category. An adversary tries to infer/predict these labels from the shared

data. The prediction accuracy of an inference category corresponds to correctly

predicting a label in that category. We now define the inference privacy problem.

Problem statement: Data is typically shared with an app for a specific set

of inference categories. For example, in Section 4.2.1, data is shared for inferring

the Transportation Mode, and in Section 4.2.2 it is for inferring travel statistics.

These categories and their labels form a whitelist which the user wants to allow.

However, the same data can be used to infer keystrokes and sensitive locations

– inferences sensitive to the user. The sensitive categories and their labels form

the blacklist which the user wants to keep private. The privacy problem is to

design a system which will take as input the whitelist and blacklist of inference

categories and translate them into privacy actions on the shared sensors such that

the conditions on the lists are satisfied.

Side-Channel Attacks: Traditionally side channel attacks are ones which

are designed to exploit the information revealed by execution of a cryptographic

algorithm to recover the secret key. Such information channels include but are

not limited to running time, cache behavior, power consumption pattern, acoustic

emanations and timing information [KB07, SWT01, GST13]. Sometimes, even

without any algorithm execution, information side channels exist due to physical

signals emanating from a hardware while being used by a user. For example,

acoustic [AA04, MVC11] and electromagnetic [VP09] emanations from a keyboard

has been used to infer keystrokes and recover sensitive passwords and PINs. The

feasibility of such attacks on the smart phone using sensor data has been evaluated

41



Privacy Analysis Kirin [EOM09], SOM [BKO10], Stowaway [FCH11]

Privacy Detection
Static: BlueSeal [HMN]

Dynamic: TaintDroid [EGC10]

Privacy Mitigation

Mobile Based:

Dr. Android Mr. Hide [JMV11], PMP [AH13],

Apex [NKZ10], MockDroid [BRS11], AppFence [HHJ11],

pDroid [pdr], πBox [LWG13]

Cloud Based:

Lockr [TSG09], PDV [MHM10], Persona [BBS09]

Table 4.1: Categorization of prior work.

in [ASB12, MVB12].

Our inference privacy problem differs from traditional side-channel attacks

in several ways. First, the shared data used for the attack are not unintended

physical signals emanated from the hardware, or covert timing information but

sensor data intended for the recipient. Second, in our setting the recipient is also

the adversary whereas in case of side-channel attacks the adversary is typically

different from the intended recipient. Finally, at least in principle the side-channel

attacks can be prevented by placing the computational hardware in physically

isolated and secure chamber whose boundaries the electromagnetic, acoustic and

such emanations cannot cross which is not the case in our scenario. In [ASB12],

inferring the keystrokes is referred as a side-channel attack. However, we call it a

blacklist inference as the sensor data are intended to be shared with the app for

the whitelisted inferences and are not a side-channel.

4.4 Related Work

We group prior work on systems for protecting privacy under three broad cate-

gories as shown in Table 4.1. The Privacy Analysis category summarizes contri-
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butions towards analysis of the Android permission model, conformance of the

various apps to this model, the usage pattern of permissions across apps, and

finally the expressibility of the permission model [EOM09, BKO10, FCH11]. Un-

der Privacy Detection we have tools such as BlueSeal [HMN] which use static

analysis of the app bytecode to detect if sensitive information is being leaked over

the network interface and inform it to the user at install time. Other systems

like TaintDroid [EGC10] use dynamic flow tracking to detect malicious app be-

havior. However, both techniques can only alert the user of malicious behavior

(BlueSeal at install time, and TaintDroid at runtime), and do not provide suitable

mechanisms to prevent information leakage.

Under the Privacy Mitigation category we have mobile implementations such

as Dr. Android and Mr. Hide [JMV11] that use instrumentation of the dex byte-

code to ensure that access to all private resources is made available only through

their trusted interface. AppFence [HHJ11] builds on TaintDroid to provide shadow

or synthetic data to untrusted apps and measure the effect of such data on app

utility. Other systems in [BRS11, pdr, NKZ10, AH13, LWG13] provide users with

the ability to control access to their resources at runtime - a feature that is cur-

rently being integrated into the latest Android release [and]. However, the above

systems provide binary access control to resources, do not monitor access to in-

nocuous sensors, and lack higher level user-understandable privacy abstractions.

Cloud-based solutions in [TSG09, MHM10, BBS09] are for protecting privacy of

data streams but require additional infrastructure. A detailed exposition of other

privacy techniques, and initial ideas on ipShield can also be found in [CRJ13].

4.5 Background: Android

Below we describe data paths, from sensors to apps and also highlight Android’s

security model [sec] to understand the process level isolation of the components.
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Figure 4.2: The data flow path from various sensors to apps.

4.5.1 Android Sensor Data Flow Path

We consider two data paths as shown in Fig. 4.2. Path-S is used by sensors

such as accelerometer, gyroscope, light and so on. Path-G is from the GPS to

apps. Note that the paths are simplified representation showing only the com-

ponents of the Android OS that are relevant to ipShield. SensorService and

LocationManagerService are system services (running continuously in the back-

ground) and are started by the Android OS at boot time. They run as sepa-

rate threads within the same system server process. These services poll the

SensorHAL layer for sensor data and in turn pushes the data to the apps. The

apps typically do not communicate directly with the services. Each system service

has a corresponding Manager which acts as its proxy at the user level. Thus, each

app instantiates either a SensorManager or a LocationManager object using the

public API and then uses it to obtain the sensor data. As shown in Fig. 4.2, both

the app and the manager objects are part of the same process.
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4.5.2 Android Security Model

Application Sandboxing: The core of the Android OS is built on top of the

Linux kernel, and this allows Android to re-purpose the traditional security con-

trols built into Linux to protect user data, system resources, and to provide app

isolation. Android enforces kernel level Application Sandboxing for every software

that runs above the kernel which includes all apps, OS libraries, OS-provided app

framework and app runtime. The Android system sets up the sandbox and en-

forces security between apps by assigning a unique user ID (UID) to each app and

by running it as that user in a separate process. Running apps within a sandbox

environment ensures that any memory corruption error will only allow arbitrary

code execution in the context of that particular app and with the permissions

established by the OS. User-specific privileges also ensure that files created by

one app cannot be read or altered by another app.

Secure IPC: Android not only supports traditional mechanisms such as

filesystem, sockets and signals but also implements newer and more secure mech-

anisms such as Binder and Intents.

Access Control Using Manifest: Finally, Android controls app access to

resources by designating certain APIs (such as camera, location, bluetooth etc.)

as protected [sec]. To use these resources an app needs to define its requirements

in its manifest (a control file provided by every app). The user can either grant

all of the requested permissions as a block or not install the app at all.

4.6 Architectural Design

The design of ipShield is guided by four objectives – better monitoring of sensor

access, meaningful privacy abstraction, privacy rule recommendation and fine-

grained control over shared data. The architectural requirements to achieve the
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above functionalities are shown in Fig. 4.3 and can be broken down into four major

blocks – (i) Databases (ii) Context Engine (iii) FirewallManager (iv) Rule-Based

Obfuscator. We describe each of the blocks and their components in detail below.

Databases: We maintain two databases: Sensor Counters and Inference DB.

Currently, apps have unrestricted access to the class of innocuous sensors. One

of our goals in ipShield is to instrument the OS to monitor the number of sensors

accessed by an app. The information is populated in the Sensor Counters database

(marked F ) and is provided as an input to the FirewallManager block. The

database needs to be updated when a new sensor is accessed by an installed app

or when an app in uninstalled.

Motivated by the database of virus signatures maintained by antivirus soft-

ware, we maintain a similar database for mapping the list of inference categories

(and their labels) that could be predicted using a combination of sensors, together

with the prediction accuracy and the machine learning algorithm employed (Ta-

ble 4.2 shows a small subset of the Inference DB). Advances in sensing coupled

with increases in the sophistication of learning algorithms result in newer inference
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categories and improved accuracy. The inference DB (marked E ) thus needs to

be kept updated.

Context Engine: For granularity of rules, ipShield allows trusted Context

Engines (marked D ) to register and provide as input context labels. A context

engine is a set of machine learning algorithms, which take as input raw sensor data

and output the current context label. An inference label is same as the context

label but it is inferred from the shared data by the adversary. A user can configure

privacy rules to trigger on context labels.

FirewallManager interacts with the user and is responsible for generating

the privacy rules. There are four different sub-blocks within FirewallManager

(marked G through J ).

The Semantic Firewall Configurator ( G ) takes as input the sensors accessed

by an app and queries the Inference DB to present the user with a list of possible

inference categories that can be predicted by the app. Using inferences instead

of sensors allow us to better communicate the privacy risks to the user [RGK11].

The user then configures a whitelist and a disjoint blacklist from the enumerated

list of inference categories.

The Rule Recommender ( H ) (Section 4.6.2) takes as input the privacy pref-

erences of the user expressed in terms of the whitelist and blacklist and translates

them to actual privacy actions on the sensors. We observe that the privacy actions

are dependent on the inference labels, the learning algorithm employed and the

features used. Therefore, to keep the recommender simple and generic we limit

the auto-generated privacy actions to Normal and Suppress (Section 4.6.1). While

the auto-generated rules are binary and conservative, we provide the user with

the flexibility to override them.

The Direct Firewall Configurator ( I ) allows the user to manually configure

fine-grained context-aware rules. The contexts used can either be ones provided by
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ipShield, or ones which are externally obtained from the trusted Context Engine.

ipShield is designed to operate in the Semantic mode. The Direct Configurator

is an optional mode, which provides flexibility of rule configuration at the cost of

increased human interaction.

Finally, the Configurator Switcher block ( J ) allows the user to switch between

the Semantic and Direct Configurator modes and configure rules.

Rule-Based Obfuscator ( B ) implements the different privacy actions. It

takes as input privacy rules and sensor data and, depending on the app, applies

the appropriate rules to the data before releasing them.

4.6.1 Taxonomy of Privacy Rules

The complete list of choices for configuring privacy rules is illustrated in Fig. 4.4.

A rule has three basic parts: Context, SensorType, and Action. We also allow

conjunction (denoted by the ∧ operator) of the context labels within a rule. The

general form of a rule is if (∧ni=1Contexti) then apply Action on SensorType. For
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example, if ((TimeOfDay in [10am− 5pm]) ∧ (Place = school) ∧ (AppName =

facebook)) then apply Action = Suppress on SensorType = gps. As shown

in Fig. 4.4 some of the simple contexts such as TimeOfDay, DayOfWeek, Place

and AppName are built into ipShield. External contexts provided by a registered

Context Engine can also be used to configure rules. SensorType refers to the

sensor (e.g., accelerometer, GPS, gyroscope) on which the action is to be applied.

Excluding the default action of releasing data without any changes (Normal),

ipShield currently supports four different privacy actions. The Suppress action

(S-block in B ) when applied blocks data from reaching an app and the app is

unable to detect any sensor event. The Constant action (K-block in B ) allows

user to replace actual data with a constant value. The user-specified constant can

be vector or scalar valued depending on the type of sensor whose data is being

replaced. The Perturb action (P-block in B ) can be used to add noise to sensor

data. The noise values can be drawn from different probability distributions,

the parameters of which are input to this action. Finally, the Play-back action

can be used to suppress the data from the actual sensor hardware and instead

send synthetic sensor measurements from an external service to the requesting

app (U-shaped datapath). The synthetic data source and sensor type are input

to this action. The Play-back option can be used for generating any arbitrary

transformation on the data offline.

4.6.2 Rule Recommender

The Rule Recommender takes as input the whitelist and the blacklist of infer-

ence categories and generates a configuration for enabling or blocking of sensors

accessed by an app. The goal is to ensure that only those inference labels which

form part of the whitelist are allowed and those in the blacklist are blocked.

49



Sensors Inference Categories Evaluation

Transport

Mode
Location

Onscreen

Taps

Priority1

{10, 4, 10}

Priority2

{10, 0, 7}

Priority3

{5, 9, 9}
GPS+ Acc + Gyro 95% 97% 80% 0 869.4 -875.8

GPS+WiFi 83.1% 97% 0% 835.4 849.9 -470.0

GPS+GSM 81.7% 98.2% 0% 820.9 835.6 -476.6

GSM+WiFi 72.9% 94.03% 0% 731.45 745.5 -458.1

GSM+Wifi

+Acc+Gyro
92% 94.03% 80% 0 838.7 -861.6

Wifi+Acc+Gyro 91.1% 23.08% 80% 0 830.2 -498.6

GSM+Acc+Gyro 88.1% 94.03% 80% 0 798.8 -862.8

GPS 75.8% 97% 0% 760.7 775.2 -472.4

GSM 61.8% 94.03% 0% 617.8 631.9 -461.7

Acc+Gyro 84.6% 23.08% 80% 0 763.7 -500.7

Table 4.2: Left: A portion of the Inference DB (mapping M). Each entry (in %)is the

maximum prediction accuracy for the inference category using the sensor combination.

Right: The objective function (Eqn. 5.8) evaluated for different priority vectors and

Pmax = 10.

4.6.2.1 Problem Formulation

Let N be the number of sensors used by an app (obtained from Sensor Counters)

and s = [s1, . . . , sN ] represent the sensor state vector where si ∈ {0, 1} represents

the state of the ith sensor. Setting si to 0 indicates that the sensor is disabled and

a value of 1 indicates that the sensor is enabled. We denote the set of inference

categories by L = {l1, . . . , l|L|}. We define a mapping M : {0, 1}N × L → [0, 1]

where M(ψ, l) = 0 indicates that there exists no learning algorithm which can

use the data streams from the sensors which are enabled as per state vector ψ

and infer a label in category l. A non-zero value of M(ψ, l) correspond to the

maximum accuracy among all the learning algorithms that can be used to infer

category l from the data streams released as per the state vector ψ. A value of

1 indicates that l can be perfectly inferred using the enabled sensors. Note, we
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might use different learning algorithms to predict the same labels using different

sensor state vectors. The mapping M is obtained from the Inference DB. Learning

algorithms typically work on features extracted from the raw sensor data. But,

our current model is agnostic to features because we are sharing the raw sensor

data itself and hence every required feature can be extracted from it. The set of

whitelisted categories W ⊆ L, and the set of blacklisted categories B ⊆ L, are

as specified by the users such that W ∩ B = ∅. Finally, let pl ∈ {0, . . . , Pmax}

denote the priority level set for category l by the user such that a higher value of pl

indicates higher priority. The priority levels represent a relative gradation of risk

as perceived by the user. For example, Pmax = 3 could correspond to low, medium

and high levels of perceived risks. We use the above notations to formulate the

inference-privacy problem as the following constrained optimization problem

maxψ∈2N

∑
l∈W

M(ψ, l)2pl −
∑
l∈B

M(ψ, l)2pl (4.1)

s.t.
∑
l∈B

pl=Pmax

M(ψ, l) = 0. (4.2)

The objective function in Eqn. 5.8 is designed to maximize the prediction accuracy

of the whitelisted labels and minimize the prediction accuracy of the blacklisted

labels. The priorities are exponentially scaled up to account for whitelisted labels

which can be detected with low accuracy than other labels but have a higher

priority. The constraint in Eqn. 5.9 ensures that users can force blacklisted in-

ferences to be blocked by setting their priority to Pmax. We note that the search

space in the optimization problem shown in Eqn. 5.8 is constrained to the vector

of elements with 0’s and 1’s corresponding to the enabled and blocked sensors

respectively. It then follows that the search space is constrained to the vertices of

a hypercube. It is also easy to show that this search space is non-convex. More-

over, the optimization function depends on the relation M on which we impose

no structure or even linearity. Thus, our program is non-linear integer program

which is non-convex and NP-complete. We observe from our investigation of prior
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work and apps from Google Play (Section 4.8) that N ≤ 6 for almost all the apps.

Therefore, to solve a specific instance of the optimization problem above (a given

choice of whitelist, blacklist, N , and priorities) we apply brute force and enumer-

ate all possible state vector combinations. We filter out all state vectors which

satisfy the blacklisted constraint and maximize the objective function over this

reduced space. The output vector ψ shows which sensors should be enabled or

disabled mapping preferences on inferences to privacy actions on sensors. There

will be scalability issues for large N (> 15), but in practice, its improbable for a

single inference to be using 15 different sensors on a phone in the near future.

4.6.2.2 Numerical Example

We return to the motivating example (Section 4.2.1) and express it in terms of the

notation described above. Thus, L = {Transportation Mode,Location,Onscreen Taps},

W = {Transportation Mode} and B = {Location,OnscreenTaps}. The mapping M

is presented in Table 4.2 (under Inference Categories). We set the maximum

priority level Pmax = 10 throughout this example and represent a user specified

priority vector as a tuple (ptransport, plocation, ptap). We apply the algorithm above

for different choices of priority vectors and report the evaluation results also in

Table 4.2 (under column titled Evaluation).

Consider Priority1 = (10, 4, 10) as the selected priority vector. The user

is not too concerned about revealing his Location and sets plocation to 4. She

however wants to strictly suppress the detection of Onscreen Taps and sets ptap to

10. A high priority is also given to the whitelisted inference category by setting

ptransport = 10. The objective function values for the different sensor combinations

is shown in the column under heading Priority1. The maximum occurs for the

combination corresponding to GPS+WiFi and is selected by the recommender.

The selected sensor state vector is such that accelerometer data is suppressed

in order to guarantee no leakage of the Onscreen Taps information. We also
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note that GPS+WiFi configuration provides higher accuracy in predicting the

Transportation Mode and lower accuracy for Location prediction compared to

other sensor combinations.

We consider another scenario with priority vector Priority2 = (10, 0, 7). In

this case, the user does not worry about Location disclosure, but wants to in-

crease the prediction accuracy of the Transportation Mode while blocking the

Onscreen Taps if possible. The objective function values are shown under column

Priority2. The recommender selects the GPS+Accelerometer combination which

is biased towards performance. In addition to meeting blacklist requirements the

combination also provides the best accuracy.

Finally, the third user has high levels of concern about revealing both Location

and Onscreen Taps information. She would like to trade the performance with pri-

vacy and thus selects a priority vector Priority3 = (5, 9, 9). The resulting sensor

combination chosen is GSM+WiFi. The rule recommender starts by suppressing

the accelerometer data (to prevent tap inference). It then selects the combina-

tion which results in the worst Location inference from among the remaining set

of combinations (GSM and GSM+WiFi), while simultaneously maximizing the

whitelist accuracy.

Model-Based Augmentation of Rule Recommender : Prior research

has shown that a user’s various context labels and transitions between them can

be captured by a Markov chain [GNG12], by using a Dynamic Bayesian Net-

work [PCG13], or explicitly enumerated [CBS13]. A user specifies a whitelist and

a blacklist of inference categories, and depending on the current context label and

the learned model the system can determine whether to release a context with

a particular probability. In other words, the probability of release of a context

should not increase the adversarial accuracy of predicting a blacklisted inference

label. We envision that such model-based techniques can also be included in our

recommendation system for generating a richer set of privacy rules.
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Figure 4.5: Implementation of ipShield on Android.

4.7 Implementation

The implementation of ipShield on the Android stack (Fig. 4.5) is described below.

4.7.1 Trust Model

We assume that the user installed third-party apps (e.g., from Google Play) are

untrusted but do not collude with each other and share information. We trust

the Linux kernel on which Android OS is built and also the Application Sandbox

implemented by the kernel (Section 4.5). We extend the chain of trust to include

the OS libraries and system services which run within the Application Sandbox

and are protected by UID and group ID privileges. However, recent successful

exploits from Facebook on modifying the internal data structures of the Dalvik
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VM [buf] leads us to not trust the Application Framework components which run

within the same process as the Dalvik VM.

4.7.2 Intercepting Data: Possible Choices

As indicated by the markers ( 1 - 10 ) in Fig. 4.2, there exist different operating

points in both the data paths (Path-S and Path-G) at which we can intercept the

sensor data, apply privacy actions, and obfuscate it. However, also associated with

an operating point is the implementation complexity of the Rule-Based Obfuscator

block ( B in Fig. 4.3) at that point and also its vulnerability to security attacks.

We discuss below the trade offs in selecting an operating point.

Points 1 and 6 , correspond to modifying the kernel drivers to obfuscate

data. While the drivers are protected by kernel security mechanisms, they require

our implementation to be vendor specific. It is also hard to push app and rule

information to the drivers and periodically update rules inside a driver.

Points 2 and 7 , correspond to changes in the SensorHAL layer. The HAL

provides the abstraction between device specific kernel drivers and the Android

system above. However, changing the HAL like the kernel driver has a high

implementation complexity in terms of pushing app and rule information.

Points 3 and 8 , correspond to modifying the Android system services, namely

SensorService and LocationManagerService which are responsible for handling

the different sensors and the GPS respectively. These services as shown in Fig. 4.2

run in a process separate from the app and hence are protected by the Application

Sandbox. Both SensorService and LocationManagerService maintain informa-

tion about installed apps, and can be easily signaled using binder calls and as we

show later in Section 4.8 they incur low overhead while updating rules.

Similarly, points 4 and 9 , correspond to changing the SensorManager and

LocationManager, respectively. These points have the least implementation com-
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plexity, however both SensorManager and LocationManager run within the same

process as the app, and hence they are not protected by process-level isolation.

Recent exploits have used the above vulnerability to modify code data structures

at runtime [buf].

Finally, points 5 and 10 , correspond to static analysis of the app code to

understand privacy violations [HMN]. However, the information flow approaches

are often conservative, incur large instrumentation and runtime overhead, and

typically stop at identification of a malicious app. Based on the available choices

we decided to implement the Rule-Based Obfuscator block in the SensorService

and LocationManagerService blocks in the respective data paths.

4.7.3 ipShield Code Blocks

ipShield is an open source project. The code for each of the blocks together with

complete instructions for downloading and installing ipShield are available at [ipS].

4.7.3.1 Databases

Sensor Counters: This database, implemented as a file, maintains a counter

for each sensor on a per-app basis. The counter for a sensor represents the

number of events from the sensor that have been sent to the app. We use an

unsigned 64 − bit long int for our counter. Even at the maximum sampling

rate of a sensor, under continuous sensing, the counter will not overflow within

the lifetime of a phone. The entry for an app together with the counters are

deleted when the app is uninstalled from the phone. A counter value of zero

indicates that the sensor is not being used by the app. These counters are main-

tained by {Sensor, LocationManager}Service and are periodically written to the

/data/sensor-counter file every minute. The permissions on the file are such

that it can be read by any app but can be written to only by system services.
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Figure 4.6: Statistics of sensor usage from the Inference DB.

Inference DB: A knowledge repository generated from a survey of 60+ pa-

pers published in relevant conferences and journals over the past 3−5 years. This

database captures a wide variety of inference categories a small set of which is

shown in Table 4.3. For each inference category, we store the prediction accu-

racy over the constituents labels for a particular sensor combination. If there are

multiple papers using the same sensor combinations predicting the same set of

labels we store details of the one with highest accuracy. We also maintain in-

formation about the set of sensors used, the features extracted from the sensor

data, the classifiers used, and finally the paper title under which the results were

published. In Fig. 4.6, we show statistics of sensor usage computed using the in-

ference database. Based on our survey, we found that (a) GPS and accelerometer

sensors are the most commonly used; (b) the number of sensors accessed by any

app is almost always less than 6 (we do not include papers which use external

body worn sensors in the plot, but even externally worn sensors are less than 6

types). While newer inferences are being made, we do not expect the database
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Inference Category Labels

Transportation Mode [RMB10] still, walking, motorized

Device Placement [PPC12] hand, ear, pocket, bag

Onscreen Taps [MVB12] location of taps on screen

Location [BW11] [KKE10] [NDA13] home, work, public, restaurant...

Emotion [RMM10] [CC11] happy, sad, fear, anger, neutral

Speaker [LJS12] [NDA13] male/female, identity

Text Entered on Phone [MVB12] alphabets

Stress [LFR12] [CC11] stressful or not

Table 4.3: Selected inference categories from Inference DB.

to change rapidly. We envision crowdsourcing as a way to maintain an updated

database. To enable that, we provide a web interface where people can contribute

entries [ipS]. Currently, we rely on manual screening of the received entries before

adding them to the Inference DB.

4.7.3.2 Context Engine

To allow fine-grained context-aware rules, ipShield allows trusted external con-

text engines to register contexts that they can provide using the interface in

Fig. 5.2(e). The user can then configure rules which will be triggered on a par-

ticular context. ipShield expects the context engines to use Android supported

intents (action=label) as the IPC mechanism for providing the context labels.

Contexts such as battery status, contact list, ringer status etc., do not require

access to sensor data and can be obtained through APIs provided by the Android

OS. However, for contexts that require sensor data, the external context engine

must have access to raw sensor data. To implement this when a data buffer from

the HAL is received by the SensorService and/or the LocationManagerService

it is first sent to the context engine to get the current context label. On receiving

the context, the associated rules are then loaded and used by the Rule-Based
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Obfuscator to obfuscate the data buffer.

We modified the Transportation Mode app [RMB10] to implement an activity

context engine and test its integration with ipShield. In our implementation, the

context engine used SensorManager for subscribing to accelerometer data at the

rate of SENSOR DELAY GAME. This resulted in sensor data at a rate of 50Hz

or a sample every 0.02s. We used data buffered over a sliding window of 1s

for inferring the activity context. On an average, the engine took about 8ms to

generate activity context from a 1s accelerometer window. Even with additional

overhead due to binder call and rule loading, we found that the associated rules

can take effect before the next sensor data sample. This meant that our buffer size

could be equal to 1s of data without losing any sample. In general, for keeping

the buffer size bounded we observe that the processing time of the context engine

together with the rule update time should be less than the inter arrival time

between two data samples.

4.7.3.3 FirewallManager

The FirewallManager is a trusted Android app which has three different compo-

nents described below.

Semantic Firewall Configurator: This is an Android activity. It reads the

Sensor Counters for the installed apps and queries the inference DB for possible

inference categories for each app. When launched it displays this information

(Fig. 5.2 (a)) for the user. Once the user selects an app she is presented with the

inference categories with an option to classify each into a whitelist or a blacklist

(Fig. 5.2 (b)). The Configurator then passes the data user preferences to the Rule

Recommender.

Rule Recommender: The algorithmic aspects of the rule recommender

are described in detail in Section 4.6.2. It is implemented within the Seman-
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tic Firewall Configurator. It then uses the FirewallConfigManager to write the

rules to /data/firewall-config file and also use a binder call to signal the

SensorService and LocationManagerService to reload the new rules.

Direct Firewall Configurator: In this mode the user can configure context-

aware privacy rules (Fig. 5.2 (c) and (d)). The user can specify actions on sen-

sors used by apps, and for each action also associate either built-in contexts

such as TimeOfDay, DayOfWeek, Place, or external contexts as triggers. For

defining the Place context, the user can drop a marker on the map as shown in

Fig. 5.2 (f) to annotate a < latitude, longitude > tuple with a significant place

name. For external contexts the Configurator implements a BroadcastReceiver

which listens for intents. When an intent containing a particular label is re-

ceived, the BroadcastReceiver invokes a rule loader service which passes a pre-

configured set of rules associated with the label to the FirewallConfigManager.

The FirewallConfigManager writes the rules into a file /data/firewall-config

and signals both SensorService and LocationManagerService to reload the new

rules. Note that the user can also explicitly request for loading a new set of rules.

4.7.3.4 Rule-Based Obfuscator

The Rule-Based Obfuscator block is responsible for enforcing the actions specified

by the privacy rules described in Section 4.6.1. This block is implemented both

within LocationManagerService and SensorService with the same functional-

ity. The rules are read from the /data/firewall-config file and inserted into a

HashMap for faster access. The serialization and deserialization of both rules and

Sensor Counter is implemented using Google Protocol Buffer [pro]. The hash for

each rule is computed on the fields {appName, UID, sensorType, ruleSeqNum}

where ruleSeqNum is a sequence number assigned to a rule for a sensorType.

This allows multiple rules for a sensor implementing the OR operation on con-

texts (AND operation is implemented by allowing multiple contexts for each rule).
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(a) (b) (c) (d) (e) (f)

Figure 4.7: (a) List of installed apps showing number of sensors and number of possible

inferences. (b) Semantic Firewall Configurator showing list of inference categories with

option to block or allow. (c) List of rules configured for different sensors. Multiple rules

with combination of contexts can be configured for each sensor. (d) Direct Firewall

Configurator for privacy actions and their parameters. (e) List of external contexts

registered with FirewallManager and ability to add new ones. (f) Screen to annotate

significant places on the map (provides built-in Location context for rules).

UID is assigned to an app by Android at install time.

The FirewallConfigManager interfaces with both the Semantic and the Di-

rect Configurator modules of FirewallManager app and communicates the privacy

rules to the FirewallConfigService through the binder interface. The service

runs within a system process and writes the rules to the /data/firewall-config

file and signals the LocationManagerService as well as the SensorService to

reload the new rules.

4.8 Evaluation

We implemented ipShield by modifying the Android Open Source Project [aos]

(AOSP, branch 4.2.2 r1). We deployed and performed all our tests on the Google

Nexus 4 phone (1.5GHz quad-core Qualcomm Snapdragon
TM

Pro, 2GB RAM).
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4.8.1 Performance Overhead

We measured the overhead incurred by running ipShield to highlight that it is

feasible to deploy it on current mobile platforms without impacting user experience

in terms of battery life and app responsiveness.

4.8.1.1 Rule Access

Android supports four different sampling rates. On the Nexus 4 we found that on

average SENSOR DELAY NORMAL and SENSOR DELAY UI are less than 10Hz,

SENSOR DELAY GAME is around 50Hz and SENSOR DELAY FASTEST is around

200Hz. In Fig. 4.8 (a), the blue bars show the times taken to load the rules from

the file (/data/firewall-config) into the HashMap, which are negligible. The

green bars in the figure represent total time for the rules to take effect after

configuration. For SENSOR DELAY NORMAL and SENSOR DELAY UI no data

sample will be released before the new rules take effect even for 200 rules. In

reality, we believe that the number of privacy rules will typically be less than 50,

therefore for SENSOR DELAY GAME and SENSOR DELAY FASTEST less than 2

and 6 samples will be released before the 50 rules take effect, respectively.

4.8.1.2 Sensor Data Access

The overhead i.e., difference in time for fetching one data sample using ipShield

compared to that on unmodified AOSP is shown in Fig. 4.8 (b). The overhead is

computed by taking the average of fetching 30000 samples. Each sensor is sampled

at SENSOR DELAY FASTEST (200Hz). The time for ipShield is averaged over the

time for performing each of Constant, Perturb, and Normal (no change) actions

on every accessed sample. We can see that the access overhead per sample is less

than 20µsec – negligible even for the fastest sampling rate.
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Figure 4.8: (a) Time taken in for the rules to load into memory and take effect. (b) Time

overhead to fetch one sensor data sample sampled at SENSOR DELAY FASTEST.

4.8.1.3 CPU and Memory Overhead

The Rule-Based Obfuscator block is included inside both the SensorService

and the LocationManagerService components that run as threads inside the

system server process. For each data sample, the Rule-Based Obfuscator block

is called to apply the privacy actions. We compare the overhead of the Obfuscator

block with AOSP by profiling the average CPU utilization of the phone while

running the Ambulation app [RMB10] which continuously requests sensor data

(GPS, accelerometer) at a rate of 1Hz on a Nexus 4 phone. CPU utilization with

AOSP averaged 2%. CPU utilization with various privacy actions averaged 2.5%

and never exceeded 3%. It should be noted that the CPU utilization (and hence

energy consumption) will scale with the sampling rate. As shown in the energy

analysis that follows this section, we believe that the overhead of ipShield is small

enough to have negligible effects on overall system performance.

Memory overhead for the transformations is shown in Fig. 4.9 (a). The highest

overhead is for Perturb and is less than 0.5MB. There is a dip in memory usage for

Suppress action which lowers the average memory overhead over all the operations

in ipShield to around 0.07MB.
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Figure 4.9: (a) Memory Overhead. (b) Energy Overhead.

4.8.1.4 Energy Overhead

We compare the energy overhead of ipShield to AOSP by plotting the time to

drain the phone battery from 100% to 90%, while the Ambulation app is contin-

ually running in the foreground for Transportation Mode inference. All network

interfaces and radios are turned off, and the screen display is on at the lowest

brightness. We acquire a CPU wakelock in the app to prevent the phone from

sleeping. The inference frequency of the app is set to 4Hz. We measure the drain

due to three actions: Normal, Constant, and Perturb which will consume more

power than the AOSP. Fig. 4.9 (b) shows the results: ipShield on average drains

the battery 3min 37s (∼ 8.2%) faster than AOSP, which we consider as a marginal

overhead. In typical usage scenarios where the screen is at a higher brightness

setting and the network subsystem is active we expect the energy overhead for

ipShield to be relatively lower.

4.8.2 Vulnerability of Current Apps

We did a survey of the top 60 free apps from Google play store to find the different

sensors used by these apps. We installed and executed each of the apps from the

play store, and noted the permissions to sensors requested by the apps at install

time, and also the sensors which were being accessed without permission using
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Sensors App Name Inference Categories

GPS
Twitter, Amazon,

eBay, Google Earth (and 15 more..)
A1: Loc, Speed, Route

Acc
Despicable me, Subway Surfers,

Accupedo Pedometer

A2: TM, Device Placement,

Text on Keyboard

Audio Snapchat, Vine, Cadiograph
A3: Speaker, Loc, Emotions,

Stress

Acc + GPS Picsart, Temple Run A1 + A2

GPS + Audio
FB, Tango, Whatsapp, Shazam,

GoSMS
A1 + A3

Acc + GPS + Audio Instagram, Neon motocross A1 + A2 + A3

Acc + Pro + GPS + Audio Skype A1 + A2 + A3

Acc + Rot + GPS Maps
A1 + A2, Onscreen Taps,

Text Entered on Phone

Acc + Gyro + Pre + GPS Saga Lifelogging
A1 + A2, Onscreen Taps,

Text Entered on Phone

Table 4.4: Sensors and possible inferences from top apps in Google Play Store (all have

access to network). Loc:Location, Acc:acclerometer, Pro:proximity, Rot:rotation vector,

Gyro:gyroscope, Pre:pressure, TM:Transportation Mode.

ipShield. We also made use of the description of the app provided at the app store

for additional information (if any). This provided the list of sensors used by each

app. We then used the Inference DB to create the association between app and

possible inference categories as shown in Table 4.4. The results from this survey

validates our claim that GPS and accelerometer which are the most used sensors

in academic research (Fig. 4.6) are also the most widely used sensors in apps. We

further note, that many of these apps have access to data from innocuous sensors,

combinations of which can be maliciously used to predict a lot more inferences

than what they advertise.
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4.8.3 Case Studies: Revisited

We now illustrate how ipShield can be used to configure simple rules to overcome

the privacy issues outlined in the examples in Section 5.2.

Transportation Mode and KeyLogging : While suppressing accelerome-

ter at all times is a naive solution, to obtain better utility from the app, the user

can use the Direct Rule Configurator to select an external context KEYBOARD UP,

and use it to define the following rules: If ((TimeOfDay in [12am−11 : 59pm])∧

(ExternalContext = KEY BOARD UP ) ∧ (AppName = Ambulation)) then

apply action = Suppress on SensorType = acc; and a similar rule for sup-

pressing SensorType = gyro. We exploit the fact that it is sufficient to block

the accelerometer and gyroscope data while the softkeyboard is active to protect

against keylogging. On executing the above rules, the act of suppression will in-

form an adversary that the user is entering text, but she cannot infer anything

more. The Ambulation app will now continue to work at all times when the user

is not entering text, maximizing its utility to the user.

Saga and Location : A user would often like to keep some of his visits

to sensitive places private. ipShield allows the user to configure the following

rules to spoof her location trace: (1) If ((TimeOfDay in [12am − 11 : 59pm]) ∧

(Place = Friend′sHome) ∧ (AppName = Saga)) then apply action = Constant

and value = Starbucks on SensorType = GPS; (2) If ((TimeOfDay in [12am−

11 : 59pm])∧(Place = Bar)∧(AppName = Saga)) then apply action = Constant

and value = Restaurant on SensorType = GPS; As we mentioned earlier user

can configure labels such as Starbucks, friend’s home, bar using the map interface

in ipShield. To ensure plausibility of the shared location data the perturbation

performed, or even the constant value provided, should conform to a map [Kru09].
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4.9 Discussion

While phones have evolved into sophisticated sensing platforms the corresponding

sensing stack where starting at the raw sensor data meaningful data abstractions

are created at each layer (akin to a communication stack) [ES10] has not yet taken

shape. Efforts like CondOS [CKL11], together with architectural changes such

as dedicated co-processors for context detection [app] are steps in the direction

towards introducing greater semantic clarity for shared data. With such a stack

in place it is then a natural design choice to have a privacy system built within

the OS itself exploiting the semantic granularity of data for improved privacy.

With ipShield we advocated the above design philosophy and took the first

step towards creating a framework with architectural changes built within the

Android OS to protect user privacy. We introduced better monitoring of accessed

resources, proposed a user-understandable privacy abstraction in the form of pos-

sible inferences, allowed users to configure semantic privacy rules, and ensured

that user preferences are securely enforced.

Orthogonal to the enforcement of rules is their creation. In future, to minimize

user interaction in rule formulation it is imperative that systems are able to learn

rules based on the semantic similarity of shared data and basic user preferences.

With respect to granularity of rules, even with user participation privacy rules can

often tend to become conservative impacting the app utility. To this end, careful

integration of ipShield with various static analysis tools [HMN] could provide

better insight into the working of apps and in the creation of balanced rules.

The other pertinent question is regarding the selection of a suitable set of

privacy actions. Integration of cryptographic solutions would enrich the spectrum

of available actions. In addition, currently ipShield does not handle traditional

side-channels attacks and it will be an interesting extension to the current system.

Finally, any such system should be able to run on resource constrained plat-

67



forms. Our experiments with ipShield indicate that it has low performance over-

head and can run continuously on various mobile platforms without impacting

app responsiveness.
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CHAPTER 5

iDeceit: A Privacy Framework For Model-Based

Falsification of Location Traces

5.1 Introduction

Location-aware third-party apps often rely on continuous collection of location

data for providing useful services. The data collected is used by the apps to

improve their loading times [YCG12], provide tailored services [GNG12, tas, onx]

and for efficient life-logging [sag, app]. However, some of the visited locations can

be sensitive to the user and need to be kept private. This leads to a tradeoff where

the user wants to share data to maximize the utility offered by the location-aware

apps, but also desires the privacy of the sensitive locations to be maintained.

Several approaches have been proposed to address the above privacy prob-

lem. One is to break the association between the sensitive data and the user.

This can be done by anonymizing the meta-data (e.g., phone identifiers such as

IMEI and MEID numbers, personal identifiers) associated with the shared loca-

tion data [ZZJ11, Swe02, MKG07]. However, as recent research has demonstrated

that using sufficient auxiliary information it is often possible to deanonymize data

[SH12, NS08, Ohm09, GP09, NS10]. Moreover, in many domains (e.g., medical,

insurance), user identity is an integral part of the shared data and anonymization

may lead to significant utility loss.

Another approach is to add random noise to the data samples [STT12, STL11,

Kru09]. This is inadequate because successive location samples are often corre-
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lated in both time and space [PCG13, GNG12]. An adversary can track the

temporal transitions between the locations, detect inconsistencies in the noisy

data and exploit them to perform denoising. Adding noise also reduces the utility

of shared data.

A third approach proposes to selectively suppress data whenever the user tran-

sitions to a sensitive location. However, this naive strategy does not work as

the very act of suppression reveals information. A modified scheme, adopted

in [GNG12], is to probabilistically suppress data, i.e., always suppress when in a

sensitive location and with a non-zero probability suppress when in a non-sensitive

location. However, probabilistic suppression can often be conservative and result

in loss of app utility especially when the user is not in a sensitive location (see

Section 5.9). In addition, suppression of data can raise suspicion of possible ob-

fuscation being performed by the user prompting a change in adversarial strategy.

To overcome the inadequacies in the above approaches a desirable strategy is

to substitute the sensitive location segment with another that is safe (i.e., not

sensitive). However, there are several challenges to implementing such a strat-

egy. First, the selected safe segment should be plausible or consistent with the

previously released data to avoid identification. Second, the falsified trajectory

should be able to track and if possible converge to the actual user trajectory. This

is because every safe location that is falsified for reasons of plausibility leads to

utility loss. Finally, suitable metrics are required to systematically select one from

among multiple candidate safe segments for substitution.

We present iDeceit, a model-based falsification framework that implements

substitution of data segments with synthetic data to maintain privacy of sensitive

locations while ensuring the plausibility of the entire location trace. To main-

tain plausibility of substituted data, iDeceit employs a user-behavior model that

captures the temporal correlation between the locations visited by the user over

time. Whenever a user visits a sensitive location the model is used to identify safe
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Figure 5.1: Example of a model using locations visited by a user over time.

candidate locations for substitution. By defining suitable utility, privacy and a

novel plausibility metric, an optimal candidate location is chosen for substitution.

Every subsequent release of data ensures that the entire falsified trajectory is still

plausible and follows the actual user trajectory for possible convergence over time.

To the best of our knowledge, ours is the first work to demonstrate the feasibility

of model-based substitution for plausible falsification of location traces.

Plausible substitution offers another significant advantage. If done carefully,

it can ensure minimal or no loss to privacy. In fact, we formally prove that us-

ing our model-based substitution ensures zero loss to privacy. This compares

favorably with δ-privacy that has been used traditionally in location privacy re-

search [GNG12]. We implemented iDeceit on the Android OS by introducing a

new data flow path for pushing synthetic sensor data to the apps. Applying iDe-

ceipt to substitute randomly chosen sensitive locations in real-life location data

collected from a week-long study with 22 participants shows that iDeceit releases

data for paths that are plausible (around 80%) as per user behavior, while pro-

viding maximum utility (around 90%), under zero-loss privacy.
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5.2 Case Study

A user shares her location data with an app for accurate life-logging. Figure 5.1

illustrates the temporal behavior of the user over time. In particular, the nodes

in green marked {Home, Work, Hospital} are the possible locations visited by

the user over time. An edge between two nodes imply a possible transition,

and although not shown in the figure, each edge is annotated with a probability

value. Consider the trajectory marked by red edges in Figure 5.1. This trajectory

consists of path0 ={(8am, Home), (10am, Hospital), (12pm, Hospital), (2pm,

Work), (4pm, Home)}. Now assume that the user has privacy concerns about the

app provider knowing that she visits the Hospital and stays there for long time.

Accordingly, she marks the state (12pm, Hospital) as a sensitive state. The main

objective of iDeceit is to release (and artificially synthesize if needed) data that

hide the fact that the user is present at the Hospital at 12pm while simultaneously

ensuring that maximum number of locations are accurately reported to the app.

We make multiple observations. First, although {Hospital at 10am} is a safe

state we cannot release it because typically if the user visits the Hospital at 10am

she always stays there till 12pm – revealing the sensitive state. Thus, no released

path should include the {Hospital at 10am} node. We use this intuition to remove

all nodes and edges that can lead to any sensitive node. In the resulting residual

graph every path is safe ensuring zero-loss privacy.

Second, among the green nodes there are two choices for selecting falsified but

plausible paths: path1 ={(8am, Home), (10am, Home), (12pm, Home), (2pm,

Home), (4pm, Home)} or path2 ={(8am, Home), (10am, Work), (12pm, Work),

(2pm, Home), (4pm, Home)}. iDeceit needs to decide which path is better to

release. Thus, we need a metric to select between competing paths while account-

ing for the typical user behavior. For example, if the user typically goes to Work

between 10am− 12pm then path2 should be chosen over path1. We define a novel
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plausibility metric to quantify this notion.

Finally, none of the nodes in path1 or path2 match the nodes visited by the user

in path0 reducing the utility of the falsified path. To improve utility and increase

choices available paths we merge together multiple user graphs into a larger super

graph and search paths in this super graph. In Figure 5.1, the nodes marked

{Theater} together with the edges in purple correspond to information obtained

from another user graph. In the super graph, path4 ={(8am,Home), (10am,

Work), (12pm, Theater), (2pm, Work), (4pm, Home)} matches the visited node

Work at time 2pm. Thus, path4 provides greater utility than paths path1 and

path2 but has lower plausibility as it includes nodes not present in the original

user graph. This tradeoff between plausibility and utility in competing paths is

the optimization problem we solve.

5.3 Solution Approach

An overview of the components required to implement iDeceit is described below.

5.3.1 Trusted Server

The server is used to upload user data and perform offline training of models

that capture the temporal transitions between locations. It has an aggregate view

of the data from different users which is used to train a super model containing

all the locations and transitions for all users. While generating the super model

the server also creates a dictionary that establishes a unique name space for the

different locations across all users.
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(a) (b) (c) (d) (e) (f)

Figure 5.2: (a) The map interface is used to annotate locations (b)-(c) Time dependent

sensitive locations are selected from the list of pre-configured locations. (d) List of

installed apps and the sensors they access is shown. (e) Rule configuration page allows

the user to configure the playback option for sensors at an app level. (f) Finally, falsified

traces can be recorded and viewed by the user.

5.3.2 Privacy-Aware Model Generator (PAG)

The super model is a population-scale model trained using data from all users.

The PAG block customizes the super model for a specific user. In addition, each

user specifies some nodes in the model to be sensitive. PAG utilize this knowledge

about the sensitive locations and generates a safe residual model by removing all

the nodes that are sensitive or can lead to a sensitive node.

5.3.3 Path Planner (PP)

The PP block determines whether or not iDeceit needs to falsify (fabricate) the

current location. It implements algorithms that take as input the current location,

the previous released location, the residual (safe) model and the user model. The

output of the algorithm is the next safe state that can be released.
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5.3.4 User Interaction

To motivate the system architecture we begin by describing the end-to-end user

interaction with iDeceit (see Figure 5.2). The user starts by annotating locations

for a previously saved trace (Figure 5.2(a)). These annotated traces can then be

uploaded to the server for constructing the model. Next, the user can specify time

dependent sensitive locations from among the configured ones (Figure 5.2(b) and

(c)). Finally, from a list of currently installed apps on the phone, depending on

the sensors they access (Figure 5.2(d)) the user can select apps and configure a

playback option on their accessed sensors. The playback mechanism is responsible

for pushing synthetic data generated for falsified paths to the apps. In addition to

synthetic data the playback mechanism also allows the replay of data from a pre-

viously uploaded falsified location trace (Figure 5.2(e)). Falsified traces generated

by iDeceit can also be recorded and viewed at a later time (Figure 5.2(f)).

5.4 Mathematical Definitions

In this section, we introduce our formal notation and define the various models

and metrics.

5.4.1 User Model

A user transitions between different location over the course of a day. Our target

is to build a mathematical model that is able to capture the temporal dependence

between the transitions. In our framework, we utilize a first-order Markov chain

to form the user model [GNG12].

Let Cu = {cu1 , cu2 , . . . cumu
} be the set of distinct locations for the user u and

T = {1, . . . , T} ∈ N represent the time instants over the day. Since we aim to

model temporal correlation between transitions, we define the state space of the
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Markov chain Ωu as the Cartesian product between the locations Cu and the time

T , i.e.

Ωu = Cu × T ∪ {start, end},

where the start and end nodes are special states such that the user always starts

and ends the day in those two states respectively.

It follows from the above definition of the state space that user context states

are time dependent. For example, the context state “being at home at 9am”

is different than the state “being at home at 9pm”. Incorporating time as a

component of the state allows us to convert the Markov chain into a directed

acyclic graph (DAG) with T+2 stages and |T|×|Cu|+2 different nodes ( notation

|S| denotes the cardinality of the set S).

To differentiate between the locations at time t and those at time t′, we use

the notation Ωu
τ to denote the restriction of the set Ωu to the time t = τ , i.e.,

Ωu
τ = {ωui,t = (cui , t) ∈ Ωu|t = τ, cui ∈ Cu}.

We adopt the notation ωui,t ∈ Ωu
t to denote the state comprising of location i of

the user at time t, i.e., ωui,t = (cui , t).

To model the transitions between the locations, we use:

1. The random variable Xu
t to represent the actual location of the user u at

time t and xut be the value taken by Xu
t , i.e.,

xut ∈ {ωu1,t, ωu2,t, . . . , ωumu,t}.

2. The transition probability P u
t between location ωui,t−1 and ωuj,t at time t is

defined as:

P u
t (ωui,t−1, ω

u
j,t) = P(Xu

t = ωuj,t | Xu
t−1 = ωui,t−1).

We define P u to be the family of all transitions probabilities over all times.

Hence, the user Markov chain can be defined as a pair Mu = (Ωu, P u).
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5.4.2 Augmented Sensitive Locations

The user defines some locations to be sensitive (private). We denote by Ωu
p ⊂ Ωu

the set of sensitive locations that the user wants to keep private.

We augment Ωu
p with additional locations. These locations, when visited, leaks

significant information about the sensitive locations. We denote this new set by

Ωu
p+ and we define it as:

Ωu
p+ = Ωu

p ∪

xut−k |
1∏
j=k

P ut−j+1(xut−j , x
u
t−j+1) = 1, 1 ≤ k < t


Following the notation of Ωu

t , we define Ωu
t,p+ as the restriction of Ωu

p+ to time t

(i.e., sensitive locations at time t).

5.4.3 Released Information Model

iDeceit monitors the current location of the user xut . It then decides whether to

release or synthesize (fabricate) location data before sharing it with the untrusted

apps. Let random variable X̃u
t ∈ Ωu

r , be the released location by iDeceit at time

t and x̃ut the value taken by X̃u
t . Our objective is to ensure that the released

random variable x̃ut leaks zero information about the sensitive locations.

In order to achieve zero information leakage, the released locations is selected

from the residual (or allowed) Markov chain, denoted by Mu
r = (Ωu

r , P
u
r ). As the

name implies, the residual Markov chain is constructed by removing the set of

extended sensitive locations Ωu
p+ from the original Markov chain. Following the

same notation, we denote by Ωu
t,r the set of the allowed locations at time t.

5.4.4 Adversary Model

We assume a powerful adversary that knows the user Markov chain Mu. In ad-

dition, to incorporate side channel information, we further assume that the ad-

versary can construct a larger Markov chain Ma = (Ωa, P a) by merging different
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behaviors (Markov chains) from other users as well, i.e. Mu ⊆ Ma. For example,

if Mu represents the routes taken by user u, our model allow for the adversary

to have additional knowledge about alternate routes taken by other users. The

adversary can use these additional information to infer more about the user u.

The Markovian adversary utilizes Ma along with the released context state x̃ut

to infer the current user state. We denote by X̂a
t the random variable representing

the adversarial belief about the actual user state. In other words, the adversary

maintains a prior belief about Xu
t being a sensitive state, denoted by P(X̂a

t ∈ Ωu
t,p).

Once a new state x̃ut is released, the adversary uses it to update the posterior belief

denoted by P(X̂a
t ∈ Ωu

t,p | X̃u
t = x̃ut ).

The Markovian assumption on the adversary also implies the following inde-

pendence and reverse-time independence properties:

P(X̂a
t = x̂ut |X̂a

1 = x̂u1 , . . . , X̂
a
t−1 = x̂ut−1, X̃

u
1 = x̃u1 , X̃

u
t = x̃ut )

= P(X̂a
t = x̂ut | X̂a

t−1 = x̂ut−1, X̃
u
t = x̃ut ), (5.1)

P(X̂a
t = x̂ut |X̂a

t+1 = x̂ut+1, . . . , X̂
a
T = x̂uT , X̃

u
t+1 = x̃ut+1, X̃

u
T = x̃uT )

= P(X̂a
t = x̂ut | X̂a

t+1 = x̂ut+1, X̃
u
t+1 = x̃ut+1). (5.2)

The above two properties imply that a future decision of the adversary is inde-

pendent of the past decisions given the current state of the Markov chain. Fur-

thermore, if the adversary tries to use future information to update a past decision

then the past decision is again independent of the future information given the

current state.

In addition, the following refer to the inference capabilities of the adversary:

P(X̂a
t ∈ Ωu

t,p | X̃u
t ∈ Ωu

t,p+) = 1 (5.3)

P(X̂a
t ∈ Ωu

t,p | P ut,r(X̃u
t−1, X̃

u
t ) = 0) = 1 (5.4)

The first assumption (Eqn. (5.3)) limits the system from releasing states that lead

to sensitive states. The second assumption (Eqn. (5.4)) prevents the system from
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releasing states that are not compatible with the Markov chain. The above model

implies that the adversary gains a lot of information about the sensitive state

whenever the released states do not obey the Markov chain and/or the sensitive

state is actually released.

5.4.5 Metrics

Let Xu = {start, xu1 , . . . , xuT , end}, xut ∈ Ωu
t , t ∈ T, be the actual user trajectory

over the duration of day. Similarly, X̃u = {start, x̃u1 , . . . , x̃uT , end}, x̃ut ∈ Ωu
t,r, t ∈ T,

are location released over the day (note that the adversary sees only sensor data

corresponding to the released contexts).

There are three considerations in generating X̃u. First, the path should be as

close as possible (minimum distortion) to the actual trajectory Xu. We denote

this metric as Ψutil. Second, the path should be typical, i.e., X̃u should respect the

Markov chain model, to ensure plausibility. We denote this metric as Ψplau. Fi-

nally, the path should provide privacy using metric Ψpriv to the user. We formally

define all the three metrics below.

Utility: This metric is designed to capture the mismatch (distortion) between

the actual and released trajectories. Consider the actual user location at time t,

denoted by xut and the released location x̃ut . Define the utility function:

Futil : Ωu
t × Ωu

t,r → [0, 1]

This function takes as an arguments both xut and x̃ut and return a value between 0

and 1. The utility function should return maximum value whenever the released

location is equal to the actual location, i.e. F(xut , x̃
u
t ) = 1 whenever xut = x̃ut .

Now, we can define our utility metric Ψutil as:

Ψutil =
1

|T \ Tp|
∑

t∈T\Tp

xut ∈Xu,x̃ut ∈X̃u

Futil(xut , x̃ut ), (5.5)
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where Tp = {t | xut ∈ Ωu
t,p+} is time instances when the user is in a sensitive

location.

In Eqn. (5.5), we calculate the overall utility gain. By maximizing this quan-

tity, we minimize the output distortion. We ignore the times when the user was

in a sensitive state. Loss in utility due to the sensitive locations is an inevitable

consequence of protecting privacy.

Plausibility: This metric is designed to ensure that the sequence of released

locations in X̃u is typical as per the residual Markov chain Mu
r . In other words,

the probability of the chosen trajectory should be high enough to make it seem

plausible to an adversary.

We define Ψplau as the sum of the probabilities of the released path over each

time instance t normalized by the path with the maximum probabilities:

Ψplau =

∑
t∈T,x̃ut−1,x̃

u
t ∈X̃u P ut,r(x̃

u
t−1, x̃

u
t )∑

t∈T maxx̃ut−1,x̃
u
t ∈Ωu

t,r
P ut,r(x̃

u
t−1, x̃

u
t )
. (5.6)

Privacy: The adversary maintains a prior belief, P(X̂a
t ∈ Ωu

t,p) on the user

being in a private state at time t. On observing the released states the adversary

revises his belief on the current state and computes the posterior probability. We

define the privacy metric Ψpriv over the entire released trajectory as:

Ψpriv =
∑
t∈T

P(X̂a
t ∈ Ωu

t,p | X̃u)− P(X̂a
t ∈ Ωu

t,p). (5.7)

Eqn. (5.7) can be interpreted as the information gain after observing the released

data. Thus, the posterior is always greater than or equal to the prior. Also, in

Eqn. (5.7) we condition on the data released over the entire day X̃u protecting the

user not only against data released until time t, but against all the data released

over a day.
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5.4.6 Problem Statement

Using the above definitions and notation, we can state the problem as follows.

Problem 7. The privacy-utility tradeoff can be formulated as the following opti-

mization problem:

max γΨutil + (1− γ)Ψplau (5.8)

s.t. Ψpriv = 0 (5.9)

where γ is a tuning parameter such that 0 ≤ γ ≤ 1.

Note that setting γ = 0, is discouraged as it may lead for unacceptable per-

formance by not penalizing the deviation between the paths Xu and X̃u. Also

note that both Ψutil and Ψplau are normalized to a value between zero and one.

Maximizing the objective in Eqn. (5.8) ensures that the released context states

and the corresponding sensor data released closely match the actual data, and are

plausible in the case of falsification. The parameter γ can be used to prioritize

between the utility and the plausibility metrics. The constraint in Eqn. (5.9) en-

sures that the adversary does not learn anything more about the actual context

state at any time t ∈ T using the released sensor data (zero privacy leakage).

5.5 Algorithmic Analysis of Blocks

In this section, we detail the algorithms used in the building blocks of iDeceit.

5.5.1 Trusted Server

As discussed before, iDeceit uses a trusted server to train the Markov chain based

models. A user uploads a mobility trace and the server computes the model

with locations as nodes and transition probabilities between nodes determined

by the frequency of travel between the corresponding locations. The server also
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Figure 5.3: Illustration of the steps involved in generating a falsified trajectory. (a) A

super Markov chain is shown where the nodes in green are from the user Markov chain

and the additional nodes in violet are from the remaining population. Edges in black

are ones whose transition probability is same as that in the user Markov chain, ones

in blue have different probability than in the user Markov chain, and violet edges are

absent in the user Markov chain. (b) Residual Markov chain with state ωu2,4 as the

private state. (c) Actual user trajectory is shown by the red arrows.

utilizes information collected from different users in order to extend the search

space. By aggregating location information from all users (Ωs), along with the

transition probabilities from all users (Ps), we can construct the super Markov

chain Ms = (Ωs, Ps).

An example of a super Markov chain is shown in Figure 5.3(a). The nodes in

green are due to the user and the ones in violet are from the remaining population

(excluding the user). There are three kinds of edges in Ms. The edges in black

are ones that occur only in the user Markov chain. The ones in blue are common

to both the super and user Markov chains with possibly different probabilities in

each. Finally, the ones marked violet are exclusively due to the super Markov

chain.

5.5.2 Privacy-Aware Model Generator (PAG)

The super Markov chain contains all the possible locations and transitions for all

the users. However, for effective falsification, we want to select nodes and edges
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that strongly reflect user specific behavior. To achieve this we generate a projected

Markov chain, Mu
π = (Ωu

π, P
u
π ) as follows.

Consider two locations xut−1 and xut such that a blue edge exist between them

in the super Markov chain Ms = (Ωs, Ps). Then transition probabilities on all the

outgoing edges from state xut−1 ∈ Ωs are modified as follows:

P ut,π(xut−1, yt) = αP ut (xut−1, yt) + (1− α)Pt,s(x
u
t−1, yt) (5.10)

where 0 ≤ α ≤ 1 and yt ∈ Ωt,s. If yt 6∈ Ωu
t then we set P u

t (xut−1, yt) to

zero. For example, in Figure 5.3(a), there is a blue edge between ωu2,3, and ωu1,4.

Using Eqn. (5.10), the transition probabilities Pt,s(ω
u
2,3, ω

u
1,4), Pt,s(ω

u
2,3, ω

u
2,4) and

Pt,s(ω
u
2,3, ω

u
3,4) are adjusted in the projected Markov chain Mu

π.

The final step is to remove all the sensitive locations Ωu
p+, along with the

associated transitions, from the projected Markov chain. We call the resulting

graph as the residual (allowed) Markov chain Mr
u = (Ωu

r , P
u
r ). That is,

Ωu
r = Ωu

π \ Ωu
p+, P u

r = P u
π .

A residual graph is shown in Figure 5.3(b) with the set of sensitive state

Ωu
p = {ωu2,4}. We set P u

5,r(ω
u
2,4, ω

u
2,5) = 0. Now, P u

4,r(ω
u
1,3, ω

u
2,4) = 1 therefore we

set P u
4,r(ω

u
1,3, ω

u
2,4) = 0 and since its outdegree is zero we push ωu1,3 as a private

node and similarly for node ωu1,2. After setting P u
2,r(ω

u
2,1, ω

u
1,2) = 0, the deleted

probability of 0.2 is proportionately divided among the remaining edges (ωu2,1, ω
u
2,2)

and (ωu2,1, ω
u
3,2). The same is done for node ωu2,3. Edges marked as p1 → p2 indicate

the probabilities before (p1) and after (p2) adjustment.

Finally, by construction, the residual Markov chain removes the edges connect-

ing every sensitive node in Ωu
p+. Thus, there exist no path in the residual graph

that contain a sensitive node ensuring zero-loss privacy for any released path.
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5.5.3 Path Planner (PP)

The PP block takes as input the (i) user Markov chain, Mu (ii) residual Markov

chain, Mu
r (iii) augmented sensitive locations Ωu

p+ (iv) user’s current location (xut ∈

Ωu
t ) and (v) the last released location x̃ut−1 ∈ Ωu

t−1,r. It calculates the next released

location x̃ut ∈ Ωu
t,r.

5.5.3.1 PathPlan Algorithm

The PathPlan (see Algorithm 1) outlines the steps involved in generating the next

safe location which is to be released. If the current location xut is sensitive, the

getNextSafeState is called to get the next safe location (line 3). If the current

location is safe and there exists an edge from the previous released location x̃ut−1

to the current location, then release the current location (line 5). Otherwise, the

current location is safe, but there exist no transition (because of falsification at

an earlier time), again the getNextSafe−

State is invoked (line 7).

There are two parts to the getNextSafeState function: (i) Prediction of the

next safe state (ii) Finding a path that converges to the predicted safe state. We

discuss them below.

5.5.3.2 Prediction

Although the system maintains prior knowledge about the user behavior, captured

by Mu, the exact location at run-time depends on the user decisions and is reflected

in the current state xut . To cope with the unpredictability in the users’ current

location the PathPlan algorithm is executed in the receding horizon sense. At

every time instant t, depending on the current location xut , we need to predict

the most likely next safe location the user will visit and plan a path to it. This

process is then repeated at each time step based on the actual value of xut .
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Algorithm 1 PathPlan: Safe Context State Generator

Require: Ωu
p+,Mu,Mu

r , x
u
t , x̃

u
t−1

1: for t ∈ T do

2: if xut ∈ Ωu
t,p+ then

3: x̃ut ← getNextSafeState(x̃ut−1, x
u
t ,Mu,Mu

r )

4: else if P u
t,r(x̃

u
t−1, x

u
t ) > 0 then

5: x̃ut ← xut

6: else

7: x̃ut ← getNextSafeState(x̃ut−1, x
u
t ,Mu,Mu

r )

8: end if

9: end for

For prediction, we use the probabilities of the paths in Mu. Starting from

the current user location xut , we select the most probable next safe location by

traversing through the edges corresponding to the highest probabilities. Algorithm

2 formalizes this idea in the steps of the Predict algorithm. For a certain look

ahead window length L, the Predict algorithm can return an empty solution which

implies that the user is expected to still be in a sensitive location up to time t+L.

Thus, we need to increase L and re-invoke the Predict algorithm and continue to

do so until we find a safe location. In the worst case this procedure will terminate

at L = T − t+ 1 corresponding to the end state. Going back to Figure 5.3(c), at

time t = 4 and L = 1 the next safe location predicted is ωu2,5.

Algorithm 2 Predict: Predict the Safe State at time t+L

Require: Mu, xut , L

1: xpred = xut

2: for l ∈ {1, . . . L} do

3: xpred ← arg maxxut+l∈Ωu
t+l
P u
t+l(xpred, x

u
t+l)

4: end for
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5.5.3.3 Path Finding

The next step is to find an optimum path that connects the current location xut to

the next most probable location state xpred. Optimality of the path is measured

using the utility metric in Eqn. (5.5) and the plausibility metric in Eqn. (5.6).

Path selection is always performed from among the paths in Mu
r . This follows

from the fact that there are many more paths to choose from in Mu
r than in Mu

and all those paths are safe by construction.

As shown in Figure 5.3(c), there are four different paths that can be taken

from ωu2,3 to converge to the user trajectory. The possible paths are: Path1 =

(ωu2,3 → ωu1,4 → ωu2,5), Path2 = (ωu2,3 → ωu1,4 → ωu1,5 → ωu1,6 → ωu2,7), Path3 =

(ωu2,3 → ωu3,4 → ωu4,5 → ωu3,6 → ωu2,7) and Path4 = (ωu2,3 → ωu1,4 → ωu1,5 → ωu2,6). We

start by presenting algorithm choices which choose between these different paths

and in the process maximize one or the other metric in Eqn. (5.8). Finally, we

will also provide a technique to jointly maximize the two metrics.

• Shortest Path (SP): We start with the extreme case when the tuning param-

eter in Problem 7, γ, is set to one. Hence, we focus only on the maximization

of Ψutil. It is straightforward to show that maximizing Ψutil is equivalent to

finding the shortest path between the prior released location x̃ut−1 and the next

safe location xpred. Standard techniques like Dijkstra’s algorithm can be used

to find such a path. Since we focus only on maximizing Ψutil, we can ignore the

probabilities associated with the different paths and treat all edges as having

equal weights. The SP algorithm iterates over different look ahead window sizes

until the Predict algorithm finds a safe location and there also exists a path to

it. These steps are illustrated in Algorithm 3.

In Table 5.1, SP algorithm chooses Path1 requiring two hops to converge to the

next safe location ωu2,5.

• Highest Probability Edge (HiPE): We consider the other extreme by set-
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Algorithm 3 SP: Shortest Path algorithm

Require: Mu,Mu
r , xt, x̃

u
t−1

1: for L ∈ {t, . . . T} do

2: xpred ← Predict(Mu, xut , L)

3: if xpred 6= ∅ then

4: path← Dijkstra(x̃ut−1, xpred,Ω
u
r )

5: if path 6= ∅ then

6: Return path and exit.

7: end if

8: end if

9: end for

ting the tuning parameter in Problem 7, γ, to zero and hence we focus on

maximizing only Ψplau. A greedy approach to maximizing Ψplau is to always

traverse through the edges with the highest transition probability. However,

the problem occurs when the user moves into a low probability safe location.

At that point the released path diverges and can over time continue to diverge

from the user trajectory leading to loss in utility. Accordingly, the case where

γ = 0 is prohibited in the first place for Problem 7. However, this discussion

provides insight for the next algorithm. In Table 5.1, for the specific set of edge

probabilities, Path3, chosen using this approach, converges to the actual user

trajectory.

• Maximize Utility and Plausibility (MUP): In this algorithm we consider

the joint optimization of Ψutil and Ψplau. Algorithm 4 outlines the steps involved

in the MUP algorithm. Selecting the shortest path between x̃ut−1 and xpred will

ensure good utility. However, to account for plausibility, we apply Dijkstra’s

algorithm taking the probabilities associated with edges as weights, i.e. for an

edge e with probability p, we assign a weight equal to 1− p. Hence, Dijkstra’s

algorithm is going to minimize over 1 − p which is equivalent to maximizing
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the plausibility metric. This fact is reflected in the MUP algorithm by invoking

Dijkstra’s algorithm with Mu
r as an argument (line 4 in Algorithm 4) compared

to the SP algorithm where it is invoked with Ωu
r (line 4 in Algorithm 3) which

does not reflect the probabilities associated with edges.

Unlike the SP algorithm, MUP does not terminate once a path is found. Instead

it explores different paths over the entire look ahead window, associating with

each path a cost measured by Eqn.(5.8). The path with the maximum cost is

selected. In Table 5.1, the cost for different paths using MUP are shown and

Path4 with maximum cost is selected.

Algorithm 4 MUP: Maximize Utility and Plausibility algorithm

Require: Mu,Mu
r , xt, x̃

u
t−1

1: for L ∈ {t, . . . T} do

2: xpred ← Predict(Mu, xut , L)

3: if xpred 6= ∅ then

4: pathL ← Dijkstra(x̃ut−1, xpred,Mu
r )

5: if pathL 6= ∅ then

6: costL ← computeCost(pathi)

7: end if

8: end if

9: end for

10: Lmax cost ← arg maxL∈{t,...T} costL

11: path← pathLmax cost

5.6 Theoretical Guarantees

In this section, we present our theoretical result which shows the falsification of

the location leads to zero-loss privacy guarantee.
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Algorithm Used Path1 Path2 Path3 Path4

SP 1 0.67 0.67 0.833

HiPE x x selected x

MUP 0.897 0.684 0.867 0.905

Table 5.1: Convergence cost to the actual user trajectory in Figure 5.3(c) for different

algorithm choices.

Definition 8. A vertex cut C of a graph is defined as the set of vertices whose

removal renders the graph disconnected.

Definition 9. The vertex connectivity κ of a graph is defined as the size of the

minimal vertex cut, i.e. κ = min |C|.

Theorem 10. Let κur denote the vertex connectivity of the graph representing the

Markov chain Mu
r . If the following condition is satisfied

κur > max
t
|Ωu
t,p+|,

then iDeceit ensures zero-loss privacy, i.e.

Ψpriv =
∑
t∈T

P(X̂a
t ∈ Ωu

p,t | X̃)− P(X̂a
t ∈ Ωu

p,t) = 0.

Proof Of Theorem 10

First, we study how the posterior beliefs of the adversary changes by observing

only the current released state. Define the set:

Sut,r(x̂at−1) = {x̃ut ∈ Ωu
t,r \ Ωu

t,p+ | P u
t,r(x̂

a
t−1, x̃

u
t ) > 0}.

The set Sut,r(x̂at−1) represents the safe states at time t which have edges from the

states in the previous time stage t−1. We can now show the first result as follows:

Proposition 11. If the following conditions are satisfied:
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1. the set of allowed safe states at time t, denoted by Sut,r(x̂at−1), is non-empty,

2. P(X̃u
t ∈ Sut,r(x̂at−1)) = 1,

Then the posterior knowledge of the adversary does not change by observing the

released the value of X̃u
t , i.e.:

P(X̂a
t ∈ Ωu

t,p+ | X̃u
t ∈ Sut,r(x̂at−1)) = P(X̂a

t ∈ Ωu
t,p+).

Proof. We first note that all the states in the set Sut,r(x̂at−1) does match any of

the constraints in the adversary model (Eqn. (5.3) and Eqn. (5.4)). To proof the

result, we resort to Bayes rule as follows:

P(X̂a
t ∈ Ωu

t,p+ | X̃u
t ∈ Sut,r(x̂at−1))

=
P(X̃u

t ∈ Sut,r(x̂at−1) | X̂a
t ∈ Ωu

t,p+)P(X̂a
t ∈ Ωu

t,p+)

P(X̃u
t ∈ Sut,r(x̂at−1))

=
1× P(X̂a

t ∈ Ωu
t,p+)

1
= P(X̂a

t ∈ Ωu
t,p+).

We are also interested in studying how the adversary knowledge will change if

the adversary is using information from time t+ 1 to infer about the state at time

t. In other words, how the posterior knowledge changes if the adversary observed

future information and moves backward in time to update his knowledge about

the state at time t. This can be stated as follows:

Proposition 12. If the following conditions are satisfied:

1. the set of allowed safe states at time t + 1, denoted by Sut+1,r(x̂
a
t ), is non-

empty,

2. P(X̃u
t+1 ∈ Sut+1,r(x̂

a
t )) = 1,
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Then the posterior knowledge of the adversary does not change by observing the

released the value of X̃u
t , i.e.:

P(X̂a
t ∈ Ωu

t,p+ | X̃u
t+1 ∈ Sut+1,r(x̂

a
t )) = P(X̂a

t ∈ Ωu
t,p+).

Proof. The proof follows the same steps of Proposition 12.

We then extend these results to study how the belief of the adversary changes

by monitoring the whole released trajectory X̃u as follows:

Lemma 13. If the following conditions are satisfied:

1. the set of allowed safe states at times t and t + 1, denoted by Sut,r(x̂at−1),

Sut+1,r(x̂
a
t ), are non-empty,

2. P(X̃u
t ∈ Sut,r(x̂at−1)) = 1,

3. P(X̃u
t+1 ∈ Sut+1,r(x̂

a
t )) = 1,

Then the posterior knowledge of the adversary does not change by observing the

released trajectory X̃u = {start, X̃u
1 , . . . , X̃

u
T , end}, i.e.:

P(X̂a
t ∈ Ωu

t,p+ | X̃u) = P(X̂a
t ∈ Ωu

t,p+).

Proof. It follows from the independence assumptions on the Markovian adversary

(Eqn. (5.1) and Eqn. (5.2)) that

P(X̂a
t ∈ Ωu

t,p+ | Xu) = P(X̂a
t ∈ Ωu

t,p+ | X̃u
t , X̃

u
t+1)

Combining the previous equality with Propositions 11 and 12, we conclude the

result.

Note that the previous results asks for the set Sut,r(x̂at−1) to be non-empty. It

then important to study the conditions for which the non-emptiness condition on

Sut,r(x̂at−1) is satisfied. This condition can be related to the graph properties of the

Markov chain as follows.
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Lemma 14. Let κur denote the vertex connectivity of the graph representing the

Markov chain Mu
r . If the following condition is satisfied:

κur > max
t
|Ωu

t,p+|, (5.11)

then the set Sut,r(x̂at−1) is non-empty for all time t ∈ T and for all x̂at−1 ∈ Ωa
t .

Proof. Assume, for the sake of contradiction, that the condition in (Eqn. (5.11))

is satisfied and for time t there exists x̂at−1 such that the set Sut,r(x̂at−1) is empty.

However, it follows from the definition of the set Sut,r(x̂at−1) that Sut,r(x̂at−1) is empty

if and only if after removing the nodes in Ωu
t,p+1, the graph become disconnected

at time t. Hence, this implies that κur ≤ |Ωu
t,p+|. Since t is arbitrary, we arrive at

a contradiction.

The previous two results paves the way to show the main privacy guarantee

of iDeceit which can be stated as follows.

Proof. (Theorem 10) Follows directly by applying Lemma 13 and Lemma 14.

5.7 Implementation

iDeceit provides prototype implementation of the following components (shown

in green in Figure 5.4): (i) Context Engine (CE) (ii) Data Synthesis block (DS)

(iii) PAG and Path Planner (iv) A data path for distributing the synthetic data

to the apps. While (i) and (ii) are specific to location, (iii) and (iv) are generic

implementations.

CE and DS blocks: iDeceit takes as input a dictionary, provided by the

server. The dictionary is a mapping between location names configured by the

user, actual GPS measurements in terms of latitude, longitude pairs, and a server

generated label unique across different user traces. The Markov chains (user and

super) are constructed using the unique labels as states. This dictionary acts
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Figure 5.4: Android Implementation of iDeceit.

as a CE allowing reverse lookup from GPS measurements to locations, and from

locations to the unique labels in the models.

The DS block outputs the GPS coordinates for the location output by the

PP block. There exist a one-to-one mapping between a latitude and longitude

pair and a location, hence the dictionary also doubles up as the DS block. For

a given falsified location, the corresponding GPS measurement can be looked

up in the dictionary and released. The feasibility of location lookup from GPS

measurements at a large scale on mobile platforms has already been demonstrated

in [GJP12].

PAG and the PP blocks: The PAG block takes as input sensitive locations

configured by the user, maps them to labels in the super Markov chain using

the dictionary and generates the residual Markov chain. Similarly, the PP block

implements the MUP algorithm and outputs the location to the DS block.
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Data Path: Two existing data paths in Android are shown in Figure 5.4.

Path-S (without the iDeceit components in green) illustrate the flow of data from

sensors like Accelerometer, Gyroscope, Light etc. to apps in Android. The corre-

sponding path for the GPS data is shown by Path-G. Sensor data is continuously

polled by the {Sensor, LocationManager}Service using the SensorHAL and

passed to the corresponding {Sensor, Location}Manager instances. The man-

agers are user-facing proxies to the services, and can be instantiated by the apps

for accessing sensor data. On instantiation by an app, each manager initiates

a BitTube connection with their corresponding service. BitTube provides a full-

duplex socket pair. When data is received at the service it writes the data into one

end of the socket pair and it is read by the manager at the other end and passed

to the app. However, data in both the paths can currently flow in only one direc-

tion: from the sensors to the apps. Note, the color code for the existing Android

components (excluding iDeceit components) represent process boundaries.

To push synthetic data to the apps, we need a U−shaped data path. The

DS block uses the {Sensor, Location}Manager to push synthetic data to the

{Sensor, LocationManager}Service and then using the original path the data

can be sent to the apps (dotted green lines). To establish this path we need

to make modifications to SensorService( 1 ) and BitTube( 2 ) in Path-S and

in the LocationManagerService( 3 ) and BitTube( 4 ) in Path-G. We modified

the BitTube structure to allow bidirectional communication by enabling write

operation on the socket for the manager and read operation at the other end of

the socket for the service on both paths.

Sensor events generated by the DS are populated in the Sensor-Event class

used for sensor data and written to the socket. At {Sensor, LocationManager}

Service we maintain circular buffers for each of the different types of sensors and

their events. A separate thread is used to continuously poll the socket end point

for synthetic data and populate the buffers. The user specified rules are written
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to /data/firewall-config file. iDeceit notifies a service whenever the rule file is

updated using Remote Procedure Call (RPC) (we implemented a reloadConfig()

binder call for RPC). The rules specify the fully-qualified package name to iden-

tify the app, the Android sensor type (Android constants for identifying sensors)

and source of synthetic data (replay, synthesize). For the replay mode, a trace

location needs to be provided. The rules are read into a HashMap indexed using

a combination of package name and sensor type. When the service needs to push

data to apps, it checks if a rule exists for the given package name and sensor type

and performs the required buffer switch. The default policy for playback is set

to drop. Thus, if the hardware sensor generates an event and the circular buffer

is empty, with playback configured for the sensor, the sensor data is dropped for

that app, otherwise the data in the circular buffer is sent to the app. Our imple-

mentation is ongoing work and it does not support sending synthetic data at rates

different than the one that is selected by the app. We ensure that only iDeceit

is able to write data by comparing with the package name which is unique across

Android.

5.8 Evaluation

We use data collected during a real-life mHealth study designed to provide insights

into the relationship between physiological markers (stress, smoking etc.), physical

activity and location (with IRB approval). We make use of only the location

data collected as part of the study. We recruited 23 participants, of which 22

completed all 7 days of field study. Each participant carried a study phone to

enable continuous data collection in their free living conditions, and during visits

to significant places on each day during the study period. GPS data, sampled at

1 Hz, was continuously collected on the phone (avg. 10.82 hours of data per day

per user) for a total of about 6 million data samples.
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Figure 5.5: Average number of node types over a day for all users.

We performed preprocessing on the GPS data to identify significant places and

associate semantic labels to those places. For each participant, spatial and tem-

poral thresholds of 100m and 5min respectively, were used to find spatiotemporal

clusters corresponding to significant places throughout the day. For clustering, we

followed the algorithm proposed in [MBG13], resulting in an accuracy of 85.7%.

Next, we assigned semantic labels to these places using the method proposed

in [KR13]. We resolved any confusion in label assignment by manual inspection

of the trace on a map. We ended up with six locations Home, Work, University,

Store, Restaurant, Other. Missing locations were labeled as Other.

Setup for iDeceit: For model learning we use the leave-one-out cross vali-

dation. For each user, we repeated the experiment using data from each day as

test data and the remaining days as training data. The training data was used

to both learn the user Markov chain and together with data from all the other

users used to construct the super Markov chain. The values reported in the plots

are averaged over the different tests performed (seven for every user). We defined

sensitive states in two steps. In the first step, we selected a time interval of the

day (approx. 2 hour duration). In the second step, we selected a subset of the six

places. We then defined the sensitive states to be the selected subset of places in
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Figure 5.6: Max. utility (Ψutil at γ = 1) and Max. plausibility (Ψplau at γ = 0) for all

users.

the chosen interval. The residual Markov chain is generated based on the sensi-

tive states. In a day, data is released every 5min, i.e., | T |= 288. For the utility

metric in Eqn. (5.5), we consider Futil to be an indicator function I{xut =x̃ut } where

xut and x̃ut are the actual and released locations respectively. The function takes

a value of 1 when xut = x̃ut and 0 otherwise.

Node Distribution by Type: In Figure 5.5, a distribution of node types

for each user is shown. Based on the chosen sensitive states, we observed that on

an average 5%(≈ 15 − 20 out of 288) nodes in an actual trajectory are sensitive

for a user on an day (shown in red) and needs to be falsified. A large fraction

(> 90%) of nodes (in green) are safe nodes and can be released. Only a small

fraction of nodes (< 5%) are safe but still need to be falsified (in violet). This

is because either they lead to a sensitive state or to maintain plausibility of the

released trajectory. The falsification of safe nodes contribute to the loss in utility.

Max. Utility and Max. Plausibility: For a given set of sensitive nodes,

we execute the MUP algorithm by setting γ = 1 and find the maximum utility

of the computed path. We then set γ = 0 and find the maximum plausibility of

the newly computed path. Figure 5.6 shows the maximum utility and plausibility
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γWeighing factor

Figure 5.7: Variation in utility, plausibility and the combined (Eqn. (5.8)) metric for

different values of γ.

values obtained for each user. We observe that although on average Ψutil ≥ 0.90

and Ψplau ≥ 0.80, there are variations in these maximum values that we observe

across users. This implies that using a suitable value of γ we can maximize them

jointly for a given path.

Variation of Ψutil and Ψplau with γ: We consider the variation in the

objective function ( Eqn. (5.8)) for different values of γ. We initialize γ to zero

and increment it in steps of 0.1. For a value of γ we compute a path and obtain

the utility (ψutil), plausibility (ψplau) and the objective function for that path. We

repeat this for each value of γ to obtain Figure 5.7. As expected, for small values

of γ, the plausibility metric dominates and as the value of γ increases the utility

factor starts to grow. They are almost equal for γ = 0.5. Hence, γ can be used

to control between the two parameters.

Comparison Between SP, HiPE, MUP: We computed Ψutil and Ψplau

values for all the three algorithms, by setting γ = 0.5. In terms of Ψutil only, SP

performs better than MUP but in terms of Ψplau, MUP does better than SP .

Similarly, for some participants HiPE does better than MUP in terms of Ψplau.

However, as shown in Figure 5.8, when we jointly optimize the two metrics, MUP
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Figure 5.8: Comparison of three different algorithm in terms of the joint metric in

Eqn. (5.8) where γ = 0.5.

always does better than both the algorithms.

Resource Consumption: We found that the PathP lan algorithm on an

average took ≈ 2ms to execute on the phone, which is negligible compared to

usual sampling rates on Android (SENSOR DELAY NORMAL around 10Hz, and

SENSOR DELAY FASTEST around 200Hz). The memory overhead in storing the

Markov chains is less than 1 MB. Also, note iDeceit runs when Playback is con-

figured, and consumes negligible power. To further reduce power consumption

pre-recorded traces maybe be replayed to the apps.

5.9 Related Work

Model-Based Privacy: We summarize other efforts towards model-based loca-

tion privacy below. In [MRS09], mobility traces are used to compute pollution

exposure. To protect path privacy a database of paths is maintained and a syn-

thetic path which have the same pollution exposure as the original trace is released.

However, in doing so, the utility from any service which relied on the trace is com-

pletely lost. We want to provide privacy while ensuring minimum distortion to
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the original trace. Model-based privacy has also been proposed in [PCG13] where

a DBN is used to infer the sensor combinations that can lead to sensitive contexts.

The paper does not provide any formal analysis of privacy as the primary focus was

to use the DBN to attain energy efficiency for continuous context computation.

It shares contexts instead of sensor data and does not consider either falsification

or synthesis of data. Similarly, in [GJP12], instead of GPS measurements, places

are released to protect raw data. In [STT12, STL11] model-based obfuscation of

instantaneous locations is considered. Obfuscation of traces through spatial and

temporal cloaking is considered in [GG03]. A detailed exposition of other location

privacy preserving techniques can be found in [Kru09]. The work that is closest

to iDeceit is MaskIt [GNG12] and below we provide a detailed comparison.

Comparison With MaskIt: Consider the Markov chain shown in Figure 5.9.

The possible locations are Cu = {1, 2, 3}. Incorporating time the state space

Ωu = {ωu1,1, ωu2,1, ωu3,1, . . . , ωu3,3, start, end}. The sensitive location specified by the

user is Ωu
p = {ωu2,2}. We have P u

1 (start, 2) = 1, P u
2 (2, j) = 1

3
, for all j ∈ Cu,

P u
3 (i, 2) = 1, for all i ∈ Cu and P u

4 (2, end) = 1. We show different cases and

for each case compare the utility and privacy provided by our scheme to MaskIt.

In MaskIt, the privacy algorithm has to choose between not releasing location

data (which is called the suppress action and is denoted by ⊥) or releasing it

with certain probability. For sensitive locations, the suppress action ⊥ is always

chosen while for all other “safe” locations, the release probabilities are chosen such

that Ψpriv is always upper bounded by some user defined value. Note that unlike

Problem 7, the privacy algorithm designed in MaskIt allows for non-zero privacy

leakage.

Case 1: The actual user path is Xu = {start, xu1 = ωu2,1, x
u
2 = ωu2,2, x

u
3 =

ωu2,3, end}. At times t = 1 and t = 3 the user is in a “safe” state and hence

x̃u1 = xu1 and x̃u3 = xu3 . At t = 2 the user is in a sensitive location. Accordingly,

MaskIt will suppress ωu2,2 with probability 1, i.e., P(X̃u
2 =⊥| Xu

2 = ωu2,2) = 1,
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suppress ωu1,2 with probability p1 (P(X̃u
2 =⊥| Xu

2 = ωu1,2) = p1), and ωu3,2 with

probability p3 (P(X̃u
2 =⊥| Xu

2 = ωu3,2) = p3).

The adversarial posterior knowledge is then given by P(X̂a
2 = ωu2,2 | X̃u

2 =⊥)

which can be computed as follows

P(X̂a
2 = ωu2,2 | X̃u

2 =⊥) =
P(X̃u

2 =⊥| X̂u
2 = ωu2,2)P(X̂a

2 = ωu2,2)

P(X̃u
2 =⊥)

where P (X̃u
2 =⊥| X̂a

2 = ωu2,2) = 1. This follows from the design of MaskIt where

a location is suppressed whenever the adversary is going to infer that the current

location is sensitive. Hence

P(X̂a
2 = ωu2,2 | X̃u

2 =⊥)

=
1× P(X̂a

2 = ωu2,2)∑3
i=1 P(X̃u

2 =⊥| Xu
2 = ωui,2)P(Xu

2 = ωui,2)

=
1

1
3(1 + p1 + p3)

P(X̂a
2 = ωu2,2)

For MaskIt to achieve the privacy bound in Problem 7 (i.e. Ψpriv = 0) p1 and p3

must be equal to 1, which in turn implies that MaskIt will completely suppress

all outputs at time t = 2 regardless of whether xu2 is safe or not. Unlike MaskIt,

iDeceit is going to falsify the data and release either ωu1,2 or ωu3,2. Thus, for this

scenario, when the user is actually in a sensitive location, for achieving the privacy

bound in Eqn. (5.7), iDeceit provides the same utility as MaskIt, but is better in

terms of plausibility.

We now illustrate the working of iDeceit for the above scenario. At time t = 2,

iDeceit is obliged to release a location. To protect against the adversary model

previously discussed, iDeceit does not release the sensitive location ωu2,2 or any

other location that could lead to the sensitive state. Hence, the only states that

can be released are ωu1,2 and ωu3,2, i.e., P(X̃u
2 ∈ {ωu1,2, ωu3,2}) = 1. The adversarial
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Figure 5.9: Markov chain between various context states. State ωu2,2 is selected as sensi-

tive by the user.

posterior knowledge is then given by:

P(X̂a
2 = ωu2,2 | X̃u

2 ∈ {ωu1,2, ωu3,2})

=
P(X̃u

2 ∈ {ωu1,2, ωu3,2} | X̂a
2 = ωu2,2)P(X̂a

2 = ωu2,2)

P(X̃u
2 =∈ {ωu1,2, ωu3,2})

=
1× P (X̂a

2 = ωu2,2)

1
= P(X̂a

2 = ωu2,2),

which ensures zero-loss privacy.

Case 2: User is in a safe state at t = 2 i.e., xu2 ∈ {ωu1,2, ωu3,2} (actual user tra-

jectory does not involve a sensitive location). Note that according to the Markov

chain model, this occurs with higher probability than the user visiting a sensitive

location. MaskIt will continue to suppress (with probabilities p1 or p2) the safe

states at t = 2. However, iDeceit will release the actual state and thus outperform

MaskIt in terms of both utility and plausibility.

MaskIt can enhance its utility by reducing p1 and p2, but it can do so only after

tolerating a non-zero privacy leakage (definition of δ−privacy in [GNG12]). But,

iDeceit can achieve the same utility with zero privacy leakage. Most importantly,

using the plausibility metric, it can keep the obfuscation process transparent to

the adversary.
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Figure 5.10: Extension of the iDeceit framework.

5.10 Extending to other sensors

We motivated the design of iDeceit for location privacy but the model-based fal-

sification framework is a generic one and is applicable to data from other sensors

as well. To generalize the falsification framework we need to extend some of the

basic blocks in our framework (Figure 5.10). Below we describe the additional

functionality and report evaluation results on accelerometer data.

5.10.1 Context Engine (CE)

To extend the notion of “user location”, we utilize the more generic notion of “user

context”. A context is a label inferred from sensor data by combining together

multiple sensor data streams. For example, GPS data together with maps are

used to infer location contexts (e.g., home, work, hospital) [sag] which we have

used in our work. Similarly, accelerometer and gyroscope data together is used

to infer activity context (e.g., walking, running, still) [RMB10, BI04], acoustic

data is used to infer neighborhood (inMeeting, withFriends) [LPL09], and emotion

contexts (happy, sad, stressed) [CC11].

The Context Engine (CE) block transforms the data streams into contexts.

The Markov chain model used by iDeceit is still feasible. However, each Markov

chain state is now one of these generic contexts (e.g. walking, running, etc). The
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formal definitions from Section 5.4 extends naturally to this case.

5.10.2 PAG and PP Blocks

The algorithms used in the DAG and the PP blocks are generic and can be used

as it is by operating on the Markov chains where context states are used instead

of location states.

5.10.3 Data Synthesizer (DS)

To extend the proposed framework to more complex contexts, the process of

synthesizing data needs to be generalizing as well. In the specific case where each

context state corresponds to a location, the data synthesis is simple as it is a

one-to-one correspondence between GPS data and the context.

In the extended DS, we maintain a trained dynamical model for each context

state. The model approximates the physical phenomenon that generated the orig-

inal data and thus can be used to mimic the original data. Such a model can be

obtained using the existing system identification techniques [Kat05]. Note the syn-

thesis is more computationally intensive for sensors such as camera, microphone

etc. and requires careful modeling.

5.10.3.1 Evaluating on activity dataset

To evaluate the usage of dynamical models as data generative models, we use

our extended DS block on the activity dataset studied in [BI04]. The dataset is

recorded for 20 different states (walking, running, standing, etc) using 6 sensors.

For each state, we estimate 6 different state space models (one for each sensor)

using subspace methods. We picked the model complexity to be equal to 30. Each

model is then used to generate sensor data for specific sensor at certain state. A

sample of the generated data from the model against the original sensor data is
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Figure 5.11: Actual accelerometer data from the activity dataset (top) versus a synthe-

sized accelerometer data (bottom).

shown in Figure 5.11.

Utility of synthetic data: It is evident that the synthesized data in Figure

5.11 preserves the features of the original data like average value, data range

and periodic spikes. However, the synthesized data is also noisy compared to the

original signal. To test the utility of the generated data, we use the original sensor

data to initially train a tree of SVM classifiers. This tree of SVM classifiers works

as our Context Engine (CE) transforming data (over a time window) into one

of the 20 context states. We then generate a random sequence of the states for

which we want to synthesize data. We use the identified state space models to

synthesize 1000 sensor samples for each state. Finally, we feed the CE with the

both the synthesized data as well as the original data. If the CE output from the

original data matches the output from the synthesized data, we can conclude that

the model faithfully generates falsified sensor data that mimics a specific state.

Our experiment showed a success rate of 97.38% using this activity dataset.
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5.11 Discussion

In this chapter, we presented iDeceit, a framework that implements model-based

data substitution to protect sensitive locations while ensuring the plausibility of

the entire location trace. iDeceit uses a Markov chain to model the temporal

transitions between locations and ensures that the falsified data conforms to the

model. In fact, we formally show that model-based data release ensures zero-loss

to privacy. We implemented a prototype on Android and performed our evaluation

on data from a week-long user study. Our evaluation shows that iDeceit protects

the privacy of sensitive locations and generates falsified paths that provide high

utility and plausibility.

While iDeceit demonstrates the feasibility of using model-based substitution

for location traces, the framework is also applicable to other sensor types. We

show that by using a data generator iDeceit can be used with accelerometer data

as well. In the future, we hope to explore richer models for capturing human

behavior and better generative models for sophisticated sensors such as camera

and microphones.
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CHAPTER 6

Conclusion and Future Directions

The aim of this chapter is to reiterate the main theme and contributions of this

thesis and layout directions that emerge as natural extensions to the work pre-

sented here. A summary of the contributions in each of the previous chapters is

followed by an outline of future work.

6.1 Summary and Key Contributions

In this dissertation, we advocated a different perspective to the privacy problem.

Instead of focussing on the data and its sensitivity we formulated the privacy

problem in terms of the inferences that could be made using the shared data. In

Chapter 2, we demonstrated that the users’ privacy and utility preferences can be

mapped into a blacklist and a whitelist of inferences respectively. The inference

privacy problem then is to obfuscate data such that the whitelist is accurately

inferable and the blacklist is protected.

In Chapter 3, we formulated the above problem using information theoretic

notions. We simplified the setting by choosing the input from a finite and dis-

crete space, explicitly specifying the joint distribution between the input and the

inferences, and assuming that the input samples are independent and identically

distributed. Under these conditions, we derived the feasible region, correspond-

ing to the privacy and utility metrics, and also provided schemes to achieve the

boundary points of the region. The solution has its own limitations. There are
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scalability issues as the computational complexity increases exponentially with

the size of the input domain. The joint distribution between the input and the

inferences is often a generative model and the data samples are in practice rarely

independent. Nevertheless, the solution provided us with an obfuscation tech-

nique (effectively synthesis) that would provide maximum utility under perfect

privacy constraint under reasonable assumptions.

We then used the theoretical insights to design a system for providing privacy

for time series data. The adoption of the theory was challenging. The input

domain for even a few data samples from a sensor is large, and the samples are

highly correlated in both time and space. So, any system looking to implement

the results would need to work not on raw sensor data but some lower-dimension

feature space. In addition, we needed a secure privacy-enforcement mechanism

that could also provide monitoring of the resources used by an app, provide the

users with a list of inferences that could be made using the shared data, have

the ability to intercept raw data and apply privacy actions. In Chapter 4, we

presented ipShield a privacy enforcing system on Android that provided the user

with all the above options. To provide flexibility to the user we created a set of

privacy actions that could be applied on the raw data itself. ipShied supported

a simple binary recommendation engine, and thus relied on user interaction for

rules creation.

In Chapter 5, we presented iDeceit, a framework that uses model-based privacy

together with sensor data synthesis to handle the privacy challenges in sharing

time series data. We model the relation between context states or inferences

that can be made, using the sensor data, as a Markov chain. This ensures that

the temporal correlation between the data is adequately captured. iDeceit then

ensures plausible falsification of data by strictly following the transitions in the

model which is representative of the user behavior. Whenever iDeceit releases

a false state, it uses generative models to synthesize data, corresponding to the
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false state, that is shared with the apps. To implement this on Android, the

chapter discusses the design and implementation of an alternate datapath to push

synthetic data to the apps.

This dissertation outlines the endeavour towards realization of privacy-enforcing

system, rooted in strong theoretical foundations, intelligent enough to model hu-

man behavior, and over time minimizing user interaction while maximizing the

ease of usability. In the course of this research, there are multiple natural exten-

sions that have emerged. We mention some of them below.

6.2 Future Goals

• Extension of the Theoretical Model: Currently our theoretical model

handles inference functions explicitly expressed as a table. Furthermore, the

schemes provided for achieving the boundary points of the feasible region are

exponential in the size of the table. We want to extend our formulation to use

generative models of inference functions, and also provide scalable and compu-

tationally feasible (possible heuristic) privacy schemes for approximating the

theoretical bounds. In addition, we want to incorporate side-channel informa-

tion into the results. Often, privacy schemes such as differential privacy suffer

from excessive loss of data utility while accounting for side-channel information.

It will be interesting to devise schemes, even if they are for specific cases, which

will be independent of auxiliary information but still provide utility.

• Role of Trust and Game Theoretic Interpretations: Mutual trust be-

tween parties involved plays an important role in any information flow. We

encounter such scenarios often in military coalitions between countries, where

sensitivity of the information together with trust determines how and with

whom information will be shared. In such problem settings, often there exists

a bi-directional information exchange between the provider and the consumer,
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where the consumer performs computations on the provider data and shares the

results with the provider. Trust is maintained by both parties and affects the

quality of the information shared, which also acts as feedback for trust update.

It will be interesting to explore if such a system can be modeled as a game and

trust equilibria established under well-defined update policies.

• Sensing Stack and Information Provenance: Smartphones have evolved

from mere communication devices into sensing platforms supporting a sprawling

ecosystem of apps which thrive on the continuous and unobtrusive collection

of personal sensory data. But what has not fully taken shape is a well-defined

sensing stack, where starting from raw sensor data meaningful semantic ab-

stractions, together with information provenance, are created and maintained

respectively at each layer. We would like to enhance the ipShield [CSR14] ar-

chitecture towards a sensing stack by integrating a feature extraction layer and

an inference layer.

In the long term, push for affordable health care, automated and adaptive in-

tervention and remote monitoring will see further expansion in mobile health apps

and physiological data collection. For the military, need for automatic control,

human-in-the-loop (e.g., secret agents) based data-to-decision models and ad-hoc

coalitions will all mean data exchange between various, often untrusted sources.

Smarter buildings will further instrument our personal spaces. As engineering so-

lutions mature, newer forms of information will be collected from diverse domains

needing better trust modeling, information provenance, and better uncertainty

management. The contributions of this dissertation and the insights positions it

as a unique knowledge repository to address the above challenges.
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