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LEARNING WITH UNDERSTANDING
James G. Greeno
University of Pittsburgh

This paper 18 concerned with meaningful
learning. Psychologists have distinguished between
meaningful and rote learning (e.g., Katona, 1940;
Wertheimer, 1945/1959) largely by providing
examples that contrast the two phenomena. The work
reported in this paper is an attempt to develop a
more explicit and detailed theoretical analysis of
the nature of learning that occurs with
understanding.

I will consider learning situations im which
new procedures and concepts are acquired for
solving problems. Systems for learning procedures
that have been analyzed previously are of two
general kinds that I will call (1) direct learning
and (2) analogical learning. I will describe a
third kind of learning system in this paper that I
call schematic learning.

In direct learning, examples are presented
that show performance of the procedures that the
learner is to acquire. Anderson et al (in press),
Neves (1981), and Vere (1978) have studied
processes of acquiring procedures that match the
actions shown in examples or written theorems that
correspond to inferential procedures. Processes in
which fragments of procedures become integrated,
forming new procedural concepts, also have been
studied (Anzai & Simon, 1979; Larkin, in press;
Neves & Anderson, in press), as have processes 1in
which existing procedures are corrected, extended,
or refined (Brown & VanLehn, in press; Goldstein,
1974; Neches, 1981; Sussman, 1975).

In analogical learning, a new procedure 1is
acquired by mapping components of a known procedure
to a new domain (Rumelhart & Norman, in press).
The procedures that are transfered constitute new
concepts that can be used to represent situations
in the nev domain.

In schematic learning, new procedures and
concepts are formed in the framework of a general
conceptual structure. A schema can provide a
framework either for learning from examples or for
analogical learning. I will discuss two examples
that have been worked out in the form of running
computational models that simulate salient aspects
of student subjects' learning and performance. The
first example involves learning to solve proof
problems in geometry. This illustrates the role of
a schema in learning from examples. The second
example, which illustrates the role of a schema in
analogical learning, involves learning procedures
for multidigit subtraction in arithmetic.

Learning from an Example Proof

My first example is learning from the solution
of a simple proof problem that is given early in a
high-school geometry course. The problem and 1its
solution are in Figure 1. I will discuss learning
that can occur on the basis of this example
problem, but first consider the problem in Figure
2, a problem that Wertheimer (1945/1959) discussed.
Note that the solutions of these two problems are
very similar in form. Three steps 1in Figure 2
correspond to the third step in Figure 1, but
otherwise there is a simple mapping between the two
solution proofs.

It might be expected that anyone who has
learned to solve the problem in Figure 1 would also
be able to solve Figure 2. It turns out that there
is considerable variation in the success different
students have with Figure 2 when it is presented as
a transfer problem. A set of protocols on the
problem in Figure 2 was obtained from students who
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had completed study of proof problems about line
segments, such as Figure 1, and had begun to study
properties of angles. Some students had no idea
how to proceed. Others solved Figure 2 easily, and
one even complained about having to solve “the same
problem” 8o many times.

Consider the question: What enables a student
to apply the knowledge acquired for solving Figure
1 to find a solution to Figure 2 easily? One
hypothesis 18 that the procedures learned for
solving Figure 1 were associated with general
concepts that can be applied when Figure 2 is
encountered. A version of this hypothesis has been
implemented 1in a simulation program (see Anderson
et al, in press, for a more detailed description).

The general structure that I postulate as the
basis of transfer is a schema called
Overlap/Whole/Parts. In this schema there are two
components called “wholes,”™ each of which is
divided into parts, and a part of one whole {is
identical to a part of the other. I assume that in
meaningful 1learning based on  Figure 1, the
Overlap/Whole/Parts schema is formed.
Overlap/Whole/Parts has two subschemata, the
Whole/Part structures that are 1included 1in the
pattern. It 1is reasonable to assume that
ninth-grade students have understood relationships
of parts that form whole quantities for several
years, and that they have some procedures
associated with that schema. For example, they can
add numbers associated with subsets to find the
number in a superset, or subtract one part from the
whole to form the other part.

The Overlap/Whole/Parts schema is formed as a
combination of two Whole/Parts schemata,
constrained so that a part of each “whole”
component is shared with the other. Procedures
that are attached to Whole/Parts are available 1in
situations where the more complex structure is
applied. In addition, some new procedures are also
acquired and associated with the
Overlap/Whole/Parts schema. For example, when the
whole-components of the two substructures are
equal, this enables the inference that the sums of
their parts are equal, and when these sums are
equal, the unshared parts are equal. (Learning of
these procedures 18 based on Steps & and 5 in
Figure 1.)

Two characteristics of the acquired knowledge
are significant. First, the procedures that are
acquired are defined on the components of the
problem representations, which are the schematized
versions of problems. This makes the procedural
knowledge transferrable to other situations where
the same schemata can be applied--for example, to
problems such as Figure 2, if the system can learn
to represent adjacent angles with the Whole/Parts
schema. The second significant feature is that new
conceptual entities are acquired when the schema of
Figure 3 18 learned. The organized structures of
the wholes-with-parts are arguments of the new
procedures, and thus function as cognitive units as
a result of the learning that occurs.

Learning Subtraction Analogically

My second example 1involves the role of a
schema 1in learning that 1s based on an analogy.
This research has been done in collaboration with
Lauren Resnick, who presents s companion paper in
these proceedings. In our research, the learner
does not construct the analogical mapping, as in
the system that Rumelhart and Norman (in press)
studied. Rather, the mapping between domains is
presented in detail by an instructor. Performance
of students 1indicates that this instruction leads
to understanding of the procedure, and we consider
the questions of what knowledge is acquired that
constitutes this wunderstanding and of how the



acquisition occurs.

The procedure that we have studied in this
research {is arithmetic subtraction. Children who
were chosen to participate in the research had one
of the subtraction "bugs”™ identified by Brown and
Burton (1978). Examples of per formance that
involves bugs are in Figure 3. The first problem
illustrates a “smaller-from-larger”™ bug, where the
student subtracts the smaller digit from the larger
one in each column, ignoring which is on top. The
second and third problems illustrate a
“don't-decrement-zero” bug, where borrowing from a
zero does not include decrementing another number
to its left or a change in the value of the zero
digit.

The iostruction that is given uses a procedure
for subtracting with blocks. Different sizes of
blocks represent different place values: small
cubes for wunits, 1long (1 x 10) sticks for tens,
flat (10 x 10) pieces for hundreds, and so on.
Instruction occurs 1in three stages. First, a
procedure is taught for subtracting with blocks.
Second, there is a detailed mapping of that
procedure to the procedure of subtracting with
written numerals. Finally, the written procedure
is made independent of the blocks.

The critical phase is in Step 2, where the
correspondence between the procedures with the
blocks and with the written numerals 1is made
explicit. Each action in the blocks domain
corresponds to an action in the written domain.
For example, when a child removes a "teans"-block
during a trade, the digit in that column {is
decremented by one, and when ten “ones”-blocks are
added to the display, a small “"one” 1is placed 1in
the units column, indicating that ten has been
added to that digit. This instruction can be
considered as presentation of 8
component-by-component mapping between twe
procedures.

This instruction has been successful ir
changing children's per formance, a form of
debugging. Furthermore, children give us evidence
that they have achieved significant understanding
of arithmetic concepts and principles. One example
was given by a student who had suffered from the
smaller-from-larger bug. After {imstruction, this
student was asked how the new procedure differec
from the one the student used earlier. The student
sald, "I used to take the numbers apart; now
leave them together, ... and take them apart.” W
think that this shows that the student had achieve:
an understanding that the digits in one of the row
of the problem represent parts of a whole entity
that is, that together they represent a number.

A second example was given by a student who
had & don't-decrement-zero bug. After doing the
problem: 403 - 275 correctly, including
manipulations with blocks, the student was asked,
"Do you know where the nine came from?" The student
said, "It'm nine tens, and the other ten is right
here,” and pointed to the small 1 that was written
to the left of the 3 1in the top number of the
problem. We think that this shows that the student
understood the principle of conservation involved
in borrowing, that the numerals resulting from the
borrowing procedure represent a quantity equal in
value to reductions in another numeral.

Now consider the theoretical question: what
knowledge is acquired in the instruction?
Hypotheses about acquired knowledge should provide
an explanation of the correct performance that
results, as well as the evidence that students
provide that they have achieved significant
understanding. We will present two hypotheses.
The simpler one wuses an idea of schematic goals.

The other hypothesis postulates that understanding
of subtraction involves the Whole/Parts schema, the
same gtructure to which we attribute understanding
of the geometry problem considered above. The
latter hypothesis has been implemented as a running
program; the former 1is based on a suggestion by
Robert Neches.

The hypothesis of schematic goals postulates
that knowledge of the blocks procedure is organized
in a way similar to Sacerdoti's (1977) system of
hierarchical action knowledge, with higher-order
actions providing a goal-based organization of
lower-level actions in the procedure. Important
goals for the blocks procedure include: (1) find
an answer for each column; (2) if there are not
enought blocks for a column, get some more; (3) 1if
there are no blocks in a column where you need to
get some more, get some blocks for that column. In
the hypothesis of schematic goals, we assume that
mapping iostruction results in transferring the
goals of the blocks procedure to the procedure with
written numerals. We propose that these goals
correspond to new cognitive units in the student'=r
representation of subtraction with written
numerals.

This organization can explain indications of
understanding like those we presented earlier. The
remark that the correct procedure “"keeps the
numbers together” is explained because the actions
of Decrement-Top and Add-Ten are parts of the same
general action. Similarly, the elementary actions
Decrement , Makenine, and Addten are combined to
form a larger structure, which could be the basis
of the remark that "It's nine tens, and the other
ten is right here.”

The simulation that we have programmed 1is
somewhat more complex than the hypothesis of
schematic goals. Our reasons for implementing a
more complex system were in protocols obtained as
students learned about the procedures in he blocks
domain. Instruction for this procedure involved a
kind of discovery method, including questions such
as, “Can you think of a way to get more blocks?”
The student whose performance we tried to simulate
showed several indications of understanding
principles underlying the procedure without being
shown the procedure. At one critical point,
involving borrowing through zero, the student said
“Ooh neat--Now I get {t.” We simulated the
student's performance with a model in which
ad jacent digits are schematized as parts of a whole
unit. Understanding of the part-and-whole
relationship of adjacent digits enables the model
to understanding borrowing through zero by
co-ordinating a coanstraint of keeping a total
quantity constant while ad justing the numbers of
things in its parts. This is described in more
detail in Resnick's companion paper.
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Given: RN = OY
R
Prove:: RO = NY
Statement Reason
1 RN RO + ON 1. segment addition
2. OY = ON + NY 2, segment addition
3. RN OY 3. glven
4. RO + ON = ON + NY 4. substitution
5. RO = NY 5. subtraction property
Figure 1
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c B Given:
Prove:
Statement
/AOC = /AOD + /COD 1.
/BOD = /AOB + /AOD 2.
[Aoc = 180° 3,
(BoD  180° 4.
(AOC  /BOD 5,
/AOD + /COD = /AOB + /AOD 6.
[COD = /AOB 7.
Figure 2
1
3 21 5 0 2
1 8 4 3 0 6
2 6 3 2 0 6
Figure 3

AGC, BOD
/AOB = /COD

Reason

angle addition
angle addition
def. of straight /
def. of straight /
substitution
substitution

subtraction
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