
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Analysis of Applicability and Usability of Programmable Networks in Modern Networks

Permalink
https://escholarship.org/uc/item/5kr2g7vn

Author
Thurlow, Lincoln

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5kr2g7vn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Analysis of Applicability and Usability of Programmable Networks in
Modern Networks

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Lincoln Thurlow

December 2016

The Thesis of Lincoln Thurlow
is approved:

————————————————–
Professor Katia Obraczka, Chair

————————————————–
Professor Bradley Smith

————————————————–
Professor J. J. Garcia-Luna-Aceves

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Lincoln Thurlow

2016

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

1 Introduction 1

2 Architecture 4

2.1 Motiviation . 6

2.2 SCAN . 7

2.2.1 Programmable Network Operating System 9

2.2.2 Dispatcher Module . 10

2.2.3 Run-time Environments . 10

2.2.4 Resource Advisor Module . 13

3 Implementation 14

3.1 Distributed Bellman-Ford . 15

3.1.1 Implementation . 15

3.2 TCP Snoop . 17

3.2.1 Implementation . 19

4 Programmable Networks 21

4.1 Security Concerns . 21

4.2 Performance Considerations . 23

4.3 Comparison with active networks, NFV, and SDN 24

5 Emerging Applications 27

5.1 Decentralized Control Plane . 27

5.2 Content Centric Networking . 28

5.3 Intelligent Transport Systems . 29

iii

6 Related Work 30

6.1 Active Networks . 30

6.2 Active Node Operating Systems . 32

6.3 Software Defined Networking . 33

6.4 Network Function Virtualization . 34

6.5 Secure Code . 35

6.6 Software Performance . 35

7 Conclusion 36

References 38

iv

List of Figures

1 The Programmable Network Research Canopy 4

2 The PNOS design . 9

3 The P4 language processing diagram 11

4 The benefit of dual environments: a network architecture that changes

from prototype to production. 13

5 Flow chart for snoop data() . 18

6 Flow chart for snoop ack() . 18

7 Our prototypes results implementing TCP Snoop 20

8 The SDN Stack . 24

9 The active network Stack . 25

10 An ITS system . 30

v

List of Tables

1 Comparison of each programmable architecture 26

vi

Abstract

Analysis of Applicability and Usability of

Programmable Networks in Modern Networks

Lincoln Thurlow

Software-Defined Networking and Network Function Virtualization lack a unified

solution for general network programmability. OpenFlow, Software-Defined Net-

working’s de-facto standard for network programmability, is based on rule-to-packet

header matching, in which an action is executed when a rule involving the packet’s

header field is satisfied. However, this model of matching is extremely limited in

terms of its expressibility, scalability, and distributability. This is especially evident

when satisfying the requirements of a more diverse set of applications. To fully

utilize the network as a programmable platform, an architecture that supports an

unconstrained, robust computational model is required. A programming platform

that can support these attributes must therefore live in software. To make the net-

work fully programable, it is necessary to look at previous Active Networks research

as well as current Software Defined Networking research.

We propose that by utilizing the latest virtualization techniques, a new programmable

networking architecture is possible and feasible for today’s networks. Such a pro-

grammable network architecture would be capable of handling the unique problems

of executing code in the network. We call the architecture we have developed to

meet these criteria, SCAN.

vii

1 Introduction

Driven by increasingly more complex and resource-demanding network services and

applications, there has been a strong push, both from academia and industry, to-

wards “softwarization” and virtualization of the network. Software-Defined Net-

working (SDN) implementations have validated that control mechanisms imple-

mented in software are capable of performing line-rate forwarding. The evolution of

software displacing previously hardware specific functions for increased programma-

bility and functionality encourages exploration into creating a complete and fully

programmable network. Previous research in SDN, active networks, and virtualiza-

tion provide the foundation for a fully programmable network architecture to solve

the inherent issues faced by today’s networks.

The recent popularity of OpenFlow[53], a Software-Defined Networking implemen-

tation enables network administrators a new found ability to program and manage

the network through a logically centralized controller. The controller is OpenFlow’s

mechanism for separating the control plane from the data plane, the controller com-

municates with enabled switches through the OpenFlow protocol. Switches are

programmed with their forwarding logic based on the rules that are inserted into

their forwarding table. The flow table consists of rules, actions, and statistics. Rules

dictate the logic of network, while actions dictate how the rules will be interpreted

(drop, forward, etc). Statistics allow for rules to be made that account for network

conditions given past and present events. Rules provide the core functionality of

OpenFlow’s programmability. The rule-to-packet header matching limits how well

the centralized table which stores the rules can scale[36] for physically distributed for

larger environments[44][82]. There currently has not been a proposal for logically

decentralizing the control plane. One reason for this may be because OpenFlow

is tied too closely to its centralized model. Additionally, OpenFlow rule matching

lacks a programmer friendly and intuitive interface. Programming languages such

as Frenetic[28] and Nettle[84] attempt to fix this problem by providing a simple

declarative programmable interface to programmers. Theses languages sit on top

1

of OpenFlow to abstract away the error-prone nuances of programming rules in the

network.

The original architecture for active networks called for the decoupling of network

services from the underlying hardware. Decoupling services and hardware allowed

for the idea that arbitrary code could be run in the network to service the program-

mer. Services are then packets which contained executable code, these packets are

referred to as capsules[81], and the payload containing the executable code as active

code[20][61]. Capsules can optionally be executed at each hop utilizing the resources

of the local node for both processing and storage. Additionally they have access to

network primitives, primitives are variables which represent the basic functionality.

This functionality is most simply the ability to modify the routing route tables,

policy mechanisms, protocols, and other basic network functionality. The power of

programming the network with active networks lies in the ability of code to utilize

both the exposed primitives, and temporary storage of the device. Allowing code

to use storage opens up the possibility for more dynamic caching mechanisms as

well as the change in perspective of networking fundamental from an end-to-end to

a node-to-node model.

Previous research in the area of active networks focused on utilizing code to replace

the existing framework by providing secure[37][86] and efficient[74] languages. Given

the hurdles of proving a secure architecture, the absence of a “killer app” to moti-

vate the substantial complexity of active networks eventually lead to the downfall

of the architecture [60][87][26]. More recent attempts of building active network

architectures have focused more on performance and less on the applications of pro-

grammability [41][40][11]. The P4 architecture is of special interest as it uses many

of the active networking concepts, but strictly limits open unrestricted code in place

of a rule-based compiler that is very similar to the OpenFlow model. P4 is called

by its authors as OpenFlow 2.0.

Network Function Virtualization (NFV) is a more recent architecture built around

virtualizing functionality intended for dedicated hardware into software for generic

hardware. NFV enables network resources to be virtualized and dynamically allo-

2

cated into the network, generating a more robust network by allowing idle resources

to be repurposed for greater efficiency. The growth of NFV can largely be explained

by the increasing number of middlebox and software applications developing for the

network. Applications such as load balancers, firewalls, and caches are all critical

to the operation of any sized network. The architecture provides the functionality

of a programmable platform which can spawn network specific tasks in software

throughout the network based on triggering threshold values (throughput, delay,

etc). Generally these middleboxes would require dedicated hardware but with the

support of hardware virtualization[59][23][39], software can now execute the same

tasks with minimal penalties, making NFV an extremely adaptive architecture for

dynamic networks. The abundance of virtualization techniques within the network-

ing field has lead to the growth of what we now term ”The Cloud”. Without the

ability to break network components down to a minimum set of primitive operations

which can be utilized though programmatic interfaces, sites such as Amazon Web

Services (AWS) and Microsoft’s Azure would not be possible.

The push for more software in the network has been caused by the pull from more

powerful applications. The overall ossification of the network protocol stack has

forced functionality that should live in the network stack to be developed on top.

By moving these protocols to the top of the stack, many inefficiencies are exposed to

programmers and end-users. What is needed for developing a more adaptive stack

is an architecture which allows programmability to live in the stack. The current

network needs a unifying architecture encompassing SDN, NFV, and active networks

architectures by providing the shared goal of programmability, but extending the

control mechanism to a decentralized environment, and providing the agility of NFV

in these dynamic environments.

There already exists a hierarchy to describe the different levels of programmability in

the network. At the highest level is programmable networking. The programmable

network architecture describes the decoupling the hardware from software, providing

an open interface, virtualizing the network, and combining coexisting architecture

and frameworks into a single architecture[16]. It is essentially an umbrella term

3

Figure 1: The Programmable Network Research Canopy

to describe all aspects of interfacing and programming networks together. Directly

under the canopy of programmable networks are active networks which describe the

decoupling of services from hardware. Below active networks are SDN and NFV

networks. SDN define the separation of control and data forwarding, which can be

seen as a subset of what can also be done with active networks. NFV networks is the

decoupling of services from hardware using virtualization. We show our own view of

the research canopy in Figure 1. Empty bubbles are illustrative of other topics not

included herein which also exist under the programmable networks research canopy.

We discuss an approach utilizing our own programmable network prototype, SCAN,

for using code execution within the network to empower programmability for decen-

tralized and dynamic networks. We start by defining the foundations and discuss

the nature of the architecture. Next we detail our preliminary implementation of

SCAN and we discuss at a high level the problems of security and performance for

any programmable network architecture.

2 Architecture

To develop a fully programmable networking architecture in a logically decentralized

manner we need to base our design on a principle which itself is decentralized. For

4

this reason we base SCAN on an architecture which allows for mobile and executable

code in the network. Code execution in the network allows for dynamic protocols

and functionality to be prototyped and implemented very quickly. The code carried

in packets can be thought of as the basic logic required to implement a service.

The logic for the service is decoupled from hardware and by extension, nodes in the

network; allowing nodes to modify services and logic on a node-by-node basis. The

drawback to this design is that code execution in the network is slow, inefficient,

and opens a can of worms for security. For this reason any architecture which

incorporates dynamic elements in the architecture must also present corresponding

static elements where programmability is restricted, but provide a fast and efficient

mechanism for forwarding in the network. The programmable network architecture

we present is designed with the essence of an operating system for the network.

The programmable network architecture relies heavily on virtualization. Virtual-

ization provides a simple abstraction layer to build a generic architecture that acts

as the interface to the network operating system. There are additional benefits

to virtualization; hardware virtualization allows software access to low-latency and

high-throughput functionality while software virtualization provides isolation. Both

types of virtualization support departing from fast and expensive dedicated hardware

to cheaper and slower commodity hardware. Building the programmable network

architecture on top of virtualization enables a fully programmable network to achieve

speeds previously not possible with active networks architectures. It is important to

note that this functionality comes at the cost of additional complexity. The demise

of active networks was due its high level of complexity for little to no benefit over

the default IP architecture. This implies that a programmable network architec-

ture must be complex when needed, and simple by default. The programmable

network architecture is complex to support a wide breadth of functionality and re-

programmability, but this enables a more diverse set of network functionality. Our

programmable network architecture also differs from active networks fundamentally

by using layered software virtualization throughout the architecture for both isola-

tion and providing a general interface across modules.

5

2.1 Motiviation

The biggest problem as mentioned above with a programmable network model such

as active networks was the lack of a “killer-app” to motivate the implementation of

large scale programmable network. The blunt truth of the matter is that there is no

“killer-app” to motivate programmable networks. The breakdown for the failures to

motivate a programmable network come from:

1. A software solution in the network will only work when efficiency is no

longer a monetary issue. This issue is very unlikely to be be resolved

any time soon as processor manufactures continue to run into physical

barriers (heat, area, etc). This will likely cause the end to multicore

scaling[25] as we traditionally know it until a new architecture (q-bits

for example) can become feasible.

2. The need for versatilely greatly outweighs the need for structure (pro-

totype is more important than performance)

So, putting aside the above two problems, lets assume that neither of these issues

constrain the development or integration of programmable networks. What can a

programmable network be used for, and how will it outperform a more traditional

approach? A programmable network can allow networks to adapt to conditions by

the code they carry. The network nodes do not need to be aware of the logic of

the code, nor does it need to store, or in any means be responsible for the content

or information contained by the code. In a simple case this could allow users to

create their own multicast groups, cache networks, P2P and sharing networks. This

can be accomplished by writing code that essentially acts as an application that sits

and waits on intermediate devices for requests. In a more complex programmable

network, it would allow for dynamic routing to utilize machine learning algorithms

at these intermediate nodes based on network probes to redirect information flows

faster than the traditional end-to-end algorithms (such as TCP) from discovering

and reacting to network congestion. This type of approach has a smaller feedback

loop as it works on a node-by-node basis.

6

From the perspective of a novice network user, the path for programmable networks

is most relevant in the age of government and corporate ownership of the Internet.

A programmable network with end-user control over network flows allows the user

to mitigate troublesome networks. It may be used as a means to avoiding throttling

from a corporation to disrupt traffic to a competitor’s site. Or it may be used to

route around countries known for invasive network spying and espionage. User-

based-routing is foreign as it remove the key tenant of engineering, efficiency, from

the equation and replaces it with inefficient human made policies. We will discuss

more later the issues of security as it relates to distributed denial of service (DDOS),

man-in-the-middle (MITM), forgery, and other attacks that can be launched on a

programmable network.

A topic closer to reality and more realistic, involves the need to prototype network

conditions without having to modify network equipment and software with every

feature update. This is something very doable with today’s technology but becomes

harder in the heterogenous network made up of different vendors with different meth-

ods of updating. Data centers today contain networking equipment across multiple

vendors and generations[78]. A programmable network can make use of a single

code base that can be pushed and pulled across the network in a revision controlled

manner such as those used by git, subversion, and mercurial. This is agnostic to the

underlying hardware (with exception to firmware), providing a singular interface to

the hardware. The architecture allows for easy diagnostics and debugging of net-

work code in a testbed environment without the fuss of having to first run the code

through a network simulator or across a testbed environment.

2.2 SCAN

In this section we discuss how to build our programmable network architecture

SCAN. Our network programmable architecture enables general purpose program-

ming of the network using an exposed API which interfaces between the program-

ming language sandbox environment and the network programmable operating sys-

tem, and the primitives exposed therein. This approach is analogous to previous

7

active networking research based on code execution in the network. Our architec-

ture modifies the previous framework provided by active networks as the groundwork

for a modern network programming platform. First, the network programmable ar-

chitecture is designed to enable all programming languages. Second, the design

relies heavily on virtualization to support the infrastructure and system for general

languages. Lastly, the main purpose is to create an architecture with a distributed

run-time environment which can natively support distributed computation and al-

gorithms in the network.

Our architecture relies heavily on virtualization, from which we are able to form a

modular infrastructure that can support any environment. The architecture sup-

ports a move away from special purpose built hardware towards general commodity

hardware. Using additional commodity appliances means that the architecture can

be utilized in clusters to potentially hit line-rate for forwarding and can adapt to fu-

ture architectures as the control mechanism for the system is left in a programmable

software layer. It is important to note that this functionality comes at the cost of

additional complexity, however as the environment is completely modular, all func-

tionality can be stripped and streamlined to present production networks a minimal

surface for errors.

By moving computation to the network, algorithms which previously used end-to-

end models can be integrated into the network. An example of such functionality is

a distributed firewall. We however prefer to think of the architecture as providing

a distributed runtime environment for distributed algorithms that support network

context awareness. A more appropriate application is one for an intelligent transport

system where each node in the graph is a vehicle navigating traffic. Each node must

apply computation towards a distributed goal of driving in traffic. This provides

for applications where due to the centralized control plane of OpenFlow, there is a

limited ability to use or delegate controllers[73].

8

2.2.1 Programmable Network Operating System

The Programmable Network Operating System (PNOS) is the linchpin of the pro-

grammable network architecture we propose. The PNOS can optionally be installed

on every node in the network, therefore it is essential that the PNOS is capable of

forwarding packets through the critical-path at line rates. To allow for low over-

head for forwarding and programmability we require a modular operating system.

This design enables trading off performance, security, and flexibility depending on

the requirements of the network. Modules are meant to be replaceable, even the

core modules for governing the system are modifiable to allow for additional pro-

grammability. The main modules for the PNOS design are the dispatcher, run-time

environments, and the resource advisor. Each module is responsible for different

functionality to permit a programmable network architecture. For example the dis-

patcher module is used for parsing packet headers to correctly forward packets or

code to the correct stack or module. The run-time environment implements the func-

tionality of the system in either dynamic or static components. Lastly, the resource

advisor is responsible for managing shared system resources such as CPU, mem-

ory, and storage. Additional modules can also be added as either a shim between

modules to increase functionality or as a complementary module.

Figure 2: The PNOS design

9

2.2.2 Dispatcher Module

The dispatcher component of the PNOS is the first module to interact with an in-

coming packet. The dispatcher must quickly sort packets based on whether the

packet requires a dynamic run-time environment such as a language sandbox or a

static environment such as the IP stack. The design of the dispatcher is based on

a packet parsing module. The parsing model can be integrated with either hard-

ware supported parsers [12] or done in software with languages like P4[11]. The

dispatcher’s modularity and programmability are designed to fit within the scope of

the P4 language and the widening movement towards programmable parsers for pro-

totyping and implementing new protocols. A bootstrapping module can be placed

in the dispatcher to allow new protocols to write to the dispatcher allowing new

packets to be parsed on-demand, then communicate to the resource advisor to in-

stall a temporary run-time environment. This mechanism would rely heavily on

permissions, trust, and lightweight run-time environments, however in prototyping

networks, it may be more crucial to implement functionality over practicality. For

environments which rely on performance, the dispatcher can be programmed for

static protocols to achieve high throughput and low latency forwarding. This type

of environment would be more of a P4 style node where the P4 code is compiled

and loaded onto the node ahead of time. The P4 language requires programmers to

generate a match-action pairing (same as OpenFlow) as shown in Figure 3 based on

the headers of the incoming packets on what actions should be taken on reception.

In PNOS a rule set would include pointers for interfacing packets between the P4

module and the run-time environments.

2.2.3 Run-time Environments

In section 2.2.3.1 we discuss how SCAN would handle dynamic environments such

as handling executable code in the network. In section 2.2.3.2 we describe the more

performance based static environment in SCAN.

10

Figure 3: The P4 language processing diagram

2.2.3.1 Dynamic Environments

The dynamic environment of the operating system consists of language sandboxes

which provide an interface between the code and the network functionality exposed

by the resource advisor. The configurable dynamic environment allows knobs for

adjusting the number as well as the type of sandboxes available. These knobs could

for instance be used to disallow C or C++ code from being run in the network due

to security concerns. Or if network administrators only wish to run a single language

across the domain for simplicity and management reasons.

Code in the sandbox is also limited to a similar set of constraints. Depending on

the openness of the network this code can load third-party programming packages

through secure channels such as in shared memory or a network directory service

(such as Chord[80], Tapestry[92], or Pastry[71]) interfaced through the resource

advisor. If allowed, code can make foreign requests to a directory service for specific

functions in C++’s boost library or a non-standard Python library. The purpose of

this functionality is reduce overall code size while supporting functionality without

direct approval. Each node only has to maintain the packages which it requires, this

approach creates an easy framework for prototyping. The verification could be done

as it is now through signing of code and verification of the signature.

In the case of security, the sandbox also protects the system from the code. De-

11

pending on the language and the native support for virtualization, the sandbox may

be run within another virtual machine to further isolate the execution of code from

the system. The language sandboxes are designed to be light-weight virtual ma-

chines with optional virtual machine monitors (VMM) to provide better isolation

when required. Systems like Docker[54] can be used as a means to load similar sand-

boxes across the system with the same settings. Depending on the requirements of

the system, internal or external VMM [70] can be used to further mitigate virtual

machine escapes. For example, code using Java will use the Java Virtual Machine

(JVM), depending on environment’s requirement on security the JVM may need to

be inserted inside another virtual machine to stop code capable of breaking the JVM

from also hijacking the resource advisor and the system as a whole.

The dynamic environment enables the capabilities of a NFV system by creating a

means through which the operating system can expand and reduce the expressive-

ness or computation of the system. Many modern NFV systems make use of Kernel

Virtual Machine (KVM)[42], Xen[8], or VMWare’s ESX. The PNOS resource man-

ager is very closely modeled after these types of hypervisors for managing resources

across multiple virtual machines and resources.

2.2.3.2 Static Environments

Due to the integral software used in the critical elements for forwarding and routing

in network devices, some amount of programmability must be replaced with high

performance functionality. Static environments restrict foreign code execution and

are most commonly implemented using a REST API interfaces. The static envi-

ronment interface can still allow sets of programmability in much the same way as

IEEE P1520[10]. By allowing the PNOS to accommodate both dynamic and static

environments, the network can move from the dynamic and slow prototyped network

to a more stable and quick production network by migrating more functionality from

the dynamic to the static environments as shown in Figure 4.

Static Libraries can be loaded by their static environments to implement the core

functionality of the previously dynamic environment. An out-of-band method of au-

12

Figure 4: The benefit of dual environments: a network architecture that changes
from prototype to production.

thentication securely run from startup (such as AEGIS[5]) can be used to provide a

secure mechanism for allowing trusted code libraries to be loaded. This mechanism

allows code to be added without penalizing performance at the cost of programma-

bility. However, like many designers of prior active network architectures, this can

lead to a lag between the need for functionality and utilizing that functionality.

The static environment’s purpose in the operating system is to provide a high

throughput interface. In many networks, the static environment will be the only

environment being used by PNOS for performance benefits as also mentioned back

in section 2.1.

2.2.4 Resource Advisor Module

The resource advisor acts as the hypervisor for system resources. The resource

advisor is responsible for system integrity, making sure that virtual machines and

sandboxes are created and destroyed, managing storage, and inter-module commu-

nication. The resource advisor is made up of 3 sub-components: the scheduler,

monitor, and package manager. Each sub-component is modular. This enables mix-

ing and matching between sub-components to optimize the overall usability of the

system. The resource advisor is the kernel of the PNOS architecture.

The scheduler is the apparatus delegated to enforcing performance policies. The

13

monitor sub component manages security and accesses to shared memory and han-

dles permissions and resource management for each virtual machine. The package

manager handles the management of modules and components installed on the node

as well as shared libraries on the system.

As the most critical region of importance in the PNOS architecture, the resource

advisor is intentionally left ambitious and vague. The focus at a high level on this

work is on the dynamic and static environment duality. The resource advisor is as

stated above, the wizard behind the curtain. The resource advisor is left out largely

due to the intricacies of implementations, many papers in the field deal with the fine

details of their network operating systems [65][38][24][57][9], here however the focus

is on what the high level design of the system would look like and require.

3 Implementation

We have implemented a lightweight programmable network implementation in Python

to mimic the behavior of a programmable network architecture without implement-

ing the complete PNOS necessary for a production implementation. Our implemen-

tation focuses on utilizing additional functionality over performance and security

and does not utilize either software or hardware virtualization.

For our test we used a single desktop computer with 16 GB of Memory and an

Intel i7 with 4 cores for using Kernel Virtual Machine (KVM) as the hypervisor.

We installed 4 KVM hosts, each running Ubuntu 14.04 with 1 VCPU, 4 GB of

memory, and 12 GB of storage. A server on every node is set to listen on port

50000 for executable code and bootstrapping. The server works like Quagga in that

it accesses and modifies linux kernel network variables on a node. When the server

receives code, it calls the code’s native compiler and spins off a new process for

execution. In our implementations below we developed our prototypes using the

Python language. The native code being executed however can be any language

with a compiler installed on the current device.

Even though this testbed is a single node with four virtual hosts, it is still possible

to illustrate the use case for programmable networks over an OpenFlow enabled

14

network. Through the hypervisor and each KVM host we modified link capacity,

loss, delay, and jitter using tc qdisc to demonstrate the robustness and dexterity of

code to adapt to the network conditions.

3.1 Distributed Bellman-Ford

We started by implementing a decentralized routing algorithm using shortest prefix

matching for IPv4. Our implementation loosely follows Routing Internet Protocol

(RIP)[50]. The Bellman-Ford algorithm is a decentralized routing algorithm where

no nodes in the network keep state information about other nodes in the network

(this is contrast to link-state routing and Dijkstra’s routing algorithm). Nodes run-

ning Bellman-Ford will send updates to their neighbors. The neighboring nodes will

process updates and for each node in the network will use the received updates to

determine which neighbor the node should forward messages to in order to get to

the destination. A node in a Bellman-Ford algorithm is likely to have a table with

each destination, associated with each destination is a neighbor node with which

messages should be forwarded. RIP is the implementation of Bellman-Ford with

added features to prevent certain situations from occurring such as the counting-to-

infinity problem. The counting-to-infinity problem is caused when a node receives

an update. Unknown to the current node that another node in the network has been

disconnected. The current node uses its value for the disconnected node and sends

it back to its neighbors. When a neighbor of the disconnected node receives this

update, it then broadcasts to its own neighbors that the cost to the disconnected

node has incremented by the cost going through the other nodes. This will then

loop as everyone’s cost in the path increments, eventually reaching ”infinity.”

3.1.1 Implementation

Our Bellman-Ford implementation begins by having one node send out bootstrap-

ping code, which contains the startup code for Bellman-Ford. The bootstrapping

sends the code to port 50000, which spins off the new process with the process ini-

tialization code. The Bellman-Ford code spins off a new thread to listen on port

15

60000 for updates, but interfaces with the original server on port 50000 for system

modification to the routing table. Two threads are created for handling communica-

tions between nodes. The sender and receiver threads responsible for sending and

receiving updates to and from neighboring nodes. The receiver threads check inter-

faces and networks to attach to based on parameters passed by the initial bootstrap

as well as those exposed by the system to start listening. The receiver thread then

creates a single queue for all interfaces to process messages according to a FIFO

ordering. The bootstrapping mechanism that manages the receiver thread can be

given parameters to initialize only subsets of the network, interfaces, or VLANs to

extend the flexibility and programmability of the network. Once the receiver thread

has been initialized, the sender thread is created to generate update messages every

30 seconds. We adapted the algorithm to implement sequence numbers for fresh-

ness and implemented poison-reverse on the receiver thread. Once we started the

bootstrapping processes it took only a few seconds for the code to be sent and run

on every connected node in the network, and begin their separate Bellman-Ford

processes. With our small network, we did multiple tests for correctness of our al-

gorithm by forcing counting-to-infinity scenarios without success of observing such

an event.

Distributed Bellman-Ford is an ideal implementation for programmable networks

because of the decentralized nature of the algorithm. It is possible to implement

Bellman-Ford using OpenFlow, but at the cost of having every message needing

to be sent to and from the controller. Sending every message to the controller is

necessary due to the possibility of state change updates between nodes and having

the logic required for parsing these events stuck in the Controller. If switches had

the ability to apply computation in an OpenFlow environment they may be able to

verify that certain updates do not change state and therefore are not required to be

forwarded to the controller.

16

3.2 TCP Snoop

TCP Snoop was developed by the Daedalus group at Berkeley for improving the

throughput of TCP connections over wireless links[7]. Our choice to implement

Snoop was based around the idea of an adaptive protocol that would sit in the

network to provide greater reliability and performance guarantees. As we discuss

below, we used Snoop to automatically install on nodes with high loss to provide

a hop-by-hop guarantee, utilizing local caches on each node to store TCP packets.

OpenFlow is unable to replicate such a protocol without use of a separate cache due

to the sheer number of links connected to the centralized controller which may re-

quire packet caches. With NFV implementations, this would also require additional

setup by spinning up the node on the hypervisor and creating virtual links over

the network, adding what could be far greater latency and delay depending on the

distance. By executing Snoop on the node itself we don’t require a virtual overlay

topology which may do more harm than good.

Snoop was designed with mobile and wireless networks in mind, it is made up of

3 entities. The Fixed Host (FH) is a wired host and as the name describes, is not

a mobile host. The Mobile Host (MH) on the other hand is mobile and wireless,

making it more prone to higher loss and greater delay. In between the FH and the

MH is the Base Station (BS). Snoop is run on the BS to provide a seemingly reliable

connection between the FH and the MH. The BS is responsible for tracking the

TCP data and acknowledgements packets that are forwarded through it, keeping a

single logical TCP connection between the FH and the MH rather than splitting the

TCP connection into two separate connections as done with Indirect TCP[6]. Snoop

provides better throughput by caching TCP data packets and resending lost data

much quicker than the FH timer would timeout. This is accomplished by setting

state on the BS to track the round-trip time (RTT). The BS’s RTT is strictly less

than the FH’s to the MH as the BS is between the FH and the MH and will therefore

trigger first in the case of loss in the network.

The Snoop protocol is broken down into two algorithms, snoop data and snoop ack.

The snoop data algorithm is responsible for handling the data communication be-

17

Figure 5: Flow chart for snoop data()

tween the FH and the MH. Data packets that are received from the FH and MH that

contain data are cached at the BS. If the data packet is out of order first it is checked

to determine if the sequence number is larger than the previous acknowledgement.

If so the data packet is forwarded on as it is likely that the MH also did not receive

this packet. If on the other hand the sequence number is less than the previous

acknowledgement number, it is likely caused by a acknowledgement being lost, so

an acknowledgement is generated by the BS for the last sequence number seen. The

flow chart from the original paper describing snoop data is shown in Figure 5

Figure 6: Flow chart for snoop ack()

The snoop ack algorithm is responsible for acknowledgements received by the BS.

18

When a new acknowledgement is received, as before, if the acknowledgement is in-

order the acknowledgement is forwarded. Accepted acknowledgements are also re-

sponsible for clearing the associated cached data in the BS. If the acknowledgement

number of the acknowledgement is less than the previously seen acknowledgement

number, the packet is discarded. A more common case is if the current acknowl-

edgement number is the same as the last seen acknowledgment number, indicating

a duplicate acknowledgement. When the BS receives a duplicate acknowledgement,

the first thing that is done is to check whether this is the first duplicate for a

given acknowledgement. If it is, it must be forwarded onward because the previous

acknowledgement deleted the corresponding data from the cache. If the acknowl-

edgement is not the first duplicate to reach the BS, it will be discarded along with

all future duplicate acknowledgements for the same sequence number. This is also

outlined in Figure 6.

3.2.1 Implementation

Our Snoop implementation differs in a few ways. First is we actively spoof packets

that are received at the BS. Duplicate acknowledgements with the sACK option set,

are dropped, and a new acknowledgment packet is generated based on the sACK

option. While this is happening, the BS is actively attempting to get the initial

acknowledgement by re-sending the cached data, this differs from Snoop because

our acknowledgments do not immediately clear the cache. So in our implementation,

a duplicate acknowledgement is rarely forwarded. A duplicate acknowledgement is

only forwarded if no acknowledgement has been received within 3 * RTT. If a data

packet has not been acknowledged after 1.5 * RTT we proactively re-send the data.

Instead of allowing acknowledgements to clear the data cache, we hold onto the data

until the timestamp created for the packet on reception exceeds 3*RTT and has also

been acknowledged. If by the 3 * RTT timer the data has not been acknowledged, all

cached data and acknowledgements are cleared and the duplicate acknowledgement

is forwarded. The design of programmable network makes this adjustments easy to

make and implement in code for quick prototyping.

19

Our implementation used NetfilterQueue[29] to integrate with iptables to move pack-

ets of a certain type from kernel-space to user-space to be handled by an application.

This makes our implementation incredibly slow, a more apt package to use would

be netmap[69] or using Linux TUN/TAPs, we chose NetfilterQueue for extremely

quick prototyping without modifying the underlying system at all.

(a) The ratio of packets retransmitted by the
Snoop protocol compared with TCP Cubic

(b) The total number of retransmits per loss

Figure 7: Our prototypes results implementing TCP Snoop

To test our implementation we used iptables to create loss. We measured the number

of retransmitted data packets using tcpdump and tcptrace[62] as our performance

metric to evaluate our implementation. Our results from these tests are shown in

Figure 7. Our results show that our Snoop implementation sends more packets when

the loss is low, but when loss is greater than 10% on the link, Snoop is able to send

up to 60% less packets than when using the default TCP implementation. One note

of interest is that shown in both Figure 7(a)(b) is that loss at 10% causes a greater

number of TCP snoop packets to be sent than normal TCP. The increased number

of packets is due entirely to our hyperactive resend policy at the BS. The hyperactive

sending has a greater benefit for when less is greater than 10%.

20

4 Programmable Networks

4.1 Security Concerns

The current state of virtualization today provides the possibility for a viable solution

to provide secure executable code in the network. Many approaches have been de-

veloped for providing secure virtual environments such as LXC[68] or Minibox[48] to

prevent malicious code from interacting with the hypervisor. More recent advances

in hardware virtualization include Intel’s Software Guard Extension (SGE)[52]. SGE

provides applications security from untrusted software with higher privileges.

AEGIS[5], used by SANE[2] is a trusted module boot loader that can be used to

provide modules are loaded securely from trusted sources. To a certain degree hy-

pervisors or trusted virtual machine monitors such as Terra[32] have been used for

the handling of creating a secure environment for virtual machine based architec-

tures. Additionally, providing security through the language is another method

which does not require virtualization. Many languages such as PLAN[37], Sprocket

and Spanner[74], and Proof Carrying Code[58] were created before virtualization

techniques were possible to address the needs for secure programming languages.

Many early languages with a focus on security relied on propositional logic to justify

security[33]. That is to say some policy was defined, and the language provided

a guarantee that the policy could not be broken. Other logics were devised that

focused purely on the problem of authentication such as BAN logic[14]. Languages

were defined in meticulous ways to provide security at the cost of generality. Pro-

gramming languages were restricted to provide guarantees of code execution over

the expressibility of the code. Here in lies the problem for the later mobile codes,

utilizing a language with stripped down functionality over an insecure expressive

language.

Additional measures could be taken by using virtualization with secure languages.

Generally a the filesystem, memory, and resources are virtualized. Meaning there

is either an interior monitor in the VM which is faster but less secure[76], or an

outside virtual machine monitor which is more secure but slower[70]. An outside

21

monitor is not accessible to the virtual machine and therefore more secure than

the interior monitor. Unlike the fruitful characteristics of a proof for a secure lan-

guage, virtualization has no proof. Virtualization is to a certain extent not a means

of security, many examples of jailbreaks or escaping virtual machines have been

demonstrated[13][27], but in conjunction with secure languages can be used in a

layered defense implementation.

Any new architecture for allowing executable code in the network would have to use

either a secure language or virtualization to provide security guarantees. Virtual-

ization integration in hardware increases the likelihood of implementation compared

to a custom defined language. However, virtualization does not provide security.

It should be used in conjunction with other methods of providing security. Using

stripped down languages such as PLAN or Spanner is one method, another is setting

up system level policies to restrict functionality of virtual machines to the system in

much the same way as hypervisors.

As briefly mentioned before, programmable networks have to still handle DDOS,

MITM, and other type of attacks. Denial of Service and their distributed coun-

terpart attacks focus on the resources of a system and completely exhausting all

resources in order to prevent the system from operating normally. The problem

with that programmable networks face by resource oriented attacks is the amount

of resources required by both the setup and running of code. Programmable net-

works would require similar methods as current networks to defend against DDOS

attacks, however, just as with our modern networks there is no guarantee such an ap-

proach would work. It is important to note that a DDOS attack on a programmable

network would require significantly less resources on the attacker’s side to defeat a

programmable network setup. This would mean that programmable networks should

use some means of authentication to limit the amount of resources wasted by either

requests or bad code. This is one of the benefits to secure languages in that they

prevent wasteful code by preventing it from a language syntax point of view. MITM

and forgery attacks would be very similar to modern networks and would require the

same attitude of authenticating before allowing code or accepting communications.

22

4.2 Performance Considerations

The additional layers added to provide security and high programability to the net-

work is at the cost of performance. Virtualization technology however has greatly

improved with hardware support such as with VT-x [59], AMD-V and SR-IOV [23]

as well as being able to provide close to native speeds[91] for containers such that

very little performance is lost. NetVM[39] demonstrates how creating a perfor-

mance based network virtual machine architecture for line-rate forwarding is easily

obtainable by utilizing newly available hardware supported virtualization. Perfor-

mance can also be scaled by utilizing clusters. Clustered software routing such as

RouteBrick’s[22] RB4 composed of 4 nehaliam servers, running Click[43] forwards

rate is 35Gbps for an average workload. In software, forwarding is a CPU bound

operation. The more packets (generally smaller size) causes the CPU to work harder

and decreases performance, for higher packets per second (pps) forwarding perfor-

mance drops to 12Gbps in RB4. RouteBricks design scales, adding additional CPUs

will increase the CPU-bound operations.

It is also possible to use a Field Programmable Gate Array (FPGA) to run a custom

language in hardware. The language can provide performance guarantees by provid-

ing a limited set of instructions such as with Tiny Packet Program (TPP)[40][41].

TPP is a set of small messages which utilize 6 instructions: load, store, push, pop,

cstore, and cexec. With these 6 instructions network administrators can program

how data packets can be forwarded throughout the network at low latency and line

rate. The tradeoff to TPP is that there is no option to provide security as a part

of the architecture as the assumption is that the network is controlled by a single

domain, and the domain will not be compromised.

As with security, performance considerations for code execution in the network can

be achieved through the use of efficient systems, languages, or hardware. Using

relatively inexpensive generic hardware with complex software that is responsible for

forwarding, allows code to be programmable and leaves performance to the cluster

as a whole. Or a language running a minimum set of instructions to achieve a small

set of programmability can be used at a far cheaper cost.

23

4.3 Comparison with active networks, NFV, and SDN

The need for a “killer app” is just as relevant for our programmable network archi-

tecture as it was for justifying active networks. OpenFlow and NFV have attractive

use cases for the data center as well as for production networks. Yet the question we

look to answering is: “Does the programmable network architecture have a use case

for modern networks that can’t be filled by active networks, SDN, or NFV?” We

argue the answer to this question is “Yes, in limited circumstances.” Programmable

networks are not meant for the Google’s of the world. For Google, performance is

the main concern, but for small networks where some performance can be traded for

programmability is where programmable networks can work well.

Figure 8: The SDN Stack

OpenFlow’s utilization in corporate networks has been very impressive, but it still

lacks an easy programmable interface familiar to programmers. Multiple applica-

tions have been developed on top of OpenFlow to fill needed functionality gaps left

out of the original protocol. For example new powerful declarative languages such

as Frenetic[28] and Nettle[84] sit on top of OpenFlow to provide an easy, simple,

declarative interface which is not provided by OpenFlow. Even so, a major problem

with the OpenFlow protocol is scalability. Due to the very nature of a centralized

control plane, many physically distributed, but logically centralized implementations

such as Onix[44], HyperFlow[82], and ElastiCon[21] approach it as a distributed sys-

tem problem trading off consistency, availability, and partitioning. The high level

view of SDN and where and how applications work with each other is shown in

24

Figure 8. The programmable network architecture combines these approaches to

achieve a declarative and distributed control plane. The decentralized nature of the

programmable network architecture means that distributed algorithms can take ad-

vantage of the control plane without managing centralized state, instead state can

be managed locally by each node. Even debugging the network using OpenFlow is

challenging to infer how race conditions are settled as well as what the state of the

network looks like at each switch. Applications such as ndb[35] attempt to debug

this complexity and uncertainty from OpenFlow implemented rules.

Figure 9: The active network Stack

The active network architecture can also provide a decentralized programmable con-

trol plane, but it is limited by the constraints of reprogramming the architecture.

Based on the choice of execution environment (ANTS, SANE, etc) and the choice

of the NodeOS[66] implementation limits the programmability and flexibility from

what is required by the execution environment and what is exposed by the NodeOS.

Allowing the programmable network architecture to be completely modular provides

this flexibility for prototyping, but it also allows the architecture to be adapted for

static environments. We show the high level description of active networks in Figure

9, what we don’t show is that in many node operating systems such as JanOS[83],

it is only possible to run a single execution environment.

So far, no such Network Function Virtualization implementation has gained as much

prominence as OpenFlow has for SDN. This seems to indicate the challenge of cre-

ating an implementation that largely contrasts from a hypervisor with pre-built

25

applications into the network. ClickOS[51] is an implementation which uses KVM

and virtual machines with Click installed to deploy software routing throughout the

network. What we believe is missing is the ability to deploy this functionality across

multiple hypervisors, and allow the functionality to be used for prototyping. In its

current iteration NFVs are deployed for production networks supporting middlebox

functionality. The programmable network architecture moves the control away from

the hypervisor and decentralizes it through code in the network for applications to

be implemented or built upon.

The programmable network architecture is different from each of the preceding ar-

chitectures to make it uniquely distinct in allowing for a more programmable en-

vironment. Table 1 summarizes these findings. It is flexible to the conditions of

the network and the requirements of the network administrators. Because of this

level of programmability, programmable networks can confront obstacles of the other

architectures, one example is the need for decentralization of the control plane for

scalability.

active networks SDN NFV programmable network

Software Complexity OS + Language Controller Hypervisor Hypervisor + Language

Control Plane Decentralized Centralized Centralized Decentralized

Development Flexibility High Low Medium High

Architecture Flexibility Static Static Dynamic Dynamic

Run-time Environment Distributed Local Local Distributed

Table 1: Comparison of each programmable architecture

Control plane decentralization is a problem with no currently proposed solution so

far for OpenFlow. In part this is due to the OpenFlow architecture’s popularity

with centralized control in the network. Network computations have become more

robust as computation and control is spread from a single node, to a group of nodes,

until it is spread to every node. Using the programmable network architecture the

cost of decentralizing control comes from changing switches from being simple and

dumb to intelligent and complex, a shared consequence of using NFV as well. Com-

plexity in the network has been shunned as it violates the end-to-end principle[72],

however many of the SDN and NFV solutions also violate the principle by allowing

26

software control in the network. We see a trend towards intelligence creeping into

the network from the edges, as applications start to require additional knowledge

to achieve distributed goals. Programmable networks pushes the intelligence into

the network making applications more context aware of their environments and are

able to become more efficient. As the network intelligence grows, the network can

counteract lossy portions of the network by implementing hop-by-hop ARQ, or dis-

tributed queues for buffering to adapt to the network conditions. More complex

features can be motivated in intelligent transport systems with automated vehi-

cle navigation, having swarms of cars communicate conditions dynamically without

centralization to achieve a shared goal. Future internet protocols and architectures

can also be supported such as Information Content Networking[31] or new routing

protocols such as label swapping[47] quickly and easily using such a programmable

network architecture.

5 Emerging Applications

We believe that based on the trend of the growing number of devices in the network,

that scalability and robustness for applications will dictate a greater need for a de-

centralized control plane. Recent research in Content Centric Networking (CCN)

will also require a decentralized control plane. The programmable network archi-

tecture natively presents local caches that can be used for interests messages. This

feature will greatly benefit CCN developers. Lastly, there is a need for a decentral-

ized control plane in intelligent transport systems (ITS) where mobility in hybrid

networks makes a centralized control plane infeasible. For each of these applications

having an architecture that can scale from the decentralization of the architecture

is crucial, having the architecture also support programability means that it can

dynamically change to network conditions as well as protocol changes swiftly.

5.1 Decentralized Control Plane

The decentralized control plane is essential to the future of networking. Scale will

bring about the end of any centralized solutions. This will force centralized algo-

27

rithms to operate on small networks while inter-networks would be required to use

decentralized solutions. While the decentralized control plane provides a more ro-

bust and scalable architecture than the centralized control plane, centralized logic

reduces the required complexity of the network. We have seen this behavior before in

networking, such as when networks moved from centralized circuits to packet switch

networks and then back to virtual circuit overlays. The eagerness of network admin-

istrators to return to simple design for control is all too well known. We believe that

given a decentralized control plane, central overlays will become a manifestation to

return to simple designs.

The decentralized control plane works by allowing each node to be its own control

interface as well as influence other nodes. Unlike with OpenFlow, the control plane

is not merged with other devices but works independently. This leads to the devel-

opment of algorithms which can be implemented in a distributed fashion and design

protocols with convergent behavior towards a shared goal. We showed one example

of this above with our Bellman-Ford implementation. Our implementation allows

each node independence and uses a distributed message passing method to achieve

convergence towards a shared routing state. The programmable network architec-

ture enables the use of the decentralized control plane as well as a mechanism of

upstream nodes to leave soft state, the soft-state allows for caching, but it also allows

for combined computation for groups of devices.

5.2 Content Centric Networking

Content Centric Networking was first developed at Xerox PARC and now has a

developed protocol, CCNx[63]. CCN changes the network paradigm from being

host oriented connections to direct connections to data. The idea is that as we scale

our internet, the host centric model becomes more convoluted and requires more and

more engineering to maintain the overall system. Instead of having the content for

user /lthurlow to be hosted at 128.114.49.139, /lthurlow becomes the destination

and using Interest messages the client can find the data without dealing with the

underlying framework of where the host is located. A requester for a given piece

28

of content would send an Interest packet that will follow the route advertisement

for the content, and once found, a response message containing the content follows

the initial Interest request’s path back to the requester. The concept is now more

reasonable than ever with cheaper networking hardware and storage it has become

easy and simple for the network to encompass the requirements of caching in the

network.

The programmable network architecture enables the in-network caching as a part of

the architecture itself. Devices would not need to be solely CCNx switches and

routers, that software would be loaded into the static environment of the pro-

grammable network architecture. The more interesting application of using the

programmable network architecture for CCN is in how routing and control will be

done, with such a large scale, a centralized solution would not work, therefore using

the decentralized nature of programmable networks for control of the forwarding

and routing of content is more appealing.

5.3 Intelligent Transport Systems

One application which we perceive will require a decentralized control plane is the

intelligent transport system (ITS). An ITS would be developed with autonomous

vehicles in mind. The infrastructure of the ITS would be a hybrid systems with ad-

hoc networks made between clusters of autonomous vehicles and the infrastructure of

road side units. Road side units will occasionally communicate with vehicle clusters

of information related to other clusters further ahead. The information can contain

traffic information such as accidents, lane closures, or non automated vehicles as

illustrated in Figure 10. Each cluster can designate leaders such as using a paxos

protocol[45], these leaders can act as distributed controllers for the local clusters on

the roads, communicating with the road side units also acting as controllers need to

delegate control to each elected leader for the cluster to establish communication.

The need for control delegation is closely related to work on OpenFlow’s east-west

interface[67] to create a decentralized OpenFlow implementation to allow communi-

cations between separated control planes[73]. However, even within the cluster there

29

Figure 10: An ITS system

needs to be an essence of delegation of tasks as either more vehicles join the cluster,

or are out of range of the leader, so to achieve this objective multiple methods need

to be developed for OpenFlow solutions to work. The programmable network archi-

tecture does not suffer from the centralized control and therefore the ownership of

control. In the decentralized architecture elections are not necessary for delegating

control, instead a distributed adaptive routing algorithm can be used. In conjunc-

tion with the inherent caching mechanism allows the architecture to store messages

closer to the edge of the cluster to quickly exchange messages with road side units.

6 Related Work

6.1 Active Networks

Active networks were first proposed in the seminal paper by Tennenhouse and

Wetherall[81]. They present the active networks as an architecture for decoupling

network services from the underlying hardware to accelerate the pace of innova-

tion in the network. Tennenhouse and Wetherall’s architecture is split into two

approaches towards implementation. The first is the discrete approach, which uses

programmable switches. The second is the integrated approach, which uses cap-

sules. The programmable switch used an API model for calls between applications

and switches that eventually lead to the IEEE P1520[10] standard for programmable

Asynchronous Transfer Mode switches. The capsule based approach however used

30

capsules which carried executable code. The capsule based approach led first to the

Active IP option[88] from Wetherall and Tennenhouse using the option field in IP

packets to indicate active packets. The payload of the capsule would contain Tcl

code. While Active IP had the potential to be language agnostic, no mechanisms or

architecture for handling other languages was approached or discussed. Wetherall

et. al. Then developed ANTS[89], a complete active network environment based

on the Java programming language. ANTS was the first complete active network

implementation, it used the JVM to sandbox code and guarantee performance and

security constraints. ANTS introduced soft-storage for protocols, however storage

was limited to only the same protocol.

The active SwitchWare architecture was designed by Alexander et al.[3]. Unlike

ANTS, SwitchWare used PLAN[37], a typed lambda calculus language. PLAN was

designed as a standalone strongly typed language. The language was deliberately

limited in functionality making arbitrary protocols impossible to implement with

PLAN. SwitchWare at a high level does not allow PLAN code to store or change

state on active nodes. To better address security concerns, SANE[2] was developed to

handle authentication and secure bootstrapping of modules in the SwitchWare envi-

ronment. Eventually a more secure version of PLAN was developed with SNAP[56].

SNAP allowed the compiler to a priori determine runtime bounds for CPU, Memory,

and Bandwidth. The trade-offs made by SwitchWare was to secure the network at

the cost of flexibility, whereas ANTS provided flexibility at the cost of security and

performance.

Netserv[79][46] was the latest active networking architecture. Based off the discrete

approach, NetServ uses out-of-band singling to load modules into NetServ devices

on the internet rather than allowing executable code. The architecture allows mod-

ules to be loaded to remote hosts in other domains, while providing authentication

through Public Key Infrastructure. The modules are run on top of the JVM to

provide security to the underlying virtual machine and host machine.

Within the active networking research area there was even more work done on active

networking languages than on architectures. Smart Packets[74] was designed as a

31

language to address network administration. Smart Packets was the culmination

of two separate languages, Spanner and Sprocket. Spanner was the low level CISC

assembly language, which Sprcoket, a C type language compiled into. For general

programmability Sprocket was recommended, but for speed and security Spanner

was the more effective language. Both were made to compile into small byte code,

the design was that active programs would not exceed an ethernet frame and fit

within a single packet using the ANEP[4] protocol. The protocol dictated the header

fields for active packets, and looks very much like an IP header with additional

fields including its own set of source, destination, and checksum. It also contains

an authentication field to provide a means for authenticating active packets. More

recently, Tiny Packet Programs (TPP)[40] illustrated that with a small subset of

x86-like assembly level code can be executed on netFPGA[49] devices at line rates.

6.2 Active Node Operating Systems

Node operating systems started showing up later once a model was built for the ac-

tive networking architecture with node operating systems at the bottom, execution

environments which handled code execution and the interface with the node oper-

ating system, and on top were the active applications, the logical abstraction of the

code being executed in the execution environment (refer back to Figure 9). Peterson

et al. implemented their NodeOS interface[66][65] for the Scout [57], JanOS[83],

and exokernel[24] operating systems. SPIN[9] and xkernel[38] were other operating

systems built for general purpose network operating systems that made little impact

on active networking development. Part of the design of the NodeOS interface was

to separate the operating system from the run-time environment to provide support

for multiple languages. The interface then abstracts threads, memory, input/output,

and files to the execution environment to provide the necessary communication to

enable active networks. Operating systems specifically designed for active networks

such as JanOS and BowmanOS[55]. JanOS was developed for ANTS and Java

based languages using the ANTSR run-time on top of the JanOS virtual machine.

Bowman however allows for multiple execution environments, but the number of

32

fine-grained abstractions exposed to the execution environment is more limited than

both JanOS and the NodeOS interface. There was also the FAIN[30] which from

both an architectural and operating systems point of view approached the problems

completely different. The architecture of FAIN was based on one where Internet

Service Providers (ISP) would be running active networks and customers of the ISP

would request services. This model reflected much more of a NFV network of today

than an active network of the past.

6.3 Software Defined Networking

The predecessor to OpenFlow[53] was Ethane[17]. Ethane separated the control

plane using a controller and an Ethane switch which contained the flow tables as a

means to enforce security policies in the network. OpenFlow used a similar model

compromised also on centralized logic in a controller but focused on network manage-

ment and control through the OpenFlow protocol. Each switch using the OpenFlow

protocol contains a flow table, the contents of the flow table are made up of a rules,

actions, and statistics. A rule is based on matching the header of an incoming

packet or flow. If a match occurs, the action associated with the rule is triggered.

The action can drop, forward, or otherwise modify the frame or packet. The control

for the network is stored in the controller, NOX[34] was the first controller software

developed for the OpenFlow protocol. Additional controllers were later developed to

expand the support based beyond the C programming language to other languages

such as Java and Python[75].

Higher level programming languages like Nettle[84] and Frenetic[28] were developed

to make network programming using OpenFlow more declarative. These languages

also helped programmers avoid issues with nuances of OpenFlow such as rule order-

ing and race conditions in OpenFlow. However additional tools such as ndb[35] and

OFRewind[90] were created to assist programmers to trace and debug issues with

OpenFlow rules that may be caused by unseen network problems.

To broaden the applicability of a centralized control plane, multiple implementa-

tions were developed to distribute the control plane across multiple OpenFlow con-

33

trollers. Onix[44] creates a distributed system onto of multiple controllers. Onix

introduces the Network Information Base (NIB), the NIB is the distributed control

plane, however the NIB trade-offs consistency, availability, and partitioning of the

OpenFlow control logic. Hyperflow[82] is another method for distributing the con-

trol plane across multiple controllers. Hyperflow modifies NOX and implements a

network-wide control plane, controllers manage only the set of local switches, and

consistency is maintained through managing event publishing and replays during

failures.

Programming Protocol-Independent Packet Processors (P4)[11] is the newest devel-

opment in the SDN arena. P4 was developed at Stanford as a successor to OpenFlow

due to the large amount of changes to the protocol and the amount of time it has

taken for changes to be pushed to the protocol. P4 places a compiler that is very

close to C on network devices. The compiler takes the C-like code and creates a

JSON file which maps outputs between the various stages in the pipeline as shown

in Figure 3. The end result is compiled P4 code which uses a set of tables to for-

ward packets from one element in the pipeline to another element. The advantage

over OpenFlow is that with P4 code can be written to develop the protocol itself.

The protocols are dictated by code, very similar to active networks, with the key

distinction that code is not active. The compiled code is much closer to the discrete

approach with programmable switches and since the code is very close to C, it is

very quick. There are limits to P4 such that modifications to the protocol cannot

occur live, and interfaces cannot currently be for both control and data.

6.4 Network Function Virtualization

Predecessors to the NFV architecture started with the Genesis kernel[15] which

allowed creating routlets spawn as child processes much in the same way as imple-

menting network functions. Routlets could be created, managed, and then destroyed

when no longer necessary to provide network functionality. However, virtualization

came much later to research, following the initial white paper in the field [18], imple-

mentations such as netvm[39] and clickOS[51] add the aspect of virtual environments

34

with programmable interfaces to extend the virtualization of network functionality.

Many companies use proprietary products such as Cisco’s Embrane or VMWare’s

ESX platform as more of the NFV field has shifted to industry.

6.5 Secure Code

Omniware[1] and Proof Carrying Code[58] were other systems and languages not

directly designed for active networking which provide safety to the host system.

Omniware used the OmniVM, a virtual machine to segment address spacing and

enforce these permissions. Omniware was designed as a virtual machine sandbox

for languages, allowing non-safe languages to be executed with safety to the host

system. Proof Carrying Code however was designed as a language that would require

a mathematical proof of axioms and rules from the code producer. The system

executing the code then verifies the code’s proof of its safety policies, and when

validated is allowed to execute. The emphasis is on the ability to encode safety

predicates into the proof to guarantee that the code will abide by the constraints at

run time.

Minibox[48] is a good example of a sandbox environment for executing of untrusted

x86 code on commodity hardware. Minibox protects the guest operating system us-

ing memory isolation and validating calls between the isolated exaction environment

and the guest operating system. SIM[76] is an alternate method for one-way pro-

tection of the hypervisor placing a monitor into the guest virtual machine, SIM uses

hardware virtualization and memory protection to allow itself to run protected from

guest operating system instructions while guaranteeing safety of the hypervisor.

6.6 Software Performance

One of the most important points of securing active code is what the cost is to

performance. Using methods like RouteBricks[22], which decentralizes the workload

into a cluster, then load-balances pathways in the cluster to provide high through-

put for software routing. RouteBricks valiant load balancing as a key component to

maintaining an even workload across each node in the cluster. Scaling more servers

35

in a RouteBricks cluster is possible by extending the number of servers in the inter-

mediate mesh as the bottleneck is not inter-cluster communication but the shared

bus between CPUs and Memory with a node in the cluster. When testing smaller

packet sizes to stress CPU, the performance of RB4, a 4 Nehalem server setup, was

around 12Gbps, showing that CPU-bound computation such as active code may be

possible for line-rate by extending the RB4 cluster.

7 Conclusion

In this thesis we have shown that executable code is able to operate on the critical

path for packet forwarding. We have reviewed processor design and discussed the

issues related to power barriers and physical properties of chip layouts that prevent

scale-up solutions to working in a programmable network. We proposed a solu-

tion to this problem by scaling-out rather than scaling-up utilizing the RouteBrick

cluster design. RouteBrick enables forwarding to linearly scale with the number

of CPUs and interfaces added to the cluster. We have also discussed P4, a more

recent SDN implementation capable of utilizing precompiled code to forward pack-

ets at line-rates. While programmable network are not as efficient in forwarding

as Application-Specific Integrated Circuit (ASIC) used by industry leaders such as

Cisco and Juniper, the benefits of programmable networks to decouple each compo-

nent of the network allows for fast pace modifications, innovation, and counteracts

the ossification that has overtaken the IP/TCP stack.

We have also examined how performance suffers due to the safeguards that must

be placed in systems that allow executable code in order to prevent code from ex-

ploiting the framework. By virtualizing the environment handling executable code,

per-packet latency grows but provides protections against malicious code. Further-

more, with virtualization mechanisms built into many modern processors, the la-

tency caused by virtualization is greatly minimized. The alternate approach for

securing systems by either minimizing the instruction set to a trivial number of in-

structions, or handicapping the language to prevent certain types of control flow logic

harm the overall programmability of the system. Language based approaches pre-

36

vent sufficient high-level declarative programability that is wanted by implementers

of programmable networks using executable code.

Never the less, programmability in the network is possible. We have shown that our

SCAN implementation is capable of implementing distributed Bellman-Ford and

Berkeley’s TCP Snoop protocols. SCAN is capable of detecting processes running

on remote nodes. It uses this capability to bootstrap the appropriate set of protocols

as required by the network or traffic flowing through the node. The SCAN imple-

mentation was able to use this benefit to create on-demand TCP Snoop connections

to minimize the number of packets dropped over multiple lossy links.

The future of programmable networks is still evolving as the industry attempts to

push programmability deeper into the hardware. There are a few current technolo-

gies that will begin to shape how we interact with programmable networks, the first

is phase-change RAM[85][19], a non-volatile memory. PCRAM or NVRAM, allows

for interesting integration into programmable networks. NVRAM allows software

implementations to recover within milliseconds after a power failure. Phase-change

RAM will also shape the CCN architecture as well as the P4 language which are

actively research and make heavy use of software on the critical path for packet

forwarding. Intel’s Data Plane Development Kit (DPDK) is also a new method for

modifying forwarding states using software. The benefit of having additional hard-

ware support places less emphasis on the performance tuning required by a system

and more emphasis on the breadth of functionality[93][64]. Companies such as Face-

book are making an active push towards what they call ”white-boxes”, boxes that

contain two types of processors[77]. The ASIC that runs the black-box portion is

in charge of forwarding packets quickly. The offload processor which makes up the

white-box portion is a processor designed to do general functionality and to move

packets to the black-box when an operation is completed. We expect to see more

designs in the future which adapt these new technologies to make programmable

networks more common place in traditional networks.

37

References

[1] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe, “Efficient and

Language-Independent Mobile Programs,” in ACM SIGPLAN Notices, vol. 31.

ACM, 1996, pp. 127–136.

[2] D. S. Alexander, W. Arbaugh, A. Keromytis, and J. Smith, “A Secure Active

Network Environment Architecture: Realization in SwitchWare,” Netwrk. Mag.

of Global Internetwkg., vol. 12, no. 3, pp. 37–45, May 1998.

[3] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore,

C. Gunter, S. Nettles, and J. Smith, “The SwitchWare Active Network Archi-

tecture,” Network, vol. 12, no. 3, pp. 29–36, May 1998.

[4] D. Alexander, G. Minden, D. Wetherall, A. Keromytis, B. Braden, C. Gunter,

and A. Jackson, “Active Network Encapsulation Protocol,” 1997. [Online].

Available: http://www.cis.upenn.edu/∼switchware/ANEP/docs/ANEP.txt

[5] W. Arbaugh, D. J. Farber, J. M. Smith et al., “A Secure and Reliable Bootstrap

Architecture,” in Proceedings. 1997 IEEE Symposium on Security and Privacy.

IEEE, 1997, pp. 65–71.

[6] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts,” in Pro-

ceedings of the 15th International Conference on Distributed Computing Sys-

tems. IEEE, May 1995, pp. 136–143.

[7] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “Improving TCP/IP Perfor-

mance over Wireless Networks,” in Proceedings of the 1st Annual International

Conference on Mobile Computing and Networking, ser. MobiCom ’95. New

York, NY, USA: ACM, 1995, pp. 2–11.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” ACM SIGOPS

Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

38

http://www.cis.upenn.edu/~switchware/ANEP/docs/ANEP.txt

[9] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski, D. Becker, C. Cham-

bers, and S. Eggers, “Extensibility Safety and Performance in the SPIN Oper-

ating System,” in Proceedings of the Fifteenth ACM Symposium on Operating

Systems Principles, ser. SOSP ’95. New York, NY, USA: ACM, 1995, pp.

267–283.

[10] J. Biswas, A. Lazar, J.-F. Huard, K. Lim, S. Mahjoub, L.-F. Pau, M. Suzuki,

S. Torstensson, W. Wang, and S. Weinstein, “The IEEE P1520 Standards Initia-

tive for Programmable Network Interfaces,” Communications Magazine, IEEE,

vol. 36, no. 10, pp. 64–70, Oct 1998.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Program-

ming Protocol-Independent Packet Processors,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,

F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast Programmable

Match-Action Processing in Hardware for SDN,” in ACM SIGCOMM Computer

Communication Review, vol. 43. ACM, 2013, pp. 99–110.

[13] M. Brocker and S. Checkoway, “iSeeYou: Disabling the MacBook webcam in-

dicator LED,” in 23rd USENIX Security Symposium. USENIX Association,

2014, pp. 337–352.

[14] M. Burrows, M. Abadi, and R. M. Needham, “A Logic of Authentication,”

in Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, vol. 426. The Royal Society, 1989, pp. 233–271.

[15] A. Campbell, H. De Meer, M. Kounavis, K. Miki, J. Vicente, and D. Villela,

“The Genesis Kernel: A Virtual Network Operating System for Spawning Net-

work Architectures,” in Second Conference on Open Architectures and Network

Programming Proceedings, ser. OPENARCH ’99. IEEE, 1999, pp. 115–127.

39

[16] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, and

D. Villela, “A Survey of Programmable Networks,” ACM SIGCOMM Computer

Communication Review, vol. 29, no. 2, pp. 7–23, 1999.

[17] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: Taking Control of the Enterprise,” SIGCOMM Computer Communi-

cations Review, vol. 37, no. 4, pp. 1–12, Aug. 2007.

[18] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan,

M. Fargano, C. Cui, H. Denf et al., “Network Functions Virtualization: An

Introduction, Benefits, Enablers, Challenges and Call for Action,” in SDN and

OpenFlow World Congress, 2012, pp. 22–24.

[19] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coet-

zee, “Better I/O Through Byte-Addressable, Persistent Memory,” in Proceed-

ings of the ACM SIGOPS 22nd symposium on Operating systems principles.

ACM, 2009, pp. 133–146.

[20] D. Decasper and B. Plattner, “DAN: Distributed Code Caching for Active

Networks,” in Seventeenth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, ser. INFOCOM ’98, vol. 2.

IEEE, 1998, pp. 609–616.

[21] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an

Elastic Distributed SDN Controller,” in Proceedings of the Second ACM SIG-

COMM Workshop on Hot Topics in Software Defined Networking, ser. HotSDN

’13. New York, NY, USA: ACM, 2013, pp. 7–12.

[22] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,

A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Parallelism

to Scale Software Routers,” in Proceedings of the ACM SIGOPS 22Nd Sympo-

sium on Operating Systems Principles, ser. SOSP ’09. New York, NY, USA:

ACM, 2009, pp. 15–28.

40

[23] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High Perfor-

mance Network Virtualization with SR-IOV,” Journal of Parallel and Dis-

tributed Computing, vol. 72, no. 11, pp. 1471–1480, 2012.

[24] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An Operating

System Architecture for Application-level Resource Management,” in Proceed-

ings of the Fifteenth ACM Symposium on Operating Systems Principles, ser.

SOSP ’95. New York, NY, USA: ACM, 1995, pp. 251–266.

[25] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark Silicon and the End of Multicore Scaling,” in 2011 38th Annual Inter-

national Symposium on Computer Architecture. IEEE, 2011, pp. 365–376.

[26] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An Intellectual

History of Programmable Networks,” SIGCOMM Computer Communications

Review, vol. 44, no. 2, pp. 87–98, Apr. 2014.

[27] P. Ferrie, “Attacks on More Virtual Machine Emulators,” Symantec Technology

Exchange, p. 55, 2007.

[28] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and

D. Walker, “Frenetic: A Network Programming Language,” in ACM SIGPLAN

Notices, vol. 46. ACM, 2011, pp. 279–291.

[29] fqrouter, “python-netfilterqueue,” https://github.com/fqrouter/

python-netfilterqueue, 2013.

[30] A. Galis, B. Plattner, J. M. Smith, S. G. Denazis, E. Moeller, H. Guo, C. Klein,

J. Serrat, J. Laarhuis, G. T. Karetsos, and C. Todd, “A Flexible IP Active

Networks Architecture,” in Proceedings of the Second International Working

Conference on Active Networks, ser. IWAN ’00. London, UK, UK: Springer-

Verlag, 2000, pp. 1–15.

[31] J. Garcia-Luna-Aceves, “Name-Based Content Routing in Information Centric

Networks using Distance Information,” in Proceedings of the 1st international

conference on Information-centric networking. ACM, 2014, pp. 7–16.

41

https://github.com/fqrouter/python-netfilterqueue
https://github.com/fqrouter/python-netfilterqueue

[32] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A

Virtual Machine-Based Platform for Trusted Computing,” in ACM SIGOPS

Operating Systems Review, vol. 37. ACM, 2003, pp. 193–206.

[33] J. Glasgow, G. MacEwen, and P. Panangaden, “A Logic for Reasoning about

Security,” ACM Transactions on Computer Systems, vol. 10, no. 3, pp. 226–264,

1992.

[34] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIG-

COMM Computer Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[35] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown, “Where

is the Debugger for my Software-Defined Network?” in Proceedings of the first

workshop on Hot topics in software defined networks. ACM, 2012, pp. 55–60.

[36] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement Prob-

lem,” in Proceedings of the First Workshop on Hot Topics in Software Defined

Networks, ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 7–12.

[37] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles, “PLAN:

A Packet Language for Active Networks,” in Proceedings of the Third ACM

SIGPLAN International Conference on Functional Programming, ser. ICFP ’98.

New York, NY, USA: ACM, 1998, pp. 86–93.

[38] N. C. Hutchinson and L. L. Peterson, “The X-Kernel: An Architecture for

Implementing Network Protocols,” IEEE Trans. Softw. Eng., vol. 17, no. 1, pp.

64–76, Jan. 1991.

[39] J. Hwang, K. Ramakrishnan, and T. Wood, “NetVM: High Performance and

Flexible Networking using Virtualization on Commodity Platforms,” Transac-

tions on Network and Service Management, vol. 12, no. 1, pp. 34–47, 2015.

[40] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières, “Millions

of Little Minions: Using Packets for Low Latency Network Programming and

42

Visibility,” in Proceedings of the 2014 ACM conference on SIGCOMM. ACM,

2014, pp. 3–14.

[41] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazières, “Tiny Packet Pro-

grams for Low-Latency Network Control and Monitoring,” in Proceedings of

the Twelfth ACM Workshop on Hot Topics in Networks. ACM, 2013, p. 8.

[42] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux

Virtual Machine Monitor,” in Proceedings of the Linux symposium, vol. 1, 2007,

pp. 225–230.

[43] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click

Modular Router,” ACM Transactions on Computer Systems, vol. 18, no. 3, pp.

263–297, Aug. 2000.

[44] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-

manathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Distributed Control

Platform for Large-scale Production Networks,” in Proceedings of the Eighth

USENIX Symposium on Operating Systems Design and Implementation, vol. 10.

USENIX Association, 2010, pp. 1–6.

[45] L. Lamport, “The Part-Time Parliament,” ACM Transactions on Computer

Systems, vol. 16, no. 2, pp. 133–169, 1998.

[46] J. W. Lee, R. Francescangeli, J. Janak, S. Srinivasan, S. Baset, H. Schulzrinne,

Z. Despotovic, W. Kellerer et al., “Netserv: Active Networking 2.0,” in Inter-

national Conference on Communications Workshops. IEEE, 2011, pp. 1–6.

[47] B. Levine and J. Garcia-Luna-Aceves, “ImprovingInternet Multicast with Rout-

ing Labels,” in Network Protocols, 1997. Proceedings., 1997 International Con-

ference on. IEEE, 1997, pp. 241–250.

[48] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry, “MiniBox:

A Two-way Sandbox for 86 Native Code,” in Proceedings of the 2014 USENIX

Conference on USENIX Annual Technical Conference, ser. USENIX ATC’14.

Berkeley, CA, USA: USENIX Association, 2014, pp. 409–420.

43

[49] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo, “NetFPGA– An Open Platform for Gigabit-Rate

Network Switching and Routing,” in International Conference on Microelec-

tronic Systems Education, ser. MSE ’07. IEEE, 2007, pp. 160–161.

[50] G. Malkin, “RIP Version 2,” Internet Requests for Comments, RFC Editor,

RFC 2453, November 1998. [Online]. Available: http://www.rfc-editor.org/

rfc/rfc2453.txt

[51] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and

F. Huici, “ClickOS and the Art of Network Function Virtualization,” in

11th USENIX Symposium on Networked Systems Design and Implementation.

USENIX Association, 2014, pp. 459–473.

[52] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,

V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and Soft-

ware Model for Isolated Execution,” in Proceedings of the Second International

Workshop on Hardware and Architectural Support for Security and Privacy.

ACM, 2013, pp. 1–1.

[53] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus

Networks,” SIGCOMM Computer Communications Review, vol. 38, no. 2, pp.

69–74, Mar. 2008.

[54] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development

and Deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[55] S. Merugu, S. Bhattacharjee, E. Zegura, and K. Calvert, “Bowman: A Node

OS for Active Networks,” in Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies, ser. INFOCOM ’00, vol. 3. IEEE,

Mar 2000, pp. 1127–1136 vol.3.

44

http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt

[56] J. Moore, M. Hicks, and S. Nettles, “Practical Programmable Packets,” in

Twentieth Annual Joint Conference of the IEEE Computer and Communica-

tions Societies, ser. INFOCOM ’01, vol. 1. IEEE, 4 2001, pp. 41–50 vol.1.

[57] D. Mosberger and L. L. Peterson, “Making Paths Explicit in the Scout Oper-

ating System,” in Proceedings of the Second USENIX Symposium on Operating

Systems Design and Implementation, ser. Operating Systems Design and Im-

plementation. New York, NY, USA: USENIX Association, 1996, pp. 153–167.

[58] G. C. Necula and P. Lee, “Safe, Untrusted Agents using Proof-Carrying Code,”

in Mobile Agents and Security. Springer, 1998, pp. 61–91.

[59] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel Virtualization

Technology: Hardware Support for Efficient Processor Virtualization,” Intel

Technology Journal, vol. 10, no. 3, 2006.

[60] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A

Survey of Software-Defined Networking: Past, Present, and Future of Pro-

grammable Networks,” Communications Surveys Tutorials, vol. 16, no. 3, pp.

1617–1634, Third 2014.

[61] E. L. Nygren, S. J. Garland, and M. F. Kaashoek, “PAN: A High-Performance

Active Network Node Supporting Multiple Mobile Code Systems,” in Second

Conference on Open Architectures and Network Programming Proceedings, ser.

OPENARCH ’99. IEEE, 1999, pp. 78–89.

[62] S. Ostermann, “Tcptrace,” 2005. [Online]. Available: http://www.tcptrace.org/

[63] PARC, “CCNx Project.” [Online]. Available: http://www.ccnx.org/

[64] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass:

A Centralized Zero-Queue Datacenter Network,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 4, pp. 307–318, 2015.

[65] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepreau, S. Schwab,

H. Dandekar, A. Purtell, and J. Hartman, “An OS Interface for Active Routers,”

45

http://www.tcptrace.org/
http://www.ccnx.org/

IEEE Journal on Selected Areas in Communications, vol. 19, no. 3, pp. 473–487,

Mar 2001.

[66] L. Peterson, “NodeOS Interface Specification,” Active Network NodeOS

Working Group, Tech. Rep., 01 2001. [Online]. Available: protocols.netlab.uky.

edu/∼calvert/nodeos-latest.ps

[67] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed Multi-Domain SDN

Controllers,” in Network Operations and Management Symposium. IEEE, 2014,

pp. 1–4.

[68] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security of OS-Level

Virtualization Technologies,” in Secure IT Systems. Springer, 2014, pp. 77–93.

[69] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” in Proceedings of

the 2012 USENIX Conference on Annual Technical Conference, ser. USENIX

ATC’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 9–9.

[70] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current Technol-

ogy and Future Trends,” Computer, vol. 38, no. 5, pp. 39–47, May 2005.

[71] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Loca-

tion, and Routing for Large-Scale Peer-to-Peer Systems,” in Middleware 2001.

Springer, 2001, pp. 329–350.

[72] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system

design,” ACM Transactions on Computer Systems, vol. 2, pp. 277–288, 1984.

[73] M. Santos, B. Nunes, K. Obraczka, T. Turletti, B. T. de Oliveira, C. B. Margi

et al., “Decentralizing SDN’s Control Plane,” in 2014 IEEE 39th Conference

on Local Computer Networks. IEEE, 2014, pp. 402–405.

[74] B. Schwartz, A. Jackson, W. Strayer, W. Zhou, R. Rockwell, and C. Partridge,

“Smart Packets for Active Networks,” in Second Conference on Open Architec-

tures and Network Programming Proceedings, ser. OPENARCH ’99, Mar 1999,

pp. 90–97.

46

protocols.netlab.uky.edu/~calvert/nodeos-latest.ps
protocols.netlab.uky.edu/~calvert/nodeos-latest.ps

[75] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Ad-

vanced Study of SDN/OpenFlow Controllers,” in Proceedings of the 9th Cen-

tral & Eastern European Software Engineering Conference in Russia, ser.

CEE-SECR ’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:6.

[76] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM Monitoring Us-

ing Hardware Virtualization,” in Proceedings of the 16th ACM Conference on

Computer and Communications Security, ser. CCS ’09. New York, NY, USA:

ACM, 2009, pp. 477–487.

[77] A. Simpkins. (2015) Facebook Open Switching System (”FBOSS”) and

Wedge in the open. [Online]. Available: https://code.facebook.com/posts/

843620439027582/

[78] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Bov-

ing, G. Desai, B. Felderman, P. Germano et al., “Jupiter Rising: A Decade of

Clos Topologies and Centralized Control in Google’s Datacenter Network,” in

Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication. ACM, 2015, pp. 183–197.

[79] S. R. Srinivasan, J. W. Lee, E. Liu, M. Kester, H. Schulzrinne, V. Hilt,

S. Seetharaman, and A. Khan, “Netserv: dynamically deploying in-network

services,” in Proceedings of the 2009 workshop on Re-architecting the internet.

ACM, 2009, pp. 37–42.

[80] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A Scalable Peer-to-Peer Lookup Service for Internet Applications,” ACM SIG-

COMM Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[81] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network Architec-

ture,” SIGCOMM Computer Communications Review, vol. 37, no. 5, pp. 81–94,

Oct. 2007.

[82] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane for

OpenFlow,” in Proceedings of the 2010 Internet Network Management Confer-

47

https://code.facebook.com/posts/843620439027582/
https://code.facebook.com/posts/843620439027582/

ence on Research on Enterprise Networking. USENIX Association, 2010, pp.

3–3.

[83] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: a Java-Oriented OS for Active

Network Nodes,” Journal on Selected Areas in Communications, vol. 19, no. 3,

pp. 501–510, Mar 2001.

[84] A. Voellmy and P. Hudak, “Nettle: Taking the Sting Out of Programming

Network Routers,” in Practical Aspects of Declarative Languages. Springer,

2011, pp. 235–249.

[85] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight Persistent

Memory,” ACM SIGPLAN Notices, vol. 46, no. 3, pp. 91–104, 2011.

[86] I. Wakeman, A. Jeffrey, T. Owen, and D. Pepper, “Safetynet: A Language-

Based Approach to Programmable Networks,” Computer Networks, vol. 36,

no. 1, pp. 101–114, 2001.

[87] D. Wetherall, “Active Network Vision and Reality: Lessons from a Capsule-

Based system,” in Proceedings DARPA Active NEtworks Conference and Expo-

sition, 5 2002, pp. 25–40.

[88] D. J. Wetherall and D. L. Tennenhouse, “The ACTIVE IP Option,” in Pro-

ceedings of the 7th Workshop on ACM SIGOPS European Workshop: Systems

Support for Worldwide Applications, ser. EW 7. New York, NY, USA: ACM,

1996, pp. 33–40.

[89] D. Wetherall, J. V. Guttag, and D. Tennenhouse, “ANTS: A Toolkit for Build-

ing and Dynamically Deploying Network Protocols,” in Open Architectures and

Network Programming, 1998 IEEE, Apr 1998, pp. 117–129.

[90] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind: En-

abling Record and Replay Troubleshooting for Networks,” in Proceedings of

the 2011 USENIX Conference on USENIX Annual Technical Conference, ser.

USENIX ATC’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 29–29.

48

[91] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A.

De Rose, “Performance Evaluation of Container-Based Virtualization for High

Performance Computing Environments,” in 2013 21st Euromicro International

Conference on Parallel, Distributed and Network-Based Processing. IEEE,

2013, pp. 233–240.

[92] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: A Fault-Tolerant Wide-

Area Application Infrastructure,” ACM SIGCOMM Computer Communication

Review, vol. 32, no. 1, pp. 81–81, 2002.

[93] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable, High

Performance Ethernet Forwarding with cuckooswitch,” in Proceedings of the

ninth ACM conference on Emerging networking experiments and technologies.

ACM, 2013, pp. 97–108.

49

	List of Figures
	List of Tables
	Abstract
	Introduction
	Architecture
	Motiviation
	SCAN
	Programmable Network Operating System
	Dispatcher Module
	Run-time Environments
	Resource Advisor Module

	Implementation
	Distributed Bellman-Ford
	Implementation

	TCP Snoop
	Implementation

	Programmable Networks
	Security Concerns
	Performance Considerations
	Comparison with active networks, NFV, and SDN

	Emerging Applications
	Decentralized Control Plane
	Content Centric Networking
	Intelligent Transport Systems

	Related Work
	Active Networks
	Active Node Operating Systems
	Software Defined Networking
	Network Function Virtualization
	Secure Code
	Software Performance

	Conclusion
	References

