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Introduction 
 

 It’s hard to say anything new about value-added models (VAMs). They’ve 
been hailed as the technologically sophisticated answer to identifying the most 
effective teachers (Felch, Song, & Smith, 2010; Mihaly, McCaffrey, Staiger, & 
Lockwood, 2013; Sanders & Horn, 1994; Sanders & Rivers, 1996), and they 
promise to help reduce achievement gaps by enabling decision-makers to provide 
these teachers to our most disadvantaged children. An effective teacher, it is 
argued, can eliminate achievement gaps more cost-effectively than small class 
sizes, (Rivkin, Hanushek & Kain, 2005), perhaps even within five years 
(Hanushek, 2009).   
 Value-added models are a group of statistical models that some contend 
will help us find these most effective teachers.  VAMs seek to measure a teacher's 
(or school’s) performance by comparing their students’ growth on standardized 
test scores to the average growth of other students.  To do this, value-added 
models must isolate the contribution, or the value added by each teacher in a 
given year.  This value added is increasingly used in evaluation to hold teachers 
accountable for how much their students are learning. 
 Along with the hyperbole, sound arguments have also been advanced 
regarding the usefulness of value-added approaches.  For example, Doran and 
Lockwood (2006) offer the following rationale:  
 

A basic truism of learning implies that an individual student, not a student group, 
has increased in knowledge and skills during a specific period of time. As such, 
analytical methods concerned with student learning should reasonably reflect this 
basic principle and consider individual students as the unit of analysis with their 
growth trajectories employed as outcomes (p. 205).   

 
On an instinctive level, the approach makes sense. We care about student 
learning, and we ought to attempt to measure it on the basis of how much each 
individual student is growing from one time-point to another. However, VAMs 
have also been criticized on several fronts. To wit, they are unstable from year to 
year: only 35% of teachers ranked in the top fifth on teacher value-added 
measures one year were still ranked in the top fifth in the next year (Koedel & 
Betts, 2007).  They are imprecise: even with three years of data, the margin of 
error for a teacher at the 43rd percentile ranges from the 15th to the 71st 
(Corcoran, 2010). They are inaccurate: Type I (false positive) and Type II (false 
negative) error rates for comparing a teacher’s performance with the average are 
likely to be about 25% with three years of data (Schochet & Chiang 2010). 
Estimates differ greatly depending on what test is used as the outcome 
(Lockwood, McCaffrey, Hamilton, Stecher, Le & Martinez, 2007a). Causal 
interpretations of the estimates are questionable, and they implicitly assume 



	
  
	
  

randomly equivalent groups—an assumption that is not justified given the ample 
evidence demonstrating the non-random sorting of students to schools and 
teachers. In other words, students are intentionally sorted into specific teachers’ 
classrooms, perhaps because one teacher is considered good with students with 
behavior problems, or because another teacher speaks Spanish, and students, and 
students are systematically grouped into different schools based on 
socioeconomic factors, segregated housing patterns, and parental preference, 
among other factors.  Rothstein (2010) demonstrated some of the problems with 
causal interpretations and provided evidence of non-random sorting by showing 
backward effects, such as fifth grade teachers shown to have large “effects” on 
fourth-grade achievement—a technical impossibility. 
 In spite of these criticisms, value-added modeling (VAM) is increasingly 
becoming an entrenched component of teacher evaluation in the U.S.  In 2009, the 
New Teacher Project released The Widget Effect, a report sharply criticizing an 
education system in which “all teachers are rated good or great” (Weisberg, 
Sexton, Mulhern, & Keeling, 2009, p. 6). But things have changed substantially 
since then.  In just the past few years, many district and state teacher assessment 
frameworks, including New York City, Los Angeles, Chicago, Washington, D.C., 
Florida, Ohio, and Arizona among others, have adopted teacher evaluation 
systems that base one-third to one-half of a teacher’s rating on the achievement 
gains of their students—and more appear to be moving in this direction.  
Research, including most notably the Measures of Effective Teaching (MET) 
Project (an expansive multi-year study of thousands of teachers funded by the Bill 
and Melinda Gates Foundation), has also featured some prominent advocacy for 
VAMs (MET Project, 2013). Yet, among the most passionate critics and 
defenders of these statistical instruments, only a very few understand the 
underlying models. Technical explanations are typically opaque; accessible 
reports usually skim the surface or repeat one another. There is not even general 
agreement about the acronym VAM itself: value-added models is typical, but 
value-added measurement is used almost as frequently, and many writers choose 
the more general VA.1  
 The “s” in VAMs is important because value-added modeling 
encompasses many different models, and there is little public awareness or 
discussion of the differences among them. These models differ on such basic 
questions as, “Should past scores be used to predict current scores, or to 
determine the difference between past and current scores?”, “Should the 
assumption be that students learn at a constant rate?”, and “Do the effects of 
teachers persist indefinitely into the future or diminish over time?” The 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The models are also referred to as value-added assessment or value-added 
analysis, so the acronym VAA is also commonly, and inconsistently, used. 



	
  
	
  

conceptual differences among models are important, and arguments can be made 
in favor of one model or another as more conceptually valid, but, rather than 
engage in those arguments, we simply aim to clarify the mathematics and the 
assumptions underlying different approaches and provide evidence as to the 
extent to which those differences matter. 
 In this paper, we seek to provide a coherent overview of the main value-
added models and sketch out the implications of each model for the inferences 
drawn about individual teachers.  In doing so, we hope to help bridge the gap 
between practitioners and researchers. Practitioners will gain understanding of 
these complex models; researchers will gain insight into the potential 
consequences of these technical decisions.   
 Our explanations of the different models draw heavily from overviews by 
Wiley (2006); McCaffrey, Lockwood, Koretz & Hamilton (2003); Green (2010); 
Sanders & Horn (1994); Raudenbush & Bryk (2002); and Lockwood, et al. 
(2007a). Existing VAM research often compares models in terms of the overall 
correlations of value-added estimates they produce. However, because these 
models are increasingly used to make norm-referenced inferences about 
individual teachers and applied for high-stakes purposes (i.e., decisions such as 
promotion, compensation, or dismissal) we examine the implications of utilizing 
different VAMs on the relative ranking of teachers.  A relatively high correlation 
between two models could still mean that a substantial number of individual 
teachers would receive very different estimates of effectiveness under the two 
models.  Therefore, we focus on clarifying the impacts of model choice for 
individual teacher rankings rather than on overall correlations. 

Methods 

Data 

 The dataset we used in this analysis was the annual state mathematics 
achievement scores of a cohort of elementary school students (N=9,295) from a 
large urban school district. Students were linked to teachers as they progressed 
from first through fifth grade in years 1997–1998 through 2001–2002. The 
variables are student ID, teacher ID, test score, and grade level (scaled from 0 – 
4). We have no data on students’ race, socioeconomic status, or other covariates.  
For our purposes, this simple dataset helps to illustrate the many different 
modeling approaches that are possible, though it also means that we leave aside 
the important question of which covariates should be included (see Lockwood, et 
al., 2007a, for a discussion of this question). The data were previously explored 
by Lockwood, McCaffrey, Mariano, and Setodji (2007b) and Mariano, 
McCaffrey, and Lockwood (2010). The original researchers rescaled the test 



	
  
	
  

scores to produce marginal means ranging from roughly 3.5 to 6.2 and marginal 
standard deviations ranging from roughly 0.92 to 1.08 across grades. Also, 
linkages between students and teachers were only available for 54% of the records 
due to student movement into and out of the district. As is commonly the case 
with student achievement data, the vast majority (79%) of students had at least 
one missing year of test score data over the 5 years. Thus, for simplicity, we 
restricted our analysis to only those students with both fourth and fifth grade 
testing data and whose records could be clearly linked to a teacher for each year. 
Our working sample was 3,661 students and 257 fifth grade teachers.  

Analytic Approach 

 Though VAM is becoming commonplace in teacher evaluation systems, 
there is no consensus on the most accurate model.  In fact, it is probably not even 
appropriate to speak of more and less accurate models, since the trait that is being 
measured, teacher effectiveness, is not completely defined or agreed-upon. Trade-
offs must be made in terms of the simplicity and comprehensibility of a model 
versus its precision, as well as in the assumptions underlying different models.  
Wiley (2006) explains the defining features of a value-added model: “1) it studies 
change in the performance of individual students, and 2) it seeks to determine to 
what extent changes in student performance may be attributed to particular 
schools and teachers” (p. 6). This broad definition encompasses many different 
models, which we group into three classes: gain score models, covariate adjusted 
models, and multivariate models.  As we explain each model, we use the dataset 
described above to exemplify the properties of these different types of models in 
terms of the assumptions each model requires and the extent to which the results 
differ from model to model.  
 

Gain Score Model 
 

Table 1. Gain Score for Teacher #92 and Teacher #116 

Teacher Student 
5th Grade 
Math 
Score 

4th Grade 
Math 
Score 

4th to 5th 
Grade 
Gain 

Teacher 
Average 
Gain 

Total 
Average 
Gain 

Teacher Effect 
(Gain Score) 

92 

1 6.93 5.60 1.33 

1.30 0.54 0.76 
2 6.40 5.43 0.98 
3 6.53 5.33 1.20 4 7.50 5.95 1.55 
5 5.68 4.20 1.48 
6 7.03 5.78 1.25 

116 
7 6.00 5.78 0.23 

0.30 0.54 -0.24 8 5.08 5.15 -0.08 
9 6.58 5.83 0.75 

 Note: Table adapted from A Practitioner’s Guide to Value Added Assessment (Wiley, 2006). 



	
  
	
  

 
 The gain score model is the simplest VAM with a basic gain score formed 
for each student by subtracting the student’s prior test score from her current 
score.  The gain score model is single-wave (test scores collected over two years 
only) and univariate. Students with missing data are excluded from the gain score 
model. A teacher’s gain score (i.e. their teacher effect) can be found using the 
following equation 
                                     yt  – yt-1 = mt + Tt                                                        (1)  
 
where yt denotes student score at time t; yt-1 denotes student score in prior year; 
mt denotes student specific mean gain; and Tt denotes teacher effect. 
 Table 1 shows how the gain score was calculated for two sample teachers 
in the dataset. A teacher’s gain score equals the average gain of all of a teacher’s 
students minus the total average gain of all teachers in the dataset (in our case 
0.54). Thus, Teacher #92 had a gain score of 1.30 -0.54 = 0.76 and Teacher #116 
a gain score of 0.30 - 0.54 = -0.24. Notice that while Teacher #116 had a positive 
average gain overall of 0.30, because her gain was below average, she had a 
negative gain score. More complex variants of the gain score model add school 
(St) and district (Dt) effects to further tease out achievement.  
 

Covariate Adjusted Model 
 

 Often VAMs try to account for student background characteristics by 
including covariates in the model such as student socioeconomic status or 
minority status. In our data, the only covariate being used to adjust the estimates 
is the students’ prior year test scores. Like the gain score model, the covariate 
adjusted model takes into account only the current and prior year’s scores, so 
these models are often referred to as single-wave or univariate. Again, students 
with missing data are excluded. Unlike the gain score model, which subtracts the 
previous year’s score, in the covariate adjusted model the effect of the previous 
year’s score is used as a covariate to adjust the estimate, like an analysis of 
covariance (ANCOVA). The difference between the covariate adjusted and a 
typical ANCOVA is that the slope is not assumed to be equal across classrooms; 
instead the model estimates the slope for each classroom (teacher). The covariate 
adjusted model is essentially a regression model with the prior year’s score as the 
primary covariate and a dummy variable for each teacher.  A teacher’s current 
score is specified as a function of student’s prior score and possibly other 
covariates. Teacher average gain is then compared to the total gain to produce the 
covariate adjusted teacher effect. The covariate adjusted model has been used in 
Dallas Schools (DVAAS) with student and school level covariates. A teacher’s 
covariate adjusted score can be found using the following equation: 
 



	
  
	
  

                                   yt – byt-1 = mt + Tt + et                                      (2)  
 
where yt denotes student score at time t; byt-1 denotes student score in prior year 
adjusted by any covariates; mt denotes student specific mean gain; Tt denotes 
covariate adjusted teacher effect; and et denotes residual errors 
 

Table 2. Covariate Adjusted Calculation for Teacher #92 and Teacher #116 

Teacher Student 
5th Grade 
Math 
Score 

4th Grade 
Math 
Score 

4th to 5th 
Grade 
Gain 

Teacher 
Average 
Gain 

Total 
Average 
Gain 

Teacher Effect 
(Covariate 
Adjusted Score) 

92 

1 6.93 5.78 1.15 

1.22 0.68 0.54 

2 6.40 5.20 1.20 
3 6.53 5.29 1.24 
4 7.50 6.47 1.03 
5 5.68 4.08 1.60 
6 7.03 5.94 1.09 

116 
7 6.00 5.57 0.43 

0.49 0.68 -0.19 8 5.08 5.44      -0.36 
9 6.58 6.16 0.42 

 Note: Table adapted from A Practitioner’s Guide to Value Added Assessment (Wiley, 2006). 
 
 Table 2 displays how the covariate adjusted teacher effect was calculated 
for the same two teachers. Notice that in this model students’ prior year’s score 
has been adjusted. Teacher #92 now has a slightly lower teacher effect as 
estimated by the covariate adjusted model (1.22 - 0.68 = 0.54) compared to the 
gain score model (0.76); Teacher #116 now has a slightly higher covariate 
adjusted teacher effect, -0.19 vs. -0.24, when compared with the gain score model. 
Though these teacher effect estimates differ only slightly between models, as we 
will see, for some teachers the difference can be quite stark. 
 Note that it is also possible to include a random term at level 2 (uoj) so as 
to allow the intercepts to vary. Introducing a random effect transforms the gain 
score model to an ANOVA model with random effects and the covariate adjusted 
model to an ANCOVA model with random effects (see Table 3). The inclusion of 
a random effect into the model results in individual teacher effect estimates being 
empirically Bayes (EB) adjusted. The adjustment is based on classroom size and 
the distance each classroom’s mean achievement is from the overall mean 
achievement. A more complete discussion of ordinary least squares (OLS) vs. EB 
effect estimates occurs in the second section under Value-Added Model 
Assumptions, Fixed vs. Random Teacher Effects.  
 
 
 



	
  
	
  

 
Table 3. Adding Random Effects (uoj) to Gain Score and Covariate Adjusted Models 

Gain Score Model 
 à Random Effects ANOVA Model 

Covariate Adjusted Model 
 à Random Effects ANCOVA Model 

Level 1: Student: Yit  =  βoj + eij  Level 1: Student: Yit  =  βoj + β1j Xij + eij  
Level 2: Teacher: βoj =  γoo + uoj  Level 2: Teacher: βoj  =  γoo + uoj  
                               β1j =  γ10   

Combined: Yit = γoo + uoj + eij  where: Combined: Yit = γoo + γ1o Xij  + uoj + eij   
where: 

Yit denotes student gain score Yit denotes student 5th grade score 

βoj  is a random intercept associated with jth teacher βoj  is a random intercept associated with 
jth teacher 

eij is random error β1j  is a random slope associated with the 
jth teacher 

γoo is the mean of random intercept Xit denotes student 4th grade score  

uoj is the random effect of the jth teacher on the random 
intercept eij is the random error 

 γoo is the mean of random intercept 
 γ1o is the mean of random slope 

  uoj is the random effect of the jth teacher 
on the random intercept 

 
Multivariate Layered Model 
 

 The layered model is the oldest multivariate value-added model. Created 
by Dr. William Sanders in 1992, the layered model is still used today in the 
Tennessee Value-Added Assessment System (TVAAS). Unlike the gain score and 
covariate adjusted models, the layered model utilizes test scores from multiple 
years and can estimate scores for missing students. As the name implies, later 
years of teacher effects build upon the gains from earlier years. Student growth is 
not assumed constant over time and teacher effects persist undiminished. The 
layered model does not include student covariates or school effects.  To use the 
developers’ own words, “TVAAS uses a highly parsimonious model that omits 
controls for SES, demographic, or other factors that influence achievement” 
(Ballou, Sanders & Wright, 2003, p. 60, as cited in Wiley, 2006, p. 28).  And, 
“Each student serves as his or her own control, creating a level playing field and 
eliminating the need to adjust for race, poverty, or other socioeconomic factors” 
(Schooling Effectiveness, SAS® EVAAS® for K-12, 
http://www.sas.com/en_us/industry/k-12-education/evaas.html, as cited in Wiley, 
2006, p. 29).  
  



	
  
	
  

 A simplified version of the layered model as presented by McCaffrey et al. 
(2003) for three years of testing is shown below.  
 
yi1 = m1 +T1 + ei1                                                                                 (3)  
yi2 = m2 +T2 +T1 + ei2 
yi3 = m3 +T3 +T2 +T1 + ei3 
 
In the layered model, student i’s achievement score at time t is a function of the 
mean achievement score of the overall student population at time t (mt), the 
student’s teacher T at time t and all previous times (Tt, Tt-1, Tt-2, Tt-3….), and a 
residual error term at time t (eit). 
 

Multivariate Cross-Classified Model   
 

The cross-classified model is also a multivariate, multiple-wave model with a 
two-way cross-classification of repeated measures and teachers at level 2 
(Raudenbush & Bryk, 2002). In this model grades are nested within students, 
grades are nested within teachers, and students and teachers are crossed because 
students have different teachers in each grade as shown in Figure 1 below.  Each 
year, as the crossed arrows indicate, students change classrooms and thus the 
nested structure changes each year. 
 

Figure 1. The Cross-Classified Value-Added Model 
 
 Unique to this model, individual student growth is assumed to increase at 
a constant linear rate over time. Therefore, due to this assumption, teachers with 
students with high growth rates in previous years will tend to have lower cross-
classified VAM scores than those estimated in other models that make no 
assumption of constant academic growth (e.g. layered model). A simplified 
version of the cross-classified model, as presented by McCaffrey et al. (2003), is 
shown below.  
 
 

 



	
  
	
  

yi1 = mi + bi + T1 + ei1                                                                     (4)  
yi2 = mi + 2bi +T1 + T2 + ei2 
yi3 = mi + 3bi + T1 +T2 + T3 + ei3 
 
In the cross-classified model, student i’s achievement score at time t is a function 
of the student’s mean initial achievement score (mi), the student’s linear 
achievement growth slope (bi), the student’s teacher at time t (Tt), and a residual 
error term at time t (eit). Therefore, student i’s growth is given as mi + bit with the 
teacher’s effect the permanent deflections from this growth curve (Raudenbush & 
Bryk, 2002). 
 

Multivariate Variable Persistence Model 
 

 Both the layered and cross-classified multiyear models make a very strong 
assumption—student learning gains produced by any one teacher are presumed to 
persist undiminished into the future. That is, the models assume a particular 2nd 
grade teacher has the same impact on her students’ 2nd grade assessment as she 
does on the same students’ 5th grade assessment. However, any decay in teacher 
effects directly impacts future value-added estimates. The variable persistence 
model attempts to account for this deterioration in teacher effects on student 
achievement over time by weighting/scaling the effects by a persistence parameter 
(McCaffrey et al., 2004).  A simplified version of the variable persistence model, 
presented in McCaffrey et al. (2003), is shown below. 
 
yi1 = m1 +T1 + ei1                                                                                (5)  
yi2 = m2 +T2 + a21T1 +ei2 
yi3 = m3 +T3 + a32T2 + a31T1 + ei3 
 
Notice the variable persistence model is identical to the layered model, but with 
the addition of this persistence parameter (a) in later years. Thus, student i’s 
achievement score at time t is a function of the mean achievement score of the 
overall student population at time t (mt); the student’s teacher at time t; the 
student’s teacher at all previous times (Tt-1, Tt-2, Tt-3….)—but these teacher 
effects are all adjusted by this persistence parameter (a) and a residual error term 
at time t (eit). 

Value-Added Model Assumptions 

Lord’s Paradox 

 These models differ most in the assumptions they make about how 
teachers influence student learning.  For example, Lord (1969) showed that two 



	
  
	
  

perfectly reasonable researchers can come to very different conclusions analyzing 
the same dataset, depending on the research question asked. This irresolvable 
contradiction, now known as Lord’s Paradox, can occur when comparing value-
added estimates across models, as neither the gain score model nor the covariate 
adjusted model is more correct, but ask different questions.2  While the gain score 
model (ANOVA) “asks” how initial scores differ from final scores, the covariate 
adjusted model (ANCOVA) “asks” how one variable can predict variation in 
another. In other words, how can achievement at the beginning (4th grade scores) 
be used to predict achievement (5th grade scores) at the end? At times these 
different questions can produce different answers. 
 

 

Figure 2. Math 4th and 5th Grade Student Achievement Scores, by Teacher’s Classroom 

 Graphs A and B in Figure 2 show Lord’s Paradox in action using our 
dataset. The scatterplots compare 4th and 5th grade math achievement scores for 
students taught by four different teachers. Graph A displays the more common 
situation when the gain score model and covariate adjusted model produce similar 
teacher effect estimates. In Graph A, Teacher #37 has a higher gain score than 
Teacher #27 (0.47 vs. -0.32) as well as a higher covariate adjusted score (0.71 vs. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 For a very accessible, two-page explanation of Lord’s Paradox see A Paradox in 
the Interpretation of Group Comparisons by Frederick Lord (see Bibliography). 



	
  
	
  

-0.24). Both models agree Teacher #37 should be credited with greater student 
test score gains. 
 Graph B, however, shows the models can at times produce contradictory 
teacher effects. Teacher #248 has an unambiguously higher covariate adjusted 
score than Teacher #144 (0.31 vs. -0.27), yet both teachers have the same 
estimated gain score of -0.15. Why then the curious results in Graph B? Teacher 
#248 is teaching a classroom of especially high achieving students and, therefore, 
there is little overlap in the distributions of student test scores between these 
teachers.  Looking at only these two extreme cases is, of course, overstating the 
point because these two teachers do overlap with many other teachers in the 
sample, even though they don’t overlap with one another.  However, it helps to 
illustrate the well-known problem that no statistical procedure can fully account 
for uncontrolled pre-existing classroom differences.  

Fixed vs. Random Teacher Effects 

 There is also the question of fixed vs. random teacher effects. Treating 
teacher effects as fixed assumes observed teachers are the only teachers of 
interest; treating teacher effects as random assumes teachers are drawn from a 
larger population. How one chooses to handle this assumption changes the rank 
order of individual teachers. Assuming fixed effects results in estimated teacher 
effects that depend only on the teacher’s students, possibly adjusted for 
background covariates (e.g., gender, race, and SES). In contrast, random teacher 
effects are calculated using estimated best linear unbiased predictors (EBLUP’s) 
or empirical Bayes (EB) estimators (Raudenbush & Bryk, 2002). Unlike ordinary 
least squares (OLS) estimators, EB estimators use data (i.e. borrow strength) from 
all teachers in the sample to estimate each teacher’s value-added effect.  
 

Table 4. Ten Teachers’ EB and OLS Teacher Effect Scores and Shrinkage Estimates 

Teacher # Sample Size 
(n) 

Teacher 
Average 
Gain (OLS) 

Shrinkage 
Teacher 
Average 
Gain (EB) 

Grand Mean 
(γ) EB Gain Score  

36 4  0.04  0.17  0.21  0.54  -0.33  
60 7  0.01  0.12  0.13  0.54  -0.41  
116 3  0.30  0.10  0.40  0.54 -0.14  
237 12  0.32  0.03  0.35  0.54  -0.19  
4 12  0.38  0.02  0.40  0.54  -0.14  
249 21  0.84  -0.03  0.82  0.54  0.28  
14 14  0.97  -0.05  0.91  0.54  0.37  
130 18  1.33  -0.08  1.24  0.54  0.71  
92 6 1.30 -0.19 1.10 0.54 0.56 
197 13  2.83  -0.31  2.51  0.54  1.97  



	
  
	
  

 
 Table 4 displays the EB adjusted gain scores of 10 teachers.3 A teacher’s 
EB average gain is calculated by adding the teacher’s original OLS average gain 
to their estimated shrinkage. Teachers with OLS average gains farther away from 
the grand mean and in classrooms with fewer students will show greater 
shrinkage. Notice Teachers #116 and #92 introduced earlier in Table 1 and Table 
2. Teacher #116 had an average gain of 0.30 and only has three students. Mostly 
as a result of her small classroom size, her OLS estimated average gain of 0.30 
was shrunk upward to 0.40, and closer to the grand mean of 0.54. In contrast, 
Teacher #92’s OLS estimated average gain estimate of 1.30 was shrunk 
downward to 1.10. Though Teacher #92 had more students (six vs. three), her 
OLS estimated average gain of 1.30 exhibited greater shrinkage because it was far 
away from the overall grand mean (0.54), and thus more extreme. In order to 
center the gain at zero, grand mean gain is subtracted from a teacher’s EB average 
gain to determine a teacher’s EB gain score. 
 Shrinking OLS gain scores by including a random effect reduces the 
variance of the teacher effect estimate relative to the fixed-effect estimate. 
However, the obvious drawback of including a random effect is, by definition, 
shrinking OLS scores introduces bias. For highly effective teachers, EB gain 
score estimates can be far below the teacher’s gain score; for highly ineffective 
teachers, EB gain score estimates can be far above the teacher’s gain score. This 
is particularly true if the teacher’s class is small. Consequently, if accountability 
decisions are made on the basis of teachers with extreme scores, teachers with 
smaller classes will tend to be excluded using EB adjusted gain scores (rightly or 
wrongly). Of course, because the fixed-effect gain score for teachers with small 
classes will more likely fall in the extremes of the distribution, using fixed effect 
scores will result in high-stakes decisions being applied more often to teachers 
with small classes and in a more erratic fashion as extreme values will be driven 
in part by random fluctuations. Given these trade-offs, McCaffrey et al. (2003) 
offer the following guidelines:  
 

Random-effects models are preferred when estimates that shrink teachers toward 
the mean—possibly underestimating the most and least effective teachers—are 
less detrimental to the inference of interest than estimates with large but 
unsystematic errors. Fixed-effects models are preferred otherwise (p. 67).  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Though Table 4 only reports EB gain score estimates, a random effect was also 
included in the covariate adjusted model and a similar degree of shrinkage was 
found.   



	
  
	
  

Tekwe et al. (2004) recommend using fixed effects models for simplicity and ease 
of interpretation; however, more recent VAMs have utilized random effects 
almost exclusively (McCaffrey et al., 2003).   

School and District Effects 

 School and district inputs, such as policies regarding curricula, 
interventions, and other academic programs, clearly exert considerable influence 
on student achievement. Whether one chooses to account for these factors in 
VAMs can also drastically influence teacher effect estimates. Although students 
are non-randomly sorted across schools and districts, these fixed effects are often 
omitted in current value-added models including TVAAS. Like the decision 
concerning the inclusion of random effects, there is an inherent trade-off. 
Omitting school (district) effects can bias “true” teacher effects through mistaken 
attribution (i.e., a teacher could receive heavier blame/credit than is warranted). 
However, adding school or district fixed effects can limit the usefulness of the 
results as their inclusion restricts comparison to only those other teachers in the 
same school or district (Baker et al., 2010). Given that teachers do not randomly 
sort across schools and districts, this can result in an average teacher being 
unfairly punished if surrounded by above average teaching colleagues, or 
rewarded if surrounded by below average colleagues. For instance, a teacher in a 
school with exceptionally talented teachers may not appear to add as much value 
to her students as others in the school, but if compared to all district teachers, 
might fall well above average.  That said, effective teachers may also make their 
fellow teachers at the school more effective by establishing good study patterns 
and discipline in their students that perhaps rubs off in other classes. It is 
impossible to disentangle these effects. It comes as no surprise then that 
McCaffrey et al. (2003) found the decision as to whether to include school fixed 
effects significantly changed value-added inferences. 

Rate of Persistence 

 An often cited claim of proponents of VAM is that matching 
disadvantaged students with high value-added teachers for five years in a row 
would be enough to completely eliminate the achievement gaps between black 
and white or poor and non-poor students (Hanushek, 2009). However, this 
assertion is based on the assumption of perfect persistence of teacher effects, 
whereas Jacob, Lefgren, and Sims (2010) have found that as little as one-fifth to 
one-third of teacher-induced learning gains persist into the following year. To 
illustrate how varying the degree of persistence can strongly influence teacher 
effect estimates, consider a class of 5th grade students with an average 



	
  
	
  

achievement score of 100 at the end of third grade and assume true teacher effects 
diminish by 20% as shown in Table 5. 
 

Table 5. Undiminishing vs. Diminishing Teacher Effect Estimates on Future Value-Added Estimates 

Undiminished  Diminished 

100 Classroom average achievement at the end 
of 3rd grade  

100 Classroom average achievement at the 
end of 3rd grade 

+10 Contribution of 4th-grade teacher to 4th-
grade test; the original teacher effect of 10 
has continued undiminished over the single 
year 

 +8 Contribution of 4th-grade teacher to 4th 
grade test; the original teacher effect of 
10 is assumed to have diminished by 20% 
over the single year 

115 Average score on 5th grade test, then  115 Average score on 5th grade test, then 

+5 Attributed 5th grade teacher effect  +7 Attributed 5th grade teacher effect 

Note: Table adapted from A Practitioner’s Guide to Value Added Assessment (Wiley, 2006). 
 
 If the “true” rate of decay in teacher effects is 20%, the 4th grade teacher 
in the undiminished model is wrongfully given credit for a portion of student 
achievement gains (+2 points) that should have been attributed to the 5th grade 
teacher. Thus, the effects of the 5th grade teacher are underestimated by two 
points in the undiminished model. Similarly, had we incorrectly assumed teacher 
effects diminished by 40%, the effect of the 5th grade teacher would have been 
overestimated by two points in the diminished model. Rate of persistence over 
time in teacher effects is highly controversial for good reason. Changing the 
strength of the rate of persistence can drastically alter teacher effect estimates; yet 
it is an exceedingly complex parameter to measure. 
 Jacob et al. (2010) attempted to tackle this conundrum of estimating 
teacher effect estimates. After breaking knowledge into its long-run and short-run 
components, the authors found test score variation as estimated by teacher value-
added models is only about 20% as persistent as true long-run knowledge. The 
authors argue this low persistence in variation of teacher quality is not due to 
value-added measures, but is common to several other methods of measuring 
teacher quality. When assertions are made that a high value-added teacher can 
raise math achievement by one-fifth of an “average yearly gain” (Aaronson, 
Barrow, & Sander 2007), these claims are made under the assumption of perfect 
persistence; however, the long run gain may be closer to 0.04, and thus a teacher’s 
true ability may be overstated. 
 Nonetheless, while the assumption of complete persistence of teacher 
effects seems unlikely to hold and has been shown to be false in some empirical 



	
  
	
  

data (Jacob et al., 2010), the variable persistence model that relaxes that 
assumption is itself problematic. The variable persistence model relies on a 
mixture of gains and statuses of students (McCaffrey, 2010) and thus, is likely to 
entangle teacher effect estimates with the academic and SES level of those 
students taught.  Unlike the evidence that teacher effects decay, in many cases, we 
have no sound empirical evidence preferring one set of assumptions to another. 
Moreover, in some important instances, the empirical evidence points in opposing 
directions, such as McCaffrey’s (2010) findings that a model that assumed 
complete persistence of teacher effects had larger errors than the variable 
persistence model, but that the errors in the variable persistence model were 
correlated with student background characteristics and thus, might be 
systematically biased.  Therefore, it may be impossible to definitively determine 
which model is “best” and any estimates of teacher effects produced by one 
model could arguably be said to have a “margin of error” encompassing not 
simply the typical confidence interval but the range of the estimates produced for 
that teacher by all other models.   
 If we cannot determine which model is “best,” then it makes sense to look 
carefully at how big the differences are between models in terms of practical 
importance.  We turn to this question in the next section. 

Comparing the Results from Different Models 

 The teacher effect estimates from the gain score, covariate adjusted, cross-
classified, and variable persistence VAMs all correlated very highly. Only the 
variable persistence model—the only model to account for diminishing teacher 
effects—did not correlate above 0.90 with the other models (see Table 6).  
 
Table 6. Correlation of Teacher Effect Estimates Between VAMs 

  Gain Score Covariate 
Adjusted 

Cross- 
Classified 

Variable 
Persistence  

Gain Score 1.00    

Covariate Adjusted  0.91 1.00   

Cross-Classified  0.96 0.93 1.00  

Variable Persistence  0.81 0.96 0.86 1.00 
 
 
 The competing models also produce similar aggregate student 4th grade to 
5th grade growth estimates (see Table 7). The EB and OLS gain score models 
calculated one-year gain at 0.54, while the OLS covariate adjusted model 



	
  
	
  

estimated slightly greater student gain at 0.77. The cross-classified model 
estimated similar one-year gain at 0.65. Taken together, the high correlations and 
similar fixed effects estimates across models provide evidence that in the 
aggregate the models produce similar growth estimates.4 

 
Table 7. Estimated Aggregate Student Achievement Gain: 4th 
Grade to 5th Grade 

 Gain Standard Error 

Gain Score 0.54 0.011 

Covariate Adjusted  0.77 0.011 

Cross Classified  0.65 0.010 

 
 After considering overall growth differences between the value-added 
models, we next examined differences in individual teacher effects. First, we 
ranked the 257 5th grade teachers according to their respective gain model scores 
and covariate adjusted model scores. While the median difference was nine 
percentile points between the two models, 12% of teachers had a rank difference 
greater than 20 percentile points. In addition, 25% of the teachers who ranked in 
the bottom quintile—those that might be categorized as “struggling”—in the gain 
score model were not ranked in the bottom quintile of the covariate adjusted 
model.  Teacher #180 saw the greatest change in rank between models—ranked in 
the 6th percentile by the gain score model, yet the 70th percentile by the covariate 
adjusted model. Likewise, Teacher #248 (introduced earlier in the Lord’s paradox 
example with high achieving students) was ranked in the 37th percentile by the 
gain score model, but in the 83rd percentile by the covariate adjusted model. 
 Ranking teachers by the multiyear cross-classified and variable persistence 
models generated comparable, if not more divergent findings. The majority of 
teachers (53%) had a difference of at least 10 percentile points between the two 
models while 23% of teachers had a rank difference greater than 20 percentile 
points. Moreover, 35% of teachers categorized as “struggling” by the cross-
classified model—by being ranked in the bottom quintile—were not ranked in the 
bottom quintile of the variable persistence model. Again, Teacher #180’s rank 
changed wildly between models—ranked in the 11th percentile by cross-classified 
model yet 83rd percentile in the variable persistence model. Similarly, Teacher 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 We were unable to calculate the overall student achievement gain and its 
associated standard error for the variable persistence model. This reflects our 
limited understanding of this complex model and is not a shortcoming of the 
model itself.  



	
  
	
  

#248’s relative standing was the 46th percentile in the cross-classified model, but 
the 89th percentile in the variable persistence model. 
 However, perhaps most troubling was the shuffling of teachers in the tails 
of the distribution. Only half of the bottom 5% of teachers was the same across 
the cross-classified and variable persistence models; only 43% of the top 5% of 
teachers was the same across models. These results suggest that while the models 
behaved similarly in the aggregate, for some individual teachers model selection 
made an enormous difference on their perceived performance.  

Standard Errors 

 It is possible, however, that we are overstating the case for the lack of 
precision in individual teacher effects. Perhaps this lack of precision is already 
built into these model estimates in terms of their estimated standard errors. In that 
case, it might be advisable to simply pay more attention to the standard errors and 
associated confidence intervals around each effect estimate. Estimating a series of 
different models may be redundant as far as providing us with a sense of the 
extent of uncertainty around each effect estimate.  To explore this possibility, 
Table 8 displays the smallest, largest, and mean standard errors for two models.  
 

Table 8. Standard Errors for Covariate Adjusted and Variable Persistence Models 

Covariate Adjusted Model Variable Persistence Model 

Teacher 
ID 

Effect 
Estimate 

Standard 
Error 

95% Confidence 
Interval 

Effect 
Estimate 

Standard 
Error 

95% Confidence 
Interval 

256 -0.48 0.08 -0.63 -0.32 -0.41 0.07 -0.55 -0.27 
257 -0.52 0.46 -1.45 0.41 -0.22 0.31 -0.83 0.39 
Mean --- 0.14 -0.28 0.28 --- 0.13 -0.26 0.26 

 
 One way to put these standard errors in perspective is to compare them to 
the overall distribution of scores.  The standard deviation of the distribution of 
teachers for the covariate adjusted model was 0.41, meaning that, if we assume a 
normal distribution, approximately 95% of the estimates fell between -0.82 and 
0.82.  The confidence interval for a teacher at the mean spans from -0.28 to 0.28, 
just over one-third of that distribution, while the largest confidence interval, for 
Teacher #257, spanned a range even larger than this overall distribution, 
suggesting that for Teacher #257, the model provides nothing but a guess as to her 
effectiveness. Teacher #256, on the other hand, with the smallest standard error, 
has a confidence interval that is just less than one-fifth the range of the overall 
95% distribution. 



	
  
	
  

 For the variable persistence model estimates, the standard deviation of the 
distribution of teachers was 0.40, so 95% of the population ranged between about 
-0.80 to 0.80. The confidence interval for the mean teacher in that model ran from 
-0.26 to 0.26, again approximately one-third of the overall 95% distribution. The 
largest standard error, for Teacher #257, resulted in a confidence interval that was 
just over three-fourths as large as the overall distribution, and the smallest 
confidence interval was again less than one-fifth of the overall distribution. The 
standard errors are somewhat smaller for the variable persistence model, most 
likely because this model included multiple years of student achievement data. 
However, overall, these standard error estimates reinforce the lack of precision in 
model estimation earlier emphasized through our comparisons of the implications 
of various models for individual teacher effect estimates. Our findings show that 
model selection can have notable and even severe consequences for individual 
teacher effect estimates, in spite of aggregate model correlations that tend to be at 
0.90 and above.   

Discussion 

 One of the leading proponents of VAM, Eric Hanushek (2011), has 
suggested that replacing the lowest performing 5% to 8% of teachers based on 
valued-added scores with “average teachers” would increase total U.S. economic 
output to the tune of $112 trillion in terms of the present value of future additions 
to Gross Domestic Product. However, who exactly are these bottom 5% to 8% of 
teachers? Recall that in our findings, only half of the bottom 5% of teachers 
remained the same across the cross-classified and variable persistence models. 
Our models do not even come close to a clear-cut consensus on the bottom 5%, 
and they are barebones without the inclusion of divergent student background 
covariates. 
 In addition to the lack of consensus that we found based on different 
models, there are a host of other methodological choices that we did not consider.  
In fact, in surveying the literature, model selection appears to be among the least 
consequential choices that must be made when estimating a value-added model.  
For instance, Lockwood et al. (2007a) found that the choices of whether to 
include covariates such as student demographic variables and class mean 
characteristics, had nearly as large of an impact on the aggregate correlations as 
did the choice of model; they also found the choice of outcome variable (i.e., what 
test was used as the indicator of student learning) had a far greater impact than 
either model choice or decisions about what covariates to include.  In fact, when 
estimating the same model utilizing different student achievement tests as the 
outcome variable, the authors found that the correlations among teacher effect 
estimates were “uniformly low”, ranging from 0.01 to 0.46 depending on year, 



	
  
	
  

model, and controls for student background characteristics. Sass (2008) also 
found large differences in estimates depending on what test was used; in a dataset 
of Florida teachers, he found only 43% of teachers ranked in the top 20% on the 
Stanford Achievement Test were also ranked in the top 20% when using the state 
test. Accordingly, these studies suggest that the selection of student achievement 
tests contributes more to the variation in how teachers are ranked than does the 
selection of the statistical model. In other words, if the differences we found from 
one model to the next are worrisome, then the findings from Lockwood et al. and 
Sass multiply those concerns. 
 Looking at a different source of inconsistency, researchers have found that 
even when using the same model and the same outcome variable (i.e., student 
achievement test), the estimates are extremely unstable from one year to the next: 
recall that Koedel and Betts (2007) found that only 35 percent of teachers ranked 
in the top fifth on teacher value-added measures one year were still ranked in the 
top-fifth in the next year. McCaffrey, Sass, Lockwood, and Mihaly (2009) found 
similar instability from one year to the next, and both papers estimated that about 
10 to 15 percent of teachers fall all the way from the top fifth of teachers to the 
bottom fifth, while a similar number move all the way from the bottom fifth to the 
top fifth in just one year. In addition, it should be noted that in this paper we have 
not touched upon a number of other issues that researchers have raised with 
respect to the reliability and validity of VAM estimates: demonstrable non-
random assignment of students (Rothstein, 2010); data that is missing not at 
random; unintended consequences such as narrowing of the curriculum; and 
perverse incentives that might encourage cheating, discourage collaboration, and 
discourage attention to migrant students who won’t be included in VAM 
estimates. 
 It doesn’t take much experience with the American legal system to 
forecast the day that moderately imaginative lawyers begin using the limitations 
of VAMs to sue school districts and prevent the firing of “the bottom 5%.” 
Districts are rushing to implement reforms that use VAM as one-third to one-half 
of the final evaluation, and typically rely on principal observations for the other 
major portion of the final score. Yet imagine this argument in court for a wrongful 
discharge case: “But your honor, we have shown how the principal of this school 
began to record low evaluations for Mr. Smith at the same time Mr. Smith began 
to become politically active in the union, and furthermore, Mr. Smith’s 
supposedly low value-added estimate jumps to the 28th percentile when estimated 
using a different model…” Many districts plan to include student surveys in a 
multiple measure evaluation, but survey research suggests that students tend to 
rate their teachers uniformly high (Follman, 1992), so survey results might not 
provide much help in ridding our schools of ineffective teachers. 



	
  
	
  

 The solution as to the proper applicability of VAM, however, is also not 
difficult to discern. VAM can continue to serve an essential research purpose, of 
course, and this role will likely expand as assessments and data capacity improve. 
In fact, we might view the history of value-added modeling as a story of progress.  
It begins with researchers responding to the limitations of status-based 
accountability under the No Child Left Behind Act (NCLB)5 by advocating for 
the use of growth models, gain score models, and covariate adjusted regressions, 
and it progress to the growing use of multilevel, multiyear models such as the 
layered model and the cross-classified model. These new models allow 
researchers and evaluators to address old limitations through considering multiple 
years of data and the cross-nested structure of data.  More recently, we have seen 
the development of variable persistence models that acknowledge and model the 
research findings that teacher effects partially decay over time. From this 
perspective, VAM is a story of technical breakthroughs and increasing 
sophistication. Perhaps, however, we can suggest that there is more work to be 
done, more advancements that are needed, before VAM can be reliably and 
validly used as a high-stakes evaluative tool that might dictate the direction or 
termination of a teacher’s career. 
 The next needed breakthrough might be a model that explicitly 
acknowledges the latent nature of the traits we are seeking to measure. Student 
learning and teacher quality are not observable characteristics, but latent 
constructs.  In other words, student learning is not perfectly measured by student 
test scores. Instead, what we want students to learn encompasses a much broader 
array of outcomes and cannot be perfectly measured at all. Therefore, researchers 
should seek to develop structural equation models (SEMs) that take this latent 
nature into account and explicitly account for measurement error by incorporating 
various value-added estimates of important student outcomes. We offer one 
possible structural equation model incorporating value added estimates of higher-
order thinking, writing, and emotional health, as well as more typical measures of 
achievement in Figure 3.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 NCLB requires that schools be evaluated based on the percentage of students 
who attained a score of proficient or above on the state standardized tests. Each 
school is required to make Adequate Yearly Progress (AYP) each year, meaning 
that each year, each school must raise the percentage of its students who attain 
proficiency by a set amount.  Schools that do not “make AYP” face sanctions 
including being forced to pay for individual tutoring for any student and being 
forced to notify parents that they can transfer their students to a “higher-
achieving” school. One of the aspects of this law that many experts have criticized 
is that this system does not take into account the growth students may be making, 
but only looks at whether students have attained the proficiency bar or not. 



	
  
	
  

 In Figure 3, teaching quality is conceived of as a latent (unobserved) trait 
that produces a causal impact on student learning. Teaching quality is measured 
through ratings on observations, surveys, and a portfolio (perhaps of classroom 
artifacts, feedback on student work and lesson and unit plans). These measures are 
observed, but are conceptualized as being caused by the latent trait of teaching 
quality, which is why the arrows point from the latent trait to the observed 
measures. Similarly, student learning is conceived of as a holistic latent trait that 
is measured through growth on standardized achievement tests, growth on higher-
order tests of critical thinking, growth in ratings of student writing, and growth on 
a survey measuring emotional health. Factor analysis is used to produce an 
estimate of the latent traits based on the observed measures, and then student 
learning is regressed on teaching quality to produce an estimate of the effect of 
teaching quality on student learning. 
 An SEM, like the one we have proposed in Figure 3, would have the 
advantage of including multiple student outcome measures, thereby blunting at 
least one of the major critiques of VAM—narrowing of the curriculum. As 
opposed to the current VAM-based systems that incentivize a focus on the results 
of one test, a system that included multiple outcomes could potentially remind us 
all to conceptualize education holistically and provide incentives to teachers and 
schools to focus attention on many aspects of student growth. 
 VAM’s utility for evaluative purposes can also be enhanced if we use it as 
a fire alarm or flag that will focus attention on the “bottom x percent” of teachers. 
Those teachers could then receive additional outside evaluations by trained 
experts, and perhaps be required to compile a portfolio of their work, videotape 
multiple lessons, or submit written reflections on their practice. With such a 
system, the low value-added estimate would be just a piece of corroborative 
evidence in the event that a district was seeking to remove a teacher. Also, the 
additional observations and reflections might help some of these teachers to 
improve. In all, low performing teachers would be more likely to either improve 
their practice or leave the classroom without a legal fight if they were confronted 
with multiple sources of evidence and supported by rich data about their teaching. 
  



	
  
	
  

Figure 3. A Possible Structural Equation Model Incorporating Multiple Value-Added 
Estimates 
 
 Such a system could be modeled after the successful Peer Assistance and 
Review (PAR) programs in Toledo, Rochester, Cincinnati, Columbus, and 
Montgomery County, or upon the national evaluation system in Chile. One of the 
major drawbacks to these systems is that they are expensive, but VAM estimates 
could be used to target extra observations or other evaluative screenings toward 
those most likely to need assistance or to need to be removed. In such a system, 
VAM estimates could also serve an important role in helping to support principal 
ratings. Principals whose ratings consistently diverge from VAM estimates could 
be accompanied by a second rater to calibrate their scores or given additional 
training. Finally, randomly selected and perhaps top value-added teachers could 
also be provided with second raters, thus adding reliability and validity to the 
overall evaluation system.  

Conclusion 

 VAMs may yet have a bright future in improving our educational systems, 
but the manner in which they are currently being employed appears to fly in the 
face of their demonstrated limitations and inconsistencies.  While unions and 
management battle over the percentage that value-added estimates should play in 
teacher evaluation systems, our findings, and the weight of the research, suggest 
that a suitable and helpful role for value-added modeling might be better found 
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outside of such a narrowly-defined summative evaluation system. Value-added 
modeling can be a tool for researchers to examine the success of policy and 
curricular changes. Value-added modeling can be a means for calculating growth 
estimates that could be included in developing a more complex and nuanced 
picture of student learning, such as might be done using a structural equation 
model. And value-added modeling can provide estimates that could serve as a fire 
alarm to alert district supervisors to teachers who might need assistance or 
additional scrutiny. But, value-added modeling cannot provide us with an 
incontrovertible answer about how effective any one teacher is. VAM is only a 
statistical tool, and as such, inferences are dependent on the model used and the 
assumptions made. 
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