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ABSTRACT OF THE DISSERTATION

Data-Driven Monitoring and Control of Smart Grid

by

Yuanqi Gao

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2020

Dr. Nanpeng Yu, Chairperson

As new technologies such as renewable energy resources, distributed generation,

and plug-in electric vehicles penetrating the power distribution systems, intelligent monitor-

ing and control become increasingly important for reliable and efficient operation of smart

grids, and continuous delivery of high quality electricity to the customers. To accommodate

these new technologies, supporting hardware including advanced two-way communication

and remotely controllable devices had a significant development over the last decade. How-

ever, how to manage, coordinate, and supervise the distribution systems remains a great

challenge for the electric utilities.

To address these challenges, we developed four use cases and applications for smart

grid monitoring and control from both model-based and data-driven perspectives. Namely,

distribution system state estimation (DSSE), distribution system anomaly detection, dis-

tribution network reconfiguration (DNR), and Volt-VAR control (VVC). For data-driven

algorithms, we derive algorithms that are sample efficient, interpretable, and theoretically

justifiable.
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Specifically, for distribution system monitoring, we address the low observability

and numerical instability issues with the unbalanced DSSE problem with a constrained

maximum likelihood (CML) estimator and a sparse subspace Gauss-Newton algorithm. The

uncertainty estimate is also derived within the CML framework. To address the physical

interpretability of anomaly detection algorithms, we established the connection between the

linear approximation of the power flow manifold and a class of modified linear regression

models. Algorithmically, we estimate the model parameters and detect anomalies using

smart meter data only, without detailed network parameters or confirmed anomaly cases.

For distribution system control, we propose model-based decentralized and data-

driven centralized approaches to the DNR problem. For decentralized algorithms, we im-

prove the convergence speed of alternative direction method of multipliers (ADMM) by an

approximated Newton’s update. For data-driven centralized algorithms, we improve the

sample efficiency of existing reinforcement learning (RL) algorithms by a heuristic data

augmentation approach, and a principled framework termed batch-constrained soft pol-

icy iteration theory. Both approaches improve the existing control policy in the historical

datasets, and the batch-constrained RL scales up to networks with hundreds of nodes and

switching devices. Lastly, a randomized communication-efficient consensus multi-agent RL

(C-MARL) based VVC framework is developed.
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Chapter 1

Introduction

1.1 Background and Motivation

Over the last two decades, power distribution systems have seen a tremendous de-

velopment. New technologies such as distributed energy resources (DER), two-way commu-

nication, and remotely controllable devices are being integrated into the legacy distribution

system to improve the reliability, efficiency, and sustainability, in a increasingly faster pace.

According to the U.S. Energy Information Administration (EIA), in 2019, renewable energy

resources such as solar [1], wind, and hydropower, supplied 11.5 quadrillion Btu of energy,

equaling 11.4% of total U.S. energy consumption. This is 184% growth compared to 2000

[2]. The number of electric vehicles (EVs) have been growing rapidly over the last decade,

and the annual amount of domestic energy required by charging EVs is estimated to be 4.3

TWh in 2018 [3].

While DERs such as energy storage systems, demand responses resources [4, 5,

6], and distributed generation are being integrated, new issues and challenges regarding

1



the management and operation of distribution systems emerges. Renewable energies such

as wind and solar are volatile and causes intermittent power supply [7] or even system

instability. Distributed generation also causes bidirectional power flow and elevated voltage

at the grid edge. The large amount of EV charging demand and energy storage systems [8]

raises concerns about the need to upgrade the existing distribution assets, as well as the

new infrastructure footprint [9, 10].

To address these challenges, supporting hardware is needed to accommodate these

changes in modern distribution system. In recent years, the number of AMI installations is

growing significantly. As of 2018, 86.8 million smart meters have been installed in the U.S.

[2], supporting more than half of the electricity customers (∼150 million) in the country.

Smart meters have the capability to establish two-way communication between the electric

utilities and customers, which support smart consumption applications and distributed gen-

eration, improve reliability, and help consumers to save money by managing their electricity

usage. New control devices such as remotely controllable switches, on load tap changers,

and capacitor banks are gradually replacing the legacy control devices. With all these tech-

nologies, managing, coordinating, and supervising the working of distribution systems and

the assets becomes extremely complex. How to achieve reliability and efficiency remains a

great challenge for the electric utilities. This opens up numerous research questions and

efforts.

To this end, both industry and academia have taken efforts to improve their meth-

ods for distribution system operation, targeting at the ultimate goal-the “smart grid” [11].

For instance, utility companies have been utilizing AMI data to collect outage information

2



and restore service to customers more quickly. By leveraging remotely controllable devices,

communications networks, and computational methods, many utility companies have im-

plemented the fault location, isolation, and service restoration (FLISR) procedure to reduce

the impact of outages and improve system reliability. In a 2014 study, FLISR was found to

reduce the number of customers whose service was interrupted by up to 45%, and reduced

the customer minutes of interruption by up to 51% for an outage event [12].

Meanwhile, a growing number of articles and conference proceedings are publishing

computational methods for grid management, monitoring, and control. At present, the lit-

erature on distribution network monitoring and control can be broadly categorized into two

classes: model-based and data-driven methods. Model-based methods use physical mod-

els of the distribution system to perform the task. For example, distribution system state

estimation treats the nodal voltages as state variables, and constructs the measurement

equation based on the distribution network topology and impedances [13]. Distribution

system Volt-VAR control calculates the optimal operating schedule for voltage regulating

and VAR control devices, based on the network model [14]. Model-based methods are gen-

erally theoretically rigorous and reliable. However, they can be difficult to be adopted in

practice because of the complexity of the real world distribution systems and the unavail-

ability of the detailed physical models. For example, utility companies typically do not have

accurate and reliable primary and secondary feeders’ topology and parameter information

[15, 16]. To overcome these limitations, big data and machine learning/deep learning are

two of the most promising solutions. A purely data-driven method uses only the operational

data to achieve monitoring or control, without system parameters. However, this brings

3



about its own challenges. Most data-driven methods are not physically interpretable, and

lack guarantee of performance. In addition, unlike model-based algorithms, the design and

test of data-driven methods are not quantitative. Accurately reproducing the results is a

hard problem. As a result, it is challenging to directly adopt existing artificial intelligence

method on power distribution system, which consists of a large number of critical infrastruc-

tures. As a result, maintaining a reliable operation is unlikely to be achieved by data-driven

method alone.

1.2 Research Objectives and Contributions

Despite the rich theories and algorithms developed in the model-based literature,

it is still difficult to adopt these techniques in the real world due to incomplete system

parameters. On the other hand, data-driven methods have the potential to be implemented

and tested. Nevertheless, they are generally hard to interpret and lack theoretical perfor-

mance guarantee. In this dissertation work, we answer the question of how to combine the

advantages of model-based and data-driven methods to develop algorithms which has the

potential to be implemented in the real world, with performance guarantee, and physically

interpretable. Specifically, we will develop four major use cases and applications for smart

grid data-driven monitoring and control:

• first, we will derive a distribution system state estimation algorithm using the

AMI data. In transmission networks, state estimation (SE) is routinely implemented and

supports various key applications such as contingency analysis, preventive control, and

corrective control. However, SE still does not see a similar level of adoption in distribution
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system, primarily due to low measurement redundancy, communication delay, unbalanced

system operation, and incomplete network parameters. In addition, the existing power

system state estimation algorithms are numerically unstable and has poor scalability. We

propose to address three of the aforementioned challenges: low measurement redundancy,

numerical instability, and scalability. Our approach is to model the physical constraints in

the maximum likelihood estimation framework to improve the observability. Then we will

develop numerically robust algorithm to solve the resulting constrained maximum likelihood

problem.

• second, we will develop an AMI data-driven anomaly detection framework for

distribution system secondary circuits. One of the most prevalent form of anomaly is elec-

tricity thefts, which causes up to 3.5% of utility companies’ annual revenue in the U.S.

Traditionally, such activities are detected by laborious field inspections. In the literature,

numerous model-based and artificial intelligence theft detection methods have been pro-

posed. However, model-based methods require the unavailable distribution network model

information, whereas artificial intelligence methods are physically uninterpretable or require

confirmed cases to train. We propose to use the distribution network secondary power flow

equation to derive a smart meter power and voltage measurement physical model, then use

the AMI historical data to estimate the model parameters to perform anomaly detection.

The resulting framework requires minimum distribution system knowledge while being fully

data-driven.

• third, we will create model-based distributed, and data-driven centralized al-

gorithms for distribution network reconfiguration (DNR). DNR is an advanced smart grid
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technology, which works by changing the status of remotely controllable switching devices

to optimize certain operational objectives. Currently, nearly all DNR algorithms proposed

in the literature are model-based and centralized. However, these algorithms are difficult

to be adopted in practice due to uncertain and incomplete network parameters, communi-

cation delays, and slow computation speed. We will address these problems separately by

proposing distributed and data-driven algorithms. In the model-based distributed control

setup, each remotely controllable switch can perform local computation and communicate

with their neighbors. The group of agents work collaboratively to find an optimal network

configuration without communicating with a central controller. In the data-driven control

setup, the network parameter information is assumed to be unavailable. Therefore we pro-

pose to use model-free, off-policy reinforcement learning (RL) algorithms to learn a control

policy from historical operational dataset. No detailed system model is required to train

the algorithms and perform the control task. In addition, the training of the algorithms can

be done off-line. Thus the computation speed can be much more faster than model-based

approaches.

• fourth, we will develop data-driven distributed algorithm for distribution network

Volt-VAR control (VVC). VVC determines the operation schedule of voltage regulating and

VAR control devices to lower network losses, improve voltage profile, and reduce voltage

violations. In the literature, model-based centralized, model-based distributed, and data-

driven centralized have been studied. To further improve the results, we propose to use

multi-agent reinforcement learning to derive fully data-driven and distributed algorithm. To

address the exploration-exploitation tradeoff, we will develop the algorithm in the maximum

6



entropy RL framework. Moreover, we propose to use stochastic approximation to improve

the algorithm’s communication efficiency.

The unique contributions of this dissertation are as follows:

• We established a constrained maximum likelihood estimation framework for unbal-

anced distribution system state estimation problems with low observability, with a

numerically stable and sparsity-preserving subspace Gauss-Newton algorithm [13].

The uncertainty estimate was also derived for the algorithm.

• We developed the first physically-inspired data-driven anomaly detection method us-

ing customer active power and voltage magnitude measurements alone [17]. While

being fully data-driven, the model is physically interpretable and does not need train-

ing samples from confirmed cases. We also proposed a novel modified linear regression

model to improve the detection accuracy, and proved preliminary properties of the

model when subject to normal and abnormal smart meter data.

• We proposed three algorithm frameworks for the distribution network reconfigura-

tion (DNR): model-based alternating direction method of multipliers and approxi-

mated Newton (ADMM/Newton) [18], data-driven deep Q-learning (DQL) [19], and

a novel batch reinforcement learning algorithm termed batch-constrained soft actor

critic (BCSAC) [20]. The ADMM/Newton accelerated the convergence speed of the

ADMM by a factor of 5 on a small test distribution feeder. In the DQL based DNR

framework, we proposed a novel training data augmentation technique based on span-

ning forest enumeration and Gaussian process, which was shown to reduce the oper-

ational cost. Lastly, in the BCSAC framework, we proved a batch-constrained soft
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policy iteration theorem, and applied the state-of-the-art actor critic framework to

approximate the policy iteration. The algorithm was successfully applied to distribu-

tion networks with up to over 100 buses with 3.8× 1015 feasible configurations, using

as few as 8000 training data pairs.

• We proposed a consensus multi-agent reinforcement learning framework for data-

driven distributed Volt-VAR control [14]. We expressed the agent consensus con-

straints in a stochastic approximation format, and proved its equivalence to the orig-

inal semi-infinite programming form. Based on this result, a communication efficient

randomized consensus algorithm was developed. Experimental study on three test dis-

tribution networks showed that the consensus multi-agent RL algorithm matches the

performance of a single agent benchmark. Also, the algorithm continue to work well

under the failures of individual controllers and communication links, with minimum

performance degradation.

1.3 Thesis Organization

The remainder of the dissertation is organized as follows: we give the presenta-

tions of distribution system monitoring and control in Chapter 2-Chapter 3 and Chapter

4-Chapter 7, respectively. In Chapter 2, we present the constrained maximum likelihood

estimation based distribution system state estimation framework and the proposed sub-

space Gauss-Newton algorithm. In Chapter 3, we detail the problem formulation and

the technical methods for the physically-inspired, data-driven distribution system anomaly

detection. The distribution network reconfiguration technique will be presented in three
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chapters: Chapter 4, Chapter 5, and Chapter 6. We discuss, in turn, model-based dis-

tributed algorithm based on ADMM/Newton, data-driven deep Q-learning with experience

augmentation, and the theory of batch-constrained reinforcement learning and the pro-

posed batch-constrained soft actor critic algorithm, respectively. In Chapter 7, we develop

the multi-agent consensus deep reinforcement learning based Volt-VAR control algorithm.

Finally, Chapter 8 concludes this dissertation and points out future research directions.
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Chapter 2

Unbalanced Distribution System

State Estimation

2.1 Introduction

State estimation is one of the most important functions in modern energy manage-

ment systems (EMS) of interconnected transmission networks [21]. Various key applications

such as contingency analysis, preventive control, and corrective control all depend on state

estimation solutions. The power system state estimation algorithm was first introduced by

Schweppe [22] in 1970 and has since been implemented in almost every EMS of transmission

networks around the world. However, the state estimation algorithm has not seen similar

level of adoption and application in the distribution management systems (DMS).

An increasing amount of distributed energy resources (DERs) is being integrated

into the electric power distribution systems. To proactively manage the large-scale and
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heterogeneous DERs, the distribution system operators first need a robust distribution

system state estimator (DSSE). The installation of supervisory control and data acquisition

(SCADA) system at the feeder level [23] and the widespread adoption of advanced metering

infrastructure (AMI) have finally made the implementation of a reliable DSSE feasible.

It is not simple to extend the state estimation algorithm developed for the trans-

mission system to the distribution system due to reasons on two levels [24]. Unlike the

transmission systems, the distribution systems are typically radial and unbalanced at the

network structure level. The unbalanceness is reflected in two ways. First, the electricity

loads are unbalanced on three phases. Second, there is a mixture of single-, two-, and

three-phase laterals in the distribution feeders. At the sensor level, the DMS typically only

has access to low-frequency smart meter readings due to the bottleneck of communication

systems. In addition, the level of measurement redundancy in distribution networks is much

lower than that of transmission systems. Finally, the smart meter measurements are asyn-

chronous as the built-in real-time clock of smart meters is only periodically synchronized

with actual time [25]. The low level of measurement redundancy can cause the system

to be unobservable. Asynchronous measurements make it difficult to interpret the state

estimation results.

2.2 Prior Work

Several researchers have attempted to address the state estimation problem in the

electric power distribution systems. Baran et al. pointed out that the voltage and electric

load measurements at customer sites can be used for state estimation in the distribution
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systems [23]. As shown in [26], the access to accurate AMI data can improve the state

estimation results in power distribution systems. In [27], the author provided a detailed

discussion of three-phase distribution system modeling, measurement functions, and con-

straints. In terms of the DSSE algorithm design, early works in distribution system state

estimation adopted the weighted least squares (WLS) method [28]. A current-based fast

decoupled state estimation algorithm was developed for distribution systems [29]. A distri-

bution system state estimation algorithm considering non-synchronized smart meter data

was developed by modeling the load variations [30].

2.3 Problem Formulation

2.3.1 Distribution System Overview

Figure 2.1 provides an illustration of a typical electric power distribution system.

Labels a, b, and c represent the three phases. n represents the neutral wire. L stands

for a lateral and T stands for a transformer. The laterals can be single-phase (L1 and

L2), two-phase (L3 and L4), or three-phase. Residential customers can be served by either

a single-phase transformer (T1, T2) or a center-tapped transformer (T3, T4). Commercial

customers are typically served by a three-phase transformer (T5). There are one or multiple

service transformers on each secondary feeder in the distribution network. Each service

transformer serves one or multiple buildings which are equipped with smart meters. The

smart meters measure the real power consumption (kWh) and voltage magnitudes of each

building (for example, ∼240V for center-tapped transformers). The SCADA system at
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Figure 2.1: Illustration of a distribution system

the distribution feeder level also measures the phase currents, neutral current, line-to-line

voltage, and complex power flow on the secondary side of the substation transformer.

2.3.2 General Formulation for State Estimation Problems

The state estimation problem aims at finding the states of the electric power

distribution systems, given the network connectivity information and measurement data.

The state variable vector x is typically defined as the voltage angles and magnitudes at

each node and each phase.

x =
[
|V a

1 |, |V b
1 |, · · · , |V c

N |, θb1, · · · , θcN
]T

where |V p
i | denotes voltage magnitude of bus i with phase p. θpi stands for the voltage angle

of bus i with phase p. θa1 ≡ 0 is chosen as the reference angle.
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The measurement model can be written as follows, where h(·) is a system of

nonlinear equations that map the state variables into the measurement space:

z = h(x) + e (2.1)

It is assumed that all of the measurement noise terms e are additive and zero mean Gaus-

sian. In addition to measurement functions associated with measurement devices, there are

equality constraints introduced by network topology or circuit elements. They are denoted

as:

f(x) = 0 (2.2)

The state estimation result is defined as the solution of (2.1) and (2.2) in the

maximum likelihood sense. Under the Gaussianity assumption, the estimation problem is

equivalent to the following nonlinear non-convex program.

min
x

(z − h(x))TR−1(z − h(x))

s.t. f(x) = 0

(2.3)

where R stands for the measurement error weighting matrix. (2.3) applies to unbalanced

three-phase systems. The exact form of the measurement functions and equality constraints

are presented in the next two subsections.
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2.3.3 Measurement Models

The development of measurement models and equality constraints are based on

three-phase power flow equations:

P pi = |V p
i |

N∑
k=1

∑
m∈{a,b,c}

|V m
k |(gpmik cos(θpmik ) + bpmik sin(θpmik )) (2.4)

Qpi = |V p
i |

N∑
k=1

∑
m∈{a,b,c}

|V m
k |(gpmik sin(θpmik )− bpmik cos(θpmik )) (2.5)

where P pi and Qpi are the real and reactive net injected power at bus i with phase p. V p
i is

the voltage at bus i with phase p. θpmik = θpi − θmk is the voltage angle differences between

bus i with phase p and bus k with phase m. The Y-bus matrix is given by:

Y = [Yik] Yik =
[
ypmik

]
=
[
gpmik + jbpmik

]

where i, k ∈ set of buses and p,m ∈ {a, b, c}. Each [Yik] is a 3× 3 block with off-diagonal

elements representing mutual magnetic coupling between phases.

There are two types of measurement models in unbalanced distribution systems:

the single-phase and two-phase measurements. The single-phase measurements include

single-phase voltage magnitudes and single-phase electricity loads. The two-phase measure-

ments include line-to-line voltage magnitudes and two-phase electricity loads. We assume

the following measurements are available through SCADA and AMI:

• At the distribution substation, phase-to-neutral voltage magnitude, magnitude of cur-

rent injection, and three-phase complex power injection measurements are available.
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• At every distribution center-tapped transformer, two-phase voltage magnitude and

aggregated real two-phase power injection measurements are available.

• At every single-phase or three-phase distribution transformer, phase-to-neutral voltage

magnitudes and real power injection measurements are available.

Finally, we assume that the center-tapped transformers and the single-phase transformers

are approximately ideal, and that the series impedance and shunt admittance of the lines

under the transformers’ secondaries are negligible. It follows that the three phase power

at the transformer primary is (approximately) equal to the sum of customer power mea-

surements, and that the voltage measurements for all customers under the same secondary

are (approximately) equal. We are now ready to write down the measurement equations.

The single-phase measurement equations (one superscript p) and two-phase measurement

equations (double superscript pm) are listed below:

|V p
i |meas = |V p

i |+ e|V pi | (2.6)

P pi meas = P pi + eP pi (2.7)

Qp1meas = Qp1 + eQp1 (2.8)

|Ip1 |meas =

∥∥∥∥∥
[
Re(Ip1 ) Im(Ip1 )

]T
∥∥∥∥∥

2

+ e|Ip1 |

Re(Ip1 ) =
N∑
k=1

∑
m∈{a,b,c}

|V m
k |(gpm1k cos(θmk )− bpm1k sin(θmk )) (2.9)

Im(Ip1 ) =

N∑
k=1

∑
m∈{a,b,c}

|V m
k |(gpm1k sin(θmk ) + bpm1k cos(θmk )) (2.10)

|V pm
i |meas =

√
|V p
i |2 + |V m

i |2 − 2|V p
i ||V m

i |cos(θpi − θmi ) + e|V pmi | (2.11)
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P pmi meas =|V p
i |

N∑
k=1

∑
n∈{a,b,c}

|V n
k |(gpnik cos(θpnik ) + bpnik sin(θpnik ))

− |V m
i |

N∑
k=1

∑
n∈{a,b,c}

|V n
k |(gpnik cos(θmnik ) + bpnik sin(θmnik )) + eP pmi (2.12)

where |V pm
i | = |V p

i − V m
i | denotes line-to-line voltage magnitudes and P pmi = Re((V p

i −

V m
i )Ip∗i ) stands for two-phase real power injections.

2.3.4 Equality Constraints

Two types of equality constraints are modeled in the DSSE problem. The first

type of equality constraints are associated with buses with neither load nor generation.

The net injected power for these buses must be zero:

P ptap,i = 0 (2.13)

Qptap,i = 0 (2.14)

The second type of equality constraints are associated with center-tapped trans-

formers, at which the sum of currents flowing through the two phases are zero:

Re(Ipi ) + Re(Imi ) = 0 (2.15)

Im(Ipi ) + Im(Imi ) = 0 (2.16)

Note that a distribution system node may have a combination of these constraints

and measurements. For example, in Figure 2.2, node i has two measurement functions,
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two zero injection constraints, and two equality constraints associated with the center-

tapped transformer. The measurement functions are real power P bci meas and line-to-line

voltage magnitude |V bc
i |meas. The zero injection constraints are P ai = 0 and Qai = 0. The

constraints associated with the center tapped transformer are Re(Ibi ) + Re(Ici ) = 0 and

Im(Ibi ) + Im(Ici ) = 0.

node n node m

a
node i

b
c

a
b
c

Ysn,i

Zn,i Zi,m

Ysi,m

a
b
c

Ibi Ici

Figure 2.2: Constraints and measurements at node i

In the next section, we discuss the proposed subspace Gauss-Newton algorithm to

solve the formulated problem.

2.4 The Subspace Gauss-Newton Algorithm

2.4.1 Algorithm Derivation

To solve (2.3), we invoke the Lagrange multiplier theorem [31], which states that

the gradient of the Lagrangian must vanish at local minima or maxima.

∇xL = −2HTR−1∆z − FTλ = 0 (2.17)

∇λL = −f(x̂) = 0 (2.18)
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where H = ∂h
∂x

∣∣
x=x̂

, F = ∂f
∂x

∣∣∣
x=x̂

, and ∆z = z − h(x̂). x̂ denotes a local minimum or

maximum. (2.17) and (2.18) are necessary but not sufficient conditions for a local optimal

solution. Nevertheless, the local optimality can easily be checked by examing the positive

definiteness of the Hessian matrix.

The nonlinear system of equations (2.17)-(2.18) can be solved using the Newton’s

method: starting from some initial guess x0 and λ0, then proform the iteration xk+1 =

xk + ∆x, λk+1 = λk + ∆λ, where the increments can be found by solving the following

equation.

∇xxL ∇xλL

∇λxL ∇λλL


∆x

∆λ

 =

∇xL
∇λL

 (2.19)

where the first and second derivatives are evaluated at the current iterate xk, λk. However,

computing the term ∇xxL requires the derivative of H and F, which are not strateforward

to write down. Following the sequential quadratic programming (SQP) approximation [32],

we may approximate the increment ∆x by the solution of the following linear constrained

quadratic programming:

min
∆x

(∆z −H∆x)TR−1(∆z −H∆x)

s.t. F∆x = ∆f

(2.20)

where ∆x = xk+1 − xk and ∆f = −f(xk). Jacobian matrices H and F are evaluated at

current iterate xk. The necessary optimality condition of formulation (2.20) differs from

(2.19) in two respects: first, the constraints are linearized first rather than appearing in
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the second order derivative ∇xxL; second, the Hessian matrix of the objective function is

approximated by:

∇xx(z − h(x))TR−1(z − h(x)) ≈ 2HTR−1H (2.21)

Approximation (2.21) is reasonable when the measurement residuals and nonlinearity of the

measurement models are small.

Problem (2.20) can be solved in closed form. Also, the solution only involves

calculation of first order derivatives. However, its Newton-KKT matrix is indefinite and

can be ill-conditioned. One commonly used algorithm to improve DSSE numerical stability

is the Hachtel’s augmented matrix method [33]. But this method requires specifying a

tuning parameter, which might be difficult to tune in practice. In the following, we present

an efficient algorithm to find the solution to (2.20), which is numerically stable and preserves

the sparsity of the problem, with no tunning parameters.

Our proposed method is to constrain the search of solution within the affine space

defined by the constraint equations in (2.20). A similar approach has appeared in other

textbook [34]. The affine space consists of all vectors which is a summation of a particular

solution xp and a homogeneous solutions xh:

∆x = xp + xh (2.22)

One possible particular solution can be xp = FT(FFT)−1∆f . This is also the minimum 2-

norm solution to the constraint equations. The set of homogeneous solutions is the nullspace
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of constraints Jacobian, which can be expressed as arbitrary linear combinations of nullspace

basis vectors V:

xh = Vβ ∀β (2.23)

Multiple matrix factorization methods can find such bases. For example the singular value

decomposition which gives an orthonormal set of basis vectors. However, It is preferable

to have a sparse nullspace basis to improve the computation speed in later steps. In this

work, we adopt the ABS sparse nullspace algorithm developed in [35]. An implementation

of this algorithm is available at [36].

If we substitute ∆x = xp + xh into the objective, then minimize it with respect

to β, we get the following necessary optimality condition:

VTHTR−1HVβ = VTHTR−1(∆z −Hxp) (2.24)

In DSSE problem, the matrix on the left hand side (LHS) of (2.24) is positive definite. This

suggests a more numerically stable solution compared to directly solving the Newton-KKT

system. We solve (2.24) by the QR factorization, which is considered as numerically stable:

R−
1
2 HV = QU =

[
Q1 Q2

]U1

0

 (2.25)

In our case study, we found that the product HV is still sparse in a sparsely connected

distribution network. Hence, we use the Givens rotation to compute this QR factoriza-
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tion, which is computationally efficient for large and sparse matrix [37]. After the QR

factorization, (2.24) is reduced to:

U1β = QT
1 R−

1
2 (∆z −Hxp) (2.26)

where U1 is an upper triangular matrix. Note that in (2.26), forming the gain matrix

G
′

= VTHTR−1HV was avoided. We solve for β in (2.26), obtain the increment ∆x using

(2.24), then the overall iteration proceeds. This completes our algorithm derivation. In

practical implementation, we precondition the objective function by a number c:

min cJ = c(z − h(x))TR−1(z − h(x)) (2.27)

The value c can be set as the average of the diagonal elements of R. For example, when

all elements of the R diagonal are the same, the objective function becomes cJ = (z −

h(x))T(z − h(x)). This further improves the algorithm’s numerical stability.

2.4.2 Uncertainty Estimation with the Subspace Gauss-Newton

The converged solution of the subspace Gauss-Newton iteration is the constrained

maximum likelihood estimate (2.3). In the context of distribution system state estimation,

we are interested in how uncertain this estimate is. The uncertainty assessment provides

additional insights into the quality of the estimate and the operation of the grid. In this

subsection, we derive an uncertainty estimate after the subspace Gauss-Newton algorithm

converges.
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First, we note that at the converged estimate, the equality constraints must be

strictly satisfied. Therefore ∆x must be in the nullspace of F in the last iterate (that is,

∆x = Vβ). Therefore the update of β in (2.24) becomes

β = (VTHTR−1HV)−1VTHTR−1∆z (2.28)

Thus the covariance of β is given by:

covβ = E(ββT) = (VTHTR−1HV)−1 (2.29)

where the linearity of expectation operator and the definition E(∆z∆zT) = R are used. Let

the true state be xtrue, and the maximum likelihood estimate be x∗, the error x̃ = xtrue−x∗

can be approximated as:

x̃ ≈ Vβ

Therefore the transformation of covariance we find the covariance of estimation error:

covx̃ ≈ VcovβVT (2.30)

= V(VTHTR−1HV)−1VT (2.31)

The covariance matrix (2.31) is singular because the constraints make the estimation errors

correlated.
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2.5 Numerical Studies

The proposed subspace Gauss-Newton based DSSE algorithm is implemented on

a modified IEEE 13-bus test feeder. Both state estimation results and numerical properties

of the proposed method are presented in this section.

The IEEE 13-bus test feeder [38] is modified to include center-tapper transformers

as follows.

• Node 650 is considered as the secondary side of the substation transformer. The

primary side is assumed to be connected to an infinite bus. The voltage regulator is

ignored.

• The circuit breaker between node 671 and 692 is removed.

• The uniformly distributed loads are removed from the feeder.

• Node 646 is assumed to be connected to a center-tapped transformer across phases b

and c.

The simulations are set up as follows. First, load flow calculations are carried out using

Newton-Raphson method. Noise corrupted measurements are then generated using the

measurement models described in Section 2.3. Second, the measurements are fed into the

DSSE algorithm. At last, the differences between the load flow results and the DSSE results

are recorded. The simulations are repeated M times. The normalized root-mean-square

errors of DSSE are computed.

˜|V p
i | =

√√√√∑M
k=1(

|V pi |−
ˆ|V pi |k

|V pi |
)2

M
θ̃pi =

√∑M
k=1(

θpi−θ̂
p
i k

2π )2

M
(2.32)

24



where ( ˆ|V | θ̂) denote results of state estimation. The stopping criterion for the load flow

calculation and the state estimation are set to be the same as follows: max
i
|∆xi| < 0.00001

p.u..The measurement noise covariance matrix was set to be R = diag
[
σ2, σ2, · · · , σ2

]
.

With σ = 0.01 p.u., the results of DSSE are shown in Table 2.1. The simulation results

show that under 0.01 p.u. measurement noise, most of the voltage magnitude estimation

errors are less than 1%, and all of the voltage angle estimation errors are less than 1% · 2π.

Additional simulations are conducted to analyze the impact of measurement noise on state

Table 2.1: RMSE of |V̂ | and θ̂ (per unit)

˜|V | θ̃

Node
Ph

a b c a b c

ref 0.0092 0.0099 0.0089 0.0 0.0036 0.0056

650 0.0066 0.0074 0.0080 0.0020 0.0038 0.0029

646 - 0.0091 0.0061 - 0.0045 0.0031

645 - 0.0094 0.0061 - 0.0046 0.0031

632 0.0072 0.0058 0.0062 0.0021 0.0042 0.0031

633 0.0088 0.0069 0.0073 0.0022 0.0043 0.0033

634 0.0102 0.0088 0.0084 0.0022 0.0043 0.0033

611 - - 0.0103 - - 0.0044

684 0.0068 - 0.0067 0.0027 - 0.0038

671 0.0082 0.0073 0.0083 0.0025 0.0043 0.0034

675 0.0090 0.0087 0.0076 0.0032 0.0049 0.0040

652 0.0091 - - 0.0039 - -

680 0.0082 0.0073 0.0083 0.0025 0.0043 0.0034

estimation errors. The standard deviation of the measurement noise σ is increased sys-

tematically from 0.0001% to 1.5%. Under each setting of σ, Monte Carlo simulations are

conducted. The state estimation errors under each measurement noise setting are reported

in Figure 2.3. In the figure, each curve represents the change of estimation error in response

to measurement noise for one node and one phase. As expected, the measurement errors
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increase as the measurement noise level increases. In this experiment, the numerical sta-

bility and computational efficiency of the proposed algorithm is compared to that of the

Hachtel’s augmented matrix method. In addition, a separate tunable parameter that de-

termines the numerical stability is no longer required. The numerical stability is evaluated

σ (%)
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˜ |V
|
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.u
.
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Figure 2.3: Estimation error v.s. measurement noise

by measuring the condition number of the coefficient matrix which is used in solving the

linear equation (2.26). The computational efficiency of the proposed algorithm is evaluated

by measuring the number of nonzero elements (nnz) in the coefficient matrix. To demon-

strate the effect of using different sparse nullspace basis, we also provide comparisons to

the nullspace obtained with singluar value decomposition (SVD). The nnz and condition

Table 2.2: nnz of coefficient matrices

Lagrange Hachtel’s SGN (SVD) SGN

nnz 2081 1526 561 496

number of coefficient matrices are reported in Table 2.2 and Table 2.3. As shown in Table

2.2 and Table 2.3, the coefficient matrix in the proposed algorithm has a smaller number of
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Table 2.3: Condition number of coefficient matrices (×103), σ = 0.005 p.u.

Method

Iteration
k = 0 k = 1 k = 2 k = 3

Lagrange - 2819.008 3038.544 2930.839 2805.181

Hachtel’s
α = 1 18.628 17.616 18.597 18.652
α = 0.1 3.500 3.398 3.135 3.113
α = 0.05 6.998 6.469 5.637 6.186

SGN (SVD) - 25.835 2.553 2.833 2.912
SGN - 0.938 0.984 1.038 0.964

nonzero elements and lower condition number. This demonstrates that the proposed algo-

rithm is more computational efficient and numerically stable than the Hachtel’s augmented

matrix method.

Finally, we verify the validity of the error covariance matrix given by (2.31). The

true covariance matrix, is defined in (2.33) and can be approximated by the Monte Carlo

estimation (2.34):

covx̃ = E(x̃x̃T) (2.33)

≈ 1

N

N∑
i

x̃ix̃
T
i (2.34)

To assess how well (2.31) approximate (2.33), we compare it with (2.34). For σ = 0.01 p.u.

and σ = 0.001 p.u., diagonal elements of each matrix were plotted in Figure 2.4. We found

that the two covariance matrices matches very well. This justifies (2.31) as an estimation

error covariance in the sense that had we collect the measurement N times under the same

underlying state, the diagonal terms in (2.31) is the variance of our estimated state.
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Figure 2.4: Approximation of covariances

2.6 Summary

In this chapter, a distribution system state estimation problem is formulated con-

sidering unbalanced single-phase and two-phase measurements. Constraints associated with

zero injections and center-tapped transformers are incorporated into the problem formula-

tion. An subspace Gauss-Newton based algorithm is developed to solve the DSSE problem.

Also derived is an uncertainty estimate of the solution which is useful to assess the quality

of the DSSE results. The proposed algorithm yields better numerical stability and com-

putational efficiency than existing methods. The simulation results on a modified IEEE

test feeder validated the accuracy, numerical stability, and computational efficiency of the

proposed algorithm.
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Chapter 3

Physically Inspired Data-driven

Electricity Theft Detection

3.1 Introduction

Electricity theft refers to the practice of manipulating one’s electricity data to

reduce his or her electricity bill [39]. Electricity theft not only leads to significant revenue

losses, but also creates the risk of fires and fatal electrical shocks. In the United States,

utilities lose between 0.5% and 3.5% of their annual revenue to theft [40]. In some developing

countries, the revenue loss from electricity theft is even larger [41] [42].

In the past, utilities have fought electricity theft by sending field operation groups

to conduct physical inspections of electrical equipment based on suspicious activity reported

by the public. However, the recent rapid penetration of advanced metering infrastructure

makes it possible to detect electricity theft by analyzing the information gathered from

29



smart meters. In this dissertation work, we develop a physically inspired data driven model

to detect electricity theft with smart meter data. The model requires the network operator

to have the customer active power consumption and voltage magnitude data, as well as

the customer to transformer association map. In practice, these data are readily available

to the electric utility companies, hence a speedy and widespread adoption of the proposed

model is feasible.

In this chapter, we will detail the development process of the detection algorithm

in three steps. First, we analyze the physical relationship between smart meter voltage

readings and electricity consumptions of customers. Then we propose a modified linear

regression model to capture this physical relationship on the Kron-reduced distribution

secondaries. Third, we create a set of training/testing dataset pairs on a rolling window

basis to perform training and predicting of the modified linear regression model. The

prediction results will be compared to the actual measurements to compute an anomaly

score. Finally, the anomaly scores for all customers will be ranked to indicate the level of

abnormalities. We provide theoretical and empirical analysis for the proposed detection

model. We prove that electricity theft on a distribution secondary will lead to negative

and positive residuals from the regression for dishonest and honest customers respectively.

Experimental results with real-world smart meter data confirms this finding and shows that

the model is effective in identifying electricty theft cases.

The rest of this chapter is organized as follows. Section 3.2 reviews the prior

work. Section 3.3 presents the modeling of distribution secondaries considering smart meter

measurements. Section 3.4 details the technical methods for the proposed modified linear
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model and electricity theft detection process. Section 3.5 presents the experimental results.

Finally, Section 3.6 provides the summary of this chapter.

3.2 Prior Work

We focus our review on the existing work which uses smart meter or other collected

customer data to detect electricity theft. They can be categorized into three groups based

on the type of data.

Methods in the first group assume that smart meter data is not available. In-

stead, they leverage ancillary information such as biannual electricity consumption and

credit scores [43] [44] [45], which can be used as features in supervised machine learning.

Many supervised methods have been tested in literature. Examples include support vector

machines (SVM) [45], optimum-path forests [44], and artificial neural networks [46]. Super-

vised learning only work if verified cases of electricity theft are available. If this is not the

case, then unsupervised methods, which do not use electricity theft labels, must be used.

Examples include fuzzy c-means clustering [43] and optimum-path forests clustering [47].

Methods in the second group assume that granular power consumption data is

available. For example, reference [48] analyzed consumption profiles through a self-organizing

map (SOM). Reference [49] proposed an entropy-based method to analyze the distribution

of differenced consumption data. Reference [50] used an extreme learning machine to de-

tect anomalies in electricity usage. Reference [51] combined a decision tree and an SVM

to predict smart meter abnormalities. Reference [52] used a convolutional neural network

trained on such data to perform detection.
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Some studies in the second group assume the existence of a “central observer”

[53] [54] [55] [56]. This observer measures the aggregated consumption from a group of cus-

tomers. In particular, such central observers can be placed on the distribution transformers.

Meter malfunction or tampering can thus be identified using linear regression.

Methods in the third group assume that network topology and parameter infor-

mation are available. Under this assumption, state estimation based approaches become

feasible. Early work on this direction [57] perform distribution system state estimation

based on estimated load. The non-technical losses are then detected by comparing the re-

sults with the billed consumption. The approaches proposed in [58] [59] [60] first perform

three phase state estimation procedures on the network. They then analyze variances [58]

[60] or apply heuristic methods [59] to locate meter defects or tampering. Recently, these

time-snapshot based methods have been improved by adopting phasor measurement unit

(PMU) data [61]. Another method in this group formulates anomaly detection as an opti-

mization problem [62]. The method finds a sparse power mismatch matrix whose non-zero

elements correspond to the bypassed power from dishonest customers.

Perhaps, the most directly relevant work is [63], in which the authors proposed

analyzing sample covariance matrices of smart meter measurement error statistics, voltage

magnitude and active power data to detect electricity theft . Compared to [63], our proposed

work does not need to make any assumption about the smart meter measurement error

distributions. In addition, we provide a theoretical justification based on physical network

model for using real power consumption and voltage magnitude measurement to detect

electricity theft.
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The existing literature on data-driven electricity theft detection has three limita-

tions. First, it is not realistic to assume that the transformer power measurements, reliable

topology documentation [64, 65], and network parameter information are available to elec-

tric utilities. Network parameter information is typically known only up to the type of

conductors. Good parameter estimation methods for single-phase models [66] and balanced

three-phase models [67, 68] do exist. But methods for estimating unbalanced three-phase

network parameters are still in their infancy. Hence all techniques in the third group are

usually infeasible. Furthermore, Pole mounted distribution transformers are generally not

equipped with operational monitoring devices [69] in Europe and America. Thus the “cen-

tral observer” techniques in the second group are infeasible as well. Second, residential

customer loads are irregular and are dependent on many external factors [70]. Analyzing

such profiles alone produces very limited interpretability and justification of the results.

Worse yet, they might not distinguish between electricity theft and non-malicious customer

activities. Many of these methods would detect the installation of a new electric device as

theft. This diminishes the usability of methods in the second group. Finally, supervised ap-

proaches in the first and second groups need theft samples. But obtaining labeled datasets

in this case is usually a hard task [47]. As a result, the number of labeled (inspected)

customers is very small compared to the total number of customers.

3.3 Problem Analysis

In this section, we analyze the physical relationship between smart meter voltage

magnitude and real power consumption measurements. Such analysis is particularly valu-
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able for detecting anomalies since voltage measurements are not easy to tamper and modify

in a sensible way, therefore can be considered as informative to indicate abnormalities in the

power measurements. In addition, this analysis reveals the way how different customers’

voltage measurements can contribute to the estimate of each customer’s power consump-

tion profiles. All equations/derivations in this section are to provide justifications for the

algorithms presented in Section 3.4. They are not used for actual computation.

3.3.1 Linearization of Secondary Circuit Power Flow Equations

In North America, distribution secondaries serving residential customers typically

have a 120/240V three-wire two-phase configuration. The two phases have voltages with

an angle difference of 180 degrees. A sample distribution secondary with nc customers is

shown in Figure 3.1.

A B C N
Transformer secondary node

phase 1

phase 2

phase n
s1ni

s2ni

s12i

Junction node j

T

Customer node j

C1

C2

Ci

J1

J2

Jnk

T

Cj

Jj

Figure 3.1: Triplex line secondary circuit

We will derive a linearized power flow model for this configuration. Following

[71], the idea is to find a tangent plane to the power flow manifold centered at a suitable

point, which can be the modified flat voltage solution. We construct this solution as follows.

34



First, assume that shunt admittances are zero. Denote the line to ground voltage phasor

and current phasor at node m as ūm and īm, and the real and reactive power injections as

p̄m and q̄m. Then the modified flat voltage solution has, at each node m, the following set

of values: ūm = [1, 1 · e−πj ]T = [1,−1]T, īm = 0, p̄m + jq̄m = 0.

Denote vpm as the deviation of the line-to-ground voltage from the flat voltage

solution v̄pm at node m and phase p. Let v1 and v2 be the reindexed voltage vectors:

[
v1T,v2T

]
=
[
v1

1, v
1
2, ..., v

1
n, v

2
1, v

2
2, ..., v

2
n

]

where n is the number of non-zero injection nodes in a secondary circuit. The voltage

angles θ1 θ2, real power injections p1 p2, and reactive power injections q1 q2 are defined

in a similar manner. The linearization around the modified flat voltage solution yields:



p1

p2

q1

q2


=



G11 −G12 −B11 B12

−G21 G22 B21 −B22

−B11 B12 −G11 G12

B21 −B22 G21 −G22





v1

v2

θ1

θ2


(3.1)

where Gij and Bij are the real and imaginary blocks of the reindexed nodal admittance

matrix Yr:

Yr =

G11 G12

G21 G22

+ j

B11 B12

B21 B22

 (3.2)

which is a permutation of the well-known bus admittance matrix Y. Explicitly, Yr is

obtained by taking every odd indexed row and column of Y and relocating them to the
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bottom-most and right-most positions respectively. In the following, we refer to (3.1) as

yr = Lrxr. The derivation of (3.1) is provided in Appendix A.1.

In (3.1), p1, p2, q1 and q2 are single-phase net injections. But electric loads at

the customers’ site can be single-phase or two-phase as shown in Figure 3.1. We can get

the single-phase net injections from the electric loads by using (3.3):

s1
i

s2
i

 =


u1ni

u1ni +u2ni
0 1

−u2ni
u1ni +u2ni

1 0



s12
i

s2n
i

s1n
i

 (3.3)

The derivation of (3.3) is in Appendix A.2. This can be simplified near the flat voltage

operating condition to:

p1
i

p2
i

+ j

q1
i

q2
i

 =

s1
i

s2
i

 ≈
1

2 0 1

1
2 1 0



s12
i

s2n
i

s1n
i

 (3.4)

3.3.2 Conversion to Smart Meter Measurements

In practice, smart meters read line-line voltage magnitudes |u1
i − u2

i | and the sum

of single-phase powers p1
i + p2

i . But (3.1) relates single-phase net injections to line-ground

voltages. We need to change (3.1)) such that it relates the former quantities.

First, we assume that the following approximation holds (u1
i , u

2
i are line-to-ground

voltage phasors, θ1
i , θ

2
i are line-to-ground voltage angles, of node i phase 1 and 2. The

number 120 and 240 are the nominal line-ground and line-line voltages). (3.5) is valid when
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all θ1
i , θ

2
i are near those of the modified flat voltage solution. Thus the measured voltage

magnitude can be approximately written as |u1
i − u2

i | ≈ v1
i + v2

i + 240.

|u1
i − u2

i | = |(v1
i + 120)cos(θ1

i ) + j(v1
i + 120)sin(θ1

i )− (v2
i + 120)cos(θ2

i )− j(v2
i + 120)sin(θ2

i )|

≈ |v1
i + v2

i + 240| (3.5)

Next, we introduce two new vectors xs and ys:

xsT =
[
(v1 + v2)T, (v1 − v2)T,θ1T,θ2T

]
= [vsT,θsT]

ysT =
[
(p1 + p2)T, (p1 − p2)T,q1T,q2T

]
= [psT,qsT]

which are related to xr and yr via M = diag(
[
I I
I −I

]
,
[
I 0
0 I

]
): xr = M−1xs and yr = M−1ys.

Substituting these relationships into (3.1) yields ys = MLrM−1xs = Lsxs, or:

ps

qs

 =

Ls
11 Ls

12

Ls
21 Ls

22


vs

θs

 (3.6)

Further, we remove the dependency on θ1 and θ2 to obtain:

ps =
(
Ls

11 − Ls
12L

s†
22L

s
21

)
vs + Ls

12L
s†
22q

s (3.7)

Where Ls†
22 is the pseudoinverse of Ls

22. We prove (3.7) in Appendix A.3.

Now, if each node has a constant lagging power factor over the entire time period,

we can write
[ q1

q2

]
= D

[ p1

p2

]
where D is a positive definite diagonal matrix. Then we have
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qs = DM−1
u ps where Mu is the upper left block of M. Under the constant lagging power

factor assumption, we can then simplify (3.7) to

ps = (I− Ls
12L

s†
22DM−1

u )−1
(
Ls

11 − Ls
12L

s†
22L

s
21

)
vs (3.8)

We argue that (I−Ls
12L

s†
22DM−1

u ) is nonsingular in practice in Appendix A.3. The first nc

equations of (3.8) are

p1 + p2︸ ︷︷ ︸
−p

= L(+)
pv (v1 + v2)︸ ︷︷ ︸

v−1·240

+L(−)
pv (v1 − v2) (3.9)

where p and v are smart meter net power consumption and voltage measurements re-

spectively. (3.9) shows that the real power measurements depend on the observed voltage

sums and the unobserved voltage differences. This latter term is negligible. Accounting for

measurement errors with a noise term ε, we thus have

p = Lpv(v − 1 · 240) + ε = Lpvv + ε (3.10)

where Lpv = −L
(+)
pv whose nullspace contains 1.
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3.3.3 A Remedy for Not Having Transformer Data

In most cases, transformers do not have smart meters installed on them. That is,

if we partition (3.10) with respect to transformer node and customer nodes:

pT
pC

 =

lTT lTC

lCT LCC


vT
vC

+

εT
εC

 (3.11)

Then the measurements for vT and pT in (3.11) are missing. We can remedy this by using

conservation of energy to write pT ≈ −1TpC . This relationship is exact when there are no

losses. We can then eliminate vT from (3.11) and replace the remaining pT term to obtain:

pC = −lCT l−1
TT1TpC + (LCC − lCT l−1

TT lTC)vC + ε′C (3.12)

Where ε′C = εC − lCT l−1
TT εT . (3.12) motivates the use of 1TpC as a covariate in model

estimation. We will use it in Section 3.4 where we develop the modified linear model.

3.4 Technical Methods

This section details each step of the proposed framework outlined in Section 3.1.

To avoid tedious notation, all quantities correspond to one rolling window.

3.4.1 Data Preprocessing

Most real-world smart meter datasets contain missing values and outliers. The

time stamps with missing values and/or power outages are discarded from the analysis.
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The amount of discarded data is usually negligible. Outliers are much more frequent and

can hurt our regression models [72]. We discuss the problem of outliers in voltage data in

this subsection.

A properly trained model would be sensitive to voltage measurement errors be-

cause the voltages vary around flat condition by a very small amount. In this work, the

time stamps where voltage error is large will be removed. The method is as follows. First,

we train a regression model that is robust to outliers on the training dataset. We then

apply the model to each customer i ∈ {1, 2, · · · , nc} and search for training time stamps

T out
i = {tout

i,1 , · · · , tout
i,io
} with large residuals. For notational clarity, all references to quanti-

ties involving robust regression will carry the superscript rb. Then:

t ∈ T out
i if

(
ỹrbi (t)/var(ỹrbi )

)2
> F−1

χ2
1

(0.999) and

(v(t)− v̄)TΣ−1
v (v(t)− v̄) > F−1

χ2
nc

(0.999)

(3.13)

where ỹrbi (t) = yi(t)− ŷrbi (t) is the estimation residual for customer i at time t, var(ỹrbi ) =∑
t(ỹ

rb
i (t) − ¯̃yrb,i )2/(T − 1) is its empirical variance. v̄ and Σv are the sample mean vector

and covariance matrix of voltage measurements. F−1
χ2
1

is the inverse of chi-square CDF with

one degree of freedom.

After the sets {Ti}nci=1 are found, we remove any time instances that are a member

of two or more of these sets. That is, if tp ∈ T out
i ∩ T out

j , i 6= j, then the measurements

pi(tp), vi(tp) are discarded for all i ∈ {1, 2, · · · , nc}. The reasoning behind this final rule

is as follows. If there is a voltage outlier, then at least two of the customers’ regression

residuals will be severely affected. This can be understood from (3.10).
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Robust regression methods such as least median of squares (LMS) [73]; M-estimator

[74]; and random sample consensus (RANSAC) [75] can be used. In this work, we use

RANSAC for its simplicity and efficiency.

3.4.2 Modified Linear Model

The ideas outlined in Section 3.3 are combined to produce the following modified

linear model (MLM):

yi(t) =

[
x(t)T

∑nc
j=1 yj(t)

]βXi
βyi

+ ε′i(t)

= X (t)TBi + ε′i(t) (3.14)

where x(t) = [v1(t), v2(t), · · · , vnc(t)]T: vector of voltage readings at time t, yi(t) = pi(t):

kWh readings of customer i at time t, and ε′i(t) accounts for measurement noise and unob-

served dependencies as in (3.12).

The parameter vectors {Bi}nci=1 will be estimated by using ordinary least squares

(OLS) on the training data (XD, yD) [76], which is a portion of the rolling window. This

estimate is achieved by solving the normal equations:

(
XDTXD

)
[B1, · · · ,Bnc ] = XDT[yD1 , · · · ,yDnc ] (3.15)

Variations of OLS such as total least squares (TLS) [77] [78] can be used instead, but these

do not exhibit the properties described in the next subsection.
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The fitted model is then used to predict kWh consumption values for the testing

data (X , y) within the rolling window:

[ŷ1, · · · , ŷnc ] = X [B1, · · · ,Bnc ] (3.16)

The LHS are used to calculate the residual time series ỹi = yi − ŷi, which are used to

perform electricity theft detection.

In this work, the length of each rolling window is chosen to be 67 days. The first

60 days and the last 7 days form the training and testing data, respectively. Each rolling

window is 1 day ahead of the one preceding it.

3.4.3 Properties of Residuals Under Theft

The residuals of the MLM change when there is an energy thief. Denote y
(e)
i as

the kWh meter data for customer i when one of the customers in the same secondary is

a thief. Let the original symbol yi denote the kWh meter data of the same customer had

there been no theft activities. Suppose without loss of generality that customer i is the

thief, then

y
(e)
i = yi − ysi ; y

(e)
j = yj ∀j 6= i

where the non-negative vector ysi denotes the difference between the imagined kWh mea-

surement and the actual one. Let ỹ
(e)
i and ỹi denote the out-of-sample residual time series

for the energy thief. Then the following results hold
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Lemma 3.4.1

ỹ
(e)
i − ỹi = −

∑
j 6=i

βyj y
s
i (3.17)

Lemma 3.4.2

∑
j

ỹ
(e)
j =

∑
j

ỹj = 0 (3.18)

Lemma 3.4.3 For any δ > 0, there exists a training data window length T > 0 such that

for each j

P(βyj ≥ −δ) > 1− δ (3.19)

Lemma 3.4.1 and Lemma 3.4.3 combine to show that a thief’s residuals will become negative

once he or she begins to steal power. Lemma 3.4.2 shows that the residuals of the other

customers will raise in order to balance their sum. These conclusions are useful to the design

of the postprocessing method discussed in Section 3.4.4. The proofs are given in Appendix

A.4.

3.4.4 Energy Theft Detection

We define an anomaly score in terms of the residuals ỹi for each customer. Cus-

tomers with high anomaly scores are likely to be thieves or have malfunctioning smart

meters. Before defining the anomaly score, we post-process the residuals in two steps. The

first step removes outliers. This step is analogous to the preprocessing stage except here,
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we substitute its residual value by that of the nearest future non-outlier. The second step

sets all positive residuals to zero. This rule comes from experimentation and the lemmas of

the previous subsection. We denote the resulting residual time series after the two steps as

ỹ′i.

Until now, we have ignored the subscript for the rolling windows. It is neces-

sary to introduce it here. We use the symbol f = 1, 2, · · · to index the rolling win-

dows. The anomaly score for each customer i and each rolling window f is defined as

di(f) = wi(f) ‖ỹ′i(f)‖2 where wi(f) =
√
|tD(f)|/

∥∥ỹD,i(f)
∥∥

2
is a weighting coefficient. En-

ergy thefts are identified by ranking di(f) for all i and all f . The higher di(f) is, the

higher priority of investigation customer i should have. This ranking method is simplified

to ranking maxfdi(f) for all i when theft time is unimportant.

3.5 Numerical Studies

This section evaluates the performance of the proposed method on a real dataset

with synthetic electricity theft cases. In Section 3.5.1, we describe the dataset in detail. In

Section 3.5.2, we test the performance of the modified linear model without energy theft.

In Section 3.5.3-Section 3.5.5, we demonstrate the impact of energy theft on out-of-sample

residuals and anomaly scores. In Section 3.5.6, we compare the performance of our proposed

anomaly detection method with comparable methods.
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3.5.1 Experimental Data Description

Real-world Smart Meter Data

The smart meter dataset comes from a 12 KV distribution feeder in Southern Cal-

ifornia Edison (SCE)’s service territory. The schematic of the testing distribution feeder

is shown in Figure 3.2. Measurements were taken from August 1, 2015 to Feb 1, 2016,

including the customers’ hourly average voltage magnitudes and electricity consumption. A

majority of the customers on the distribution feeder are residential customers. The trans-

former to customer association information is also provided by SCE. 190 such transformers

were selected for the experimental study. This accounts for 980 residential customers.

Figure 3.2: Schematic of the test distribution feeder.
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Synthetic Electricity Theft Data

Similar to other literature, we synthesize electricity theft data [55] [79] [80]. The

attack invariant principle [81] is followed during the data synthesis process:
∑

t∈Te p
(e)
k (t) <∑

t∈Te pk(t) where the kth customer is stealing power during time period Te. pk(t) de-

notes the actual electric power consumed by the kth customer. p
(e)
k (t) is the electricity

consumption of the kth customer recorded by the electric utility.

The amount of electricity theft from the kth customer during hour t, psk(t), is

defined as psk(t) = pk(t) − p(e)
k (t) where 0 6 psk(t). Within the attack invariant principle,

four electricity theft cases are simulated.

Case 1: 100% of electricity theft for n hours: psk(t) = pk(t)

Case 2: A constant amount of electricity theft: psk(t) = αc2

Case 3: A uniformly distributed electricity theft: psk(t) ∼ U(0, αc3)

Case 4: A constant percentage of electricity theft: psk(t) = αc4pk(t)

In this work, we assume the time period when electricity theft occurs is a consecutive subset

of all time stamps of our dataset, that is, Te(t(e)1 , t
(e)
2 ) = {t : t

(e)
1 ≤ t < t

(e)
2 }. Data synthesis

is performed within Te(t(e)1 , t
(e)
2 ).

The synthetic electricity theft case for the kth customer is created as follows. If

customer k does not have DERs, then pk(t)− psk(t) 7→ p
(e)
k (t) and max(p

(e)
k (t), 0) 7→ p

(e)
k (t).

The synthesized electricity consumption of a customer without DERs should be higher than

zero. If customer k does have DERs, then the floor for net electricity consumption recording

should be the electricity delivered back to the grid.
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3.5.2 Performance of the Modified Linear Model

Consider a distribution secondary circuit consisting of 4 residential customers as

highlighted in Figure 3.2. The rolling window under study is set up as follows. The training

dataset tD starts at hour 1 and ends at hour 1440 from 60 days. The testing dataset tDa

includes 168 consecutive hours from 7 days following the training dataset.

We first show that the proposed MLM accurately estimates the electricity con-

sumption of a given customer. This customer’s true consumption, estimated consumption,

and residuals are depicted in Figure 3.3. We plot this data for the first 100 hours of the

in-sample and out-of-sample periods. The average electric load consumed by this customer
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Figure 3.3: Electricity consumption residuals from the MLM for one customer.

is 1.6 kWh. The mean of the estimation residual is -0.01 kWh and its standard deviation

is 0.1 kWh. Both of these are small compared to the customer’s average load. This result

shows that the MLM estimates the electricity consumption of a customer quite well.

We next apply this analysis to every customer on the feeder over 59 rolling win-

dows. The first window is the same as above. Each other window is 24 hours ahead of the
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one preceding it. The box plot of the in-sample residual sample standard deviation, out-of-

sample residual sample mean and standard deviation for all customers are shown in Figure

3.4. The statistics of the example customer shown in Figure 3.3 are highlighted by the

yellow dashed lines. Most customers’ have a small residual mean and standard deviation.
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Figure 3.4: Residual statistics of all customers on the distribution feeder.

Hence the proposed MLM is accurate in estimating the consumption of most customers on

the feeder. Yet, some customers do have relatively large residuals. These are likely due to

errors in the customer to transformer mapping and noisy smart meter data.

Finally, we compare the performance of the MLM with three nonlinear regression

models. A Feed-forward Neural Network (FNN), a Radial Basis Function Network (RBF)

[82], and a Support Vector Regression (SVR) model [83]. The inputs and outputs of the

nonlinear models are the same as MLM. The number of hidden units in the FNN is one

plus the number of inputs, the number of neurons in the RBF is 200, and the kernel for

the SVR is a degree 2 polynomial. Five equally spaced rolling windows between the 1st

and 59th - shown in Figure 3.4 - were selected to perform the regression analysis. All other
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experimental setups are identical as in Figure 3.4. The results are reported in Table 3.1.

Each cell of Table 3.1 shows the µ±2σ of the corresponding performance measure. All values

are in kWh and have been rounded to 2 decimal places. Table 3.1 shows that all regression

Table 3.1: Comparison of regression models

std (in-sample) mean (out-of-sample) std (out-of-sample)

MLM 0.12 ± 0.09 0.00 ± 0.09 0.13 ± 0.10
FNN 0.11 ± 0.08 0.00 ± 0.09 0.13 ± 0.10
RBF 0.12 ± 0.07 0.00 ± 0.08 0.17 ± 0.13
SVR 0.12 ± 0.09 0.01 ± 0.08 0.13 ± 0.10

models perform similarly over a wide range of customers. But we value interpretability and

simplicity over sophistication and complexity. For this reason, our experimental studies

shall focus on the proposed modified linear model.

3.5.3 Properties of the Anomaly Score

This subsection studies the proposed energy theft detection scheme of section

IV. The goal of the following experiments is twofold. First, it confirms that ranking the

maximum anomaly score maxfdi(f) for all i is a good way to detect energy thieves. Second,

we show that maxfdi(f) generally occurs during a rolling window with nice properties. The

properties in question are cleanliness of the training dataset and theft strength of the testing

dataset.

For illustrative purposes, we consider the following experiment. First, we give

synthetic theft data to the customer depicted in Figure 3.3. This synthesized data follows

case 3 with parameter αc3 = 1.8 kWh. We then increase |Te ∩ tD|/|tD| and |Te ∩ tDa |/|tDa |

from 0 to 1 and average the results from 10 such simulations. The resulting anomaly scores
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for the first window are shown in Figure 3.5. Figure 3.5 shows that the anomaly score

increases with the amount of Te contained in the testing dataset. However, it decreases with

the amount of Te contained in the training dataset. A maximum occurs when |Te ∩ tD|/|tD|

is 0 and |Te ∩ tDa |/|tDa | is 1.
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Figure 3.5: Anomaly scores for the example customer

We extend these properties of the anomaly score to all rolling windows, all synthetic

theft cases, and all customers. To do this, we consider 5 different theft intervals Te, which

begin at 20%, 30%, 40%, 50%, and 60% of the way through the dataset and end at the

last sample. The 4 synthetic theft cases were considered with parameters given by αc2 = 1

kWh; αc3 = 1.8 kWh; αc4 = 0.5. In total, we have 20 different synthesized datasets for

each customer. The 59 rolling windows described in Section 3.5.2 were simulated 980 · 20

times. That is, for each rolling window, there is a simulation for each customer in each of

the 20 theft modes. For each simulation, denote k as the index of that simulation’s thief.

We report the value and ranking percentile of maxfdk(f) among maxfdi(f) of all other

customers i in Table 3.2. The numbers in the parenthesis are the ranking percentile of the
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Table 3.2: Maximum anomaly score maxfdi(f) and ranking percentile averaged over all
customers

Case
Te 20% 30% 40% 50% 60%

1 16.2 (55) 30.7 (10) 79.3 (1) 88.8 (1) 94.0 (1)
2 16.6 (53) 26.9 (16) 67.4 (1) 70.2 (1) 69.8 (1)
3 17.5 (47) 27.1 (16) 61.3 (1) 64.3 (1) 64.7 (1)
4 17.0 (50) 25.2 (19) 43.4 (3) 46.8 (2) 49.6 (2)

anomaly score in that cell.

In the first two columns of Table 3.2, the anomaly periods Te intersect the training

dataset. As a result, the maximum anomaly scores maxfdi(f) are indistinguishable from

the anomaly scores of non-thieves. However, these scores increase as Te takes up smaller

portions of the training dataset as shown in the last three columns of Table 3.2. Thus the

rolling window approach is useful when there is no theft for the first part of the analysis.

The exact amount of time necessary for this part of the analysis depends on the length of

the training window.

The highest anomaly scores correspond to the rolling window which has a maxi-

mum amount of clean data in training set and a minimum amount of clean data in testing

set. This intuition is confirmed in Table 3.3. Each cell is the difference |tDa ∩ Te|/|tDa | −

|tD ∩ Te| · |tD| averaged over all customers.

Table 3.3: Difference |tDa ∩ Te|/|tDa | − |tD ∩ Te| · |tD|

Case
Te 20% 30% 40% 50% 60%

1 0.44 0.77 0.92 0.93 0.93
2 0.37 0.77 0.93 0.92 0.92
3 0.35 0.76 0.92 0.92 0.92
4 0.25 0.71 0.88 0.89 0.87
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The detection abilities of these anomaly scores need a window that is both clean

and strong in theft. Such a window will exist so long as the thief does not steal power

throughout the entire analysis. Table 3.2 shows that this window will be recognizable

because the anomaly score of the thief will increase substantially during this window. We

may idealize this window as one with |tD ∩Te| · |tD| = 0 and |tDa ∩Te| · |tDa | ≈ 1. Since this

particular rolling window is of crucial importance, we study it in detail in Section 3.5.4 and

Section 3.5.5.

3.5.4 The Impact of Energy Theft on Out-of-sample Residuals

This subsection focuses on the behavior of out-of-sample residuals when the train-

ing set is clean. It emphasizes a difference in behavior between theft and non-theft scenarios.

We first synthesize smart meter data for customer k under synthetic case 3. We

assume that the electricity theft activities occur from hour t
(e)
1 = 25 to hour t

(e)
2 = 168 in

the out-of-sample period. The amount of electricity theft is assumed to follow a uniform

distribution with psk(t) ∼ U(0, 1.8) (kWh). The MLM is applied for all 4 customers in

the same secondary. The out-of-sample residuals for the 4 customers are shown in Figure

3.6 (b). The figure represents the residuals of customer k by the solid green line. The

other 3 customers’ residuals are represented by blue dash lines. The out-of-sample residuals

obtained from the original data (without electricity theft) are shown in Figure 3.6 (a) for

comparison purposes. As shown in Figure 3.6 (b), customer k has negative residuals while

the honest customers have positive residuals. The sum of them at any given hour is zero as

stated in Lemma 3.4.2. For all customers, the regression coefficients
∑

`6=j β
y
` are positive.
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Figure 3.6: Out-of-sample residuals.

In this case,
∑
6̀=k β

y
` took on the values of 0.74, 0.77, 0.67 and 0.81 for j = 1, 2, 3 and

4. Hence, the residuals of the dishonest customer k will always be negative according to

Lemma 3.4.1. These results show that the residual plots of all customers on the same

secondary are helpful in detecting electricity theft.

3.5.5 The Impact of Energy Theft on Anomaly Scores

Next, we will show that electricity theft can be easily detected by anomaly scores

in a wide variety of cases. We further show that the anomaly scores increase with the

amount of stolen electricity.

We first calculate the anomaly scores for all customers on the distribution feeder

under the experiment detailed in Section 3.5.4. The anomaly score of customer k and the

summary statistics of all customers’ anomaly scores are reported in Table 3.4. As shown in

the table, the kth customer has an anomaly score of 79.4. This is the highest among all 980

customers in the distribution feeder. The second highest anomaly score of any customer is

42.2 which is much lower than that of customer k. The average and 95th percentile of all

customers’ anomaly scores PR(di,95) are 8.1 and 14.6. Both of these are much lower than
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that of customer k. In this case, the anomaly score is quite useful and easily detects the

electricity theft activity.

Table 3.4: Anomaly Scores

dk Ranking
∑

i di/N PR(di,95) max
i 6=k

di

79.4 1 (0.1%) 8.1 14.6 42.2

Synthetic electricity theft datasets for customer k are then created for each of the

synthetic cases. The parameters used for the cases are as follows. In case 1, the theft

activity starts from hour 1 in the out-of-sample period. Multiple datasets for this case are

then created by increasing the theft ending hour in the out-of-sample period. We create

a dataset for each ending hour from hour 2 to hour 168. In cases 2-4, the theft activity

starts and ends with hours t
(e)
1 = 0.2|tDa | and t

(e)
2 = |tDa |. Multiple datasets for this case

are then created by increasing the parameters αc2, αc3, and αc4. The parameters are varied

such that the total amount of stolen electricity ranges from 1 kWh to 128 kWh. Again the

electricity theft activities are assumed to occur during the out-of-sample period.

We then calculate the residual and anomaly score for each constructed dataset.

The anomaly score of customer k and the summary statistics of all customers’ anomaly

scores are depicted in Figure 3.7. The colored solid curve in each subplot represents the

anomaly scores of customer k. The numbers along the curve show the ranking percentile

of customer k’s anomaly score. The solid black line represents the 95th percentile of all

customers’ anomaly scores. The dashed black line represents the average anomaly score of

all customers. Both axes are on a logarithmic scale. The figure shows that the anomaly

score of customer k increases monotonically with the amount of stolen electricity. In all
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cases, customer k’s anomaly score will surpass the 95th percentile of all customers if it steals

more than 32 kWh. This averages to 0.19 kW of power. A stronger result holds for cases

1-3. In these cases, customer k’s anomaly score will be the absolute largest of all customers

if it steals more than 0.38 kW of power.

Figure 3.7: Anomaly scores versus amount of stolen electricity

To further prove the validity of the proposed framework, we extend this analysis

to all customers. That is, the previous case study is repeated 980 times. Each new set of

cases sets a new customer as the thief.

The anomaly scores of the customers who are stealing electricity are binned and

reported in Figure 3.8. The x- and y-axes of the figure represent the amount of stolen

electricity and the anomaly scores. The z-axis represents the number of customers who

have an anomaly score which falls into a particular bin. The color of the each bar indicates

the ranking (in percentage) of anomaly score of the customers in that bin against all honest

customers. A darker color represents a higher ranking. Each row of bars add up to the

total number of customers in the distribution feeder. When the amount of stolen electricity

increases, the distribution of dishonest anomaly scores shifts to the right. The ranking of
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the anomaly scores also increases. Finally, the figure can be used to predict the probabilities

of detection. For example, if a customer steals more than 0.38 kW of power, then it is has

a 97 percent chance of surpassing the 95th percentile of all customers. It further has a

57 percent chance that its anomaly score will be the highest among all customers. These

results show that framework is effective in catching even small amounts of theft.

Figure 3.8: Numerical evaluation for all customers on the distribution feeder

3.5.6 Comparison with Existing Techniques

We compare the performance of the proposed anomaly detection method with the

Fuzzy C-means (FCM) based method [43], the Self-Organizing Maps (SOM) based method

[48], and Random Matrix Theory (RMT) based method [63]. We excluded the comparisons
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with state estimation based methods, supervised machine learning based methods, and the

“central observer” based methods such as [56] because they represent solutions to different

classes of problems. The original methods described in [43], [48], and [63] need to be

modified slightly to match our experimental data and our performance measure.

For the FCM method. First, missing values were imputed by the average values of

the two nearest time stamps of the same customer. Next, the time series data was dimension-

reduced via the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [84]. This

was performed separately on the consumption and voltage time series data. The results

were concatenated to form a feature vector. Second, the definition of the anomaly score

in [43, Figure 3] is modified to be dk = ‖u0k − ukP
b‖2 where Pb is a column permutation

matrix such that Pb = argmin ‖U0 −UP‖. For the SOM method. First, the kWh and

voltage time series of each customer were converted to kWh and voltage daily profiles.

Missing values and outage values were treated similarly to the FCM method above. The

step of comparing with the contracted power demand was removed. We further defined the

minimum quantization error [85] as the anomaly score. For the RMT method. First, each

distribution transformer secondary is considered as a region. Next, a window of 67 days

of hourly two-phase voltage magnitude and active power measurements are collected and

undergo the same preprocessing procedure as described in Section 3.4.1. The active power

measurement noise is assumed to be zero mean normal with a standard deviation of 0.02

times the range of active power.

We setup experiments as follows. The four different anomaly cases discussed in

Section 3.5.1 will be simulated with the parameters Te, αc2, αc3 and αc4 being varied such
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that the total amount of bypassed electricity ranges from 2 kWh to 128 kWh. We performed

the experiments using the same set of customers and training/testing dataset as depicted

in Figure 3.8. The results are shown in Table 3.5. Each cell is the anomaly score ranking

for anomalous customers with respect to normal customers averaged for all selection of

anomalous customers and expressed in percentage. Table 3.5 shows that the proposed

Table 3.5: Performance comparison with [43], [48], and [63]∑
t p
s
k(t)

(kWh)
2 4 8 16 32 64 128

Case 1: disconnection of meters model

FCM 49.65 50.30 48.94 47.75 42.75 38.64 34.34
SOM 47.07 44.69 42.19 38.18 30.90 21.12 16.37
RMT 49.22 46.10 40.06 30.42 20.70 15.03 10.95
MLM 13.29 7.07 4.20 2.30 1.29 0.85 0.73

Case 2: constant bypassing model

FCM 50.49 49.49 49.48 48.40 45.10 40.59 36.94
SOM 49.86 49.51 48.38 44.59 34.21 22.33 18.97
RMT 51.23 51.09 50.87 50.60 48.92 41.35 26.99
MLM 40.54 32.23 19.95 8.55 2.73 1.21 0.91

Case 3: random uniform bypassing model

FCM 50.11 49.51 48.93 48.35 44.96 41.02 38.52
SOM 49.83 49.43 47.93 43.38 33.46 24.55 21.07
RMT 50.95 51.17 50.74 49.73 45.04 34.88 22.79
MLM 40.15 31.00 17.96 7.10 2.39 1.29 0.99

Case 4: constant percentage bypassing model

FCM 50.32 50.33 49.60 48.89 46.27 41.55 36.09
SOM 50.33 50.53 50.71 50.08 45.17 28.78 19.36
RMT 51.27 51.19 51.33 50.90 47.62 33.29 16.20
MLM 44.30 38.93 28.65 15.07 5.15 1.43 0.83

method beats the modified existing techniques in all cases. For all four methods, the

rankings of the anomaly scores decrease in response to increasing level of anomaly. However,

only the proposed method consistently ranks the anomalous customers at the top.
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3.6 Summary

This chapter developed a physically inspired data-driven algorithm for electricity

theft detection. The proposed algorithm leverages an approximate linear relationship be-

tween the power consumption and voltage data of customers on the same secondary. The

proposed modified linear model produces accurate estimates of the electricity consumption

for the majority of the customers. The modified linear model is able to detect inconsisten-

cies among smart meter measurements of a group of customers from the same distribution

secondary thereby identifying electricity thefts. An evaluation of the proposed electricity

theft detection algorithm was then performed with real-world smart meter data and syn-

thesized electricity theft cases. The evaluation results show that the proposed anomaly

score developed in this chapter is effective in identifying electricity theft cases even when

the amount of stolen electricity is small. The method was compared with existing unsuper-

vised electricity theft detection techniques. The comparison results show that the proposed

method is more effective in identifying the electricity thefts.
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Chapter 4

Model-based Distributed

Distribution Network

Reconfiguration

4.1 Introduction

Distribution network reconfiguration (DNR) is an advanced smart grid technol-

ogy. It works by changing the status of remotely controllable switching devices [86] to

optimize certain operational objectives while satisfying operational constraints, including

the voltage magnitude/line flow limit and network radiality. With the increasing penetra-

tion of remotely controllable switches and distributed generations (DGs), DNR [87] became

critical in increasing the hosting capacity of distributed energy resources (DERs) [88], min-

imizing the curtailment of DGs [89], and reducing network line losses [90]. Meanwhile,
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both federal sponsored programs and market forces are facilitating the wide-spread adop-

tion of smart grid technologies such as the advanced metering infrastructure and remote

controllable switches [91]. These two technologies enabled remote data collection and actu-

ation of loads and switches which are critical to the implementation of distribution network

reconfiguration.

DNR is typically formulated as a mixed-integer programming (MIP) problem,

where the integer variables represent the status of remotely controllable switches. This

problem is usually solved in a centralized approach. In this dissertation work, we propose a

distributed algorithm to overcome the communication bottleneck problem in the centralized

approach by distributing the computation task among the network switches (agents) with

only neighbor-to-neighbor communications. Our contributions are as follows. First, a novel

decomposed formulation of the distribution network reconfiguration problem is developed.

Second, an alternating direction method of multipliers (ADMM) release and fix algorithm

is adopted to solve the problem in a distributed manner. Third, we introduce a distributed

approximated Newton’s method to speed up the distributed optimization algorithm.

The rest of the chapter is organized as follows. Section 4.2 reviews the existing

literature on distribution network reconfiguration. Section 4.3 formulates the distribution

network reconfiguration problem. Section 4.4 presents the distributed algorithm. Section

4.5 shows the simulation results. Section 4.6 provides the summary.
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4.2 Prior Work

The existing literature on distribution network reconfiguration can be divided into

two groups based on the solution methodology. The first group adopts heuristic methods

within which there are two approaches. The first approach starts with a meshed network

and then open the switch that will contribute the most to the objective function [92] [93]

[94] [95]. The procedure continues until a radial network is achieved. The second approach

starts from a radial network and selects a pair of closed and open switches and exchange

their status [96] [97]. Selecting such a pair requires an accurate estimation of loss reduction

due to the exchange.

The second group of literature formulates the distribution network reconfigura-

tion problem as a mixed-integer program or a combinatorial optimization problem. The

optimization problem is solved by either general-purpose metaheuristic algorithms or deter-

ministic ones. Metaheuristic algorithms such as simulated annealing [98], genetic algorithm

[99], and ant colony algorithm [100] have been used to solve the network reconfiguration

problem. The deterministic algorithms work by linearizing or convexifying the original

problem and converting it to a mixed-integer linear or convex optimization problem. Then

mixed-integer linear or mix-integer convex optimization algorithms are adopted to solve the

problem [87] [101] [102] [90]. The deterministic approach has a number of advantages such

as the repeatability of solutions, guarantees of global optimality, and ease of implementation

thanks to the optimization solvers.

Most of the existing methods followed the centralized control framework within

which all network data are collected and sent back to the control center to determine the
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reconfiguration solution. The switch control signals are then sent from the control center

via the communication network for switch actuation. Although centralized approaches have

shown good numerical performance on some distribution test feeders,they usually result in

high latency and communication bottleneck in the system. The distributed approaches

on the other hand have great potential in reducing the communication burden, improving

cybersecurity and preserving the privacy of smart meter data [103].

4.3 Problem Formulation

One of the most commonly used objectives of the network reconfiguration problem

is the minimization of line losses. The constraints of the optimization problem include the

operating limits such as the line flow limits, the power flow constraints, and the network

radiality constraint. The power flow constraints ensure that the steady-state operating con-

ditions are consistent with the electric loads, distributed generations and the physics of the

distribution network. The network radiality constraints require that every primary feeder

of the distribution network have a radial topology. The goal of network reconfiguration is

to find on/off status for all switches that minimize the network losses while satisfying all

operating constraints. In this work, the distribution network is assumed to be reasonably

balanced so that the single-phase representation of the three-phase network is acceptable.

It is also assumed that each line segment has a switch installed which can be remotely

controlled for network reconfiguration.

The objective function of line loss minimization is given by (4.1) where rij is the

resistance of line ij. l2ij denotes the squared magnitude of current flowing on line ij. E is
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the set of all lines in the network. Note that each line ij has a reference direction i → j

associated with it. Throughout this chapter we use ij to denote a line if the reference

direction is needed; otherwise we will simply use ` in place of ij.

min
∑
ij∈E

rijl
2
ij (4.1)

Two operating limits will be considered in the problem formulation, namely the

nodal voltage magnitude limit (4.2) and branch flow limit (4.3):

V 2 min ≤ v2
i ≤ V 2 max ∀i ∈ N \N0 (4.2)

l2ij ≤ α`I2 max ∀ij ∈ E (4.3)

where v2
i is the squared nodal voltage magnitude of node i; α` ∈ {0, 1} is a binary variable

representing the close (α` = 1) and open (α` = 0) status of each switch; N denotes the set

of all nodes in the distribution network; N0 is the set of substation nodes (reference nodes).

The DistFlow equations [90] are adopted to capture the power flow constraints.

Pi =
∑
ij∈E

pij −
∑
ki∈E

(pki − rkil2ki) + giv
2
i ∀i ∈ N \N0 (4.4)

Qi =
∑
ij∈E

qij −
∑
ki∈E

(qki − xkil2ki) + biv
2
i ∀i ∈ N \N0 (4.5)

v2
j = v2

i − 2rijpij − 2xijqij + (r2
ij + x2

ij)l
2
ij ∀ij ∈ E (4.6)

l2ij =
p2
ij + q2

ij

v2
i

∀ij ∈ E (4.7)

v2
i = vref2 ∀i ∈ N0 (4.8)
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where Pi+jQi is the complex net power injection at node i; pij +jqij is the complex branch

power flow of line ij; rij + jxij is the impedance of line ij; gi + jbi is the shunt admittance

from bus i to ground. It has been shown [104] that for practical radial networks, the system

of equations (4.4)-(4.8) has a unique solution near the flat voltage profile. Therefore, they

are suffice for the reconfiguration application. Since (4.7) defines a non-convex feasible set,

the relaxation is typically applied [90]:

l2ij ≥
p2
ij + q2

ij

v2
i

∀ij ∈ E (4.9)

Note that (4.9) defines a quadratic cone and can be handled by many optimization solvers.

To enforce the network radiality in the reconfiguration problem, the method pro-

posed in [87] [101] is adopted:

βij + βji = α` ∀` ∈ E (4.10)

βij = 0 ∀i ∈ N0 j ∈ N(i) (4.11)∑
j∈N(i)

βij = 1 ∀i ∈ N \N0 (4.12)

βij ∈ {0, 1} ∀i ∈ N \N0 j ∈ N(i) (4.13)

0 ≤ α` ≤ 1 ∀` ∈ E (4.14)

where βij , βji, α` are variables associated with each line ij; N(i) is the set of neighbor nodes

of i. It has been shown [101] that (4.10)-(4.14) are sufficient for the radiality for each graph

component that is connected to one of the reference nodes. Although it does not imply
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that the entire feeder is radial, for practical feeders each load bus absorbs certain amount

of power from at least one of the substations. Therefore the feeder must be connected.

Consequently (4.10)-(4.14) defines a radial topology for the entire feeder.

The DistFlow equations (4.4)-(4.8) needs to incorporate the possible change of

topologies dictated by (4.10)-(4.14). In particular, if line ` is disconnected then the line

current must be zero. This is already enforced by (4.3). Also, if line ` is disconnected,

there won’t be the end voltage relationship described by (4.6). We use the big-M method

to correct this constraint:

v2
j ≤M(1− α`) + v2

i − 2rijpij − 2xijqij + (r2
ij + x2

ij)l
2
ij (4.15)

v2
j ≥ −M(1− α`) + v2

i − 2rijpij − 2xijqij + (r2
ij + x2

ij)l
2
ij (4.16)

for all ij ∈ E. M is a number big enough to free the relationship between v2
j and v2

i when

line ` is not connected (α` = 0).

We summarize the final optimization problem as:

min Network loss: (4.1)

s.t. Operating limits: (4.2), (4.3)

Power flow: (4.4), (4.5), (4.15), (4.16), (4.7), (4.8)

Network radiality: (4.10)− (4.14)

(4.17)

The decision variables are pij , qij , l
2
ij , βij , βji, α` ∀ij ∈ E; v2

i ∀i ∈ N . Problem (4.17) is

a mixed-integer conic programming problem and can be solved by existing solvers in a
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centralized manner. In the next section, we decompose (4.17) into a distributed formulation,

and propose a Newtom/ADMM distributed algorithm.

4.4 Distributed Solution Methodology

In this section, we propose a distributed solution to problem (4.17). First, (4.17)

will be decomposed into a collection of coupled sub-problems. Second, each of the sub-

problems is solved by an agent (switch) via local computation and neighbor-to-neighbor

communication. In the following, we first define the agents and their communication graph,

then we present the two-step distributed algorithm.

4.4.1 Definition of Agents and Communication Graph

We assume each switch has computing capability and can communicate with its

neighbors. The agents are defined as the switches in the network. It is assume that each

line has a switch. Hence, we do not distinguish the concept of switch, line, and agent and

refer to them as agent in the rest of the chapter.

We define the neighbors E(ij) of each agent ij as the agents that have a node in

common with agent ij. ij itself is not in E(ij). In other words, let G = (N,E) be the

graph representing the distribution network, then the communication graph is Gc = (E,M)

where if ` ∈ E and m ∈ E, then `m ∈ M if ` and m are incident in N . In graph-theoretic

terms, Gc is called the line graph of G.

An agent ij’s set of neighbors E(ij) is partitioned into four subsets based on their

and agent ij’s reference directions. Denote Efromi (ij) as the neighbors that connect to node i
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Figure 4.1: Example of agents and their communications.

with their “from” nodes being i. Etoi (ij), Efromj (ij), Etoj (ij) are defined in a similar manner.

Figure 4.1 shows an example illustrating the concepts mentioned in this section. There are

five switch agents in Figure 4.1 (a). The arrows denote the reference directions. Figure 4.1

(b) shows the communication graph of the network. According to the reference direction,

E(1) = {2, 3, 4, 5} can be partitioned into Etoi (1) = {2}, Efromi (1) = {3}, Etoj (1) = {4}, and

Efromj (1) = {5}.

4.4.2 ADMM Release-and-Fix

This subsection describes the distributed solution to problem (4.17). The state

vector of agent ij is defined as xij = [pij , qij , l
2
ij , v

2(ij)
i , v

2(ij)
j , βij , βji, α`]

T .

v
2(ij)
i = v

2(ik)
i ∀ij ∈ E,∀ik ∈ Efromi (ij) (4.18)

v
2(ij)
i = v

2(ki)
i ∀ij ∈ E,∀ki ∈ Etoi (ij) (4.19)

v
2(ij)
j = v

2(jk)
j ∀ij ∈ E,∀jk ∈ Efromj (ij) (4.20)

v
2(ij)
j = v

2(kj)
j ∀ij ∈ E,∀kj ∈ Etoj (ij) (4.21)
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The branch variables are assigned for each agent; the nodal variables (the voltages) have

superscripts (ij) associated with them. This is because the same voltage variable v2
i is

shared by all agents that are incident to node i and must be distinguished. As a result,

agents must agree on the value of shared voltage variables, as shown in (4.18)-(4.21):

Using the definition of xij , problem (4.17) can be written as:

min
xij ,ij∈E

∑
ij∈E

cTijxij

s.t. xij ∈ Xij ∀ij ∈ E∑
j∈N(i)

Aijxij = bi ∀i ∈ N

(4.22)

where Xij is a local mixed-integer set whose continuous relaxation is convex; N(i) is the set

of neighbor nodes of i; the matrices Aij and vectors bi are identified through problem (4.17)

as well as (4.18)-(4.21). We refer the first set of constraints in (4.22) as local constraints

and the second the coupling constraints. To solve problem (4.22) in a distributed manner,

we derive the augmented Lagrangian function by absorbing the coupling constraints into

the objective function:

min
xij ,ij∈E

Lρ =
∑
ij∈E

cTijxij +
∑
i∈N

µTi

 ∑
j∈N(i)

Aijxij − bi

+
ρ

2

∑
i∈N

∥∥∥∥∥∥
∑
j∈N(i)

Aijxij − bi

∥∥∥∥∥∥
2

2

s.t. xij ∈ Xij ∀ij ∈ E
(4.23)

where ρ > 0 is called the penalty parameter. Problem (4.23) may be solved in a distributed

manner by the alternating direction method of multipliers (ADMM) [105] [106] [107].
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The ADMM algorithm can be used to solve convex separable problems. However,

the presence of binary variables βij , βji in (4.23) destroys the convexity. A heuristic remedy

to handle binary variables was introduced in [105] and the resulting modified algorithm is

called ADMM Release-and-Fix. The modified algorithm proceeds by iterating between

two stages. The first stage (ADMM-Release) is identical to conventional ADMM with the

exception of the presence of binary variables. The goal of ADMM-Release is to search for

feasible binary solutions, which are “stable” across multiple runs of ADMM-Release. In

order to encourage exploration of new binary solutions, the penalty parameter ρ will be

gradually decreased after a feasible solution is found. In order to force convergence to a

“stable” solution ρ will gradually increase. After a new stable binary solution is found,

the second stage (ADMM-Fix) fixes the binary solution from ADMM-Release and solves

the simplified optimization problem with only continuous variables. These two stages will

alternate until the stopping criteria is met.

The ADMM-Fix step converges slowly. To speed up the distributed computation

we propose an approximated Newton’s method to replace the ADMM-Fix step.

4.4.3 Approximated Newton’s Method

After a feasible binary solution is found by ADMM-Release, the ADMM-Fix prob-

lem becomes the same as solving the DistFlow equations (4.4)-(4.8) in a distributed manner

with a given network configuration. We first linearize (4.7) of the DistFlow equations as:

2pνij p̃ij + 2qνij q̃ij − v2ν
i l̃

2
ij − l2νij ṽ2

i = p2ν
ij + q2ν

ij − l2νij v2ν
i ∀ij ∈ E (4.24)
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where ν is the iteration number and variables with a tilde ˜ denotes the increment, e.g.

p̃ij = pνij − pij . The resulting system of linear equations, namely (4.4) (4.5) (4.6) (4.8), and

(4.24)is denoted as Ax = b. Next, we propose a distributed algorithm which solve this

linear system in an iterative manner.

We define a new vector xcij = [pij , qij , l
2
ij , v

2(ij)
i , v

2(ij)
j ]T with continuous variables

only. Solving Ax = b is equivalent to solving the following unconstrained optimization

problem [108]:

min
xcij ,ij∈E

f =
1

2

∑
ij∈E

∥∥Ac
ijx

c
ij − bcij

∥∥2

2 (4.25)

where Ac
ij and bcij are identified from A and b by rearranging equations and variables

accordingly and appending (4.18)-(4.21) to enforce voltage constraints. Note that Ac
ij is a

constant matrix while bcij depends linearly on xcm for all neighbors m of agent ij (excluding

ij itself). We would like to solve problem (4.25) using Newton’s iteration where the gradient

and Hessian matrix can be derived as follows:

∇`f = AcT
` (Ac

`x
c
` − bc`) ∀` ∈ E (4.26)

H`` =
∂

∂xc`
∇`f = AcT

` Ac
` ∀` ∈ E (4.27)

H`m =
∂

∂xcm
∇`f = −AcT

`

∂

∂xcm
bc` ∀`,m ∈ E,m ∈ E(`) (4.28)

H`m = 0 ∀`,m ∈ E,m /∈ E(`) (4.29)

However, it is challenging to invert the Hessian matrix H of the objective function in a

distributed manner. Therefore, an method to approximate the inverse Hessian is needed.

To do so, let’s define two new matrices: D = diag(D1,D2, · · · ,D|E|) where D` = γH``;
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and B where B`` = (1− γ)H`` and B`m = H`m. With these two ancillary matrices, we can

approximate H−1 as follows [108]:

H−1 = (D + B)−1

= D−
1
2 (I + D−

1
2 BD−

1
2 )−1D−

1
2

≈ D−
1
2 (I−D−

1
2 BD−

1
2 )D−

1
2

= D−1 −D−1BD−1 (4.30)

where the third equation with the approximation sign is analogous to the first order Taylor

series expansion 1
1+x ≈ 1−x near x = 0. Note than (4.30) enables the computation of H−1

and the update of local variables to be carried out (approximately) locally as follows:

xcij ← xcij −D−1
` ∇`f + D−1

`

∑
m∈E(`)∪`

B`mD−1
m ∇mf (4.31)

Since B`m = 0 if m 6= `, m /∈ E(`), the computation of each term in (4.31) requires only the

information of agent ij and its neighbors. In summary, the approximated Newton’s method

has two levels of iterations. In the outer iteration, problem (4.25) is formed by obtaining

Ac
ij , bcij , and xcij from previous iteration; in the inner iteration, variables are updated

using (4.31).

4.5 Simulation Results

This section presents a simulation study to validate the proposed distributed al-

gorithm for network reconfiguration. We first describe the test system and then discuss

72



the results from both centralized and the proposed distributed algorithm. In particular,

the computation speed of the ADMM algorithm and our proposed approximated Newton’s

method is compared.

The 16-bus distribution test feeder described in [109] is used in the simulation

and is shown in Figure 4.2, where the dots represent load buses; the solid lines represent
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Figure 4.2: 16-bus test feeder and the agents

sectionalizing switches and dashed lines represent tie switches. Agents are represented by

a red box. The edges of the communication graph are represented by red dashed lines.

Initially, all sectionalizing switches are closed and all tie switches are open. The

global optimum solution found by the centralized algorithm was reported in [109]. The

network reconfiguration results of the proposed distributed algorithm and the centralize

one are shown in Table 4.1. It can be seen that the proposed method found the same global

optimum solution as that of the centralized algorithm.

In order to evaluate the computation speed of the ADMM algorithm and our

proposed approximated Newton’s method, we conducted testing using 20 different radial
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Table 4.1: Reconfiguration results

Original
configuration

Centralized
method (MICP)

Proposed
method

Opened switches 5,11,16 7,9,16 7,9,16

Power loss (kW) 511.4 466.1 466.1

Loss reduction - 8.85% 8.85%

Voltage
magnitude (p.u.)

Vmax=1.000
(Bus 1,2,3)

Vmax=1.000
(Bus 1,2,3)

Vmax=1.000
(Bus 1,2,3)

Vmin=0.969
(Bus 12)

Vmin=0.972
(Bus 12)

Vmin=0.972
(Bus 12)

network configurations of the test system. The tunable parameters are ρ = 1 for ADMM

and γ = 1.5 for the approximated Newton’s method. To make a fair comparison, both of the

algorithms terminate when the solutions reach the same level of accuracy. The computation

time are reported in Table 4.2. As shown in the table, the proposed approximated Newton’s

method achieves roughly 5 times speed up compared to the ADMM.

Table 4.2: Computation time of ADMM and approximated Newton’s method

ADMM Approximated Newton

Min (second) 3.87 0.64
Max (second) 18.32 7.66
Average (second) 10.41 2.05

4.6 Summary

This chapter presents a distributed algorithm to solve the distribution network

reconfiguration problem. The proposed algorithm can be implemented on a group of switch

agents in the distribution network, which work collaboratively via neighbor-to-neighbor

communication to find the optimum network reconfiguration. The simulation results show

that the distributed algorithm correctly finds the global optimum solution on a 16-bus distri-
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bution test system. In addition, the proposed approximated Newton’s method dramatically

improves the computation speed of the distributed algorithm.
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Chapter 5

Deep Reinforcement Learning for

Distribution Network

Reconfiguration Part 1: Deep

Q-Learning

5.1 Introduction

In the previous chapter, we established a model-based, distributed distribution

network reconfiguration (DNR) framework. In the framework, a group of computational

agents collectively determines the status of remotely controllable switches, resulting in an

optimal static network configuration. That is, determining the network configuration which

will stay the same for the entire study period. DNR can also be performed dynamically [88]
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[19]. In dynamic DNR, the goal is to find a sequence of network configurations over time.

We focus on the dynamic DNR in this and next chapter.

As discussed in the previous chapter, DNR is typically solved by model-based con-

trol approaches. However, one challenge with these physical model based approaches is that

the uncertain or incomplete distribution network parameters makes practical implementa-

tions difficult. In addition, for the dynamic DNR, the problem size is typically much larger

than the static ones. For the switch statuses of multiple time steps need to be identified.

Furthermore, it is more difficult to handle uncertainties associated with loads and DGs in

dynamic DNR problems.

To address these limitations, we use a data-driven approach to formulate the dy-

namic DNR as a reinforcement learning (RL) problem. In a typical RL setup, an agent

tries to learn an optimal control policy by interacting with the real physical environment or

a simulated one. However, it is costly and time consuming for the agent to learn an opti-

mal network reconfiguration strategy by directly interacting with the physical distribution

network. Furthermore, it is difficult to create a reliable simulated environment when the

network parameters are inaccurate. Thus, it is desirable for the agent to learn from the

historical network reconfiguration data collected by the electric utilities.

In this dissertation work, we develop two RL algorithms to solve the dynamic

DNR problem. Both of the algorithms are data-driven and are capable of learning a control

policy from a finite historical operational dataset. For the ease of presentation, we treat

each algorithm in a separate chapter. This chapter discuss the first algorithm based on deep

Q learning (DQL), and is used to solve small-scale network reconfiguration problem. An
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improved algorithm that handles much larger networks is the subject of the next chapter.

To address the low sample efficiency issue with DQL, we propose to augment past grid

operational experiences with synthetic ones to construct additional training data. Simu-

lation results on a 16-bus distribution feeder reveal that the proposed deep RL is capable

of finding a decent control policy without using the network parameter information. The

proposed operational experience augmentation technique further improves the performance

of DQL.

The rest of this chapter is organized as follows: Section 5.2 reviews prior work

on dynamic distribution network reconfiguration. Section 5.3 formulates the distribution

network dynamic reconfiguration problem. Section 5.4 presents the proposed reinforcement

learning algorithm. Section 5.5 shows the simulation results. Section 5.6 summarizes this

chapter.

5.2 Prior Work

The existing literature on dynamic DNR can be categorized into three groups: the

mixed-integer programming based approaches, the heuristic or meta-heuristic algorithms,

and dynamic programming methods.

The first group of literature utilizes mixed-integer programming framework to for-

mulate the dynamic DNR as a deterministic, stochastic, or robust optimization problem.

Deterministic optimization formulations do not take stochastic power injections into con-

sideration. The optimization methods used to solve deterministic problems include mixed-

integer linear programming (MILP) [110] [111], mixed-integer conic programming (MICP)
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[90], mixed-integer nonlinear programming (MINLP) [112], and MIP combined with other

problem size reduction heuristics [88]. Unlike deterministic optimization, stochastic and

robust optimization methods fully incorporate the uncertainties of loads and DGs into the

problem formulation. Robust optimization methods are developed to find the reconfigura-

tion with optimal performance in the worst-case scenario [113] [114] [115] and simultaneously

identify the critical switch [89]. Stochastic optimization methods are developed to optimize

the expected control objective [116], or incorporate the uncertainties of the loads and DGs

by combing MILP with unscented transforms [117].

The second group of literature uses heuristics or meta-heuristic algorithms. The

minimum spanning tree [118] and the branch exchange [119] methods are used to heuristi-

cally solve the dynamic DNR problem. Meta-heuristic algorithms such as genetic algorithm

[120], fuzzy adaptive inference-based particle swarm optimization (PSO) [121], and a hy-

brid PSO with time-partitioning [122] have been adopted to identify the optimal network

configurations.

The third group of literature leverages dynamic programming (DP) methods [123]

to determine the optimal sequence of network configurations. This approach first identifies

the set of radial configurations and treats them as the states. It then applies the DP back-

ward iteration [124] to determine the optimal sequence of hourly network configurations.

Most of the existing literature uses a physical model-based control approach to

solve the dynamic DNR problem. However, this approach has two limitations. First,

model-based algorithms may not be reliable when electric utilities do not have complete

and accurate distribution network parameters. It is well known that it is difficult for elec-
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tric utilities to maintain accurate primary and secondary feeders’ parameters for distribution

networks covering millions of nodes [17]. Second, the computation time for model-based con-

trol algorithms increases exponentially with the number of remotely controllable switches,

the number of DERs, and the length of the operation horizon, which makes it difficult to

apply in real-time network reconfiguration.

5.3 Problem Formulation

In this section, we present our formulation for the dynamic DNR problem as a

Markov decision process (MDP) [125]. First we review the preliminaries of MDPs. Next

we describe the dynamic DNR problem as an MDP. Finally we state the set up of the

reinforcement learning problem for DNR.

5.3.1 Basics of Markov Decision Process

An MDP M = (S,A, p, r, γ, T ) consists of a state space S, an action space A, a

state transition probability P (s′|s, a) ∀s′, s ∈ S, ∀a ∈ A, a reward function r(s, a) : S×A 7→

R, ∀s ∈ S, ∀a ∈ A, a discount factor γ ∈ [0, 1), and a time horizon T . In an MDP, an

agent selects an action At ∈ A based on the environment’s state St ∈ S at each discrete

time step t. Then the agent receives a reward Rt+1 = r(St, At) and the environment’s state

transitions to St+1 according to the state transition probability P (St+1|St, At). The process

either terminates when t = |T | if T is finite or continues indefinitely if T is infinite.

The goal of the agent is to find a control policy π that maximizes the expected dis-

counted return J(π) = Eτ∼π[G(τ)], where control policy π(·|s) maps each state to an action
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selection probability distribution over the action space A. τ is a trajectory or sequence of

states and actions, {S0, A0, S1, A1, ..., ST−1, AT−1, ST }. G(τ) is the discounted return along

a trajectory. G(τ) =
∑T

t=0 γ
tRt+1.

Finally, we define two important value functions, the state-value function vπ(s)

and the action-value function qπ(s, a) with respect to the control policy π:

vπ(s) = E
τ∼π

[∑T
k=0 γ

kRt+k+1|St = s
]
∀s (5.1)

qπ(s, a) = E
τ∼π

[∑T
k=0 γ

kRt+k+1|St = s,At = a
]
∀s, a (5.2)

where vπ(s) and qπ(s, a) represent the expected discounted return starting from state s or

state-action pair (s, a), and following control policy π thereafter. Next we formulate the

dynamic DNR problem as an MDP.

5.3.2 Formulate Dynamic DNR as an MDP

We first introduce some notations for the dynamic DNR. Consider a distribution

network with n load nodes and n0 substations. Let vit, pit, and qit be the nodal voltage

magnitude, real and reactive power injections of node i at time t. Define vectors pt and qt

as pt = [p1t, p2t, · · · , pnt] and qt = [q1t, q2t, · · · , qnt]. Let plt be the network’s total real line

losses at t. We denote a radial configuration of the distribution network at time t by art .

That is, art represents a rooted spanning forest of the graph associated with the no-shunt

distribution network [124]. Each root corresponds to a substation.

Next, we construct the dynamic DNR problem as an MDP as follows. We define

the state at time t to be St = [pt, qt, a
r
t−1, t] and the action At as changing the topology of

81



the network to art . Therefore, S consists of the set of all injection patterns together with the

set of all possible radial configurations. The latter is also equal to A. The reward function

reflects both the network loss and the switching cost and is defined as

r(St, At = art ) = −C l(pt, qt, art )− Cs(art−1, a
r
t ) (5.3)

where C l is the cost associated with the network loss and Cs is the cost incurred by the

change of network configuration. The detailed formulation of C l and Cs will be shown

in Section 5.5. The expected discounted return E
[∑T

t=0 γ
tr(St, At)

]
with some initial

configuration ar−1 for the dynamic DNR problem includes both network losses and switching

costs. This completes the construction of the MDP.

Note that the injection patterns pt and qt time series might not be strictly Marko-

vian. Nevertheless, we shall still use this definition of St because the algorithms that we

will be discussing are still applicable even if the Markovian property is slightly violated in

practice [125].

During the distribution network reconfiguration process, we need to ensure that

the nodal voltages always stay within allowable range. In the MDP framework, physical con-

straints are typically modeled via a constraint function V π
C (s) = Eπ

[∑T
t=0 γ

tCt+1|S0 = s
]
,

where Ct+1 = c(St, At) is the amount of constraint violation at time t. We define c(St, At)

to be the sum of absolute value of voltage violations at all metered nodes:

c(St, At) =
∑
i∈Nv

[max(0, vit − v̄) + max(0, v − vit)] (5.4)
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whereNv is the set of all nodes that have voltage measurement devices; v̄ and v are the upper

and lower bounds for voltage. Now the dynamic DNR can be formulated as a constrained

MDP problem:

max
π

V π(s) s.t. V π
C (s) ≤ 0 (5.5)

The Lagrangian of (5.5) is

V π(s)− λV π
C (s) = Eπ

[∑T
t=0 γ

t(Rt+1 − λCt+1)
]

(5.6)

Although on-policy RL algorithms such as constrained policy optimization [126] have been

developed to solve the constrained MDP problem, their sample efficiency is much lower than

that of the off-policy algorithms. In this chapter, we approximately solve (5.5) by replacing

the original reward function in the (unconstrained) MDP by an augmented reward function

r(St, At, λ)
.
= r(St, At)−λc(St, At). The multiplier λ ≥ 0 can be estimated if an estimation

of V π
C (s) is available. Nevertheless, we shall use a fixed λ in this initial study.

5.4 Technical Methods

In this section, we review basic concepts of deep reinforcement learning and de-

scribe an algorithm to find radial configurations. Finally, we present a noval operational

experience data generation algorithm.
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5.4.1 Deep Q-Learning

In this subsection, an off-policy RL algorithm will be developed to solve the dy-

namic DNR problem. An off-policy RL algorithm is more suitable than an on-policy one

for the following two reasons. First, an off-policy learner allows an agent to learn the

value of optimal policy independently of the actions took by the agent. Thus, off-policy

RL algorithms enable distribution operators to learn from a wealth of historical network

reconfiguration operation data. Second, off-policy RL algorithms have much higher sample

efficiency than that of the on-policy ones.

One of the most widely used off-policy RL algorithm for MDP problems is the

Q-learning, which updates the action-value function iteratively:

Q(St, At) ← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, a)−Q(St, At)] (5.7)

This allows the learned action-value function, Q, to converge to the optimal action-value

function Q∗ provided that all state-action pairs continue to be updated. Once the optimal

action-value functions are learned, the optimal control policy π∗(s), which maximizes V π(s),

can be found by:

π∗ : St 7→ argmaxa Q
∗(St, a) (5.8)

However, it is infeasible to directly apply Q-learning for dynamic DNR problems.

This is because even if we discretize the continuous state variables, the dimensionality of the

state space still increases exponentially. To deal with high-dimensional state space and con-
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tinuous state variables, we parameterize an approximate action-value function Q(St, At; θ
Q)

with a neural network, where θQ are the parameters of the neural network.

Nonetheless, this brings its own challenges. Divergence may occur during learning

[127]. One cause of divergence is the high correlations between the action values Q(St, At)

and the target values Rt+1 + γmaxaQ(St+1, a). To ease this, we adopt a target Q network

whose parameters θQ− are only updated every C steps [128] by θQ− ← θQ. The θQ update

uses the loss function L(θQ)
.
= E

[
(r + γmaxa′ Q(s′, a′; θQ−)−Q(s, a; θQ))2

]
. To further

reduce the high correlation, we adopt the replay mechanism [127]. As such, we store the past

operational experiences for network reconfiguration et = (St, At, Rt+1, St+1) in a ‘memory

data set’ Dt
.
= {e1, ..., et}, which is sampled during learning. Each sample forms a replay

in the learning process.

5.4.2 Finding Radial Configurations

When constructing the action domain, all feasible radial configurations need to be

enumerated. For single substation distribution networks, this could be done by the tree

enumeration algorithm [129, p.464]. For distribution networks with multiple substations,

we enhance the algorithm by adding a merge and a split step. Figure 5.1 provides an

example of this enhanced algorithm. First, we merge all the substation nodes (0 and 1) into

a single root node X. Then we enumerate spanning trees on the resulting graph. Finally,

we split the root node X by identifying the branch-node connectivity on the original graph.

This algorithm guarantees that all the rooted spanning forests can be discovered. Due to

the operational constraints, the agent must choose configurations that would lead to safe
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Figure 5.1: Rooted spanning forest enumeration process.

operation of the grid. As a result, many of the actions ar ∈ A cannot be selected under

certain injection pattern. Therefore, we reduce the action space A to include only those

configurations that appeared in the historical operation data set. This allows the agent to

avoid selecting unacceptable network configurations. However, this will limit the potential

of discovering the optimal control policies.

5.4.3 Operational Experience Augmentation

One major drawback of the existing deep reinforcement learning algorithms is the

poor sample efficiency. To improve the performance of our proposed deep Q-learning algo-

rithm for dynamic DNR problem, we propose an innovative technique to generate reliable

synthetic operational experience data from historical operational data set.

We propose a three-step algorithm to create a set of synthetic operational ex-

periences D̃t
.
= {ẽ1, ..., ẽt} where ẽt = (S̃t = [p̃t, q̃t, ã

r
t−1, t], Ãt = ãrt , R̃t+1 = r(S̃t, Ãt) +

λc(S̃t, Ãt), S̃t+1). The steps are 1) synthesizing the injection time series p̃t and q̃t, 2) gener-

ating the network configuration at each time step ãrt , and 3) estimating the corresponding

reward values r(S̃t, Ãt) + λc(S̃t, Ãt) for the data created in steps 1 and 2. Step 1 takes the

historical load time series and outputs a new one. For example, We can either directly use
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the historical injection data or train an load time series model using historical data [130].

In step 2, we generate a sample path {art} from a stochastic process defined on the sample

space A. In step 3, we estimate r(S̃t, Ãt) and c(S̃t, Ãt) for each time step t. The algorithms

for estimating the network losses and voltage magnitudes are described below.

Two sets of regression models are trained on the historical data to estimate total

network loss and nodal voltage magnitudes, respectively. For both sets of regression models,

the input variables are the injection patterns and the network configurations. After the

training, the reward r(S̃t, Ãt) + λc(S̃t, Ãt) can then be calculated based on the out-of-

sample prediction of the regression models applied to the synthesized data points S̃t, Ãt.

It has been shown that inaccurate rewards in training data can hurt the learning process.

Therefore, we must determine if the estimated rewards are reliable and discard the ones

which have high uncertainty.

We choose the Gaussian process (GP) [131] as the regression model to learn both

the estimated values and their uncertainties. In the GP setting, the target y and the input

vector x are modeled by the relationship y = f(x)+ε where ε represents the observation noise

and is typically a zero mean Gaussian ε ∼ N (0, σ2
ε ). f is a GP f(x) ∼ GP(m(x), k(x, x′)). If

the mean function m(x), the covariance function k(x, x′), and σ2
ε are known, then the proba-

bility distribution of any data p(y|x) can be evaluated and the uncertainty is represented by

the variance of p(y|x). Typically, the mean and covariance functions of f are in some para-

metric families mθM (x) and kθK (x, x′). For example, the constant mean function and the

squared exponential covariance function are given by (5.9) In this example, θM = {C} and

θK = {A, `}. The parameters θM , θK , and σ2
ε can be estimated by marginalizing the Gaus-
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sian process GP(mθM , kθK ) onto the training data points x. That is, y ∼ N (µx,Σxx +σ2
ε I)

where µx = mθM (x) and Σxx = kθK (x,x). Then we can perform maximum likelihood

estimation of the parameters on this marginal distribution.

mθM (x) = C kθK (x, x′) = A2exp

(
−‖x− x

′‖22
2`2

)
(5.9)

Let the estimated parameters be θ̂M , θ̂K , and σ̂2
ε . The posterior distribution of a testing

instance y∗ = f(x∗) + ε is again Gaussian, with the conditional mean and variance:

µ̂(y∗|x∗,x,y) = µ̂x∗ + Σ̂x∗x(Σ̂xx + σ̂2
ε I)−1(y − µ̂x) (5.10)

σ̂2(y∗|x∗,x,y) = σ̂2
x∗ + σ̂2

ε − Σ̂x∗x(Σ̂xx + σ̂2
ε I)−1Σ̂xx∗ (5.11)

whereˆmeans that the quantity is obtained by using the parameter estimates θ̂M and θ̂K .

σ̂2(y∗|x∗,x,y) is not quite the model uncertainty due to the lack of information about

θM ,θK , and σ2
ε [132]. An improved version is given by [132]:

σ̊2(y∗|x∗,x,y) = σ̂2(y∗|x∗,x,y) + gTM−1g (5.12)

where g = ∂
∂θM

[mθM (x∗) −mθM (x)T (Σ̂xx + σ̂2
ε I)−1Σ̂xx∗ ] and M =

∂mθM (x)

∂θM
(Σ̂xx + σ̂2

ε I)−1[
∂mθM (x)

∂θM

]T
. Now, µ̂(y∗|x∗,x,y) and σ̊2(y∗|x∗,x,y) represent the estimated target and its

uncertainty. In the dynamic DNR problem, each x represents an injection pattern and

a radial configuration and each y represents the corresponding network loss or a voltage

magnitude. If the uncertainty of the target estimate σ̊2(y∗|x∗,x,y) is larger than some
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threshold, then the synthetic data generated (x∗, y∗) will be discarded. In this chapter, the

threshold is heuristically set to be 3 · [std(σ̊ − avg(σ̊))] where σ̊ is the set of uncertainty

estimates for all y∗.

5.5 Numerical Study

5.5.1 Experimental Data Description

The 16-bus distribution test feeder presented in [109, Example 1] is used in this

study. The line impedances, remote controllable switches, and complex power base Sbase of

[109] are kept unchanged. After applying the rooted spanning forest enumeration procedure

in Section 5.4.2, a total of 190 radial configurations are found. To validate our proposed RL

algorithm for dynamic DNR problems, we replace the original static load data in [109] with

26 weeks of aggregated hourly real-world smart meter data of residential and commercial

customers taken from a 12 KV distribution feeder.

The real-world smart meter data are reprocessed as follows. First, each nodal

injection in the 16-bus feeder is set to be the aggregated consumption of a group of randomly

selected customers. We assume a constant power factor for each node. Then, we scale these

aggregated consumption by a common factor β (i.e., (pt, qt) 7→ (βpt, βqt) for all t) in order

to create a realistic feeder loading level. β is chosen such that the resulting total line loss

under βpt and βqt is roughly 1.5% of the total demand [133]. Next, we select 83 medium

to low line loss configurations from a total of 190 feasible ones. A sample path of 26

weeks with hourly granularity is then generated from a Markov chain defined on those 83

configurations with transition probability pii = 0.9 and pij = pik. Finally, we find the power
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flow solutions for all hours in the 26-week period and record the total line losses as well

as the voltage magnitude measurements at bus 7, 12, and 16 of the network to form the

historical operational data set.

5.5.2 Setup of the Reward Function

By Section 5.3.2, the reward function is defined as the sum of negative costs of

line losses (denoted as C l(s, a)), switching actions (denoted as Cs(s, a)), and a weighted

constraint violation term λc(s, a). C l equals to the product of a fixed retail electricity price

and the network losses. We set the retail electricity price at $0.13/kWh. Cs equals the

product a fixed cost per switching and the number of switching actions.

The fixed cost per switching is determined as follows. First, the lifetime cost of a

sectionalizing switch can be calculated as the summation of the equipment cost, installation

cost, and maintenance costs over its useful life [134]. The sum of equipment cost and

installation cost is assumed to be $4,700. The useful life and annual maintenance cost of

a switch are set to be 15 years and $94. Thus, the lifetime cost of a sectionalizing switch

is $6,110. If we assume that the number of operations of a switch over its lifetime is 657

[135], then the fixed cost per switching is approximately $4.6.

The upper and lower bounds v̄, v for the voltage violation term is chosen as 1.1

and 0.9 p.u., respectively. λ is chosen to be $0.13/kWh× 100MVA = $13, 000/p.u.

5.5.3 Performance of Operational Experience Augmentation

In this subsection, we validate the quality of the synthetic operational experience

data generated by our proposed GP based model. In particular, the quality of estimated
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network losses under the augmented network configuration and injection patterns will be

evaluated. Recall that we have 26 weeks of historical data set, which are divided into

training data set (Dt) and testing data set. The first 25 weeks of historical data are chosen

as the training data set and the data of the last week are chosen as the testing data set.

We then create a 25-week synthetic operational experience data set D̃t as follows.

First, we generate a 25-week sample path of network configurations from a Markov chain

defined on those configurations that appeared in the training data set with transition prob-

ability pii = 0.8 and pij = pik. We then estimate the network losses for this new sequence

of configurations under the injection patterns of the first 25 weeks of historical data set.

For the network loss estimation task, we compare our proposed GP model in Section 5.4.3

with the Monte Carlo (MC) dropout neural network [136], which is shown to be equivalent

to a Bayesian approximation of a GP. When building the GP model, the mean function is

chosen to be zero and the covariance function is chosen to be the same as in (5.9). Both the

GP and the MC dropout model are trained with the first 25 weeks of historical operational

data. We apply the trained model to the 1-week testing data set and the 25-week synthetic

operation experience data set. Figure 5.2 shows the performance of network losses predic-

tion for the two models under 50 samples of both the testing data set and the synthetic

data set. As shown in the figure, compared to the MC dropout model, the GP model is

much more accurate in predicting network losses.

Although GP model produces fairly accurate predictions, it occasionally leads to

large error for some network configurations and injection patterns as shown by the orange

curve in Figure 5.3. Fortunately, the uncertainty estimates of the GP model represented by
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Figure 5.2: Performance of out-of-sample predictions for network losses.

the blue curve in Figure 5.3 correlates very well with the estimation error. This suggests

our proposed strategy of removing the samples with large uncertainty estimates significantly

improves the quality of the augmented operational experience data set.

Figure 5.3: Regression errors versus uncertainty estimates of the GP model.

5.5.4 Performance of Deep Q-Learning Algorithms

In this subsection, we compare the performance of three deep Q-learning algo-

rithms with two benchmarks. In the first benchmark algorithm, global optimal solution of

the dynamic DNR problem is obtained by dynamic programming with perfect knowledge of

the network parameters and future injection pattern. The second benchmark simply uses

the historical network configurations generated in the data set. The first deep Q-learning

algorithm is developed and trained using only historical operational data. The second deep
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Q-learning algorithm is trained with both historical and synthetic operational experiences,

where the network losses are estimated based on the GP model. The third deep Q-learning

algorithm is trained with both historical and synthetic operational experiences, where the

network losses are obtained with the power flow models assuming perfect knowledge of the

network parameters.

We divide the 26-week historical data set into a 25-week training Dt data set

and a 1-week testing data set. The 25-week synthetic operational experience data set

D̃t is generated in the same way as in Section 5.5.3. During the training iterations, we

periodically save the parameters of the trained neural network and test its performance

on the testing data set. The performance of the three Q-learning algorithms and two

benchmark algorithms are shown in Figure 5.4. The left subfigure shows the minimum

voltage magnitude over all metered nodes and all hours. The right subfigure displays the

total operational cost. For the three deep Q-learning algorithms, the average, the 10th, and

the 90th percentile of the results from 10 independent runs are depicted.
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Figure 5.4: Performance of Q-learning. Hyperparameters of the neural network: 2-layer
feed-forward (hidden: 600, output: 190); activation function: ReLU; optimizer: Adam;
batch size: 64; discount factor γ: 0.95; update steps C: 30.
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Compared to the network configurations in the testing week of the historical data,

the deep Q-learning algorithm quickly learned how to reduce the operational cost in a

dynamic DNR problem. When we augment the historical operational experiences with

synthetic operational data, then the operational cost of the deep Q-learning algorithm

further reduces and the minimum voltage magnitudes get even closer to the nominal voltage

values. As the learning process proceeds, the performance of the deep Q-learning algorithms

with augmented operational experiences approaches that of the global optimal solution.

Note that the Q-learning agents achieved these results without knowing the actual network

parameters or future power injection patterns. It can also be seen from the figure that

the orange curve almost coincides with the green curve. It means that the network losses

estimated by our proposed GP model are almost as good as that of the power flow solutions

with perfect network parameter information.

We conclude the numerical study by showing that similar results can be obtained

without extensive tuning of hyperparameters, which is crucial for practical applications. We

demonstrate this by showing that the performance of the Q-learning algorithm is relatively

consistent under different hyperparameter settings. The following combinations of hyper-

parameters are tested, batch size B ∈ {32, 64, 128, 256}, number of hidden layers L ∈ {1, 2},

number of hidden neurons H ∈ {300, 400, 500, 600}, and number of steps the target Q net-

work’s parameters are updated C ∈ {30, 60, 90, 120}. We generate a Taguchi’s orthogonal

array for these hyperparameter combinations and report the results in Table 5.1. Each cal-

culated cost represents the average of 5 independent runs for Q learning with operational

data augmentation. Compared to the historical operational cost and the optimal cost, the
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operational cost of the Q-learning algorithm under different hyperparameter settings are

quite consistent.

Table 5.1: Operational Costs with Various Hyperparameters

Original cost : $8066.7. Optimal cost: $5128.8

B H C L QL cost B H C L QL cost

32 300 30 1 5752.9 128 300 90 1 5490.6
32 400 60 1 5686.2 128 400 120 1 5647.4
32 500 90 2 5608.8 128 500 30 2 5441.0
32 600 120 2 5464.3 128 600 60 2 5396.7
64 300 60 2 5523.9 256 300 120 2 5480.4
64 400 30 2 5456.8 256 400 90 2 5487.8
64 500 120 1 5579.3 256 500 60 1 5652.2
64 600 90 1 5507.9 256 600 30 1 5531.3

5.6 Summary

This chapter presents a reinforcement learning based algorithm to solve the dy-

namic distribution network reconfiguration problem without accurate network parameter

information. The proposed framework first formulates the dynamic DNR problem as a

Markov decision process, then learns the approximated optimal action-value function with

a neural network. The optimal network configuration is selected to be the action that yields

the highest action-value. A novel synthetic operational experience data generation tech-

nique based on the Gaussian process is developed to improve the performance of Q-learning

algorithms. Simulation results show that the proposed Q-learning algorithm successfully

reduces the operational cost of the network under various hyperparameter settings.
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Chapter 6

Deep Reinforcement Learning for

Distribution Network

Reconfiguration Part 2:

Batch-Constrained Soft Actor

Critic

6.1 Introduction

In the previous chapter, we discussed the deep Q learning (DQL) and opera-

tional experience augmentation to solve to solve small-scale network reconfiguration prob-

lem. However, for larger scale distribution networks, the number of feasible configurations
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can be so large that the learning becomes almost impossible. In this chapter, we develop a

novel deep RL algorithm, called batch-constrained soft actor critic (BCSAC), to improve the

RL algorithm’s scalability. The name of the algorithm is derived from the so-called batch

RL, in which the agent is learning from a fixed experience dataset, rather than interacting

with the environment. BCSAC scales to large networks with limited operational data by

training a control policy in the following way: it maximizes the total discounted return while

minimizing the dissimilarity between the learned control policy and the behavior policy of

the operational data (the batch data). Therefore, it avoids unwanted extrapolation errors

in the region of the state-action space beyond the batch data.

In this chapter, we discuss the details of the BCSAC algorithm. First, we prove

the convergence of the KL-divergence regularized (batch-constrained) version of the policy

iteration. This provides a theoretical justification of the correctness of the algorithm. Then,

we discuss the actor-critic framework and apply it in the batch RL setup. Finally, to train

the BCSAC algorithm so that it can minimize the dissimilarity between its policy and the

behavior policy, we represent the behavior policy with a conditional variational autoencoder,

and regularize the reward function with the Kullback–Leibler (KL) divergence between the

learned control policy and the behavior policy. All components are trained using standard

machine learning optimization routine. We evaluate the trained algorithm on several test

distribution networks with real-world smart meter data. Numerical study results show

that our proposed BCSAC algorithm is able to successfully learn a network reconfiguration

strategy for very large scale distribution networks. It not only improves the behavior control

policy but also outperforms state-of-the-art off-policy RL algorithms.
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The rest of this chapter is organized as follows: Section 6.2 revisits the dynamic

DNR problem as a Markov decision process. Section 6.3 presents the technical methods of

our proposed BCSAC algorithm. Section 6.4 shows the numerical study results. Section

6.5 summarizes this chapter.

6.2 Problem Formulation

In this section, we present our formulation for the dynamic DNR problem as a

Markov decision process (MDP) [125]. The preliminaries of MDP was reviewed in the

previous chapter. Here we only briefly review the MDP formulation of DNR.

6.2.1 Formulate Dynamic DNR as an MDP

We consider a distribution network with n load nodes, m lines, and nS substations.

Let vit, pit, and qit denote the voltage magnitude, real and reactive power net injections

of node i at time t. plt denotes the network’s total real line losses. The binary variable

α`t represents the status of the switch `. α`t = 1 if switch ` is closed at time t. We

define vectors for nodal real and reactive power injections and branch status at time t as

pt = [p1t, · · · , pnt], qt = [q1t, · · · , qnt], and αt = [α1t, · · · , αmt].

Now, we formulate the dynamic DNR problem as an MDP by identifying the agent,

state, action, and reward. The agent is the distribution system operator or controller. The

state at time t is defined as St = [pt, qt,αt, t]. Thus, S consists of the set of all power

injection patterns together with the set of all radial configurations. We define the action

taken at time t, At, as changing the topology of the network by a single pair of branch
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status exchange, that is, closing a switch in {1, · · · ,m} and opening another one, such that

the resulting configuration αt+1 is still radial [96]. We deem opening and closing the same

switch as staying in the same configuration, and it does not incur a switching cost. Note

that starting from a given configuration αt, only a subset of all switch pairs is feasible; the

others will result in a loop or disconnected network. Thus, in each state s, only a subset of

actions are allowed to be chosen. We defer the implementation details to Section 6.3.8.

The above formulated states and actions uniquely define a state-transition prob-

ability model P (St+1|St, At) between the current state St = [pt, qt,αt, t] and the next

state St+1. The new state’s variables [pt+1, qt+1,αt+1, t + 1] are determined by St and

At as follows. The transition probability between adjacent time steps’ power injections

P (pt+1, qt+1|pt, qt) can be described by the random process of the power injections and is

not affected by the action. αt+1 is determined by αt and the open/closing switches in At.

The global time variable t is increased by 1.

The reward function reflects the cost associated with network line losses plt, the

switching cost, and operating limit constraint violation penalty and is defined as follows.

Rt+1 = r(St, At) = −C lplt(pt, qt,αt+1)− Cs|αt+1 −αt| − λc(pt, qt,αt+1) (6.1)

where C l is the unit cost of electricity. Cs is the cost of opening or closing of a switch. The

third term in (6.1) describes the voltage constraint violation penalty [19]:

c(pt, qt,αt+1) =
∑
i∈Nv

[max(0, vit − v̄) + max(0, v − vit)] (6.2)
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where Nv is the set of all nodes that have voltage measurement devices; v̄ and v are the

upper and lower bounds for voltage; λ is the penalty factor associated with the voltage

constraint violation. The value of λ can be determined based on operational considerations

and empirical performance. The exact value of λ will be provided at Section 6.4.1.

Finally, we choose a discount factor γ that is less than 1 and set T = ∞. This

completes the MDP formulation for the dynamic DNR problem. In sum, the dynamic DNR

problem is a continuing task with a finite action space and a state space with continuous

variables. The learning setup of this MDP is explained in the next subsection.

6.2.2 The Learning Setup

The RL task for the dynamic DNR problem is to learn a good control policy from a

given set of historical operational data. The setup of learning from a given historical dataset

rather than from directly interacting with the environment is known as batch reinforcement

learning [137]. From now on, the term batch and historical operational data will be used

interchangeably. The historical operational data should contain relevant information about

the state, action, and reward of the MDP and will be explained in detail below.

We assume the historical operational data are to be derived through the following

measurements collected by an electric utility. First, the nodal power injections pit + jqit

at each time step and node with non-zero injection are recorded by smart meters or other

sensors. Second, the SCADA system records real and reactive power at the substations.

Third, the nodal voltage magnitude data vit is available from the SCADA system at a subset

of nodes in the network. Finally, the switch status αt are available from the remotely

controllable switches. With these measurements, we can construct the historical states,
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actions, and rewards of the MDP. In particular, the network loss can be estimated as the

sum of all net power injections of the distribution network plt =
∑n+nS

i=1 pit.

Two factors make it challenging to develop a batch RL algorithm to solve the

MDP representing the dynamic DNR problem. First, the state space of the MDP is high-

dimensional and grows exponentially with the size of the distribution network. Leveraging

function approximators such as neural networks to estimate the value function or control

policy associated with this high-dimensional state space is not straightforward. Second,

the batch RL controller can only learn from the limited information contained in a finite

amount of historical operational data.

6.3 Technical Methods

In this section, we first present the preliminaries of actor-critic algorithms and

batch RL algorithms. Then we develop our proposed BCSAC algorithm. Finally, we provide

the RL algorithm implementation details for the dynamic DNR problem.

6.3.1 Actor-Critic Algorithms

For dynamic DNR with large state-space and action-space, it can be difficult to

apply value-based RL algorithms to approximate the action-value function. To deal with

this, actor-critic algorithms have been proposed. Actor-critic algorithms uses an actor to

learn a parameterized control policy that directly selects actions without consulting a value

function; and a critic to estimate the policy value of the actor [125]. Since the policy

is explicitly represented, actor-critic algorithms can handle RL problems with much larger
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action spaces, even continuous ones. To further improve the sample efficiency and robustness

of the actor-critic methods, state-of-the-art maximum entropy RL algorithms such as soft

actor-critic (SAC) [138] have been developed. Next, we provide a brief review of the SAC

algorithm.

Soft Actor Critic

Soft actor critic [138] regularizes the reward function by the entropy of the policy:

r(s, a) + τH(π(·|s)), whose contribution to the reward is controlled by the temperature

parameter τ . The entropy regularized state-value functions vh
π(s) and action-value functions

qh
π(s, a) are shown to satisfy [139]:

vh
π(s) = Ea∼πEs′∼P

[
r + γvh

π(s′)
]

+ τH(π(·|s)) (6.3)

qh
π(s, a) = r + γEs′∼P

[
vh
π(s′)

]
(6.4)

vh
π(s) = Ea∼π[qh

π(s, a)] + τH(π(·|s)) (6.5)

To deal with large continuous domains, the value functions (critic) and the policy

function (actor) shown above can be approximated by neural networks: vψ(s), qθ(s, a), πφ(a|s),

where ψ, θ, and φ are the parameters of the corresponding neural networks. The SAC al-

gorithm works by iteratively updating the parameters of the value functions and the policy

function.

πnew(·|s) = arg min
π

DKL

(
π(·|s)||exp(qh

πold
(s, a)/τ)

Zπold(s)

)
(6.6)

102



The parameters of value functions can be updated according to the gradient of the squared

residual error of state value function and the soft Bellman residual of action value function.

The parameters of the policy can be updated by (6.6), where Zπold(s) is the partition

function that normalizes the numerator to a probability distribution. DKL(p||q) is the

KL-divergence between distributions p and q.

6.3.2 Batch-Constrained Reinforcement Learning

In the batch RL setup, the agent can only learn from a finite dataset collected by

some sampling procedure. For example, the historical operational dataset may be gener-

ated from a model-based controller and/or heuristic control actions selected by operators.

Therefore, if we directly apply off-policy RL algorithms such as DQN or SAC in the batch

RL setup, then the action-value function qπ(s, a) of a given policy π may not be accu-

rately evaluated. As a result, the learning agent may erroneously extrapolate qπ(s, a) of

some actions a to higher values [140]. Formally, let qπ(s, a) denote the true action-value

function of a policy π and qDπ (s, a) denote the action-value function of policy π estimated

using the batch data. Then the extrapolation error of a state-action pair επ(s, a) and the

extrapolation error of policy επ can be defined as:

επ(s, a) = qπ(s, a)− qDπ (s, a) (6.7)

επ =
∑

s µπ(s)
∑

a π(a|s)|επ(s, a)| (6.8)

where µπ is the state-visitation probability induced by π in the original MDP M. It has

been shown that [140], επ = 0 if and only if the empirical transition probability of the batch
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data p̂(s′|s, a) is equal to the true p(s′|s, a) for all state-action pairs (s, a) with non-zero

visitation probability under policy π. In this case, qπ(s, a) can be evaluated with no error.

In other words, to accurately estimate state-value functions, the agent should try to learn

control policies, which tend to visit the state-action pairs contained in the batch data. A

policy that satisfies this condition is denoted as batch-constrained.

6.3.3 KL-Divergence Regularization and the Bellman Equation

To find a batch-constrained policy, we propose to regularize the reward function

by the KL-divergence between the target policy and the behavior policy:

rd(s, a) = r(s, a)− τDKL(π(·|s)||πb(·|s)) (6.9)

where r(s, a) is the reward function of the original MDP. πb(a|s) is the behavior policy,

which has the same conditional probability distribution of the actions given state as that

of the historical data. The KL-divergence can be calculated as DKL(π(·|s)||πb(·|s)) =

Ea∼π
[
log π(a|s)− log πb(a|s)

]
. This term encourages the agent to learn batch-constrained

policies that are similar to the policy generating the historical operational data. We can

rewrite the KL-divergence as

DKL(π(·|s)||πb(·|s)) = H(π(·|s), πb(·|s))−H(π(·|s)) (6.10)

where H(π(·|s), πb(·|s)) is the cross entropy of π(·|s) and πb(·|s). H(π(·|s)) is the entropy of

the target policy. Therefore minimizing the KL-divergence can be thought of as maximizing
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the target policy’s entropy coupled with minimizing the cross entropy. We denote the value

functions for a given policy π with KL-divergence regularized reward function as vd
π(s) and

qd
π(s, a). The Bellman equations under this setup are derived as:

vd
π(s) = Ea∼πEs′∼P

[
r + γvd

π(s′)
]
− τDKL(π(·|s)||πb(·|s)) (6.11)

qd
π(s, a) = r + γEs′∼P

[
vd
π(s′)

]
(6.12)

vd
π(s) = Ea∼π[qd

π(s, a)]− τDKL(π(·|s)||πb(·|s)) (6.13)

Our next result shows that for a given policy π, the value function qd
π(s, a) can be

found by the following iterative scheme:

Lemma 6.3.1 (Batch-Constrained Soft Policy Evaluation) Consider the operator T π

given by:

T πq(s, a) = r(s, a) + γEs′∼P [v(s′)] ∀s, a (6.14)

v(s′) = Ea′∼π[q(s′, a′)]− τDKL(π(·|s′)||πb(·|s′)) (6.15)

and an initial q0(s, a) ∈ R,∀(s, a) ∈ S × A. Assuming that DKL(π(·|s)||πb(·|s)) is bounded

for all s ∈ S, the sequence defined by qk+1 = T πqk will converge to the KL-divergence

regularized Q function qd
π as k →∞.

After qd
π(s, a) is computed, we can invoke the following update rule to find an improved

policy π′.

Lemma 6.3.2 (Batch-Constrained Soft Policy Improvement) Given a policy π and
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its soft Q function qd
π, define a new policy π′ as follows:

π′(·|s) = arg max
π̃

Ea∼π̃[qd
π(s, a)]− τDKL(π̃(·|s)||πb(·|s))

for every s ∈ S. Then qd
π′(s, a) ≥ qd

π(s, a) for all (s, a) ∈ S ×A.

By Lemma 6.3.1 and Lemma 6.3.2, we can establish the following batch-constrained version

of the policy iteration theorem:

Theorem 6.3.3 (Batch-Constrained Soft Policy Iteration) Starting from any policy

π and alternatively applying the batch-constrained soft policy evaluation and improvement,

the sequence of policies converges to a policy π∗ such that qd
π∗(s, a) ≥ qd

π(s, a) for all (s, a) ∈

S ×A.

All proofs can be found in Appendix B.1. Theorem 6.3.3 establishes the theoretical foun-

dation for finding the optimal batch-constrained soft policy. However, it cannot be directly

implemented due to infinite state space and finite training data in the dynamic DNR prob-

lem. Later in this section, we will derive a practical algorithm that approximately imple-

ments the batch-constrained soft policy iteration. Before that, we first provide an overview

of the proposed reinforcement learning based dynamic DNR control framework in the next

subsection.

6.3.4 Overview of the Proposed Framework

This subsection provides an overview of the proposed RL based dynamic DNR

control framework. Figure 6.1 shows the sub-modules of the proposed framework.
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Switch

BCSAC Control policy

Figure 6.1: The proposed RL based dynamic DNR control framework

The electric utility first collects the historical operational dataset as described in

Section 6.2.2. This dataset will then be used for off-line training of the proposed batch-

constrained soft actor-critic (BCSAC) RL algorithm. The algorithm consists of a conditional

generative model, represented by the red block, and three groups of neural networks repre-

sented by the three green blocks. The conditional generative model is trained independently

from the other neural networks and thus marked as red. The neural networks in the three

green blocks are trained simultaneously. The red and green arrows represent the depen-

dencies among the neural network training processes. After off-line training, the “policy

network” module will contain a trained neural network πφ(a|s), which takes the network

configuration and injection pattern as the input, and outputs a reconfiguration action. The

policy network is trained to approximate the optimal batch-constrained soft policy π∗(a|s).
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The V and Q networks are trained to approximate vd
π∗(s) and qd

π∗(s, a), respectively. In the

next subsection, we present the details of the off-line training processes.

6.3.5 Batch-Constrained Soft Actor Critic

We propose an actor-critic algorithm which approximates the policy iteration and

hence, learns a batch-constrained policy from the finite historical operational dataset. The

algorithm consists of a critic, which approximates vd
π∗(s) and qd

π∗(s, a), and an actor, which

approximates π∗(a|s).

The Critic

We parameterize vd
π(s) and qd

π(s, a) by neural networks and update them using

the sample estimate of RHS of the (6.12)-(6.13). In addition, we adopt the target value

network [127] and the clipped-double Q method [141] to stabilize the training. Specifically,

we maintain four neural networks qθ1 , qθ2 , vψ, vψ̄, and update them by:

min
θi

1

|B|
∑

(s,a,r,s′)∈B

[
qθi(s, a)− (r + γvψ̄(s′))

]2
i = 1, 2 (6.16)

min
ψ

(1/|B|)
∑

(s,a,r,s′)∈B

(vψ(s)− vtarget(s))2 (6.17)

vtarget(s) = min
i=1,2

qθi(s, â)− τ log(πφ(â|s)) + τ log(πb(â|s)) (6.18)

ψ̄ ← ρψ̄ + (1− ρ)ψ (6.19)

where B is a mini-batch sampled from the historical data D = {(s, a, r, s′)}. ρ is an expo-

nential smoothing parameter. â is a sampled action from the policy network πφ(·|s). The
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input of all the neural networks is the state s. For the value networks vψ and vψ̄, the output

is a single number indicating the state value. The output of the Q networks qθ1 and qθ2 is a

vector including the action-values. All networks are standard feedforward neural networks

with a number of hidden layers. For the dynamic DNR problem, the detailed architecture

design of the Q and V networks are described in Section 6.3.8.

When performing the minimization (6.16) to train the Q networks qθ1 and qθ2 , the

parameter vector ψ̄ is held fixed. Similarly, when performing the minimization (6.17), all

the parameters appearing in vtarget(s) are fixed and only ψ is to be optimized. The training

data of these networks are obtained from the historical operational dataset and converted

into the state s, action a, reward r, and next state s′ format. The process was described in

Section 6.2.1 and Section 6.2.2. In addition, sampled actions â from the current policy are

also used for the training. But these samples â do not need to be the same as the actions

in the historical dataset.

Next, we discuss the design of the actor and the derivation of the policy gradient.

The Actor

We approximate the policy function (the actor) by a neural network parameterized

by φ. Ideally, the parameters should be updated using gradient ascent φ← φ+ η∇vd
πφ

(s),

where the ∇vd
πφ

(s) is given by

∇vd
πφ

(s) = ∇[Ea∼πφ [qd
π(s, a)]− τDKL(πφ(·|s)||πb(·|s))]

= ∇Ea∼πφ [qd
π(s, a)− τ(log πφ(a|s)− log πb(a|s))] (6.20)
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However, this policy gradient requires computing the derivative of qd
π(s, a). It is shown that

this derivative will result in an on-policy policy gradient [125], which cannot be estimated

from a given historical dataset.

Fortunately, as shown by Lemma 6.3.2, the gradient of qd
π(s, a) can be omitted.

This is because the objective function of Lemma 6.3.2 treats qd
π(s, a) as a constant. In other

words, updating the actor without the gradient information of qd
π(s, a) still approximates

the monotonic policy improvement. With this theoretical guarantee, we can derive an off-

policy policy gradient, which can be estimated from the historical dataset. The derivation

is done in three steps. In the first step, we omit the gradient of qd
π(s, a). This is justified

by Lemma 6.3.2. In the second step, we change the order of the gradient operator and the

expectation operator and define a new term fφ(s, a) = qd
π(s, a)− τ(log πφ(a|s)− log πb(a|s))

to simplify the notation.

∇Ea∼πφ [fφ(s, a)]

=
∑
a

fφ(s, a)∇πφ(a|s)− τ
∑
a

πφ(a|s)∇ log πφ(a|s)︸ ︷︷ ︸
=0

=
∑
a

πφ(a|s)fφ(s, a)∇ log πφ(a|s)

=Ea∼πφfφ(s, a)∇ log πφ(a|s) (6.21)

where we have used the identity
∑

a πφ(a|s)∇ log πφ(a|s) =
∑

a∇πφ(a|s) = ∇∑a πφ(a|s) =

∇1 = 0. In the third step, we replace the expectation in (6.21) by its one-sample estimate.

The final form of the approximate policy gradient is given by (6.22) where â is sampled
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from πφ(·|s). This completes the derivation of the actor network update process.

The structure of the policy network is as follows. The input of πφ is the state

s, and the output is a conditional probability distribution of actions given the state. For

the dynamic DNR problem, the detailed architecture for the policy network is described in

Section 6.3.8. Note that in order to evaluate (6.18) and (6.22), we need to approximate the

behavior policy πb(â|s) by a parametric function gω(â|s). This will be discussed in the next

subsection.

∇̂vd
πφ

(s) = ∇ log πφ(â|s)[qθ1(s, â)− τ(log πφ(â|s)− log πb(â|s))] (6.22)

6.3.6 Representing the Batch Distribution as a Parametric Model

Given the difficulty of estimating the behavior policy πb(a|s) with high-dimensional

state and action space, we propose using the conditional variational autoencoder (CVAE)

[142] as the parametric generative model for gω(a|s), where ω is the model parameter. Using

non-parametric models for this learning task can be very difficult because they suffer from

the curse of dimensionality. Furthermore, non-parametric models have difficulty handling

mixed discrete and continuous variables. On the other hand, CVAE model is well suited

for our application due to three reasons. First, CVAE model is very scalable and can

approximate high-dimensional distributions. Second, CVAE model can easily handle mixed

discrete and continuous state-action space. Third, as will be shown in Section 6.4.3, CVAE

model has good empirical performance for our application.

CVAE consists of an encoder cω′(z|s, a), which maps a given state-action pair to a

latent representation z, and a decoder gω(a|s, z), which produces the probability of taking
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an action a given z and s. CVAE maximizes the following objective function to obtain the

parameters for the encoder, ω′, and the decoder ω:

Ez∼dω′ [log gω(a|s, z)]−DKL(cω′(z|s, a)||p(z)) (6.23)

where p(z) is the latent variable distribution and is chosen as a Gaussian N (0, I). To train

CVAE, we sample mini-batches of state-action pairs (s, a) from the historical data D and

perform stochastic gradient ascent for the sample objective function. The trained decoder

gω(a|s, z) is used to represent the behavior policy of the historical operational data.

6.3.7 Summary of BCSAC Algorithm

Our proposed batch-constrained soft actor-critic (BCSAC) algorithm is summa-

rized in Algorithm 1. The algorithm takes as inputs the operational historical dataset D

(the batch) as well as the trained CVAE model gω. Before the training starts, the policy

and value networks are initialized using general-purpose deep neural network initialization

algorithms (we choose the Xavier initialization in this work). In each iteration, the algo-

rithm first samples a mini-batch of experiences from the batch, and then samples actions

from the current policy. Afterwards, the algorithm conducts policy evaluation by training

the V and Q-networks using (6.17) and (6.16), respectively. At the end of each iteration,

the policy improvement step is taken by training the policy network, which updates the

parameters φ using the gradient shown in (6.22). Note that since the historical dataset D

does not change during the training process, the trained CVAE model gω does not need to

be updated.
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The proposed algorithm differs from existing actor-critic frameworks (e.g. [138])

in three ways. First, the framework is developed from a novel batch-constrained soft policy

iteration theory presented in Theorem 6.3.3. Second, we utilize finite action space policy

gradient in (6.22) to update the actor network, instead of the reparameterization trick

[138]. Third, a pre-trained conditional generative model is incorporated for the training of

the batch-constrained RL algorithm.

For the dynamic DNR problem, the historical data D consists of the nodal power

injections, substation SCADA power measurements, nodal voltage magnitudes, and the

status of remotely controllable switches. These data have been converted into the state,

action, reward, next state tuple (s, a, r, s′) prior to the training. The detailed procedure was

described in Section 6.2.1-Section 6.2.2. To apply the BCSAC algorithm to the dynamic

DNR problem, we design unique neural network architectures and the representation of

distribution network topology in these networks. This is the subject of the next subsection.

Algorithm 1 BCSAC with Finite Action Space

Input: Batch D, conditional generative model gω ≈ πb
1: Initialize φ, θ1, θ2, ψ, ψ̄
2: for i = 1, · · · , do
3: Sample mini-batch B = {(s, a, r, s′)} from D
4: Sample actions from the current policy: â ∼ πφ(·|s)
5: Train Q networks θ1, θ2 by (6.16)
6: Train V network ψ by (6.17)
7: Update V target network ψ̄ by (6.19)
8: Train policy network φ by φ← φ+ η∇̂vd

πφ
(s)

where ∇̂vd
πφ

(s) is given by (6.22)
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6.3.8 Algorithm Implementation

This subsection provides the technical details of implementing BCSAC algorithm

for the dynamic DNR problem. The neural network architecture design and representation

of distribution network topology are covered.

• Representation of distribution network configuration as an input to neural networks:

we use a binary vector of on/off status of each line segment to encode the distribution

network configurations. Since the configuration at each time step must be radial, the next

feasible state configurations αt+1 starting from an existing configuration αt are discovered

as follows. First, we identify all closeable switches in αt. Closing any one of these closeable

switches i creates exactly one fundamental cycle. Each line segment j in this fundamental

cycle can be opened. We store all such switchable pairs (i, j) at time t in a binary 2-D array

M t. M t
ij = 1 if (i, j) is a valid switching pair, and is 0 otherwise.

• Policy network πφ structure: The output of the policy network is a 2-D array πij(St) and

is the probability distribution of switching pairs of branches (i, j), that is, πij(St) ≥ 0 and∑m
i=1

∑m
j=1 πij(St) = 1. πij(St) must be zero if M t

ij = 0. To enforce this, we use a masked

softmax layer as the output of the policy network:

πij(St) =
ehij(St) ·M t

ij∑
kl e

hkl(St) ·M t
kl

(6.24)

where hij(St) are the outputs of the previous layer. M t
ij is the binary mask. The same

masked softmax layer is used as the output layer of the parametric generative model gω.

• Q-network qθ structure: The input to the Q-network is the state encoding, along with the

one-hot encoding of the closeable switches. The number of outputs of the Q-network equals
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the number of switches of the distribution network, which correspond to openable switches.

• V-network vψ structure: The value network vψ(St) is a standard multilayer perceptron.

The input of the V-network is the state encoding and the output is the value of that state.

6.4 Numerical Studies

To verify the performance of our proposed BCSAC algorithm on dynamic DNR

problems, we conduct comprehensive numerical studies on four distribution networks. We

start by presenting the experimental data and the algorithm setup in Section 6.4.1-Section

6.4.2. The optimality, scalability, and computation efficiency of the proposed algorithm and

benchmark algorithms are shown in Section 6.4.3-Section 6.4.6.

6.4.1 Experimental Data Setup

Distribution Networks

The 16-bus [109], 33-bus [97], 70-bus [143], and 119-bus [144] distribution networks

are chosen for the numerical study. The schematic diagram of the 119-bus distribution

network is shown in Figure 6.2. For notational convenience, we have modified the bus num-

bering described in [144]. It is assumed that each line segment has a remotely controllable

switch. The total number of feasible configurations is used as a measure of complexity of

the learning task and is shown in Table 6.1. The number of feasible configurations are

calculated by matrix-tree theorem [19]. Note that the number of feasible configurations

increases exponentially with the number of remotely controllable switches. In Table 6.1,

the Solar bus column shows the buses with solar generation. For all test cases, the retail
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electricity price C l is set as 0.13 $/kWh. The maximum and minimum nodal voltages are

set as v̄ = 1.1 and v = 0.9, and the voltage violation penalty is set as λ = C l. An al-

ternative modeling approach is to use hard constraints to limit the variations of voltage.

For example, constrained policy optimization [126] and constrained soft actor-critic [145]

can be implemented to eliminate the need to specify λ. However, these methods are either

on-policy or require implementing several additional neural networks. As such, we propose

selecting λ based on operational considerations and empirical performance. The switching

cost Cs that appeared in (6.1) is also given in Table 6.1.

Table 6.1: Test Distribution Networks

Case Sbase (MVA) Solar buses Cs ($) # configuration

16-bus 100 {11} 4.0 190
33-bus 175 {4,6,12} 0.5 50,751
70-bus 500 {8,10,26,28,50,52} 2.0 22,621,020,015
119-bus 500 {33,45,46,55,80,86,101} 0.8 3,853,525,605,824,176

Nodal Power Data

The time series of load data are taken from the Irish Commission for Energy

Regulation Smart Metering Project [146]. The dataset contains one and a half years (76

weeks) of smart meter kWh measurements from approximately 1,000 customers. For each

of the test distribution networks, we aggregate the power consumption from 30 (15 for the

70-bus and 119-bus network) customers as the nodal real power injections. We assume a

constant power factor of 0.98 lagging. For each of the test networks, the solar generation

data are obtained from southern California sites [147]. All nodal power injections are scaled

by a common factor β (i.e., (pt, qt) 7→ (βpt, βqt) for all t) to create a realistic network
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Figure 6.2: The 119-bus test feeder and its initial configuration

loading level. β is chosen such that the resulting average total line losses are roughly 1.5%

of the total demand [19]. For all case studies, the first 52 weeks of data are used for training

and data of the following week are used for testing.

Network Configuration Data

The last piece of information in the historical operational data is the network

configuration data. Unfortunately, we are unable to obtain real world switch configuration

data. Thus, the historical configuration data is created by the simulation. In practice,
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the algorithm will be trained on real world data rather than simulated ones. Therefore, no

network parameter information is needed. We create different sets of historical configuration

data as follows. At each time step t, the configuration αt can be changed to αt+1 by a

single pair of branch-exchange in one of the three scenarios:

s.1 The network is reconfigured by the one-step model-based reconfiguration algorithm

assuming inaccurate knowledge of network parameters. To simulate a model-based

controller with inaccurate information, we synthesize a different set of line parameters,

which deviate from their true values by 10%. We used the mixed-integer conic pro-

gramming (MICP) formulation in [90] with a time horizon of 1 hour and the number

of switching actions of 2 per time step.

s.2 The network configuration is kept the same.

s.3 The configuration is randomly changed to another constraint-satisfying topology.

Scenario 1 represents the active distribution grid reconfiguration performed by a

model-based controller with inaccurate information. Scenario 2 corresponds to passive grid

management or periods with SCADA system failure, where the network configuration stays

the same. Scenario 3 represents periods with isolating faults, when network reconfiguration

must be performed to restore power. To create a synthetic network reconfiguration sequence,

at time t, we choose a scenario to obtain the new network configuration based on the

probability assigned to each scenario. We denote probabilities for the three scenarios as

Pmod, Pfix, and Prnd. By varying these three probabilities, we obtain historical dataset for

network configurations with different characteristics. In particular, Pmod = 1 corresponds

to the case where a model-based controller with inaccurate network parameter information

118



is always used to reconfigure the distribution network. The initial configurations α0 of all

datasets are the all-tie-switch-open configuration.

6.4.2 Algorithm Setup

The setup of the proposed BCSAC algorithm and two benchmark RL algorithms

are summarized in this subsection. The hyperparameters of the BCSAC algorithm and the

benchmark DQN and SAC algorithms are provided in Table 6.2. The hyperparameters of

the three RL algorithms are tuned individually to reach their best performance. The last

row of Table 6.2 shows the parameters shared by all algorithms. Note that we scale the

reward (in per unit) to match the weights of neural networks. If not specified otherwise,

these parameters will be used for all the numerical studies. Four parameters in the curly

brackets are for the three distribution networks, from left to right, 16, 33, 70, and 119-bus,

respectively. We also compare the performance of the proposed BCSAC algorithm with

that of the historical operational strategy, which is a mix of the model-based, passive, and

random control scenarios.

6.4.3 Approximating Behavior Policy by CVAE

This subsection provides the experimental justification of using the CVAE model

gω(a|s) to approximate the behavior policy πb(a|s). We first present the performance of

CVAE on one of the synthetic datasets. The sample synthetic dataset is obtained with

[Pmod, Pfix, Prnd] = [0.1, 0.72, 0.18] for the 16-bus feeder. We train the CVAE model to

approximate the behavior policy. Figure 6.3 shows the ground-truth πb(a|s = S18) and
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Table 6.2: Hyperparameters of RL Algorithms

DQN learning rate {10−4, 10−4, 10−4, 10−4}
number of hidden units 200, 200, 250, 250}
copy steps {30, 30, 30, 30}
minibatch size {32, 64, 64, 64}

SAC
τ {0.002, 0.001, 0.0005, 0.0005}
learning rate {5 · 10−4, 10−4, 10−4, 10−4}
number of hidden units 100, 200, 200, 250}
ρ {0.99, 0.99, 0.99, 0.99}
minibatch size {32, 64, 64, 64}

BCSAC
τ {0.1, 10, 25, 50}
learning rate {10−4, 10−4, 5 · 10−5, 5 · 10−5}
number of hidden units {100, 100, 200, 250}
ρ {0.995, 0.995, 0.995, 0.995}
minibatch size {32, 32, 64, 64}

CVAE
learning rate 10−4

number of hidden units 1400
latent space dimension {20, 40, 60, 70}

shared
discount factor 0.95
number of hidden layers 2
hidden unit nonlinearity ReLU
optimizer Adam
reward scale 500

the CVAE approximation gω(a|s = S18) for the 18-th time step of the dataset. In Figure

6.3, the (i, j)-th cell of each of the table shows the discrete probability of closing switch

i and opening switch j. The cell with the highest probability corresponds to fixing the

configuration (Scenario s.2); the cell with the second largest probability corresponds to the

branch-exchange obtained from MICP (Scenario s.1); the other cells correspond to randomly

changing reconfiguration (Scenario s.3). Cells correspond to infeasible opening/closing pairs

(result in non-radial configuration) are left as white.

Figure 6.3 shows that, the CVAE model approximates the behavior policy for all

reconfiguration actions a at state S18 with high accuracies, even if the training dataset only
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Figure 6.3: A sample result of CVAE on the 16-bus test feeder (TV-distance = 0.19)

contains one reconfiguration action at this state. In other words, the trained CVAE model

can generalize the training dataset to unseen state-action pairs.

We use the total variation (TV) distance between πb(a|s) and gω(a|s) to measure

their dissimilarity:

||πb(·|s)− gω(·|s)||TV =
1

2

∑
a∈A(s)

|πb(a|s)− gω(a|s)|

In Table 6.3, we report the average TV distance across all states contained in D.

Table 6.3 shows that the CVAE model generalizes very well across all states and different

data distributions. This makes the CVAE model well suited for training the BCSAC algo-

rithm. This is because during the training process, different actions â might be sampled

from the policy network (Algorithm 1, Line 4). The CVAE model always yields a good

approximation for πb(â|s).
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Table 6.3: Average TV-Distance Between πb(a|s) and gω(a|s)
Pmod 0.1 0.3 0.5 0.7 0.9 1.0

16-bus 0.13 0.15 0.13 0.11 0.06 0.03
33-bus 0.24 0.24 0.19 0.15 0.12 0.08
70-bus 0.28 0.26 0.21 0.16 0.08 0.07

119-bus 0.31 0.24 0.17 0.10 0.04 0.01

6.4.4 Optimality and Scalability

We first present the performance of various algorithms on one of the synthetic

datasets. More comprehensive evaluations will be provided shortly. The sample synthetic

network configuration dataset is obtained with [Pmod, Pfix, Prnd] = [0.5, 0.4, 0.1] for the 16-

bus feeder. During the training process of the RL algorithms, we periodically record the

weights of the value and policy neural networks, which are used to evaluate the algorithm

performance on the testing week. Experiments with five random historical dataset and

neural network initialization and training are conducted. Figure 6.4 shows the cumulative

operational cost plus voltage violation penalty over the testing week.
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Figure 6.4: 16-bus test feeder

As shown in Figure 6.4, by adopting the proposed BCSAC algorithm, the RL

agent is capable of finding a control policy, which yields a lower weekly operational cost
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than state-of-the-art RL algorithms (DQN and SAC) and historical operational strategy.

It should be noted that overfitting could occur in batch RL. This is because the agent is

learning from a fixed dataset rather than interacting with the environment. Nevertheless, by

using a small-sized neural network and stop training early, we found both of the benchmark

and the proposed BCSAC algorithm have little or no overfitting problem as shown in Figure

6.4.

The selection of temperature parameter τ is very important to the BCSAC algo-

rithm. Next, we provide a sensitivity analysis of τ . Consider the same experiment as in

Figure 6.4, but with varying τ parameters. The median weekly operational costs of the BC-

SAC algorithm over 5 independent runs for 5 different temperature parameters, are shown

in Figure 6.5.
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Figure 6.5: Sensitivity of BCSAC to the temperature parameter τ on the 16-bus test feeder

As shown in Figure 6.5, the performance of the proposed algorithm does depend

on the temperature parameter when τ is beyond a certain range. The performances of

the algorithm are nearly identical when τ varies from 0.001 to 0.1. This suggests that the

proposed algorithm is fairly robust with respect to the temperature parameter τ . However,
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a very large τ does degrade the algorithm performance. This is because the policy is not

learned based on the reward but mostly from the behavior policy. In practice, the value of

τ should be chosen such that the numerical range of r(s, a) and that of the |A(s)|/τ are

roughly within the same order of magnitude, where |A(s)| denotes the size of the action

space. Both |A(s)| and r(s, a) can be calculated based on the historical dataset.

Next, we conduct numerical studies on six other historical operational datasets,

which are generated by varying Pmod from 0.1 to 1.0 while fixing the ratio of Pfix to Prnd

at 4. Since our proposed and benchmark RL algorithms are agnostic to the data generation

process, the same set of hyperparameters must be used for all test networks and datasets.

The testing results on four distribution networks after 6,000 training steps are given in

Table 6.4-Table 6.7. As shown in the tables, the proposed BCSAC algorithm outmatches

state-of-the-art RL algorithms (DQN and SAC) for most of the experiments in terms of

weekly operational costs. It consistently outperforms the RL benchmarks for large test

feeders such as the 33-, 70-, and 119-bus feeders. For most of the historical datasets, the

BCSAC algorithm improves the behavior policy that generates the dataset.

Table 6.4: Weekly operational costs for 16-bus feeder ($)

Pmod 0.1 0.3 0.5 0.7 0.9 1.0

DQN 3268.8 3036.8 3105.4 4448.3 2900.8 3604.8
SAC 2832.6 2715.7 2768.3 3276.8 2595.7 3613.5
BCSAC 2792.7 2642.0 2720.6 2558.4 2466.5 2451.7
Historical 4527.0 3875.2 3004.8 2685.7 2510.4 2384.7

The scalability of our proposed BCSAC algorithm is demonstrated by its perfor-

mance shown in Table 6.6-Table 6.7 on the 70- and 119-bus distribution network, which has
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Table 6.5: Weekly operational costs for 33-bus feeder ($)

Pmod 0.1 0.3 0.5 0.7 0.9 1.0

DQN 3613.0 7286.3 3074.7 3502.2 3211.1 6185.6
SAC 4976.0 2796.3 2195.4 2250.1 3658.7 7359.2
BCSAC 2388.6 1921.3 1732.3 1732.3 1716.7 1690.1
Historical 3534.6 2580.0 1961.3 1757.8 1776.4 1686.4

Table 6.6: Weekly operational costs for 70-bus feeder ($)

Pmod 0.1 0.3 0.5 0.7 0.9 1.0

DQN - 6839.6 - - - -
SAC - 6801.2 3930.0 5522.8 - 4034.6
BCSAC 4143.0 3535.2 3622.1 3331.3 3449.5 3369.3
Historical 6262.0 4643.6 4437.7 3507.2 3453.6 3334.4

more than 3.8 quadrillion feasible configurations. Learning a control strategy with limited

historical operational data is extremely difficult on these test cases. This is because, the

historical operational data only contain an extremely small subset of all feasible state-action

pairs. The DQN and SAC algorithm even fail to learn a dynamic DNR strategy for the

highly resistive 70-bus feeder [143]. On the other hand, by learning a batch-constrained

policy, our proposed BCSAC algorithm not only outperforms DQN and SAC, but also out-

matches the existing behavior control policy, which is a mixed model-based, passive, and

random control strategy.

6.4.5 Behavior of BCSAC in Response to Unforeseen States

In this subsection, we test how the trained BCSAC agent would respond to an

unforeseen/extreme scenario during the testing time. These scenarios are likely to happen

in actual grid operation. For example, power injection patterns might change abruptly due

to extreme weather condition or special event. the RL control policy might be overridden

by a human operator to perform higher priority tasks such as fault isolation, resulting in an
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Table 6.7: Weekly operational costs for 119-bus feeder ($)

Pmod 0.1 0.3 0.5 0.7 0.9 1.0

DQN 4952.4 3432.3 7098.4 2881.4 3728.1 5336.5
SAC 3930.0 3102.2 2715.5 2388.0 2743.9 4448.6
BCSAC 3673.1 2432.3 2071.6 2102.9 2164.4 2046.2
Historical 4758.6 2811.8 2323.2 2112.7 2127.0 2046.2

“unfamiliar” network configuration to the RL agent. In any case, the RL agent is expected

to perform safely and effectively.

Consider the 16-bus feeder and the same training dataset [Pmod, Pfix, Prnd] =

[0.7, 0.24, 0.06]. We train the BCSAC algorithm by the same procedure as described in

Section 6.4.4. This trained BCSAC agent is then evaluated on two experiments.

• In the first experiment, we intentionally change the network configuration to

some new configurations α̃t for each hour t of the testing week. Each of these configurations

does not appear in the historical dataset.

• In the second experiment, we change the power injections to some extreme pat-

terns [p̃t, q̃t] for each hour of the testing week. These patterns are obtained by disconnecting

the solar generation and connecting large amount of loads at various buses. The resulting

injection patterns deviate significantly from the training dataset’s average [p̄, q̄]. That is,

||[p̃t, q̃t]− [p̄, q̄]||2 is 1.3 times greater than the largest deviation within the training dataset

for a typical t.

The dynamic DNR results for the first and second experiments are shown in upper

and lower half of Figure 6.6, respectively.
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1st experiment

2nd experiment

Figure 6.6: BCSAC agent’s response to unforeseen states

The green curve represents results from the BCSAC agent; the dotted red curve

is the behavior policy defined by [Pmod, Pfix, Prnd] = [0.7, 0.24, 0.06]. Figure 6.6 shows

that even if the network configuration is new or the power injection pattern is unfamiliar,

the trained BCSAC agent yields lower or nearly the same operational cost as that of the

behavior policy. These two experiments show that the BCSAC algorithm is robust against

unfamiliar or extreme scenarios.

6.4.6 Computation Speed

This subsection demonstrates the superior computation speed of RL-based control

over the model-based control methods. We adopt the MPC-based dynamic DNR algorithm

[90] as the model-based benchmark. The MICP is implemented in MATLAB with YALMIP

optimization modeling toolbox [148] and MOSEK 9.1 optimization solver. The reinforce-

ment learning algorithms are implemented in Python with TensorFlow 1.14 deep learning

framework. They are executed on a desktop with a 4-core Intel i5 3.3GHz CPU and an
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Nvidia GeForce GTX 1060 GPU. The training and testing time of all methods are provided

in Table 6.8.

Table 6.8: Total Computation Time of Testing Week

16-bus 33-bus 70-bus 119-bus

Training
(seconds)

DQN 15.3 22.4 46.2 71.5
SAC 84.2 107.4 204.3 410.9
BCSAC 86.3 112.7 312.4 907.4
CVAE 222.0 664.5 2040.0 6487.1

Testing
(seconds)

DQN 0.2 0.4 0.9 2.1
SAC 0.2 0.4 1.0 2.2
BCSAC 0.2 0.4 0.9 2.2
MICP MPC
H = 1 63.1 241.6 533.9 1341.4
H = 2 143.6 2439.8 8397.2 −
H = 5 876.3 − − −

The training of RL-based algorithms can be done in an off-line manner. Therefore,

it is more meaningful to compare the testing time of RL-based and model-based control

algorithms. As shown in Table 6.8, the computation time of RL-based algorithms are at least

two orders of magnitudes shorter than the model-based control algorithms. The advantage

of the RL-based algorithms becomes more pronounced when the size of the distribution

network increases. With an optimization horizon H of 5 hours, the optimization solver of

the model-based controller fails to converge within one hour.

6.5 Summary

This chapter presents a batch-constrained reinforcement learning algorithm to

solve the dynamic distribution network reconfiguration problem. Although state-of-the-

art off-policy reinforcement learning algorithms have shown great promise as controllers for
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power distribution systems, they can have lackluster performance when the training dataset

is uncorrelated to the true distribution under the current policy or when the state and action

domains are extremely large. To learn an effective control policy for dynamic distribution

network reconfiguration problems from a limited historical operational dataset, we develop

a batch-constrained soft actor-critic (BCSAC) algorithm, which is trained to minimize both

the system operational cost and the discrepancy between the policy under evaluation and

the historical operational strategy.

Comprehensive test results on four distribution networks show that the proposed

BCSAC algorithm not only outperforms state-of-the-art off-policy RL algorithms but also

outmatches or achieves similar level of performance as that of the behavior control policy

without any information about the network parameters. The proposed algorithm is also

very scalable and has much lower computation time than model-based controllers.
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Chapter 7

Multi-Agent Reinforcement

Learning for Volt-VAR Control

7.1 Introduction

Volt-VAR control (VVC) determines the operation schedule of voltage regulating

and VAR control devices to lower network losses, improve voltage profile, and reduce voltage

violations [149]. Traditional VVC adjust the tap positions of the on-load tap changers

(OLTC) based on a line drop compensator (LDC), which models the voltage drop of the

distribution line from the voltage regulator to the load center. However, the rapid growth

of distributed energy resources makes it increasingly difficult to manage the voltage profile

on active distribution networks.

In this chapter, we propose a consensus multi-agent RL (C-MARL) algorithm for

VVC in power distribution systems, which does not rely on accurate network model and
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handles state space with higher dimensionality. The proposed framework consists of a group

of networked agents managing different VVC devices. Each agent learns two parametric

models to approximate the global state value function and the local policy, respectively.

These models are trained to maximize the agents’ own expected cumulative local rewards,

while minimizing the dissimilarity between their neighbors’ and their own value functions

in a communication-efficient manner. The performance of C-MARL is evaluated on three

IEEE test feeders. The experimental results show that our proposed C-MARL algorithm is

capable of learning a distributed Volt-VAR control policy that matches the performance of

the single-agent RL benchmark. The proposed algorithm is resilient against the failure of

individual agents and communications links. Furthermore, the proposed algorithm is much

more communication-efficient than the ADMM-based consensus scheme.

The remainder of the chapter is organized as follows: Section 7.2 reviews the

existing literature on VVC. Section 7.3 presents the VVC problem formulation. Section 7.4

provides the technical methods. Section 7.5 discusses the setup and results of experimental

studies. Section 7.6 provides the summary.

7.2 Prior Work

To address the challenge of distribution system voltage control, a number of phys-

ical model-based and data-driven control methodologies have been proposed. The existing

literature on VVC problem can be categorized into four groups according to the model

assumption and the communication scheme: 1) model-based centralized, 2) model-based

distributed, 3) data-driven centralized, and 4) data-driven distributed methods.
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Model-based centralized methods assume that all distribution network measure-

ments are collected by a central controller, which also has perfect knowledge of the dis-

tribution network parameters. The technical methods to solve the VVC problem include

deterministic optimization, robust optimization, and meta-heuristic methods. The deter-

ministic methods include dynamic programming [150], mixed-integer linear programming

(MILP) [151], mixed-integer quadratically constrained programming (MIQCP) [149], and

bi-level mixed-integer programming [152]. To account for the uncertainties in loads/DGs,

robust VVC algorithms [153] [154] [155] have been developed. Meta-heuristic algorithms

such as genetic algorithm [156] and particle swarm optimization [157] have been adopted.

To reduce the communication burden and enhance algorithms’ resiliency against

the failure of the centralized controller, model-based distributed algorithms for VVC have

been studied. These methods include simulated annealing [158], distributed decision making

[159], and alternating direction method of multipliers (ADMM) considering the continuous

relaxation of the discrete variables [160].

Model-based approaches assume complete and accurate physical network model,

which are difficult to maintain for regional electric utilities. To overcome this problem,

data-driven methods are deployed to determine control actions based on the operational

data. A number of data-driven centralized methods have been proposed. In [161], a k-

nearest neighbor (kNN) regression model is used to estimate power loss and voltage change

in response to the status change of VVC devices. Then, a heuristic approach is taken to

determine the appropriate device status. In [162], a support vector regression (SVR) model

is trained to approximate the power flow equation. The trained model is then embedded
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in a model predictive control (MPC) framework to obtain a one-day horizon VVC solution.

Reinforcement learning (RL) and deep RL algorithms have also been developed for VVC. A

batch RL algorithm that augments the historical dataset and trains a linear approximated

action value function is proposed in [163]. The VVC problem is modeled as a constrained

Markov decision process (CMDP) [145]. A safe off-policy RL algorithm is developed to

avoid voltage violation while minimizing network losses and wear and tear of equipment.

Data-driven centralized methods are particularly advantageous when the distribu-

tion network model is unavailable. However, if the central controller fails, then the entire

VVC system breaks down. Thus, extending data-driven centralized methods to enable

decentralized communication and control will significantly improve the resiliency of the

algorithm against individual controller or communication link failure.

Very few data-driven decentralized VVC algorithms have been developed. Refer-

ence [164] proposes a multi-agent tabular Q-learning algorithm, in which the agents discover

the global reward through a diffusion consensus protocol. Then the local Q values are up-

dated by the standard Q-learning update. Reference [165] developed a multi-agent deep

Q-network (DQN) algorithm, which decouples the global action space into individual de-

vice’s control space. However, the existing methods are either incapable of handling large

state space or do not enable coordination between the individual agents.

7.3 Problem Formulation

In this section, we formulate the Volt-VAR control problem as a networked multi-

agent Markov decision process (MAMDP). We first introduce the concept of networked

133



MAMDP and the learning objective, then we discuss the problem formulation of the Volt-

VAR control within the networked MAMDP framework.

7.3.1 Basics of MAMDP

A networked MAMDP [166] is a tuple M = (S, {Ai}Ki=1, P, {ri}Ki=1,G, γ) which

consists of a global state space S, K local action spacesAi, a global state transition probabil-

ity P (s′|s, a1, a2, · · · , aK) ∀s, s′ ∈ S, ∀ai ∈ Ai, K local reward functions ri(s, a1, a2, · · · , aK) :

S×A1×A2×· · ·×AK 7→ R, a communication network G = (V, E), and a discount factor γ.

In a networked MAMDP, a set of K learning agents select their local actions Ait ∈ Ai based

on the current state St ∈ S at each discrete time step t. Then each of the agents receives

a numerical reward Rit+1 = ri(St, A
1
t , A

2
t , · · · , AKt ) and the environment’s global state tran-

sitions to St+1 based on the state transition probability P (St+1|St, A1
t , A

2
t , · · · , AKt ). Also

at time t, each agent i can communicate and share its local information with its neigh-

bors defined in the communication graph G. In this work, we assume G is connected. The

neighbors of agent i are denoted as V i. For notational simplicity, we denote the joint action

and action space as At = [A1
t , A

2
t , · · · , AKt ] and A =

∏K
i=1Ai, respectively. We also denote

Rt+1 = r(St, At) = 1
K

∑K
i=1R

i
t+1 = 1

K

∑K
i=1 r

i(St, At) as the global averaged reward.

The goal of the networked agents is to find each agent’s local control policy πi(ai|s),

such that the joint policy π(a1, a2, · · · , aK |s) of all agents maximizes the expected dis-

counted averaged return J(π) = E[G(τ)], where τ is a trajectory of global states and global

actions S0, A0, S1, A1, · · · , and G is the function that maps a trajectory to the discounted

averaged return G(τ) =
∑T

t=0 γ
t 1
K

∑K
i=1R

i
t+1. The local policy πi(ai|s) represents a con-

ditional probability distribution of local actions given the global state s. We assume the
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global policy is factored as π(a1, a2, · · · , aK |s) =
∏K
i=1 π

i(ai|s). Two important functions

for the multi-agent RL are the global state value function vπ(s) and the global action value

function qπ(s, a) with respect to a given joint policy π. They are defined formally as:

vπ(s) = E
τ∼π

[∑T
k=0 γ

kRt+k+1|St = s
]

(7.1)

qπ(s, a) = E
τ∼π

[∑T
k=0 γ

kRt+k+1|St = s,At = a
]

(7.2)

vπ(s) and qπ(s, a) capture the expected return committing to a given policy for the starting

state s and action a. The optimal policy is thus the one that maximizes vπ(s) for all s (or

maximizes qπ(s, a) for all s, a).

In the next subsection, the distributed VVC problem will be formulated as a

networked MAMDP.

7.3.2 Formulate VVC as an MAMDP

In this subsection, we first provide a brief introduction of the proposed multi-agent

RL (MARL) VVC framework. Then we present the problem formulation.

We consider a radial distribution network whose node set is denoted as N . The

substation is numbered as 0 and all other nodes are numbered as 1, · · · , n. The nodal

voltage magnitude, real and reactive power at time t of node i ∈ N is denoted as V i
t , pit,

and qit, respectively. Vectors pt = [p1
t , p

2
t , · · · , pnt ] and qt = [q1

t , q
2
t , · · · , qnt ] group all nodal

real and reactive power injections except for the substation node.

In this work, three types of VVC devices are considered. Namely, the voltage

regulators, on-load tap changers, and the capacitor banks.
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• A voltage regulator is placed at the substation (reference node). Thus, the

reference voltage of the network at time step t can take on several discrete values V 0
t =

1p.u. + xreg
t ·M reg according to the tap position xreg

t and the fixed step size M reg. The

numerical values will be provided in Section 7.5.

• A capacitor bank’s reactive power output qi,cap
t is determined by its on/off status

and nodal voltage as: qi,cap
t = xcap

t ·M cap · (V i)2. xcap
t ∈ {0, 1} denotes the on/off status.

M cap denotes the rated reactive power of the capacitor.

• An on-load tap changer (OLTC) is modeled as an ideal transformer with a

variable turns ratio. When an OLTC is present on a branch (i, j), its branch power flow is

described by (7.3) in the DistFlow equation:

(V j
t )2/a2

t = (V i
t )2 − 2rijpijt − 2xijqijt + [(rij)2 + (xij)2]lijt (7.3)

where pijt and qijt are the branch power flow and lijt is the square of branch current. The

turns ratio at time t is given by at = 1 + xtsf
t ·M tsf , where xtsf

t is the tap position and M tsf

denotes the step size.

An overview of the proposed MARL based VVC framework is shown in Figure

7.1. Each agent is associated with one VVC device and determines its own control actions.

Therefore, for the substation voltage regulator agent 1, the local action is the discrete tap

number A1
t = xreg

t+1. The subscript t + 1 in xreg
t+1 designates that it is the new tap position

after action A1
t is taken. The local action spaces for capacitor agents and OLTC agents are

defined in a similar manner. The design of the local reward functions should satisfy two
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Figure 7.1: The proposed MARL based VVC framework

requirements: 1) the averaged rewards 1
K

∑K
i=1 r

i(s, a) should reflect the networked agents’

VVC objective and 2) each local reward must be calculated based on the local metering

data received by the corresponding agent. Thus, we define the local reward function as

Rit+1 = ri(St, At) = −C l
∑
`∈Li

pl,`t − Cs|xit − xit+1| − λ̄Cit+1 (7.4)

where pl,`t is the real power loss on branch ` after the joint action At is taken; Li is the set of

branches metered by agent i; C l and Cs are the costs associated with power loss and devices’

switching actions, respectively. xit is the generic term of the discrete control. For example,

xit = xreg
t if agent i is associated with a voltage regulator. The term Cit+1 describes the

voltage constraint violation and λ̄ is the associated penalty factor. The constraint violation

is given by (7.5) where I is the indicator function; Ni is the set of nodes metered by agent i;

V k
t represents the voltage magnitude followed by the joint action At. The exact formulation
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of the sets Li and Ni, as well as various parameters C l, Cs, and λ will be described for each

test feeder in Section 7.5. The global state at time t is defined as St = [pt,qt, At−1, t].

Cit+1 = ci(St, At) =
∑
k∈Ni

[I(V k
t > V̄ ) + I(V k

t < V )] (7.5)

That is, the global state contains the network power injections, the existing VVC devices’

status at the previous time step, and a discrete time step t. Finally, we choose a global

discount factor γ that is less than one. This completes the formulation of the distributed

VVC problem as an MAMDP.

With this MAMDP formulation, we can interpret the value functions (7.1) and

(7.2) in terms of VVC as follows: At each time step t, the networked agent’s goal is to

minimize the long term discounted operational cost and the constraint violation. This long

term objective does not easily break into a set of unrelated single time step objectives,

because the cost of device switching links the goal of adjacent time steps.

In the next section, we present the technical details of the multi-agent RL algo-

rithm.

7.4 Technical Methods

In this section, we present the proposed consensus multi-agent deep RL-based

VVC algorithm. We derive the proposed algorithm in three stages. First, we review the

preliminary of centralized off-policy maximum entropy RL framework. Then we reformulate

this framework into a distributed multi-agent framework. Finally, we present the proposed

communication-efficient C-MARL algorithm to solve the VVC problem.
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7.4.1 Off-policy Maximum Entropy RL

In maximum entropy RL, the policy maximizes both the return and the entropy

of the policy [138]. In the context of data-driven VVC, the policy entropy maximization

is introduced for two reasons. First, without an accurate physical model, all data-driven

methods must involve some sort of exploration [161]. That means, it must try different

control actions before becoming informed about which of them is the best. To this end,

maximum entropy RL provides an efficient and principled way for balancing the exploration

and exploitation [125]. Second, an off-policy algorithm can be derived within the maximum

entropy RL framework. Off-policy RL algorithms are capable of learning from past experi-

ences so that it can be trained using a much smaller amount of samples collected from the

distribution grid. Next, we provide a mathematical characterization of the optimal policy

in maximum entropy RL. This is critical to the development of off-policy RL algorithms.

The maximum entropy RL regularizes the reward function by the entropy of the

policy r(s, a) +αH(π(·|s)). α is a temperature parameter that determines the contribution

of the entropy to the reward. The state value function in this case is defined as:

vπ(s) = E
τ∼π

[∑T
k=0 γ

k(Rt+k+1 + αH(π(·|St+k)))|St = s
]

(7.6)

where vπ(s) denotes the entropy regularized value function. It follows from (7.6) that

a policy, which maximizes vπ(s) is maximizing the combined return and policy entropy.

The latter maintains a certain level of stochasticity of the policy. Thus we can balance

the exploration and exploitation by following the current policy π throughout the learning

process.
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The Bellman equation for vπ(s) is derived as (7.7) The definition of entropy is

used to derive the second equality. The optimal entropy-regularized state value function

is defined as v∗(s) = maxπ vπ(s). Similarly, the optimal entropy-regularized policy π∗ is

defined as the one whose entropy-regularized value function is v∗(s).

vπ(s) = Ea∼πEs′∼P
[
r + γvπ(s′)

]
+ αH(π(·|s))

= Ea∼π
[
r + γEs′∼P

[
vπ(s′)

]
− α log π(a|s)

]
(7.7)

We term the two-tuple (v∗, π
∗) an optimality pair, which is shown to be the solution to the

off-policy consistency equation [139, Corollary 21]:

v(s) = r(s, a) + γEs′∼P
[
v(s′)

]
− α log π(a|s) ∀s, a (7.8)

7.8 characterizes the optimal policy and motivates our subsequent algorithm developments.

However, it is very challenging to solve 7.8 directly due to high-dimensional and continuous

state space. In addition, 7.8 is stated in a centralized format. In the next subsection,

we derive a distributed and off-policy algorithm to approximate the solution to 7.8 in a

sample-efficient manner. To make the learning tractable, we restrict the class of functions

we consider for the value function and the policy function.
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7.4.2 Distributed Optimization

In this subsection, we transform the problem of finding optimal local policy and

state value function as a distributed consensus optimization problem of the following form:

min
w

∑K
i=1 J

i(wi) s.t. w1 = w2 = · · · = wK (7.9)

where J i are the local objective functions. (7.9) appears ubiquitously in distributed adaptive

learning [167], distributed algorithms for linear algebraic systems [108], and distributed

parameter estimation [168].

We first approximate the solution of optimal policy and value function with the

following stochastic nonlinear program, which is commonly done in deep RL literature [127]:

min
v,π

E
s,a∼D

(
v(s)− {r + γEs′∼P

[
v(s′)

]
− α log π(a|s)}

)2
(7.10)

D is the data distribution, which will be approximated by an experience replay buffer

[127]. Next, we define wi in (7.10) as each agent’s local copy of the global value and policy

functions vi(s) and πi(a|s). At optimality, these local functions need to reach consensus.

Thus vi = vj and πi = πj , ∀i, j constitute the constraints in (7.9). Although the joint policy

πi(a|s) is maintained by all agents, only the i-th coordinate πi(ai|s) (the i-th local action)

is actuated by agent i. Note that vi and πi are infinite dimensional.

Now to decompose the objective function in (7.10), For notational simplicity, we

first declare two sets of functions for later derivations. Let f(s, a) = v(s)− γEs′∼P [v(s′)] +

α log π(a|s) and f i(s, a) = vi(s) − γEs′∼P
[
vi(s′)

]
+ α log πi(a|s). ζ(s, a) = [v(s), π(a|s)]T
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and ζi(s, a) = [vi(s), πi(a|s)]T . Then, we can rewrite the minimization problem (7.10) as

follows:

argmin
ζ

E
s,a,r∼D

(
f(s, a)− r

)2
(7.11)

= argmin
ζ

E
s,a,r∼D

f(s, a)2 − 2rf(s, a) + r2 (7.12)

= argmin
ζ∈Ω

E
s,a,ri∼D

1

K

K∑
i=1

f i(s, a)2−

1

K

K∑
i=1

2rif i(s, a) +
1

K

K∑
i=1

(ri)
2

(7.13)

= argmin
ζ∈Ω

E
s,a,ri∼D

1

K

K∑
i=1

(
f i(s, a)− ri

)2
(7.14)

where ζ = [(ζ1)T , (ζ2)T , · · · , (ζK)T ]T . Ω is the set containing all ζ such that ζ1 = ζ2 =

· · · = ζK . Using the degree matrix D and the adjacency matrix A of G, the constraints

can be rewritten as (Dii ⊗ I2)ζi = (Ai ⊗ I2)ζ, ∀i. I2 is the identity matrix of size 2, ⊗

designates Kronecker product, and Ai denotes the ith row of A. We will use the notations

D̄ = D ⊗ I2 and Ā = A⊗ I2, with D̄ii and Āi being understood as the ii-th block and i-th

block row, respectively. (7.14) decomposes the global learning objective and is compatible

with the MAMDP model. Specifically, each agent i receives the local reward ri and takes

local actions ai. The consensus is achieved through neighbor-to-neighbor communication.

To derive a tractable learning algorithm for optimization problem (7.14), we pa-

rameterize vi and πi as function approximators such as deep neural networks (NN): vψi ≈ vi

and πφi ≈ πi with the parameters of deep NNs denoted by ϕi = [ψi, φi]. Additionally,

we use a separate target network vψ̄i for evaluating vi(s′) [138]. We denote the ϕi, ψ̄i-
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parameterization of f i and ζi as f̄ϕi and ζϕi . Therefore, (7.14) can be rewritten as (7.15),

where ζϕ = [ζTϕ1
, ζTϕ2

, · · · , ζTϕK ]T . Note that, (7.15) has a finite number of decision variables

and infinitely many constraints.

min
ϕi

E
s,a,ri,s′∼D

1

K

K∑
i=1

(
f̄ϕi(s, a, s

′)− ri
)2

s.t. D̄iiζϕi(s, a) = Āiζϕ(s, a) ∀i ∈ V, s, a

(7.15)

This infinite constraint set can be reformulated as a finite one, ϕi = ϕj , ∀i, j. Several

methodologies such as ADMM [169] and diffusion adaptation strategies [167] can be used

to solve (7.15) with the finite constraint set. However, it is extremely costly to communicate

the full set of parameters of deep neural networks. To address this problem, in the next

subsection, we leave the constraints as they are and derive a stochastic approximation type

algorithm to solve (7.15), which significantly improves the communication efficiency.

7.4.3 Communication-Efficient Multi-Agent Policy Consensus

The goal of this subsection is to approximate the solution to (7.15) by randomiza-

tion. That is, we randomly enforce a subset of all constraints in each iteration. First, we

adopt the model for semi-infinite programming in [170] to convert the infinite constraint set

into a finite one. Specifically, we approximate the constraints represented in (7.15) as the

following stochastic programming representation:

∫
s,a∈S×A

h
(
D̄iiζϕi(s, a)− Āiζϕ(s, a)

)
dµSA = 0 (7.16)
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for all i ∈ V. h(x, y) = [h(x), h(y)] stacks two penalty functions h, which satisfies h(0) = 0

and h(x) > 0,∀x 6= 0. µSA is a probability measure defined on the global state-action space

S×A. Assuming the continuity of the function ζϕi and h, as well as full support assumption

of µSA, we can establish the following propositions:

Proposition 7.4.1 Let d be a metric on S × A. Assume ζϕi is continuous with respect

to d for every ϕi and h is continuous with respect to the Euclidean metric. Also assume

µSA(X) > 0 for every non-empty open subset X ⊆ S×A. Then the constraint set in (7.15)

is equivalent to (7.16).

Proposition 7.4.2 With the same assumptions in Proposition 7.4.1 except for the continu-

ity assumption about ζϕi. Then every feasible point of (7.16) satisfies most of the constraints

in (7.15), except for a subset of measure zero.

Proposition 7.4.1 and Proposition 7.4.2 are theoretically reassuring. In practice, µSA will be

approximated by D, which is the data distribution in (7.15). The proofs of the propositions

can be found in Appendix C.1

Consider the quadratic penalty for non-consensus h(x) = 1
2x

2. Under this approx-

imated stochastic programming representation, the Lagrangian of (7.15) is given by:

L(ϕ,λ) =
1

K

K∑
i=1

Li(ϕ, λi) (7.17)

Li(ϕ, λi) = E
s,a,ri,s′∼D

((
f̄ϕi(s, a, s

′)− ri
)2

+
λi
2
||D̄iiζϕi(s, a)− Āiζϕ(s, a)||2

)
(7.18)
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The primal variables ϕ and the multipliers λ can be solved by the primal-dual method.

However, we found that using a fixed λ parameter achieves good empirical performance.

The detailed value for the multipliers will be provided in Section 7.5. (7.18) has a tractable

sample gradient and can be readily tackled by established deep learning routines such as

stochastic gradient descent (SGD). Specifically, each agent performs the minimization of

sample-estimated Li(ϕ, λi). In addition, similar to the adapt-then-combine (ATC) algo-

rithm [171], we first perform the minimization of the first term in (7.18), then use the

immediately updated weights to evaluate and minimize the second term:

ϕ̃νi = ϕνi − η∇ϕi
(
f̄ϕνi (s, a, s′)− ri

)2
(7.19)

ϕν+1
i = ϕ̃νi − η

λi
2
∇ϕi ||D̄iiζϕ̃νi (s, a)− Āiζϕν (s, a)||2 (7.20)

ψ̄ν+1
i = ρψ̄νi + (1− ρ)ψν+1

i (7.21)

where ν is the iteration count and ρ is an exponential smoothing parameter. s, a, ri, s′ are

sampled data from the experience replay D, which is assumed to be initialized by the histor-

ical data. When conducting the update in (7.20), a communication of each agent i with its

neighbors is established. The information being transmitted includes s, a and ζϕj (s, a). The

full algorithm is summarized in Algorithm 2. The proposed C-MARL algorithm proceeds

as follows: First all agents initialize their deep NN parameters. Then the agents commu-

nicate and update their local policy and value functions according to the scheme described

in (7.19)-(7.21). We let each agent communicate and update C times (on average) between

adjacent control actuation steps t and t+ 1. At time t, all agents take their control actions
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Algorithm 2 C-MARL for VVC

Input: Historical dataset D, update frequency C, communication graph G
1: for i = 1, · · · ,K do
2: Initialize ϕ0

i = [ψ0
i , φ

0
i ], ψ̄

0
i

3: for ν = 0, · · · , do
4: Sample i from [1, 2, · · · ,K] uniformly
5: Sample mini-batch B = {(s, a, ri, s′)} from D
6: Update ϕνi by (7.19)
7: Collects ζϕj (s, a) from i’s neighbors.
8: Update ϕνi by (7.20)
9: Update ψ̄νi by (7.21)

10: if mod(ν,K · C) = 0 then
11: for i = 1, · · · ,K do
12: Take control actions Ait ∼ πφν+1

i
(·|St)

13: D = D ∪ {(St, Ait, Rit+1, St+1)}

(tap positions of the voltage regulating devices), and store the transition information into

the experience replay buffer D.

7.4.4 Algorithm Implementation

This subsection provides additional implementation details for the proposed C-

MARL VVC algorithm. We will discuss the NN architecture design and variable encoding

in these NNs.

• vψi(s) and vψ̄i(s) networks: the value networks are standard multilayer percep-

trons whose inputs are the global state s and the outputs are the value of that state.

• πφi(a|s) networks: we adopt the device-decoupled network structure [145], which

divides the outputs of the policy network into K groups. The output neurons in each group

corresponds to the local action space |Ai| for each device. In addition, we adopt the ordinal

encoding layer [172] for each group to represent the order information of the devices’ tap

positions. The hidden layers are shared by all groups.
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• Encoding the global time step t: in this study, we only encode the hour-of-week

part of the global time step t, which ranges from 0 to 167. t is encoded in two coordinates

[cos(2πt/168), sin(2πt/168)] to reflect its periodic nature.

7.5 Numerical Study

The numerical studies of the proposed C-MARL algorithm are conducted on three

test feeders. The experimental setup for the three test feeders are provided in Section 7.5.1.

The sample efficiency, communication efficiency, and resiliency of the proposed algorithm

are validated in Section 7.5.3-Section 7.5.4.

7.5.1 Numerical Setup

Distribution Networks and Nodal Power Data

The IEEE 4-bus, 34-bus, and 123-bus distribution test feeders [38] are used in

the numerical studies. The VVC devices are setup on these test feeders as follows: For all

test feeders, a voltage regulator (VR1) is located at the substation node and controls the

reference voltage. Voltage regulators have 21 tap positions with step size M reg = 0.005,

which evenly divides the turns ratios between 0.95 and 1.05. We assume the same tap

position configuration for the OLTCs. For the 4-bus feeder, an OLTC is placed between

node 2 and 3 (TC1) and a capacitor with rating M cap = 200 kVar is placed at node 4 (CP1).

For the 34-bus test feeder, two OLTCs are placed between node 814 and 850 (TC1), and

node 852 and 832 (TC2). Two capacitors are placed at node 844 (CP1: 100 kVar) and node

847 (CP2: 150 kVar). For the 123-bus, three OLTCs are placed between node 10 and 15
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(TC1), node 67 and 160 (TC2), and node 25 and 26 (TC3). Four capacitors are placed at

node 83 (CP1: 200 kVar), node 88 (CP2: 50 kVar), node 90 (CP3: 50 kVar), and node 92

(CP4: 50 kVar). The initial turns ratios of voltage regulators and OLTCs are 1. Initially,

the capacitors are switched off.

The time series of hourly load data are obtained from the London smart meter

dataset [173]. The dataset contains one year of half-hourly smart meter kWh measurements

from approximately 5,000 customers. The measurements are aggregated and scaled to match

the test feeders’ loading level. The final load data have the same spatial load distribution

and power factors as that of the IEEE standard test cases.

Local Reward Setups and Communication Networks

The parameters that appear in the local reward (7.4)) and local operation con-

straint violation (7.5) are as follows: For all test cases, the cost of electricity, cost per switch-

ing action, and the constraint violation penalty are set as C l = $0.04/kWh, Cs = $0.1, and

λ̄ = 2C l, respectively. The voltage bounds are V̄ = 1.05 and V = 0.95 p.u. The capacitors

meter the voltage at its own node and the line real power loss within one-degree neighbors.

The voltage regulators meter the voltage at the first downstream node from the substa-

tion. The OLTCs meter the voltage at its first downstream node and the power loss on

its branch. A fixed (time-invariant) communication graph is assumed for each of the test

feeders. The neighbor-to-neighbor relationships are summarized in Table 7.1. Each line

represents a bi-directional communication link.
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Table 7.1: Communication Networks

4-bus 34-bus 123-bus
VR1 CP1TC1 VR1

CP1

TC1

CP2

TC2 VR1

CP1

TC1

CP2

TC2

CP3 CP4

TC3

7.5.2 Algorithm Setup

In the numerical studies, we compare the performance of our proposed algorithm

with two benchmarks: the single-agent SAC [138] and the multi-agent off-policy RL using

the linearized ADMM consensus strategy [174, Algorithm 1]. The single-agent SAC serves

as a stability baseline and the ADMM is used for comparison purpose.

• For the single-agent SAC, the reward is defined as the average of the local

rewards. The agent’s action is defined as the union of the local actions.

• For the linearized ADMM, the optimization variables for each agent are the deep

NN parameters ϕi. We maintain a separate deep NN ζϕ
i
, whose structure is the same as

ζϕi and the parameters ϕ
i

are the local dual variables. The same target network construct

for evaluating v(s′) is adopted.

The hyperparameters of the algorithms are provided in Table 7.2. The hyperpa-

rameters of the algorithms are tuned individually to reach their best performance. The

last row of Table 7.2 shows the parameters shared by all algorithms. If not specified other-

wise, these parameters will be used for all the numerical studies. Three parameters in the

curly brackets are for the three distribution networks, from left to right, 4-bus, 34-bus, and

123-bus, respectively.
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Table 7.2: Hyperparameters of Benchmark and Proposed Algorithms

SAC
temperature parameter α {0.5, 0.2, 0.1}
learning rate 0.001
number of hidden units {64, 80, 128}
smoothing parameter ρ 0.99
minibatch size 16

ADMM
temperature parameter α {0.5, 0.2, 0.1}
c in [174] 1
ρ in [174] 500
number of hidden units {32, 64, 64}
smoothing parameter ρ 0.99
minibatch size 16

C-MARL
temperature parameter α {0.5, 0.2, 0.1}
learning rate 0.001
number of hidden units {32, 64, 128}
smoothing parameter ρ 0.99
minibatch size 16

shared
discount factor 0.95
update frequency C 1
consensus parameter λi 1
number of hidden layers 2
hidden unit nonlinearity tanh
optimizer Adam
reward scale 5

7.5.3 Stability, Sample Efficiency, and Communication Efficiency

In this subsection, we report the stability, sample efficiency, and communication

efficiency of the proposed and benchmark VVC algorithms. The average of the hourly

rewards in (7.4) and the average of the constraint violations in (7.5) versus the number of

training samples and the number of transmitted data points are shown in Figure 7.2-Figure

7.4. The horizontal axis beneath the plots shows the number of training samples of the

form (St, At, Rt+1, St+1). For the proposed C-MARL algorithm, the data being transmitted

include the global time steps {t} and the corresponding values vψi({St}), πφi({At}|{St})

of the mini-batch; for the ADMM consensus strategy, the data being transmitted are the
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neural network weights ϕi = [ψi, φi]. For all figures, the solid curve represents the median

of five independent runs; the shaded areas are the upper and lower error bounds.

As shown in Figure 7.2-Figure 7.4, all three algorithms’ performances stabilize

after a certain amount of training samples are collected and used for training. Our proposed

algorithm achieves a similar level of performance as the single-agent benchmark in all test

cases in terms of hourly reward and constraint violation. This demonstrates the effectiveness

of the proposed randomized consensus protocol. The proposed algorithm yields significant

improvement on communication efficiency compared with the ADMM consensus protocol.

In addition, the communication cost of our proposed algorithm stays constant across the

test feeders. This is because only the sample data are transmitted. The communication

burden in the ADMM consensus strategy grows quickly with the size of the physical network

and the number of agents.

7.5.4 Resiliency Against Agent and Communication Link Failure

One key advantage of distributed algorithms over the centralized ones is that

when an individual agent or communication link fails, the rest of the system can continue

to function. In this subsection, a few experiments are carried out to evaluate the proposed

algorithm’s resiliency against failures of individual components. Two types of component

failures are considered:

E.1 An agent experiences an internal error so that the computation and control cannot

be properly executed. However, it is still able to communicate with its neighbors. In
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Figure 7.2: Hourly reward and voltage violation of 4-bus feeder

this scenario, the agent freezes the tap position of its device and stops training, while

other agents continue their controls and training.

E.2 A communication link is temporarily down. If the overall communication graph is still

connected, then the agents function normally except for the altered communication

graph connectivity. If the overall communication graph is disconnected, then the

distribution network becomes partially observable. In this case, the agents will create

a replacement state Ŝt = [p̂t, q̂t, Ât−1, t] and take action based on Ŝt. The nodal power

p̂t, q̂t are obtained from the historical average; the joint actions Ât−1 are sampled from

the agent’s own policy network. Please note that each agent maintains a local copy of

the joint policy network. The agent’s experience involving replacement states won’t

be stored in the replay memory D.

152



0.0 4.8 9.6 14.4 19.2 24.0

Number of transmitted data points for C-MARL ×104

−3

−2

−1

0

H
ou

rly
re

w
ar

d
SAC
ADMM
C-MARL

0.0 11.94 23.88 35.83 47.77 59.71
Number of transmitted data points for ADMM ×106

0.0 4.8 9.6 14.4 19.2 24.0

Number of transmitted data points for C-MARL ×104

0.00

0.25

0.50

0.75

1.00

H
ou

rly
co

ns
tra

in
tv

io
la

tio
n

(p
.u

.)

0.0 11.94 23.88 35.83 47.77 59.71
Number of transmitted data points for ADMM ×106

0 1000 2000 3000 4000 5000

Number of samples

Figure 7.3: Hourly reward and voltage violation of 34-bus feeder

We create two sets of experiments for the test feeders to demonstrate the conse-

quences of the two types of failures E.1 and E.2. For all experiments, the occurrences of

component failures are assumed to follow a Poisson process with rate λ = 1
168 . That is,

the inter-event times are independent exponential random variables with scale parameter

β = 1
λ = 168 (hr). The duration of each failure is assumed to follow the geometric distribu-

tion with success probability 0.2. For the first experiment, all agents are assumed to have

an equal chance of failure. The communication link failures in the second experiment are

treated similarly.

Simulation results for the two experiments are shown in Figure 7.5. Each exper-

iment occupies one column. The blue curves represent the failure scenarios. The orange

curves represent the corresponding counterfactual experiment, which has the identical simu-
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Figure 7.4: Hourly reward and voltage violation of 123-bus feeder

lation setup but without agent or communication failure. Figure 7.5 shows that the proposed

algorithm is resilient facing random agent or communication link failures. The algorithm

performance degradation is negligible if the time to clear component failure is not too long.

The impact of agent or communication failure on long-term algorithm performance is much

smaller than that of short-term performance.

7.6 Summary

This chapter proposes a multi-agent reinforcement learning algorithm to solve

the Volt-VAR control problem in power distribution systems. We extend the centralized

off-policy maximum entropy RL framework to a networked multi-agent MDP model. A
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Figure 7.5: Hourly reward under agent/communication link failure

randomization-based consensus algorithm is developed to solve the networked multi-agent

MDP. Our proposed algorithm is decentralized and fully data-driven, which enables the

control of voltage regulating devices without a central controller or knowledge of the dis-

tribution network topology and parameter information. Numerical study results of a com-

prehensive set of IEEE test feeders show that the proposed algorithm achieves a similar

level of performance as the centralized RL benchmark. Our proposed algorithm is much

more communication efficient than existing consensus strategy such as ADMM. Moreover,

our proposed algorithm is resilient against communication link and agent failure as demon-

strated by the simulation results.
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Chapter 8

Conclusions

8.1 Summary of Thesis

In this dissertation, four use cases and applications of smart grid monitoring and

control are developed by combining the merits of model-based and data-driven methods.

First, the unbalanced distribution system state estimation problem with low measurement

redundancy is addressed. Second, a physically-inspired data-driven method for distribution

system anomaly detection is developed in an unsupervised manner. Third, model-based

distributed and data-driven centralized reinforcement learning algorithms are developed

to solve the network reconfiguration problem. Fourth, multi-agent reinforcement learning

based Volt-VAR control algorithm is developed. The achievements of this dissertation work

are summarized as follows:

• In Chapter 2, we showed how constrained maximum likelihood can restore the ob-

servability for low measurement redundant systems state estimation problem. We
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also introduced a novel sparse subspace Gauss-Newton algorithm to significantly im-

prove the numerical robustness of the state estimation algorithm. We also provided

the method to compute the uncertainty estimate in the subspace Gauss-Newton al-

gorithm.

• In Chapter 3, we established a link between the linear power flow model and a modified

linear regression model to propose a physically interpretable data-driven anomaly

detection framework. Additional insights for the relationship between smart meter

voltage and real power consumption measurements are obtained by analyzing the

two-phase distribution secondary circuits. Also, the behavior of the modified linear

regression model under normal and abnormal data are mathematically characterized.

• In Chapter 4, we adopted the ADMM-Release-and-Fix algorithm to solve the dis-

tributed mixed-integer network reconfiguration problem. We innovated the ADMM-

Fix step by introducing an approximated Newton’s iteration, which significantly im-

proved the convergence speed.

• In Chapter 5-Chapter 6, we developed a comprehensive framework for historical data-

driven network reconfiguration. The proposed methods learn from historical dataset

only, without creating a simulation program or interacting with the real-world system.

To improve the sample efficiency, a heuristic data-augmentation technique and a rig-

orous batch-constrained soft policy iteration theory were developed. Both algorithms

can learn a improved control policy superior to the historical one.

• In Chapter 7, we described a novel consensus multi-agent reinforcement learning al-
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gorithm for distribution system Volt-VAR control. We utilized the maximum entropy

reinforcement learning framework to balance the exploration-exploitation tradeoff,

and to decompose the centralized learning problem into a decentralized format. To

improve the communication efficiency, we proposed a stochastic approximation (ran-

domization) based scheme to reduce the number of communicated data points. We

proved the equivalence of the stochastic approximation representation to the original

semi-infinite programming representation.

8.2 Future Research Directions

There are a number of additional research questions that need to be addressed. In

the future, we plan to explore the following topics:

• The state estimation algorithm in Chapter 2 is developed for smart meter and SCADA

data only. However, AMI data typically experience communication bottleneck and

measures low granularity data (e.g., 15-minute or hourly). Therefore the algorithm

works for a relatively slow time scale and cannot achieve real time monitoring. To

improve the state estimation as a situation awareness tool, we plan to combine the

AMI measurements with more granular and near real time SCADA data and micro-

PMU data in distribution systems. As a result, we need to address the problem of

coordinating data with heterogeneous sampling rate, as well as the observability issue

with the fast sampling devices.

• The modified linear model developed for theft detection in Chapter 3 requires certain

training data to fit the parameters. However, as the actual anomaly data points are
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unknown, the model parameter estimation may not be accurate. In the future, we will

develop mixture regression models to avoid a separate dataset for parameter fitting.

Instead, by using mixture models, normal and abnormal data can be distinguished

and clustered into individual components. Hence, detecting anomaly can be done

without assuming a subset of “clean” data is available.

• The historical data-driven deep Q learning and batch-constrained soft actor critic

algorithms developed in Chapter 5-Chapter 6 learn the control policy from the opera-

tional data passively. An alternative approach to learn a control policy is to combine

the off-policy model-free reinforcement learning with model-based planning. We will

consider the problem of learning a simulated model of the environment using real

world data and planning a policy and a value function through the simulated model.

Another research direction is to characterize the relationship between the historical

data distribution and the learning agent performance. This is important for both real

world application and theoretical understanding of the sample efficiency issue in deep

reinforcement learning.

• The consensus multi-agent reinforcement learning algorithm developed in Chapter 7

is found to work well empirically. However, it is still not backed by sufficient theory.

In the future, we will develop more rigorous arguments for the consensus multi-agent

reinforcement learning algorithm considering the following problem features: con-

sensus multi-agent learning, parameterizations of value function and policy function,

stochastic approximation, and bootstrap target neural networks.
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Appendix A

Appendices for Chapter 3

A.1 Linearization of Distribution Secondary Power Flow Equa-

tions

We wish to approximate the nonlinear power flow equation as a linear one:

F(v,θ,p,q) = 0 → FX̄[vT,θT,pT,qT]T = 0

where v = [v1T,v2T]T (same token for θ,p,q); FX̄ is the Jacobian matrix of F evaluated

at some operating point X̄ =

[
v̄ θ̄ p̄ q̄

]T
. This point must itself be a solution to the

power flow equation F(X̄) = 0. When X̄ is fixed, this Jacobean is given by [71]

FX̄ =

[
(〈diag(Yu)∗〉+ 〈diag(u)〉N2n 〈Y〉)R(u) −I

]
(A.1)
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where Y is the bus admittance matrix, u is the vector of complex bus voltages, N2n =I2n 0

0 −I2n

, and

R(u) =

diag(cos(θ)) −diag(v sin(θ))

diag(sin(θ)) diag(v cos(θ))



〈A〉 =

Re{A} −Im{A}
Im{A} Re{A}



Recall that our modified flat voltage solution is given by ū = [1n,−1n]T, p̄ + jq̄ = 0.

Assuming that no shunt resistances are present, this is a solution to the power flow manifold

with zero branch currents. Thus diag(Yu) = 0. Furthermore, diag(u) =

In 0

0 −In

 , Nn,

so 〈diag(u)〉 = R(u) =

Nn 0

0 Nn

. Thus the left hand block matrix of (A.1) reduces to

Nn 0

0 Nn


 Gr −Br

−Br −Gr


Nn 0

0 Nn



=

 NnG
rNn −NnB

rNn

−NnB
rNn −NnG

rNn


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where Gr and Br are the real an imaginary components of Yr. In this final expression, each

product NnANn negates the off diagonal blocks of A, yielding the desired linearization



p1

p2

q1

q2


=



G11 −G12 −B11 B12

−G21 G22 B21 −B22

−B11 B12 −G11 G12

B21 −B22 G21 −G22





v1

v2

θ1

θ2


(A.2)

A.2 Conversion from Loads to Net Injections

(3.3) is derived as the follows. First define the reference direction of voltages and

currents as shown in Figure A.1. u variables refer to voltages, i variables refer to currents,

and s variables refer to VA power consumptions. We then have:

s
1n

s
2n

s
12

i
1

i
n

i
2

i
1n

i
2n

i
12+

+

−

−

+

−

u
1n

u
2n

u
12

Figure A.1: A triplex line load circuit with reference directions

s1 = u1ni1∗ = u1n(i1n∗ + i12∗) = s1n + u1n s12

u1n + u2n

s2 = u2ni2∗ = u2n(−i2n∗ − i12∗) = s2n − u2n s12

u1n + u2n

(A.3)
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A.3 The Elimination of Dependencies on Voltage Angles and

Reactive Powers

We first show that the pseudoinverse of Ls
22 can eliminates the voltage angle de-

pendence in our model. We first rearrange the model equations to

ps = Ls
11v

s + Ls
12θ

s (A.4)

Ls
22θ

s = qs − Ls
21v

s (A.5)

Since (A.5) is enforced by our model, its right hand side is in Range(Ls
22). Let θ∗ denote

its least norm solution. Then any other solution can be written as θs = θ∗ + θn where θn

is in Null(Ls
22).

Now,

Ls
22 =

−G11 G12

G21 −G22

 (A.6)

and each of the blocks Gij is a Laplacian matrix having nullspace 1. In practice the mutual

conductances are much smaller than the self conductances [185]. Hence the entries in G12

and G21 are much smaller than that in G11 and G22. Then the overall matrix Ls
22 has

nullspace

Null(Ls
22) = Span


1n

0n

 ,
0n

1n




179



Ls
12 =

−B11 + B21 B12 −B22

−B11 −B21 B12 + B22

 (A.7)

On the other hand, in (A.7), each block Bij is again a Laplacian matrix. Thus the nullspace

of this matrix contains the above spanning vectors, so Null(Ls
22) ⊆ Null(Ls

12). It follows

that Ls
12θ

s = Ls
12 (θ∗ + θn) = Ls

12θ
∗. We can then write the above system as

ps = Ls
11v

s + Ls
12θ
∗ (A.8)

Ls
22θ
∗ = qs − Ls

21v
s (A.9)

where θ∗ = Ls†
22 (qs − Ls

21v
s) because it is the least norm solution. Substituting this into

(A.8) yields the desired result

ps =
(
Ls

11 − Ls
12L

s†
22Ls

21

)
vs + Ls

12L
s†
22qs (A.10)

We conclude this appendix by showing that (I− Ls
12L

s†
22DM−1

u ) is nonsingular. We do this

by showing that 1 is not an eigenvalue of Ls
12L

s†
22DM−1

u .

First, it is easy to show that Lr
22 = Ls

22, and Ls
12 = MuL

r
12, so

Ls
12L

s†
22DM−1

u = MuL
r
12L

r†
22DM−1

u (A.11)

Thus, if 1 is an eigenvalue of Ls
12L

s†
22DM−1

u , then 1 is an eigenvalue of Lr
12L

r†
22D. Then there
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exists a vector p such that p = Lr
12L

r†
22Dp. Then a vector θx ∈ Range(Lr†

22) exists:

Lr
22θx = QDp (A.12)

Lr
12θx = p (A.13)

where Q is the orthogonal projector onto the range of Lr
22. Then, since θx ⊥ Null(Lr

22) we

have

(Lr
22 − (I−N)DLr

12)θx = 0 (A.14)

Nθx = 0 (A.15)

Where N is the orthogonal projector onto the nullspace of Lr
22 and is given by

N =
1

n

11T 0

0 11T

 (A.16)

Thus, for a solution to exist, the following augmented matrix cannot have full column rank

(= 2nc): Lr
22 − (I−N)DLr

12

N

 (A.17)

But clearly (I −N)DLr
12 has the same range and nullspace as Lr

12. The sum of the first

nc rows is therefore zero. The same holds for the last nc rows. Thus we can perform row

operations to show that this has the same rank as the matrix with the nthc and 2nthc rows

removed. The upper matrix also has the property that the sum of the first nc columns is
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zero and the sum of the last nc columns is zero. Thus column operations show that our

matrix has the same rank as


[Lr

22 − (I−N)DLr
12]red 0 0

11T 0 1 0

0 11T 0 1

 (A.18)

where the red subscript indicates that the nthc row, nthc column, 2nthc row, and 2nthc column

have been removed.

Now, the lower right hand block of this matrix indicates two pivots, so a so-

lution can only exist if [Lr
22 − (I−N)DLr

12]red does not have full rank (= 2(nc − 1)).

Since this matrix only removes rows and columns from its constituents, we can write it

as [Lr
22]red − [(I−N)DLr

12]red where the constituent matrices now have full rank.

This matrix subtraction is unlikely to have less than full rank for two reasons. First,

it is an extremely precise requirement on the relationship between the network parameters

and the power factors. It is precise in the sense that the set of all invertible matrices sum

to a singular matrix has Lebesgue measure zero. Second, the matrix [Lr
22]red contains con-

ductance values and the matrix [(I−N)DLr
12]red contains transformed susceptance values.

Since susceptance values are typically much larger than conductance values, it follows that

the rows of the matrix subtraction will be primarily dominated by [(I−N)DLr
12]red which

has full rank. Thus a real network is unlikely to have this difference be singular or even

close to singular. Therefore in realworld cases, (I− Ls
12L

s†
22DM−1

u ) will be invertible.
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A.4 Proof of Lemma 3.4.1, Lemma 3.4.2, and Lemma 3.4.3

Proof of Lemma 3.4.1. Suppose without loss of generality that customer i is

the electricity thief. Suppose that our training window lasts T time instances. Then at any

time t:

∑
j

(
ỹ(t)ej − ỹ(t)j

)
=
∑
j

(
(y(t)ej − y(t)j)− (X (t)e −X (t))βyj

)
= (y(t)ei − y(t)i)−

∑
j

βyj
∑
k

(y(t)ek − y(t)k)

= (y(t)ei − y(t)i)(1−
∑
j

βyj ) (A.19)

because (y(t)ej − y(t)j) is nonzero at index i only and X e and X differ only in their last

component.

Now, due to the use of ordinary least squares, βj is the pseudoinverse of the matrix[
Xv yΣ

]
applied to yDj . Here, Xv is a T by nc+1 matrix of in sample voltage measurements,

yΣ is a T dimensional vector of in sample power sums, and yDj is a T dimensional vector

of in sample power measurements. We can write the pseudoinverse in block form [196] to

obtain βXj
βyj

 =

(XT
v QyXv)−1XT

v Qy

(yT
ΣQXyΣ)−1yT

ΣQX

yDj (A.20)
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where Qy and QX are the residual projection matrices

Qy = I− yΣ(yTΣyΣ)−1yTΣ

QX = I−Xv(X Tv Xv)−1X Tv

Now,
∑

j yDj = yΣ, so summing (A.20) over j yields

∑
j

βXj
βyj

 =

(XT
v QyXv)−1XT

v QyyΣ

(yT
ΣQXyΣ)−1yT

ΣQXyΣ

 =

0

1

 (A.21)

where the 0 comes from the residual of the projection of yΣ onto itself. (A.19) and (A.21)

show that
∑

j

(
ỹ(t)ej − ỹ(t)j

)
= 0. Vectorizing over time yields the left hand equality of the

lemma. Finally, since

ŷDj =

[
Xv yΣ

]βXj
βyj

 (A.22)

we have ∑
j

ŷDj = Xv
∑
j

βXj + yΣ

∑
j

βyj = yΣ =
∑
j

yDj (A.23)

Subtracting the leftmost term from the rightmost term yields the right hand equality of the

lemma for in sample data. A similar argument shows that the above equation also holds

for out of sample data.

Proof of Lemma 3.4.2. Repeating the derivation of (A.19), but omitting index
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i from the sum yields

∑
j 6=i

(
ỹ(t)ej − ỹ(t)j

)
= (y(t)ei − y(t)i)(1− βyi ) (A.24)

The remaining terms present in the right hand side of (A.19) but absent in (A.24) are

−(y(t)ei−y(t)i)
∑

j 6=i β
y
j . Therefore it must be the case that ỹ(t)ei − ỹ(t)i = −(y(t)ei − y(t)i)

∑
j 6=i β

y
j .

Vectorizing over time yields the result

ỹ
(e)
i − ỹi = −

∑
j 6=i

βjy
s
i (A.25)

Proof of Lemma 3.4.3. Consider the true (unestimated) model

pj(t) = x(t)Trj + cjyΣ(t) (A.26)

Consider further the hypothetical scenario where only the transformer voltage deviates from

its flat value. In this scenario, we have for customer j

pj(t) = cjyΣ(t) (A.27)

so cj = pj(t)/
∑

i=1 pi(t) is the portion of the total power injection contributed by customer

j in this scenario. But if all voltages are flat except the transformer voltage, then the power

injections must all have the same sign, so cj ≥ 0.
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Now βyj is an estimator of cj . We will repeat its equation here:

βyj = (yT
ΣQXyΣ)−1yT

ΣQXyDj (A.28)

This estimator is biased. This is because the term yΣ is confounded by the sum of all noise

terms for each individual dependent variable. Thus this estimator suffers from the Classical

Errors in Variable Problem [197]. But since this lemma only relies on the sign of βyj , this

does not pose much of a problem. We still have

plim βyj = λcj , 0 < λ < 1 (A.29)

Then there are two cases. If cj > 0, then P(βyj < 0) ≤ P(|βyj − λcj | ≥ λcj)→ 0 as the train-

ing window length goes to infinity. Thus for any δ > 0, there exists a window length

T j1 such that P(βyj < 0) < δ
2 . If, however, cj = 0, then there exists a window length

T j2 such that P(|βyj | ≥ δ) < δ
2 . Let T j = max(T j1 , T

j
2 ). Then for window length T j ,

P(βj < −δ) ≤ 2( δ2) = δ. Letting T = max
j
{T j} completes the proof.
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Appendix B

Appendices for Chapter 6

B.1 Proof of Lemma 6.3.1, Lemma 6.3.2, and Theorem 6.3.3

Proof of Lemma 6.3.1. Defining the augmented reward rπ(s, a) = r(s, a) −

τEs′∼pDKL(π(·|s′)||πb(·|s′)), the operator T π can be expressed as:

T πq(s, a) = rπ(s, a) + γEs′∼PEa′∼π[q(s′, a′)]

Or in vector notation T πq = rπ + γP πq, where the entry of the vector P πq is given by

(P πq)(s, a) =

∫
S×A

q(s′, a′)dP π(s′, a′|s, a)
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P π(s′, a′|s, a) = p(s′|s, a)π(a′|s′). As DKL(π(·|s)||πb(·|s)) is assumed to be bounded for all

s, rπ(s, a) is bounded for all s, a. Therefore, for any q(s, a) ∈ R, q′(s, a) ∈ R, ∀(s, a) ∈ S×A:

||T πq − T πq′||∞ = γ||P π(q − q′)||∞ ≤ γ||q − q′||∞

The inequality is due to ||P π||∞ = 1. Therefore, for any γ < 1, T π is a contraction mapping

with respect to the supremum norm. By the Banach fixed point theorem, the operator T π

has a unique fixed point qd
π and the sequence defined by qk+1 = T πqk converges to this fixed

point as k →∞.

Proof of Lemma 6.3.2. Since π′(·|s) is a maximizer of the objective func-

tion Jπ(π̃(·|s)) = Ea∼π̃[qd
π(s, a)] − τDKL(π̃(·|s)||πb(·|s)), therefore we have Jπ(π′(·|s)) ≥

Jπ(π(·|s)). Thus

Ea∼π′ [qd
π(s,a)]− τDKL(π′(·|s)||πb(·|s)) ≥

Ea∼π[qd
π(s, a)]− τDKL(π(·|s)||πb(·|s)) , vd

π(s) (B.1)

Let (B.1) holds for every s ∈ S, we can obtain the following chain of inequalities by repeat-
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edly invoking (B.1) and (6.12):

qd
π(s, a) = r + γEs′∼P [vd

π(s′)]

≤ r + γEs′∼P [Ea′∼π′ [qd
π(s′, a′)]

− τDKL(π′(·|s′)||πb(·|s′))]

= r + γEs′∼P [Ea′∼π′ [r + γEs′′∼P [vd
π(s′′)]]

− τDKL(π′(·|s′)||πb(·|s′))]

≤ ...

≤ qd
π′(s, a) (B.2)

Continuously expanding the terms, we obtain qd
π′(s, a) on the right hand side by its defini-

tion.

Proof of Theorem 6.3.3. The sequence qd
πk

(s, a), k = 1, 2, ... generated by

repeated applications of the policy evaluation and improvement is non-decreasing and is

bounded above. Thus convergence follows from the monotone convergence principle. De-

note qd
π∞(s, a) as the converged value function and π∞ the associated policy. We need to

show that π∞ is indeed optimal. Since at convergence, the policy is no longer changing.

Therefore π∞(·|s) is a maximizer of the objective function Jπ∞(π̃(·|s)) = Ea∼π̃[qd
π∞(s, a)]−

τDKL(π̃(·|s)||πb(·|s)). In other words, Jπ∞(π(·|s)) ≤ Jπ∞(π∞(·|s)) for any policy π. By the

same token as the proof of Lemma 2, this means that qd
π(s, a) ≤ qd

π∞(s, a). Since π is an

arbitrary policy, π∞ is indeed the optimal policy.
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Appendix C

Appendices for Chapter 7

C.1 Proof of Proposition 7.4.1 and Proposition 7.4.2

Lemma C.1.1 Let (X, dX) and (Y, dY ) be two metric spaces and (Y,Σ, µ) be a measure

space. Further, let Σ be generated by the open sets in (Y, dY ); and µ has full support in the

sense that µ(S) > 0 for all non-empty open sets S in Σ. Let f : X × Y 7→ Rk, k ≥ 1 be a

non-negative function that is continuous for every x. Then the two sets C and D are equal:

C = {x|f(x, y) = 0, ∀y ∈ Y }

D = {x|
∫
f(x, y)dµ(y) = 0}

Equalities and inequalities are understood to be element-wise.

Proof. It is clear that C ⊆ D since the condition in C implies that in D. To

demonstrate that they are equal, let a point x /∈ C, therefore fi(x, y) = c > 0 for some y

and some coordinate i of f . Then by the continuity of fi(x, ·), for every ε > 0, there exists
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δ > 0, such that the condition d(fi(x, y
′), fi(x, y)) < ε is satisfied for every y′ ∈ Bδ(y) ,

{y′|dY (y′, y) < δ}. Pick a small enough ε < c, then we have

∫
fi(x, y

′)dµ(y′) ≥
∫
Bδ(y)

fi(x, y
′)dµ(y′)

≥ (c− ε)µ(Bδ(y))

> 0

The last inequality is due to the full support assumption of µ. This shows that x /∈ D.

Therefore C = D.

Proof of Proposition 7.4.1. We identify the space of all neural network weights

W ⊆ RN with Euclidean metric as the X space in Lemma C.1.1. We can identify the state-

action space S × A as the Y space by defining a metric d on S × A. The measure µSA on

the state-action space has the full support property stated in Lemma C.1.1. We identify the

function f as h(D̄iiζϕi(s, a)− Āiζϕ(s, a)) in the statement of Proposition 7.4.1. We further

identify that the set C and D in Lemma C.1.1 correspond to the constraint set in (7.15)

and the set expressed by (7.16). By Lemma C.1.1, these two sets are equal.

Lemma C.1.2 Consider the situation in Lemma C.1.1 except that f may not be continu-

ous, and that µ may not have full support. Then the following two sets are equal:

C = {x|µ({y|fi(x, y) > 0 for some i}) = 0}

D = {x|
∫
f(x, y)dµ(y) = 0}
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Proof. Let x ∈ C, then
∫
f(x, y)dµ(y) = 0 since the set f(x, y) > 0 has measure

zero. Thus x ∈ D. Hence C ⊆ D. On the other hand, let x ∈ D, define two sets

N1(x) = {y|fi(x, y) > 0 for some i} and N2(x) = {y|f(x, y) = 0}. Thus

∫
f(x, y)dµ(y) = 0

=

∫
N1(x)

f(x, y)dµ(y) +

∫
N2(x)

f(x, y)dµ(y)

=

∫
N1(x)

f(x, y)dµ(y)

Thus µ(N1(x)) = 0 and therefore x ∈ C. Hence D ⊆ C. Combining the two directions

shows that C = D. Therefore, every point x in D satisfies f(x, y) = 0 for most of y except

for some y with measure zero.

Proof of Proposition 7.4.2. Ditto as proof of Proposition 7.4.1. Since the

measure µSA can be arbitrary, it can be selected as full support which covers almost all s, a

pairs.
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