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Genome-wide meta-analyses of smoking behaviors in
African Americans

SP David1,2,3, A Hamidovic4,51, GK Chen5,51, AW Bergen1, J Wessel1,6,7, JL Kasberger8, WM Brown9, S Petruzella10, EL Thacker11,

Y Kim12, MA Nalls13, GJ Tranah14, YJ Sung15, CB Ambrosone16, D Arnett17, EV Bandera18, DM Becker19, L Becker19, SI Berndt20,

L Bernstein21, WJ Blot22,23, U Broeckel24, SG Buxbaum25, N Caporaso20, G Casey5, SJ Chanock20, SL Deming23, WR Diver26,

CB Eaton3, DS Evans14, MK Evans27, M Fornage28, N Franceschini29, TB Harris30, BE Henderson5, DG Hernandez13, B Hitsman4,

JJ Hu31, SC Hunt32, SA Ingles5, EM John33,34, R Kittles35, S Kolb36, LN Kolonel37, L Le Marchand37, Y Liu38, KK Lohman9,

B McKnight39, RC Millikan40, A Murphy41, C Neslund-Dudas42, S Nyante40, M Press5, BM Psaty43,44, DC Rao15, S Redline45,

JL Rodriguez-Gil31, BA Rybicki42, LB Signorello22,23, AB Singleton13, J Smoller46, B Snively9, B Spring4, JL Stanford36, SS Strom47,

GE Swan1, KD Taylor48, MJ Thun26, AF Wilson12, JS Witte49, Y Yamamura47, LR Yanek19, K Yu20, W Zheng23, RG Ziegler20,

AB Zonderman50, E Jorgenson8,52, CA Haiman5,52 and H Furberg10,52

The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations
of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior
in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n¼ 32 389). We identified one non-
coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity

Received 13 March 2012; accepted 10 April 2012

1Center for Health Sciences, Policy Division, SRI International, Menlo Park, CA, USA; 2Center for Education and Research in Family and Community Medicine, Division
of General Medical Disciplines, Stanford University School of Medicine, Stanford, CA, USA; 3Department of Family Medicine, Center for Primary Care and Prevention,
Brown Alpert Medical School, Pawtucket, RI, USA; 4Department of Preventative Medicine, Northwestern University, Chicago, IL, USA; 5Department of Preventive
Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; 6Department of Public Health,
Division of Epidemiology and Environmental Health, Indiana University School of Medicine, Indianapolis, IN, USA; 7Department of Medicine, Division of Cardiology,
Indiana University School of Medicine, Indianapolis, IN, USA; 8Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San
Francisco, CA, USA; 9Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA; 10Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; 11Department of Epidemiology, University of Washington, Seattle, WA, USA; 12Genometrics
Section, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA; 13Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Baltimore, MD, USA; 14California Pacific Medical Center Research Institute, San Francisco, CA, USA; 15Division of Biostatistics,
Washington University School of Medicine, St Louis, MO, USA; 16Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA;
17Department of Epidemiology, University of Alabama, Birmingham, AL, USA; 18The Cancer Institute of New Jersey, New Brunswick, NJ, USA; 19Department of
Medicine, The Johns Hopkins GeneSTAR Research Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 20Division of Cancer
Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; 21Department of Population Science, Division of Cancer
Etiology, Beckman Research Institute, City of Hope, Duarte, CA, USA; 22International Epidemiology Institute, Rockville, MD, USA; 23Department of Medicine, Division of
Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 24Department of Medicine, Medical
College of Wisconsin, Milwaukee, WI, USA; 25Jackson Heart Study, Jackson State University, Jackson, MS, USA; 26Epidemiology Research Program, American Cancer
Society, Atlanta, GA, USA; 27Health Disparities Research Section, Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD,
USA; 28Division of Epidemiology, Brown Foundation Institute of Molecular Medicine, School of Public Health, University of Texas Health Science Center at Houston,
Houston, TX, USA; 29Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 30Laboratory of Epidemiology, Demography and
Biometry, National Institute on Aging, Bethesda, MD, USA; 31Department of Epidemiology and Public Health, Sylvester Comprehensive Cancer Center, University of
Miami Miller School of Medicine, Miami, FL, USA; 32Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA; 33Cancer Prevention Institute of
California, Fremont, CA, USA; 34Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA, USA; 35Department of Medicine, Division of
Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA; 36Division of Public Health Sciences, Fred Hutchinson Cancer
Research Center, Seattle, WA, USA; 37Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, HI, USA; 38Sticht Center on Aging, Wake
Forest University School of Medicine, Winston-Salem, NC, USA; 39Department of Biostatistics, University of Washington, Seattle, WA, USA; 40Department of
Epidemiology, Gillings School of Global Public Health, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; 41Department
of Urology, Northwestern University, Chicago, IL, USA; 42Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA; 43Departments of Epidemiology,
Medicine and Health Services, University of Washington, Seattle, WA, USA; 44Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA;
45Department of Medicine and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; 46Department of Psychiatry, Center for Human Genetic Research,
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 47Department of Epidemiology, The University of Texas MD, Anderson Cancer Center,
Houston, TX, USA; 48Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 49 Departments of Epidemiology and Biostatistics, and Urology,
Institute for Human Genetics, University of California, San Francisco, CA, USA and 50Laboratory of Personality and Cognition, National Institute on Aging, National
Institutes of Health, Baltimore, MD
Correspondence: Dr SP David, Center for Education and Research in Family and Community Medicine, Division of General Medical Disciplines, Stanford University
School of Medicine, 1215 Welch Road, Modular G, Stanford, CA 93405-5408, USA or CA Haiman, Department of Preventive Medicine, University of Southern California
Keck School of Medicine, Harlyne Norris Research Tower, 1450 Biggy Street, Room 1504A, Los Angeles, CA 90033, USA or E Jorgenson, Enest Gallo Clinic and
Research Center, University of California, San Francisco, 5858 Horton Street, Suite 200, Emeryville, San Francisco, CA 94608, USA.
E-mail: spdavid@stanford.edu or haiman@usc.edu or ejorgenson@gallo.ucsf.edu
51Joint first authors.
52Joint senior authors.
Keywords: African American; genome-wide association; health disparities; nicotine; smoking; tobacco

Citation: Transl Psychiatry (2012) 2, e119, doi:10.1038/tp.2012.41
& 2012 Macmillan Publishers Limited All rights reserved 2158-3188/12

www.nature.com/tp

mailto:spdavid@stanford.edu
mailto:haiman@usc.edu
mailto:ejorgenson@gallo.ucsf.edu
http://www.nature.com/tp


(cigarettes per day), which exceeded genome-wide significance (b¼ 0.040, s.e.¼ 0.007, P¼ 1.84� 10�8). This variant is present
in the 50-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European
ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or
smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance
included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are
associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by
three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility
locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci
that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette
consumption, SC and smoking-attributable disease between African Americans and European Americans.
Translational Psychiatry (2012) 2, e119; doi:10.1038/tp.2012.41; published online 22 May 2012

Introduction

Smoking is influenced by genetic and environmental fac-
tors.1,2 Genome-wide association studies (GWAS) in popula-
tions of European ancestry have identified genetic variation
associated with smoking behaviors, including smoking initia-
tion (SI), smoking quantity and smoking cessation (SC). An
initial, large (n¼ 10 995) GWAS of smoking quantity identified
associations with genetic variants in the nicotinic acetylcho-
line receptor a5, a3 and b4 subunit cluster on chromosome
15q25.1.3 Genome-wide meta-analyses in three large con-
sortia (n¼ 74 053, 31 226 and 41 150) of smoking behaviors
confirmed the finding at 15q25.1 and refined the association
signal within the locus.4–6 Additional studies in diverse
populations also have revealed independent signals in this
region, suggesting multiple biologically functional variants.7,8

This locus has also been reported as a susceptibility locus for
lung cancer; however, whether this effect is independent of
smoking behavior is unclear.9,10 Additional regions have been
identified for smoking quantity (CHRNB3/CHRNA6) on 8p11,4

CYP2A6 on 19q134,6 and LOC100188947 on 10q256), SI
(BDNF on 11p13)6 and SC (DBH on 9q34).6

To date, all published GWAS for smoking behaviors have
been conducted in populations of European descent.11

Conducting GWAS in non-European populations, such as
African ancestry populations is important because of their
greater genetic diversity and population differences in disease
allele frequency, linkage disequilibrium patterns and pheno-
type prevalence.12 For smoking behaviors, the need for
GWAS in African American populations is particularly clear;
African Americans, on average, initiate smoking later, smoke
fewer cigarettes per day, yet are less likely to successfully
quit smoking. Further, they have a higher risk of smoking-
related lung cancer than many other populations.13 Ethnic
differences in the clearance of nicotine, cotinine and other
metabolites have been shown to contribute to the observed
differences in cigarette consumption across populations,
mediated in part by genetic variants in the cytochrome p450
2A6 gene.14–16

The genetic architecture of smoking-related traits is not well
described in non-European ancestral groups, but there is
evidence that genetic determinants have important implica-
tions for multiple addictive behaviors in populations globally.17

We established the Study of Tobacco in Minority Populations
(STOMP) Genetics Consortium, which represents 13 GWAS
studies of men and women of African ancestry, to search for
risk loci for smoking behaviors in this population.

Materials and methods

Study description. The STOMP Genetics Consortium is
comprised of the following studies: the Women’s Health
Initiative SNP Health Association Resource (n¼ 8208), the
African American GWAS consortia of Breast Cancer
(n¼ 5061) and Prostate Cancer (n¼ 5556), the Candidate
Gene Association Resource Consortium (including the
Atherosclerosis Risk in Communities (n¼ 2916) study, the
Cleveland Family Study (n¼ 632), the Coronary Artery Risk
Development in Young Adults (n¼ 953) study, the Jackson
Heart Study (n¼ 2145) and the Multi-Ethnic Study of
Atherosclerosis (n¼ 1646)), the Cardiovascular Health
Study (n¼ 801), the Healthy Aging in Neighborhoods
across the Life Span Study (n¼ 918), the Health ABC
Study (n¼ 1137), the Genetic Study of Atherosclerosis Risk
(n¼ 1175) and the Hypertension Genetic Epidemiology
Network (n¼ 1241). A description of each participating
study as well as details regarding the measurement and
collection of smoking data for each study are provided in
Supplementary Materials. All studies had local Institutional
Review Board approval for the present study and all
participants provided written informed consent.

Smoking phenotypes. We examined four smoking
phenotypes previously shown to be heritable in the African
and European ancestry samples18–21 and used in prior
GWAS of smoking behavior.4–6 SI contrasted individuals who
reported having smoked 100 cigarettes during their lifetime
(ever smokers) with those who reported having smoked
between 0 and 99 cigarettes during their lifetime (never
smokers), consistent with the Centers for Disease Control
classification.22 Among smokers, the age of SI (AOI)
represented the age individuals began smoking. Some
studies captured the age they first tried smoking, whereas
others collected the age they began smoking regularly. As
prior research suggests similar heritabilities and high genetic
correlation between these phenotypes, we justified using
either value in a general assessment of AOI. Similarly, for
cigarettes smoked per day (CPD), some studies collected
maximum CPD, whereas others collected average CPD.
Longitudinal twin data suggests a high correlation between
these variables over time, which supported using either value
in our analyses. For studies that collected CPD as ranges,
the mid-point of the interval was used as the data point; for
example, individuals who reported the CPD category 0–4
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were assigned a CPD value of 2. SC contrasted individuals
who had quit smoking at interview (former smokers) with
those who were current smokers. As relapse to smoking is
highest within the first year after quitting,23 we tried to reduce
misclassification by excluding smokers who quit within 1 year
of interview within studies with available data. Table 1
presents distributions of smoking phenotypes across
participating studies.

Genotyping and quality control. Each study performed its
own genotyping using Illumina (San Diego, CA, USA) or
Affymetrix GWAS arrays (Santa Clara, CA, USA).
Supplementary Tables 1 and 2 present the details of the
arrays, genotyping quality control procedures and sample
exclusions (i.e., sex mismatch, call rate failure, relatedness,
missing smoking and ancestry outliers) for each study. The
quality control filters applied by each study were comparable;
single-nucleotide polymorphisms (SNPs) with call rates
o95% (except the Genetic Study of Atherosclerosis Risk,
o90%), o1% minor allele frequency or significant (Po10�6)
departure from Hardy–Weinberg equilibrium were excluded,
as were individuals with excess autosomal heterozygosity,
mismatch between reported and genetically determined sex,
or first- or second-degree relatedness. Genome-wide
imputation24 was carried out in each study using the
software MACH, IMPUTE, BEAGLE or BIMBAM v0.99,25–32

to infer genotypes for SNPs that were not genotyped directly
on the platforms, but were genotyped on the HapMap phase
2 CEU and YRI samples.33 SNPs with imputation quality
scores o0.5 were excluded.

Data analyses. Study-specific GWAS analysis. Each study
conducted uniform cross-sectional analyses for each
smoking phenotype using an additive genetic model.
Logistic regression was used for discrete traits (SI and SC)
and linear regression was used for quantitative traits (CPD

and AOI). Continuous, quantitative traits were normalized by
transformation to Z scores, owing to heavy tails and non-
normality. Outliers were removed within each study, where
abs (Z)42. Link (Y)¼Z scores were fit using ordinary least
squares regression. To investigate potential sources of
heterogeneity across studies, we examined the distribution
of African ancestry in each cohort (Supplementary Figure 1).
To account for population stratification and admixture, all
studies adjusted for an appropriate number of eigenvectors3–10

from a study-specific principal components analysis.34 In
addition, study-specific analyses included adjustment for age
and case status or study site, when appropriate. Genomic
control inflation factors were computed using standard
methods.35,36

Meta-analyses of GWAS results. We performed fixed-effect
meta-analysis for each smoking phenotype by computing
pooled inverse-variance-weighted b-coefficients, s.e. and Z
scores for each SNP.37 All GWAS results were corrected via
genomic control before the meta-analysis. The study-specific
lambda values utilized in this step ranged from 1.01 to 1.08 for
SI (Supplementary Table 1). Heterogeneity across studies
was investigated using the I2 statistic.38 The results presented
herein are corrected by a second GC correction based on l of
the meta-analyses (lo1.02). A significance threshold of
Po5� 10�8 was considered to indicate genome-wide sig-
nificance. Linkage disequilibrium statistics for the largest of
the STOMP cohorts (Women’s Health Initiative, n¼ 8208)
were calculated using DPRIME (http://www.phs.wfubmc.edu/
public/bios/gene/downloads.cfm). Linkage disequilibrium sta-
tistics for CEU and YRI were obtained from HapMap phase 2 33.
Statistical power analysis was performed using QUANTO.39

Results

The meta-analysis included 32 389 genotyped men and
women of African ancestry from 13 studies with sample sizes
ranging from n¼ 632 to n¼ 8208 (Table 1). Our meta-analysis

Table 1 Descriptive characteristics of the 13 studies participating in the STOMP Consortium

Study N (% female) Age, mean (s.d.)a Ever smokers (%) CPD, mean (s.d.)b AOIa, mean (s.d.)b Former smokers (%)b

AABC 5061 (100) 56.6 (12.6) 47.2 11.9 (8.4) 23.3 (9.0) 58.8
AAPC 5556 (0) 63.7 (9.6) 68.7 14.6 (9.9) 23.2 (9.0) 64.9
CHS 801 (63.2) 72.9 (5.6) 51.2 13.9 (11.2) 19.0 (5.2) 66.8
CARe

ARIC 2916 (61.2) 54.1 (5.7) 52.2 14.4 (9.8) 19.5 (6.4) 28.1
CARDIA 953 (61.4) 24.4 (3.8) 39.2 11.8 (8.7) 17.3 (5.1) 4.6
CFS 632 (59.0) 35.5 (19.8) 45.1 13.1 (10.3) 19.0 (5.5) 13.3
JHS 2145 (60.7) 55.2 (12.8) 33.2 14.9 (10.8) 19.3 (5.7) 17.0
MESA 1646 (54.7) 62.2 (10.1) 53.5 14.6 (18.2) 18.3 (5.4) 35.0

GeneSTAR 1175 (61.7) 47.4 (12.3) 57.2 11.5 (10.3) 18.3 (5.4) 44.0
HANDLS 918 (54.5) 48.6 (9.0) 65.4 15.7 (32.8) 17.4 (6.2) 29.0
Health ABC 1137 (57.2) 73.4 (2.9) 56.4 15.7 (12.6) 19.5 (7.0) 69.5
HyperGEN 1241 (67.3) 45.2 (13.3) 48.7 12.1 (9.8) 19.5 (5.5) 58.0
WHI (SHARe) 8208 (100) 61.6 (7.0) 50.6 11.5 (9.5) 20.5 (5.9) 39.1

Abbreviations: STOMP, Study of Tobacco in Minority Populations; CPD, cigarettes smoked per day; AOI, age of smoking initiation; AABC, African American GWAS
consortia of Breast cancer; AAPC, African American GWAS consortia of Prostate Cancer; CHS, Cardiovascular Health Study; CARe, Candidate Gene Association
Resource; ARIC, Atherosclerosis Risk in Communities; CARDIA, Coronary Artery Risk Development in Young Adults; CFS, Cleveland Family Study; JHS, Jackson
Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; GeneSTAR, Genetic Study of Atherosclerosis Risk; HANDLS, Healthy Aging in Neighborhoods across the
Life Span Study; HyperGEN, Hypertension Genetic Epidemiology Network; WHI, Women’s Health Initiative; SHARe, SNP Health Association Resource. Descriptive
statistics for smoking behaviors included ever smokers only.
aAge in years. bCalculated among ever smokers.
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sample was 66.1% female, the mean age when smoking
information was collected ranged from 35.5 to 73.4 years, and
52.7% were ever smokers. Among smokers, mean CPD
ranged from 11.5 to 15.7, the mean AOI ranged from 17.3 to
23.3 years, and 44.8% were former smokers.

Sample sizes for the four smoking phenotype analyses (i.e.,
with complete genotype and phenotype data) were n¼ 32 389
for SI, n¼ 16 877 for AOI, n¼ 15 547 for CPD and n¼ 16 215
for SC. Manhattan plots for the four smoking phenotypes after
double-GC scaling are shown in Figure 1. In the entire analysis,
only one SNP, rs2036527, achieved genome-wide significance
for one trait, CPD (b¼ 0.04, s.e.¼ 0.007, P¼ 1.84� 10�8,
I2¼ 41.6%, Table 2; study-specific results are show in
Supplementary Table 3). This variant is located 6246 bp 50 of
the CHRNA5 gene on chromosome 15q25.1. We observed
multiple SNPs with P-values of 10�7 associated with CPD:
rs3101457, located in intron 2 (IVS2) of C1orf100 on 1q44, and
rs547843, located 63 kb 50 of a non-coding RNA sequence
(LOC503519) on 15q12. Three highly correlated SNPs
(r240.95, YRI) in the SPOCK2 gene on 10q22.1 exhibited a
P-value of 10�7 with AOI (Table 2). The most significant
associations for SI and SC were observed at rs566973 (B20 kb
30 of CRCT1 on 1q21.3) and rs3813637 (in the 30-untranslated
region of C1orf49 on 1q25.2), respectively (data not shown).

Four top SNPs associated with CPD span approximately
100 kb (76.6–76.7 Mb) at 15q25.1; from rs3813570, located in
the 50-untranslated region (c.-72T4C) of PSMA4, to
rs938682, located in IVS4 (c.378-1941C4T) of CHRNA3
(Table 2 and Figure 2). The most significant SNP, rs2036527,
is located between PSMA4 and CHRNA5, and is correlated

with the index signals (rs1051730, rs16969968) for CPD
reported in previous European ancestry studies. In CEU, the
r2 is 0.84 between rs2036527 and rs1051730, and 0.93
between rs2036527 and rs16969968. The r2 between
rs2036527 and 1051730 is 0.44 in YRI, and 0.502 in STOMP,
whereas rs16969968 is non-polymorphic. Rs2036527 is also
correlated with SNPs in the European Americans that tag a
haplotype associated with increased expression of CHRNA5
in prefrontal cortex brain samples from European Americans
and African Americans,40 but is not correlated with this
haplotype in African ancestry samples (r2 between rs2036527
and rs1979905¼ 0.443 in CEU, 0.045 in YRI and 0.064 in
STOMP). The additional signals at 15q25.1 with near
genome-wide significance in our study are represented by
rs667282, rs938682 and rs3813570, which are weakly
correlated with rs2036527 (r20.2 in CEU, 0.12 in YRI and
0.084 in STOMP). These three SNPs are correlated with each
other (r20.60 in CEU and 0.32 in YRI) as well as with rs578776
and other SNPs at 15q25.1 that define a signal for smoking
intensity in the European ancestry populations that is
independent of rs2036527.8 However, when conditioning on
rs2036527 in the four largest study populations in our sample
(the African American GWAS consortia of Prostate Cancer,
African American GWAS consortia of Breast Cancer, Candi-
date Gene Association Resource and Women’s Health
Initiative; n¼ 13 113), the association between these three
SNPs and CPD diminished (P-values of 10�3 after condition-
ing on rs2036527; Supplementary Figure 2). Assuming the
GWAS arrays utilized in this study provide adequate coverage
of common alleles at 15q25.1, this suggests there are not

Figure 1 Double genomic control (GC)-corrected Manhattan plots showing significance of association of all single-nucleotide polymorphisms (SNPs) for four smoking
phenotypes. (a–d). SNPs plotted on the x axis according to their position on each chromosome against, on the y axis (shown as �log10 P-value), the association with (a)
smoking initiation (SI, ever vs never smokers), (b) age of SI, (c) cigarettes smoked per day, and (d) smoking cessation (former vs current smokers). Dotted red line indicates
genome-wide significance threshold of Po5� 10�8.
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multiple independent signals for CPD in this region in
African Americans or the frequencies of the functional alleles
and/or their effect sizes are much smaller than the signal
defined by rs2036527.

Supplementary Table 4 presents how the variants asso-
ciated with smoking behaviors in European ancestry
populations performed in STOMP (rs1051730 in CHRNA3;
rs16969968 in CHRNA5; rs1329650 and rs1028936 in
LOC100188947; rs3733829 in EGLN2, near CYP2A6;
rs6265, rs1013443, rs4923457, rs4923460, rs4074134,
rs1304100, rs6484320 and rs879048 in BDNF; and
rs3025343, near DBH). We observed modest nominally
statistically significant associations for CPD with rs1051730
(P¼ 0.0079) and rs16969968 (P¼ 0.027), and for SC with
rs3025343 (P¼ 0.03).

Discussion

Investigating whether there are genetic variants associated
with smoking behavior among African Americans is important,
given that smoking prevalence and smoking-attributable
mortality differ by race/ethnicity. Smoking prevalence and
smoking intensity are lower for African Americans than
European Americans, yet African Americans are less likely
to successfully quit smoking.41

To our knowledge, this is the first meta-analysis of GWAS
data for smoking behaviors in African Americans. The single
genome-wide significant association we observed between
rs2036527 and CPD is the same signal that was reported
previously at 15q25.1 for nicotine dependence, smoking
intensity and lung cancer in European ancestry sam-
ples.4–6,42,43 The strong association that we found for this
SNP supports studies suggesting that it is highly correlated
with the functional allele(s) in populations of African ancestry.
The fact that we did not observe a strong second association
signal in this region after conditioning on rs2036527 suggests
that rs2036527 and correlated SNPs in the African ancestry
populations may define a single common haplotype at
chr15q25.1 with sufficient effect size to be detected
in our sample. After back transformation of the beta estimate,
mean CPD values for each rs2036527 genotype were
14.6 for AA, 13.5 for AG and 12.8 for GG, suggesting that

there is an increase of less than one cigarette smoked per day
for each copy of the A allele. This SNP accounted
for approximately 0.20% of the phenotypic variance of CPD
in our sample. This effect is similar to that reported for
rs1051730, which is correlated with rs2036527, where each
copy of the rs1051730 A allele corresponds to a approxi-
mately one CPD increase and accounts for 0.5% of the
phenotypic variance in smoking quantity in populations of
European ancestry.

A study of CHRNA5 knock-out mice showed that re-
expressing this gene in the medial habenula, which extends
projections to a brain region shown to mediate nicotine
withdrawal,44 abolished the inhibitory effects of nicotine while
maintaining the reinforcing effects of nicotine.45 In a functional
magnetic resonance study of smokers, genetic variation in
CHRNA5 appeared to also affect reactivity to smoking cues in
the insula, hippocampus and dorsal striatum, regions im-
plicated in addictive behavior and memory.46 Thus, it is
biologically plausible that rs2036527, as a correlate of
increased expression of the CHRNA5 gene, could be
associated with smoking quantity as a consequence of
neuro-adaptations resulting from complex interactions be-
tween genes and environment that alter positive and negative
reinforcement.47

To our knowledge, no SNPs in the SPOCK2 gene, which
encodes a protein that forms part of the extracellular matrix,
have been reported previously in association with smoking
behaviors or smoking-related cancer phenotypes. Variants at
the SPOCK2 locus have been linked to bronchopulmonary
dysplasia, a respiratory condition observed in premature
infants48 that has been linked to intrauterine smoke expo-
sure.49 These variants are weakly correlated with the SNPs
identified at this locus for AOI in Europeans (r2o0.25 in CEU),
but are not correlated in the African ancestry populations
(r2¼ 0). The top SNP associated with SC (rs3813637) is
located at 1q25 in the C1orf49 gene. This locus has been
linked to late-onset Alzheimer’s disease, but genetic variation
at this locus has not been reported in association with smoking
behavior.50 We are not aware of any smoking-related, other
behavioral or pathological phenotypes associated with the
variants we detected at 1q44 (C1orf100) and 15q12
(LOC503519) or CTCT1 for CPD.

Table 2 SNPs with meta-analytic P-values of o1�10�6 for CPD and AOI

Phenotype SNP Chromosome
(bp position)

Nearby
genes

Alleles* Coded
AF

Sample
size (N)

b s.e. P-value I2 (%)

CPD rs2036527 15 (76638670) CHRNA5 A/G 0.22 15 554 0.040 0.007 1.84� 10�8 41.6
CPD rs667282 15 (76650527) CHRNA5 C/T 0.29 15 536 0.033 0.006 1.81� 10�7 21.7
CPD rs3101457 1 (242599837) C1orf100 A/G 0.75 15 513 0.041 0.008 2.63� 10�7 1.1
CPD rs938682 15 (76683602) CHRNA3 A/G 0.71 15 475 0.033 0.006 3.75� 10�7 17.4
CPD rs547843 15 (23975140) LOC503519 C/G 0.65 12 701 �0.035 0.007 6.16� 10�7 24.2
CPD rs3813570 15 (76619887) PSMA4 C/T 0.26 15 543 0.033 0.007 9.85� 10�7 0.0
AOI rs1678618 10 (73476294) SPOCK2 A/G 0.74 16 874 �0.060 0.012 8.25� 10�7 0.0
AOI rs1245577 10 (73480920) SPOCK2 C/G 0.26 16 877 0.060 0.012 8.30� 10�7 2.6
AOI rs1612028 10 (73475296) SPOCK2 C/G 0.75 16 798 �0.060 0.012 9.28� 10�7 6.3

Abbreviations: AF, allele frequency; AOI, age of smoking initiation; CPD, cigarettes smoked per day; SNP, single-nucleotide polymorphism.
First named allele is coded allele. Coded AF refers to the allele analyzed as the predictor allele; it is not necessarily the minor allele. All SNPs coded to NCBI Build 36/
UCSC hg18 forward strand. One SNP (rs2036527) highlighted in bold text achieved genome-wide significance.
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Although this is the largest GWAS meta-analysis of
smoking phenotypes conducted to date in men and women
of African ancestry, statistical power was a significant
limitation. We had 80% power (for a mean allele frequency
of 0.15 and a of 5� 10�8) to detect effect sizes of 1.25 for SI,
AOI and SC, and a b of 0.15 for CPD. Notably, effect sizes for
variants reported with many of these smoking phenotypes
reported in the larger GWAS of the European ancestry were
much smaller. For example, TAG, ENGAGE and Ox-GSK
consortia reported b for SI of 0.015 for SNPs in BDNF and

0.026 for rs3025343 in DBH. Thus, we cannot rule out the
possibility of additional loci that influence smoking behavior
among African Americans that may be detected with larger
sample sizes.

This analysis was limited by the fact that we were not able to
adjust for local admixture, and the chip coverage of common
variants (45%) is less complete compared with the European
populations,51 which applies to most GWAS of African
American populations. However, the use of a global adjust-
ment for population genetic variation in the regression
analysis using the principal components approach provided
some measure of control for potential confounding because of
population admixture.34,52 Additionally, we acknowledge the
limited precision of the smoking phenotypes. Smoking
quantity is a highly heritable trait: estimates for CPD, heavy
versus light smoking and/or pack-years range from 40 to 70%
heritability in the European, African and Asian ancestry twin
and family studies. Other studies have estimated that shared
environmental factors account for 50% or more of the
observed variation in SI, AOI and SC.1,18,20,53–57

We were unable to directly assess more refined phenotypes
and highly heritable traits such as nicotine metabolism,58

given our reliance on existing data originally collected for other
purposes. Moreover, we were unable to examine gene�
environment interactions using meta-GWAS analytic
approach. Our analyses did not incorporate environmental
covariate analyses, such as type of cigarettes smoked,
mentholated or non-mentholated, dietary factors, socioeco-
nomic status and other factors that might influence one or
more of the phenotypes analyzed—data were not uniformly
available and beyond the scope of the planned analyses we
undertook in this discovery investigation. Future prospective
studies with more detailed characterizations of smoking
phenotypes and relevant environmental covariates are
needed to identify additional variants that may be associated
with smoking behaviors.

In summary, collective findings from GWAS among the
African and European ancestry populations implicate chro-
mosome 15q25 region as the most significant for smoking
quantity. However, for both populations, SNPs in this region
are associated with very small changes in smoking quantity
and explain a small proportion of the variance, which suggests
that conventional GWAS approaches may not be adequate to
discover the likely hundreds of variants contributing small
increments in risks of the additive genetic effects for heritable
traits or so-called ‘missing heritability’ of complex diseases.59

The use of more refined, specific and harmonized phenotypes
capturing the complex behavior of SI, trajectories of progres-
sion and cessation, and environmental effect-modifiers are
also needed to detect the genetic architecture of smoking
behavior in different ancestral populations. Larger studies
utilizing next-generation SNP arrays, whole-exome or whole-
genome sequencing will be required to investigate lower-
frequency variation, which may contribute to unexplained
heritability for common traits.60
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Figure 2 Forest and regional plot of rs2036527 with cigarettes smoked per day
(CPD) from meta-analyses of the Study of Tobacco in Minority Populations
(STOMP) consortia. Forest plot showing effect sizes across studies; I2¼ 41.6%.
Regional association plot show single-nucleotide polymorphisms (SNPs) plotted by
position on chromosome against �log10 P-value. Estimated recombination rates
(from HapMap-CEU) are plotted in light blue to reflect the local linkage
disequilibrium (LD) structure on a secondary y axis. The SNPs surrounding the
most significant SNP (purple) are color-coded to reflect their LD with this SNP (using
pairwise r2 values from HapMap-CEU): orange, r20.8, red; 0.6–0.8, orange; 0.6–0.8;
green, 0.4–0.6, light blue, 0.2–0.4; dark blue, o0.2. The blue bars at the bottom of
the plot represent the relative size and location of genes in the region. AABC,
African American GWAS consortia of Breast cancer; AAPC, African American
GWAS consortia of Prostate Cancer; ARIC, Atherosclerosis Risk in Communities;
CARDIA, Coronary Artery Risk Development in Young Adults; CFS, Cleveland
Family Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of
Atherosclerosis; HANDLS, Healthy Aging in Neighborhoods across the Life Span
Study; HYPGEN, Hypertension Genetic Epidemiology Network; WHI, Women’s
Health Initiative.
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