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Abstract A measurement of the production cross-section
for top quark pairs (t t̄) in pp collisions at

√
s = 7 TeV is

presented using data recorded with the ATLAS detector at
the Large Hadron Collider. Events are selected in two dif-
ferent topologies: single lepton (electron e or muon μ) with
large missing transverse energy and at least four jets, and
dilepton (ee, μμ or eμ) with large missing transverse en-
ergy and at least two jets. In a data sample of 2.9 pb−1, 37
candidate events are observed in the single-lepton topology
and 9 events in the dilepton topology. The corresponding ex-
pected backgrounds from non-t t̄ Standard Model processes
are estimated using data-driven methods and determined to
be 12.2 ± 3.9 events and 2.5 ± 0.6 events, respectively. The
kinematic properties of the selected events are consistent
with SM t t̄ production. The inclusive top quark pair pro-
duction cross-section is measured to be

σtt̄ = 145 ± 31(stat.)+42
−27(syst.) pb.

The measurement agrees with perturbative QCD calcula-
tions.

1 Introduction

The observation of top quark pair (t t̄) production is one of
the milestones for the early LHC physics programme. The
measurement of the top quark pair production cross-section
(σt t̄ ) in the various decay channels is interesting for sev-
eral reasons. Uncertainties on the theoretical predictions are
now at the level of 10% and a comparison with experimen-
tal measurements performed in different channels will ul-
timately allow a precision test of the predictions of pertur-
bative QCD. In addition, the abundant t t̄ sample which is
expected to be produced in the first years of data-taking can
be exploited for improving many aspects of detector perfor-
mance. Finally, t t̄ production is an important background

� e-mail: atlas.secretariat@cern.ch

in various searches for physics beyond the Standard Model,
and new physics may also give rise to additional t t̄ pro-
duction mechanisms or modification of the top quark decay
channels.

In the Standard Model (SM) [1–3] the t t̄ production
cross-section in pp collisions is calculated to be 164.6
+11.4
−15.7 pb at approximate NNLO precision [4, 5]1 at a cen-
tre of mass energy

√
s = 7 TeV assuming a top mass of

172.5 GeV, and top quarks are predicted to decay to a W

boson and a b-quark (t → Wb) nearly 100% of the time.
Events with a t t̄ pair can be classified as ‘single-lepton’,
‘dilepton’, or ‘all hadronic’ by the decays of the two W

bosons: a pair of quarks (W → qq̄) or a lepton-neutrino pair
(W → �ν), where � refers to a lepton. At the Tevatron the
dominant production mechanism is qq̄ annihilation, and the
t t̄ cross section at

√
s = 1.8 TeV and at

√
s = 1.96 TeV

have been measured by D0 and CDF [6–9] in all channels.
The production of t t̄ at the LHC is dominated by gg fu-
sion. Recently, the CMS collaboration has presented a cross-
section measurement, σtt̄ = 194 ± 72 (stat.) ± 24 (syst.) ±
21 (lumi.) pb in the dilepton channel using 3.1 pb−1 of
data [10].

The results described in this paper are based on recon-
structed electrons and muons and include small contribu-
tions from leptonically decaying tau leptons. The single-
lepton mode, with a branching ratio2 of 37.9% (combining
e and μ channels), and the dilepton mode, with a branching
ratio of 6.5% (combining ee, μμ and eμ channels), both
give rise to final states with at least one lepton, missing
transverse energy and jets, some with b flavour. The cross-
section measurements in both modes are based on a straight-
forward counting method. The number of signal events is

1Predictions in the paper are calculated with Hathor [52] with mtop =
172.5 GeV, CTEQ66 [19], where PDF and scale uncertainties are
added linearly.
2The quoted branching ratios are based on the values reported in [11]
assuming lepton universality, and include small contributions from lep-
tonically decaying taus.
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obtained in a signal enriched sample after background sub-
traction. The main background contributions are determined
using data-driven methods, since the theoretical uncertain-
ties on the normalisation of these backgrounds are relatively
large. For both single-lepton and dilepton channels, alterna-
tive methods of signal extraction and/or background estima-
tion are explored. In particular, two template shape fitting
methods, which use additional signal regions to exploit the
kinematic information in the events, are developed for the
single-lepton mode. In this paper these two fitting methods
serve as cross-checks of the counting method. The meth-
ods also provide alternative data-driven estimates of back-
grounds and are expected to become more precise when
more data become available.

2 Detector and data sample

The ATLAS detector [12] at the LHC covers nearly the en-
tire solid angle3 around the collision point. It consists of
an inner tracking detector surrounded by a thin supercon-
ducting solenoid, electromagnetic and hadronic calorime-
ters, and an external muon spectrometer incorporating three
large superconducting toroid magnet assemblies.

The inner-detector system is immersed in a 2 T axial
magnetic field and provides charged particle tracking in the
range |η| < 2.5. The high-granularity silicon pixel detec-
tor covers the vertex region and provides typically three
measurements per track, followed by the silicon microstrip
tracker (SCT) which provides four measurements from eight
strip layers. These silicon detectors are complemented by
the transition radiation tracker (TRT), which enables ex-
tended track reconstruction up to |η| = 2.0. In giving typ-
ically more than 30 straw-tube measurements per track, the
TRT is essential to the inner detector momentum resolution,
and also provides electron identification information.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Within the region |η| < 3.2, electromagnetic
calorimetry is provided by barrel and endcap lead-liquid
argon (LAr) electromagnetic calorimeters, with an addi-
tional thin LAr presampler covering |η| < 1.8 to correct
for energy loss in material upstream of the calorimeters.
Hadronic calorimetry is provided by the steel/scintillating-
tile calorimeter, segmented into three barrel structures
within |η| < 1.7, and two copper/LAr hadronic endcap
calorimeters. The solid angle coverage is completed with

3In the right-handed ATLAS coordinate system, the pseudorapidity η

is defined as η = − ln[tan(θ/2)], where the polar angle θ is measured
with respect to the LHC beamline. The azimuthal angle φ is measured
with respect to the x-axis, which points towards the centre of the LHC
ring. The z-axis is parallel to the anti-clockwise beam viewed from
above. Transverse momentum and energy are defined as pT = p sin θ

and ET = E sin θ , respectively.

forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic measurements
respectively.

The muon spectrometer comprises separate trigger and
high-precision tracking chambers measuring the deflection
of muons in a magnetic field with a bending integral from
2 to 8 Tm in the central region, generated by three super-
conducting air-core toroids. The precision chamber system
covers the region |η| < 2.7 with three layers of monitored
drift tubes, complemented by cathode strip chambers in the
forward region, where the background is highest. The muon
trigger system covers the range |η| < 2.4 with resistive plate
chambers in the barrel, and thin gap chambers in the endcap
regions.

A three-level trigger system is used to select interesting
events. The level-1 trigger is implemented in hardware and
uses a subset of detector information to reduce the event rate
to a design value of at most 75 kHz. This is followed by
two software-based trigger levels, level-2 and the event filter,
which together reduce the event rate to about 200 Hz.

Only data where all subsystems described above are fully
operational are used. Applying these requirements to

√
s =

7 TeV pp collision data taken in stable beam conditions and
recorded until 30th August 2010 results in a data sample of
2.9 pb−1. This luminosity value has a relative uncertainty of
11% [13].

3 Simulated event samples

Monte-Carlo simulation samples are used to develop and
validate the analysis procedures, to calculate the acceptance
for t t̄ events and to evaluate the contributions from some
background processes. For the t t̄ signal the next-to-leading
order (NLO) generator MC@NLO v3.41 [14–16], is used
with an assumed top-quark mass of 172.5 GeV and with the
NLO parton density function (PDF) set CTEQ66 [17].

For the main backgrounds, consisting of QCD multi-jet
events and W/Z boson production in association with mul-
tiple jets, ALPGEN v2.13 [18] is used, which implements
the exact LO matrix elements for final states with up to 6
partons.4 Using the LO PDF set CTEQ6L1 [19], the fol-
lowing backgrounds are generated: W + jets events with up
to 5 partons, Z/γ ∗ + jets events with up to 5 partons and
with the dilepton invariant mass m�� > 40 GeV; QCD multi-
jet events with up to 6 partons, and diboson WW + jets,
WZ + jets and ZZ + jets events. A separate sample of Z

boson production generated with PYTHIA is used to cover
the region 10 GeV < m�� < 40 GeV. For all but the dibo-
son processes, separate samples are generated that include

4The ‘MLM’ matching scheme of the ALPGEN generator is used to re-
move overlaps between the n and n+1 parton samples with parameters
RCLUS= 0.7 and ETCLUS= 20 GeV.
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bb̄ and cc̄ quark pair production at the matrix element level.
In addition, for the W + jets process, a separate sample con-
taining W + c + jets events is produced. For the small back-
ground of single-top production MC@NLO is used, invok-
ing the ‘diagram removal scheme’ [20] to remove overlaps
between the single-top and the t t̄ final states.

In simulation, the cross-section of t t̄ production is nor-
malised to 164.6 pb obtained from approximate NNLO cal-
culations [4, 5]. The cross-sections for W/Z + jets and
diboson with jets have been rescaled by a factor 1.22 to
match NNLO calculations of their inclusive cross-sections,
as is done in [21]. The QCD multi-jet sample has not been
rescaled as it is only used for validation studies.

Unless otherwise noted, all events are hadronised with
HERWIG [22, 23], using JIMMY [24] for the underlying
event model. Details on generator and underlying event
tunes used for these samples are given in [25]. After event
generation, all samples are processed by the standard AT-
LAS detector and trigger simulation [26] and subject to the
same reconstruction algorithms as the data.

3.1 Systematic uncertainties on the simulated samples

The use of simulated t t̄ samples to calculate the signal
acceptance gives rise to systematic uncertainties from the
choice of generator, the amount of initial and final state ra-
diation (ISR/FSR) and uncertainties on the PDF. The un-
certainty due to the choice of generator is evaluated by
comparing the predictions of MC@NLO with those of
POWHEG [27] interfaced to both HERWIG or PYTHIA. The
uncertainty due to ISR/FSR is evaluated by studies using
the ACERMC generator [28] interfaced to PYTHIA, and by
varying the parameters controlling ISR and FSR. For the
ISR the variation ranges are similar to the ranges used in
Perugia Soft and Perugia Hard tunes [29]. For the FSR the
parameter variation ranges are larger those recommended
in [30]. Finally, the uncertainty in the PDFs used to generate
t t̄ and single-top events is evaluated using a range of current
PDF sets with the procedure described in [21]. In addition,
the impact of the assumed top-quark mass is tested with a
set of samples generated with different masses.

Simulation-based predictions of W/Z + jets background
events have uncertainties on their total cross-section, on the
contribution of events with jets from heavy-flavour (b, c)
quarks, and on the shape of kinematic distributions. The pre-
dictions of the total cross-section have uncertainties of up
to O(50%) [31] increasing with jet multiplicity. Total W/Z

cross-section predictions are not used in the cross-section
analysis, but are used in simulation predictions shown in se-
lected Figures. The heavy-flavor fractions in the W/Z + jets
samples are always taken from simulation, as the present
data sample is too small to measure them. Here a fully cor-
related 100% uncertainty on the predicted fractions of bb̄

and cc̄ quark pairs is assumed, as well as a separate 100%
uncertainty on the fraction of events with a single c quark.
The uncertainty on the shape of W + jets kinematic distri-
butions, used in fit-based cross-checks of the single-lepton
analysis, is assessed by changing the choice of factorisation
scale from m(W)2 + ∑

p2
T (jet) to m(W)2, and by compar-

ing ALPGEN with SHERPA [32]. No systematic uncertain-
ties are evaluated for the QCD multi-jet samples, as these
are only used in validation studies.

For the small backgrounds from single-top and diboson
production, only overall normalisation uncertainties are con-
sidered and these are taken to be 10%, determined from a
comparison of MCFM and MC@NLO predictions, and 5%,
determined from MCFM studies on scale and PDF uncer-
tainties.

4 Object and event selection

For both the single lepton and the dilepton analysis, events
are triggered by a single lepton trigger (electron or
muon) [33]. The detailed trigger requirements vary through
the data-taking period due to the rapidly increasing LHC lu-
minosity and the commissioning of the trigger system, but
the thresholds are always low enough to ensure that leptons
with pT > 20 GeV lie in the efficiency plateau.

The electron selection requires a level-1 electromagnetic
cluster with pT > 10 GeV. A more refined electromagnetic
cluster selection is required in the level-2 trigger. Subse-
quently, a match between the selected calorimeter electro-
magnetic cluster and an inner detector track is required in
the event filter. Muons are selected requiring a pT > 10 GeV
momentum threshold muon trigger chamber track at level-1,
matched by a muon reconstructed in the precision chambers
at the event filter.

After the trigger selections, events must have at least
one offline-reconstructed primary vertex with at least five
tracks, and are discarded if any jet with pT > 10 GeV at the
EM scale is identified as out-of-time activity or calorimeter
noise [34].

The reconstruction of t t̄ events makes use of electrons,
muons and jets, and of missing transverse energy Emiss

T
which is a measure of the energy imbalance in the transverse
plane and is used as an indicator of undetected neutrinos.

Electron candidates are required to pass the electron se-
lection as defined in Ref. [33], with pT > 20 GeV and
|ηcluster| < 2.47, where ηcluster is the pseudorapidity of the
calorimeter cluster associated to the candidate. Candidates
in the calorimeter transition region at 1.37 < |ηcluster| < 1.52
are excluded. In addition, the ratio E/p of electron clus-
ter energy measured in the calorimeter to momentum in the
tracker must be consistent with that expected for an elec-
tron. Also, in order to suppress the background from photon
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conversions, the track must have an associated hit in the in-
nermost pixel layer, except when the track passes through
one of the 2% of pixel modules known to be dead. Muon
candidates are reconstructed from track segments in the dif-
ferent layers of the muon chambers [35]. These segments are
then combined starting from the outermost layer, with a pro-
cedure that takes material effects into account, and matched
with tracks found in the inner detector. The final candidates
are refitted using the complete track information from both
detector systems, and required to satisfy pT > 20 GeV and
|η| < 2.5.

To reduce the background due to leptons from decays
of hadrons (including heavy flavours) produced in jets, the
leptons in each event are required to be isolated. For elec-
trons, the ET deposited in the calorimeter towers in a cone
in η–φ space of radius 
R = 0.2 around the electron po-
sition5 is summed, and the ET due to the electron (Ee

T) is
subtracted. The remaining ET is required to be less than
4 GeV+0.023 ·Ee

T. For muons, the corresponding calorime-
ter isolation energy in a cone of 
R = 0.3 is required to
be less than 4 GeV, and the scalar sum of track transverse
momenta in a cone of 
R = 0.3 is also required to be less
than 4 GeV after subtraction of the muon pT. Additionally,
muons are required to have a separation 
R > 0.4 from any
jet with pT > 20 GeV, to further suppress muons from heavy
flavour decays inside jets.

Jets are reconstructed with the anti-kt algorithm [36]
(
R = 0.4) from topological clusters [37] of energy de-
posits in the calorimeters, calibrated at the electromagnetic
(EM) scale appropriate for the energy deposited by electrons
or photons. These jets are then calibrated to the hadronic en-
ergy scale, using a correction factor obtained from simula-
tion [37] which depends upon pT and η. If the closest object
to an electron candidate is a jet with a separation 
R < 0.2
the jet is removed in order to avoid double-counting of elec-
trons as jets.

Jets originating from b-quarks are selected by exploiting
the long lifetime of b-hadrons (about 1.5 ps) which leads
to typical flight paths of a few millimetres which are ob-
servable in the detector. The SV0 b-tagging algorithm [38]
used in this analysis explicitly reconstructs a displaced ver-
tex from the decay products of the long-lived b-hadron. As
input, the SV0 tagging algorithm is given a list of tracks
associated to the calorimeter jet. Only tracks fulfilling cer-
tain quality criteria are used in the secondary vertex fit. Sec-
ondary vertices are reconstructed in an inclusive way start-
ing from two-track vertices which are merged into a com-
mon vertex. Tracks giving large χ2 contributions are then
iteratively removed until the reconstructed vertex fulfils cer-
tain quality criteria. Two-track vertices at a radius consis-
tent with the radius of one of the three pixel detector layers

5The radius 
R between the object axis and the edge of the object

cone is defined as 
R =
√


φ2 + 
η2.

are removed, as these vertices likely originate from mate-
rial interactions. A jet is considered b-tagged if it contains a
secondary vertex, reconstructed with the SV0 tagging algo-
rithm, with L/σ(L) > 5.72, where L is the decay length and
σ(L) its uncertainty. This operating point yields a 50% b-
tagging efficiency in simulated t t̄ events The sign of L/σ(L)

is given by the sign of the projection of the decay length vec-
tor on the jet axis. The typical probability for a light jet to be
mis-identified as a b-jet ranges from 0.002 to 0.01 for jets
with pT ranging 20 and 200 GeV [38].

The missing transverse energy is constructed from the
vector sum of all calorimeter cells contained in topologi-
cal clusters. Calorimeter cells are associated with a parent
physics object in a chosen order: electrons, jets and muons,
such that a cell is uniquely associated to a single physics ob-
ject [39]. Cells belonging to electrons are calibrated at the
electron energy scale, but omitting the out-of-cluster correc-
tion to avoid double cell-energy counting, while cells be-
longing to jets are taken at the corrected energy scale used
for jets. Finally, the contributions from muons passing selec-
tion requirements are included, and the contributions from
any calorimeter cells associated to the muons are subtracted.
The remaining clustered energies not associated to electrons
or jets are included at the EM scale.

The modelled acceptances and efficiencies are verified by
comparing Monte-Carlo simulations with data in control re-
gions which are depleted of t t̄ events. Lepton efficiencies
are derived from data in the Z boson mass window. The ac-
ceptances for the jet multiplicity and Emiss

T cuts are validated
using a number of control regions surrounding the t t̄ signal
region in phase-space.

4.1 Systematic uncertainties for reconstructed objects

The uncertainties due to Monte-Carlo simulation modelling
of the lepton trigger, reconstruction and selection efficien-
cies are assessed using leptons from Z → ee and Z → μμ

events selected from the same data sample used for the t t̄

analyses. Scale factors are applied to Monte-Carlo samples
when calculating acceptances. The statistical and systematic
uncertainties on the scale factors are included in the un-
certainties on the acceptance values. The modelling of the
lepton energy scale and resolution are studied using recon-
structed Z boson mass distributions, and used to adjust the
simulation accordingly.

The jet energy scale (JES) and its uncertainty are derived
by combining information from test-beam data, LHC colli-
sion data and simulation [37]. The JES uncertainty varies in
the range 6–10% as a function of jet pT and η. The jet en-
ergy resolution (JER) and jet finding efficiency measured in
data and in simulation are in agreement. The limited statis-
tical precision of the comparisons for the energy resolution
(14%) and the efficiency (1%) are taken as the systematic
uncertainties in each case.
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The b-tagging efficiency and mistag fraction of the SV0
b-tagging algorithm have been measured on data [38]. The
efficiency measurement is based on a sample of jets con-
taining muons and makes use of the transverse momentum
of a muon relative to the jet axis. The measurement of the
mistag fraction is performed on an inclusive jet sample and
includes two methods, one which uses the invariant mass
spectrum of tracks associated to reconstructed secondary
vertices to separate light- and heavy-flavour jets and one
which is based on the rate at which secondary vertices with
negative decay-length significance are present in the data.
Both the b-tagging efficiency and mistag fraction measured
in data depend strongly on the jet kinematics. In the range
25 < pT(jet) < 85 GeV, the b-tagging efficiency rises from
40% to 60%, while the mistag fraction increases from 0.2%
to 1% between 20 and 150 GeV. The measurements of the
b-tagging efficiencies and mistag fractions are provided in
the form of pT-dependent scale factors correcting the b-
tagging performance in simulation to that observed in data.
The relative statistical (systematic) uncertainties for the b-
tagging efficiency range from 3% to 10% (10% to 12%).
For the b-tagging efficiency, the scale factor is close to one
for all values of jet pT. For light-flavour jets we correct the
tagging efficiencies by factors of 1.27 ± 0.26 for jets with
pT < 40 GeV and 1.07 ± 0.25 for jets with pT > 40 GeV.

The LHC instantaneous luminosity varied by several or-
ders of magnitude during the data-taking period consid-
ered for this measurement, reaching a peak of about 1 ×
1031 cm−2 s−1. At this luminosity, an average of about
two extra pp interactions were superimposed on each hard
proton-proton interaction. This ‘pileup’ background pro-
duces additional activity in the detector, affecting variables
like jet reconstruction and isolation energy. No attempts to
correct the event reconstruction for these effects are made,
since the data-driven determination of object identification
and trigger efficiencies and backgrounds naturally include
them. The residual effects on the t t̄ event acceptance are
assessed by using t t̄ simulation samples with additional
pileup interactions, simulated with PYTHIA, that were over-
layed during event digitisation and reconstruction. In a sce-
nario where on average two pileup interactions are added to
each event, corresponding to conditions that exceed those
observed during the data taking period, the largest rela-
tive change of acceptance observed in any of the channels
is 3.6%. As the effect of pileup is small even in this pes-
simistic scenario, it is neglected in the acceptance systemat-
ics evaluation.

5 Single lepton analysis

5.1 Event selection

The single lepton t t̄ final state is characterised by an isolated
lepton with relatively high pT and missing transverse energy

corresponding to the neutrino from the leptonic W decay,
two b quark jets and two light jets from the hadronic W

decay.
The selection of events for the single-lepton analysis con-

sists of a series of requirements on the reconstructed objects
defined in Sect. 4, designed to select events with the above
topology. For each lepton flavour, the following event selec-
tions are first applied:

– The appropriate single-electron or single-muon trigger
has fired.

– The event contains one and only one reconstructed lep-
ton (electron or muon) with pT > 20 GeV. Electrons are
required to match the corresponding high-level trigger ob-
ject.

– Emiss
T > 20 GeV and Emiss

T +mT(W) > 60 GeV.6 The cut
on Emiss

T rejects a significant fraction of the QCD multi-jet
background. Further rejection can be achieved by apply-
ing a cut in the (Emiss

T , mT(W)) plane; true W → �ν de-
cays with large Emiss

T have also large mT(W), while mis-
measured jets in QCD multi-jet events may result in large
Emiss

T but small mT(W). The requirement on the sum of
Emiss

T and mT(W) discriminates between the two cases.
– Finally, the event is required to have ≥ 1 jet with pT >

25 GeV and |η| < 2.5. The requirement on the pT and the
pseudorapidity of the jets is a compromise between the
efficiency of the t t̄ events selection, and the rejection of
W + jets and QCD multi-jet background.

Events are then classified by the number of jets with pT >

25 GeV and |η| < 2.5, being either 1, 2, 3 or at least 4. These
samples are labelled ‘1-jet pre-tag’ through ‘≥4-jet pre-tag’,
where the number corresponds to the jet multiplicity as de-
fined above and pre-tag refers to the fact that no b-tagging
information has been used. Subsets of these samples are then
defined with the additional requirement that at least one of
the jets with pT > 25 GeV is tagged as a b-jet. They are re-
ferred to as the ‘1-jet tagged’ through ‘≥4-jet tagged’ sam-
ples.

Figure 1 shows the observed jet multiplicity for events in
the pre-tag and tagged samples, together with the sum of all
expected contributions as expected from simulation, except
for QCD multi-jet, which is taken from a data-driven tech-
nique discussed in Sect. 5.2. The largest fraction of t t̄ events
is concentrated in ≥4-jets bin of the tagged sample, which
is defined as the signal region and used for the t t̄ signal ex-
traction in the primary method described in Sect. 5.5.1. One
of the cross-check methods, discussed in Sect. 5.5.2, uses in
addition the 3-jet tagged sample for signal extraction. Other

6Here mT(W) is the W -boson transverse mass, defined as
√

2p�
Tpν

T(1 − cos(φ� − φν)) where the measured missing ET vector
provides the neutrino information.
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Fig. 1 Jet multiplicity distributions (i.e. number of jets with pT >

25 GeV). Top row—pre-tag samples: a electron channel, b muon
channel and c electron/muon combined. Bottom row—tagged sam-
ples: d electron channel, e muon channel and f electron/muon com-
bined. The data are compared to the sum of all expected contributions.

For the totals shown, simulation estimates are used for all contribu-
tions except QCD multi-jet, where a data-driven technique is used. The
background uncertainty on the total expectation is represented by the
hatched area. The ≥4-jet bin in the tagged sample represents the signal
region

regions are used as control samples for the determination of
backgrounds.

Table 1 lists the numbers of events in the four tagged
samples, as well as the number of events in the 3-jet and
≥4-jet zero-tag samples, which comprise the events not con-
taining b-tagged jets. These events are used for background
normalisation in the second cross-check method described
in Sect. 5.5.2. For all samples, Table 1 also lists the con-
tributions estimated from Monte Carlo simulation for t t̄ ,
W + jets, Z + jets and single-top events. The quoted uncer-
tainties are from object reconstruction and identification. For
the data-driven estimates of W + jets and QCD multi-jet, the
results of the procedures that will be detailed in Sects. 5.3
and 5.4 are quoted. The uncertainty on the background pre-

diction is mostly systematic and largely correlated between
bins, and is also different in the electron and muon chan-
nels due to different sample composition in terms of QCD
multi-jet and W + jets fractions. QCD multi-jet is larger
than W + jets in the electron channel, while it is smaller
for muons.

The estimated product of acceptance and branching frac-
tion for t t̄ events in the ≥4-jet tagged signal region, mea-
sured from Monte-Carlo samples, are (3.1 ± 0.7)% and
(3.2 ± 0.7)% for e + jets and μ + jets, respectively. About
90% of the selected t t̄ events come from the correspond-
ing t → W → e or μ decay including leptonic τ decays,
and the acceptance for those events is 15 ± 3%. The remain-
ing 10% comes from dilepton events where one of the lep-
tons was not reconstructed as electron or muon. The con-
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Table 1 Number of tagged and zero-tag events with different jet mul-
tiplicities in (a) the e + jets and (b) the μ + jets channel. The observed
number of events are shown, together with the Monte-Carlo simula-
tion estimates (MC) for t t̄ , W + jets, Z + jets and single-top events,
normalised to the data integrated luminosity of 2.9 pb−1. The data-
driven estimates (DD) for QCD multi-jet (see Sect. 5.3) and W + jets

(see Sect. 5.4) backgrounds are also shown. The ‘Total (non t t̄ )’ row
uses the simulation estimate for W + jets for all samples. The uncer-
tainties on all data-driven background estimates include the statistical
uncertainty and all systematic uncertainties. The numbers in the ‘To-
tal expected’ rows are rounded to a precision commensurate with the
uncertainty

(a)

e + jets channel

1-jet 2-jet 3-jet ≥4-jet 3-jet ≥4-jet

tagged tagged tagged tagged zero-tag zero-tag

QCD (DD) 21.9 ± 3.4 16.4 ± 4.0 4.9 ± 2.7 4.8 ± 3.1 52.0 ± 19 23.0 ± 11

W + jets (MC) 14.5 ± 10 9.5 ± 6.6 3.4 ± 2.7 1.5 ± 1.4 55.1 ± 26 15.1 ± 10

W + jets (DD) – – – 1.9 ± 1.1 – 9.3 ± 4.0

Z + jets (MC) 0.1 ± 0.1 0.3 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 4.6 ± 2.2 1.7 ± 1.3

Single top (MC) 1.6 ± 0.3 2.6 ± 0.6 1.3 ± 0.3 0.7 ± 0.2 0.9 ± 0.2 0.4 ± 0.1

Total (non t t̄) 38.1 ± 11 28.8 ± 7.7 9.7 ± 3.8 7.2 ± 3.4 112.6 ± 32 40.2 ± 15

t t̄ (MC) 0.6 ± 0.2 4.0 ± 1.0 8.8 ± 1.8 14.9 ± 3.5 4.5 ± 0.8 5.4 ± 1.2

Total expected 39 ± 11 33 ± 8 19 ± 4 22 ± 5 117 ± 32 46 ± 15

Observed 30 21 14 17 106 39

(b)

μ + jets channel

1-jet 2-jet 3-jet ≥4-jet 3-jet ≥4-jet

tagged tagged tagged tagged zero-tag zero-tag

QCD (DD) 6.1 ± 2.9 3.4 ± 1.8 1.5 ± 0.8 0.8 ± 0.5 4.9 ± 2.3 1.7 ± 1.1

W + jets (MC) 17.8 ± 12 10.5 ± 7.4 4.3 ± 3.3 1.7 ± 1.6 63.6 ± 28 17.6 ± 12

W + jets (DD) – – – 3.2 ± 1.7 – 15.7 ± 4.5

Z + jets (MC) 0.3 ± 0.1 0.4 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 3.3 ± 1.6 1.3 ± 0.8

Single top (MC) 1.7 ± 0.4 2.5 ± 0.5 1.5 ± 0.3 0.7 ± 0.2 1.1 ± 0.2 0.3 ± 0.1

Total (non t t̄) 25.9 ± 13 16.8 ± 7.6 7.4 ± 3.4 3.3 ± 1.7 72.9 ± 29 20.9 ± 13

t t̄ (MC) 0.7 ± 0.2 4.1 ± 1.1 9.0 ± 1.8 15.0 ± 3.4 4.6 ± 0.7 5.5 ± 1.2

Total expected 27 ± 13 21 ± 8 16 ± 4 18 ±4 78 ± 29 26 ± 13

Observed 30 30 18 20 80 36

tribution from fully hadronic t t̄ events is negligible. The
uncertainties on the acceptance originate from physics pro-
cess modelling and object selection uncertainties detailed in
Sects. 3.1 and 4.1.

5.2 Background determination strategy

The expected dominant backgrounds in the single-lepton
channel are W + jet events, which can give rise to the same
final state as t t̄ signal, and QCD multi-jet events. QCD
multi-jet events only contribute to the signal selection if the
reconstructed Emiss

T is sufficiently large and a fake lepton
is reconstructed. Fake leptons originate in misidentified jets

or are non-prompt leptons, e.g. from semileptonic decays of
heavy quarks.

In the pre-tag samples both W + jets and QCD multi-jet
are dominated by events with light quarks and gluons. In
the b-tagged samples, light-quark and gluon final states are
strongly suppressed and their contributions become compa-
rable to those with bb̄ pairs, cc̄ pairs and single c quarks,
which are all of a similar magnitude.

The contribution of W + jet events and QCD multi-jet
events to the ≥4-jet bin are both measured with data-driven
methods, as detector simulation and/or theoretical predic-
tions are insufficiently precise. The remaining smaller back-
grounds, notably single-top production and Z + jets produc-
tion, are estimated from simulation.
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5.3 Background with fake and non-prompt leptons

5.3.1 Background estimate in the μ + jets channel

In the μ + jets channel, the background to ‘real’ (prompt)
muons coming from ‘fake’ muons in QCD multi-jet events,
is predominantly due to final states with a non-prompt
muon. As all other processes (t t̄ , W + jets, Z + jets and
single-top) in this channel feature a prompt muon from a W

or Z boson decay, it is sufficient to estimate the number of
events with a non-prompt muon to quantify the QCD multi-
jet background.

The number of events in the sample with a non-prompt
muon can be extracted from the data by considering the
event count in the signal region with two sets of muon identi-
fication criteria. The ‘standard’ and ‘loose’ criteria comprise
the standard muon definition described in Sect. 4, with and
without, respectively, the requirements on the lepton isola-
tion.

The procedure followed at this point is a so-called ‘ma-
trix method’: the number of events selected by the loose and
by the standard cuts, N loose and N std respectively, can be ex-
pressed as linear combinations of the number of events with
a ‘real’ (prompt) or a ‘fake’ muon:

N loose = N loose
real + N loose

fake ,

N std = rN loose
real + f N loose

fake ,
(1)

where r is the fraction of ‘real’ (prompt) muons in the loose
selection that also pass the standard selection and f is the
fraction of ‘fake’ (non-prompt) muons in the loose selection
that also pass the standard selection. If r and f are known,
the number of events with non-prompt muons can be calcu-
lated from (1) given a measured N loose and N std. The rel-
ative efficiencies r and f are measured in data in control
samples enriched in either prompt or non-prompt muons.
The key issue in selecting these control regions is that they
should be kinematically representative of the signal region
so that the measured control-region efficiency can be applied
in the signal region.

An inclusive Z → μ+μ− control sample is used to mea-
sure the prompt muon efficiency r = 0.990 ± 0.003. No sta-
tistically significant dependence on the jet multiplicity is ob-
served. For the measurement of the non-prompt muon effi-
ciency two control regions are used: a Sample A with low
missing transverse energy (Emiss

T < 10 GeV) and at least
one jet with pT > 25 GeV, and a Sample B with the nominal
missing transverse energy requirement (Emiss

T > 20 GeV), at
least one jet with pT > 25 GeV, and a high muon impact pa-
rameter significance. Sample A is dominated by QCD multi-
jet events as most QCD multi-jet events have little real Emiss

T
and the cross-section is comparatively large. The contribu-
tion from events with prompt muons from W /Z+ jets which

remains in the Emiss
T < 10 GeV region has to be subtracted.

Since the contribution of these processes is not accurately
known, it is evaluated in an iterative procedure: the initial
value obtained for f is used to predict the number of leptons
in the full Emiss

T range. The excess of candidate lepton events
in data is attributed to prompt muons from W /Z + jets,
whose contribution to the Emiss

T < 10 GeV region is then
subtracted, obtaining a new value for f . The procedure con-
verges in few iterations and it results in f A = 0.382±0.007,
where the quoted uncertainty is statistical only. Sample B is
kinematically close to the signal region, but the large im-
pact parameter significance requirement selects muons that
are incompatible with originating from the primary vertex
and the sample is thus enriched in non-prompt muons. Here
a value f B = 0.295 ± 0.025 is measured, where the uncer-
tainty is again statistical only.

Since both samples A and B are reasonable, but im-
perfect, approximations of the signal region in terms of
event kinematics, the unweighted average f = 0.339 ±
0.013 (stat.)±0.061 (syst.) is taken as the central value. The
systematic uncertainty is determined by half the difference
between the control regions, multiplied by

√
2 to obtain an

unbiased estimate of the underlying uncertainty, assuming
that the two control regions have similar kinematics as the
signal region. A single value of f is used to estimate the
background in each of the four pre-tag μ + jets samples us-
ing (1). The validity of this approach has been verified on
samples of simulated events.

For the tagged samples, the estimated background in
each pre-tag sample is multiplied by the measured prob-
ability for a similar QCD multi-jet event to have at least
one b-tagged jet. This results in a more precise measure-
ment of the tagged event rate than a measurement of f in
a tagged control sample, which has a large statistical uncer-
tainty due to the relatively small number of tagged events.
The b-tagging probabilities for QCD multi-jet events are
0.09 ± 0.02, 0.17 ± 0.03, 0.23 ± 0.06 and 0.31 ± 0.10 for
1 through ≥4-jet, respectively. These per-event b-tag proba-
bilities have been measured in a sample defined by the pre-
tag criteria, but without the Emiss

T cut, and by relaxing the
muon selection to the loose criteria. The systematic uncer-
tainty on this per-event tagging probability is evaluated by
varying the selection criteria of the sample used for the mea-
surement.

The estimated yields of QCD multi-jet events in the
tagged μ + (1,2,3 and ≥4-jet), zero-tag μ + (3 and ≥4-
jet) and the pre-tag μ + (1 and 2-jet) are summarised in Ta-
ble 1(b) and also shown in Table 2. Figure 2(a) shows the
distribution of mT(W) for the 1-jet pre-tag sample without
the Emiss

T + mT(W) requirement, while Figs. 2(b) and (c)
show mT(W) for the 2-jet pre-tag and for the 2-jet tagged
samples respectively after the Emiss

T + mT(W) requirement.
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Table 2 Observed event yields in the pre-tag 1-jet and 2-jet samples
and estimated contributions from non-W processes and W → τν. The
estimation for QCD multi-jet events is data-driven (DD), all other es-

timates are based on simulation (MC). The last row gives the number
of W(lν) + jet events, estimated as the observed event count minus all
other contributions

1-jet pre-tag e 1-jet pre-tag μ 2-jet pre-tag e 2-jet pre-tag μ

Observed 1815 1593 404 370

QCD multijet (DD) 517 ± 89 65 ± 28 190 ± 43 20.0 ± 9.7

W(τν) + jets (MC) 39 ± 10 43 ± 11 11.7 ± 4.4 13.6 ± 5.1

Z + jets (MC) 19.0 ± 9.1 48 ± 12 11.6 ± 5.2 14.0 ± 4.8

t t̄ (MC) 1.7 ± 0.8 1.7 ± 0.8 7.0 ± 3.0 7.7 ± 3.3

single-t (MC) 4.4 ± 0.7 5.0 ± 0.8 5.2 ± 0.8 5.1 ± 0.8

diboson (MC) 4.8 ± 4.8 5.7 ± 5.7 3.8 ± 3.8 4.4 ± 4.4

Total (non W(lν) + jets) 585 ± 90 168 ± 33 229 ± 44 65 ± 13

Estimated W(lν) + jets 1230 ± 100 1425 ± 52 175 ± 49 305 ± 23

Fig. 2 Distributions of mT(W). Top row—μ + jets channel: a the 1-
jet pre-tag sample (where the Emiss

T + mT(W) requirement is not ap-
plied), b the 2-jet pre-tag sample and c the 2-jet tagged sample. Bottom
row—e + jets channel: d the 1-jet pre-tag sample, e the 2-jet pre-tag

sample and f the 3-jet tagged sample. In each plot data are compared to
the sum of the data-driven QCD estimate plus the contributions from
W/Z + jets and top from simulation. The background uncertainty on
the total expectation is represented by the hatched area
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Good agreement is observed comparing the data to the esti-
mated rate of QCD multi-jet events summed with the other
(non-QCD) simulation predictions.

The full QCD multi-jet background estimation procedure
has been validated by applying the procedure on a sample of
simulated events and comparing the result with the known
amount of QCD multi-jet background in the sample. The
systematic uncertainty on the μ + jets multi-jet background
estimate is due to the control region uncertainty described
above, and up to a relative 30% uncertainty originating from
the method validation studies on the simulation and, for the
tagged samples, the uncertainty originating from the per-
event b-tagging probabilities.

5.3.2 Background estimate in the e + jets channel

In the e+ jets channel, the background consists of both non-
prompt electrons and fake electrons where the latter include
both electrons from photon conversion and misidentified jets
with high EM fractions. The relative magnitude of the non-
prompt and fake components is not well known, as it de-
pends on the details of electron misreconstruction effects
that are not perfectly modelled in the simulation as well as
on the fraction of QCD multi-jet events with non-prompt
electrons in the final state. As the ratio also varies with the
event kinematics, the method of (1), which relies on a repre-
sentative control region to measure the input values of f , is
not well suited for the electron channel.

A method, based on a binned likelihood template fit of
the Emiss

T distribution, is used for the background estimate.
For each previously defined pre-tag and tagged sample, the
data are fitted to a sum of four templates describing the Emiss

T
distribution of the QCD multi-jet, t t̄ , W + jets and Z + jets
components respectively. The fit is performed in the region
with Emiss

T < 20 GeV which is complementary to the signal
region. To improve the statistical precision the requirement
on Emiss

T + mT(W) is not applied. The templates for the t t̄ ,
W + jets and Z + jets components are taken from Monte-
Carlo simulation, while the templates for the QCD multi-jet
Emiss

T distributions are obtained from two data control sam-
ples. In the first sample called ‘jet-electrons’, events are se-
lected which have, instead of the standard electron, an addi-
tional jet which passes the standard electron kinematic cuts
and has at least 4 tracks and an EM fraction of 80–95%. In
the second sample called ‘non-electrons’, the standard event
selection is applied, except that the electron candidate must
fail the track quality cut in the innermost layers of the track-
ing detector.

The fraction of QCD multi-jet events in the signal re-
gion is calculated by extrapolating the expected fraction
of events for each component to the signal region using
the template shape and accounting for the efficiency of the
Emiss

T +mT(W) cut for each template. The output of the fit is

ρQCD, the predicted fraction of QCD multi-jet events in the
signal region, which is then multiplied by the observed event
count. Since both control samples are approximations of the
signal region in terms of event kinematics, the unweighted
average of ρQCD predicted by the template fits using the jet-
electron and non-electron templates, respectively, is taken
for the QCD multi-jet component. The uncertainty on ρQCD

has a component from the template fit uncertainty, a compo-
nent that quantifies the uncertainty related to the choice of
control sample, evaluated as the difference in ρQCD from the
two samples divided by

√
2, and a component related to the

method calibration performed on simulation samples. The
latter varies between 2% and 36% depending on the sample.

The results for the QCD multi-jet background contribu-
tion to the e + jets channel are summarised in Table 1(a),
and are also shown in Table 2. The estimates for the tagged
e + jets samples are performed directly in tagged control
samples which have a sufficiently large number of events,
and no per-event b-tagging probabilities are used.

Figure 2 (bottom row) shows the distributions of mT(W)

for (d) the e + 1-jet pre-tag, (e) the e + 2-jet pre-tag, and
(f) the e + 3-jet tagged samples. Acceptable agreement is
observed between data and the sum of the QCD multi-jet
background estimated with the fitting method and the other
backgrounds estimated from simulation.

5.4 W + jets background

The data-driven estimate for the W + jets background in
both electron and muon channels is constructed by multiply-
ing the corresponding background contribution in the pre-
tag sample by the per-event b-tagging probability:

W
≥4-jet
tagged = W

≥4-jet
pre-tag · f ≥4-jet

tagged . (2)

Here W
≥4-jet
pre-tag is an estimate of the W + jets event count in

the pre-tag ≥4 jet sample and f
≥4-jet
tagged is the fraction of these

events that are tagged, calculated as

f
≥4-jet
tagged = f

2-jet
tagged · f corr

2→≥4, (3)

where f
2−jet
tagged is a measurement of the W + jets tag fraction

in the 2-jet sample and f corr
2→≥4 accounts for the difference

in flavour composition between the 2-jet and ≥4-jet sam-
ples as well as differences in the per-flavour event tagging
probabilities, which may lead to different event rates after
b-tagging.

For the first ingredient, W
≥4-jet
pre-tag, the fact that the ratio of

W +n+1 jets to W +n jets is expected to be approximately
constant as a function of n is exploited [40–42]. This is sup-
ported by the good agreement with the Standard Model ex-
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pectation as shown in Fig. 1. The number of W events in the
≥4-jet pre-tag sample can thus be estimated as

W
≥4-jet
pre−tag = W

2-jet
pre-tag ·

∞∑

n=2

(
W

2-jet
pre-tag/W

1-jet
pre-tag

)n
, (4)

where the sum is used to extrapolate to a sample with four or
more jets. These rates are obtained by subtracting the esti-
mated non-W boson contributions from the event count in
the pre-tag 1-jet and 2-jet bins. The QCD multi-jet con-
tribution is estimated from data as described in Sect. 5.3
and simulation-based estimates are used for the other back-
grounds. The scaling behaviour of (4) does not apply to
W → τν events as their selection efficiency depends sig-
nificantly on the jet multiplicity. This contribution is sub-
tracted from the observed event count in the W

1-jet
pre−tag and

W
2-jet
pre-tag control samples and is estimated separately in the

electron and the muon channel using the simulation to pre-
dict the ratio of (W → τν/W → �ν). The data-driven tech-
nique is used for the estimation of the W → eν background
in the electron channel and the W → μν background in the
muon channel. Table 2 compares the observed event yields
in both the 1-jet and 2-jet samples with the estimated pre-tag
backgrounds for both the electron and muon channels. Fig-
ures 2(b) and (e) show the mT(W) distribution for the 2-jet
pre-tag samples in the muon and electron channels, respec-
tively.

The ratio between the 2-jet and 1-jet rates is measured
with significantly poorer precision in the electron channel,
because of the larger QCD multi-jet contamination. Since
the ratio between the 2-jet and 1-jet rates is expected to be
independent of the W boson decay mode, the muon channel
estimation is used also for the electron channel, giving

W
≥4-jet
pre-tag = 11.2 ± 2.2(stat.) ± 4.0(syst.), e channel,

W
≥4-jet
pre-tag = 18.9 ± 4.1(stat.) ± 5.0(syst.), μ channel.

The leading systematic uncertainties are the uncertainty on
the purity of the low jet multiplicity control samples and the
uncertainty associated with the assumption that the (W +
n + 1 jets)/(W + n jets) ratio is constant. The latter relative
uncertainty has been evaluated to be 24% from the results
reported in [43].

For the second ingredient, f
2-jet
tagged, the pre-tag yield is

taken from Table 2 and the pre-tag non-W boson back-
grounds (also from Table 2) are subtracted from this yield.
This gives an estimate of the W + jets contribution in the 2-
jet pre-tag sample. The same is done in the tagged sample:
the estimated non-W boson backgrounds, as shown in Ta-
ble 1, are subtracted from the measured yield after applying
the tagging criteria resulting in an estimate of the W + jets
contribution in the 2-jet sample after tagging. The ratio of

the tagged to the pre-tag contributions represents the esti-
mate of the fraction of tagged events in the 2-jet sample

f
2−jet
tagged = 0.060 ± 0.018(stat.) ± 0.007(syst.).

This quantity is computed from the muon channel only, due
to the large uncertainty originating from the QCD multi-jet
contamination in the electron channel. Figures 2(b) and (c)
show the distribution of the transverse mass mT(W) for the
μ+ jets 2-jet pre-tag and tagged samples respectively. Clear
W signals are evident in both samples.

The final ingredient, the correction factor f corr
2→≥4, is de-

fined as f corr
2→≥4 = f

≥4-jet
tagged /f

2-jet
tagged. It is obtained from simu-

lation studies on ALPGEN W + jets events and is determined
to be:

f corr
2→≥4 = 2.8 ± 0.8(syst.). (5)

The quoted uncertainty on f corr
2→≥4 reflects uncertainties on

the assumed flavour composition of the pre-tag 2-jet sam-
ple, the uncertainty on the scaling factors for the b-tagging
efficiency for b, c and light-quark jets, and the uncertainty
on the ratio of fractions in the 2-jet bin and the ≥4-jet bin for
W + bb̄ + jets, W + cc̄ + jets and W + c + jets. The lead-
ing uncertainty on f corr

2→≥4 is due to the uncertainty on the
predicted ratios of flavour fractions in the 2-jet and ≥4-jet
bin. This is estimated by the variation of several ALPGEN

generator parameters that are known to influence these ra-
tios [18], and adds up to a relative 40%–60% per ratio. The
uncertainty on the flavour composition in the 2-jet bin, while
large in itself, has a small effect on f corr

2→≥4 due to effective
cancellations in the ratio.

Applying (2) and (3) the estimated yields for W + jets in
the ≥4-jet tagged samples are

W
≥4−jet
tagged = 1.9 ± 0.7(stat.) ± 0.9(syst.), e channel,

W
≥4-jet
tagged = 3.2 ± 1.2(stat.) ± 1.2(syst.), μ channel.

as reported in Table 1.

5.5 Cross-section measurement

5.5.1 Counting-based measurement of the cross-section
in the ≥4-jet bin

In the ≥4-jet tagged sample the t t̄ signal yield is obtained
by subtracting the estimated rate of all backgrounds from
the observed event yield. This method depends crucially on
the understanding of the background, but makes minimal as-
sumptions on t t̄ signal properties for the yield calculation.
For the QCD multi-jet and W + jets backgrounds, the data-
driven estimates described in detail in Sects. 5.3 and 5.4 are
used, while for the expected background from Z + jets and
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single-top production, simulation estimates are used. Table 1
shows the complete overview of background contributions
that are used in this calculation. The observed yields, the to-
tal expected background yields and the resulting t t̄ signal
yields for the e + jets, μ + jets and combined channels are
shown in Table 3.

The product of acceptance and branching fraction of t t̄

events in the ≥4-jet tagged signal region, measured from
Monte-Carlo samples and quoted in Sect. 5.1, is used to-
gether with the value of the integrated luminosity to extract
the cross-section (σtt̄ ) from the observed event yield. The
resulting cross-sections are shown in Sect. 5.5.3.

Table 3 Observed event yield, estimated total background and t t̄ sig-
nal using the counting method in the b-tagged ≥4-jet bin, for electrons
and muons separately and combined. The total background consists of
the sum of individual backgrounds listed in Table 1, choosing the data-
driven estimate for W + jets (instead of the simulation-based W + jets
estimate used in the ‘total (non-t t̄ )’ row of Table 1). The uncertainty
on the total background includes statistical uncertainties in control re-
gions and systematic uncertainties. The first quoted uncertainty on the
t t̄ signal yield is statistical, while the second is from the systematics on
the background estimation

e + jets μ + jets combined

Observed 17 20 37

Estimated
background

7.5 ± 3.1 4.7 ± 1.7 12.2 ± 3.9

t t̄ 9.5 ± 4.1 ± 3.1 15.3 ± 4.4 ± 1.7 24.8 ± 6.1 ± 3.9

Table 4 provides a detailed breakdown of the total sys-
tematic uncertainties on the cross-section for this method.
The components listed under ‘Object selection’ relate to
sources discussed in Sect. 4.1. The components listed un-
der ‘Background rates’ relate to the uncertainties on back-
ground estimates detailed in Sects. 5.3 and 5.4. The com-
ponents listed under ‘Signal simulation’ relate to sources
discussed in Sect. 3.1. The largest systematic uncertainty is
due to the normalisation of the QCD multi-jet background
in the e + jets channel, followed by the uncertainties which
affect mainly the t t̄ acceptance, like jet energy reconstruc-
tion, b-tagging and ISR/FSR. The dependence of the mea-
sured cross-section on the assumed top-quark mass is small.
A change of ±1 GeV in the assumed top-quark mass results
in a change of ∓1% in the cross-section.

While not used in the counting method, further informa-
tion can be gained from the use of kinematic event prop-
erties: in the t t̄ candidate events, three of the reconstructed
jets are expected to come from a top quark which has de-
cayed into hadrons. Following [21], the hadronic top quark
candidate is empirically defined as the combination of three
jets (with pT > 20 GeV) having the highest vector sum pT.
This algorithm does not make use of the b-tagging informa-
tion and selects the correct combination of the reconstructed
jets in about 25% of cases. The observed distributions of
the invariant mass (mjjj) of the hadronic top quark candi-
dates in the various ≥4-jet samples, shown in Figs. 3(a)–
(c), demonstrate good agreement between the data and the

Table 4 Summary of individual
systematic uncertainty
contributions to the
single-lepton cross-section
determination using the
counting method. The combined
uncertainties listed in the
bottom two rows include the
luminosity uncertainty

Relative cross-section uncertainty [%]

Source e + jets μ + jets

Statistical uncertainty ±43 ±29

Object selection

Lepton reconstruction, identification, trigger ±3 ±2

Jet energy reconstruction ±13 ±11

b-tagging −10/+15 −10/+14

Background rates

QCD normalisation ±30 ±2

W + jets normalisation ±11 ±11

Other backgrounds normalisation ±1 ±1

Signal simulation

Initial/final state radiation −6/+13 ±8

Parton distribution functions ±2 ±2

Parton shower and hadronisation ±1 ±3

Next-to-leading-order generator ±4 ±6

Integrated luminosity −11/+14 −10/+13

Total systematic uncertainty −38/+43 −23/+27

Statistical + systematic uncertainty −58/+61 −37/+40
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Fig. 3 Distributions of the
invariant mass of the 3-jet
combination having the highest
pT for a the ≥4-jet tagged
e + jets sample, b the ≥4-jet
tagged μ + jets sample, c the
≥4-jet tagged samples
combined and d the combined
3-jet tagged sample. The data is
compared to the sum of all
expected contributions. For the
totals shown, simulation
estimates are used for all
contributions except QCD
multi-jet, where a data-driven
technique is used. The
background uncertainty on the
total expectation is represented
by the hatched area

signal + background expectation. Figure 3(d) highlights a
substantial contribution of t t̄ signal events in the 3-jet tagged
sample and demonstrates further information which is also
not exploited by the baseline counting method.

5.5.2 Fit based cross-section measurement in the 3-jet
and ≥4-jet samples

A complementary approach to measuring the cross-section
exploits the data in both the 3-jet and ≥4-jet samples. With
the current data sample, it provides an important cross-check
of the counting method, as it makes different physics as-
sumptions for the signal and background modelling. This
technique is expected to become more precise once more
data has been collected.

In the first approach (A), the tagged 3-jet and ≥4-jet sam-
ples are used. The mjjj distribution for each sample is de-
scribed by the sum of four templates for t t̄ , W + jets, QCD
multi-jet and other backgrounds respectively. This method
fits simultaneously the t t̄ and W + jets components, relying
mostly on shape information. The shapes of the templates
for t t̄ , W + jets and smaller backgrounds are taken from sim-
ulation. The template for the QCD multi-jet background is
taken from a data sample using a modified lepton definition,
which requires at least one of the selection criteria listed in
Sect. 4 to fail. A constraint is introduced on the ratio of the
W + jets yields in the 3-jet and ≥4-jet samples, based on the
simulation expectation of this ratio and accounting for its
systematic uncertainty. This ratio and its uncertainty is sim-
ilar to the f corr

2→≥4 correction factor discussed in Sect. 5.4,
and is calculated with the same procedure. Additionally, the
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W + jets yields in the e + jets and μ + jets channels are
related by their respective acceptances.

In the second approach (B), the tagged and zero-tag ≥4-
jet samples are used to extract the cross section, with a tem-
plate describing the sum of all backgrounds in each of these
two samples. The 3-jet zero-tag and tagged samples, which
have more background and less signal, are used to perform
an auxiliary measurement of the fraction of the background
that is tagged. This fraction is applied as a constraint on the
relative rate of background events in the ≥4-jet zero-tag and
≥4-jet tagged samples. A simulation-based correction is ap-
plied to the 3-jet tagged background fraction to obtain the
4-jet tagged background fraction that accounts for expected
differences in the background composition. The assumed
rate of t t̄ events in the 3-jet bin, used in the determination of
the background yield in that bin, is iteratively adjusted to the
measured cross-section. The template for t t̄ and the relative
contributions to the different samples are taken from simula-
tion. As the shape of the W + jets background is compatible
with the shape of the QCD background within the statistical
uncertainty, the template for the sum of all backgrounds, is
taken from a QCD multi-jet enhanced sample in data.

5.5.3 Results

The cross-sections obtained with the baseline counting
method in the e+ jets and μ+ jets channels are shown in Ta-
ble 5. The fit methods make different assumptions about the
signal and background and therefore serve as good cross-
checks; their cross-sections are also shown in Table 5 and
are in good agreement with those obtained from the baseline
counting method. Additionally, the estimate for the W + jets
background in ≥4-jet tagged sample as measured in fit A
is in agreement with the estimate quoted in Sect. 5.4. Ta-
ble 5 also shows the cross-section obtained with the count-
ing method for the e + jets and μ + jets channels, combined
using the procedure described in Sect. 7. For the fit methods,
the combined cross-sections are obtained from a simultane-
ous fit to the electron and muon samples.

Table 5 Inclusive t t̄ cross-section measured in the single-lepton chan-
nel using the counting method and the template shape fitting techniques
(A and B). The uncertainties represent respectively the statistical and
systematic uncertainty including luminosity. The top row shows the
counting-method results that are used for the combination presented in
Sect. 7

Method e + jets μ + jets e/μ + jets

combined

Counting σtt̄ [pb] 105 ± 46 +45
−40 168 ± 49 +46

−38 142 ± 34 +50
−31

Fitted σtt̄ (A) [pb] 98 ± 58 +34
−28 167 ± 68 +46

−39 130 ± 44 +38
−30

Fitted σtt̄ (B) [pb] 110 ± 50 ± 39 134 ± 52 ± 39 118 ± 34 ± 34

The systematic uncertainties of both fit-based methods
are dominated by acceptance-related systematic uncertain-
ties. Compared to the counting method, both fit-based tech-
niques have a reduced sensitivity to the QCD multi-jet back-
ground rate but have method specific systematics: the ratio
of tagged W + jets in the 3-jet and ≥4-jet bins and shape-
modelling uncertainties for fit A, and the modelling of the
b-tagged fraction for fit B. This trade-off results in a com-
parable total uncertainty for both methods compared to the
counting method.

6 Dilepton analysis

6.1 Event selection

The dilepton t t̄ final state is characterised by two isolated
leptons with relatively high pT, missing transverse energy
corresponding to the neutrinos from the W leptonic decays,
and two b quark jets. The selection of events in the signal
region for the dilepton analysis consists of a series of kine-
matic requirements on the reconstructed objects defined in
Sect. 4 and designed to select an orthogonal sample to the
one described in Sect. 5.1:

– Exactly two oppositely-charged leptons (ee, μμ or eμ)
each satisfying pT > 20 GeV, where at least one must be
associated to a leptonic high-level trigger object.

– At least two jets with pT > 20 GeV and with |η| < 2.5 are
required, but no b-tagging requirements are imposed.

– To suppress backgrounds from Z + jets and QCD multi-
jet events in the ee channel, the missing transverse energy
must satisfy Emiss

T > 40 GeV, and the invariant mass of
the two leptons must differ by at least 5 GeV from the Z

boson mass, i.e. |mee −mZ| > 5 GeV. For the muon chan-
nel, the corresponding requirements are Emiss

T > 30 GeV
and |mμμ − mZ| > 10 GeV.

– For the eμ channel, no Emiss
T or Z boson mass veto cuts

are applied. However, the event HT, defined as the scalar
sum of the transverse energies of the two leptons and
all selected jets, must satisfy HT > 150 GeV to suppress
backgrounds from Z + jets production.

– To remove events with cosmic-ray muons, events with
two identified muons with large, oppositely signed trans-
verse impact parameters (d0 > 500 µm) and consistent
with being back-to-back in the r − φ plane are discarded.

The Emiss
T , Z boson mass window, and HT cuts are de-

rived from a grid scan significance optimisation on simu-
lated events which includes systematic uncertainties. The
estimated t t̄ acceptance, given a dilepton event, in each of
the dilepton channels are 14.8 ± 1.6% (ee), 23.3 ± 1.8%
(μμ) and 24.8±1.2% (eμ). The corresponding acceptances
including the t t̄ branching ratios are 0.24% (ee), 0.38%
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Fig. 4 The Emiss
T distribution in the signal region for a the ee channel

without the Emiss
T > 40 GeV requirement, b the μμ channel without

the Emiss
T > 30 GeV requirement, and c the distribution of the HT,

defined as the scalar sum of the transverse energies of the two leptons
and all selected jets, in the signal region without the HT > 150 GeV
requirement

Fig. 5 Jet multiplicities for the signal region omitting the Njets ≥ 2 requirement in a the ee channel, b the μμ channel and c the eμ channel

(μμ) and 0.81% (eμ). The final numbers of expected and

measured events in the signal region are shown in Table 6.

Figure 4 shows the predicted and observed distributions of

Emiss
T for the ee and μμ channels and of HT for the eμ chan-

nel. The predicted and observed multiplicities of all jets and

b-tagged jets are compared in Figs. 5 and 6 for each channel

individually, and in Fig. 7 for all channels combined. Fig-

ure 7(b) shows that a majority of the selected events have

at least one b-tagged jet, consistent with the hypothesis that

the excess of events over the estimated background origi-

nates from t t̄ decay. In each of these plots the selection has

been relaxed to omit the cut on the observable shown.

6.2 Background determination strategy

The expected dominant backgrounds in the dilepton channel
are Z boson production in association with jets, which can
give rise to the same final state as t t̄ signal, and W + jets.
The latter can only contribute to the signal selection if the
event contains at least one fake lepton.

Both Z+ jets background and backgrounds with fake lep-
tons are estimated from the data. The contributions from re-
maining electroweak background processes, such as single-
top, WW , ZZ and WZ boson production are estimated from
Monte-Carlo simulations.
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Fig. 6 The b-tagged jet multiplicities in the signal region for a the ee channel, b the μμ channel and c the eμ channel

Fig. 7 a Jet multiplicity in the
signal region without the
Njets ≥ 2 requirement and b the
b-tagged jet multiplicity in the
signal region, both for the
combined dilepton channels

6.3 Non-Z lepton backgrounds

True t t̄ dilepton events contain two leptons from W boson
decays; the background comes predominantly from W + jets
events and single-lepton t t̄ production with a fake lepton and
a real lepton, though there is a smaller contribution with two
fake leptons coming from QCD multi-jet production. As in
the single-lepton analysis, in the case of muons, the dom-
inant fake-lepton mechanism is a semi-leptonic decay of a
heavy-flavour hadron, in which a muon survives the isola-
tion requirement. In the case of electrons, the three mecha-
nisms are heavy flavour decay, light flavour jets with a lead-
ing π0 overlapping with a charged particle, and conversion
of photons. Here ‘fake’ is used to mean both non-prompt

leptons and π0s, conversions etc misidentified as leptons
taken together.

The ‘matrix method’ introduced in Sect. 5.3.1 is extended
here to measure the fraction of the dilepton sample that
comes from fake leptons. A looser lepton selection is de-
fined, and then it is used to count the number of observed
dilepton events with zero, one or two tight (‘T’) leptons to-
gether with two, one or zero loose (‘L’) leptons, respectively
(NLL, NTL and NLT, NTT, respectively). Then two probabil-
ities are defined, r(f ), to be the probability that real (fake)
leptons that pass the loose identification criteria, will also
pass the tight criteria. Using r and f , linear expressions
are then obtained for the observed yields as a function of
the number or events with zero, one and two real leptons
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together with two, one and zero fake leptons, respectively
(NFF, NFR and NRF, NRR, respectively).

The method explicitly accounts for the presence of events
with two fake leptons. These linear expressions form a ma-
trix that is inverted in order to extract the real and fake con-
tent of the observed dilepton event sample:

⎡

⎢
⎣

NTT

NTL

NLT

NLL

⎤

⎥
⎦ =

⎡

⎣

r2 rf f r f 2

r(1 − r) r(1 − f ) f (1 − r) f (1 − f )

(1 − r)r (1 − r)f (1 − f )r (1 − f )f

(1 − r)2 (1 − r)(1 − f ) (1 − f )(1 − r) (1 − f )2

⎤

⎦

×
⎡

⎢
⎣

NRR

NRF

NFR

NFF

⎤

⎥
⎦ . (6)

For muons, the loose selection is identical to the one
described in Sect. 5.3.1. For loose electrons, the E/p cut
and isolation requirements are dropped, and the ‘medium’
electron identification criteria as defined in Ref. [33] is re-
placed with the corresponding loose definition, with looser
calorimeter and tracking cuts.

The efficiency for a real loose lepton to pass the full tight
criteria, r , is measured in data in a sample of Z → �� events
as a function of jet multiplicity. The corresponding effi-
ciency for fake leptons, f , is measured in data in events with

Table 6 The full breakdown of the expected t t̄ -signal and background
in the signal region compared to the observed event yields, for each of
the dilepton channels (MC is simulation based, DD is data driven). All
systematic uncertainties are included

ee μμ eμ

Z + jets (DD) 0.25 ± 0.18 0.67 ± 0.38 –

Z(→ ττ) + jets (MC) 0.07 ± 0.04 0.14 ± 0.07 0.13 ± 0.06

Non-Z leptons (DD) 0.16 ± 0.18 −0.08 ± 0.07 0.47 ± 0.28

Single top (MC) 0.08 ± 0.02 0.07 ± 0.03 0.22 ± 0.04

Dibosons (MC) 0.04 ± 0.02 0.07 ± 0.03 0.15 ± 0.05

Total (non t t̄) 0.60 ± 0.27 0.88 ± 0.40 0.97 ± 0.30

t t̄ (MC) 1.19 ± 0.19 1.87 ± 0.26 3.85 ± 0.51

Total expected 1.79 ± 0.38 2.75 ± 0.55 4.82 ± 0.65

Observed 2 3 4

a single loose lepton, which are dominated by QCD di-jet
production. Contributions from real leptons due to W + jets
in the fake lepton control region are subtracted using simu-
lated data.

The dominant systematic uncertainty on the W + jets
background, as determined by the matrix method, comes
from the possible difference in the mixture of processes
where the efficiency for fake leptons f is measured, di-jet
events and, where it is applied, the signal region. For elec-
trons, a larger contribution is expected from heavy flavour
events in the signal region due to t t̄ → �νbjjb events. This
effect is accounted for by measuring the dependence of
the efficiency for fake leptons on the heavy-flavour frac-
tion and calculating a corrected efficiency for fake leptons
based on the expected heavy-flavour fraction in the signal
region in simulation studies. The fake estimate in the data
includes contributions from events with tight and loose lep-
tons, whose contributions have opposite signs. This can lead
to some negative background estimates in the case of small
statistics, but always consistent with zero. The results of the
matrix method for the non-Z background are shown in Ta-
ble 7 for 0, 1 and ≥2 jet bins. The results for the signal
region (≥2 jets) is also reported in Table 6.

The most important cross-check comes from comparing
the matrix method with two additional methods. The first
(the ‘weighting method’) uses fake candidates in the single
lepton sample and a fake rate to build an event weight for
the fake lepton event. It uses a less restrictive loose defini-
tion and so probes the extrapolation of the fake rate f to
the signal region. The method gives results consistent with
the matrix method, as shown in Table 7. The second (the
‘fitting method’) makes no assumptions about the relative
mixture of fake-lepton mechanisms, but uses data-derived
templates in variables which can discriminate between real
and fake leptons to fit for the fake-lepton fraction in the sig-
nal region. These variables are the expected lepton isolation
and the number of high-threshold hits in the transition radi-
ation tracker, allowing to distinguish electrons from heavy
flavour decays or conversions. For the signal region the fit-
ting method predicts 0.01+0.97

−0 ± 0.01 non-W boson events

for the ee channel, 0.01+0.29
−0 ±0.01 for the μμ channel, and

0.13+0.42
−0.13 ± 0.14 for the eμ channel. The estimate from the

Table 7 Overview of the
estimated non-Z background
yields in the signal region using
two different data-driven
methods with their statistical
and systematic uncertainties
respectively. The matrix method
is the baseline method, the
weighting method is used as a
cross-check

Method Njets ee μμ eμ

Matrix 0 −0.07 ± 0.05 ± 0.05 −0.09 ± 0.05 ± 0.07 0.00 ± 0.01 ± 0.01

1 0.09 ± 0.14 ± 0.07 −0.03 ± 0.03 ± 0.04 0.28 ± 0.20 ± 0.09

≥2 0.16 ± 0.17 ± 0.06 −0.08 ± 0.04 ± 0.06 0.47 ± 0.26 ± 0.11

Weighting 0 0.03 ± 0.03 ± 0.02 0.34 ± 0.14 ± 0.32 0.00 ± 0.04 ± 0.04

1 0.06 ± 0.04 ± 0.06 0.10 ± 0.07 ± 0.11 0.08 ± 0.06 ± 0.06

≥2 0.10 ± 0.06 ± 0.08 0.00 ± 0.04 ± 0.04 0.10 ± 0.05 ± 0.09
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Table 8 Yields and uncertainties for the estimates of the Z+ jets back-
ground. The uncertainties are statistical and systematic, respectively

ee μμ

Z + jets (Monte-Carlo) 0.14 ± 0.03 ± 0.16 0.56 ± 0.06 ± 0.39

Z + jets (data-driven) 0.25 ± 0.09 ± 0.16 0.67 ± 0.22 ± 0.31

fitting method is based on data in the signal region, whereas
the other methods provide estimates for the signal region
based on measurement in control regions.

6.4 Z + jets background

Although the t t̄ event selection is designed to reject Z + jets
events, a small fraction of events which populate the Emiss

T
tails and dilepton invariant mass more than 5 GeV (for ee)
or 10 GeV (for μμ) away from the Z boson mass will en-
ter the signal sample. These events are difficult to model in
simulations due to large uncertainties on the non-Gaussian
missing energy tails, the Z boson cross-section for higher jet
multiplicities, and the lepton energy resolution. The Z + jets
events are expected to have significant Emiss

T tails, primarily
originating from mis-measurements of the jet energies.

The Z + jets background is estimated by extrapolating
from a control region orthogonal to the top quark signal re-
gion. This control region is defined using the cuts for the
signal region, but with an inverted Z boson mass window
(requiring |m�� −mZ| < 5 GeV for ee and |m�� −mZ| < 10
GeV for μμ) and lowering the Emiss

T requirement to Emiss
T >

20 GeV. For Emiss
T below the signal region the Z boson mass

window is extended to |m�� −MZ| < 15 GeV to reduce sys-
tematic uncertainties from the lepton energy scale and res-
olution. A scale factor from Z + jets simulation is used to
extrapolate from the observed yield in the control region to
the expected yield in the signal region. The small non-Z bo-
son background in the control region is corrected using the
Monte-Carlo expectation.

The yield estimates obtained with this procedure are
shown in Table 8, along with estimates of Z + jets back-
ground based on simulation only. The comparison demon-
strates that data-driven normalisation using the control re-
gions helps to reduce the effect of the systematic uncertain-
ties. The estimated yields from data are higher than those
from the Monte-Carlo prediction. This trend is also observed
in the control regions involving Emiss

T where jets are used in
the selection.

Due to the very limited data statistics, simulation is used
for the Z → ττ contribution instead of the data-driven
method used to estimate Z → ee and Z → μμ contribu-
tions. The modelling of the Z → ττ is cross-checked in the
eμ channel in the 0-jet bin, where five events are observed
in data versus a total expectation of 3.1 events, with an ex-
pected Z → ττ contribution of 2.4 events. The largest sys-

Table 9 Measured cross-sections in each individual dilepton channel
and in the combined fit. The uncertainties represent the statistical and
combined systematic uncertainty, respectively

Channel σtt̄ [pb]

ee 193 +243
−152

+84
−48

μμ 185 +184
−124

+56
−47

eμ 129 +100
−72

+32
−18

Combined 151 +78
−62

+37
−24

tematic uncertainty comes from that on the integrated lumi-
nosity. The estimated Z + jets backgrounds are summarised
in Table 6.

Data-driven backgrounds and simulated acceptances and
efficiencies are validated in control regions which are de-
pleted of t t̄ events: inside the Z boson peak for the same-
flavour channels; the 0- and 1-jet bin for the eμ channel.

Figure 8(a) and (b) show the jet multiplicity for events
where the dilepton mass lies inside the Z boson peak and
tests the initial state radiation (ISR) modelling of jets for
Z + jets processes. The dilepton mass plots, Figs. 8(c) and
(d), probe the lepton energy scale and resolution.

The understanding of γ → e+e− conversions can be
tested by using same-sign events. Five same-sign events
are observed inside the Z boson peak in the inclusive ee

channel and they are compatible, within the limited statis-
tics, with the conversions modelled by the simulations. No
same-sign events have been observed in the μμ or eμ chan-
nels.

6.5 Cross-section determination in the dilepton channels

The cross-section is measured in each dilepton channel and
translated into an inclusive t t̄ cross-section using the W →
�ν and τ → �νντ branching ratios. The cross-sections and
uncertainties in the individual channels are estimated using
the likelihood method as will be described in Sect. 7. The
cross-sections are summarised in Table 9, and the break-
down of the individual sources of cross-section uncertain-
ties are listed in Table 10. The dependence of the mea-
sured cross-section on the assumed top-quark mass is small.
A change of ±1 GeV in the assumed mass results in a
change of ∓0.5% in the cross-section.

7 Combination of the single lepton
and the dilepton channels

The combined measurement of the t t̄ production cross-
section is based on a likelihood fit in which the number of
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Fig. 8 Top row: Number of jets
in events with the measured
dilepton mass inside the Z

boson mass window with
inverted requirement on Emiss

T
for a the ee channel and b the
μμ channel. Bottom row:
Invariant mass of
opposite-signed lepton pairs in
events with ≥2 jets with
inverted requirement on Emiss

T
for c the ee channel and d the
μμ channel

expected events is modelled as

Nexp(σt t̄ , αj ) = L · εt t̄ (αj ) · σtt̄

+
∑

bkg

L · εbkg(αj ) · σbkg(αj )

+ NDD(αj ), (7)

where L is the integrated luminosity, εt t̄ is the signal ac-
ceptance, εbkg , σbkg are the efficiency and cross-section for
backgrounds as obtained from MC simulation respectively,
and NDD is the number of expected events from data-driven
estimates. The acceptance and background estimates depend
on sources of systematic uncertainty labelled as αj . The

likelihood for a single channel is defined as

L(σt t̄ ,L,αj ) = Poisson
(
Nobs | Nexp(σt t̄ , αj )

)

× Gauss(L0 | L,δL) ×
∏

j∈syst

�j (αj ), (8)

where L0 is the integrated luminosity of the data sample
and δL = 11% · L0. Sources of systematic uncertainties are
grouped into subsets that are uncorrelated to each other.
However each group can have correlated effects on multi-
ple signal and background estimates. The relationship be-
tween the channels is enforced by identifying the αj com-
mon to different channels in the construction of the com-
bined likelihood function. Ensembles of pseudo-data were
generated and the resulting estimate of the cross-section was
confirmed to be unbiased. The method is the same as the
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Table 10 Individual systematic
uncertainties on the t t̄

cross-section in the dilepton
channels. The combined
uncertainties listed in the
bottom two rows include the
luminosity uncertainty

Relative cross-section uncertainty [%]

Source ee μμ eμ

Statistical uncertainty −79/+126 −67/+100 −56/+77

Object selection

Lepton reconstruction, identification, trigger −2/+11 −4/+3 −1/+3

Jet energy reconstruction −7/+13 −14/+9 −3/+5

Background rates

Fake leptons −31/+24 −4/+1 −15/+8

Z + jets −12/+4 −19/+5 −2/+1

Monte-Carlo simulation statistics −5/+3 −3/+4 ±2

Theoretical cross-sections ± 3 −5/+4 ±3

Signal simulation

Initial/final state radiation −4/+5 −2/+3 −2/+3

Parton distribution functions −2/+1 −2/+3 −2/+3

Parton shower and hadronisation −9/+14 −6/+9 ±3

Next-to-leading order generator −8/+11 −11/+13 −3/+4

Integrated luminosity −11/+16 −11/+16 −12/+14

Total systematic uncertainty −25/+44 −25/+30 −14/+25

Statistical + systematic uncertainty −83/+134 −72/+104 −57/+81

Table 11 Summary of t t̄ cross-section and signal significance calcu-
lated by combining the single lepton and dilepton channels individually
and for all channels combined

Cross-section [pb] Signal significance [σ ]

Single lepton channels 142 ± 34 +50
−31 4.0

Dilepton channels 151 +78
−62

+37
−24 2.8

All channels 145 ± 31 +42
−27 4.8

one used in [44] and described in [45]; however, in this case
systematic uncertainties are modelled with gamma distribu-
tions, which are more suitable priors for large systematics
than truncated Gaussians [46]. In the small systematic un-
certainty limit, the gamma distribution coincides with the
conventional choice of a Gaussian.

Table 11 lists the cross-sections and signal significance
for the single-lepton, dilepton and the combined channels
with the corresponding statistical and systematic uncertain-
ties extracted from the likelihood fit. By combining all five
channels, the background-only hypothesis is excluded at a
significance of 4.8σ obtained with the approximate method
of [45]. If Gaussian distributions are assumed for all system-
atic uncertainties, a significance of 5.1σ is obtained. The ab-
sence of bias in the fit is validated by pseudo-experiments.
Similarly, the traditional hybrid Bayesian-frequentist ap-
proach in which the αj are randomised in an ensemble of
pseudo-experiments finds a signal significance consistent
with the results from the likelihood method within 0.1σ . The

results also agree with those obtained from an alternative
method based on a purely Bayesian methodology.

8 Summary

Measurements of the t t̄ production cross-section in the
single-lepton and dilepton channels using the ATLAS de-
tector are reported. In a sample of 2.9 pb−1, 37 t t̄ candidate
events are observed in the single-lepton topology, as well as
9 candidate events in the dilepton topology, resulting in a
measurement of the inclusive t t̄ cross-section of

σtt̄ = 145 ± 31 +42
−27 pb.

This is the first ATLAS Collaboration measurement making
simultaneous use of reconstructed electrons, muons, jets, b-
tagged jets and missing transverse energy, therefore exploit-
ing the full capacity of the detector. The combined measure-
ment, consisting of the first measurement of the t t̄ cross-
section in the single-lepton channel at the LHC and a mea-
surement in the dilepton channel, is the most precise mea-
surement to date of the t t̄ cross-section at

√
s = 7 TeV.

The cross-sections measured in each of the five sub-
channels are consistent with each other and kinematic prop-
erties of the selected events are consistent with SM t t̄ pro-
duction. The measured t t̄ cross-section is in good agreement
with the measurement in the dilepton channel by CMS [10],
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Fig. 9 Top quark pair-production cross-section at hadron colliders as
measured by CDF and D0 at Tevatron, CMS and ATLAS (this measure-
ment). The theoretical predictions for pp and pp̄ collisions include the
scale and PDF uncertainties, obtained using the HATHOR tool with the
CTEQ6.6 PDFs and assume a top-quark mass of 172.5 GeV

as well as with NLO QCD predictions [47–51] and the ap-
proximate NNLO top quark cross-section calculation [52].
Figure 9 shows the ATLAS and CMS measurements to-
gether with previous Tevatron measurements [6–9].

With the prospect of accumulation of larger data samples,
the statistical and systematic uncertainty on the t t̄ cross-
section will decrease and a precise measurement can chal-
lenge the SM prediction based on QCD calculations and
constrain the parton distribution functions. Larger samples
of t t̄ events will also be instrumental in precision studies of
the production, mass and decay properties of top quarks, and
be vital in new physics searches in which SM t t̄ production
is an important background.
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J. Novakova126, M. Nozaki66, M. Nožička41, I.M. Nugent159a, A.-E. Nuncio-Quiroz20, G. Nunes Hanninger20, T. Nun-
nemann98, E. Nurse77, T. Nyman29, B.J. O’Brien45, S.W. O’Neale17,*, D.C. O’Neil142, V. O’Shea53, F.G. Oakham28,d,
H. Oberlack99, J. Ocariz78, A. Ochi67, S. Oda155, S. Odaka66, J. Odier83, G.A. Odino50a,50b, H. Ogren61, A. Oh82,
S.H. Oh44, C.C. Ohm146a,146b, T. Ohshima101, H. Ohshita140, T.K. Ohska66, T. Ohsugi59, S. Okada67, H. Okawa163,
Y. Okumura101, T. Okuyama155, M. Olcese50a, A.G. Olchevski65, M. Oliveira124a,f, D. Oliveira Damazio24, C. Oliver80,
E. Oliver Garcia167, D. Olivito120, A. Olszewski38, J. Olszowska38, C. Omachi67, A. Onofre124a,v, P.U.E. Onyisi30,
C.J. Oram159a, G. Ordonez104, M.J. Oreglia30, F. Orellana49, Y. Oren153, D. Orestano134a,134b, I. Orlov107, C. Oropeza
Barrera53, R.S. Orr158, E.O. Ortega130, B. Osculati50a,50b, R. Ospanov120, C. Osuna11, G. Otero y Garzon26, J.P. Ot-
tersbach105, B. Ottewell118, M. Ouchrif135c, F. Ould-Saada117, A. Ouraou136, Q. Ouyang32a, M. Owen82, S. Owen139,



Page 28 of 36 Eur. Phys. J. C (2011) 71: 1577

A. Oyarzun31b, O.K. Øye13, V.E. Ozcan77, N. Ozturk7, A. Pacheco Pages11, C. Padilla Aranda11, E. Paganis139, F. Paige24,
K. Pajchel117, S. Palestini29, D. Pallin33, A. Palma124a,b, J.D. Palmer17, M.J. Palmer27, Y.B. Pan172, E. Panagiotopoulou9,
B. Panes31a, N. Panikashvili87, S. Panitkin24, D. Pantea25a, M. Panuskova125, V. Paolone123, A. Paoloni133a,133b, A. Pa-
padelis146a,146b, Th.D. Papadopoulou9, A. Paramonov5, S.J. Park54, W. Park24,w, M.A. Parker27, F. Parodi50a,50b, J.A. Par-
sons34, U. Parzefall48, E. Pasqualucci132a, A. Passeri134a, F. Pastore134a,134b, Fr. Pastore29, G. Pásztor49,x, S. Pataraia172,
N. Patel150, J.R. Pater82, S. Patricelli102a,102b, T. Pauly29, M. Pecsy144a, M.I. Pedraza Morales172, S.J.M. Peeters105, S.V. Pel-
eganchuk107, H. Peng172, R. Pengo29, A. Penson34, J. Penwell61, M. Perantoni23a, K. Perez34,m, T. Perez Cavalcanti41,
E. Perez Codina11, M.T. Pérez García-Estañ167, V. Perez Reale34, I. Peric20, L. Perini89a,89b, H. Pernegger29, R. Perrino72a,
P. Perrodo4, S. Persembe3a, P. Perus115, V.D. Peshekhonov65, E. Petereit5, O. Peters105, B.A. Petersen29, J. Petersen29,
T.C. Petersen35, E. Petit83, A. Petridis154, C. Petridou154, E. Petrolo132a, F. Petrucci134a,134b, D. Petschull41, M. Petteni142,
R. Pezoa31b, A. Phan86, A.W. Phillips27, P.W. Phillips129, G. Piacquadio29, E. Piccaro75, M. Piccinini19a,19b, A. Pick-
ford53, R. Piegaia26, J.E. Pilcher30, A.D. Pilkington82, J. Pina124a,l, M. Pinamonti164a,164c, A. Pinder118, J.L. Pinfold2,
J. Ping32c, B. Pinto124a,b, O. Pirotte29, C. Pizio89a,89b, R. Placakyte41, M. Plamondon169, W.G. Plano82, M.-A. Pleier24,
A.V. Pleskach128, A. Poblaguev24, S. Poddar58a, F. Podlyski33, L. Poggioli115, T. Poghosyan20, M. Pohl49, F. Polci55, G. Pole-
sello119a, A. Policicchio138, A. Polini19a, J. Poll75, V. Polychronakos24, D.M. Pomarede136, D. Pomeroy22, K. Pommès29,
L. Pontecorvo132a, B.G. Pope88, G.A. Popeneciu25a, D.S. Popovic12a, A. Poppleton29, X. Portell Bueso48, R. Porter163,
C. Posch21, G.E. Pospelov99, S. Pospisil127, I.N. Potrap99, C.J. Potter149, C.T. Potter85, G. Poulard29, J. Poveda172,
R. Prabhu77, P. Pralavorio83, S. Prasad57, R. Pravahan7, S. Prell64, K. Pretzl16, L. Pribyl29, D. Price61, L.E. Price5,
M.J. Price29, P.M. Prichard73, D. Prieur123, M. Primavera72a, K. Prokofiev29, F. Prokoshin31b, S. Protopopescu24, J. Proud-
foot5, X. Prudent43, H. Przysiezniak4, S. Psoroulas20, E. Ptacek114, J. Purdham87, M. Purohit24,w, P. Puzo115, Y. Py-
lypchenko117, J. Qian87, Z. Qian83, Z. Qin41, A. Quadt54, D.R. Quarrie14, W.B. Quayle172, F. Quinonez31a, M. Raas104,
V. Radescu58b, B. Radics20, T. Rador18a, F. Ragusa89a,89b, G. Rahal177, A.M. Rahimi109, S. Rajagopalan24, S. Rajek42,
M. Rammensee48, M. Rammes141, M. Ramstedt146a,146b, K. Randrianarivony28, P.N. Ratoff71, F. Rauscher98, E. Rauter99,
M. Raymond29, A.L. Read117, D.M. Rebuzzi119a,119b, A. Redelbach173, G. Redlinger24, R. Reece120, K. Reeves40, A. Re-
ichold105, E. Reinherz-Aronis153, A. Reinsch114, I. Reisinger42, D. Reljic12a, C. Rembser29, Z.L. Ren151, A. Renaud115,
P. Renkel39, B. Rensch35, M. Rescigno132a, S. Resconi89a, B. Resende136, P. Reznicek98, R. Rezvani158, A. Richards77,
R. Richter99, E. Richter-Was38,y, M. Ridel78, S. Rieke81, M. Rijpstra105, M. Rijssenbeek148, A. Rimoldi119a,119b, L. Ri-
naldi19a, R.R. Rios39, I. Riu11, G. Rivoltella89a,89b, F. Rizatdinova112, E. Rizvi75, S.H. Robertson85,h, A. Robichaud-
Veronneau49, D. Robinson27, J.E.M. Robinson77, M. Robinson114, A. Robson53, J.G. Rocha de Lima106, C. Roda122a,122b,
D. Roda Dos Santos29, S. Rodier80, D. Rodriguez162, Y. Rodriguez Garcia15, A. Roe54, S. Roe29, O. Røhne117, V. Rojo1,
S. Rolli161, A. Romaniouk96, V.M. Romanov65, G. Romeo26, D. Romero Maltrana31a, L. Roos78, E. Ros167, S. Rosati138,
M. Rose76, G.A. Rosenbaum158, E.I. Rosenberg64, P.L. Rosendahl13, L. Rosselet49, V. Rossetti11, E. Rossi102a,102b,
L.P. Rossi50a, L. Rossi89a,89b, M. Rotaru25a, I. Roth171, J. Rothberg138, I. Rottländer20, D. Rousseau115, C.R. Royon136,
A. Rozanov83, Y. Rozen152, X. Ruan115, I. Rubinskiy41, B. Ruckert98, N. Ruckstuhl105, V.I. Rud97, G. Rudolph62,
F. Rühr6, F. Ruggieri134a, A. Ruiz-Martinez64, E. Rulikowska-Zarebska37, V. Rumiantsev91,*, L. Rumyantsev65, K. Runge48,
O. Runolfsson20, Z. Rurikova48, N.A. Rusakovich65, D.R. Rust61, J.P. Rutherfoord6, C. Ruwiedel14, P. Ruzicka125,
Y.F. Ryabov121, V. Ryadovikov128, P. Ryan88, M. Rybar126, G. Rybkin115, N.C. Ryder118, S. Rzaeva10, A.F. Saavedra150,
I. Sadeh153, H.F.-W. Sadrozinski137, R. Sadykov65, F. Safai Tehrani132a,132b, H. Sakamoto155, G. Salamanna105, A. Sala-
mon133a, M. Saleem111, D. Salihagic99, A. Salnikov143, J. Salt167, B.M. Salvachua Ferrando5, D. Salvatore36a,36b, F. Salva-
tore149, A. Salvucci47, A. Salzburger29, D. Sampsonidis154, B.H. Samset117, H. Sandaker13, H.G. Sander81, M.P. Sanders98,
M. Sandhoff174, P. Sandhu158, T. Sandoval27, R. Sandstroem105, S. Sandvoss174, D.P.C. Sankey129, A. Sansoni47, C. Santa-
marina Rios85, C. Santoni33, R. Santonico133a,133b, H. Santos124a, J.G. Saraiva124a,l, T. Sarangi172, E. Sarkisyan-Grinbaum7,
F. Sarri122a,122b, G. Sartisohn174, O. Sasaki66, T. Sasaki66, N. Sasao68, I. Satsounkevitch90, G. Sauvage4, J.B. Sauvan115,
P. Savard158,d, V. Savinov123, P. Savva9, L. Sawyer24,i, D.H. Saxon53, L.P. Says33, C. Sbarra19a,19b, A. Sbrizzi19a,19b, O. Scal-
lon93, D.A. Scannicchio163, J. Schaarschmidt43, P. Schacht99, U. Schäfer81, S. Schaetzel58b, A.C. Schaffer115, D. Schaile98,
R.D. Schamberger148, A.G. Schamov107, V. Scharf58a, V.A. Schegelsky121, D. Scheirich87, M.I. Scherzer14, C. Schiavi50a,50b,
J. Schieck98, M. Schioppa36a,36b, S. Schlenker29, J.L. Schlereth5, E. Schmidt48, M.P. Schmidt175,*, K. Schmieden20,
C. Schmitt81, M. Schmitz20, A. Schöning58b, M. Schott29, D. Schouten142, J. Schovancova125, M. Schram85, A. Schreiner63,
C. Schroeder81, N. Schroer58c, S. Schuh29, G. Schuler29, J. Schultes174, H.-C. Schultz-Coulon58a, H. Schulz15, J.W. Schu-
macher43, M. Schumacher48, B.A. Schumm137, Ph. Schune136, C. Schwanenberger82, A. Schwartzman143, D. Schweiger29,
Ph. Schwemling78, R. Schwienhorst88, R. Schwierz43, J. Schwindling136, W.G. Scott129, J. Searcy114, E. Sedykh121, E. Se-
gura11, S.C. Seidel103, A. Seiden137, F. Seifert43, J.M. Seixas23a, G. Sekhniaidze102a, D.M. Seliverstov121, B. Sellden146a,
G. Sellers73, M. Seman144b, N. Semprini-Cesari19a,19b, C. Serfon98, L. Serin115, R. Seuster99, H. Severini111, M.E. Se-



Eur. Phys. J. C (2011) 71: 1577 Page 29 of 36

vior86, A. Sfyrla29, E. Shabalina54, M. Shamim114, L.Y. Shan32a, J.T. Shank21, Q.T. Shao86, M. Shapiro14, P.B. Shat-
alov95, L. Shaver6, C. Shaw53, K. Shaw164a,164c, D. Sherman175, P. Sherwood77, A. Shibata108, S. Shimizu29, M. Shi-
mojima100, T. Shin56, A. Shmeleva94, M.J. Shochet30, D. Short118, M.A. Shupe6, P. Sicho125, A. Sidoti15, A. Siebel174,
F. Siegert48, J. Siegrist14, Dj. Sijacki12a, O. Silbert171, J. Silva124a,z, Y. Silver153, D. Silverstein143, S.B. Silverstein146a,
V. Simak127, Lj. Simic12a, S. Simion115, B. Simmons77, M. Simonyan35, P. Sinervo158, N.B. Sinev114, V. Sipica141, G. Sira-
gusa81, A.N. Sisakyan65, S.Yu. Sivoklokov97, J. Sjölin146a,146b, T.B. Sjursen13, L.A. Skinnari14, K. Skovpen107, P. Skubic111,
N. Skvorodnev22, M. Slater17, T. Slavicek127, K. Sliwa161, T.J. Sloan71, J. Sloper29, V. Smakhtin171, S.Yu. Smirnov96,
L.N. Smirnova97, O. Smirnova79, B.C. Smith57, D. Smith143, K.M. Smith53, M. Smizanska71, K. Smolek127, A.A. Sne-
sarev94, S.W. Snow82, J. Snow111, J. Snuverink105, S. Snyder24, M. Soares124a, R. Sobie169,h, J. Sodomka127, A. Sof-
fer153, C.A. Solans167, M. Solar127, J. Solc127, U. Soldevila167, E. Solfaroli Camillocci132a,132b, A.A. Solodkov128,
O.V. Solovyanov128, J. Sondericker24, N. Soni2, V. Sopko127, B. Sopko127, M. Sorbi89a,89b, M. Sosebee7, A. Soukharev107,
S. Spagnolo72a,72b, F. Spanò34, R. Spighi19a, G. Spigo29, F. Spila132a,132b, E. Spiriti134a, R. Spiwoks29, M. Spousta126,
T. Spreitzer158, B. Spurlock7, R.D. St. Denis53, T. Stahl141, J. Stahlman120, R. Stamen58a, E. Stanecka29, R.W. Stanek5,
C. Stanescu134a, S. Stapnes117, E.A. Starchenko128, J. Stark55, P. Staroba125, P. Starovoitov91, A. Staude98, P. Stavina144a,
G. Stavropoulos14, G. Steele53, E. Stefanidis77, P. Steinbach43, P. Steinberg24, I. Stekl127, B. Stelzer142, H.J. Stelzer41,
O. Stelzer-Chilton159a, H. Stenzel52, K. Stevenson75, G.A. Stewart53, T. Stockmanns20, M.C. Stockton29, M. Stodulski38,
K. Stoerig48, G. Stoicea25a, S. Stonjek99, P. Strachota126, A.R. Stradling7, A. Straessner43, J. Strandberg87, S. Strand-
berg146a,146b, A. Strandlie117, M. Strang109, E. Strauss143, M. Strauss111, P. Strizenec144b, R. Ströhmer173, D.M. Strom114,
J.A. Strong76,*, R. Stroynowski39, J. Strube129, B. Stugu13, I. Stumer24,*, J. Stupak148, P. Sturm174, D.A. Soh151,r, D. Su143,
S. Subramania2, Y. Sugaya116, T. Sugimoto101, C. Suhr106, K. Suita67, M. Suk126, V.V. Sulin94, S. Sultansoy3d, T. Sumida29,
X. Sun55, J.E. Sundermann48, K. Suruliz164a,164b, S. Sushkov11, G. Susinno36a,36b, M.R. Sutton139, Y. Suzuki66, Yu.M. Sviri-
dov128, S. Swedish168, I. Sykora144a, T. Sykora126, B. Szeless29, J. Sánchez167, D. Ta105, K. Tackmann29, A. Taffard163,
R. Tafirout159a, A. Taga117, N. Taiblum153, Y. Takahashi101, H. Takai24, R. Takashima69, H. Takeda67, T. Takeshita140,
M. Talby83, A. Talyshev107, M.C. Tamsett24, J. Tanaka155, R. Tanaka115, S. Tanaka131, S. Tanaka66, Y. Tanaka100, K. Tani67,
N. Tannoury83, G.P. Tappern29, S. Tapprogge81, D. Tardif158, S. Tarem152, F. Tarrade24, G.F. Tartarelli89a, P. Tas126, M. Ta-
sevsky125, E. Tassi36a,36b, M. Tatarkhanov14, C. Taylor77, F.E. Taylor92, G. Taylor137, G.N. Taylor86, W. Taylor159b, M. Teix-
eira Dias Castanheira75, P. Teixeira-Dias76, K.K. Temming48, H. Ten Kate29, P.K. Teng151, Y.D. Tennenbaum-Katan152,
S. Terada66, K. Terashi155, J. Terron80, M. Terwort41,p, M. Testa47, R.J. Teuscher158,h, C.M. Tevlin82, J. Thadome174,
J. Therhaag20, T. Theveneaux-Pelzer78, M. Thioye175, S. Thoma48, J.P. Thomas17, E.N. Thompson84, P.D. Thomp-
son17, P.D. Thompson158, A.S. Thompson53, E. Thomson120, M. Thomson27, R.P. Thun87, T. Tic125, V.O. Tikhomirov94,
Y.A. Tikhonov107, C.J.W.P. Timmermans104, P. Tipton175, F.J. Tique Aires Viegas29, S. Tisserant83, J. Tobias48, B. Toczek37,
T. Todorov4, S. Todorova-Nova161, B. Toggerson163, J. Tojo66, S. Tokár144a, K. Tokunaga67, K. Tokushuku66, K. Tollef-
son88, M. Tomoto101, L. Tompkins14, K. Toms103, A. Tonazzo134a,134b, G. Tong32a, A. Tonoyan13, C. Topfel16, N.D. Top-
ilin65, I. Torchiani29, E. Torrence114, E. Torró Pastor167, J. Toth83,x, F. Touchard83, D.R. Tovey139, D. Traynor75, T. Tre-
fzger173, J. Treis20, L. Tremblet29, A. Tricoli29, I.M. Trigger159a, S. Trincaz-Duvoid78, T.N. Trinh78, M.F. Tripiana70,
N. Triplett64, W. Trischuk158, A. Trivedi24,w, B. Trocmé55, C. Troncon89a, M. Trottier-McDonald142, A. Trzupek38,
C. Tsarouchas29, J.C.-L. Tseng118, M. Tsiakiris105, P.V. Tsiareshka90, D. Tsionou4, G. Tsipolitis9, V. Tsiskaridze48,
E.G. Tskhadadze51, I.I. Tsukerman95, V. Tsulaia123, J.-W. Tsung20, S. Tsuno66, D. Tsybychev148, A. Tua139, J.M. Tug-
gle30, M. Turala38, D. Turecek127, I. Turk Cakir3e, E. Turlay105, P.M. Tuts34, A. Tykhonov74, M. Tylmad146a,146b, M. Tyn-
del129, D. Typaldos17, H. Tyrvainen29, G. Tzanakos8, K. Uchida20, I. Ueda155, R. Ueno28, M. Ugland13, M. Uhlenbrock20,
M. Uhrmacher54, F. Ukegawa160, G. Unal29, D.G. Underwood5, A. Undrus24, G. Unel163, Y. Unno66, D. Urbaniec34,
E. Urkovsky153, P. Urquijo49, P. Urrejola31a, G. Usai7, M. Uslenghi119a,119b, L. Vacavant83, V. Vacek127, B. Vachon85,
S. Vahsen14, C. Valderanis99, J. Valenta125, P. Valente132a, S. Valentinetti19a,19b, S. Valkar126, E. Valladolid Gallego167,
S. Vallecorsa152, J.A. Valls Ferrer167, H. van der Graaf105, E. van der Kraaij105, E. van der Poel105, D. van der Ster29,
B. Van Eijk105, N. van Eldik84, P. van Gemmeren5, Z. van Kesteren105, I. van Vulpen105, W. Vandelli29, G. Vandoni29, A. Va-
niachine5, P. Vankov41, F. Vannucci78, F. VarelaRodriguez29, R. Vari132a, E.W. Varnes6, D. Varouchas14, A. Vartapetian7,
K.E. Varvell150, V.I. Vassilakopoulos56, F. Vazeille33, G. Vegni89a,89b, J.J. Veillet115, C. Vellidis8, F. Veloso124a, R. Ve-
ness29, S. Veneziano132a, A. Ventura72a,72b, D. Ventura138, S. Ventura47, M. Venturi48, N. Venturi16, V. Vercesi119a, M. Ver-
ducci138, W. Verkerke105, J.C. Vermeulen105, L. Vertogardov118, A. Vest43, M.C. Vetterli142,d, I. Vichou165, T. Vickey145b,aa,
G.H.A. Viehhauser118, S. Viel168, M. Villa19a,19b, M. Villaplana Perez167, E. Vilucchi47, M.G. Vincter28, E. Vinek29,
V.B. Vinogradov65, M. Virchaux136,*, S. Viret33, J. Virzi14, A. Vitale19a,19b, O. Vitells171, I. Vivarelli48, F. Vives Vaque11,
S. Vlachos9, M. Vlasak127, N. Vlasov20, A. Vogel20, P. Vokac127, M. Volpi11, G. Volpini89a, H. von der Schmitt99,
J. von Loeben99, H. von Radziewski48, E. von Toerne20, V. Vorobel126, A.P. Vorobiev128, V. Vorwerk11, M. Vos167, R. Voss29,



Page 30 of 36 Eur. Phys. J. C (2011) 71: 1577

T.T. Voss174, J.H. Vossebeld73, A.S. Vovenko128, N. Vranjes12a, M. Vranjes Milosavljevic12a, V. Vrba125, M. Vreeswijk105,
T. Vu Anh81, R. Vuillermet29, I. Vukotic115, W. Wagner174, P. Wagner120, H. Wahlen174, J. Wakabayashi101, J. Wal-
bersloh42, S. Walch87, J. Walder71, R. Walker98, W. Walkowiak141, R. Wall175, P. Waller73, C. Wang44, H. Wang172,
J. Wang32d, J.C. Wang138, S.M. Wang151, A. Warburton85, C.P. Ward27, M. Warsinsky48, P.M. Watkins17, A.T. Wat-
son17, M.F. Watson17, G. Watts138, S. Watts82, A.T. Waugh150, B.M. Waugh77, J. Weber42, M. Weber129, M.S. Weber16,
P. Weber54, A.R. Weidberg118, J. Weingarten54, C. Weiser48, H. Wellenstein22, P.S. Wells29, M. Wen47, T. Wenaus24,
S. Wendler123, Z. Weng151,r, T. Wengler29, S. Wenig29, N. Wermes20, M. Werner48, P. Werner29, M. Werth163, M. Wes-
sels58a, K. Whalen28, S.J. Wheeler-Ellis163, S.P. Whitaker21, A. White7, M.J. White86, S.R. Whitehead118, D. White-
son163, D. Whittington61, F. Wicek115, D. Wicke174, F.J. Wickens129, W. Wiedenmann172, M. Wielers129, P. Wiene-
mann20, C. Wiglesworth73, L.A.M. Wiik48, A. Wildauer167, M.A. Wildt41,p, I. Wilhelm126, H.G. Wilkens29, J.Z. Will98,
E. Williams34, H.H. Williams120, W. Willis34, S. Willocq84, J.A. Wilson17, M.G. Wilson143, A. Wilson87, I. Wingerter-
Seez4, S. Winkelmann48, F. Winklmeier29, M. Wittgen143, M.W. Wolter38, H. Wolters124a,f, G. Wooden118, B.K. Wosiek38,
J. Wotschack29, M.J. Woudstra84, K. Wraight53, C. Wright53, B. Wrona73, S.L. Wu172, X. Wu49, Y. Wu32b, E. Wulf34,
R. Wunstorf42, B.M. Wynne45, L. Xaplanteris9, S. Xella35, S. Xie48, Y. Xie32a, C. Xu32b, D. Xu139, G. Xu32a, B. Yabsley150,
M. Yamada66, A. Yamamoto66, K. Yamamoto64, S. Yamamoto155, T. Yamamura155, J. Yamaoka44, T. Yamazaki155, Y. Ya-
mazaki67, Z. Yan21, H. Yang87, S. Yang118, U.K. Yang82, Y. Yang61, Y. Yang32a, Z. Yang146a,146b, S. Yanush91, W.-M. Yao14,
Y. Yao14, Y. Yasu66, J. Ye39, S. Ye24, M. Yilmaz3c, R. Yoosoofmiya123, K. Yorita170, R. Yoshida5, C. Young143, S. Youssef21,
D. Yu24, J. Yu7, J. Yu32c,ab, L. Yuan32a,ac, A. Yurkewicz148, V.G. Zaets128, R. Zaidan63, A.M. Zaitsev128, Z. Zajacova29,
Yo.K. Zalite121, L. Zanello132a,132b, P. Zarzhitsky39, A. Zaytsev107, M. Zdrazil14, C. Zeitnitz174, M. Zeller175, P.F. Zema29,
A. Zemla38, C. Zendler20, A.V. Zenin128, O. Zenin128, T. Ženiš144a, Z. Zenonos122a,122b, S. Zenz14, D. Zerwas115, G. Zevi
della Porta57, Z. Zhan32d, D. Zhang32b, H. Zhang88, J. Zhang5, X. Zhang32d, Z. Zhang115, L. Zhao108, T. Zhao138, Z. Zhao32b,
A. Zhemchugov65, S. Zheng32a, J. Zhong151,ad, B. Zhou87, N. Zhou163, Y. Zhou151, C.G. Zhu32d, H. Zhu41, Y. Zhu172,
X. Zhuang98, V. Zhuravlov99, D. Zieminska61, B. Zilka144a, R. Zimmermann20, S. Zimmermann20, S. Zimmermann48,
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