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Abstract

A Level-Set Approach for Simulating Dendritic Crystal Growth

by

Megan Maria Chang

In this thesis, we consider the piecewise constant coefficient Stefan problem, a free

boundary problem described by a partial differential equation with an unknown concen-

tration u and an unknown time-dependent irregular domain Ω−, used primarily to study

phase transitions. We present a numerical method for solving the two-dimensional, un-

steady, two-phase, diffusion equation on an irregular domain with Dirichlet boundary

conditions at the solidification front. Several techniques were implemented to achieve

this including: the implicit level-set method to update the location of the interface and

keep track of the two phases it separates; the Ghost-Fluid method to impose boundary

conditions on an irregular domain and allow for symmetric discretization of our diffu-

sion matrix; a third-order extrapolation method to allow for both accurate interface

velocity calculations and implicit discretization by providing valid values at grid points

that may be contained in Ω− in the next time step; a combination of WENO spatial

discretization and TVD RK3 time discretization to achieve third-order accurate advec-

tion; and finally for diffusion, we implemented the Crank-Nicholson method to achieve

second-order accuracy in both space and time with implicit time stepping. Overall, for

the Stefan problem, we demonstrate that through robust and computationally efficient

methods, it is possible to simulate complex dendritic crystal growth.
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Chapter 1

Introduction

The Stefan problem is a free boundary problem that describes the motion of a front

driven by diffusion, making it highly useful for analyzing phase transitions. For example,

the Stefan problem is used in thermodynamics to study crystal growth in a supercooled

solution; in materials science to study the mixture of molten metals and elements to

create alloys with superior properties; and in biomedicine to study cancer invasion and

tumor growth. Its plethora of applications concerning diffusion-dominated phenomena

have made it an important model to study.

The governing equations of the Stefan problem are: diffusion, which is the driving

force of our phase transition; the Gibbs-Thomson boundary condition, which imposes

anisotropic behavior that leads to dendritic growth; and the interface velocity calcu-

lation used to move our level-set and update the interface location through advection.

These three equations are given by

Diffusion:
∂u

∂t
= D∆u,

Gibbs-Thomson BC: uγ = u+ εκ,

Interface Velocity: ~v = [D∇u]γ,

(1.1)
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Introduction Chapter 1

where ∆ is the Laplace operator (a second-order differential operator), and ∇ is the gra-

dient (a first-order differential operator), u is the concentration, uγ is the concentration

at the front, t is real time, D is the diffusion coefficient, ε is the anisotropy strength, κ

is the curvature, ~v is the interface velocity, and [·]γ denotes a jump across the interface.

The most common example of dendritic crystal growth is the snowflake, where the

dendrites refer to the branches of the tree-like structure. Since there are no existing

analytical methods for solving and predicting dendritic crystal growth, we rely on nu-

merical methods to tackle these complicated problems. A successful method should be

able to track a moving solid-liquid interface undergoing complex topological changes,

and must be computationally efficient since these methods often require high grid res-

olutions, in order to capture these dendrites, and strict time step restrictions to ensure

stability.

Several techniques are used in practice to track a time-evolving boundary, or inter-

face. These methods can be described as either explicit tracking or implicit capturing.

Explicit methods such as front tracking are valued for their accuracy, but fall short

when it comes to handling topological changes such as materials merging or separat-

ing. In the case where a material melts and develops holes, or else experiences crystal

growth such that dendrites begin to merge, additional numerical treatment is required.

One would need to develop an algorithm that could detect the moment objects merged

or separated and construct new parameterizations to describe each newly separated or

joined shape, a very challenging task.

Alternatively, implicit methods such as the level-set method represent the interface

as an isocontour of a Lipschitz continuous function. This allows for straightforward

handling of topological changes, since objects do not have to be parametrized. As we

move from two-dimensional objects to three-dimensional objects, this becomes increas-

ingly important. The main drawback of the level-set method is that it is less accurate

2



Introduction Chapter 1

in terms of mass conservation. However in [2], Min and Gibou address this problem

with adaptive grids and demonstrate its ability to alleviate this problem of mass loss

or gain.

Since we are interested in developing a method which can simulate complicated

dendritic crystal growth, we employ the level-set method paired with the Ghost-Fluid

method to achieve a superior interface capturing scheme.

The level-set advection equation

φt + ~v · ∇φ = 0 (1.2)

is a PDE which uses a higher dimensional level-set function φ to describe the motion of a

co-dimension 1 shape, under a velocity field ~v. In this thesis, we use a three-dimensional

level-set function φ to keep track of a two-dimensional shape, where the zero-contour

represents the interface separating two materials.

Henceforth, in a domain Ω, we can refer to the region where φ < 0 as reacted

material, or the subdomain Ω−; and refer to the region where φ > 0 as unreacted

material, or the subdomain Ω+. These two substances are separated by the interface,

where φ = 0, across which unreacted material can be converted into reacted material

or vice versa (i.e. ice in water begins to melt into more water, or supercooled water

surrounding ice begins to freeze into more ice). The labels reacted vs. unreacted hold

no physical implication, they are simply a nominal tool used to distinguish whether we

are in the negative φ subdomain (i.e. Ω−) or the positive φ subdomain (i.e. Ω+). That

is to say the reacted material could refer to either ice or water, as you prefer.

This is an important fact to keep in mind because throughout the thesis, we will

discuss how to solve only in Ω−. However, this does not mean we are ignoring the

material in Ω+. On the contrary, both subdomains are of equal importance in simulating
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Introduction Chapter 1

crystal growth. We simply ignore Ω+, while we solve in Ω−, then ignore Ω− while we

solve in Ω+ using the exact same methods. Decoupling the two solutions is a useful

simplification we can make since we are given Dirichlet boundary conditions. Thus, to

solve for diffusion in each subdomain, our governing equation becomes

Diffusion in Ω−:
∂uin

∂t
= Din ∆uin ,

Diffusion in Ω+:
∂uout

∂t
= Dout∆uout,

(1.3)

where Din and uin represent values in Ω−, while Dout and uout represent values in Ω+.

And the governing interface velocity calculation becomes

~v = Din∇uin −Dout∇uout (1.4)

to appropriately represent the meeting of the two subdomains at the interface.

To build the most efficient solver requires symmetric matrix discretization. This

symmetry allows us to use fast matrix inversion methods like the Preconditioned Con-

jugate Gradient (PCG) method. Since we build a diffusion matrix that is symmetric

and positive definite, the Matlab backslash operator can select the Choleski triangular

solver to precondition our matrix.

Previous methods, for analyzing the Stefan problem, sacrificed this symmetry to

achieve second-order accuracy by implementing higher-order extrapolation to compute

ghost values. However, in [1], Gibou and Fedkiw show that using only linear and

constant extrapolation to calculate ghost values, rather than quadratic leads to a sym-

metric discretization that is still second-order accurate in the solution of u, but loses

second-order accuracy in the gradient (i.e. ∇u). This means our Stefan solver would

become first-order accurate due to the gradient calculations in the interface velocity
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computation. However, we choose computational efficiency over second-order accuracy

since this non-symmetric discretization becomes computationally prohibitive at higher

grid resolutions. Thus, we implement ghost values using linear extrapolation.

Our computational grid is made up of cells of width ∆x and height ∆y. The cell

centers are known as grid points or grid nodes with the ith grid node located at xi

and the jth grid node located at yj. The value of interest at each cell is concentration,

denoted as ui,j at some location (xi, yj). Further, we use the superscript n to describe

our time at some tn, such that the initial conditions would be described as u0
i,j.

In order to capture dendritic growth, these Stefan problems often require very fine

grid resolutions. Since our time step restriction is dependent on the spatial grid size,

we want to minimize this dependency by using implicit time stepping in our diffusion

discretization to allow our time step ∆t to be proportional to ∆x, as opposed to ∆t

being proportional to ∆x2, as is the case with explicit time stepping. This way, as we

refine our grid from a resolution of 100×100 to 200×200, the time step will shrink by

a factor of 1
2

instead of 1
4
, and as we move from a resolution of 100×100 to 400×400,

the time step will shrink by a factor of 1
4

instead of 1
16

. It is important to note that the

implicit level-set method enables us to use implicit discretization, here, as well. Hence,

we employ the Crank-Nicholson scheme so that ∆t can be equal to ∆x. This means our

time step will be limited by advection where we will implement a Courant-Friedrichs-

Lewy (CFL) number of 0.5, such that

∆t =
0.5min(∆x,∆y)

|v|max
, (1.5)

where ∆t represents a real physical time step used in the diffusion and advection steps,

and |v|max is the maximum interface velocity. This ∆t must be recalculated at every

time step since |v|max will be constantly changing.

5
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This implicit Crank-Nicholson scheme may require the use of extrapolated values.

Consider the case where between time steps tn and tn+1, the interface moves so that

a point ui,j contained in Ω+ is now contained in Ω−. In the Crank-Nicholson scheme,

we would need a valid value at that point for uni,j and un+1
i,j . However, this value for

uni,j would not exist, since it was not contained in Ω− at tn, and as we said before,

the solutions in each subdomain are decoupled. For this reason, we need to employ a

third-order extrapolation method to extrapolate values of un in the layer of grid nodes

near the interface.

This third-order extrapolation method is also necessary for computing gradient cal-

culations at the interface to determine the interface velocity (1.1c). Gradient calcula-

tions in two-dimensions are given by

∇u =

(
ux, uy

)
=

(
∂u

∂x
,
∂u

∂y

)
, (1.6)

where ∇ is the symbolic representation of the gradient field. In derivative notation, the

subscript denotes the partial differential of a function u with respect to either x or y.

This is not to be confused with our ui,j subscript notation to describe spatial location.

For this extrapolation method, as well as for the constant extrapolation and reini-

tialization methods, a new fictitious time step restriction must be satisfied to ensure

numerical stability. This fictitious time step,

∆τ = 0.5min(∆x,∆y), (1.7)

is used to reach a steady state solution in our iterative methods. This will become

more clear as we discuss each method in the later sections. However, we mention this,

now, because it is important to keep in mind that there are two separate time step

6
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restrictions used in this paper that are not to be confused.

Throughout this thesis, we analyze errors using the standard mathematical p-norm

||~x||p =

( N∑
k=1

|xk|p
) 1

p

, (1.8)

where the scalar xk refers to the error uexact − unumerical at every point in the domain.

To be thorough, we consider the L1 norm and the L∞ norm, where L1 is the sum of the

absolute values of error multiplied by the grid size area, and L∞ returns the maximum

absolute value of error. Thus, L1 gives us a good sense of the overall accuracy of our

solvers across the entire domain, and L∞ warns us if there is any one point in the

domain that is giving rise to more error such as, for instance, at the front. When we

plot these errors against the grid size on a log-log plot, the slope tells us the order

of accuracy of our scheme, where the order quantifies the rate of convergence of our

numerical approximation to the exact solution. If a method is said to be second-order

accurate, one would expect the error to reduce by a factor of 4 if the grid resolution

increased from 100×100 to 200×200, and reduce by a factor of 16 as we move from a

resolution of 100×100 to 400×400. To provide this data in a more concise form, rather

than plots, we can use

Order = log2

(
L1 error using ∆x

L1 error using ∆x
2

)
(1.9)

to calculate the order of accuracy, where the base of log2 comes from the fact that the

grid resolutions double each time we refine the grid. To be specific and consistent, we

use grid resolutions 81×81, 161×161, and 321×321 for all of our accuracy testing.

7



Chapter 2

The Level-Set Method

In Figure 2.1, we demonstrate how the three-dimensional level-set allows us to easily

keep track of the interface separating reacted and unreacted material. Notice, we have

inverted the z- axis so that φ is positive downwards, for better visual representation.

Following this, we included Figure 2.2 to demonstrate the real power of the level-set

method: its ability to handle complex topological changes such as melting into separate

pieces or conversely, pieces growing and merging together.

2.1 The Reinitialization Equation

The reinitialization scheme, which transforms an arbitrary level-set function into a

signed distance function, has been proven to produce more robust numerical results,

improve mass conservation, and improve proficiency of geometrical computations such

as calculating interface curvatures. When we reinitialize our level-set, we effectively

smooth out the gradient and remove any numerical noise that may build up as a re-

sult of our moving boundary. Even a small amount of noise will be greatly amplified

when calculating the level-set gradients for our normal vectors. This was one of the

8
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(a) φ (b) Ω−

(c) φ (d) Ω−

(e) φ (f) Ω−

Figure 2.1: In this example, we use the level-set method to model a flower shape
growing uniformly in time. One can see how the negative φ values in the three-di-
mensional object on the left create our two-dimensional shape of reacted material
on the right, bounded by a border where φ = 0. (The z-axis is inverted so that the
positive axis points downward.)
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(a) φ (b) Ω−

(c) φ (d) Ω−

(e) φ (f) Ω−

Figure 2.2: In this example, we demonstrate a more complex problem in which
reacted material shrinks and separates into individual segments of reacted material.
Take for instance a glacier melting and separating into smaller chunks of ice. (The
z-axis is inverted so that the positive axis points downward.)
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reasons the level-set method previously had poor mass conservation properties. With

the reinitialization method, we greatly reduce this problem.

The reinitialization equation reads

φτ + S(φ0)(|∇φ| − 1) = 0 (2.1)

proposed by Sussman, Smereka and Osher in [4], where S(φ0) is a smoothed out sign

function, and τ is a fictitious time which allows us to find a steady state solution for φ

with a smooth gradient of magnitude 1, everywhere, while maintaining the location of

the zero level-set. In semi-discretized form, this equation can be represented as

∂φ

∂τ
+ sgn(φ0)[HG(D+

x φ,D
−
x φ,D

+
y φ,D

−
y φ)− 1] = 0, (2.2)

where φ0 is the initial level-set at time τ = 0 and sgn(φ0) will have a value of either

-1 or +1, as determined by the sign of φ0. Finally, HG is the Godunov Hamiltonian

defined as

HG(a, b, c, d) =


√

max(|a+|2, |b−|2) + max(|c+|2, |d−|2) if sgn(φ0) < 0,√
max(|a−|2, |b+|2) + max(|c−|2, |d+|2) if sgn(φ0) > 0,

(2.3)

where a+ = max(a, 0) and a− = min(a, 0). Further, from (2.2), we know that a, b, c,

and d correspond to the directional derivatives D+
x φ,D

−
x φ,D

+
y φ, and D−y φ computed

11
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using first-order accurate one-sided finite differences

D+
x φi,j =

φi+1,j − φi,j
∆x

,

D−x φi,j =
φi,j − φi−1,j

∆x
,

D+
y φi,j =

φi,j+1 − φi,j
∆y

,

D−y φi,j =
φi,j − φi,j−1

∆y
,

(2.4)

where in derivative notation, the subscript denotes a partial derivative with respect

to either x or y, and the superscript denotes the upwind direction (either + or -) to

indicate whether the points i and i+ 1 are involved, or i and i− 1, respectively.

Next, we evolve our solution in time using the second-order accurate Total Variation

Diminishing Runge-Kutta (TVD RK2) scheme which uses two Euler steps to develop a

temporary φ̃n+2 value

φ̃n+1 − φn

∆τ
+ sgn(φ0)[HG(D+

x φ
n, D−x φ

n, D+
y φ

n, D−y φ
n)− 1] = 0,

φ̃n+2 − φ̃n+1

∆τ
+ sgn(φ0)[HG(D+

x φ̃
n+1, D−x φ̃

n+1, D+
y φ̃

n+1, D−y φ̃
n+1)− 1] = 0,

(2.5)

and one averaging step to achieve a second-order accurate value for φn+1

φn+1 =
φn + φ̃n+2

2
. (2.6)

Again, τ is a fictitious time which allows us to evolve our solution until steady state

is reached by reinserting φn+1 into the above equations as our new φn. For stability

purposes, we select a ∆τ = 0.5 min(∆x,∆y) for our fictitious time step.

Notice, however, that in (2.5), despite the time step n, we continue to use the sign of

the initial level-set (i.e. sgn(φ0)). This is because we do not want the interface moving

12
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during reinitialization. That is to say, the sign of φi,j should be consistent throughout

this process in order to preserve area and uphold conservation of mass.

Also to comply with mass conservation, extra care must be taken at the points

neighboring the interface [4]. More often than not, the interface will not fall exactly

on a grid point φi,j. So instead of being represented by a zero value, the interface will

be located between two grid nodes that are changing sign, such that φi,j · φi−1,j < 0.

For these points, it is necessary to calculate the value θ which represents the fractional

distance between the interface and the neighboring grid points. We calculate these θ

values before entering our iterative solver since this distance θ should remain constant

throughout the reinitialization process. These θ values can then be used to maintain

the zero level-set and ensure the location of our interface does not change during reini-

tialization. So, assuming that our point of interest φi,j < 0, we would then calculate θ

as

θLi,j =
φi,j

φi,j − φi−1,j

if φi,j · φi−1,j < 0, (2.7)

where the superscript L indicates that the interface passes to the left of the point φi,j.

Note, for each grid point, there can be up to four values of θ associated to it since it

is possible for the interface to pass a point on more than one side. For instance, if

the interface passed to the left and above it, our point φi,j would have a θLi,j and θAi,j

associated to it. The other three possible θ values for a point φi,j are calculated as

θRi,j =
φi,j

φi,j − φi+1,j

if φi,j · φi+1,j < 0,

θBi,j =
φi,j

φi,j − φi,j−1

if φi,j · φi,j−1 < 0,

θAi,j =
φi,j

φi,j − φi,j+1

if φi,j · φi,j+1 < 0,

(2.8)

where θ must always be positive. These θ values are then used to recompute the
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directional derivatives at that point φi,j

D+
x φi,j =

φI,j − φi,j
θRi,j∆x

,

D−x φi,j =
φi,j − φI,j
θLi,j∆x

,

(2.9)

where φI,j is the value of φ at the interface, and since we know this to be zero, these

equations can simply be written as

D+
x φi,j =

−φi,j
θRi,j∆x

,

D−x φi,j =
φi,j
θLi,j∆x

,

(2.10)

with similar construction for the directional derivatives with respect to y:

D+
y φi,j =

−φi,j
θAi,j∆y

,

D−y φi,j =
φi,j
θBi,j∆y

.

(2.11)

For these points φi,j that have at least one associated θ value, a new time step stability

restriction must be satisfied:

∆τ = 0.5min(θR∆x, θL∆x, θA∆y, θB∆y). (2.12)

Also, notice that θ is in the denominator of our one-sided finite difference calculations.

This means small values of θ can cause numerical instabilities. To avoid producing non-

finite data, we say that if θ is too small (θ < ∆x), we can assume the point is very close

to the interface, and set φi,j = 0, reassigning this point to the interface. This small

perturbation in the location of the zero level-set (also known as artificial boundary
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perturbation) has a negligible impact on the accuracy of our solver, and guarantees

numerical stability. Figure 2.3 shows how effectively the zero level-set is maintained on

a complex geometry with sharp kinks. And Figure 2.4 best demonstrates visually what

(a) Zero level-set contour (b) Zoomed in

Figure 2.3: The zero level-set is effectively maintained throughout the reinitizializa-
tion scheme. The red line shows the original zero level-set location, while the blue is
the new zero level-set location after the function has been reinitialized. The goal is
for the blue to completely overlap the red one. In (b), we have zoomed into an area
with sharp kinks and where some points have more than one θ value. This is where
problems would arise, but our scheme is able to maintain φ0

0 nicely.

is achieved via the reinitialization method, where one will notice our original level-set

shaped as a bowl is reinitialized into a cone-like shape. Also notice that the initial

level-set is very noisy (i.e. the data does not appear smooth). This noise is removed

via reinitialization so that it does not create large numerical errors when calculating

∇φ. It is important to note that beyond interface tracking, φ has no relevant meaning.

This means we care only about the zero level-set’s position, and the sign of φ which

tells us which material region we are in (either Ω− or Ω+). The actual magnitude of φ,

however, is irrelevant.
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(a) Before (b) After

Figure 2.4: The reinitialization scheme will take a noisy level-set and return as an
output, a level-set with a smooth gradient of magnitude 1, everywhere. This makes
them produce more robust numerical results, especially when computing normal vec-
tors which rely on φ gradients. The red isocontour line represents the zero level-set,
which has not moved during the reinitialization process.
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Diffusion

Diffusion describes the net movement of particles from a region of high concentration to

a region of lower concentration due to molecular Brownian motion. For example, con-

sider a drop of colored ink in a glass of water. Assume we are dealing with an ink droplet

with the same density as water that has been placed in a state of suspension, completely

undisturbed by convection or gravitational effects. With time, the ink would naturally

spread, so that eventually the cup of water would be uniformly colored with uniform

distribution of the ink concentration. This natural phenomenon of homogenization is

described by

∂u

∂t
= ∇ · (D∇u) + S, (3.1)

where u is the concentration, D is the diffusion coefficient, and S is the source term.

We use the implicit Crank-Nicholson scheme in semi-discretized form

un+1 − un

∆t
=

1

2
∇ · (D∇un+1) +

1

2
∇ · (D∇un) +

1

2
(Sn+1 + Sn), (3.2)

because it allows us to achieve second-order accuracy in space and time using ∆t ∼ ∆x.

This way, as we refine our grid, our time step gets proportionally smaller, rather than
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quadratically smaller. Further, we know our time step will be limited by advection,

rather than diffusion to ensure stability. In discretized form, for a two-dimensional

problem with constant D and standard centered finite differences in space, we obtain

un+1
i,j − uni,j

∆t
=

1

2
D

(
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

∆x2
+
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

∆y2

+
uni−1,j − 2uni,j + uni+1,j

∆x2
+
uni,j−1 − 2uni,j + uni,j+1

∆y2

)
+

1

2
(Sn+1

i,j + Sni,j).

(3.3)

And if we rearrange our system of linear equations to resemble A~u n+1 = ~f (~u n, BCn+1),

so that all our knowns are on the RHS, we are left with

un+1
i,j

∆t
− 1

2
D

(
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

∆x2
+
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

∆y2

)
=
uni,j
∆t

+
1

2
D

(
uni−1,j − 2uni,j + uni+1,j

∆x2
+
uni,j−1 − 2uni,j + uni,j+1

∆y2

)
+

1

2
(Sn+1

i,j + Sni,j),

(3.4)

where A is our diffusion matrix and ~u n+1 is our vector of unknowns at the next time

step assuming that our source term does not depend on u.

3.1 Building an Efficient Sparse Matrix

Since our matrix will contain mostly zero elements, we can significantly minimize

memory usage by creating a sparse matrix A. So, rather than populate a full matrix

with a few non-zero elements Ai,j, we simply keep track of the non-zero A element’s

value and location in three separate vectors: ~A,~i, and ~j. Then, we use Matlab’s built-in

sparse function to generate a sparse matrix. For example, the following matrix
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A =


15 0 0 0

0 25 0 0

0 17 35 0

0 0 0 45


would instead be represented as

~A =
[
15 25 17 35 45

]
,

~i =
[

1 2 3 3 4
]
,

~j =
[

1 2 2 3 4
]
,

where ~A contains the values of the non-zero elements, and ~i and ~j contain their row

and column locations. While this may not appear useful for a 4×4 matrix, the sparse

indexing method becomes highly advantageous as A grows. Take, for example, an

identity matrix of size 1,000×1,000. In full matrix storage mode, this matrix requires 8

megabytes of memory. In sparse mode, it requires only 0.024 megabytes (that equates

to a 99.7% reduction in memory space). Since each row of our matrix can have at most

five non-zero elements regardless of the grid resolution, the sparse matrix is highly

effective for our purposes.

This greatly reduces memory usage, but requires some additional preparation. In

order to preallocate the size of our RHS vector, we count the number of points contained

in Ω−. To preallocate the size of our sparse vectors ~A,~i, and ~j, we must count all of

the points in Ω−, and additionally count the nupmber of neighbors also encompassed

within Ω− using the product test (e.g. φn+1
i,j · φn+1

i+1,j > 0).
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Now, we are ready to fill our sparse vector ~A. We take the coefficients directly from

the discretized diffusion equation (3.4):

Above = −1

2
D

∆t

∆y2
,

Left = −1

2
D

∆t

∆x2
, Center = 1 +

1

2
D

(
2∆t

∆x2
+

2∆t

∆y2

)
, Right = −1

2
D

∆t

∆x2
,

Below = −1

2
D

∆t

∆y2
. (3.5)

Each time we add a value to ~A, we also add its position to our ~i and ~j vectors. For

instance, for a point φn+1
i,j contained in Ω−, we add five elements to each of our vectors

( ~A, ~i, and ~j) as shown in Table 3.1. To understand this table, we must introduce two

new functions: the column-stacking function p and the tagging function.

Our system of linear equations A~u n+1 = ~f (~u n, BCn+1) requires u to be stored in

vector form. Thus, we store our elements of un+1
i,j in a vector ~u n+1

p , where

p = (j − 1)m+ i. (3.6)

This function allows us to stack our ui,j values, column by column, where m corresponds

to the number of elements in a column for an m×n grid, i and j correspond to the

location of ui,j in the grid, and p is a number from 1 to m ·n corresponding to the index

of u in the vector ~u n+1
p .

Further, we must define our tag function, a system which was implemented in order

to remove any trivial equations such as discretizations at grid points outside of Ω−,

where the solution was invalid and unused (i.e. un+1
p = 0). Skipping the creation

of these trivial equations greatly improved computational efficiency, but changed the

location of points in our vector ~u n+1
p . Consider, for example, if the first linear equation

were to be removed. Every element in the vector ~u n+1
p would now be located at p − 1
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(e.g. un+1
2 would now be un+1

1 ). This tagging system filters through each grid point and

tags any nontrivial points so that we can properly locate them in our nontrivial vector

~u n+1
p .

Table 3.1: Sparse Matrix Location Vectors
~A ~i ~j

Center tag(p(i, j,m)) tag(p(i, j,m))
Left tag(p(i− 1, j,m)) tag(p(i, j,m))

Right tag(p(i+ 1, j,m)) tag(p(i, j,m))
Below tag(p(i, j,m)) tag(p(i, j − 1,m))
Above tag(p(i, j,m)) tag(p(i, j + 1,m))

Table 3.1 describes how we would handle a point in which all the neighboring points

are also encompassed in the reacted region Ω−. If this is not the case - that is to say,

if a neighboring point was in Ω+, we would use a different treatment. In this case, we

would not include a term in our A matrix. Instead, we must introduce ghost points.

3.2 Building a Symmetric Matrix to Treat Diffu-

sion on Irregular Domains (The Ghost Fluid

Method)

In constructing our diffusion matrix A~u n+1 = ~f (~u n, BCn+1), we consider only our

unknown values of interest, such that ~u n+1 contains only values within the Ω− domain.

To reiterate, we can ignore any points that fall exactly on the interface φn+1
0 , where

Dirichlet boundary conditions are given, as well as any points in Ω+.

Now, consider the example shown in Figure 3.1. Consider a point neighboring the

interface such as un+1
2,2 . To account for diffusion from un+1

2,3 and un+1
3,2 , we implement

the process developed in the previous section. However, we know that un+1
2,1 = uγ since
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it falls on the interface, and un+1
1,2 is contained in Ω+. Since both of these points are

excluded from our vector ~u n+1, but are needed in the discretization at un+1
2,2 , we must

define ghost nodes as proposed in [1] by Gibou and Fedkiw.

Figure 3.1: Assume the blue arc represents the interface, so that left of the arc
φn+1 > 0, and right of the arc φn+1 < 0. Ghost nodes are used to handle any points
neighboring the interface. The distance between neighboring points is ∆x, whereas
the distance between un+1

2,2 and the interface is θ∆x.

Our diffusion equation (3.4) for un+1
2,2 is shown below, with the problem points bolded:

un+1
2,2

∆t
− 1

2
D

(
un+1

1,2 − 2un+1
2,2 + un+1

3,2

∆x2
+

un+1
2,1 − 2un+1

2,2 + un+1
2,3

∆y2

)
=
un2,2
∆t

+
1

2
D

(
un1,2 − 2un2,2 + un3,2

∆x2
+

un2,1 − 2un2,2 + un2,3

∆y2

)
+

1

2
(Sn+1

2,2 + Sn2,2).

(3.7)

These bolded values must be replaced with ghost values, uG, found using linear and

constant extrapolation, respectively. For example, for un+1
1,2 , we would have the following

two options:

uGi−1,j =
uγ + (θ − 1)ui,j

θ
,

uGi−1,j = uγ,

(3.8)

where uγ is the concentration at the interface given by Dirichlet boundary conditions,
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and θ ∈ [0, 1] is the fractional distance between un+1
i,j and the interface, as calculated

previously in (2.7) and (2.8).

Wherever possible, we will use linear extrapolation (3.8a) to calculate our ghost

value. However, one will notice that (3.8a) behaves poorly for small θ. Thus, when

θ < ∆x, we need to use constant extrapolation (3.8b) to ensure stability. To do so, we

would reassign the interface to this point, so that φ = 0. So, if the interface did not

fall exactly on the grid point un+1
2,1 in Figure 3.1, θ would be considered small enough

to use (3.8b). This second-order-accurate perturbation of the interface location (also

known as artificial boundary perturbation) does not degrade the overall second-order

accuracy of the solution. Note, that reassigning a point to an interface location makes

it a known value. Thus, we have to filter through every point to determine if θ is small

enough to be considered on the interface and make this reassignment before we initiate

preallocate the size of ~A.

Finally, for the case shown in Figure 3.1, we end up with the following linear equation

where the ghost values have been included:

un+1
2,2

∆t
− 1

2
D

( (1−θ)
θ

un+1
2,2 − 2un+1

2,2 + un+1
3,2

∆x2
+
−2un+1

2,2 + un+1
2,3

∆y2

)
=
un2,2
∆t

+
1

2
D

( (1−θ)
θ

un2,2 − 2un2,2 + un3,2

∆x2
+
−2un2,2 + un2,3

∆y2

)

+
1

2
(Sn+1

2,2 + Sn2,2) +
1

2
D

( u
n+1
γ +unγ
θ

∆x2
+

un+1
γ + unγ

∆y2

)
.

(3.9)

For the ghost value replacing un+1
1,2 , we must alter two ~A values (3.5) on the LHS:

Left = 0,

Center = 1 +
1

2
D

(
2∆t

∆x2
+

2∆t

∆y2
+

θ−1
θ

∆t

∆x2

)
,

(3.10)
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and add 1
2
D

(
un+1
γ

θ∆x2

)
to the RHS. We follow the same procedure when we replace un1,2

with its corresponding ghost value.

Since we use constant extrapolation to replace un+1
2,1 , only one ~A value (3.5) changes:

Above = 0, (3.11)

and we add 1
2
D

(
un+1
γ

∆y2

)
to the RHS. We use the same method to replace un2,1 with its

corresponding ghost value.

When linearly extrapolated ghost values are applied to create a sharp interface, we

achieve symmetric discretization. This refers to the consistent representation of

diffusion between the same two grid nodes. For instance, consider the diffusion between

neighboring points un+1
2,2 and un+1

3,2 in Figure 3.1. The diffusion between the two points

are described by the Right coefficient (3.5) in the discretization at un+1
2,2 and the Left

coefficient (3.5) in the discretization at un+1
3,2 . In the way we have implemented our ghost

values, both coefficients would equal −1
2
D ∆t

∆x2
, hence the symmetric discretization.

Non-symmetric discretization, on the other hand, occurs when one uses quadratic

extrapolation to determine ghost values:

uGi−1,j =
2un+1

γ + (2θ2 − 2)ui,j + (−θ2 + 1)ui+1,j

θ2 + θ
. (3.12)

In this case, the discretization at un+1
3,2 has not changed (i.e. Left = −1

2
D ∆t

∆x2
), but the

discretization at un+1
2,2 now includes some factor θ in the Right coefficient

(
i.e. Right =

−1
2
D ∆t

∆x2

(
1 + −θ2+1

θ2+θ

))
. This unequal representation of diffusion between the same two

points leads to a non-symmetric discretization, which is computationally more expensive

to solve. For this reason, we use linearly extrapolated ghost values.
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3.3 Accuracy of the Diffusion Solver

Figure 3.2 illustrates our diffusion program working with several different level-sets

described by the equations in Table 3.2 on a domain Ω = [−1, 1]2, with a source term

S(x, y, t) = cos(x) sin(x)ey cos(t)−D(−2 sin(2x)ey sin(t) + cos(x) sin(x)ey sin(t)),

where we use a diffusion coefficient D = 2, and ran the simulation to a final time

t = 0.1. The reason for this somewhat convoluted source term is because we are trying

to impose a desired outcome unumerical. To do this, we plug a test function

uexact(x, y, t) = cos(x) sin(x)ey sin(t) (3.13)

into the diffusion equation (3.4) and solve analytically for S. We can then use uexact to

define initial conditions and Dirichlet boundary conditions, and use the source term to

compute a numerical solution, unumerical, that we can compare to uexact for error analysis.

Tables 3.3 - 3.6 demonstrate that our diffusion solver has second-order accuracy for

all four level-set shapes, where we set ∆t = ∆x to ensure that the stringent time step

restriction has been alleviated through our implicit method.

Table 3.2: Level-Set Functions
Circle φ(x, y) =

√
x2 − y2 − 0.5

Diamond φ(x, y) = |x|+ |y| − 0.5

Fat Flower φ(x, y) = (x− 0.02
√

5)2 + (y − 0.02
√

5)2 − (0.5 + 0.2 sin(5 θ(x, y)))2

Thin Flower φ(x, y) =
√
x2 + y2 − (0.35 + 0.28 cos(9 θ(x, y)))
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(a) Circle (b) Diamond

(c) Fat-Petal Flower (d) Thin-Petal Flower

Figure 3.2: Two-dimensional solutions of the heat equation with Dirichlet boundary
conditions solved in only the Ω− subdomain. We use the same source term for each
level-set shape (described by the equations in Table 3.2) on a 60×60 grid resolution
to impose our desired outcome unumerical for error analysis.
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Table 3.3: Circle 2D Heat Equation - Crank-Nicholson - ∆t = ∆x
Grid Resolution L1 - error Order L∞ - error Order

81×81 1.616× 10−6 - 1.068× 10−5 -
161×161 4.327× 10−7 1.90 2.869× 10−6 1.90
321×321 1.091× 10−7 1.99 7.671× 10−7 1.90

Table 3.4: Diamond 2D Heat Equation - Crank-Nicholson - ∆t = ∆x
Grid Resolution L1 - error Order L∞ - error Order

81×81 3.408× 10−8 - 1.716× 10−7 -
161×161 8.319× 10−9 2.03 4.225× 10−8 2.02
321×321 2.075× 10−9 2.00 1.060× 10−8 2.00

Table 3.5: Fat-Petal Flower 2D Heat Equation - Crank-Nicholson - ∆t = ∆x
Grid Resolution L1 - error Order L∞ - error Order

81×81 2.291× 10−6 - 2.517× 10−5 -
161×161 4.704× 10−7 2.28 6.856× 10−6 1.88
321×321 1.037× 10−7 2.18 2.099× 10−6 1.71

Table 3.6: Thin-Petal Flower 2D Heat Equation - Crank-Nicholson - ∆t = ∆x
Grid Resolution L1 - error Order L∞ - error Order

81×81 2.061× 10−5 - 2.933× 10−4 -
161×161 5.284× 10−6 1.96 7.207× 10−5 2.02
321×321 1.296× 10−6 2.03 1.303× 10−5 2.47
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Calculating the Interface Velocity

The Stefan problem is a free boundary problem for which we solve for both a changing

concentration u and changing domain shape Ω−. Here, we discuss how we account for

the changing Ω− by using the level-set advection equation’s (1.2) interface velocity

~v = [D∇u]γ (4.1)

to find our new φn+1, where D is the diffusion coefficient, ∇u is the gradient of concen-

tration, and [·]γ denotes a jump across the interface. In a more explicit representation,

we are looking for

vx = Din

(
∂uin

∂x

)
−Dout

(
∂uout

∂x

)
,

vy = Din

(
∂uin

∂y

)
−Dout

(
∂uout

∂y

)
,

(4.2)

where vx and vy represent the x and y components of the interface velocity, respectively.

Further, Din and uin refer to values in the subdomain Ω−, whereas Dout and uout refer

to values in the subdomain Ω+.
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To compute the gradient of φ, we use centered finite differencing in space

∇φ =

(
φx, φy

)
=

(
φi+1,j − φi−1,j

2∆x
,
φi,j+1 − φi,j−1

2∆y

)
. (4.3)

We use central differencing again to find the gradient of u

∇u =

(
ux, uy

)
=

(
ui+1,j − ui−1,j

2∆x
,
ui,j+1 − ui,j−1

2∆y

)
. (4.4)

It is in this step that our Stefan solver becomes first-order accurate. This becomes

evident when one considers the gradient of u with the orders included. Remember that

our solution for u is limited by the second-order accurate diffusion solver so that each u

has an associated error O(∆x2). Central differencing is second-order accurate as well,

so if we consider these orders of error, our equation appears as:

∂u

∂x
=
ui+1,j +O(∆x2)− ui−1,j +O(∆x2)

2∆x
+O(∆x2), (4.5)

which reduces to a first-order accurate derivative since

∂u

∂x
=
ui+1,j − ui−1,j

2∆x
+O(∆x) +O(∆x2), (4.6)

simply becomes

∂u

∂x
=
ui+1,j − ui−1,j

2∆x
+O(∆x). (4.7)

This occurs because the smaller magnitude of error O(∆x2) will be dominated by the

first-order error O(∆x). As one can see, central differencing will lower the order of

accuracy by one since ∆x is in the denominator. This means at best, with a second-

order accurate solution, one can achieve first-order accuracy. And since our interface

velocity is first-order, our Stefan solver is first-order accurate.
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Seeing that we need to find gradients at the interface in both the reacted Ω− and

unreacted Ω+ domains, we implement a third-order extrapolation method to extrapo-

late values of u in the layer of grid nodes near the interface. As we discussed before,

our Dirichlet boundary conditions allow us to decouple the solutions across each region.

That is to say, we can store the two different region concentrations uin and uout, sepa-

rately. For uin, we extrapolate from the Ω− domain a small layer into the Ω+ domain;

and for uout, we extrapolate from the Ω+ domain a small layer into the Ω− domain.

Thus, we will create a small band, or layer of points, around the interface for which we

have valid extrapolated values for both uin and uout.

Now, we can calculate the gradients at the interface and calculate the interface

velocity. Although this velocity is only needed at the interface, in practice it is easier

to simply compute the interface velocity in the entire domain.

4.1 Third-Order Extrapolation Method

We implement the third-order extrapolation method presented by Aslam in [5].

This higher-order extrapolation method is necessary for two reasons. First, we require

accurate gradient values∇u at the interface to calculate the interface velocity ~v. Second,

as the phase boundary moves to include new grid nodes, we need to have valid values

of uin at these new grid nodes in order to employ the Crank-Nicholson method for our

diffusion solver. Therefore, we need to extrapolate u quadratically in a band about the

interface. To achieve this, we first calculate the second normal directional derivative of

u in our domain Ω−

unn = ~n · ∇(~n · ∇u), (4.8)
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where ∇u is defined by (4.4) and ~n is the local unit normal to the interface (~n = ∇φ
|∇φ|),

or in more explicit representation

~n =

(
n1, n2

)
=

(
φx√
φ2
x + φ2

y

,
φy√
φ2
x + φ2

y

)
. (4.9)

Then, we solve the following partial differential equations for unn, un, and u, respectively,

using an iterative solver

∂unn
∂τ

+H(φ, unn)(~n · ∇unn ) = 0,

∂un
∂τ

+H(φ, un )(~n · ∇un − unn) = 0,

∂u

∂τ
+H(φ, u )(~n · ∇u − un ) = 0,

(4.10)

where the Heaviside functions H are defined below, and τ is a fictitious time. Only a few

iterations are required to propagate the solution out in the layer of grid points near the

interface. Notice, that the three equations follow the same format whereby we impose

our desired normal derivative by subtracting it from the parenthesized term (~n · ∇u).

Hence, to impose extrapolation in the normal direction, we begin by subtracting zero

from (~n · ∇unn). Now, we have our second directional derivative defined and can use it

to compute the first directional derivative un by solving our second PDE. And finally,

we compute u in our third PDE with the imposed first directional derivative un. In

semi-discretized form, we have

d

dτ
unn +H(φ, unn)(n+

xD
−
x unn + n−xD

+
x unn + n+

yD
−
y unn + n−yD

+
y unn) = 0,

d

dτ
un +H(φ, un) (n+

xD
−
x un + n−xD

+
x un + n+

yD
−
y un + n−yD

+
y un ) = H(φ, un)unn,

d

dτ
u +H(φ, u )(n+

xD
−
x u + n−xD

+
x u + n+

yD
−
y u + n−yD

+
y u ) = H(φ, u)un ,

(4.11)
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where n+
x = max(nx, 0), n−x = min(nx, 0), n+

y = max(ny, 0), and n−y = min(ny, 0).

Also, we use the first-order one-sided finite differences (2.4) to calculate our directional

derivatives.

The Heaviside functions H(φ, x)(vj) label each point as having a known or unknown

value for x at a point vj, where zero corresponds to a known and one corresponds to

an unknown. For example, since we know u at all points in Ω−, H(φ, u)(vj) = 0 at all

points vj where φ < 0, while H(φ, u)(vj) = 1 for all points vj where φ ≥ 0. (Recall that

since we reassign values of φ to zero when θ is too small, it is better to consider these u

values to be unknown, so that we can extrapolate values at these points where φ = 0.

We found this produced more robust and accurate results.)

To calculate the derivatives ux and uy using central differencing, we need all four

neighboring points vi to be contained in Ω−. In other words, we need H(φ, u)(vi) = 0 for

all four neighbors vi of vj to set H(φ, un)(vj) = 0. Likewise, we need all four neighboring

points vi to have known first derivatives in order to use central differencing to find the

second derivatives (uxx and uyy). To summarize, the Heaviside functions are defined as

H(φ, unn)(vi) =


0 if H(φ, un)(vj) = 0 for all vj ∈ ngbd(vi),

1 otherwise,

H(φ, un )(vi) =


0 if H(φ, u)(vj) = 0 for all vj ∈ ngbd(vi),

1 otherwise,

(4.12)

H(φ, u )(vi) =


0 if φ(vi) < 0,

1 otherwise,

Figure 4.1 demonstrates visually what this third-order extrapolation method achieves.
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(a) Initial Data

(b) 15 iterations

(c) 30 iterations

Figure 4.1: We begin with u defined everywhere except inside the circle at the center.
As we execute more iterations, the extrapolated solution gets propagated further.
In addition, it becomes more accurate so that the points shown in (b) are now more
accurate in (c).
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4.2 Accuracy Analysis

Since we are only interested in the points near the interface, we compare the exact so-

lution to our extrapolated solution for only points in Ω+ where |φ| < 2∆x. Furthermore,

we investigated the necessary amount of iterations needed for our solution to converge

in this band, with the goal of maximizing the order of accuracy, while minimizing the

amount of iterations to save computational effort. Figure 4.2 plots the error analysis in

L1 and L∞ against the number of iterations. We perform this error analysis for the four

level-sets described in Table 3.2 to demonstrate the third-order extrapolation method’s

convergence dependency on both grid resolution and level-set smoothness. Also, note

that we had to reinitialize the level-sets before third-order accurate extrapolation could

be achieved.

As one can see in Figure 4.2, the accuracy continues to improve for a given number

of iterations until steady state is reached. The necessary amount of iterations to achieve

this maximum accuracy increases with the number of grid points.

The level-sets that displayed sharp features or kinks reached convergence faster than

the smooth circle, but had much larger magnitudes of error at convergence. In Figure

4.3, one can see that this larger error is caused by the sharp corners. However, we

found that for all level-set cases, 50 iterations was enough for convergence and so the

following tables show orders of accuracy after 50 iterations, which we expect to have at

least third-order convergence in L1, and first-order convergence in L∞.

Table 4.1: Circle Third-Order Extrapolation
Grid Resolution L1 - error Order L∞ - error Order

81×81 2.139× 10−5 - 2.757× 10−4 -
161×161 2.972× 10−6 2.84 9.393× 10−5 1.55
321×321 4.102× 10−7 2.86 2.707× 10−5 1.79
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(a) Circle L1 (b) Circle L∞

(c) Diamond L1 (d) Diamond L∞

(e) Fat-Petal Flower L1 (f) Fat-Petal Flower L∞

(g) Thin-Petal Flower L1 (h) Thin-Petal Flower L∞

Figure 4.2: Iterations required to reach convergence in the band of space 2∆x outside
the interface for the four level-set shapes described by in Table 3.2.
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(a) Diamond L1 (b) Diamond L∞

Figure 4.3: Notice the error arises at the sharp corners of the diamond level-set.
Likewise, with the flower level-sets (not pictured), we observed the greatest error at
the sharp corners where the petals meet at the base.

Table 4.2: Diamond Third-Order Extrapolation
Grid Resolution L1 - error Order L∞ - error Order

81×81 2.459× 10−4 - 1.470× 10−2 -
161×161 3.157× 10−5 2.96 7.500× 10−3 0.97
321×321 4.014× 10−6 2.98 3.800× 10−3 0.98

Table 4.3: Fat-Petal Flower Third-Order Extrapolation
Grid Resolution L1 - error Order L∞ - error Order

81×81 2.654× 10−4 - 1.410× 10−2 -
161×161 1.262× 10−5 4.39 4.900× 10−3 1.52
321×321 1.147× 10−6 3.46 4.999× 10−4 3.30

Table 4.4: Thin-Petal Flower Third-Order Extrapolation
Grid Resolution L1 - error Order L∞ - error Order

81×81 1.370× 10−2 - 1.793× 10−1 -
161×161 6.558× 10−4 4.38 5.070× 10−2 1.82
321×321 1.590× 10−5 5.37 7.000× 10−3 2.85
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4.3 Constant Extrapolation of the Interface Veloc-

ity

Although we are interested only in the level-set velocity at the interface φ = 0, we

compute the level-set velocity on our entire grid. This means different parts of our level-

set will be displaced at different rates which could lead to a poorly behaved level-set.

However, there is a simple preconditioning tool we can use to make our level-set behave

better and allow the reinitialization equation to converge faster. We implement constant

extrapolation of the interface velocity. This is a first-order extrapolation method, and

thus uses only one PDE with an imposed first derivative of 0

∂vx
∂τ

+H(φ, vx)(~n · ∇vx) = 0,

∂vy
∂τ

+H(φ, vy)(~n · ∇vy) = 0.

(4.13)

We call this function using φ to constantly extrapolate the velocities from the inter-

face into Ω+, then repeat the process using −φ to extrapolate the velocities from the

interface into Ω−. In this way, the values at the interface will be extrapolated in the

normal direction throughout the grid space. Figure 4.4 demonstrates this constant

extrapolation.
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(a) Velocity in the subdomain Ω− (b) Velocity extrapolated beyond the interface

Figure 4.4: Constant normal extrapolation of the values in the Ω− region out into
the Ω+ region.
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Advection

We use the level-set equation (1.2) to keep track of the moving interface. This equation

can be described as advection, or the transport of material via bulk motion (see Figure

5.1). Advection is described by a linear hyperbolic PDE, which is not trivial to solve

numerically. Because it contains strictly first derivatives and a causality principle,

unique numerical challenges arise in its discretization. For instance, using standard

central differencing techniques can create instability. Upwind schemes are a popular

numerical technique used to tackle such problems because they consider the direction

of propagation of information. However, we must be careful to select the appropriate

time step to minimize both even-order spatial derivative related errors (i.e. numerical

dissipation, or damping); and odd-order spatial derivative related errors (i.e. numerical

dispersion, or the incorrect propagation velocity, which can also produce dispersive

waves left in the wake). Choosing the appropriate CFL (Courant-Friedrichs-Lewy)

number will reduce these errors as well as ensure numerical stability. In practice, we

use a CFL number of 0.5.

Thus far, we have used first-order accurate upwind schemes which are impractical in

this application. But, higher-order methods like the Lax-Wendroff and Beam-Warming
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(a) Initial Data

(b) u = +1, v = +1 (c) u = +1, v = −1

(d) u = −1, v = +1 (e) u = −1, v = −1

Figure 5.1: Advection in different directions.

methods produce oscillatory results near discontinuities. Thus, we develop a higher-

order spatial discretization scheme known as WENO, or the Weighted Essentially Non-

Oscillatory scheme, first introduced by Liu, Osher, and Chan in [6]. We combine this
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with a TVD RK3 time discretization to compute advection.

5.1 WENO Schemes

The WENO scheme was developed for solving one-sided finite difference problems

with higher-order accuracy in smooth regions, while simultaneously improving behavior

near discontinuities. This is achieved by considering three different stencils (depending

on the upwind direction), and determining for each grid point which stencil or convex

weighted combination of stencils will produce the smoothest results.

Figure 5.2(a) shows the three substencil choices for the upwind direction D+
x , so

called because it involves the points i+ 1 and i, such that information propagates from

i + 1 to i and vx < 0. Figure 5.2(b) shows the three substencil choices for the upwind

direction D−x , so called because it involves the points i− 1 and i, such that information

propagates from i− 1 to i and vx > 0.

(a) Possible stencil choices for computing D+
x

(b) Possible stencil choices for computing D−x

Figure 5.2: WENO substencil choices for computing one-sided finite differences.

Figure 5.3 shows an example of how we would choose the smoothest possible stencil.
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Figure 5.3: Suppose for the stencil you see here, vx is negative, so that information
is traveling from i + 1 to i. We would then make our substencil selection from the
options for D+

x in Figure 5.2(a). It is clear from inspection that substencils 2 and
3 introduce a new maximum which would trigger oscillations in the solution. Thus,
we would ultimately choose substencil 1 because it is the smoothest.

This smoothness can be computed by determining the divided differences which

measure the level of discontinuity in a solution. The three possible ENO approximations

of D−x u are

u1
x =

d1

3
− 7d2

6
+

11d3

6
,

u2
x = −d2

6
+

5d3

6
+
d4

3
,

u3
x =

d3

3
+

5d4

6
− d5

6
,

where dk is defined as the simple finite differences:

d1 =
ui−2 − ui−3

∆x
,

d2 =
ui−1 − ui−2

∆x
,

d3 =
ui − ui−1

∆x
,

d4 =
ui+1 − ui

∆x
,

d5 =
ui+2 − ui+1

∆x
.
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The WENO approximation of D−x u is

D−x u = ω1u
1
x + ω2u

2
x + ω3u

3
x, (5.1)

where the stencil weights ω create a convex combination (i.e. ω1 +ω2 +ω3 = 1), chosen

to create fifth-order accuracy in regions of smoothness, and reduce oscillatory behavior

near discontinuities. To begin, we calculate the smoothness S of each stencil

S1 =
13

12
(d1 − 2d2 + d3)2 +

1

4
(d1 − 4d2 + 3d3)2,

S2 =
13

12
(d2 − 2d3 + d4)2 +

1

4
(d2 − d4)2,

S3 =
13

12
(d3 − 2d4 + d5)2 +

1

4
(3d3 − 4d4 + d5)2.

Then, we define the coefficients αk as

α1 =
0.1

(S1 + ε)2
, α2 =

0.6

(S2 + ε)2
, α3 =

0.3

(S3 + ε)2
,

where ε = 10−6 ×max(d2
1, d

2
2, d

2
3, d

2
4, d

2
5) + 10−99. Finally, we can compute ωk as

ω1 =
α1

α1 + α2 + α3

, ω2 =
α2

α1 + α2 + α3

, ω3 =
α3

α1 + α2 + α3

.

The construction of D+
x u uses the same process, except that our simple finite differences
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dk change to

d1 =
ui+3 − ui+2

∆x
,

d2 =
ui+2 − ui+1

∆x
,

d3 =
ui+1 − ui

∆x
,

d4 =
ui − ui−1

∆x
,

d5 =
ui−1 − ui−2

∆x
.

Further, to extend these schemes to two-dimensions, we simply execute the above

dimension by dimension. That is to say, we begin with column j = 1, and complete the

spatial discretization for this column before moving to the next column, j = 2. And to

construct D+
y u and D−y u, we simply replace the i index with j.

5.2 Accuracy of WENO Schemes for Computing First

Derivatives

To test for the accuracy of our WENO schemes, we first used a continuous test

function

φ(x, y) = cos(x) sin(y), (5.2)

and solved analytically for the partial derivatives with respect to x and y

φx(x, y) = − sin(x) sin(y),

φy(x, y) = cos(x) cos(y),

(5.3)

44



Advection Chapter 5

in the domain Ω = [0,2π]2 so that periodic boundary conditions could be applied (for

the sake of error analysis). We compare φx to the resulting numerical solution found

using our D+
x and D−x schemes; and compare φy to the numerical solution found using

D+
y and D−y . For a continuous function like this, we expect fifth-order accuracy, and

from Table 5.1, we can see that this was indeed achieved. The L1 and L∞ error, as well

as the orders were the same for all four upwind directions.

Table 5.1: 2D WENO Scheme for All Upwind Directions
Grid Resolution L1 - error Order L∞ - error Order

81×81 5.502× 10−6 - 3.489× 10−7 -
161×161 1.738× 10−7 4.98 1.090× 10−8 5.00
321×321 5.426× 10−9 5.00 3.405× 10−10 5.00

Perhaps, of more interest is what happens when we use a discontinuous function.

For this second test, we used the piecewise function shown in Figure 5.4 and defined by

φ(x, y) =


cos(x) sin(y) for 0 ≤ x < N/3,

− cos(x) sin(y) for N/3 ≤ x ≤ 2N/3,

cos(x) sin(y) for 2N/3 < x ≤ N,

(5.4)

where N is the number of points in the grid, so that the function is the same in the

initial and final third, but negative in the middle third. By beginning and ending with

the same function, we can impose periodic boundary conditions which was necessary

for accuracy testing. The above equation is discontinuous in the x-direction, and so was

used to test our D+
x and D−x programs against the exact analytical solution φx in (5.3).

Again, noting that for the middle third, we use −φx (5.3). We use the same process to

test the accuracy of D+
y and D−y , except that we make our function discontinuous along
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y, instead:

φ(x, y) =


cos(x) sin(y) for 0 ≤ y < N/3,

− cos(x) sin(y) for N/3 ≤ y ≤ 2N/3,

cos(x) sin(y) for 2N/3 < y ≤ N.

(5.5)

For a discontinuous function, the greatest error in our WENO scheme accumulates

near the discontinuity with a peak of error along the row or column at which the

discontinuity actually occurs. Neglecting this one row of error which is impossible

to avoid, we would expect at least third-order convergence for our piecewise function.

Tables 5.2 - 5.5 show that for each of the four one-sided finite difference WENO scheme,

third-order accuracy is achieved.
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(a) Mesh: Discontinuous function φ about x (b) Contour: Discontinuous function φ about x

(c) Mesh: Discontinuous function φ about y (d) Contour: Discontinuous function φ about y

Figure 5.4: Discontinuous function separated into three parts where the first and
final third are defined by the equation f(x, y) = cos(x) sin(y), whereas the middle is
defined by the negative of that function f(x, y) = − cos(x) sin(y).
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(a) Mesh: φx (b) Contour: φx

(c) Mesh: φy (d) Contour: φy

Figure 5.5: The derivative φx was calculated using the function φ discontinuous about
x, and the derivative φy was calculated using the function φ discontinuous about
y to demonstrate the WENO scheme’s ability to produce non-oscillatory results
for discontinuous functions. In other schemes, treatment at discontinuities creates
oscillatory results in the first derivative calculations. Note that these plots do not
include the one row or column of error that does peak due to the discontinuity, which
is unavoidable.
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Table 5.2: 2D WENO Scheme for Upwind Direction D+
x φ

Grid Resolution L1 - error Order L∞ - error Order
81×81 6.368× 10−5 - 6.486× 10−5 -

161×161 3.848× 10−6 4.05 8.010× 10−6 3.02
321×321 2.398× 10−7 4.00 9.634× 10−7 3.06

Table 5.3: 2D WENO Scheme for Upwind Direction D−x φ

Grid Resolution L1 - error Order L∞ - error Order
81×81 6.318× 10−5 - 8.004× 10−5 -

161×161 3.844× 10−6 4.04 8.508× 10−6 3.24
321×321 2.397× 10−7 4.00 1.027× 10−6 3.05

Table 5.4: 2D WENO Scheme for Upwind Direction D+
y φ

Grid Resolution L1 - error Order L∞ - error Order
81×81 1.114× 10−4 - 1.087× 10−4 -

161×161 6.800× 10−6 4.03 1.354× 10−5 3.00
321×321 4.164× 10−7 4.03 1.655× 10−6 3.03

Table 5.5: 2D WENO Scheme for Upwind Direction D−y φ

Grid Resolution L1 - error Order L∞ - error Order
81×81 1.105× 10−4 - 1.157× 10−4 -

161×161 6.792× 10−6 4.02 1.380× 10−5 3.07
321×321 4.162× 10−7 4.03 1.690× 10−6 3.03

5.3 Total Variation Diminishing Runge-Kutta (TVD

RK3) Method

Now that we have developed a higher-order accurate method to approximate φx,

we can implement the TVD RK3 method to compute advection using a combination of
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three Euler steps and two averaging steps

φ̃n+1 − φn

∆t
+ un φnx + vn φny = 0,

φ̃n+2 − φ̃n+1

∆t
+ un+1φ̃n+1

x + vn+1φ̃n+1
y = 0,

φ̃n+ 1
2 =

3

4
φn +

1

4
φ̃n+2,

φ̃n+ 3
2 − φ̃n+ 1

2

∆t
+ un+ 1

2 φ̃
n+ 1

2
x + vn+ 1

2 φ̃
n+ 1

2
y = 0,

φn+1 =
1

3
φn +

2

3
φ̃n+ 3

2 ,

(5.6)

where vx and vy are the interface velocity components. We find φx and φy using our

WENO schemes so that, if vx > 0, we would use D−x and if vx < 0, we would use

D+
x . Similarly, if vy > 0, we would use D−y and if vy < 0, we would use D+

y . Since

this is a third-order accurate method, it will be the limiting factor in our advection

accuracy (remembering that WENO was up to fifth-order accurate and at minimum,

third-order).

5.4 Accuracy of the Advection Scheme

To check the order of accuracy for advection, we use two tests. The first, is the

vortex test where we begin with a circular level-set

φ = (x− 0.5)2 + (y − 0.75)2 − 0.152, (5.7)
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on a domain Ω = [0,1]2 and deform it for 1 second using a vortex, defined by the

conservative velocity field:

vx(x, y) = − sin2(πx) sin(2πy),

vy(x, y) = sin2(πy) sin(2πx),

(5.8)

so that it takes the shape shown in Figure 5.6(a). We then run our numerical simulation

for the same amount of time (1 second) with the reverse velocities −vx and −vy so that

our zero level-set returns to its original position and shape. Then, we can compare

the initial and final zero level-sets to ensure that our numerical interface is capable of

undergoing dramatic deformations while still upholding the law of conservation of mass.

In Figure 5.6(a), there is likely some mass lost at the tail of the level-set deformed by

the vortex as it is stretched to thinner degrees. In Figure 5.6(b), we plot the initial and

final zero level-sets to show that there is, indeed, mass loss. However, as we refine our

grid, this mass loss becomes negligible as shown in Figure 5.7.

Our numerical scheme for advection maintains between third and fifth-order accu-

racy as one can see in Table 5.6. This is to be expected since we used a third-order

accurate method for our time discretization and fifth-order accurate method for our

spatial discretization.

Table 5.6: Advection Vortex Test w/ ∆t = 0.5 min(∆x,∆y)/|v|max
Grid Resolution L1 - error Order L∞ - error Order

81×81 1.352× 10−4 - 1.100× 10−3 -
161×161 5.966× 10−6 4.50 1.319× 10−4 3.04
321×321 2.307× 10−7 4.69 1.090× 10−5 3.60

To be thorough in our testing, we implemented a second test. Here, we advect a
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(a) Level-set disfigured after vortex has
acted on it for 1 second.

(b) Initial and final level-set after vortex
has deformed it in one direction then de-
formed it in reverse direction.

Figure 5.6: We test for mass conservation by distorting the level-set using vortices
acting in one direction, then reversing the vortices and comparing the difference
between the initial and final zero level-sets. One can clearly see that mass has
indeed been lost. We chose a low grid resolution of 41×41 to demonstrate this, but
in fact, our program is very good at conserving mass as can be seen in Figure 5.7.

Figure 5.7: Here, we show the same plot as in Figure 5.6(b), at a higher grid resolu-
tion of 101×101. At this grid resolution, one cannot even distinguish the difference
between the initial and final zero level-sets, proving that the mass loss is negligible
for refined grids.
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periodic level-set given by

φ(x, y) = cos(x− xc) sin(y − yc), (5.9)

in a domain Ω = [−π,π]2. We use velocities vx = 1 and vy = 1 and a final time tfinal = 0,

so that we know if the solution (xc, yc) is initially at (0,0), the final analytical solution

will be at (1,1). This test proves our advection solver achieves third-order accuracy as

can be seen in Table 5.7.

Table 5.7: Advection Test w/ ∆t = 0.5min(∆x,∆y)/|v|max
Grid Resolution L1 - error Order L∞ - error Order

81×81 5.204× 10−4 - 2.054× 10−5 -
161×161 6.426× 10−5 3.05 2.536× 10−6 3.05
321×321 7.961× 10−6 3.03 3.151× 10−7 3.02
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Stefan Solver

Our first-order accurate Stefan solver calls upon all of the previously discussed functions

to simulate crystal growth where the conserved variable u of interest is temperature.

Thus, in terms of the heat equation, this diffusion can be thought of as conduction.

For example, if you were to hold a metal rod so that one end was in a fire, eventually,

through the diffusion of temperature in the metal rod, or the conduction of heat, the

rod would burn your hand even if your hand was never near the fire (assuming the

diffusion coefficient of the metal was large enough).

We consider an initial level-set describing ice in supercooled water, where super-

cooled means the water is below freezing point without solidification. We begin by set-

ting the parameters: grid resolution N×N , diffusion coefficients Din and Dout, boundary

conditions uγ, initial temperature conditions T 0
in and T 0

out, and initial level-set φ0. Since

our temperature T will be discontinuous about the interface, initially, we must smooth

them out using the diffusion function until a steady state is reached whereby T 0
in and T 0

out

match at the interface and form a continuous temperature field. We can set ∆t = ∆x,

since our Crank-Nicholson scheme allows it. To be safe, we execute our diffusion code

for the same number of iterations as our iterative methods to ensure convergence.
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Once, we have defined satisfactory initial conditions for temperature, we can enter

our while loop that runs until the final time is reached. The pseudo code below shows

the algorithm used to solve our Stefan problem.

while t < tfinal

Third Order Extrapolation of T nin from Ω− into Ω+

Third Order Extrapolation of T nout from Ω+ into Ω−

Compute velocities vx and vy

In normal direction at interface:

Constant Extrapolation of vx into Ω+

Constant Extrapolation of vx into Ω−

Constant Extrapolation of vy into Ω+

Constant Extrapolation of vy into Ω−

Compute new time step ∆t = 0.5 min(∆x,∆y)/ |v|max;

Find φn+1 by advecting φn with interface velocity

Compute anisotropic boundary conditions

Diffusion of T n+1
in using φn+1

Diffusion of T n+1
out using −φn+1

Reinitialize φn+1

t = t+dt;

end

For each time step, we begin by using our third-order extrapolation method to ex-

trapolate the band of points Tin and Tout about the interface. Next, we are ready to

calculate the interface velocity ~v using the gradients of temperature at the interface. We

use constant extrapolation to make the interface velocity constant in the normal direc-

tion to the interface to ensure better behavior of the level-set. For stability purposes, we
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recalculate the new time step, here, using ∆t = 0.5min(∆x,∆y)/|v|max. Next, we com-

pute the new level-set φn+1 by advecting the front with the computed interface velocity.

Now, we can calculate the Gibbs-Thomson boundary conditions (6.1) (discussed later)

to impose anisotropic conditions. Then, we call on our diffusion solver to solve in each

domain Ω− and Ω+. We use the current extrapolated temperature field T nin, φn+1, Din

and our boundary conditions to compute T n+1
in in Ω−, and use the current extrapolated

temperature field T nout, −φn+1, Dout and our boundary conditions to compute T n+1
out in

Ω+. Finally, we reinitialize our level-set. To reach the final time, we would repeat this

process for the necessary amount of time steps.

To demonstrate some interesting examples of crystal growth, we refer to Gibou’s

paper [3] on numerically simulating dendritic solidification by imposing anisotropic

diffusion. Anisotropy is the property of being directionally dependent, and when applied

to simulate the surface tension at the interface, produces dendritic growth. We impose

Gibbs-Thomson boundary conditions at the interface defined as

uγ = u+ εκ. (6.1)

Here, κ is the curvature of the interface (κ = ∇ · ~n), and εc is the surface tension

coefficient

εc = d0(1− 15ε cos(4α)), (6.2)

where d0 is the anisotropy coefficient, ε is the anisotropy strength, and α is the angle

between the normal at the interface and the x-axis. This formula represents the standard

four-fold anisotropy and allows us to create interesting geometries such as those shown

in Figures 6.1 - 6.3. For each snowflake, we begin with an initial square zero level-set

56



Stefan Solver Chapter 6

defined by

φ = max(|x|, |y|)− 0.1
√

2 (6.3)

in a domain Ω = [−1.5, 1.5]2 with grid resolution 200×200. For our time step, we

use the restriction ∆t = 0.5min(∆x,∆y)/|v|max. We define both diffusion coefficients

Din = Dout = 0.5, and initial temperatures u0
in = 0, and u0

out = −0.5. Finally, to induce

dendritic growth, we set the anisotropic feature d0 = 0.005 and vary ε to create the

three different snowflakes.

One will notice that as the dendrites grow, some merge into each other, which is

why the final snowflakes in Figures 6.1(f), 6.2(f), and 6.3(f) have developed holes and

gaps in the ice. As we discussed earlier, the level-set method was designed to handle

these types of complex topological changes, and indeed, we are able to demonstrate its

capabilities in these examples. We include Figure 6.4 to help observe this phenomenon

and better visualize how these dendrites grow along preferred directions. One should

also notice the lack of symmetry in the actual snowflake growth. That is to say, despite

the symmetry of the grid and initial conditions, the dendrite growths vary on different

sides of the initial square crystal. This is due to the anisotropic effects and the highly

nonlinear unstable nature of this problem.

In Figure 6.5, we show the effects of varying the diffusion coefficient on snowflake

growth. One will notice that a greater diffusion coefficient will increase the interface

velocity so that the snowflake will grow faster.
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(a) t = 0.000 s (b) t = 0.005 s

(c) t = 0.010 s (d) t = 0.015 s

(e) t = 0.020 s (f) t = 0.025 s

Figure 6.1: Time lapse of snowflake growth on 200×200 grid with ε = 0.7.
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(a) t = 0.000 s (b) t = 0.005 s

(c) t = 0.010 s (d) t = 0.015 s

(e) t = 0.020 s (f) t = 0.025 s

Figure 6.2: Time lapse of snowflake growth on 200×200 grid with ε = 0.6.
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(a) t = 0.000 s (b) t = 0.010 s

(c) t = 0.020 s (d) t = 0.030 s

(e) t = 0.040 s (f) t = 0.050 s

Figure 6.3: Time lapse of snowflake growth on 200×200 with ε = 0.3.
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Figure 6.4: Here, we include many more time step renderings all plotted on the same
figure. In this figure, it is highly apparent that the dendrites grow along preferred
directions due to the anisotropic boundary conditions. One can clearly see how the
holes begin to develop from dendrites growing and merging into each other. This is
the same snowflake as the one shown in Figure 6.1 (i.e. Snowflake Growth A).
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(a) D = 3 (b) D = 1

(c) D = 3 (d) D = 1

Figure 6.5: Effects of diffusion coefficient on snowflake growth. Here, we show the
growth every 0.001 seconds for a final time of 0.05 seconds on a grid size 200×200
with the same supercooled system as the snowflakes and no anisotropic effects. We
vary the diffusion coefficient from 1 to 3 for the two different level-set shapes to
demonstrate how the interface velocity increases with the diffusion coefficient.
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Chapter 7

Efficient Matlab Implementation

We have already discussed a few strategies used to make our code more powerful such

as using sparse matrices to reduce memory storage. Now, we will discuss some of the

steps taken to improve computational efficiency. There were two areas where significant

improvements were made: the diffusion solver and the iterative methods. (Please note

that in the following subsections, a 64-bit Linux Ubuntu OS was used with 62.8 GiB of

memory and an Intel Xeon(R) CPU e5-1650 v4 @ 3.60GHz × 12 processor.

7.1 Building a Compact Diffusion Matrix

The original diffusion function created a linear equation A~u n+1 = ~f (~u n, BCn+1)

for each grid point in the entire domain Ω, which equates to a diffusion matrix size of

40,000×40,000 for a grid resolution of 200×200. This means the program was creating

identity equations at grid points that fell on the interface where the solution was known

(i.e. un+1
i,j = BCn+1

i,j ), and at grid points in Ω+ where the solution was invalid and,

therefore, unused (i.e. un+1
i,j = 0). We used this method initially because it was easy to

implement and seemed reasonably efficient for smaller grid resolutions. However, as we
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began to refine our grid, this method was no longer effective.

To demonstrate the gain in efficiency, we include Table 7.1, which executes the dif-

fusion program a total of 275 times to simulate 275 time steps. We use this number for

comparison throughout the efficiency study so that we can make a reasonable compar-

ison of the comprehensive Stefan solvers at the end. We used a circular level-set with a

radius of 0.5 in a domain [−1, 1]2 using various grid resolutions to show the impact of

our improved efficiency. (However, keep in mind that as the grid resolution increases,

the time step shrinks. Thus, as one refines the grid, many more time steps would be

required to reach the same final time.) We included the time elapsed (in seconds) to

execute each program, as well as the percent time reduction, which is calculated as

(1 - New Time/Old Time). Notice, as the grid size increases, percent time reduction

increases, as well, so that for a grid size 100×100, the new diffusion solver is 25.5 times

faster, and with a grid resolution of 500×500, the new diffusion solver is 495 times faster

than the original scheme. This increase in efficiency has to do with the growing amount

of identity equations which our old solver had to compute.

Table 7.1: Diffusion Program Efficiency for Various Grid Resolutions
Grid Resolution Old Time(s) New Time(s) % Time Reduction

100×100 30 1.16 96.08%
200×200 378 5.22 98.62%
300×300 2,025 12.05 99.41%
400×400 6,909 21.56 99.69%
500×500 17,552 35.42 99.80%

To avoid creating thousands of identity equations, we made ~u n+1 contain only points

in Ω− in our new diffusion solver. This required use of the ghost value method. Consider,

for example, Figure 7.1.

For such a case, our old diffusion solver would create an implicit system of linear
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Figure 7.1: Consider this grid with ten points in a 2×5 arrangement. For this
system, we have four points in Ω+ that we do not want to compute, four points at
the interface with known boundary condition values, and only two points that need
to be solved for.

equations A~u n+1 = ~f (~u n, BCn+1) shown in matrix form below:

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 L C R 0 0 0 B 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 A 0 0 0 L C R 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1





un+1
1,1

un+1
2,1

un+1
3,1

un+1
4,1

un+1
5,1

un+1
1,2

un+1
2,2

un+1
3,2

un+1
4,2

un+1
5,2



=



0

BCn+1
2,1

f(un)3,1

BCn+1
4,1

0

0

BCn+1
2,2

f(un)3,2

BCn+1
4,2

0



, (7.1)

where we filled our RHS vector with zeroes for points outside of Ω−, Dirichlet boundary

conditions where applicable, and f(un) to represent some known function of un. The

non-trivial values have been highlighted so one can quickly identify the equations that

are non-trivial. In this example, eight of the ten rows are identity equations. The new

diffusion solver removes all these trivial rows so that we are left solving only for the two
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unknowns: C B

A C


un+1

3,1

un+1
3,2

 =

f(un)3,1 − LBCn+1
2,1 −RBCn+1

4,1

f(un)3,2 − LBCn+1
2,2 −RBCn+1

4,2

 . (7.2)

This matrix is stripped of all lines associated with the known values in the previously

used ~u n+1. One can imagine this by considering the first line of the matrix. We do not

want to compute un+1
1,1 , so we strike the top row and leftmost column from the matrix

as shown in Figure 7.2. This does not affect any other equation since all elements off

the diagonal are zero. Next, we move to the second value in our vector: un+1
2,1 . Here,

we notice there is a non-zero element off the diagonal. When this occurs, we must

implement the ghost value method so that our linear equation is still valid. Thus, we

would move the value Lun+1
2,1 to the RHS vector by subtracting it.

Figure 7.2: Ghost Point Added to the RHS to account for the element L no longer
included in the matrix.

Another way to consider this is by looking at the equation itself outside of matrix
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form. For the third line, we would end up with the linear equation:

LBCn+1
2,1 + C un+1

3,1 + RBCn+1
4,1 + B un+1

3,2 = f(un)3,1. (7.3)

Moving all our knowns to the RHS, we acquire this rearranged equation:

C un+1
3,1 + B un+1

3,2 = f(un)3,1 − LBCn+1
2,1 −RBCn+1

4,1 . (7.4)

Note, Figure 7.2 is simply provided for a visual understanding of how one can transform

the original 10×10 matrix into the new 2×2 matrix. However, in its actual implemen-

tation, the new diffusion program skips the generation of the identity equations, so that

it only ever builds the concise compact matrix you see in the end, adding the ghost

values to the RHS on the fly. This is how our new diffusion solver gains its efficiency

over the old diffusion solver.

7.2 Computing First-Order Directional Derivatives

In this thesis, we develop higher-order accurate one-sided finite difference schemes

called the WENO schemes. These sacrifice computational efficiency for accuracy, mak-

ing them highly advantageous for a process like advection where they are only called

upon six times, but become cumbersome in iterative methods.

In our Stefan solver, we use three iterative methods, which each require a minimum

number of iterations to propagate the solution out sufficiently far. During these iter-

ations, the solution will continue to converge to comparable accuracies, regardless of

the accuracy of the directional derivatives. For all three snowflakes shown in Figures

6.1 - 6.3, we used 50 iterations of reinitialization; 160 iterations of constant extrapo-

lation (i.e. 40 iterations to extrapolate vx and vy in both normal directions); and 80
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iterations of third-order extrapolation (i.e. 40 iterations to extrapolate Tin and Tout in

a band around the interface). Recall that these iterations occur at every time step,

and with each iteration, we calculate all four directional derivatives. Thus, over the

course of 275 time steps, we call upon our directional derivatives a grand total of 55,000

times for reinitialization, 176,000 times for constant extrapolation, and 88,000 times

for third-order extrapolation. Thus, we require a cheaper method for computing direc-

tional derivatives which we developed in equation (2.4). Tables 7.2 - 7.4 demonstrate

the efficiency gained when we use first-order schemes in place of the WENO schemes.

Table 7.2: Reinitialization Efficiency for Various Grid Resolutions
Grid Resolution Old Time(s) New Time(s) % Time Reduction

100×100 635 9.39 98.52%
200×200 2, 551 36.60 98.56%
300×300 5, 764 79.64 98.62%
400×400 9, 708 139.79 98.56%
500×500 15, 156 221.99 98.54%

Table 7.3: Constant Extrapolation Efficiency for Various Grid Resolutions
Grid Resolution Old Time(s) New Time(s) % Time Reduction

100×100 2, 957 21.44 99.28%
200×200 11, 462 80.49 99.30%
300×300 25, 818 177.79 99.31%
400×400 49, 207 321.36 99.35%
500×500 75, 783 515.61 99.32%

Table 7.4: Third-Order Accuracy Efficiency for Various Grid Resolutions
Grid Resolution Old Time(s) New Time(s) % Time Reduction

100×100 2, 893 32.41 98.88%
200×200 11, 497 123.50 98.93%
300×300 27, 699 274.32 99.01%
400×400 46, 730 484.58 98.98%
500×500 77, 003 760.39 99.01%

Table 7.5 shows the time it would take for the diffusion and iterative methods of
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the Stefan solver to execute 275 time steps for a circular level-set with radius 0.5 in a

200×200 grid to demonstrate the efficiency we have gained.

Table 7.5: Time to Make the Snowflake
Method Old Time(s) New Time(s) % Time Reduction
Diffusion 378 5.22 98.62%

Reinitialization 2, 551 36.60 98.56%
Constant Extrapolation 11, 462 80.49 99.30%

Third-Order Extrapolation 11, 497 123.50 98.93%
Total Time 25, 888 245.81 99.05%

I have also included a simulation run at a higher grid resolution of 500×500 to

demonstrate the significance of this speed enhancement. With the new methods, it

takes 35 minutes to execute 275 time steps, whereas with the old methods, it takes

three days.

Table 7.6: Time for 275 time steps at Higher Grid Resolution
Method Old Time(s) New Time(s) % Time Reduction
Diffusion 17, 552 35.42 99.80%

Reinitialization 15, 156 221.99 98.54%
Constant Extrapolation 75, 783 515.61 99.32%

Third-Order Extrapolation 77, 003 760.39 99.01%
Total Time 254, 444 2, 055.23 99.19%
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Closing Thoughts

The Stefan problem is a complicated free boundary problem with no analytical solutions.

Therefore, we developed a numerical method to allow us to analyze dendritic crystal

growth. As we discussed in Section 4, our Stefan solver is first-order accurate overall

because of the interface velocity calculation. Using quadratic extrapolation of the ghost

values gives us a second-order accurate solution and second-order accurate derivative.

In numerical analysis, this is called super convergence because it converges faster than

one would expect. When we use linear extrapolation instead, we maintain the second-

order accurate solution, but lose one order of accuracy in our gradient. However, this

allows us to have symmetric discretization, which in turn enables us to use much faster

solvers like PCG, whereas with non-symmetric discretization, we are forced to use slow

solvers like Gauss-Seidel. With numerical methods, the coder must sometimes choose

what to prioritize. In this thesis, we chose to prioritize solver efficiency over one order

of accuracy because the non-symmetric discretization is simply too computationally

expensive. As we refined the grid, it would have become computationally prohibitive,

and grid refinement is unavoidable to capture dendritic structures. Thus, we chose to

build a simpler, but faster model that would allow us to execute many more studies in
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a shorter amount of time, as well as study higher grid resolutions.

We develop higher-order tools like third-order extrapolation and up to fifth-order

WENO methods so that error does not compound throughout the solver and further

reduce our precision. Further, our solver was built with higher-order dimensions in

mind. Tools like the level-set can easily be extended to a three-dimensional problem by

simply adding an extra index. Additionally, the entire code can readily be used with

adaptive grid meshing as shown by Chen, Min, and Gibou in [2]. Thus, one advantage

of the solver presented in this thesis, is that it provides a solid foundation for modeling

the Stefan problem, that can be built upon easily.

We touched upon some reasons why the Stefan problem is a significant problem to

study, earlier, and expand upon it here, as well as how our code could be used as a

simple model for some of these important applications.

The word dendrites comes from the Greek word for tree, dendron. Metallurgists

began using the term to describe alloy growth after observing tree-like branch structures

in the freshly cast metal mixtures. An alloy is a mixture of metals like brass (copper

and zinc) or mixture of metal and elements like steel or stainless steel (iron and carbon).

Under a powerful microscope, an alloy appears to be made up of millions of tiny metallic

snowflakes growing around and into each other. This is because as molten metal freezes,

crystals grow faster along energetically favorable crystallographic directions.

Metallurgists discovered that this dendritic crystal growth played an enormous role

in determining the alloy properties, including: softness, malleability, elasticity, load-

carrying ability, heat and electricity conductance, and how easily it can be welded to

another piece of metal - to name a few. All of these properties directly correlated to

the shape, size, and speed of the dendritic growth. Thus, numerical simulations are

a valuable tool for predicting how different conditions will affect these growth factors

and give rise to the desired attributes [8]. For instance, smaller dendrites, which are
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typically produced by rapid cooling cycles, generally lead to higher ductility. Whereas,

long dendrites can provide a ready path for corrosive fluid to penetrate. Thus, one

might use the numerical simulations to identify the ideal conditions that would minimize

dendrite length.

One example of how this is useful is that it allows us to improve the recipe for

materials like superalloys - high strength materials that can perform at extremely high

temperatures. They are used in the construction of turbine engines, rocket engines, and

power plants because the rule in energy efficiency is that the hotter you can burn fuel,

the more energy you get out of it, and thus, the less fuel you need to use. This means

superalloys increase energy efficiency and reduce pollution. Currently, superalloys can

perform at temperatures over 650 degrees Celcius, and each year this number gets a

little higher as they improve the recipe using simulations like the one presented in this

thesis to determine the ideal conditions for producing superalloys.

Another important application for analyzing the Stefan problem is in medicine. The

diffusion-reaction model has long been used to study cancer invasion [9] whereby we can

observe the phase transition of healthy cells into cancer cells via the diffusion of oxygen

and other nutrients. Diffusion-reaction models have allowed scientists and doctors to

better understand the underlying mechanisms that govern the destruction of normal

tissues by metastatic cancer, and map the interactions between tumor cells and normal

cells at the tumor-host interface which significantly influences the progression of invasive

cancer. Thus, numerical simulations can give us valuable insight into cancer cell growth

and what can be done to slow down and treat metastatic cancer invasion. Note, this

model does not necessarily display dendritic growth behavior. However, since we know

our solver is capable of modeling the more complicated dendritic growth, we know that

it is well equipped to study most diffusion-dominated problems which are characterized

by simpler growth behaviors.
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