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ABSTRACT OF THE THESIS

Wave Propagation in Uniformly Pre-twisted Isotropic Beams with Uniform

Cross-sections

by

Yupeng Zhang

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2012

Professor Hidenori Murakami, Chair

In this thesis, harmonic wave propagation in pre-twisted beams with arbitrary

rate of uniform pre-twist was investigated utilizing the three-dimensional theory of

elasto-dynamics expressed in the curvilinear coordinates. Harmonic wave propagation

in the axial direction defines an eigen-value problem over the cross-section of the

beam. By developing a finite element code to solve generalized eigenvalue problem,

the eigenvalues and corresponding eigenmodes were computed to elucidate the effect

of pre-twist on phase velocities and mode shapes. Lowest four modes which describe

xiv



longitudinal, torsional, minor-axis bending and major-axis bending deformations were

numerically investigated for two rectangular cross-sections with aspect ratios: 4:1 and

2:1 and an elliptic cross-section with aspect ratio of 5:1. The resulting phase velocity

spectra are observed to be affected by the pre-twist and are valuable in the assessment

of the accuracy of beam models used for dynamic analysis of pre-twisted beams. In

addition, the resulting mode shapes consistently demonstrate the effect of pre-twist

on the coupling of torsion-extension and the minor-major bending stiffnesses.
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1 Introduction

Beams of twisted form with respect to their longitudinal axes in the unstressed

state, referred to as pre-twisted beams, describe structures such as rotor blades or

turbine blades. In such pre-twisted beams, it has been experimentally observed that

extensional force causes untwist, and similarly a torsional moment causes elongation

or contraction depending on whether original twist is decreased or increased.

An initial successful attempt of modeling the deformation of pre-twisted beams

by using beam theories resorted to an ingenious intuition, known as Wagners hypoth-

esis (Buckley [10], 1914; Wagner [13], 1936). The hypothesis is that the beam consists

of straight fibers in the untwisted state. These fibers run through the cross-section in

a helically twisted fashion when the beam is given an initial twist in the unstressed

state. If one assumes that axial stress is only carried by the fibers, axial tension acted

on helical fibers induces untwisting of the helical fibers.

Mathematical derivation of pre-twisted beam equations incorporating the dis-

placement assumptions on the cross-section has to be performed using curvilinear

coordinates, which describe the pre-twist of the beam (Washizu [14], 1964). In order

to include the untwisting effect under tension, warping of cross-sections has to be

included a priori using the curvilinear coordinates (Hodge [11], 1980).

For pre-twisted beams of elliptic cross-sections, semi-inverse analyses were

performed for torsional deformation and bending deformation utilizing the three-

dimensional theory of elasticity using the curvilinear coordinates. Okubo [9] (1951)

1
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investigated the torsion and stretching of pre-twisted beams of elliptic cross-section

for a small rate of initial twist employing the asymptotic expansion with respect to

the small rate of initial twist along the axis of the beam. He computed the torsion-

extension and tension-untwisting coupling terms based upon the three-dimensional

theory of elasticity ending the controversy about the amplitude of the coupling effect.

With respect to the bending deformation, the effect of pre-twist on the bend-

ing stiffness was investigated by Maunder and Reissner [12] (1957) and Goodier and

Griffin [5] (1969). Using the shallow shell theory of a pre-twisted beam of rectangular

cross-section, which was approximated as a thing shallow shell, Maunder and Riessner

(1957) reported that the bending stiffness with the major axis reduced compared to

the untwisted beam, while the bending stiffness with the minor axis increased com-

pared to the untwisted beam. For a pre-twisted beam of elliptic cross-section, Goodier

and Griffin (1969) utilized the equilibrium equations for the curvilinear coordinates

and performed a semi-inverse analysis to obtain the same effect on the minor and

major bending stiffnesses analytically for a small rate of pre-twist. The semi-inverse

analyses of Okubo and Goodier and Griffin (1969) were performed only for a small

rate of pre-twist by keeping the linear term in the asymptotic expansion with respect

to the small rate of pre-twist. These three-dimensional analyses utilizing the theory

of elasticity employing the semi-inverse method or the shallow shell theory presented

the stiffness or compliance for the beam models to incorporate the effect of pre-twist.

However, beam models developed for static analyses may not extend smoothly to

dynamic analyses.

Dynamics analyses of pre-twisted beams have been investigated by using Euler-

Bernoulli or Timshenko beam models to computed natural frequency of cantilever

beams (Banerjee [6], 2004). Yet, the fidelity of beam models has not been assessed

by using three-dimensional theory of elasticity.
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In this thesis, harmonic wave propagation of pre-twisted beams with arbitrary

rate of uniform pre-twist was investigated utilizing the three-dimensional theory of

elasto-dynamics expressed in the curvilinear coordinates to represent helically pre-

twisted beams. Harmonic wave propagation in the axial direction defines an eigen-

value problem over the cross-section of the beam involving hermitian matrices. By

developing a finite element code to solve generalized eigenvalue problem involving

hermitian stiffness matrix and real symmetric mass matrix, the eigenvalues and cor-

responding eigenmodes were computed to elucidate the effect of pre-twist on phase

velocities and mode shapes. Lowest four modes which describe longitudinal, torsional,

minor-axis bending, and major-axis bending deformations were numerically investi-

gated for two rectangular cross-sections with aspect ratios: 4:1 and 2:1 and an elliptic

cross-section with aspect ratio of 5:1.

The mode shapes show consistently the effect of pre-twist on the coupling

of torsion-extension and the coupling of minor-major bending stiffnesses as Okubo

(1951) and Goodier and Griffin (1969) reported.

The resulting phase velocity spectra are useful to assess the accuracy of beam

models used for dynamic analysis of pre-twisted beams. Furthermore, the mode

shapes are useful to check the validity of the semi-inverse boundary value problems

defined over the cross-section to develop pre-twisted beams models used for dynamic

analyses.



2 Derivation of Three Dimensional Strain - Dis-

placement Relations

In order to investigate harmonic wave propagation in a pretwisted beam with

uniform cross-section, it is necessary to derive equations of motion with respect to

a curvilinear coordinate system which describes the pre-twisted cross-sections by he-

lices. To this end, we first derive strain-displacement relation and utilize the principle

of virtual work to obtain the equations of motion for the curvilinear coordinate sys-

tem. The resulting equations must be expressed in terms of physical components,

instead of tensor components.

2.1 Defining a Curvilinear Coordinate System for Pre-Twisted

Beam

Let x1, x2, x3 be the base rectangular cartesian coordinates where x3 axis coin-

cides with the center line of the pre-twisted beam. The cross-section at x3 = constant

is rotated relative to the cross-section at the origin by an angle αx3, where α is the

uniform rate of pre-twist. The x1 and x2 axes coincide with the principle axes of the

cross-section at x3 = 0, as illustrated in Figure(1).

4
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Figure 1: Curvilinear Coordinate System

The curvilinear coordinates system ξ1, ξ2, ξ3 is selected in such a way that

ξ3 = x3 and the ξ1 and ξ2 coincide locally with the principal axes of the cross-section.

The corresponding coordinate transfomration is expressed as:


ξ1

ξ2

ξ3

 =


cosαx3 sinαx3 0

− sinαx3 cosαx3 0

0 0 1



x1

x2

x3

 (1)

2.2 Method of Differential Geometry / Tensor Analysis

For the curvilinear coordinate system defined in (1), the covariant base vectors

gi = ∂x
∂ξi

. The covariant metric tensor, gij is defined as:

ds2 = gij(ξ
1, ξ2, ξ3)dξidξj (2)

gij
(
ξ1, ξ2, ξ3

)
=< gi · gj >=

∂xm

∂ξi
∂xm

∂ξj
(3)
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where summation convention for repeated indices is implied.

[gij] =


1 0 −αξ2

0 1 αξ1

−αξ2 αξ1 1 + α2((ξ1)2 + (ξ2)2)

 (4)

The determinant of the matrix of gij is g = det[gij] = 1

The corresponding contravariant metric tensor gij is defined as follows:

[gij] = [gij]
−1

[gij] =


1 + (αξ2)2 −α2ξ1ξ2 αξ2

−α2ξ1ξ2 1 + (αξ1)2 −αξ1

αξ2 −αξ1 1

 (5)

The contravariant base vector gi is defined as:

gi = gikgk (6)

and the following orthogonality relationship holds (Green and Zerna [15],1954):

gr × gs =
√
gεrstg

t (7)

where εrst is the permutation symbol.

Referring to (3) and (4):
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g11 =< g1 · g1 >= 1

g22 =< g2 · g2 >= 1

g12 =< g1 · g2 >= 0

it is observed that g1 and g2 are unit vectors and orthogonal to each other

Utilizing this orthonormal relationship, a moving frame ê ≡ (ê1, ê2, ê3) can

be established as:

ê1 = g1

ê2 = g2 (8)

and using equation (6):

ê3 = ê1 × ê2 = g1 × g2 = g3 = g3kgk (9)

From (8) and (9), the local orthonormal frame ê is related to the covariant

base vector as:

[
ê1 ê2 ê3

]
=

[
g1 g2 g3

]
1 0 αξ2

0 1 −αξ1

0 0 1

 (10)

The inverse to (6) is expressed as:

gi = gijg
j
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and in expanded form:

[
g1 g2 g3

]
=

[
g1 g2 g3

]
1 0 −αξ2

0 1 αξ1

−αξ2 αξ1 1 + α2((ξ1)2 + (ξ2)2)

 (11)

The displacement vector is expressed with respect to both covariant and con-

trovariant base vectors:

u = uig
i = ukgk (12)

where ui and uk are covariant and contravariant components of the displace-

ment vector. The displacement components are not physical components unless the

local coordinates are orthonormal.

Let physical displacement components associated with orthonormal frame ê

be û1, û2, û3

u =

[
g1 g2 g3

]
u1

u2

u3

 =

[
ê1 ê2 ê3

]
û1

û2

û3

 =

[
g1 g2 g3

]
u1

u2

u3

 (13)

From equation (10) the relation between displacement components in the co-

variant basis and the local orthonormal frame ê is established as:


u1

u2

u3

 =


1 0 αξ2

0 1 −αξ1

0 0 1



û1

û2

û3

 (14)
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From equation (11) the covariant and controvariant displacement components

are related by controvariant metric tensor as:


u1

u2

u3

 =


1 0 −αξ2

0 1 αξ1

−αξ2 αξ1 1 + α2((ξ1)2 + (ξ2)2)



u1

u2

u3

 (15)

Combining equation (14) and (15), the relation between covariant displace-

ment component and physical displacement components becomes:


u1

u2

u3

 =


1 0 −αξ2

0 1 αξ1

−αξ2 αξ1 1 + α2((ξ1)2 + (ξ2)2)




1 0 αξ2

0 1 −αξ1

0 0 1



û1

û2

û3



u1

u2

u3

 =


1 0 0

0 1 0

−αξ2 αξ1 1



û1

û2

û3

 (16)

The small-strain tensor is given as:

ε = gi ⊗ εijgj (17)

and

εij =
1

2
(ui|j + uj|i) =

1

2
(ui,j + uj,i − 2Γmijum) (18)

Where |i denotes covariant differentiation with respect to ξi and (),i denotes

partial differentiation with respect to ξi. Γmij is the christoffel symbol.

Christoff symbol are obtained from equation:
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Γmij =
1

2
gmk(

∂gkj
∂ξi

+
∂gik
∂ξj

+
∂gij
∂ξk

) (19)

The non-zero Christoffel symbols are:

Γ2
13 = α Γ1

23 = −α Γ1
32 = −α

Γ1
33 = α2ξ1 Γ2

31 = α Γ2
33 = −α2ξ2 (20)

Substituting (20) into (18), the covariant strain components become:

ε11 = u1,1 (21)

ε22 = u2,2

ε33 = u3,3 + α2ξ1u1 + α2ξ2u2

2ε23 = 2ε32 = u3,2 + u2,3 + 2αu1

2ε13 = 2ε31 = u1,3 + u3,1 − 2αu2

2ε12 = 2ε21 = u1,2 + u2,1

In terms of physical components by relation (16):

ε11 = û1,1 (22)

ε22 = û2,2

ε33 = −αξ2û1,3 + αξ1û2,3 + û3,3 + α2ξ1û1 + α2ξ2û2

2ε23 = 2ε32 = û3,2 + û2,3 + αû1 − αξ2û1,2 + αξ1û2,2

2ε13 = 2ε31 = û1,3 + û3,1 − αû2 − αξ2û1,1 + αξ1û2,1

2ε12 = 2ε21 = û1,2 + û2,1
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From (10) and (11):

[
ê1 ê2 ê3

]
=

[
g1 g2 g3

]
1 0 0

0 1 0

−αξ2 αξ1 1

 (23)

inverse of the above relation is:

[
g1 g2 g3

]
=

[
ê1 ê2 ê3

]
1 0 0

0 1 0

αξ2 −αξ1 1

 (24)

gi = êmQ̂
mi (25)

Substitute (25) into (17)

ε = êmQ̂
mi ⊗ εijQ̂nj ên (26)

Physical strain components from the above are:

ε̂mn = Q̂miεijQ̂
nj (27)

And in expanded form, physical strain components are expressed in terms of

physical displacement components:
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ε̂11 = û1,1

ε̂22 = û2,2

ε̂33 = û3,3 + αξ2û3,1 − αξ1û3,2

2ε̂23 = û3,2 + û2,3 + αξ2û2,1 − αξ1û2,2 + αû1

2ε̂13 = û1,3 + û3,1 + αξ2û1,1 − αξ1û1,2 − αû2

2ε̂12 = û2,1 + û1,2 (28)

2.3 Method of Coordinate Transformation

The following derivation follows closely to the work of Goodier and Griffin [5].

Observing that the strain components on an elementary parallelipiped with edges par-

allel to the local ξ1, ξ2, x3 coordinates (Note that local base vectors are now equivalent

to the êi coordinate as constructed in previous section) written as the local strain

component ε̂ij are related to the strain components ε̃ij of the x1, x2, x3 coordinates

by the well known formulas of transformation from one orthogonal cartesian system

to another. With the scheme described in (1).

The transformation matrix Q is define as follows:

[Q] =


cosαx3 − sinαx3 0

sinαx3 cosαx3 0

0 0 1

 (29)

And displacement transformation relation is:

{
û

}
= [Q]T

{
ũ

}
(30)
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Where ûi are displacements with respect to the local ξ1, ξ2, x3 coordinates and ũi are

displacements with respect to xi. Transformation of Strain tensor is expressed as:

[ε̂] = [Q]T [ε̃][Q] (31)

Strain displacement relation in the x1, x2, x3 coordinate is defined as:

ε̃ij =
1

2
(
∂ũi
∂xj

+
∂ũj
∂xi

) (32)

Which can also be written as:

ε̃ij =
1

2
(
∂ũi
∂ξk

∂ξk

∂xj
+
∂ũj
∂ξk

∂ξk

∂xi
) (33)

Using equation (1) and (30), substitute all displacements of (33) with corre-

sponding local terms using (30). The strain tensor with respect to xi coordinates can

then be written with local components. Next a coordinate transformation described

in (31) is performed to obtain the same strain-displacement relations (28).



3 Derivation of Three Dimensional Equations Of

Motion

Having the strain displacement relation, the three dimensional equations of

motion can be obtained via the principal of virtual work:

∫
v

(δε̂ijσ̂ij − δûiρ¨̂ui)dv = 0 (34)

Where σ̂ij is the stress components in local coordinate.

The variation of strain components, δε̂ij, are:

δε̂11 = δû1,1

δε̂22 = δû2,2

δε̂33 = δû3,3 + αξ2δû3,1 − αξ1δû3,2

2δε̂23 = δû3,2 + δû2,3 + αξ2δû2,1 − αξ1δû2,2 + αδû1

2δε̂13 = δû1,3 + δû3,1 + αξ2δû1,1 − αξ1δû1,2 − αδû2

2δε̂12 = δû2,1 + δû1,2 (35)

The substitution of (35) into (34) and integration by parts with arbitrary

variation of virtual displacements gives the equation of motion:

14
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σ̂11,1 + σ̂12,2 + σ̂13,3 + αξ2σ̂13,1 − αξ1σ̂13,2 − ασ̂32 = ρ¨̂u1 (36)

σ̂21,1 + σ̂22,2 + σ̂23,3 + αξ2σ̂23,1 − αξ1σ̂23,2 + ασ̂31 = ρ¨̂u2

σ̂31,1 + σ̂32,2 + σ̂33,3 + αξ2σ̂33,1 − αξ1σ̂33,2 = ρ¨̂u3

These equations agree with those derived by Okubo [9] and Goodier [5].



4 Harmonic Wave Analysis

To study the dynamic response of pre-twisted beams, an analysis of harmonic

waves traveling in the x3 (=ξ3) direction (without any boundary) is performed to

obtain phase velocity spectra.

Let [ûi, ε̂ij, σ̂ij](ξ
1, ξ2, x3, t) be written in the form of

[ūi, ε̄ij, σ̄ij](ξ
1, ξ2;ω, k)e(

√
−1kx3−

√
−1ωt) (37)

where k is the wave number and ω is the angular frequency. The wave length

Λ is obtained from wave number k as: Λ = 2π
k

Substituting (37) into (36),the equations of motion for the harmonic wave

propagation is obtained:

σ̄11,1 + σ̄12,2 + ikσ̄13 + αξ2σ̄13,1 − αξ1σ̄13,2 − ασ̄32 = −ω2ρū1 (38)

σ̄21,1 + σ̄22,2 + ikσ̄23 + αξ2σ̄23,1 − αξ1σ̄23,2 + ασ̄31 = −ω2ρū2

σ̄31,1 + σ̄32,2 + ikσ̄33 + αξ2σ̄33,1 − αξ1σ̄33,2 = −ω2ρū3

where ūi, ε̄ij, σ̄ij are complex components in the ξ1, ξ2, ξ3(= x3) directions.

In addition, traction-free boundary condition on ∂Ω is imposed, where ∂Ω is

the lateral bounding surface of the beam and n̂ is its normal vector:

16
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σ̂ijn̂j = 0 (39)

From strain-displacement relation, (28):

ε̂11 = û1,1

ε̂22 = û2,2

ε̂33 = û3,3 + αξ2û3,1 − αξ1û3,2

2ε̂23 = û3,2 + û2,3 + αξ2û2,1 − αξ1û2,2 + αû1

2ε̂13 = û1,3 + û3,1 + αξ2û1,1 − αξ1û1,2 − αû2

2ε̂12 = û2,1 + û1,2

The strain-displacement relation for harmonic wave is obtained by substituding

(37): ûi = ūie
(
√
−1kx3−

√
−1ωt) into(28)

{
ε̂

}
=



ε̂11

ε̂22

ε̂33

2ε̂23

2ε̂31

2ε̂12



=



ε̄11

ε̄22

ε̄33

2ε̄23

2ε̄31

2ε̄12



e(
√
−1kx3−

√
−1ωt)

where ε̄ij, denotes the amplitude of strain components of harmonic wave, be-

comes:
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{
ε̄

}
=



ε̄11

ε̄22

ε̄33

2ε̄23

2ε̄31

2ε̄12



=



ū1,1

ū2,2

ikū3 + αξ2ū3,1 − αξ1ū3,2

ū3,2 + ikū2 + αξ2ū2,1 − αξ1ū2,2 + αū1

ikū1 + ū3,1 + αξ2ū1,1 − αξ1ū1,2 + αū2

ū2,1 + ū1,2



(40)

The stress-strain relation is described by Hooke’s law for isotropic material:

{
σ̄

}
=



σ̄11

σ̄22

σ̄33

σ̄23

σ̄31

σ̄12



=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ε̄11

ε̄22

ε̄33

2ε̄23

2ε̄31

2ε̄12



(41)

where λ and µ are Lame constants.

Equations of motion in terms of displacements are obtained by substituting

(40) into (41) then into (38). The resulting equations define an eigenvalue problem

for ω2 when the wave number k is prescribed.

Since the eigenvalue problem defined on an arbitrary cross-section is not amenable

for analytic solution, finite element method is employed to compute the ω versus k

dispersion relation as well as the phase velocity spectra Cp versus k. The phase

velocity is defined as

Cp =
ω

k
(42)

and group velocity is defined as
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Cg =
∂ω

∂k
(43)



5 Finite Element Implementation

5.1 Principle of Virtual Work

For the harmonic wave form (37), the principle of virtual work (34) is reduced

to over a cross-section A in the ξ1, ξ2 plane:

∫
A

(δε̄∗ijσ̄ij − δū∗i ρω2ūi + c.c)dξ1dξ2 = 0 (44)

where∗indicates complex conjugate and ”c.c” stands for complex conjugate terms.

(Formulation from Murakami and Yamakawa 1998 [3])

5.2 Derivation of Stiffness Matrix

The cross-sectional domain A is divided into non-overlapping 4-node quadri-

lateral elements using isoparametric formulation. A = ∪nele=1A
(e)

20
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Figure 2: Iso-parametric Formulation

The shape functions in the standard domain −1 ≤ s ≤ 1, −1 ≤ t ≤ 1 are:

N1 =
(1− s)(1− t)

4
N2 =

(1 + s)(1− t)
4

N3 =
(1 + s)(1 + t)

4
N4 =

(1− s)(1 + t)

4

(45)

The coordinate mapping between the standard element and a generic element

is defined by using the nodal coordinates ξ1
î
, ξ2
î

(where node number i = 1, 2, 3, 4) of
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the element in the ξ1, ξ2 domain as follows:

ξ
1

ξ2

 =

N1 N2 N3 N4 0 0 0 0

0 0 0 0 N1 N2 N3 N4





ξ1
1̂

ξ1
2̂

ξ1
3̂

ξ1
4̂

ξ2
1̂

ξ2
2̂

ξ2
3̂

ξ2
4̂



(46)

Displacements are interpolated by using nodal displacement values v̄ĵk where

j = 1, 2, 3, 4 denotes element node number and k = 1, 2, 3.


ū1

ū2

ū3

 =
4∑
j=1


Nj 0 0

0 Nj 0

0 0 Nj



v̄ĵ1

v̄ĵ2

v̄ĵ3

 (47)

Substituting (47) into (40), the strain - (nodal) displacement relation is ob-

tained.

{
ε̄

}(e)

=
4∑
j=1

[
Bj

](e)


v̄ĵ1

v̄ĵ2

v̄ĵ3



(e)
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[
Bj

](e)

=



Nj,1 0 0

0 Nj,2 0

0 0 ikNj + αξ2Nj,1 − αξ1Nj,2

αNj ikNj + αξ2Nj,1 − αξ1Nj,2 Nj,2

ikNj + αξ2Nj,1 − αξ1Nj,2 −αNj Nj,1

Nj,2 Nj,1 0


(48)

In (48), Nj,i =
∂Nj

∂ξi
, i = 1, 2, referred to as cartesian derivative of shape

functions and they are defined as:

Nj,1

Nj,2

 =
1

|J |

 ∂ξ2

∂t
−∂ξ2

∂s

−∂ξ1

∂t
∂ξ1

∂s




∂Nj

∂s

∂Nj

∂t

 (49)

|J | =

∣∣∣∣∣∣∣∣
∂ξ1

∂s
∂ξ2

∂s

∂ξ1

∂t
∂ξ2

∂t

∣∣∣∣∣∣∣∣ (50)

The virtual strain energy term is then written using (41) and (48) as:

∫
A

δε̄∗ijσ̄ijdξ
1dξ2 =

nel∑
e=1

∫
A(e)

{
δv̄

}∗T (e) [
B

]∗T (e) [
D

] [
B

]{
v̄

}(e)

dξ1dξ2 (51)

where

{
σ̄

}
=

[
D

]{
ε̄

}
Element stiffness matrix derived from virtual strain energy is then obtained
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by using 9 Gauss integration points over the standard domain as follows:

[
K

](e)

=

∫ 1

−1

∫ 1

−1

[
B

]∗T (e) [
D

](e) [
B

](e)

|J |(e)dsdt (52)

5.3 Derivation of Mass Matrix

The principle of virtual work (44) indicates that element mass matrix can be

derived from expression:

∫
A

δū∗i ρω
2ūidξ

1dξ2 =
nel∑
e=1

∫
A(e)

δū∗i ρω
2ūidξ

1dξ2 (53)

The displacement field is interpolated by using nodal values as described in

(47), the expanded form can be expressed as:


ū1

ū2

ū3

 = [N ]

{
v̄

}(e)

(54)

where

[N ] =


N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

 (55)

{
v̄

}(e)

=

{
v̄1̂

1 v̄1̂
2 v̄1̂

3 v̄2̂
1 v̄2̂

2 v̄2̂
3 v̄3̂

1 v̄3̂
2 v̄3̂

3 v̄4̂
1 v̄4̂

2 v̄4̂
3

}T
(56)

Substitute (54) into (53):
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∫
A

δū∗i ρω
2ūidξ

1dξ2 =
nel∑
e=1

ω2

∫
A(e)

{
v̄

}∗T (e) [
N

]T
ρ

[
N

]{
v̄

}(e)

dξ1dξ2 (57)

Mass matrix is then given by:

[
M

](e)

= ρ

∫ 1

−1

∫ 1

−1

[N ]T [N ]|J |(e)dsdt (58)

The principle of virtual work is now written as:

e=nel∑
e=1

{
δv̄∗
}T (e)

[K](e)
{
v̄

}(e)

= ω2

e=nel∑
e=1

{
δv̄∗
}T (e)

[M ](e)
{
v̄

}(e)

(59)

Finally, assemble the above for arbitrary variational displacements to find a

generalized eigenvalue problem:

{
δv̄∗
}

:

[
K

]{
v̄

}
= ω2

[
M

]{
v̄

}
(60)

where

[
K

]
is Hermitian

[
K

]∗T
=

[
K

]

and

[
M

]
is symmetric

[
M

]T
=

[
M

]
The generalized eigenvalue problem with hermitian matrices are proven to

have real eigen values and

[
K

]
and

[
M

]
are diagonalizable.

The finite element code was developed to solve the above genrealized eigen
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value problem utilizing the inverse iteration method (Bathe [16], 1982). The following

section presents the numerical results.



6 Numerical Results

In this section, numerical results of dispersion relation of harmonic waves in

straight and pre-twisted beams are presented for two rectangular cross-sections and

one elliptic cross-section. The objective is to investigate the effect of pre-twist on

phase velocity spectra and corresponding mode shapes.

6.1 Cross-sectional Geometry

For this numerical analysis, rectangular and elliptic cross-sections are consid-

ered.

Figure 3: Rectangular and Elliptic Cross-sections

The geometry of these cross-sections are described in Table 1

The finite element mesh used for rectangular cross-sections with aspect ratios

of 4:1 and 2:1 are obtained by uniformly diving the cross-section into 200x50 and

27
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Cross-section (i) Cross-section (ii) Cross-section (iii)
Geometry Rectangular Rectangular Elliptic
2a 0.2m 0.1m 0.25m
2b 0.05m 0.05m 0.05
a/b 4:1 2:1 5:1

Table 1: Geometry of Cross-sections

100x50 elements respectively. The mesh used for the elliptic crosss section is shown

in Figure 4 and Figure 5, and it is generated by AutoMesh2D.

Figure 4: Elliptic Cross-Section Mesh in ξ1,ξ2 Plane - View 1
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Figure 5: Elliptic Cross-Section Mesh in ξ1,ξ2 Plane - View 2

Material Properties:

E = 69 Gpa G = 24 Gpa ρ = 7874 kg/m3

(6061 Aluminum alloy)

Bar velocity is defined as: Co =
√

E
ρ

6.2 Phase Velocity Spectra and the Effect of Pretwist

In order to clarify the effect of pre-twist angle, dispersion spectra were com-

puted for straight beam, 45o/m pre-twist and 90o/m pre-twist for each cross-section

defined in Table 1.

For the rectangular cross-section with the larger aspect ratio 4:1, the dispersion

spectra, ω versus k curves, are plotted in Figure 6 and the corresponding phase

velocity spectra, Cp versus k curves, are shown in Figure 8. These figures show
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four lowest modes consisting of longitudinal, torsional, bending with minor axis,and

bending with major axis.

Figure 6: Effect of Twist Angle on Wave Dispersion of Rectangular Beam with Aspect

Ratio of 4:1 (ω vs k)
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Figure 7: Close-up View of Figure 6

Figure 8: Effect of Twist Angle on Phase Velocity of Rectangular Beam with Aspect

Ratio of 4:1 (Cp

Co
vs h

Λ
)
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Figure 9: Close-up View of Figure 8

Figure 8 shows that longitudinal mode exhibits dispersion at higher wave

number, similar to the dispersion of rod with circular cross-section, known as the

Pochhammer-Chree dispersion relation. The effect of pre-twist on the longitudinal

mode is minute but noticeable. The torsional mode exhibits negligible dispersion and

minute effect of pre-twist.

On the contrary, bending modes showed pronounced dispersion and the effect

of pretwist. The dispersion spectra of pre-twisted beams exhibit the same trend as

that of straight beams, only they are shifted. The phase velocity of the minor bending

mode increases due to pre-twist, while that of the major bending reduces due to pre-

twist. This trend agrees with the static analysis of bending stiffness of pre-twisted

beams by Goodier and Griffin [5] (1969), interpreting that higher bending phase

velocity translates to higher bending stiffness. However, their semi-inverse analysis

only applies to small pre-twist angles since they used the asymptotic expansion with

respect to small pre-twist angle and kept only the first term.
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Dispersion spectra of the beams with rectangular cross-section with smaller

aspect ratio 2:1 is shown in Figure 10 , and the corresponding phase velocity spectra

are plotted in Figure 12.

Figure 10: Effect of Twist Angle on Wave Dispersion of Rectangular Beam with

Aspect Ratio of 2:1 (ω vs k)
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Figure 11: Close-up View of Figure 10

Figure 12: Effect of Twist Angle on Phase Velocity of Rectangular Beam with Aspect

Ratio of 2:1 (Cp

Co
vs h

Λ
)
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Figure 13: Close-up View of Figure 12

In Figure 12, the torsional phase velocity of the cross-section with aspect ratio

2:1 is larger than that of the cross-section with aspect ratio 4:1 shown in Figure 8

since the torsional stiffness increases for the cross-section with smaller aspect ratio.

The effect of pre-twist is observed to be even less siginificant for both longitudinal

and torsional modes than previously discussed rectangular cross-sections with aspect

ratio of 4:1.

In the bending modes the effect of pre-twist shift the phase velocity spectra

with the same trend as that of the cross-section with larger aspect ratio 4:1. The

phase velocity of the minor bending modes increases as the pre-twist angle increases.

On the contrary, the phase velocity of the major bending modes decreases as the

pre-twist angle increases.

The dispersion spectra for the elliptic cross-section is shown in Figure 14, and

the phase velocity spectra are presented in Figure 16.
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Figure 14: Effect of Twist Angle on Wave Dispersion of Elliptic Beam with Aspect

Ratio of 5:1 (ω vs k)

Figure 15: Close-up View of Figure 14
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Figure 16: Effect of Twist Angle on Phase Velocity of Elliptic Beam with Aspect

Ratio of 5:1 (Cp

Co
vs h

Λ
)

Figure 17: Close-up View of Figure 16
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Similar to the previous two cases, the velocity of the minor bending modes

increases as the pre-twist angle increases and the phase velocity of the major bending

modes decreases as the pre-twist angle increases. The pre-twist effect on longitudinal

and torsional modes are more significant for this case. Judging by the trend, it is

presumably due to higher aspect ratio.
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6.3 Mode Shape Interpretation and the Effect of Pre-twist

In this section, modes shapes of harmonic waves in the pre-twist beams and

the straight beams are presented. Since mode shapes of the lowest four modes for

three cross-sections, shown in Table 1.1, are similar, only the mode shapes for the 4:1

aspect ratio rectangular cross-section with pre-twist rate of 45o/m are presented in

the following at the wave number k = 7 or h/Λ = 0.22.

To show the effect of pre-twist on mode shapes, modes of the pre-twisted

beam is compared to the modes of the straight beams with the same cross-section

whenever appropriate. In the subsequent figures, when the modes of pre-twist and

straight beams are plotted in the same figure, the boundary of the cross-section of

the pre-twisted beam is highlighted by red border lines.

In plotting the mode shape, it is noted that the generalized eigenvalue prob-

lem defined by (60) gives complex amplitude, ū, of harmonically traveling waves.

The displacements are described by: [(ūi)real +
√
−1(ūi)imaginary][cos(kx

3 − wt) +
√
−1sin(kx3 − wt)] (Euler’s formula). Simplifying and evaluating only the real

part, the following expression for displacement is obtained: (ūi)realcos(kx
3 − wt) −

(ūi)imaginarysin(kx3 − wt).

As time progresses at fixed x3, cos(kx3−wt)and sin(kx3−wt) cycles from−1 to

1. If frame is taken every quarter of a period, the mode shapes can be represented by 4

chronologically consecutive frames described by displacements: (+ūi)imaginary,(+ūi)real,

(−ūi)imaginary, (−ūi)real in that order, which correspond to phase angle 0o, 90o, 180o

and 270o.

In addition, to highlight the x3 displacement of the modes, the color scale

shown in Figure 18 is employed.
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Figure 18: x3 Displacement Color Scale

where it’s scaled from the lowest to highest x3 displacement of the corresponding

mode shape.

Mesh as seen in the figures does not represent element boundary. To reduce

clutter, it is the outline of the boundaries between every 5 elements.

6.3.1 Longitudinal Modes

Longitudinal modes exhibit translation of the cross-sections in the x3 direction

for both pre-twisted and straight beams. Figures 19-22 illustrate the x3 positions of

the cross-sections viewed in the direction of the minor axis at phase angle 0o, 90o,

180o, and 270o, respectively. The modes show warping of the cross-sections to satisfy

lateral traction free condition.

Figure 19: Mode 4 - 45o Twist Overlay Top View +Imaginary
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Figure 20: Mode 4 - 45o Twist Overlay Top View +Real

Figure 21: Mode 4 - 45o Twist Overlay Top View -Imaginary
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Figure 22: Mode 4 - 45o Twist Overlay Top View -Real

Figures 23-26 illustrate the longitudinal modes projected on the ξ1, ξ2 plane. In

the figures, straight beam cross-section exhibits Poisson’s contraction of cross-section

without any rotation of the cross-section. On the other hand, the cross-section of pre-

twisted beam rocks with respect to the x3 axis indicating that torsional deformation

appears with longitudinal deformation.

Therefore, the gross longitudinal mode of the pre-twisted beam includes the

coupling of longitudinal and torsional deformations. While the longitudinal mode of

the straight beam exhibits purely longitudinal.
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Figure 23: Mode 4 - 45o Twist Overlay Top View +Imaginary

Figure 24: Mode 4 - 45o Twist Overlay Top View +Real
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Figure 25: Mode 4 - 45o Twist Overlay Top View -Imaginary

Figure 26: Mode 4 - 45o Twist Overlay Top View -Real
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6.3.2 Torsional Modes

Torsional modes exhibit rocking of the cross-section (in the ξ1, ξ2 plane), about

the x3 axis, which are presented in Figures 27-30 (Only showing cross-section for 45o

pre-twist). The modes of the pre-twisted and straight beams are similar to each other

in this regard.

Figure 27: Mode 2 - 45o Twist Top View (+Imaginary)



46

Figure 28: Mode 2 - 45o Twist Top View (+Real)

Figure 29: Mode 2 - 45o Twist Top View (-Imaginary)
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Figure 30: Mode 2 - 45o Twist Top View (-Real)

Figures 31-34 shows the x3-displacement of the modes viewed along the minor

axis of the cross-section. The center of the cross-section of the straight beam does not

translate in the x3-direction, but the cross-section shows warping. The red border

lines of the cross-section of the pre-twisted beam show the x3-translation in addition

to the warping of the cross-section. This is the coupling of torsional and longitudinal

deformations in the pre-twisted beam, consistent with the Betti-Rayleight reciprocity

principle (for example, Fung and Tong [1], 2001).

This coupling of torsional and longitudinal deformations is the unique feature

of pre-twisted beams, which does not exist in straight beams.
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Figure 31: Mode 2 - 45o Twist Overlay Side View (+Imaginary) Re-scaled x3 axis

Figure 32: Mode 2 - 45o Twist Overlay Side View (+Real)
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Figure 33: Mode 2 - 45o Twist Overlay Side View (-Imaginary) Re-scaled x3 axis

Figure 34: Mode 2 - 45o Twist Overlay Side View (-Real)
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6.3.3 Bending Modes with respect to Minor Axis (ξ1):

Figures 35-38 illustrate the bending modes with respect to minor axis projected

on to the ξ1, ξ2 -plane. The modes illustrate the translational displacement along the

major axis. The modes of the pre-twisted beam show the translation in the minor

axis direction due to the effect of pre-twist.

Figure 35: Mode 3 - 45o Twist Overlay Top View +Imaginary
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Figure 36: Mode 3 - 45o Twist Overlay Top View +Real
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Figure 37: Mode 3 - 45o Twist Overlay Top View -Imaginary

Figure 38: Mode 3 - 45o Twist Overlay Top View -Real

The projections of the cross-sections onto the ξ2, x3 -plane are shown in Figures

39-42. The figures illustrate the typical bending deformation of the cross-sections in
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which the corss-section rocks with respect to the minor axis. The cross-section of the

pre-twisted beam exhibits minute rocking with respect to the major axis.

Figure 39: Mode 3 - 45o Twist Overlay Side View +Imaginary

Figure 40: Mode 3 - 45o Twist Overlay Side View +Real
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Figure 41: Mode 3 - 45o Twist Overlay Side View -Imaginary

Figure 42: Mode 3 - 45o Twist Overlay Side View -Real
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6.3.4 Bending Modes with respect to Major Axis (ξ2)

The mode shapes of the bending modes with respect to the major axis show

similar deformation to the bending modes with respect to the minor axis, except for

the switching of axes. Figures 43-46 illustrate the translation of the cross-section in

the ξ1, ξ2 -plane.

Figure 43: Mode 1 - 45o Twist Overlay Top View (+Imaginary)



56

Figure 44: Mode 1 - 45o Twist Overlay Top View (+Real)

Figure 45: Mode 1 - 45o Twist Overlay Top View (-Imaginary)
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Figure 46: Mode 1 - 45o Twist Overlay Front View (-Real)

The projections of the mode shapes onto the ξ1, x3 -plane are illustrated in

Figures 47-50. The typical bending cross-section is observed in the figures. In case of

pre-twisted beams, the small rocking with respect to minor axis is superposed.

Figure 47: Mode 1 - 45o Twist Overlay Front View (+Imaginary)
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Figure 48: Mode 1 - 45o Twist Overlay Front View (+Real)

Figure 49: Mode 1 - 45o Twist Overlay Front View (-Imaginary)
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Figure 50: Mode 1 - 45o Twist Overlay Front View (-Real)

See additional mode shapes in Appendix section



7 Conclusion

A semi-analytical approach to solving wave propagation problem using finite

element method has been derived to investigate the dynamic response of pre-twisted

beams by obtaining their dispersion relations (k versus ω) and phase velocity spectra

(Cp versus k). A study using said method was conducted for three doubly symmetric

cross-sections. The lowest four modes which consists of: major bending mode, minor

bending mode, torsional mode and longitudinal mode have been identified. Corre-

sponding dispersion relations and phase velocitiy spectra have been obtained and

examined. Results shows that the change in pre-twist rate affects the phase velocities

of all 4 modes with bending modes being most prominent. Specifically, increasing

pre-twist rate lowers the phase velocities of the major bending modes, and elevates

the phase velocities of the minor bending modes. The pre-twist effect on torsional

and longitudinal modes are much less significant, however, they do seem to become

more obvious as aspect ratio increases.

Corresponding mode shapes have also been examined. Findings illustrate that

the coupling between minor-major bending modes exist in the pre-twisted beams and

is absent in their straight counter parts. Same observation is made for coupling

between torsional mode and longitudinal modes.
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8 Appendix

8.1 Existing (Pre-twisted) Beam Equations

Equations of motion which aided the interpretation of the phase velocity spec-

tra obtained from finite element method are presented in the following sections:

8.1.1 Banerjee’s Pre-twisted Timoshenko Beam:

Figure 51: Banerjee’s Pre-twisted Beam Notation

Governing equation of motion:
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−ρAü+ kxAGu
′′ − α2kzAGu+ αAG(kx + kz)w

′
+ kxAGψ

′ − αkzAGθ = 0

−ρAẅ + kzAGw
′′ − α2kxAGw − αAG(kx + kz)u

′ − αkxAGψ − kzAGθ
′
= 0

−ρIxθ̈ + EIxθ
′′ − α2EIzθ − kzAGθ − αkzAGu+ kzAGw

′
+ α(EIx + EIz)ψ

′
= 0

−ρIzψ̈ + EIzψ
′′ − α2EIxψ − kxAGψ − αkxAGw − kxAGu

′ − α(EIx + EIz)θ
′
= 0

(61)

Where u and w are displacements in the local x and z direction. θ and φ are

the rotation of cross-section with respect to x and z axis. ”¨” represents second time

derivative. ”
′
” and ”

′′
” are derivatives with respect to y/Y direction. α is the angle

of twist per unit length in y, φ is the angle of twist at y.

If harmonic variation of u,w, θ, and ψ with angular frequency ω and wave

number k is assumed then:

u(y, t) = UAe
(iky−iωt)

w(y, t) = WAe
(iky−iωt)

θ(y, t) = ΘAe
(iky−iωt)

ψ(y, t) = ΨAe
(iky−iωt) (62)

Where UA,WA,ΘA and ΨA are complex values.

Substituting (62) into (61) and obtain the following system of equations:

[K] =
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
−kxAG(k2)− α2kzAG αAG(kx + kz)ik −αkzAG kxAGik

−αAG(kx + kz)ik kzAG(−k2)− α2kxAG −kzAGik −αkxAG

−αkzAG kzAGik EIx(−k2)− α2EIz − kzAG α(EIx + EIz)ik

−kxAGik −αkxAG −α(EIx + EIz)ik EIz(−k2)− α2EIx − kxAG



{
d

}
=



UA

WA

ΘA

ΨA



[M ] =


−ρA 0 0 0

0 −ρA 0 0

0 0 −ρIx 0

0 0 0 −ρIz


And:

[K]

{
d

}
= ω2[M ]

{
d

}
(63)

Where kx and kz are shear correction factors in the x and z directions. Ix and

Iz are area moments of inertia about x and z directions. A is the area of cross-section,

E,G, ρ are young’s modulus, shear modulus and density of the material respectively.

Resulting eigenpairs from the equations above include 2 bending modes (dis-

placement is dominated by translation) and 2 shearing modes (displacement is dom-

inated by the rotation of the cross-section). In the case of rectangular cross-section

with aspect ratio of 4:1, the later 2 modes appear as 6th and 15th mode. These modes

are too high to be appropriate for beam assumptions, therefore their phase velocity

spectra is ignored from the scope of this thesis.
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8.1.2 Other Beam Modes From Elementary Theories:

The phase velocity spectra for 2 other beam modes, namely the longitudinal

and torsional modes are obtained using elementary theory. Refer to the notation used

in Banerjee’s diagram from section above. Adding to it, v is the displacement in y

direction (the axis of pre-twist) and ψ is the angle of rotation about the y axis.

Longitudinal:

Equation of motion:

∂2v

∂y2
− ρ

E

∂2v

∂t2
= 0 (64)

Using similar derivation as that of the previous section.

k =

√
ρ

E
ω (65)

Torsional:

Equation of motion:

∂2ψ

∂y2
JG− Iy

∂2ψ

∂t2
= 0 (66)

Where J = c2(height)(width)3 and c2 = 0.281 for rectangular cross-section of

aspect ratio 1:4 (Beer and Johnston [17])

k =

√
Iy
JG

ω (67)
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8.1.3 Comparison to Existing Beam Theories:

By comparing phase velocity spectra obtained from finite element analysis

against those from existing beam theories, the lowest 4 modes are identified and

corresponding comparison plots are presented in the following section. These results

are obtained at pre-twist rate of 45o/m, with beam height h defined as the longer

of the two edges in rectangular cross-sections, and twice the major radius in elliptic

cross-section.

Banerjee’s Timoshenko theory based equations of motion predicted phase ve-

locity reasonably well with an increasing deviation as wave number increases.

Rectangular Cross-Section with Aspect Ratio 4:1

Figure 52: Comparison to Existing Beam Equations - Lowest 4 Modes at 45o/m

pre-twist rate (Rectangular 4:1) (ω vs k)
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Figure 53: Comparison to Existing Beam Equations - Lowest 4 Modes at 45o/m

pre-twist rate (Rectangular 4:1) (Cp

Co
vs h

Λ
)
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Rectangular Cross-Section with Aspect Ratio 2:1

Figure 54: Comparison to Existing Beam Equations - Lowest 4 Modes at 45o/m

pre-twist rate (Rectangular 2:1) (ω vs k)
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Figure 55: Comparison to Existing Beam Equations - Lowest 4 Modes at 45o/m

pre-twist rate (Rectangular 2:1) (Cp

Co
vs h

Λ
)
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Elliptic Cross-Section with Aspect Ratio 5:1

Figure 56: Comparison to Existing Beam Equations - Lowest 4 Modes at 45o/m

pre-twist rate (Elliptic 5:1) (ω vs k)
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Figure 57: Comparison to Existing Beam Equations - Lowest 4 Modes at 45o/m

pre-twist rate (Elliptic 5:1) (Cp

Co
vs h

Λ
)
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8.2 Additional Modes

8.2.1 Mode 5:

Figure 58: Mode 5 - 45o Twist Overlay Top View (+Imaginary)

Figure 59: Mode 5 - 45o Twist Overlay Top View (+Real)
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Figure 60: Mode 5 - 45o Twist Overlay Top View -Imaginary

Figure 61: Mode 5 - 45o Twist Overlay Top View -Real
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8.2.2 Mode 6:

Figure 62: Mode 6 - 45o Twist Overlay Top View (+Imaginary)

Figure 63: Mode 6 - 45o Twist Overlay Top View (+Real)
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Figure 64: Mode 6 - 45o Twist Overlay Top View -Imaginary

Figure 65: Mode 6 - 45o Twist Overlay Top View -Real
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