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ASM–FDTD: A Technique for Calculating the Field
of a Finite Source in the Presence of an

Infinite Periodic Artificial Material
Rui Qiang, Ji Chen, Filippo Capolino, David R. Jackson, and Donald R. Wilton

Abstract—A novel technique is proposed to calculate the field due
to an arbitrary impressed source of finite extent in proximity with
an infinite periodic structure such as an artificial material. The al-
gorithm is based on a spectral domain finite-difference time-domain
(FDTD) method combined with the array scanning method (ASM).
Using this approach, only a single periodic cell of the periodic struc-
ture needs to be numerically modeled. Examples are used to demon-
strate the accuracy and efficiency of the proposed approach.

Index Terms—Arrays, artificial materials, finite-difference time-
domain (FDTD), finite source, Green’s function, metamaterials,
periodic structures.

I. INTRODUCTION

PERIODIC structures such as frequency selective surfaces,
electromagnetic bandgap materials, metamaterials, and

guiding periodic structures are topics that now receive a lot
of attention in both the optics and microwave communities.
However, the time-domain (TD) modeling of impressed elec-
tromagnetic sources of finite extent in proximity with infinite
periodic structures has been to date performed by “brute force,”
including a large number of unit cells in the simulation domain
[1], which requires extensive computational resources. This
letter presents a novel TD technique to model the excitation
of infinite periodic structures with a finite source. For sim-
plicity, the discussion here is restricted to structures that are
periodic in one dimension and are excited by a line source,
but the extension to structures that are periodic in 2-D and are
excited by finite (e.g., dipole) sources can readily be done.
This method is based on the combination of the array scan-
ning method (ASM) [2]–[5] and the spectral-domain FDTD
method [6]–[11]. Accordingly, the spectral FDTD method is
applied here to only one unit cell, with proper complex periodic
boundary conditions, accounting for the impressed line source.
The FDTD with complex periodic boundary conditions, used
in the spectral FDTD, is different from the traditional delay
boundary conditions used in other periodic FDTD methods
[12], [13]. No field transformation is necessary in this method
and the stability condition of this method is no longer limited
by the angle of incidence.
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Fig. 1. Geometry of a line source over a periodic artificial material made of
conducting cylinders. The period along x is denoted by a. The dashed line
around the origin represents the FDTD computation domain with complex pe-
riodic boundary conditions (4) along x, and perfect matching layers (PML) on
the top and bottom.

II. ASM–FDTD METHOD

Consider, as an example, the structure in Fig. 1, where is the
period along and is the location of the electric line source
that produces an electric field , which is henceforth referred
to simply as . The observation point in an arbitrary periodic

th cell (Fig. 1) is denoted by 1 , where is defined
in the 0 periodic cell, and 1 is the unit vector along .
(The source and observation points are vectors, although vector
notation is being suppressed here.) In the frequency domain, an

time-dependence is assumed and suppressed, and the ASM
representation of the total field at 1 , produced by the
single source in the periodic environment is [3]

(1)

In (1), is the electric field at in the infi-
nite periodic structure produced by a periodic set of sources at

1 0 1 , with a phase shift
between adjacent sources. This creates a periodic problem in
which there is a phase shift between the left and
right periodic boundaries in Fig. 1. The electromagnetic fields
in the periodic structure therefore satisfy periodic boundary con-
ditions. For example, the electric field satisfies

(2)

The integration domain in (1) is often denoted as the funda-
mental Brillouin zone. The TD counterpart of (1) comes from
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taking an inverse Fourier transform of it and then reversing the
order of the integration in and . The result is

(3)

where the hat denotes TD quantities. Here, in the time domain
(3), just as in the frequency domain (2), the field quantities are
complex and a periodic boundary condition at the edges of the
unit cell are assumed, corresponding to the wavenumber .
For example, the electric field satisfies the inverse Fourier
transform of (2), which is

(4)

Equation (4) makes it obvious that in this rather unusual TD
application, the TD field is a complex function.
The same periodicity condition in the TD has been used already
in [9]–[11].

To implement the periodic boundary condition (4) using the
FDTD method, the phasing parameter has been discretized
in an even number of spectral sampling points, uniformly
distributed over the fundamental Brillouin zone. Spectral FDTD
simulations are carried out at every spectral sampling point
using the boundary condition described by (4) [10]. Since com-
plex values described in (4) are used in the FDTD implementa-
tion, both electric and magnetic values are complex. For every
spectral sampling point 1 2 1 ,
with 1 , the computed field is
obtained. For simplicity, we use the simple midpoint rectangle
rule of integration, which is particularly effective for smooth
periodic functions [14]

(5)

though other schemes may be more appropriate if the integrand
is singular. It should be pointed out that if a real-value excita-
tion term is used, the final value of (5) is also real-valued. The
detailed implementation of the spectral FDTD is as in [9]–[11].

III. ILLUSTRATIVE EXAMPLES

To validate the method and test the accuracy and convergence
of this algorithm, we first simulate a case where an electric line
source along the direction is located at the origin of the –
plane in a free-space environment at a frequency of 3 GHz. In
Fig. 2, the magnitude of the electric field is evaluated on a line
along the direction, with 0, showing a good agreement
between the ASM–FDTD method and the reference analytic so-
lution. The ASM–FDTD solution is evaluated by using
30 spectral sampling points in (5). The ASM is implemented
assuming a virtual periodicity 0.4 in the direction. The
FDTD Yee cell size here and in the next example is

Fig. 2. Electric field evaluated along the x axis.

Fig. 3. Percentage relative error in the field averaged along a line between 0.5a
and 1.5a, oriented in either the x or z direction.

1 mm. To further study the convergence of this method, the nu-
merical error defined as

(6)

is shown in Fig. 3 versus the number of spectral points
in (5). The error is evaluated along the line , with

and equal to either and . As clearly
seen in the figure, the numerical error decreases as in-
creases. In addition, the convergence rates in the and
directions are different—the numerical result converges faster
along the direction.

Using the developed software, we now investigate the elec-
tromagnetic field behavior in the vicinity of a line source re-
siding above an EBG material made by three rows of conducting
wires as shown in Fig. 1. The wires have diameter 7.2 mm
and spacing 18 mm in both the and directions. Fig. 4
shows the electric field (magnitude of component) produced
by a line source located at 0.5 , i.e., a distance 0.5
above the axis of the first row of wires (Fig. 1) for a frequency
of 5 GHz. The field does not penetrate through the material
since it has a bandgap for frequencies 0,8 GHz [4]. The



QIANG et al.: ASM–FDTD 273

Fig. 4. Electric field distribution produced by a line source in the vicinity of
an EBG material obtained by using (a) the standard FDTD method and (b) the
ASM–FDTD method.

Fig. 5. TD electric field produced by a pulsed line source, evaluated at r +

2a1 , via the ASM–FDTD method and the standard FDTD algorithm.

FDTD Yee cell size is now given by 0.5 mm.
Fig. 4 shows a comparison between results obtained using both
the standard FDTD method [Fig. 4(a)] and the ASM–FDTD
[Fig. 4(b)] where 24 spectral points have been used in
(5). As seen from the figure, these results are in good agreement
with each other and the relative error is only 0.98%, where the
error is defined similarly as in (6) by an average over a compu-
tation space within 3 3 and 0,5.6 . However,
to produce the result using the FDTD method, 21 periodic cells
along the direction needed to be included in the simulation do-
main—otherwise truncation effects would be visible. As a con-
sequence, the standard FDTD method requires over 10 more
computer memory. The solution time for this particular example
is 29 s (FDTD) and 62 s (ASM–FDTD), respectively. To obtain
more accurate results in regions further away from the source
(not shown in Fig. 4), the FDTD method requires even larger
computational domains. If 50 periodic cells are used along the

direction, the FDTD method requires 25 more computer
memory than that of the ASM–FDTD method. It also requires
73 s in CPU time.

In Fig. 5, the ASM–FDTD is also used to compute a transient
signal for the same geometry as in Fig. 4. A Gaussian current
pulse, 2 , with 1 A,
8.1727 ps, and 4.9036 ps, is now used as excitation. The

transient field at 2 1 evaluated via the ASM–FDTD by
using 24 spectral points in (5), is in good agreement with
the field obtained via the standard FDTD method.

IV. CONCLUSION

A time-domain version of the ASM has been presented for
the first time. This algorithm allows for the solution of a fi-
nite-size source excitation of an infinite periodic structure in the
time domain. Only a single unit cell needs to be discretized. The
algorithm has been implemented by using the spectral FDTD
method for complex signals, which is particularly suitable for
stable FDTD methods involving incidence angles near grazing,
showing good agreement with a reference solution. The memory
usage of this ASM–FDTD method is drastically reduced com-
pared to a standard FDTD implementation, which has to dis-
cretize a large portion of the periodic structure to avoid trunca-
tion effects.
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