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Abstract

Tens of millions of base pairs of euchromatic human genome sequence, including many protein-

coding genes, have no known location in the human genome. We describe an approach for 

localizing the human genome's missing pieces by utilizing the patterns of genome sequence 

variation created by population admixture. We mapped the locations of 70 scaffolds spanning four 

million base pairs of the human genome's unplaced euchromatic sequence, including more than a 

dozen protein-coding genes, and identified eight large novel inter-chromosomal segmental 
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duplications. We find that most of these sequences are hidden in the genome's heterochromatin, 

particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed in 

RNA and have been maintained intact for millions of years while their expression patterns 

diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge 

of the locations of these sequences can inform disease association and genome biology studies.

Physical maps of the human genome, including the sequence of most of its euchromatic 

portions1,2, are basic resources in human genetics and genomics research: they provide the 

framework for analysis of sequence data; and they enable genome-scale analysis of single 

nucleotide polymorphisms (SNPs), copy number variants (CNVs), epigenetic phenomena, 

and gene expression.

Yet physical maps of the human genome remain incomplete. Almost 30 million base pairs 

(Mbp) of euchromatic genome sequence that are apparently human – observed in human 

whole-genome sequence data3,4, containing human expressed sequence tags5,6 (ESTs), and 

homologous to other mammalian genome sequences – are either absent from, or have no 

assigned locations in, current assemblies of the human genome7,8.

These “missing pieces” of the reference human genome are a likely source of mistaken 

inference in today's analyses of genome sequence data9. Sequence reads arising from the 

missing pieces may be discarded as non-alignable, or incorrectly assumed to arise from 

paralogous sequences in the known, assembled part of the human genome. Sequences 

missing from the reference human genome might also help answer questions in human 

genetics research, such as the source of the genetic signals that have been ascertained (but 

not yet fine-mapped to causal variation or causal genes) by linkage, association, and CNVs.

Here we describe an approach for “admixture mapping” the human genome's missing pieces 

at megabase pair scales, by utilizing the patterns of sequence variation that have been 

created by isolation and subsequent re-mixture of human populations. We report the 

successful mapping of ~5Mbp of unplaced human euchromatic sequences, including many 

protein-coding genes. We find that most of these sequences are euchromatic islands within 

the genome's heterochromatic oceans, including centromeres and the short arms of the 

acrocentric chromosomes, and that they almost always consist of segmental duplications 

(sometimes recent, sometimes millions of years old) of sequence present elsewhere in the 

reference genome.

An approach for admixture mapping unplaced sequence

The construction of large-scale genome models (“assemblies”) utilizes physical sequence 

overlaps between genomic clones10. Clones are assembled, into larger scaffolds based on 

overlapping sequences at their ends.

By contrast, mapping based on statistical relationships among variants can provide 

information that is complementary to physical mapping, as it does not require a continuous 

path of sequences to be cloned and uniquely assembled. Before physical mapping was 

feasible, linkage among alleles was used to construct the first genetic maps of the human 
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genome based on restriction fragment length polymorphisms11,12, and later to build and 

improve genetic maps based on microsatellite markers13,14.

A unique kind of long-range information – finer in resolution than linkage in families, yet 

longer in reach than linkage disequilibrium (LD) in populations – is present in many of the 

world's admixed populations. Whenever human populations have been reproductively 

isolated for long periods of time (such as Africans and Europeans) and then re-mixed (such 

as among African Americans), the genomes of the descendants are mosaics of segments that 

derive from ancestors from the two ancestral populations (Fig. 1a). The divergence of the 

sequences in the ancestral populations gives rise to sequence variation that is informative 

about the ancestry of each segment. Long-range “admixture LD” has been used to map 

genetic factors that segregate at different frequencies in different populations15,16 and to 

identify genomic sites of recombination in African Americans17,18.

We reasoned that population admixture could also be used to map the locations of 

unmapped human genome sequences. Provided that the sequence in a genomic missing 

piece is variable, that this variation was subject to genetic drift, and that the extent of this 

drift is known in the two ancestral populations, we could infer the ancestral origin of a 

missing piece – whether it has been inherited from each individual's European or African 

ancestors – with varying levels of statistical certainty, in a large panel of admixed 

individuals. By comparing such ancestry profiles for the genome's missing pieces to similar 

determinations across the known/mapped/assembled majority of these individuals’ genomes, 

each missing piece could in principle be connected to the genomic location at which it 

resides, even if we lack a continuous path of cloned, assembled sequence with which to 

make such a connection (Fig. 1b).

Specifically, we can test ancestry-informative SNPs for correlation between their genotypes 

and inferred local ancestry across the genome, estimated using available genome-wide 

genotypes19. This is different from, and potentially much more powerful than, detecting LD 

between genotypes at two SNPs, since the correlation between genotypes and local ancestry 

is expected to be much stronger (than that between SNPs) at genetic distances up to a few 

cM, and the distance between unmapped “missing pieces” and the nearest parts of the 

reference genome may be substantial. Furthermore, we estimated statistical mapping power 

from allele frequencies in the ancestral populations and found that it was substantial, even 

for admixed population samples of even a few hundred individuals (Supplementary Note 
and Supplementary Figs. 1–3). Thus, admixture mapping could in principle connect 

sequences that are physically farther apart than most genomic clones (20-180kbp) and LD 

blocks (15-50kbp).

RESULTS

Sources of the missing pieces

We used three sources of unplaced genome sequence: (i) the current reference genome 

(hg19), which contains 59 unplaced contigs (~5Mbp of euchromatic sequence) for which the 

correct location is either only known at the chromosomal level or not known at all; (ii) the 

HuRef genome20, assembled by random shotgun sequencing of a single individual, 
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containing an even larger number of unplaced scaffolds (~3.5Mbp of euchromatic sequence 

in 28 scaffolds >100kbp and ~7Mbp of euchromatic sequence in 698 scaffolds >10kbp); and 

(iii) sequence from bacterial artificial chromosome (BAC) and fosmid clones available from 

GenBank21 (Online Methods).

Mapping the human genome's missing pieces

If an ancestry-informative SNP resides on an unmapped contig, we can map the location of 

the contig by admixture mapping the SNP. We (i) aligned all unmapped sequence reads 

from the 1000 Genomes Project22,23 to unplaced scaffolds from HuRef, (ii) identified 

polymorphic sites across these unplaced sequences, and (iii) computed genotypes at each 

locus in all European (CEU) and West African (YRI) samples (Online Methods). We 

selected 314 ancestry-informative SNPs whose genotypes had Pearson correlation r2>15% 

with local ancestry. We then genotyped these SNPs in a cohort of 380 African American 

participants from the Jackson Heart Study24 (JHS), selecting this sample size based on initial 

analyses of the predicted power to map each SNP as function of the number of available 

genotypes (Online Methods and Supplementary Fig. 3).

We successfully admixture-mapped 139 SNPs (Supplementary Fig. 4 and Supplementary 
Table 1), assigning locations for 70 previously unlocalized scaffolds (Fig. 2 and 

Supplementary Table 2). We never observed SNPs from the same scaffold mapping to 

different locations, as could be the case if the scaffold were itself misassembled. Sequences 

mapped by this approach comprised a total of ~4Mbp of euchromatic sequence that had not 

been included or mapped in hg19.

We describe the properties of these mapped locations below.

Identifying additional, cryptic missing pieces

An additional set of cryptic missing pieces might be missing entirely from human genome 

reference sequences (i.e. might not even be described as unlocalized sequences, nor present 

in HuRef) but exist instead as cryptic segmental duplications (or paralogs) of known 

genomic sequences and have been incorrectly assumed to represent the same genomic 

sequence as their known paralogs.

We reasoned that admixture mapping could also be used to identify cryptic segmental 

duplications. A SNP that is annotated in the assembled part of the human genome might in 

fact exist on a cryptic paralogous sequence elsewhere. Therefore, identification of SNPs that 

admixture-map to a different genomic location than their annotated location might indicate 

the presence of these SNPs at another genomic location on a cryptic segmental duplication.

To identify mismapped SNPs we analyzed genome-wide SNP data from two large African 

American cohorts. Among the 906,703 SNPs from the Affymetrix 6.0 array genotyped in 

~7,800 individuals from the Candidate gene Association Resource (CARe) cohort25 and the 

566,714 SNPs from the Illumina HumanHap550 array genotyped in ~1,800 individuals from 

the ICDB cohort, we identified, respectively, 121 and 15 SNPs that admixture-mapped to 

genomic locations far from their HapMap26 annotations of physical location 

(Supplementary Note and Supplementary Table 3).
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Approximately half these mismapped SNPs belonged to a single region, a ~360kbp 

segmental duplication from 16q22.2 to 1q21.1 involving the HYDIN gene27–29, confirmed 

by fluorescence in situ hybridization (FISH), and previously found to give rise to false 

genome-wide association signals at 16q22.2, that in fact arise from true association at the 

Duffy locus at 1q23.230 (Supplementary Tables 4 and 5).

Excluding the HYDIN paralog, incorrect mapping for ~30 SNPs can be explained by known 

segmental duplications31–37, while for the remaining ~40 mismapped SNPs, the most likely 

explanation is that they reside on sequence missing from the reference genome. (Among the 

~30 SNPs that we simply re-mapped from one known segmental duplication copy to 

another, ten corresponded to sites previously used as single unique nucleotides38 (SUNs) to 

distinguish among known segmental duplications. By definition, none of the re-mapped 

SNPs with which we identified novel segmental duplications corresponded to SUNs.)

To understand the relationships between these cryptic paralogs and unplaced scaffolds from 

large sequencing efforts, we cross-referenced the locations of these SNPs with alignments of 

unlocalized sequence from HuRef and GenBank. We identified 18 sequences >40kbp each 

containing one or more of the mismapped SNPs. Twelve of these 18 regions (spanning 

~1.3Mbp of euchromatic sequence) could not be explained by segmental duplications 

already annotated in the reference genome; these indicate the presence of cryptic segmental 

duplications.

To critically evaluate these findings by an independent method, we utilized the principle that 

cryptic segmental duplications should give rise, for SNPs called from sequencing data, to 

excess heterozygosity that does not follow simple models of Hardy Weinberg equilibrium 

between pairs of alleles. We searched for such a signal – annotated SNPs that behave more 

like paralogous sequence variants (PSVs) – in data from the 1000 Genomes Project pilot, 

and were able to confirm all of these regions (Online Methods and Supplementary Table 
6). For 8 of these 12 cryptic segmental duplications we could find no mention in the 

literature. We further confirmed six of them by inter-chromosomal LD analysis using 

HapMap genotypes (Table 1).

We determined for each region whether the alternate allele for any of the mismapped SNPs 

was present in any of the BAC clones aligning to that region, by aligning sequences from 

BAC clones retrieved from GenBank to the hg19 reference genome. For SNPs in six of 

these regions we could identify BAC clones carrying the alternate allele, suggesting that 

these clones harbor the sequence where these SNPs actually reside (Table 1). For one of 

these regions containing the gene PRIM2, further analysis indicated an intra-chromosomal 

duplication in the pericentromeric region of chromosome 6 and an additional inter-

chromosomal duplication in the pericentromeric region of chromosome 3 (Supplementary 
Note). We confirmed the existence of this triplication by the existence of excess sequence 

read depth across this region in low-coverage data from the 1000 Genomes Project (Fig. 3a 
and Supplementary Fig. 5) and fluorescence in situ hybridization (FISH) analysis (Fig. 3b). 

We also observed that the copy in the reference genome is a hybrid of the two copies on 

chromosome 6 due to a misassembly (Supplementary Note and Supplementary Fig. 6).
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Pericentromeric locations of the missing pieces

Despite the fact that most of the 300 or so gaps8 in the reference human genome exist in 

interstitial regions, most of the sequence we were able to localize mapped not to interstitial 

gaps but to cytogenetically-defined heterochromatic regions of the human genome. Among 

the mapped scaffolds, 57 of 70 mapped to pericentromeric regions (Fig. 2 and 

Supplementary Table 2). Among the re-mapped SNPs identifying cryptic segmental 

duplications, 40 of 70 mapped to pericentromeric regions. (In all these cases the resolution 

of the mapping was limited to the pericentromeric region identified.)

We sought to confirm these pericentromeric mappings using both published and new 

cytogenetic data. Among the 70 scaffolds we mapped successfully, 17 were among 29 

scaffolds that were previously analyzed by FISH (Supplementary Information of 39 and 

Supplementary Table S8 of 20). All 17 of these admixture-based mappings were consistent 

with one of the often multiple locations suggested by FISH (Fig. 2 and Supplementary 
Table 2). While confirmatory, this result also emphasizes the discerning power of admixture 

mapping over techniques based on hybridization, as the latter can yield ambiguous results 

when clones contain segmental duplications or other kinds of repeats.

We also performed additional FISH experiments to critically evaluate the mappings of five 

novel cryptic paralogous sequences for which no previous FISH data existed. In all (5/5) 

cases, FISH confirmed the presence of the additional copy in the predicted pericentromeric 

region (Fig. 4 and Online Methods).

A further prediction of these mappings to pericentromeric regions involves the sequence 

content of the respective scaffolds. If these genomic missing pieces are indeed euchromatic 

islands within heterochromatic oceans, then they might frequently contain heterochromatic 

beaches consisting of the satellite sequences associated with human centromeres. To 

evaluate this prediction, we measured the amount of sequence classified as heterochromatic 

satellite on each scaffold. The great majority (50/57) of the scaffolds that admixture-mapped 

to pericentromeric regions contained more than 5% satellite sequence (Online Methods, 

Supplementary Fig. 4, and Supplementary Table 2), compared with almost none (1/13) of 

the scaffolds that admixture-mapped to interstitial regions (p=0.003).

Another prediction of these pericentromeric mappings is that, given earlier data indicating 

that recombination within centromeres is likely to be heavily repressed40, scaffolds mapping 

to the same pericentromeric regions might show LD with one another. We identified pairs of 

SNPs (from distinct scaffolds) with significant linkage disequilibrium not due to admixture, 

and were able to identify ~500 SNPs from distinct scaffolds mapping to same genomic 

regions (Supplementary Table 7). In no instance did these LD-based relationships among 

scaffolds disagree with our mappings from admixture.

To understand how the pericentromeric missing pieces relate to the known human genome, 

we aligned their sequences to hg19; virtually all scaffolds mapping to pericentromeric 

regions were found to consist of one or more segmental duplications of mapped euchromatic 

sequence, with 2-5% sequence divergence (Supplementary Table 2). This suggests that a 
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large fraction of these sequences arrived at their current locations by a process of segmental 

duplication in primate ancestors41.

Our mapping of these cryptic segmental duplications to centromeric regions is consistent 

with an earlier finding that most chromosome arms (35 of 43) have an increasing number of 

known interchromosomal duplications in the proximity of the centromeres42; both results 

appear to reflect a tendency of interchromosomal duplications to deposit sequence at and 

around centromeres.

Are the missing pieces copy number variable?

Although the cryptic, pericentromeric euchromatic regions described here have not been 

purposefully interrogated in earlier CNV studies, they may have been indirectly interrogated 

via assays that targeted paralogous sequences in the known, assembled parts of the human 

genome. This seems the likely scenario, as almost all of the mismapped SNPs we identified 

from genotyping arrays (63 of 70, not including the HYDIN locus) fall within CNVs 

reported in the Database of Genomic Variants (DGV)43 (Supplementary Table 3), despite 

the fact that DGV CNVs together cover less than a third of the human genome.

Given the sequence divergence over the identified cryptic paralogs (often greater than 2%), 

these additional copies are likely to have fixed in the ancestors of all humans. Identifying 

CNVs over these sequences at a greater rate than for the rest of the genome may therefore 

indicate the instability of sequences in pericentromeric regions rather than a persistent state 

of polymorphism of these additional copies in the human population after the duplication 

event. To evaluate CNV of four selected paralogous region-pairs, we analyzed read depth of 

coverage and paralogous sequence variation using data from the 1000 Genomes Project 

(Online Methods). We identified common CNVs affecting the segmental duplications from 

the 2p22.2, 4q35.2, and DUSP22 loci (Supplementary Figs. 7–9), and we found evidence 

for CNVs affecting either of the PRIM2 cryptic paralogs (Fig. 3a and Supplementary Fig. 
5). In each case we could confirm using PSVs that the cryptic paralogs, rather than the 

paralogs present in the reference genome, account for the observed copy number variation 

(Supplementary Note), consistent with CNVs having arisen in the pericentromeric 

paralogs.

Expression of protein-coding genes from pericentromeric regions

Cryptic, pericentromeric paralogs of known protein-coding genes could in principle be 

either pseudogenes or expressed, intact genes. To test whether cryptic paralogs of coding 

genes are expressed at an RNA level, we analyzed RNA-seq data from the Human BodyMap 

2.0 project. We focused on reads aligning to the genes DUSP22, PRIM2, HYDIN, MAP2K3, 

and KCNJ12, all of which appear to have cryptic paralogs in pericentromeric regions (Fig. 3 
and Supplementary Figs. 5, 9, and 10). To distinguish RNA arising from reference gene 

copies from RNA arising from the cryptic paralogs, we focused on reads covering PSVs 

identifiable from genomic DNA sequence (many of which were previously mis-annotated as 

SNPs); this makes it extremely likely that sequence differences observed in RNA have a 

genomic origin (Fig. 5 and Online Methods). We identified expressed RNA for all of the 

paralogs except MAP2K3 (Fig. 5).
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The expression of cryptic, pericentromeric gene copies showed several kinds of relationship 

to expression of their paralogs. Both DUSP22 and its recently duplicated paralog were 

expressed and exhibited similar distribution across tissues. In contrast, the cryptic paralogs 

of PRIM2, which contain only exons 6-14 of the original transcript (as shown in Fig. 3a), 

give rise to shorter transcripts that are expressed exclusively in brain and testes (Fig. 5). For 

HYDIN, which is expressed in brain and several other tissues, this analysis indicated that the 

cryptic paralog at 1q21.1 is expressed in the brain, consistent with its earlier observation in a 

brain cDNA library28. For KCNJ12 we could detect expression of the paralog KCNJ18 in 

testis tissue (Supplementary Fig. 11), though we did not detect this KCNJ12 paralog in 

skeletal muscle where KCNJ18 is known to be expressed at a level sufficient to cause a 

phenotype44. The tissue specificity observed for paralogous copies is also evidence that 

these observations are not the result of sequencing errors at putative PSV sites.

These results suggest that many of these cryptic, pericentromeric gene paralogs are 

expressed genes, and that their expression patterns can differ from those of their known 

paralogs.

DISCUSSION

We have described a population-based approach for helping to assemble the rest of the 

euchromatic human genome, even when missing pieces are separated from known 

euchromatic sequence by extensive heterochromatic sequence. Because our approach uses 

data that are widely available or are quickly becoming so, its power will increase quickly in 

the coming years. We anticipate that this approach will help complete physical maps of the 

human genome.

Analysis of ancestry-informative markers in unlocalized scaffolds can be used to map the 

genomic locations of these scaffolds with a physical resolution comparable to that of FISH 

but with unambiguous mapping to individual loci, and in a highly scalable way that will 

become inherently more powerful as sequence data sets grow. (Many aspects of the genome 

assembly will continue to require other methods – for example, our approach does not 

determine the physical orientation of novel sequence with respect to the chromosome.) 

Using this approach we mapped ~4Mbp of unplaced euchromatic sequence, most of which 

we found to be embedded in the heterochromatic regions of the genome. These regions are 

not included in the current human reference genome and, with two exceptions, they do not 

overlap with any of the current patches included in the latest revision (Supplementary 
Table 8).

One limitation of our approach is that it relies on novel sequence having been correctly 

assembled and distinguished from paralogous sequence. Most sequences from HuRef 

unplaced scaffolds have a divergence greater than 2% with their closest paralogs; due to 

limitations of shotgun sequencing assembly, paralogous segments with <2% sequence 

divergence are likely to be under-represented in human genome assemblies45. 

Unfortunately, due to their short read lengths, current whole-genome next-generation 

sequencing approaches do not provide better assemblies for such regions than those obtained 

with capillary-based sequencing approaches46. Nonetheless, we showed that admixture 
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mapping the SNPs ascertained in such regions can still allow the discovery and mapping of 

these cryptic paralogous sequences.

Our results have several potential implications for disease gene mapping in humans, 

particularly wherever genetic signals map near pericentromeric regions, assembly gaps, and 

segmental duplications.

• Copy number variations (CNVs) frequently straddle or are flanked by ambiguous 

regions of the genome assembly. For example, deletions and duplications at 1q21.1 

reported to affect ~1.5Mbp of genomic sequence associate with cardiac 

developmental defects47, schizophrenia48,49, mental retardation, autism, congenital 

anomalies50, and abnormal head size51. Fully defining the gene content of these 

CNVs will require interrogating the missing sequence hidden in the assembly gaps 

at 1q21.1.

• Some regions implicated in genome-wide association studies may require re-

analysis in light of the results here. For example, human height associates with 

rs17511102 and other markers in a lincRNA-containing segment of 2p22.252 for 

which we found a cryptic segmental duplication (and paralogous lincRNA) in the 

pericentromeric region of chromosome 22. Following up this association will 

require that markers throughout the region be re-assigned to the correct paralogous 

gene copies.

• Gene SERPINB6 was associated with a clinical phenotype through homozygosity 

mapping by the identification of an homozygous region terminated by the 

heterozygous genotype of SNP rs776281153, which our results suggest being 

incorrectly assigned to 6p25.3 while in fact residing at 16p11.2, leading to a slight 

underestimation of the correct homozygous region.

• The genes affected by cryptic segmental duplications may be functionally 

important and critical to include and explicitly model in exome sequencing studies. 

For example mutations in KCNJ18, a gene missing from the reference genome, 

have been shown to cause thyrotoxic hypokalemic periodic paralysis44.

• An admixture mapping study found that African Americans with multiple sclerosis 

have elevated European ancestry around the centromere of chromosome 115, a 

region to which our work has assigned more than a megabase of novel sequence.

We showed that CNVs are more common over cryptic paralogs missing from the reference 

genome, most likely due to the physical instability of pericentromeric regions. We also 

showed that paralogous genes in these cryptic pericentromeric duplications are transcribed, 

sometimes with patterns of expression that diverge from those of their paralogs, and 

therefore potentially serving unique biological functions.

The presence of duplicated regions complicates genome assemblies, SNP and CNV 

discovery (Supplementary Figs. 12–24). Notably, HYDIN and PRIM2 are among the most 

difficult genes to reconstruct using de novo assembly from short sequence reads54. PRIM2 

and KCNJ12 are among the genes with the largest number of mis-identified non-

synonymous SNPs55, most likely due to identification of PSVs as SNPs.
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Approximately 6% of the human genome reference is currently considered unreliable for 

variant discovery by the 1000 Genomes Project23, due to dearth or excess read coverage or 

poor alignment of sequence reads. Most of the regions we identified as harboring a cryptic 

segmental duplication (Table 1 and Supplementary Table 6) fall in this inaccessible part of 

the human genome. While waiting for a more complete version of the human genome 

reference, the 1000 Genomes Project now aligns sequence data to an expanded genome 

reference that includes additional unlocalized sequences (termed “decoy sequences”), to 

reduce false alignments in regions with cryptic segmental duplications. These additional 

sequences consist mainly of sequenced clones discarded by the Human Genome Project and 

sequence from the HuRef assembly (~30% of decoy sequences consist of HuRef unlocalized 

scaffolds). Of course, the eventual goal of such projects will be the alignment of all human 

sequence reads to their actual physical locations.

In completing maps of the human genome, the important remaining challenges include 

mapping the human genome's structure at all scales, fully cataloging the genome's sequence 

content, and appreciating how sequences are ordered and arranged along chromosomes. As 

the scientific community works toward a complete reference assembly of the human 

genome56, analysis of genome-wide data from admixed populations will add unique value 

and help complete our understanding of the human genome's structure and evolution.

URLs. HuRef unplaced scaffolds, ftp://ftp.tigr.org/pub/data/huref/

GenBank database: ftp://ftp.ncbi.nih.gov/genbank/

Database of Genotypes and Phenotypes (dbGaP): http://www.ncbi.nlm.nih.gov/gap

Illumina iControlDB: http://www.illumina.com/science/icontroldb.ilmn

HapMap inter-chromosomal LD: ftp://ftp.ncbi.nlm.nih.gov/hapmap/inter_chr_ld/

Illumina Human BodyMap 2.0 data: http://www.ncbi.nlm.nih.gov/projects/geo/query/

acc.cgi?acc=GSE30611

Decoy sequences: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/

phase2_reference_assembly_sequence/

ONLINE METHODS

Alignment of HuRef genome and GenBank BAC and fosmid clones

To align the HuRef genome and sequenced BAC and fosmid clones to the hg19 reference 

genome we first downloaded all available sequence from The Institute for Genomic 

Research and GenBank websites (by downloading the scaffold-not-in-chromosome.fasta file 

from ftp://ftp.tigr.org/pub/data/huref/ and all gbpri* files from ftp://ftp.ncbi.nih.gov/

genbank/), and then used BWA57 (using bwa bwasw) for the alignments against hg19. We 

identified repeats classified as satellite sequences over HuRef unplaced scaffolds using 

RepeatMasker58. Satellite sequence consists of large arrays of tandemly repeated units of 

non-coding DNA. The amount of satellite and missing sequence is reported for each 
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unplaced scaffold (Supplementary Fig. 4 and Supplementary Table 2). To identify within 

these resources the presence of cryptic segmental duplications, that is, sequence missing 

from the current reference genome but present in a diverged duplicated form, we aligned all 

available contigs from HuRef and GenBank clones against hg19 (Supplementary Table 2).

Alignment and variant calls for 1000 Genomes Project data

For genotyping from sequence reads, we selected all the CEU and YRI samples available in 

the 1000 Genomes Project22,23. Unmapped reads were aligned against the HuRef unplaced 

scaffolds using BWA59 (using bwa aln/sampe). Genotype calling in the unplaced contigs 

was performed using the Genome Analysis Toolkit60 (GATK), using default settings for the 

UnifiedGenotyper walker.

Strategy for admixture mapping

To map the location of a SNP, the genotypes were first adjusted by regressing for amount of 

global West African ancestry for each sample. The adjusted genotypes were then tested for 

correlation with local ancestry across the genome using a one-tailed Pearson correlation test. 

If the correlation of the genotypes with global West African ancestry is positive, a right-

tailed test is chosen, otherwise a left-tailed test is chosen. The location corresponding to the 

smallest p-value is then recorded for each SNP, together with the location corresponding to 

the smallest p-value in a different chromosome. All these steps were performed using 

custom MATLAB (2011b, The MathWorks, Natick, MA) scripts.

It is intuitive to expect that genotyping SNPs over paralogous sequences, only one of which 

will be expected to be polymorphic, will be often incorrect as it won't be possible to 

correctly infer the homozygous state for the alternate allele, leading to failure of Hardy-

Weinberg equilibrium among other things. This is not always so for genotyping arrays 

however, as genotyping of SNPs is often based on a two-dimensional Gaussian mixture 

model over summarized probe intensities for each of the two alleles61, enabling the correct 

distinction of the three possible genotypes even without modeling the presence of a cryptic 

paralog.

SNP selection, sample selection, and Sequenom genotyping

From all detected SNPs in hg19 unplaced contigs and HuRef unplaced scaffolds we filtered 

out SNPs at loci for which the number of reads with mapping quality 0 was at least 4 and at 

least 10%. We also filtered out clusters of four SNPs within a window size of 10bp. The 

rationale is that in loci with ambiguous alignment, it is possible to call SNPs which actually 

belong to a paralogous region of the genome. Variants called in loci where many SNPs 

cluster together have a higher chance to be an artifact of misaligned reads originating from 

paralogous regions that are not present in the reference genome used for the alignment. This 

methodology maximizes the chances that a SNP belongs to the unplaced scaffold where it is 

called. Among the filtered list, up to 7 ancestry-informative SNPs were chosen for each 

contig for which genotype was estimated to have Pearson correlation coefficient with 

amount of local European ancestry satisfying r2>15%. SNPs were further filtered to fit 

within 10 Sequenom plexes, prioritizing degree of correlation with ancestry. We selected 

380 samples from the Jackson and Heart Study (JHS)24, which had been genotyped with the 
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Affymetrix 6.0 array and analyzed with HAPMIX62. To achieve the maximum possible 

mapping resolution, we exclusively selected samples with at least 62 detected crossovers 

between ancestries (maximum was 115).

Most likely due to the repetitiveness of the flanking sequences for which primers were 

designed, 86 assays failed completely; of the remainder, 53 failed the Hardy-Weinberg 

equilibrium test (p<10-6), and 175 passed. Nevertheless, we could still reliably identify the 

location of 139 SNPs (Pearson correlation test p<10-6), 106 of which had passed and 33 of 

which had failed Hardy-Weinberg equilibrium test, showing that SNPs with unreliable 

genotypes can still be informative for mapping purposes (Supplementary Fig. 4 and 

Supplementary Table 1). By analyzing for each successfully mapped SNP the best 

correlation between adjusted genotype and local ancestry on chromosomes other than the 

one where the SNP mapped, we estimated that the selected conservative threshold of 10-6 

for the p-value gives a false discovery rate lower than 1%.

Analysis of cryptic paralogs from 1000 Genomes Project pilot data

To identify regions with an excess of PSVs suggesting the presence of large cryptic 

segmental duplications, we searched for SNPs across the reference genome whose 

probabilistic genotype from 1000 Genomes Project pilot low-pass sequencing data failed the 

Hardy-Weinberg equilibrium test63 (using bcftools view -c). We identified variants that 

failed the equilibrium test (p<10-6) in CEU and YRI samples, grouped them together if they 

were <5kbp apart (using custom MATLAB scripts), and listed all resulting regions >40kbp 

(Supplementary Table 6).

Fluorescence in situ hybridization

Peripheral blood mononuclear cells were stimulated with phytohemagglutinin and harvested. 

Metaphase spreads were prepared by standard protocols. Fosmid clones spanning the 

regions of interest were selected for FISH mapping using the University of California Santa 

Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/). Fosmids were labeled with either 

SpectrumOrange or SpectrumGreen conjugated dUTP using a nick translation kit (Abbott 

Molecular, Des Plaines, IL). Labeled pairs were hybridized overnight to metaphase 

chromosome preparations. Following 4x SSC/0.1% Tween, 2xSSC/0.3% Tween, and 

phosphate-buffered detergent washes, chromosomes were counterstained with DAPI and 

analyzed by epi-fluorescence with a Zeiss Axioplan2 microscope (Thornwood, NY) and 

Applied Imaging CytoVision software (Santa Clara, CA).

Analysis of sequence read depth from 1000 Genomes Project data

To assess the copy number variability of the missing reference segments, we used an 

updated version of Genome STRiP64 to analyze read depth. Normalized read depth was 

measured by comparing the number of DNA fragments with sequencing reads aligned to the 

reference genome in a given region to the expected read depth per haploid copy based on (i) 

the total sequencing depth for each sample, (ii) the alignability of each position, based on 

whether it would be uniquely mapped by a perfect 36bp read, and (iii) sequencing bias due 

to GC content.
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We performed normalization for GC-bias empirically, similar to 38. We first identified a 

588Mbp subset of the autosomal reference sequence with no known evidence of copy 

number variation to use as a baseline. We removed all positions within 200bp of annotated 

CNV regions listed in DGV, segmental duplications listed in the UCSC browser, repeats 

annotated by RepeatMasker58 and assembly gaps, yielding a subset that is highly likely to be 

copy number invariant in the majority of people. This reference subset is divided into 400bp 

windows, stratified by GC fraction within each window, and the observed read depth at each 

GC fraction is compared to the total read depth across all windows to yield a GC-

normalization curve for each sequencing library.

Given a genomic locus, estimation of diploid copy number for each sample was done by 

fitting a Gaussian mixture model with sample-specific variance to the observed and 

expected read depth for each sample64, allowing the model to fit as many copy number 

classes as needed at each locus.

To analyze genome regions with known paralogs in sequences not in the hg19 reference 

(notably 2p22.2), we used BWA59 (using bwa aln/sampe) to realign the 1000 Genomes 

reads from the genomic region to a synthetic reference containing the original reference 

sequence plus the sequence for the extra paralog. Estimation of copy number was then 

carried out as described above.

Analysis of RNA sequence expression data

To compare expression of different paralogs of genes DUSP22, PRIM2, HYDIN, MAP2K3, 

and KCNJ12, we first identified PSVs over the predicted mRNA for these genes looking at 

all heterozygous loci called for 1000 Genomes Project pilot high coverage samples 

NA12878/CEU, NA12891/CEU, NA12892/CEU, NA19238/YRI, NA19239/YRI, and 

NA19240/YRI and then determined, when possible, which allele belongs to each paralog 

(Supplementary Tables 9–13). Once we obtained a list of all PSVs, we counted reads from 

the Illumina Human BodyMap 2.0 project for each of the alleles observed at the locus using 

the GATK60 (using default settings for the UnifiedGenotyper walker and custom scripts). To 

validate the findings and filter out possible artifacts, sequence reads were further manually 

analyzed using the Integrative genomics viewer65 (IGV).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Admixture mapping the human genome's missing pieces. (a) Chromosomes of West African 

descent (red) have recombined with chromosomes of European descent (blue) through 

admixture to form mosaic genomes in African Americans. (b) Localization of genomic 

“missing pieces”, including unlocalized scaffolds and cryptic segmental duplications, by 

admixture mapping. Wherever allele frequencies have been influenced by genetic drift in the 

ancestral populations, significant correlation between genotype and local ancestry allows the 

unplaced genomic sequence to be mapped to its correct location.
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Figure 2. 
Approximate locations of previously unplaced genome-sequence scaffolds that were mapped 

by our approach. Contigs from hg19 are labeled with three digits and stand for GL000###, 

while scaffolds from HuRef are labeled with five digits and stand for 

SCAF_11032791#####. Scaffolds with available chromosomal assignment or FISH data are 

denoted in blue; other scaffolds are denoted in red. Green indicates BAC clones that we 

mapped through SNPs from the CARe, ICDB, or HapMap datasets. No scaffold was 

mapped to a location incompatible with FISH data. Mappings in the pericentromeric regions 

of acrocentric chromosomes indicate any location either in the pericentromeric regions or 

the short arms.
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Figure 3. 
Cryptic paralogs of the PRIM2 gene. (a) Analysis of sequencing coverage depth in data from 

the 1000 Genomes Project suggests the presence of three segments (blue arrows) with 

elevated copy number. While the copy number of each segment appears to be fixed in most 

genomes, at least two genomes show extra copy number gain at two of the three segments 

(HG00155/GBR at region1 + region2, blue, and NA18541/CHB at region2 + region3, red), 

suggesting a model in which there are two additional copies of this locus in most human 

genomes, one copy containing region1 + region2 and another copy containing region2 + 

region3. (b) FISH analysis of PRIM2 and its cryptic paralogs. Fosmid clone WI2-0569M11 

overlapping PRIM2 (G248P8956G6 aligned to chr6:57,417,677-57,467,167) hybridized to 

two distinct locations in the pericentromeric region of chromosome 6, 6p11.2 and 6q11.1, 

and to a third location in the pericentromeric region of chromosome 3, confirming the two 

additional partial copies of the PRIM2 gene missing from the reference genome.
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Figure 4. 
FISH analysis confirmed the presence of cryptic segmental duplications. (a) Fosmid clone 

WI2-1750D05 (G248P87673B3 aligned to chr2:133,062,362-133,104,847); (b) 

WI2-1656E10 (G248P83226C5 aligned to chr3:613,680-650,737) hybridized to the 

centromeric/acrocentric region of chromosome 14, as predicted by admixture mapping; (c) 

WI2-0903H06 (G248P8635D3 aligned to chr4:3,573,606-3,614,890) hybridized to the 

centromere of chromosome 9, as predicted by admixture mapping; (d) WI2-1022I06 

(G248P82546E3 aligned to chr5:21,531,026-21,568,722) hybridized to 6p11.2.
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Figure 5. 
Expression of cryptic gene paralogs from pericentromeric regions of the human genome. 

Paralogous sequence variants were used to distinguish expression of the DUSP22, PRIM2, 

HYDIN, and MAP2K3 genes and from expression of thier cryptic paralogs, in RNA-seq data 

from diverse human tissues. Variants in the UTR regions are represented by blue text; 

variants predicted to change the protein product of the paralog are shown in red; 

synonymous variants are shown in green.
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