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Adiabatic beam dynamics in a modified betatron 
G. A. Roberts and N. Rostoker 
Department of Physics, University of California, Irvine, California 92717 

(Received 5 October 1984; accepted 18 January 1985) 

Electron beams in modified betatrons were previously analyzed by using a paraxial treatment. 
This treatment is valid only for a beam where particles have an axial velocity much larger than 
their perpendicular velocity. However, in accelerators such as the UCI Modified Betatron, the 
beam does not satisfy the paraxial assumption. Another treatment based on the guiding center 
equations is presented. In this treatment the paraxial assumption is not necessary. Corrections to 
the conventional "betatron condition" are found and compared with recent experiments. 
Additionally, this treatment can describe nonparaxial quasiconfined particles. The effect of these 
quasiconfined particles is examined, and it is shown that they provide fields that are necessary to 
stabilize the beam. 

I. INTRODUCTION 

A high-current accelerator that has received some at­
tention recently is the modified betatron. A cut-away view of 
the modified betatron is shown in Fig. l. It is basically a 
conventional betatron with a toroidal magnetic field. Pre­
vious treatments of the modified betatron 1•

2 were based on 
the paraxial assumption. These treatments only apply to 
beams where the perpendicular velocity (v1 ) is small with 
respect to the axial beam velocity (vz) and are reasonable for 
accelerators that use tangential injection schemes such as 
that proposed by the Naval Research Laboratory group. 3 

However, for inductive charging injection, such as that used 
on the UCI Modified Betatron,4•5 the assumption that 
uf < v; is not reasonable. Specifically, with this injection 
method the electron source is thermionic so electrons are 
emitted in various directions, and there is a fast magnetic 
compression. Also, the paraxial assumption is not valid for 
particles that are trapped in quasiconfined orbits. As in toka­
maks, it is expected that many of the particles in the betatron 
are in banana-like orbits that do not go around the torus. 

Instead of making a treatment based on the paraxial 
assumption (v~ < v;), a treatment bas been developed based 
on the guiding center approach. The adiabatic guiding cen­
ter equation is valid when the fields change slowly during a 
cyclotron orbit so that lac(aB;!axj)J < IBJ===B and 1111 
n) (aB I at JI < B, where ac is the cyclotron radius and n is 
the cyclotron frequency: eB /ymc. With a large toroidal mag­
netic field, the guiding center approximation should be valid. 

FIG. 1. The modified betatron. Increasing current in the C, coil will create 
an electric field that will accelerate the beam. C2 coils produce the betatron 
field which, in a conventional betatron, will balance the beam's centrifugal 
force. C3 coils can trim the betatron field. c. coils produce the toroidal mag­
netic field. 

In Sec. II a procedure using averages of the guiding center 
equation to find the beam motion is described. The stabiliz­
ing effects of quasiconfined particles that are trapped by to­
roidal field anomalies are discussed in Sec. III. In Sec. IV a 
comparison of the paraxial and guiding center treatments is 
presented. 

II. GUIDING CENTER EQUATIONS 

In accelerators like the UCI Modified Betatron, the to­
roidal magnetic field is initially much larger than all other 
fields. A treatment that is applicable to a large magnetic field 
is the guiding center treatment. In this treatment the parti­
cles within a beam will essentially follow the magnetic field 
lines. The electric field and curvature of the magnetic field 
lines will cause drifts. 

In the guiding center treatment the particle motion is 
assumed to consist of guiding center motion denoted by R 
and a fast gyromotion denoted by a: 

r = R + a = R -(rmc/eB 2)(BXv), (1) 

where r is the particle position, vis the particle velocity, and 
B is the magnetic field. The guiding center drift velocity 
equation can be obtained by differentiating the above with 
respected to time, using the Lorentz force to replace v, as­
suming the fields are static during a gyro-orbit, and averag­
ing over the cyclotron motion. 

R = v + c(EXB) _ rmc (nXB) (v2 +..!.vi) (2) 
II B 2 eB2 R II 2 l , 

where n = A- R (b • V)b, VJ.= ((b xv)Xb), v 11 ~[(v • B)/ 
B 2]B, and b = B/IBj. In order to evaluate the above equa­
tion, the external fields and the self-fields must first be deter­
mined. 

As can be seen in Fig. 1, the toroidal and betatron fields 
can be approximated by the following: 

B, ~B><>(l + x/R ), 

By ~BJ()(l + sx/R ), 

Bx ~(sy/R )BJ(), 

(3) 

whereR is the major radius of the torus, sis the betatron field 
index, and the coordinate system in Fig. 2 has been used. The 
self-.electric and self-magnetic fields within the beam must 
also be determined. To evaluate these fields the beam was 
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FIG. 2. Local coordinate system for toroidal geometry. Additionally, the 
drifts from the beam polarizing the wall and the curvature of the toroidal 
magnetic field are shown. 

considered to be circular in cross section and of constant 
density. The self-fields of a constant density circular beam 
can be expressed as follows: 

E_. = .:.... 21T7le[{x - X0 )X + ( Y - Y0 }.V], 

(4) 
B .. = - 21Tne(vzlc)[(x - X0}.V- (y - Y0)X], 

where (X0, Y0) is the position of the center of the beam and n is 
the beam density. The beam will also induce currents 4Dd 
charge on the surrounding walls. The induced current will 
be neglected since in the UCI Modified Betatron the wall is 
slotted to eliminate the current that produces a static mag­
netic field. The electric field from the wall charge is approxi­
mately the following 1: 

E; ~ - 2Ne(1/b 2){Xoi + Y0 y), (5) 

where N =1Tna2 is the beam's line density and bis the minor 
radius of the torus. These fields will determine the motion of 
the guiding center ofa particle via Eq. (2). The V11 term in Eq. 
(2) is given by the following: 

v11 ~ V11 {z + [ (~); + ( 
2;,:e )(~ }Y - Y0 ) ]x 

+ [ (~ )( 1 + 1s ~ 1 ~ ) - ( i;:e )e; }x _ x0) ]1}. 

(6) 

In the above it has been assumed that Bz0 >BJA'; x, y<R, 
21Tnejx- Xol < Bz0; and Vz a: V11 . The EXB term in the 
guiding center equation can be determined from Eqs. (4) and 
(5). It is given by the following: 

c(EB~B) l:lf -c( 2;:e ){[ (: r Yo+ (y - Yo)]x 

(7) 

The curvature of the magnetic field lines (n) must also be 
found to evaluate the guiding center equation. Assuming 
Bz0 > B><> then n is given by 

n = - R (b · V)be; - x. (8) 

By using Eqs. ( 6H8), the guiding center velocity (X, Y,Z) 
for a particle in the beam can be expressed: 
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(Vfi +~Vi) 2Nec X 
- Rn + b 2B 0

' 
z zO 

(10) 

where 
(J)2 41Tne2 eB ~ _ P 2 n ~ 

(J)O - 2fl,' (J)p = rm ' Uz = ymc" 

To obtain an expression for the beam motion, consider 
averaging the above equations over all the beam particles. In 
this case (X) =X0 , (Y) = Y0, (X) =X0, and (Y) = Y0• 

Also (V
11
x)a!(V

11 
)X0 and (V11y)a(V11 )Y0, since Vu is 

only weakly coupled to the particle position. After averaging 
these equations over the beam particles, they become the 
following: 

X: _ (V11 )B><> sY0 _ 2Nec y: 
o- Bz0 R b 2Bz0 °' (11) 

Y0 = (V~~><> ((1 + (s~ l)x0)] 

+ 2Nec X _ (V11
2

) + ~(V/) 
b 2B..o 

0 
Rn. ' 

(12) 

where ( ) indicates averaging. For a coasting beam, these 
equations can be expressed in terms of two independent har­
monic oscillators: 

Xo+n 2X 0 =F, 

Yo +n 2 Y0 =0, 

where 

(13) 

(14) 

n 2 = ( u:ec _ s( Jlj1 )B>")( u:ec _ (1 - s)( Vu )B><> ). 
b B..o Bz0R b Bz0 Bz0R 

(15) 

(16) 

Equations ( 13) and ( 14) indicate that the beam will oscil­
late about an equilibrium position. The equilibrium position 
is given by the quantity F ;n 2 and is the following: 

- F ( ( Jljl 2) ( V/) ) 
Xo= n 2 = -R-- (Jlj1)n>" +~ 

X [n ( 2Nec _ (I - s)( Vj1 )B><> )] - ' 
z b2Bz0 Bz0R , (17a) 

or 

(17b) 
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Equation (17b) shows that the average beam position 
(X0) is detennined by the x position where all drifts cancel. 
Specifically the first term in Eq. ( l 7b) is from the curvature of 
the toroidal magnetic field. The second term is the drift 
caused by the particles following the betatron field and the 
curvature of the betatron field. The third is the drift from the 
beam inducing charge on the wall (polarizing). Depending 
on !he value of Vu and By0, the equilibrium can haveX0 >0 
orX0 <0. 

It can be seen from the above equations that if the "beta­
tron condition" [(V11 ) = llyR = (eBy0lymc)R] is satisfied 
and v

11 
= 0 then X0 = 0, and the beam will oscillate about 

the center of the chamber. However, Eq. (17a) indicates a 
modification of the "betatron condition": 

fl R = (Vj,2) +!(Vi). 
)I ( Vj,) 

(18) 

This condition differs from the usual ''betatron condition" 
because of the inclusion of V1 • In the UCI Betatron it was 
found that, to trap a beam, IJ" R had to be about three to four 
times larger than the maximum velocity that a particle could 

have during injection (../2 e V of m, where V0 is the injector 
voltage). Equation ( 18) can reconcile this by assuming a large 
V..t which is reasonable considering the method of injection 
and the magnetic compression. Additionally, Eqs. (13) and 
( 14) indicate that unless s = 1/2, fl 2 will become negative for 
some particular range of ( V

11 
) and By0. This corresponds to 

an instability. The paraxial treatment also indicates the same 
instability. 6 

In the UCI Modified Betatron the beam was acceler­
ated and eventually hit the outer wall. The final electron 
momentum inferred from x-ray energy measurments was 
about0.5eB"R /csothat (V11 )RIJYJ S¥2(V11

2
). With this in­

formation, Eq. { l 7a) indicates a beam equilibrium deftection 
that would indeed take the beam to the outer wall. For 
I= 150 A,(r- 1) mc2 = 500keV, (Vu)= 2.6x 1010 cm/ 
sec,N =l /e(V11 ) = 3.6X l010 cm- 1

, b = 5 cm, By0 = 130 
G, Bz0 = 4 kG, s = 0.8, and R = 40 cm, Eq. (17) predicts 
X0 = - 76 cm. The sign indicates a deftection to the outer 
wall but the magnitude is too large. This and other discre­
pancies can be accounted for by considering a large number 
of quasiconfined electrons that form a background beam. 

Ill. TWO·BEAM TREATMENT 

To obtain a closer correspondence to the experiment, it 
was postulated that there were a large number of electrons in 
quasiconfined orbits which did not get accelerated. Elec­
trons in such orbits have previously been postulated to ex­
plain experiments at Maxwell Laboratories. 7 In the betatron 
experiments at UCI, electrostatic probes see two basic fre­
quencies. One is a high frequency and the other is a low 
frequency. If the frequencies are interpreted in terms of dio­
cotron oscillations then the fast frequency corresponds to a 
Jine density of 1012 cm- 1 and the slow frequency corre­
sponds to a line density of about 1010 cm - •. Current mea­
surements indicate that the beam has a density that corre­
sponds to that predicted by the low frequency. The high 
frequency is attributed to a large number of nonaccelerated 
quasiconfined particles. Particles should be trapped in non-
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accelerating orbits if µ(aB /ch)> eEz where Er is the acceler­
ating toroidal electric field andµ = i m VUB. In the beta­
tron, Ez - 0.8 VI cm, so ifit is assumed that B changes about 
1 % over L = l 0 cm, then the requirement for particles to be 
in these nonaccelerating orbits is 

! mVife>EzL (Bl.dB )-1<>3 V. (19) 

Considering the method of injection where the voltage 
applied to the injector is greater than 1 O" V, and the magnetic 
compression, most of the electrons will have sufficient per­
pendicular energy to remain trapped between local mirrors 
provided that they are not in the loss cone ( V~ < Vf ). 

In light of the possibility of large numbers of quasicon­
fined particles, consider the accelerator to have two beams. 
One beam consists of nonaccelerated trapped particles, and 
the other is the accelerated beam. The background beam will 
supply fields that are necessary to stabilize the accelerated 
beam. In this model, consider a background beam of radius 
a', density n', and position (X0, Y 0), in addition to an accel­
erated beam, as seen in Fig. 3. To find the motion of these 
beams, first consider the motion of the particles in the beams. 
The particles in the accelerated beam will experience all the 
previously described fields in addition to the background 
beam self-fields (E ;, B ;) and induced electric field (E ;). 
These fields are given by the following: 

E; = - 2trn'e[(x-X0)X + (y- Y'0}Y], (20) 

B; = - 211'n'e{V(ilc)[(x -X0)y- (y- Y 0)X] ~o. 
(21) 

(22) 

where it has been assumed that the background beam has a 
constant density profile. Similarly, the particles in the back­
ground beam will experience the background beam fields 
and the accelerated beam's self- and induced fields which are 
the following: 

{

- 211'ne((x' - X0) x + ( y' - Y0) y) 
E, = - 2trnea2((x' - X0 }X + ( y' - Y0 ) ji) 

l(x' -X0 )X + (y' - Y0 )Jil2 

Ix' -Xol <O, 

Ix' -Xol>a, 

- 2177te(u11 le) ((x' - X0) ji - { y' - Y0 )X) 

lx'-Xoj <O, 
Bs = - 21711ea2(u

11 
c)((x' - X0 }j/ - ( y' - Y0 )X) 

l(x' -XolX + (y' - YoJ.Yl2 

Ix' -Xol>a, 

boclt9round 
beam 

FIG. 3. Two·beam model. 
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E; = (2Ne/b 2)(X0 x + Y0 y). (25) 

The guiding center of the accelerated beam particles 
and the background beam particles can be obtained by sub­
stituting the expressions for the fields into Eq. (2). When this 
is done the following equations are obtained for the acceler­
ated beam particles: 

X = -wo(Y-Yo)[I -(Vj1/c)2 ]-wo(Y-Yo) 

- (2Nec/b 2Bz0)Y0 

_ 2N'ec Y' + sVj1B><>(L) 
b 2Bz0 ° B.o R ' 

(26) 

Y = u>o(x - Xo)[ 1 - (V11 /c)2
) 

+ cu0(x -X'0 ) + (2Nec/b 2B.o)X0 

+ 2N'ec X' + V11 B~ (i + (s - l)x) 
b 2B 0 B R zO zO 

(V~ +!Vi) 
.azR 

(27) 

where cu0 = m; 2 /Wz and it has been assumed that 
VUfc < 1. In the same manner the guiding center of the 
background beam particles can be obtained: 

X' = -<uo(Y' - Yo)- u>o(Y' - Yo)B(a - Ix' - Xoll 

where 

B(S) = {
0
1 s'>O, 

s<O. 
The beam equations can be obtained by averaging the 

particle guiding center equations. In the background beam, 
(Vii) =0, (x') =X0,and(y') = Y0.Futhermore,itisas­
sumed that the motion of the background beam in the direc­
tion parallel to the magnetic field is weakly coupled to the 
motion in the perpendicular directions, so that 
(Vux') = (Vf1)(x') =0 and (Vuy') = (VU}(y') =0. 
The terms representing the action of the accelerated beam 
self-fields on the background beam particles require nontri­
vial averaging. For a constant density beam the average of 
any function ofx'[ g{x')), such as the quantity in question, 
is just the spatial average ofg{x') over the beam area. This can 
be shown by assuming a distribution function /(x',v') in 
which case ( g) is the following: 
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(g) = J dx' g(x'{J dv'.f(x',v')) = ~ L dx' g{x'), (30) 

where A is the area of the beam. Using this, consider the 
regions in Fig. 4. The drifts from the accelerated beam self­
electric field for each of the regions within the background 
beam are the following: 

V1 = - u>o[(y' - Y0 )X - (x' - X0}.Yl, 

Vu = Vm 

= -u>o(a2 / lx' -Xol 2)[(y' - Y0)X- (x' -X0 }.Y], (31) 

where V1 , V11 , and Vm are the drifts in regions I , II, and Ill, 
respectively. When the drift in region I is averaged over re­
gion I it will vanish since (y') = Y0 and (x') = X0 • Similarly, 
when the drift in region II is averaged over region II, t hen the 
average drift will be zero. However, the average drift in Re­
gion III will not be zero. The effect of the drift in region III 
can be expressed as follows: 

(V111 ) = ~ { dx' V111 
1Ta Jm 

= - ,! ( { dx' ,a
2

u>0 
2 
(x' - Xol) Xb. (32) 

1Ta Um Ix - Xol 

Assuming A =IAI = IX0 - XO I <a' -b and 
a'> a+ 2.1, then jx' - X0l~a', and the above equation can 
be written as follows: 

(Vm) ~ ~a~0 (;, Y(l
11

dx'(x' - X0))xb. (33) 

In Fig. 4 it can be seen that the above drift will be in the 
AX b direction and will be the following: 

(Vm) ~ ~a~o (;, )2(f"a'2 d8(1 +cos O)cos 9 )iAXb) 

= - u>o(a/a')2(AXb ). (34) 

Using the above equation and the previously mentioned 
assumptions, then the particle drift equations can be aver­
aged to find the background beam motion and the acceler­
ated beam motion. The resulting equations are the following 
whenN <N': 

X0 = -w,Y0 +m2 Y 0, 

region I-----.. 

region Ill ---( 

background 
beam 

(35) 

FIG. 4. Accelerated beam self-fields in the background beam. Region I is 
the region that the accelerated beam occupies in the background beam. Re· 
gion II is the region encompassed by a circle concentric with the accelerated 
beam's center and touching the edge of the background beam. Region III is 
the remainder of the background beam. 
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Yo =liJ3Xo -liJ.iX"o- U', 

where 

liJ1e!liJo, liJ2~liJo[ 1-(~)2]. 

liJ4~liJo[ (;, r -(: )2]. 
U- _ B:.<J(v;) (Vii) +!(VD 

- B II + ,....R , 
zO ~~z 

(V' 2
) + l(V' 2

) U'- 11 2 1 . 

11,R 

(36) 

This analysis indicates that the background beam mo­
tion will be coupled to the accelerated beam motion. In order 
to find the oscillation frequencies, a normal mode analysis 
must be used. To accomplish this the above guiding center 
equations will be expressed in the harmonic oscillator form: 

" 2 2 I • Xo = - n I Xo + n 2X 0• 

.. 2 2 , 
Yo= - n I Yo+ n 2 y 0• 

.. , 2 2 , 
yo = /1 3 Yo - n • yo' 

where 

~liJ0liJo[ 1 + (a'!b }2 ] [(a/a')2 
- (alb )2 J, 

n ! = li)i + liJ#. ~ liJo 2(a' / b )4• 

(37) 

(38) 

(39) 

(40) 

(41) 

Assuming oscillations of the form exp(iliJt) the eigenfre­
quencies can be found. They are given by the following equa­
tion: 

(42) 

Since nvnLnV11i, and nvn! <I, then the 
above equation has solutions li) = ± 111 + OliJ1 and 
& = ± D4 + OliJ4 , where OliJ1 and OliJ4 < (JJ. When 
(JJ = ± 111 + OliJ1 the above equation can be approximated 
as 

or 

(43) 

(44) 

Therefore, the eigenfrequencies are given by the following: 
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± liJo ± +@0 [ 
1 + ( ~YH (;.r -(: YJ 

@~ ± @o(~Y ± +liJo[ i + ( ~YJ 

x[(;.r-(:YJ(~t2· 
(45) 

In the betatron, high and low oscillation frequencies 
were observed. The low frequency corresponds to a beat fre­
quency which will appear on probes since they wiIJ observe a 
combination of high frequencies that differ by a small fre­
quency. The low frequency is consistent with the line density 
in the experiment which was obtained by current measure­
ments. This can be seen in Eq. (45) since the difference in 
frequency is approximately liJ0(a/a')2 = 2Nec/B.oa'2 for 
a' -4 cm and b = 5 cm. This indicates that the accelerated 
beam's line density should be obtainable from the low fre­
quency measurements: 

N~liJ.(B.oa'2/2ec), (46) 
where w, is the low oscillation frequency observed in the 
experiment. In the UCI modified betatron a typical set of 
data hadBz0 z 4kG, and ws z6X 106 sec- 1

• If the radius of 
the background beam is taken to be 4 cm, which was the 
distance between the injector and the center of the torus, 
then the line density should be about 1.3X1010 cm- 1 via Eq . 
(46). In the experiment the beam current(/) was about 100 A 
so that the measured line density was about 2 X 1010 cm - 1

, 

which is close to the value predicted by Eq. (46). 
The time-averaged displacements of the background 

and accelerated beams can also be obtained from Eqs. (35) 
and (36). These equations indicate that on average the accel­
erated beam will be displaced to a point (X0, Y0) and the back­
ground beam will be displaced to a point (.X 0, Y 0 ), which are 
given by the following: 

Xo~{(Vff) _ U'11 )B>'l + (Vf) + (V~2) 
R.(Jz B 2Rf}z 2Rf1z 

(47a) 

or 

'(X -X')- (VU) +!(Vi)_ (Jlj1)11y _ 2N'ec X' 
Wo o o IJzR .(Jz b 2Bz0 O• 

(47b) 
also 

- , ( V~2)/2R.(J" 
Xo"" ' w0(a'/b )2 

(48) 

Y0 and Y0 ~o. (49) 
Equation (47b) shows that the equilibrium accelerated beam 
position (X0 ) is the point where the drift from the background 
beam electric field [shown on the left-hand side ofEq. (l 7b)J 
cancels the drifts from the curvature of the magnetic fields, 
particles following the betatron field, and the electric field 
induced on the wall from the shift in background beam posi­
tion. Since the electric field from the background beam is 
relatively large, a large mismatch on the right-hand side of 
Eq. (47b) can be tolerated without a large accelerated beam 
displacement. 
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When the equation for the average X displacement of 
the accelerated beam is compared with the single beam case, 
Eq. ( l 7a), it can be seen that the two-beam case has a smaller 
displacement for a given mismatch in the betatron condition, 
i.e., {JyR =t= ( V

11 
) • This can be interpreted as the quasicon­

fined particles providing fields that confine the accelerated 
beam. Quantitatively, these fields are much larger than the 
image field of the accelerated beam. Specifically, if the quan­
tity N '=n 'rra '2 is identified by associating the fast oscillation 
frequency in the experiment with (1)0, as was indicated by Eq. 
(45), then for the two-beam case the accelerated beam has a 
predicted displacement of about - 6 cm with the previously 
mentioned data. Since 5 cm is the minor radius of the torus, 
the two-beam theory corresponds quite favorably with the 
experiment on the question of when the beam hits the wall. 

In the experiment it was also observed that the acceler­
ated beam would hit the wall in about 20 µsec if the injector 
was turned off. Since it is expected that the background 
beam will essentially fill the torus, background particles will 
constantly be lost. If injection is stopped, the background 
beam particles will not be replaced, resulting in the loss of 
the background beam and thereby the accelerated beam. The 
lifetime of the background beam can be estimated by assum­
ing an equilibrium between the loss of background particles 
and.the injection of new particles. Assuming this, the charac­
teristic lifetime of the background beam is r = 2rrRN '/(I I 
e):::::20µsec, where/is the injector current (:::::2A). Addition­
ally, it is useful to note that the instability that appeared in 
the single beam model whens#! is absent here since the 
oscillation frequency does not significantly depend on the 
betatron field. 

IV. COMPARISON OF THE PARAXIAL AND GUIDING 
CENTER TREATMENTS 

Both the paraxial and guiding center treatments are 
based on the force equations for a beam particle. The exact 
force equations are the following: 

d ymv; e 
-(ymv") = - + eE" + - (vy B• - vzBy), 
dt (R-x} c 

(50) 

d e 
- (ymv>') = eE>' + - (v.B" - v,.Bzl· (51) 
dt c 
In the paraxial treatment v; > V~, all the fields are 

expanded in powers of x and y and only those terms that are 
constant or proportional to x, y, x, y, x, and ji are kept. By 
making the above assumptions and averaging the above 
equations over all beam particles the following beam equa­
tions are obtained when Vz ~c: 

•• 2 • 
X0 = F + (C)..,X0 + 11. Y0 , (52) 
•• 2 • 
Y0 = (J)y Y0 - flzX0, (53) 

where 

(CJ! = ((C)!/2)(a/b )2 
- (c/R )2 + s{Jy(c/R ), 

(CJ; = {(J)!/2)(alb )2 
- s{Jy(c/R ), (54) 

F= -c(c/R - n y)· 

The above indicates oscillations about an equilibrium. The 
equilibrium position (X0 , Y0) is given by the following: 
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- c [ (c/ R ) - fly ] 

Xo = ((J)!/2)(a/b )2 - (c/R )2 + s{J>'(c/R )' 
(55) 

Y0 a0, (56) 

when the betatron condition is satisfied, X0 becomes zero, 
and there is no average deflection of the beam. The oscilla­
tion frequencies can be obtained by assuming X0 and Y0 are 
proportional to exp( - i<Ut) in which case"' is the following: 

(C)
2 = - !{((J)! + (J); - 11 ;i 

± [ {(J)! + (C); - n; )2 - 4<!>! w; ]112}. ( 57) 

In the above it can be seen that if for a particular B >', (J); and 
(J); are of different signs, then one root of (J) is imaginary and 
there will be an instability. This corresponds to the instabil­
ity shown in Sec. II with the one-beam guiding center equa­
tions. Also, it can be seen that assuming n; > (J);, there are 
two basic frequencies predicted by the above; one is around 
the cyclotron frequency and the other around the diocotron 
frequency.2 This is also similar to the guiding center treat­
ment except that the cyclotron frequencies are absent since 
the cyclotron oscillations are averaged out. By comparing 
the above paraxial equations to the one-beam guiding center 
equations, it can be seen that the results of these treatments 
differ. The major differences are that the guiding center 
treatment includes effects from the perpendicular energy, 
and the paraxial treatment explicitly includes the cyclotron 
motion. It can be seen that in situations where there are non­
paraxial particles, the guiding center treatment is appropri-
ate. 

In summary, beam equilibrium and oscillations in a 
modified betatron can be described using a guiding center 
approach. Two cases were examined, one where all the parti­
cles in the accelerator would be accelerated, and the other 
where there would be a background of quasiconfined parti­
cles in addition to the accelerated beam. The data collected 
with the UCI Modified Betatron are consistent with the two 
beam case. It was found that a large number of quasiconfined 
particles create electric fields that cause drifts that can stabi­
lize the accelerated beam. When compared with the one­
beam case, the quasiconfined particle beam has larger elec­
tric fields so that a larger mismatch io the betatron condition 
can be tolerated before the accelerated beam would hit the 
wall. 
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