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Abstract Cholinergic projections from the basal forebrain and brainstem are thought to play

important roles in rapid eye movement (REM) sleep and arousal. Using transgenic mice in which

channelrhdopsin-2 is selectively expressed in cholinergic neurons, we show that optical stimulation

of cholinergic inputs to the thalamic reticular nucleus (TRN) activates local GABAergic neurons to

promote sleep and protect non-rapid eye movement (NREM) sleep. It does not affect REM sleep.

Instead, direct activation of cholinergic input to the TRN shortens the time to sleep onset and

generates spindle oscillations that correlate with NREM sleep. It does so by evoking excitatory

postsynaptic currents via a7-containing nicotinic acetylcholine receptors and inducing bursts of

action potentials in local GABAergic neurons. These findings stand in sharp contrast to previous

reports of cholinergic activity driving arousal. Our results provide new insight into the mechanisms

controlling sleep.

DOI: 10.7554/eLife.10382.001

Introduction
Cholinergic neurons in the basal forebrain and brainstem provide widespread projections to numer-

ous brain regions, including the cerebral cortex, hippocampus, thalamus, and TRN (Mesulam et al.,

1983). Abundant behavioral and electrophysiological data suggest that cholinergic neurons play crit-

ical roles in regulating paradoxical sleep and the sleep-waking cycle (Koyama et al., 1994;

Greco et al., 1999; Bellingham and Funk, 2000; Kobayashi et al., 2003; Boutrel and Koob, 2004;

Darbra et al., 2004; Brown et al., 2012), as well as in promoting arousal. Recently, it has been

shown that selective activation of cholinergic neurons in the basal forebrain induces immediate tran-

sition from sleep to waking (Han et al., 2014).

The TRN serves as a gate for information flow between the cerebral cortex and thalamus due, in

part, to its location near thalamic white matter and to the large numbers of GABAergic neurons it

contains (Houser et al., 1980; Pinault, 2004). The TRN is important for supporting attention

(McAlonan et al., 2008), sleep regulation (Steriade et al., 1987; Espinosa et al., 2008), and sleep-

dependent memory consolidation (Fogel and Smith, 2011). The physiological effects of cholinergic

projections to the TRN, however, remain unclear.

In the present study, we took the advantage of the temporal precision and cell-type specificity of

optogenetics to show that optical activation of cholinergic input to the TRN stimulates local
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GABAergic neurons by activating a7-containing nicotinic cholinergic receptors (a7-nAChRs). The

resulting increase in GABAergic activity in the TRN shortens sleep onset time and extends NREM

sleep duration. These unexpected findings are quite different from those previously reported for

cholinergic neurons in the basal forebrain and brainstem, which support arousal and REM sleep. The

present results indicate that cholinergic projections to the TRN normally promote sleep onset and

protect NREM sleep. The behavioral outcome of cholinergic activity across brain regions, therefore,

depends on the combination of pathways activated and targets stimulated.

Results

Optical driving of cholinergic fibers in the TRN generates spindle
oscillations
To research the function of cholinergic innervation in the TRN, we employed ChAT-ChR2 mice in

which channelrhodopsin2 (ChR2) was selectively expressed in cholinergic neurons under the control

of acetylcholinesterase promotor (Zhao et al., 2011). A 473 nm laser was employed to activate the

cholinergic fibers through a 200 mm optical fiber (Figure 1A). Histological imaging showed that the

optical fiber was well implanted above the TRN (Figure 1B). We then tested EEG from the skull in

vivo and found that optical stimulation of cholinergic fibers in the TRN could induce spindle oscilla-

tions both in waking and sleep states. To determine which stimulation intensity was most effective

for inducing spindle oscillations, we used four intensities of 20 ms, 100 ms, 200 ms, and 400 ms

pulses, respectively. The visual inspection revealed increasing EEG power with increasing stimulation

intensity. However, when the pulse intensity increased to 200 ms, the EEG power nearly reached the

maximum (Figure 1C). We also compared the spindle co-occurrence evoked by 20 ms, 100 ms, 200

ms, and 400 ms, respectively, during awake and NREM states. The co-occurrence of spindle oscilla-

tion was greater than that in the waking stage (P < 0.01; Figure 1D). Furthermore, spindle co-occur-

rence increased as the pulse duration increased (P < 0.01; Figure 1D). However, there was no

significant difference in co-occurrence between the 200 ms and 400 ms stimulation pulse-evoked

spindle oscillations (Figure 1D). Next, we compared the evoked and natural spindle oscillations and

found there was no significant difference in their frequencies, amplitudes or durations (Figure 1E).

These results demonstrate that the evoked spindle oscillation pattern mimicked the natural spindle

oscillation pattern.

To investigate which stimulation frequency induced the highest spindle oscillation density, we

used a 200-ms pulse with intervals of 1 s, 3 s, 6 s, or 8 s to drive the cholinergic fibers in the TRN,

respectively (Figure 1F). We then quantified the spindle density and found that the light pulse with

a 6 s interval evoked the highest spindle oscillation densities in both waking and NREM phases. The

eLife digest Sleep is one of the most familiar activities in our lives and yet there are still many

unanswered questions related to how it is regulated. The cholinergic system (or the part of the

nervous system that sends signals using a chemical called acetylcholine) is thought to be important

for the phase of sleep that is most similar to being awake, so-called REM sleep. This collection of

nerve cells has also been implicated in the process of waking up from sleep. However, it remains

unclear how the cholinergic system acts on sleep.

Ni, Hou et al. have now used a technique called optogenetics to use light to stimulate the

cholinergic system in specific areas in the brains of mice. These experiments found that the

activation of the cholinergic system caused awake mice to fall asleep, and promoted more non-REM

sleep in sleeping mice. As such, this discovery challenges the previously held view that cholinergic

activity was linked to waking up.

Acetylcholine affects cells in a similar way to nicotine from cigarettes. In the future, Ni, Hou et al.

would like to explore how many nicotine-like substances are released by the cholinergic system in

specific brain areas, and to further investigate when and how sleep is promoted.

DOI: 10.7554/eLife.10382.002
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Figure 1. Optical driving of cholinergic fibers in the TRN generated spindle oscillations. (A) Placement of optical

fiber above the TRN in ChAT-ChR2 mice. (B) Histological imaging of implant location of optical fibers. (C) Upper,

power spectrograms of EEG following stimulation for 20 ms, 100 ms, 200 ms, or 400 ms, respectively. Lower,

representative spindle traces evoked by stimulation for 20 ms, 100 ms, 200 ms, or 400 ms, respectively. (D) Left,

spindles evoked by different stimulation intensity. Right, average spindle co-occurrence rates during waking,

NREM, and total recording periods. (E) Left, representative evoked spindle oscillation and natural spindle

oscillation. Right, statistical analysis of spindle frequency, amplitude and duration. (F) Average spindle density

induced by 200 ms stimulation of 1 s, 3 s, 6 s, 8 s intervals during waking, NREM, and total recording periods. Data

represent mean ± SEM (n = 8 mice; **p < 0.01, two-tailed t-test between 200 ms stimulation and 400 ms

stimulation or 100 ms stimulation).

DOI: 10.7554/eLife.10382.003
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evoked spindle density was 9.2 ± 0.5 per min in the NREM stage with a 6 s interval light pulse. These

results suggested that a 6 s interval light pulse was most effective at evoking spindles.

Activation of cholinergic fibers promotes sleep
To examine the roles of cholinergic input to the TRN in modulating sleep, ChAT-ChR2 mice were

raised under 12-hr light/12-hr dark conditions. The stimulation protocol applied 473 nm light (1.5

mW) for a 200-ms pulse at 6 s intervals for 1 hr, starting 4 hr after ’light off’ (Figure 2A). After

screening a range of conditions, this protocol appeared optimal and mimicked natural activity (Fig-

ure 1). Combined EEG, EMG, and video recordings were used to determine the sleep-waking pat-

terns and to examine sleep architecture (Figure 2B) (Lupi et al., 2008). The stimulation protocol

induced sleep onset in ChAT-ChR2 mice (ChAT-ChR2-Sti) within 16 min, on average (Figure 2C–E).

This was 50–60% quicker (P < 0.05) than in ChAT-ChR2 mice without stimulation (ChAT-ChR2-Non-

Sti) and in WT mice with stimulation (WT-Sti). There was no significant difference between WT-Sti

mice and ChAT-ChR2-NonSti mice (P = 0.49). These results suggest that the shortened sleep onset

was mediated by ChR2-induced activation of cholinergic fibers in the TRN. Correspondingly, the

total sleep time of ChAT-ChR2-Sti mice stimulated for 1 hr increased significantly compared with

that of both ChAT-ChR2-NonSti mice (P < 0.01) and WT-Sti mice (P < 0.01) (Figure 2F). The sleep

architecture of ChAT-ChR2-Sti mice was also significantly different from that of either ChAT-ChR2-

NonSti or WT-Sti mice. Time spent in NREM sleep in ChAT-ChR2-Sti mice increased by 160% com-

pared with that of ChAT-ChR2-NonSti mice (P < 0.01), while no difference was seen in the duration

of REM sleep (Figure 2G). No significant differences in sleep architecture were observed between

ChAT-ChR2-NonSti and WT-Sti mice. To test how long it took for recovery of normal function, we

recorded sleep states for 1 hr following cessation of stimulation, and found that it took an average

of 40 ± 3 min to recover (Figure 2—figure supplement 1). These results suggest that activation of

cholinergic fibers in the TRN can promote sleep onset and alter sleep architecture to protect sleep.

Cholinergic-induced spindle oscillations correlate with NREM sleep
Previous studies revealed that spindle oscillations can protect and stabilize sleep (Bové et al., 1994;

Dang-Vu et al., 2010; Kim et al., 2012). Accordingly, we examined the correlation between the

density of cholinergic-induced spindle oscillations and the duration of NREM sleep over the record-

ing period. Spindle density in ChAT-ChR2-Sti mice was significantly increased compared with that of

ChAT-ChR2-NonSti and WT-Sti mice, while no differences were seen between ChAT-ChR2-NonSti

and WT-Sti mice (p< 0.01, Figure 3A). In all three groups, spindle density was greatest (9.3 ±

0.5 min) during NREM sleep. Correlation analysis indicated a significant positive relationship

between spindle oscillation density and NREM sleep duration (Figure 3B). These results suggest

that evoked spindle oscillations can play roles similar to those of spontaneous spindle oscillations in

protecting and stabilizing sleep.

Cholinergic fibers modulate GABAergic neuron activity in the TRN
The TRN is thought to represent a shield surrounding the dorsal thalamus consisting of a homoge-

nous population of parvalbumin (PV)-containing GABAergic neurons (Houser et al., 1980;

Ohara and Lieberman, 1985). Confocal imaging of brain slices from B13 mice (which express GFP

under a PV promoter) after immunostaining for PV confirmed that PV-positive neurons were abun-

dant throughout the TRN (Figure 4A). To identify PV-positive neurons for mechanistic studies, we

crossed ChAT-ChR2 mice with B13 mice. This generated mice expressing both ChR2 in the choliner-

gic neurons and GFP in the PV neurons, permitting whole-cell recordings from GABAergic neurons

while optically stimulating local cholinergic input. Immunostaining revealed numerous cholinergic

fibers surrounding PV-positive neurons in the TRN of ChAT-ChR2 mice (Figure 4B). First, we stimu-

lated cholinergic neurons and found that a 5-ms pulse could induce the firing of action potentials in

the cholinergic neurons when stimulating cell bodies (Figure 4C). We then tried 5-ms, 50-ms, 100-

ms, and 200-ms light pulses to stimulate cholinergic fibers and recorded neuronal activity of

GABAergic neurons in the TRN. (Figure 4D). We found that light pulses of short duration, such as 5

ms and 50 ms, failed to induce bursts of action potentials in GABAergic neurons. A light pulse of at

least 100 ms was required to induce bursts of action potentials and spindles. Whole-cell recording in

voltage-clamp mode from PV neurons in the TRN-containing brain slice showed that pure light
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stimulation (without injection current) of a 200-ms pulse evoked fast excitatory post-synaptic currents

(EPSCs; Figure 4E, lower). They were accompanied by rhythmic high-frequency bursts of action

potentials (APs) seen in current-clamp mode (Figure 4E, upper). In vivo extracellular recording in the

TRN of anesthetized ChAT-ChR2 mice revealed that the optical stimulation of cholinergic fibers

induced spikes in the GABAergic neurons (Figure 4F). These results suggest that cholinergic projec-

tions to the TRN produce excitatory input sufficient to evoke bursts of APs in PV-containing TRN

Figure 2. Activation of cholinergic fibers promoted sleep. (A) Stimulation protocol in the TRN of ChAT-ChR2 mice. A 473 nm laser was used at 1.5 mW

to deliver 200-ms pulses at 6 s intervals for 1 hr. (B) EEG, EMG, and video recordings were used to determine sleep-waking patterns and examine sleep

architecture; examples of states (Waking, SWS, REM). (C) EEG trace during 1 hr stimulation period. (D) Representative hypnograms for ChAT-ChR2-Sti,

ChAT-ChR2-NonSti and WT-Sti mice over 1 hr test period. Optical stimulation given to ChAT-ChR2 and WT-Sti mice consisted of 200-ms pulses. (E)

Latency to sleep in ChAT-ChR2-Sti, ChAT-ChR2-NonSti and WT-Sti mice. (F) Total sleep time of ChAT-ChR2-Sti, ChAT-ChR2-NonSti and WT-Sti mice

during 1 hr stimulation. (G) Time spent in NREM stage for ChAT-ChR2-Sti, ChAT-ChR2-NonSti and WT-Sti mice. In (E, F, G), all data represent mean ±

SEM (n = 8 mice, *p < 0.05, **p < 0.01, two-tailed t-test between ChAT-ChR2-Sti mice and ChAT-ChR2-NonSti or WT-Sti mice). See also Figure 2—

figure supplement 1.

DOI: 10.7554/eLife.10382.004

The following figure supplement is available for figure 2:

Figure supplement 1. Recovery time of normal function following cessation of stimulation.

DOI: 10.7554/eLife.10382.005
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neurons. To determine which cholinergic projections mediated these results, we injected AAV9-

CAG-DIO-EGFP-2A-TVA and AAV9-CAG-DIO-RV-G into the TRN. Three weeks later, EnvA-pseudo-

typed RV-DG-DsRed, which can infect efficiently and travel retrogradely, was injected into the same

site. We found that the DsRed signal was detected in some cholinergic neurons of the nucleus basa-

lis magnocellularis (nBM) in the basal forebrain (Figure 4—figure supplement 1A) and pedunculo-

pontine tegmental nucleus (PPTg) of the brain stem (Figure 4—figure supplement 1B). Statistical

results showed that about 30% of cholinergic neurons (VAChT antibody labeled) were positive for

mCherry (retrograde virus labeled) in the nBM, and ~7% were positive for mCherry in the PPTg (Fig-

ure 4—figure supplement 1C). These results demonstrate that TRN neurons receive cholinergic

projections from both the basal forebrain and brain stem.

Light-evoked EPSCs in PV-containing TRN neurons are mediated by a7-
nAChRs
To identify synaptic components mediating cholinergic-induced EPSCs in the TRN, we employed

specific blockers. Recordings in the presence of tetrodotoxin (TTX, 1 mM) to block APs completely

prevented optical stimulation of cholinergic fibers in the TRN of ChAT-ChR2 mice from eliciting

EPSCs in PV-containing neurons (Figure 5A). This is consistent with the EPSCs being AP-dependent,

as expected for presynaptic stimulation of transmitter release. In contrast, light-evoked EPSCs were

not blocked by including the combination of CNQX (20 mM) as an inhibitor of glutamatergic AMPA

receptors, AP5 (50 mM) as an inhibitor of glutamatergic NMDA receptors, and picrotoxin (PTX, 100

mM) as an inhibitor of GABAA receptors (Figure 5B). This indicates that neither rapid glutamatergic

nor GABAergic transmission is required for cholinergic induction of the EPSCs. Dihydro-b-erythroi-

dine (DHbE), a selective antagonist of a4b2-containing nAChRs, decreased the amplitude of light-

evoked EPSCs by 12%, 34%, and 99% at 5 nM, 10 nM, and 100 nM, respectively (Figure 5C). How-

ever, methyllycaconitine (MLA, 5 nM), a specific antagonist of a7-nAChRs, completely blocked the

light-evoked EPSCs (Figure 5D) and the accompanying bursts of APs (Figure 5E). The concentration

was consistent with previous research (Bonfante-Cabarcas et al., 1996). Immunostaining yielded

extensive labeling for a7-nAChRs on PV-containing neurons in the TRN (Figure 5F). These results

indicate that the light-evoked, AP-dependent release of ACh from cholinergic projections in the

TRN elicits EPSCs and bursts of APs in GABAergic neurons of the TRN by activating a7-nAChRs.

We found that a light pulse of at least 100 ms duration could induce bursts of action potentials in

GABAergic neurons in the TRN (Figure 4). It might be that the activation of GABAergic neurons by

cholinergic fiber stimulation was an indirect effect via a7 cholinergic receptors (Figure 5). It requires

a certain amount of Ach release to excite postsynaptic GABAergic neurons to fire action potentials

Figure 3. Correlation of spindle oscillation density and NREM sleep duration. (A) Spindle density of ChAT-ChR2-

Sti, ChAT-ChR2-NonSti and WT-Sti mice during waking, NREM, and entire period (Total). Data represent mean ±

SEM (n = 8 mice, *p < 0.05, **p < 0.01, two-tailed t-test between ChAT-ChR2-Sti mice and ChAT-ChR2-NonSti or

WT-Sti mice). (B) Correlation shows a positive relationship between spindle oscillation density and NREM duration

(n = 8).

DOI: 10.7554/eLife.10382.006
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Figure 4. Cholinergic fibers excited GABAergic neurons in the TRN. (A) Confocal imaging of brain slices from B13

mice showing densely distributed PV-positive Figure 2—figure supplements 1A,3B,4A neurons in the TRN. (B)

Histological staining showing numerous cholinergic fibers surrounding PV-positive neurons in the TRN of ChAT-

ChR2 mice. In A, B, scale bar: 20 mm; n = 3 mice. (C) Action potentials in cholinergic neurons induced by 5-ms

pulse stimulation. (D) Action potentials in GABAergic neurons evoked by 5 ms, 50 ms, 100 ms, and 200 ms

stimulation of cholinergic fibers in TRN (bottom). Spindles could only be induced by 100 ms or 200 ms stimulation,

but not by 5 ms or 50 ms (top). (E) Light pulse stimulation of 200 ms evoked EPSCs (bottom) and rhythmic high-

frequency bursts of APs (top) in PV neurons of the TRN. (F) In vivo extracellular recording of the TRN in an

anesthetized ChAT-ChR2 mouse showing light-evoked spikes on GABAergic neurons. In C, D, E, F, n = 8 neurons

of 3 mice. See also Figure 4—figure supplement 1.

DOI: 10.7554/eLife.10382.007

The following figure supplement is available for figure 4:

Figure supplement 1. The TRN received cholinergic projections from both the basal forebrain and brain stem.

DOI: 10.7554/eLife.10382.008
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and spindles. Light pulses of 10 ms or 50 ms are too short to induce the release of sufficient Ach,

which evokes the burst of action potentials in postsynaptic GABAergic neurons and spindles.

MLA in the TRN blocks cholinergic induction of sleep
Having found that a7-nAChRs mediate cholinergic input to PV-containing GABAergic neurons in the

TRN, we tested whether this same pathway was responsible for cholinergic modulation of sleep

onset and sleep protection. Half an hour before stimulation, we injected MLA (1 ml, 100 nM) or saline

Figure 5. Optically induced EPSCs were blocked by MLA. (A) TTX (1 mM) blocked the induced EPSCs in PV

neurons evoked by optical stimulation of cholinergic fibers in the TRN (n = 6). (B) CNQX (20 mM), AP5 (50 mM), and

PTX (100 mM) together failed to block the induced EPSCs (n = 6). (C) DHbE (5, 10 nM) only partially blocked the

evoked EPSCs. (D,E) MLA (5 nM) completely blocked the evoked EPSCs and bursts of APs (n = 6). For voltage

clamp recording in (A, B, C, D), the membrane potential was held at -70 mV. (F) Immunostaining with an antibody

specific for a7-nAChRs showed substantial levels of the receptors on PV-positive neurons. Scale bar: 20 mm (n = 4).

Data represent mean ± SEM (*p < 0.05, **p < 0.01, one-way ANOVA was used).

DOI: 10.7554/eLife.10382.009
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(1 ml, 0.9% NaCl) locally into the TRN of ChAT-ChR2 mice through a cannula implanted in the brain.

The mice were then given optical stimulation (200-ms pulses at 6 s intervals, 1.5 mW blue laser) for

1 hr in the TRN. Quantification of the responses indicated that MLA completely blocked light-

evoked changes in latency to sleep onset, total sleep time, and sleep architecture (Figure 6). None

of the parameters were significantly different from those of WT-Sti mice. In contrast, the saline-

injected mice could still be induced to sleep and showed increased NREM by the activation of cho-

linergic fibers during the 1 hr stimulation, compared with the ChAT-ChR2-Sti-MLA and WT-Sti

groups. To further test MLA on spontaneous sleep, we injected saline and MLA into the TRN of

ChAT-ChR2 mice in the daytime, and found that in vivo injection of MLA (the antagonist of a7-

nAChRs) significantly decreased spontaneous sleep time from 37.2 ± 4.1 min to 27.3 ± 3.2 min (p <

0.01, Figure 6—figure supplement 1). These results indicate that cholinergic promotion of sleep

onset and sleep protection are mediated by activating PV-expressing neurons of the TRN through

a7-nAChRs.

Direct stimulation of GABAergic neurons in the TRN promotes sleep
onset and alters sleep architecture
Having found that cholinergic input to PV-containing TRN neurons generates spindle oscillations and

promotes NREM sleep via a7-nAChRs, we wanted to confirm whether direct stimulation of TRN

GABAergic neurons could achieve the same effects. For this purpose, we used VGAT-ChR2 mice in

which ChR2 was specifically expressed in the GABAergic neurons (Zhao et al., 2011) so that those

neurons would be selectively activated by light pulses delivered to the TRN. Testing the paradigm

first in vitro showed that a light pulse of 10 ms applied to an acute slice could induce bursts of APs

in GABAergic neurons of the TRN (Figure 7A). Testing three different optical stimulation patterns in

vivo (20 Hz, 8 Hz, or single 10 ms pulses) indicated that 8 Hz stimulation was most successful at

evoking spindle oscillations both in waking and NREM states (P < 0.05, Figure 7B,C). Accordingly,

we used that stimulation protocol (10 ms of 8 Hz for 1 s at 6-s intervals) to induce sleep in VGAT-

ChR2 mice, which were raised under a 12-hr light/12-hr dark cycle (Figure 7D). Blue laser light of

473 nm was delivered into the TRN through a 200 mm optical fiber for 1 hr starting 4 hr after ’light

off’. Both EEG and EMG were recorded, and sleep onset and sleep architecture were then

Figure 6. MLA blocked the decrease in sleep onset time and the increase in sleep duration induced by cholinergic activation. (A) Time to sleep onset

for ChAT-ChR2-Sti-MLA, ChAT-ChR2-Sti-Saline, and WT-Sti mice. (B) Total sleep time of ChAT-ChR2-Sti, ChAT-ChR2-NonSti, and WT-Sti mice during 1

hr stimulation period. (C) Duration of waking, NREM, and REM for ChAT-ChR2-Sti-MLA, ChAT-ChR2-Sti-Saline and WT-Sti mice in 1 hr recording. Data

represent mean ± SEM (n = 8 mice, *p < 0.05, **p < 0.01, two-tailed t-test between ChAT-ChR2-Sti-MLA mice and either ChAT-ChR2-Sti-Saline or WT-

Sti mice). See also Figure 6—figure supplement 1.

DOI: 10.7554/eLife.10382.010

The following figure supplement is available for figure 6:

Figure supplement 1. MLA decreased spontaneous sleep in the daytime.

DOI: 10.7554/eLife.10382.011
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measured. Optical stimulation significantly reduced the sleep onset time of VGAT-ChR2 mice

(VGAT-ChR2-Sti, 27.2 ± 3.2 min) compared with that of the controls (VGAT-ChR2-NonSti; 5.5 ±

0.8 min, P < 0.01, Figure 7E). Similarly, the duration of sleep during the 1 hr optical stimulation

period also increased by 156% compared with that of the controls (P < 0.01, Figure 7F).

Figure 7. Direct stimulation of GABAergic neurons in the TRN promoted sleep onset and altered sleep architecture. (A) Direct optical drive (10-ms

pulses, lower) induced bursts of APs in GABAergic neurons (upper). (B) Representative spindle oscillations evoked by different optical stimulation

paradigms (1, 8, or 20 Hz). (C) Probability of spindle waves induced by 1 Hz, 8 Hz, and 20 Hz. (D) Stimulation protocol in the TRN of VGAT-ChR2 mice. A

473 nm laser (1.5 mW) was given at 8 Hz for 1 s at 6-s intervals for 1 hr. (E) Sleep onset time of VGAT-ChR2-Sti and VGAT-ChR2-NonSti mice. (F) Total

sleep time evoked by direct optical stimulation of GABAergic neurons in the TRN of VGAT-ChR2 mice and unstimulated controls. (G) Durations of time

in waking, NREM, and REM states for VGAT-ChR2 mice with and without direct optical stimulation of GABAergic neurons in the TRN. Stimulation

substantially decreased the duration of wake time, while increasing the duration of NREM time; it had no effect on REM time. In (C, E, F, G), data

represent mean ± SEM (n = 7 mice, *p < 0.05, **p < 0.01, two-tailed t-test between VGAT-ChR2 mice with spindle-like stimulation and VGAT-ChR2

mice without stimulation).

DOI: 10.7554/eLife.10382.012
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Furthermore, the architecture of sleep differed greatly in VGAT-ChR2-Sti mice vs. VGAT-ChR2-Non-

Sti mice. Time spent in the NREM phase was significantly greater for VGAT-ChR2-Sti mice (27.2 ±

2.1 min) than for VGAT-ChR2-NonSti mice (15.2 ± 1.3 min, p < 0.01), while no significant differences

were seen in the duration of the REM stage (Figure 7G). These results support that elevating the

activity of GABAergic neurons in the TRN can promote sleep in ways that mimic the effects of cholin-

ergic excitation of the TRN.

Discussion
Our results show that cholinergic projections to the TRN can activate local GABAergic neurons via

a7-nAChRs without requiring either glutamatergic or GABAergic rapid transmission. Furthermore,

cholinergic fiber activation of GABAergic neurons in the TRN in vivo can promote sleep onset and

increase the probability of spindle oscillation and duration of the NREM phase. Lastly, direct stimula-

tion of GABAergic neurons in the TRN to elicit activity comparable to that induced by cholinergic

input produces the same kinds of changes in sleep behavior seen following cholinergic activation of

the neurons. These results demonstrate the capacity of cholinergic input, acting through GABAergic

neurons in the TRN, to promote critical features of sleep.

Previous studies employing pharmacology, brain injury, and electrical stimulation revealed impor-

tant contributions of cholinergic signaling to the regulation of the sleep-to-waking cycle and para-

doxical sleep (Campbell et al., 1969; Sarter et al., 2009; Brown et al., 2012; Hamlin et al., 2013;

Sims et al., 2013). These earlier studies suggested that cholinergic input to the TRN neurons was

primarily inhibitory, acting on M2 muscarinic ACh receptors (McCormick and Prince, 1986). Local

delivery of ACh to the TRN was seen to induce only a slow inhibitory response, leading to the con-

clusion that the ACh-induced bursts of APs observed were somehow the result of the GABAergic

neurons in the TRN becoming hyperpolarized (McCormick and Prince, 1986). Instead, we showed

cholinergic input to the TRN stimulates the GABAergic neurons via a7-nAChRs, and that this input

through a7-nAChRs induces bursts of action potentials and promotes/stabilizes sleep. Previous fail-

ures to detect an a7-nAChR response in the TRN were almost certainly caused by electrical stimula-

tion methods, i.e. ACh perfusion. Because a7-nAChRs desensitize so quickly (Giniatullin et al.,

2005), their responses can be missed in experimental paradigms. Another group found that Excit-

atory Postsynaptic Potentials (EPSPs) induced by electrical stimulation were blocked by dihydro-b-

erythroidine (DhbE, 300 nM), indicating that the EPSPs were mediated by a4b2-containing nAChRs

(Sun et al., 2013). However, DhbE (300 nM) can block both a4b2- and a7 nAChR-mediated currents

(Alkondon and Albuquerque, 1993), and non-specific electrical stimulation may enable extrasynap-

tic transmitter release.

Cholinergic neurons in the basal forebrain send projections to many targets, including the cere-

bral cortex, hippocampus, thalamus, and TRN. Selective activation of cholinergic neurons in the

basal forebrain has been shown to induce an immediate transition from sleep to waking (Han et al.,

2014). The present study specifically activated cholinergic fibers locally in the TRN, which, surpris-

ingly, showed the opposite effect. It induced transition from waking to sleep, indicating that direct

cholinergic projections to the TRN promote sleep onset and sleep stabilization. GABAergic neurons

of the TRN fire AP bursts mediating slow and spindle waves (Cain and Snutch, 2010). These bursts

are very important for the generation of thalamocortical spindle waves (von Krosigk et al., 1993;

Lee et al., 2013), and spindle rhythms play important roles in protecting sleep initiation and elevat-

ing arousal threshold (Steriade, 2005; Wimmer et al., 2012). We propose that excitation of cholin-

ergic fibers in the TRN acts on GABAergic neurons through a7-nAChRs (Roth et al., 2000) to

depolarize the membrane sufficiently to induce bursts of APs. Our results demonstrate a significant

positive relationship between spindle density and the promotion of the NREM state and sleep stabi-

lization. Activation of the cholinergic neurons appears to play critical roles in the switch from waking

to sleep and in the protection of sleep itself, especially by increasing the NREM state.

It is possible that stimulating axonal fibers may cause antidromic and collateral activation because

TRN-projecting cholinergic neurons mainly involved in the nBM and PPTg also project to other brain

areas. Cholinergic neurons in the nBM of the basal forebrain project to the cerebral cortex, hippo-

campus, and TRN, and that in the PPTg of the brainstem project to the thalamus, new striatum, and

basal forebrain. Activation of cholinergic fibers in the TRN may antidromically collaterally excite cell

bodies, or collaterally act on other neurons, leading to the indirect effects on sleep. To address this
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question, we locally injected the a7 receptor blocker MLA in the TRN and found that sleep induced

by cholinergic fiber stimulation was completely inhibited, suggesting that the possibility was small.

We found that unilateral stimulations and drug infusions had significant effects on behavior and

phenotype. This did not exclude spontaneous behavior evoked by contralateral Ach release. Bilateral

stimulation is better to clearly address the mechanisms.

The finding that optical stimulation of cholinergic projections to the TRN directly elicits EPSCs in

the GABAergic neurons via a7-nAChRs is unexpected. Though a7-nAChRs are widely distributed in

the brain, they are usually thought to provide a modulatory role. From presynaptic locations, the

receptors can enhance transmitter release (McGehee et al., 1995; Gray et al., 1996), while from

post- or presynaptic locations they can modulate synaptic responses indirectly through calcium-

dependent mechanisms (Dajas-Bailador and Wonnacott, 2004). Rarely, if ever, have a7-nAChRs

been shown to be the primary mediator of rapid, synaptic transmission in the central nervous system

(CNS). In the present study, the ability of MLA to block cholinergically-induced EPSCs in the TRN

clearly implicates a7-nAChRs. Immunostaining corroborated the presence of a7-nAChRs in the

GABAergic neurons of the TRN. The inability of CNQX, AP5, and PTX to block the EPSCs demon-

strated that rapid glutamatergic and GABAergic transmission were not responsible for the EPSCs.

The fact that a7-nAChRs have a high relative permeability to calcium (Bertrand et al., 1993) and

trigger calcium release from internal stores (Dajas-Bailador and Wonnacott, 2004) may be relevant

for the kinds of signaling effective at promoting spindle oscillations.

Our study provides critical insight into cholinergic roles in mediating biological rhythms. Choliner-

gic neurons play an important role in waking-to-sleep cycles and in sleep stabilization by activating

GABAergic neurons in the TRN through a7-nAChRs. Although a great deal of work has been done

to examine the roles of cholinergic systems in biological rhythms, previous experiments have mainly

focused on the sleep-to-waking transition, and results have been limited by the experimental techni-

ques used. Cholinergic projections from different brain areas to the TRN may have opposing effects,

acting through different receptors and synaptic pathways (Everitt and Robbins, 1997;

Abbott et al., 2003). The states of sleep and waking may be determined by the opposing inputs

serving as a system of checks and balances. Because a number of psychiatric disorders, such as

schizophrenia (Ferrarelli and Tononi, 2011), show sleep disturbances and loss of spindle oscillation,

the results reported here may also be useful in suggesting new targets for therapeutic intervention

in these cases.

Materials and methods

Animals
Mice were housed in individual Plexiglass recording cages in temperature (24 ± 1˚C) and humidity

(40–60%) controlled recording chambers under a 12/12 hr light/dark cycle (starting at 08:00). Food

and water were available ad libitum. PV-Cre mice were provided by Z.J. Huang (Cold Spring Harbor,

USA) and X.H. Zhang (Beijing Normal University, China), and ChAT-ChR2 and VGAT-ChR2 mice

were provided by G.P. Feng (Massachusetts Institute of Technology, USA) and M.M. Luo (National

Institute of Biological Sciences, China). All experiments were carried out in accordance with the

guidelines described in the National Institutes of Health Guide for the Care and Use of Laboratory

Animals, and were approved by Committee of Laboratory Animal Center of Zhejiang University

(ZJU201553001).

Brain slice preparation and electrophysiological recordings
Mice were deeply anesthetized with isoflurane (1.5–3%), the brain was removed after decapitation,

and slices (300 mm thick) were then cut in a solution containing (in mM): 250 sucrose, 26 NaHCO3 10

D(+)glucose, 4 MgCl2, 2.5 KCl, 2 sodium pyruvate, 1.25 H2NaPO4, 0.5 ascorbic acid, 0.1 CaCl2, and

1 kynurenic acid, pH 7.4. Recordings were made at 34˚C (TC-324B; Warner) in artificial cerebrospinal

fluid solution containing (in mM): 126 NaCl, 26 NaHCO3, 1.25 NaH2PO4, 3 KCl, 2 CaCl2, 2 MgCl2,

and 10 D-glucose. All external solutions were saturated with 95% O2/2.5% CO2 gas. Whole-cell

patch-clamp recordings were made with pipettes (3–4 MW) filled with internal solution containing (in

mM): 130 K-gluconate, 2 NaCl, 4 MgCl2, 20 Hepes, 4 Na2ATP, 0.4 Na3GTP, 1 EGTA, and 10 Na2ph-

osphocreatine, pH 7.25, with 1 M KOH; 290–300 mOsm. CNQX, AP5, and PTX were purchased from
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Sigma. Recordings were obtained using the Axopatch 700B amplifier and Digidata 1440A (Molecular

Devices), and neurons were visualized using infrared differential interference contrast visualization

through a Nikon E600FN microscope and a CCD camera (Hamamatsu, Japan). Data were filtered at

10 kHz and digitized at 20 kHz, and acquired and analyzed using pCLAMP10.2 software (Molecular

Devices). The laser was controlled by analog commands from the Digidata1440A (Molecular

Devices).

Immunohistochemistry
Eight-week old mice were perfused with 4% paraformaldehyde in PBS. The brains were harvested

and placed in 30% sucrose solution for 24 hr, then embedded in OCT (optimal cutting temperature;

Tissue-Tek; Sakura Finetek, USA) and subsequently cut into 30-mm thick slices. The slices were

stained using monoclonal anti-parvalbumin (1:4500; clone parv-19; Sigma) and antibody rabbit anti-

VAChT (Synaptic System; 1:500) as the primary antibodies. After several washes with PBS, sections

were incubated with Alexa Fluor-488 goat anti-mouse IgG (Invitrogen). Fluorescence was detected

using an Olympus confocal microscope and standard FITC filters.

Virus construction and injection
For rabies virus-mediated retrograde monosynaptic neuronal tracing, several AAV backbone plas-

mids were constructed in our lab or ordered from Addgene. The pAAV-EF1a-FLEX-GT was acquired

from E.d. Callaway’s lab; pAAV-CAG-DIO-GT was constructed by sub-cloning the CAG promoter

and the coding region of EGFP:2A:TVA from pAAV-EF1a-FLEX-GT (Addgene plasmid 26198). The

pAAV-EF1a-DIO-RV-G was constructed by sub-cloning the CAG promoter and the coding region of

RV-G from pAAV-EF1a-FLEX-GTB (Addgene plasmid 26197) into the pAAV-EF1a-double floxed-

hChR2 (H134R)-EYFP plasmid (Addgene plasmid 20298). All rAAV viruses were packaged into sero-

type 9 with titer at approximately 1 � 1013 genome copies per milliliter (Neuronbiotech). Two- to

three-month-old PV-Cre mice were used for retrograde transsynaptic tracing. A volume of 0.2 ml of a

1:1 mixture of AAV9-CAG-DIO-EGFP-2A-TVA (1.3 � 1013 particles/ml) and AAV9-CAG-DIO-RV-G

(1.5 � 1013 particles/ml) was stereotaxically injected into the TRN (coordinates in mm: AP -0.65, ML

1.30, DV -3.20) using a stereotaxic injector (Ruiwode Life Science, Shenzhen, China). Three weeks

later, 0.5 ml of rabies-DsRed virus (3 � 108 particles/ml) was injected into the same site.

Animal surgery
For all experimental tests, 6- to 88-week-old male mice were anesthetized with 1.5–33% isoflurane

and placed in a stereotaxic frame. For each animal, five stainless-steel screws were implanted in the

skull to provide EEG contacts, ground, and mechanical support for the drive. Epidural electrodes

were implanted in the frontal (anteroposterior, +2.0 mm; ML, -1.5 mm) and parietal lobes (antero-

posterior, -2.0 mm; ML, -3.0 mm), and a grounding electrode was implanted in the occipital region.

For EMG signal recording, two polyester enameled wire electrodes were inserted into the neck mus-

culature to record postural tone. The implant was attached to a custom-designed stereotaxic arm

and lowered to the following stereotaxic coordinates (M/L 1.7 mm, A/P 0.8 mm, D/V -3.2 mm). Insu-

lated leads from the EEG and EMG electrodes were then soldered to a mini connector. For each ani-

mal, the cannula was secured using dental cement.

In vivo recording
After one week of recovery, each mouse was connected to the A-M system 1800 amplifier. The

amplified cortical EEG and EMG signals were acquired (sampling frequency, 2 kHz) by Digidata

1440A (Molecular Devices). The data were acquired as continuous 1-hr segments with different stim-

ulation protocols. For ChAT-ChR2 mice, the stimulation was persistent 200-ms laser pulses with an

interval of 6 s. For VGAT-ChR2 mice, the stimulation was 8 Hz, 10 ms pulses with an interval of 6 s.

Simultaneous video monitoring was performed for the visual inspection of sleep behavior. All scoring

was measured by combined EEG, EMG, and video recordings.

Photostimulation
A 473 nm laser from a solid-state laser diode (Newdoon) was delivered to the TRN though an optical

fiber (200 mm, NA = 0.22). Prior to connecting to the cannula, laser power was measured to 3 mW
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using an optical power meter (Thorlabs, S121c). Based on measurement prior to surgery, we found

50% losses of laser power at the tip of the implanted fiber. The ultimate laser power was about 1.5

mW at the fiber tip. The 1440A was used to shape laser pulses of 5 or 10 ms duration at different

frequencies.

Spindle detection method
Sleep spindles were analyzed using Clampfit 10.2 (Axon Instruments) and NeuroExplorer4 (Plexon)

in the wake and NREM sleep stages and detected using the following complementary method: the

EEG time series were bandpass-filtered in the frequency range of 7–15 Hz, and signal was computed

in moving windows of 1 s duration and at 0.01 s intervals. Sleep spindles were detected during those

times in which the root mean square (rms) value of the filtered signal exceeded its 85th percentile,

as previously suggested (Dang-Vu et al., 2010). Detected spindles with durations lower than 0.5 s

or longer than 5 s were discarded. To estimate spindle density (SD) during a given sleep stage, all

spindles were counted and the total number was divided by the total recording time.

Power spectrum
Power spectrum analyses of sleep stages and spindles were performed in moving windows of 1 s

duration and at 0.01 s intervals, and power spectrum distribution was estimated with a resolution of

0.5 Hz. The post power spectrum was smoothed by a ’Boxcar’ filter with a width of 6.

Statistical analysis
The data were collected and processed randomly. All immunocytochemistry and behavioral tests

were carried out blind. The electrophysiology experiments were not blind, but data collection and

analyses were performed blind. Sample size was calculated according to the preliminary experiment

results and the following formula: N ¼ ½
ðZ a =2þZ b Þ s

d
�2ðQ�1

1 þQ�1
2 Þ, where a = 0.05 significant level, b =

0.2, power = 1-b, d is the difference between the means of two samples, and Q is the sample frac-

tion. The samples were randomly assigned to each group. The data were presented as mean ± SEM.

One-way ANOVA was used for analysis of electrophysiological data in vitro. Two-tailed Student’s t-

tests were performed after the normality test for the data from all groups in vivo. Variance was simi-

lar between groups being compared. We considered p < 0.05 to be statistically significant. The

sleep patterns were determined by combined EEG, EMG, and video recordings. Data were pre-

sented as mean ± SEM. All data were analyzed using Origin8.0 (OriginLab), Clampfit 10.2 (Axon

Instruments), NeuroExplorer4 (Plexon), and Microsoft Excel 2010. Data were exported into Illustrator

CS6 (Adobe Systems) for preparation of figures.
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