
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Simplification and control of microbial ecosystems in theory and experiment

Permalink
https://escholarship.org/uc/item/5kd0c75h

Author
Jones, Eric

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5kd0c75h
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Simplification and control of microbial ecosystems

in theory and experiment

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Physics

by

Eric William Jones

Committee in charge:

Professor Jean Carlson, Chair
Professor Roger Nisbet
Professor Zvonimir Dogic

June 2020



The Dissertation of Eric William Jones is approved.

Professor Roger Nisbet

Professor Zvonimir Dogic

Professor Jean Carlson, Committee Chair

June 2020



Simplification and control of microbial ecosystems

in theory and experiment

Copyright c© 2020

by

Eric William Jones

iii



For my granddad, Dr. John M. Richardson,

who inspired me to study physics

iv



Acknowledgements

I would first like to thank my mom for her words of wisdom that she spoke to me as I

was about to begin a grueling, wearisome, and at times overwhelming trek: “take things

one day at a time.” She wasn’t talking about my PhD, but she might as well have been.

Mom, thank you for being a trail angel in all things. Thanks to my dad for teaching me

how to work hard at something until it is of high quality. Thanks to my brothers, with

whom I have celebrated, toiled, and become closer with these last few years.

Thanks to Jean, who has been a wonderful PhD advisor. She taught me how to

conduct myself as a professional, as a writer, as a teacher, and as a mentor.

Thanks to my PhD committee members. Roger, you are a role model to me both for

your ecological mind and in how you interact with others. Zvonimir, I have thoroughly

enjoyed meeting and talking with you.

Thanks to my collaborators, who joyfully shared their expertise with me. Will, thank

you for always advocating for me, and for introducing me to to the world of microbial

ecology. I am thrilled that I get to continue working with you. Shenshen, thank you for

your advice and guidance.

Thanks to the members of the Ecology, Evolution, and Marine Biology department

that so readily accepted me into their theoretical ecology community. I have been privi-

leged to learn from great ecologists like Steve, Cherie, Holly, and Ferdinand.

I acknowledge the National Science Foundation Graduate Research Fellowship Pro-

gram (Grant No. 1650114), the David and Lucile Packard Foundation, and the Institute

for Collaborative Biotechnologies (contract no. W911NF-09-D-0001 from the U.S. Army

Research Office) for their role in funding this thesis.

To all the friends I met and travelled alongside with in graduate school, thanks for

making it fun. Thanks for being a great roommate and friend, Dillon. Thanks Brianna

v



for caring about things. Thanks Josh for all of our walks. Thanks Seth for all of our

talks. Thanks for the hikes, Alex. Thanks for skiing with me, Neelay. Thanks for surfing

with me, Gabriel. Thanks Peter for the chess. And to everyone else with whom I have

enjoyed my time in Santa Barbara, thank you.

Thanks to my friends who make it so that I always call Colorado “home.” Thanks

John, for being up for anything. Thanks Alli, for all the adventures. And thanks to

everyone else that I have ever been in the mountains with.

And lastly thanks to you, the reader, for engaging with this body of work. I hope

you enjoy it.

vi



Curriculum Vitæ
Eric William Jones

Education

2020 Ph.D. in Physics (Expected), University of California, Santa Barbara

2018 M.A. in Physics, University of California, Santa Barbara

2015 B.S. in Engineering Physics, Colorado School of Mines

2015 B.S. in Computational and Applied Mathematics, Colorado School
of Mines

Publications

1. Z. Wang†, E. Jones, J. Mueller, and J. Carlson (2020). “Control of ecological out-
comes through deliberate parameter changes in a model of the gut microbiome.” Phys-
ical Review E 101(5):052402 [link]

2. E. Jones and J. Carlson (2019). “Steady-state reduction of generalized Lotka-Volterra
systems in the microbiome.” Physical Review E 99(3):032403 [link]

3. A. Gould, V. Zhang, L. Lamberti, E. Jones, B. Obadia, N. Korasidis, A. Gavryushkin,
J. Carlson, N. Beerenwinkel, and W. Ludington (2018). “Microbiome interactions
shape host fitness.” Proceedings of the National Academy of Sciences 115(51):E11951
[link]

4. E. Jones and J. Carlson (2018). “In silico analysis of antibiotic-induced Clostridium
difficile infection.” PLoS Computational Biology 14(2):e1006001 [link]

5. P. Diaz, P. Constantine, K. Kalmbach, E. Jones, and S. Pankavich (2018). “A
modified SEIR model for the spread of Ebola in Western Africa and metrics for resource
allocation.” Applied Mathematics and Computation 324:141 [link]

6. E. Jones, P. Roemer, M. Raghupathi, and S. Pankavich (2013). “Analysis and simula-
tion of the three-component model of HIV dynamics,” SIAM Undergraduate Research
Online 7:89 [link]

submitted:

7. P. Shankin-Clarke†, E. Jones, and J. Carlson. “Efficient navigation and control of
outcomes in generalized Lotka-Volterra systems in the microbiome.” [arXiv link]

8. E. Jones∗, J. Sheng∗, S. Wang, and J. Carlson. “Aging and fragility in a coupled
innate-adaptive immune model.”

∗equal contribution; †undergraduate research advisee

vii

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.052402
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.032403
https://www.pnas.org/content/115/51/E11951.short
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006001
https://www.sciencedirect.com/science/article/abs/pii/S0096300317308214
http://evoq-eval.siam.org/Portals/0/Publications/SIURO/Vol7/ANALYSIS_AND_SIMULATION_OF_THE_THREE-COMPONENT_MODEL.pdf?ver=2018-04-06-151917-413
https://arxiv.org/abs/2003.12954


Abstract

Simplification and control of microbial ecosystems

in theory and experiment

by

Eric William Jones

Over the last two decades an association between microbiome composition and some

human diseases has been unambiguously established, and this discovery has provoked clin-

ical interest into microbiome-based medical therapies. The advent of high-throughput

sequencing has produced vast amounts of microbial abundance data, but mechanistic

models that describe and predict this complex microbial ecosystem are not yet estab-

lished.

In my doctoral research I employ novel theoretical approaches and tractable experi-

mental systems to study simplified instances of the complex microbial dynamics of the

microbiome. This research is motivated by a desire to inform the mechanism of ac-

tion and development of microbiome-based bacteriotherapies. We use generalized Lotka-

Volterra (gLV) models, a class of model that exhibits prototypical ecological behaviors,

as a theoretical proxy for true microbial dynamics. We develop a numerical framework

to predict how introduced foreign microbes (direct bacteriotherapy) and a modified mi-

crobiome environment (indirect bacteriotherapy) affect the composition of a microbiome.

Additionally, we derive the dimensionality-reduction technique “steady-state reduction”

(SSR), which compresses bistable dynamics in a high-dimensional gLV system into a

reduced two-dimensional system. The insights gained from this reduced system inform

the microbial dynamics of high-dimensional gLV systems, and therefore contribute to our

knowledge of how bacteriotherapies function.
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Additionally, in experimental work I construct simple models from first principles

that describe how the measured physiological traits depend on microbiome composition

in the fruit fly Drosophila melanogaster. The fruit fly microbiome naturally hosts only

a few species of commensal bacteria. In our research we cultivate a core group of five

commensal bacteria, and associate each possible combination of the five bacteria with a

set of germ-free flies. Since the flies were identically reared, the flies associated with each

of these 32 bacterial combinations carry a distinct microbiome-affiliated phenotype (e.g.

lifespan or fecundity) that is a function of the complex interactions in the microbiome.

We found that the complexity of these fly phenotypes was often reducible: we could

approximate the phenotype of flies associated with more than one bacterial species by

averaging the phenotypes of the flies with the corresponding single-species associations.

Thus, we found that simple models can describe complex behaviors in the fly microbiome.

ix
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Chapter 1

Introduction

1.1 Ecology and engineering within the microbiome

The combined might of ecology and engineering will be needed to combat the pressing

environmental concerns that threaten our future. Traditionally, these fields have differed

in their approaches to problem solving. Ecologists strive to model the behavior of living

populations, and they collect data as inconspicuously as possible so that they do not

disturb the natural order they seek to understand. Engineers design machines to perform

a desired function, and actively intervene to control their system’s behavior. Thus,

developing theory that unifies these two fields requires a model system that reconciles

their disparate approaches to problem solving: we need an ecological system that is easily

replicated and measured so that accurate ecological models can be created, and which is

also manipulable so that engineering control protocols may be tested and improved. We

propose that the microbiome, which satisfies each of these prerequisites, is an ideal vehicle

with which to unite ecology and engineering. In this thesis we address the engineering

question of how to control the microbiome by analyzing the effects of bacteriotherapies

in an ecological model of the microbiome.

1



Introduction Chapter 1

Literally a microscopic biome, the microbiome is composed of trillions of microorgan-

isms that compete to establish or colonize niches in precisely the same way that Darwin’s

finches compete to thrive in a suitable habitat. Recent experimental breakthroughs have

drastically improved our capacity for high-throughput measurement of the microbiome,

revealing both which microbes inhabit the microbiome, and also (through metagenomics)

which functions these microbes are carrying out. Especially with the rapid timescale of

growth in microbial systems (the lifespan of a bacteria is roughly 12 hours), microbial

ecosystems boast datasets whose breadth and precision would have been unimaginable

to ecologists fifty years ago.

Beyond its ecological grandeur, the microbiome is linked to host health, and therefore

studying the microbiome could feasibly lead to therapeutic outcomes. In particular, the

development of bacteriotherapies— medicine for the microbiome— has rapidly emerged

as a field of investigation over the past twenty years. Perhaps the most striking success

of bacteriotherapies has been the treatment of Clostridioides difficile infection (CDI)

with fecal microbiota transplantation (FMT), a type of bacteriotherapy. CDI commonly

afflicts patients in health care facilities that recently received antibiotics, which deplete

the microbiome and render it susceptible to infection by the pathogen C. difficile. The

cure rate of CDI when FMT is used as a treatment is upwards of 90%, while the cure rate

with antibiotics is only 35-70% [1]. FMT works by injecting a subset of a healthy person’s

microbiome into a sick person’s microbiome, which replenishes the ailing microbiome with

the healthy donor’s commensal bacteria. These newly colonized commensal bacteria then

outcompete and exclude the pathogenic C. difficile. Thus, the mechanism of FMT is

“subtraction by addition.”

Bacteriotherapies (including FMT) at their essence apply an engineering mindset

to an ecological system. As more and more associations between the microbiome and

host physiology are established— for example, the microbiome trains its host’s immune

2
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system, and produces neurotransmitters as part of the “gut-brain axis”— the therapeutic

potential of bacteriotherapies broadens. Many diseases are associated with imbalanced

or “dysbiotic” microbiomes, and a key premise of bacteriotherapies is that improving a

person’s microbiome composition will lessen the severity of the associated disease. Over

the last five years, FMT has been proposed as a treatment for diseases like irritable

bowel syndrome, inflammatory bowel disease, ulcerative colitis, and Crohn’s disease,

with clinical trials returning promising but as yet inconclusive results [2, 3, 4, 5].

1.2 Direct and indirect bacteriotherapies in general-

ized Lotka-Volterra models

Motivated by the therapeutic potential of bacteriotherapies, in this thesis I present a

numerical framework for the design of direct and indirect bacteriotherapies in a theoret-

ical model of the gut microbiome. Specifically I consider the generalized Lotka-Volterra

(gLV) equations, which model ecological dynamics by assuming they arise from pairwise

interactions between idealized ecological species. These gLV systems are a classic model

of theoretical ecology, and can exhibit prototypical ecological behaviors like competition,

mutualism, and parasitism.

We implement direct bacteriotherapies by explicitly adding “healthy” microbes to

a “diseased” microbiome state, and this intervention is considered successful when it

drives the system towards a “healthy” state. Indirect bacteriotherapies are implemented

by altering the environment of the microbiome, which changes the available microbial

niches and thus can drive the microbiome’s composition towards a desired state. At their

mathematical core, the direct and indirect bacteriotherapies examined in this thesis are

control protocols that seek to drive the state of a system away from one equilibrium and

3
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direct
bacteriotherapy

initial 
condition

Separatrix

Steady state A
(SSA)

Steady state B
(SSB)

transplant

indirect 
bacteriotherapy

IC

SSASSB Separatrix

environmental
change

(a) (b)

Figure 1.1: Direct and indirect bacteriotherapies depicted schematically on
a pseudoenergy landscape. The separatrix delineates the basins of attraction of
steady states A and B.

towards another target state. Direct control protocols alter the state of the system so that

it switches its basin of attraction, while indirect control protocols alter the parameters of

the system so that the basin of attraction of the target state is enlarged. In Fig. 1.1 these

two control protocols are demonstrated schematically, with ecological dynamics construed

as a ball rolling on a pseudoenergy landscape (formally, the landscape is the system’s

split Lyapunov function). From this perspective, direct bacteriotherapies function by

translating the state of the system from one side of the hill to the other, while indirect

bacteriotherapies alter the shape of the hill itself.

1.3 Handling the complexity of the microbiome with

steady-state reduction

While the intuition behind direct and indirect bacteriotherapies displayed in Fig. 1.1

is relatively straightforward, the complexity inherent in such a multitudinous and inter-

4
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true microbiome (high-dimensional)

generalized Lotka-Volterra model (11D)

Steady State Reduced model (2D)
analytically tractable:
+ basins of attraction
+ clinically-inspired FMT scenarios

correspondence between
11D and 2D systems

Figure 1.2: Levels of complexity across ecological systems. The true micro-
biome is massively complex, but ecological models (such as generalized Lotka-Volterra
(gLV) models) attempt to describe these dynamics mathematically. The CDI model
discussed in this thesis predicts the dynamics of 11 microbial populations, and is thus
11-dimensional (11D). Bistable regions of this 11D state space may be compressed
with steady-state reduction into an analytically-tractable 2D system.

connected system complicates matters tremendously. Engineers typically study systems

with a small number of control parameters whose effect is well-characterized. The mi-

crobiome contains so many degrees of freedom and is so interconnected that precisely

understanding how a control protocol will affect microbial dynamics is very difficult.

To grapple with this complexity, tractable approximations of the microbiome must be

employed to guide the choice of intervention.

One such level of abstraction arises from the choice of ecological model— in our case

the gLV equations— but even gLV models try to capture interactions between a large

number of species, and are therefore high-dimensional and difficult to analyze analyt-

ically. In the past, high-dimensional gLV systems have been primarily explored with

numerical simulations, but in my thesis I present a dimensionality-reduction technique

that allows for high-dimensional behaviors to be compressed in a low-dimensional and

analytically-tractable system. By compressing the ecological dynamics of the microbiome,

5
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SSR identifies which “knobs” of the microbiome are the most sensitive. Remarkably, the

pseudoenergy landscape of the SSR-reduced system is analytically tractable and quali-

tatively quite similar to the hill in Fig. 1.1. Thus, the insights gained by SSR directly

inform the development of direct and indirect bacteriotherapies.

The levels of complexity of the actual microbiome, gLV models that seek to approxi-

mate the true microbial dynamics, and the SSR-reduced model are displayed in Fig. 1.2.

Ecologists try to find models that match the empirical ecological dynamics as closely as

possible, but engineers are more concerned with understanding which knobs of the sys-

tem they can manipulate and how these interventions will affect the system. SSR bridges

these two levels of abstraction by reducing the space of control parameters that need to

be explored, without sacrificing the accuracy of the original high-dimensional model.

1.4 An experimentally-derived gLV model of C. dif-

ficile infection

In this thesis we primarily rely on a gLV model that was fit by Stein et al. to microbial

abundance data from a mouse experiment performed by Buffie et al. studying antibiotic-

induced CDI [7, 6]. The outcomes of this mouse experiment are showcased in Fig. 1.3:

green signifies a healthy microbiome, yellow signifies an antibiotic-depleted microbiome,

and red signifies a C. difficile-infected microbiome. In this experimental study, mice

that were given antibiotics (which depleted their microbiomes) and subsequently exposed

to C. difficile contracted CDI. However, mice that were exposed to C. difficile without

having taken antibiotics did not contract CDI. Therefore this experimental model system

reliably captured the clinical behavior of antibiotic-induced CDI, and demonstrated that

the mouse’s gut microbiome state is responsible for whether it is CDI-susceptible or CDI-
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RX CD

RX CDFMT

RX

measured microbial state:

CD

Figure 1.3: A schematic description of the C. difficile infection (CDI) mouse
experiment carried out by Buffie et al. [6]. Green mice have healthy micro-
biomes, yellow mice have antibiotic-depleted microbiomes, and red mice have CDI.
CD represents inoculation with the pathogen C. difficile, RX represents treatment
with the antibiotic clindamycin, and FMT represents administration of fecal micro-
biota transplantation. The gLV model fit by Stein et al. to this mouse experiment
also exhibited the transitions between steady states indicated here.

resistant. Therefore, this experiment is a clear-cut demonstration of how microbiome

composition can affect host health.

The fit gLV model, which I call the CDI model, also captures the experimentally-

observed behavior of antibiotic-induced CDI: the CDI model possesses three steady states

that are qualitatively similar to the steady states of the experimental system, and the

transitions between the three states (as depicted in Fig. 1.3) are also consistent [7]. In

this thesis we treat the CDI model as a mathematical proxy for the microbial dynamics

responsible for the onset of CDI. This model system provides clinical motivation for the

direct and indirect bacteriotherapies that we devise, and also serves as a testbed for their

application.

7



Introduction Chapter 1

1.5 Experimental findings in the fruit fly microbiome

motivate bacteriotherapies

Finally, in work with experimental collaborator Will Ludington I study the micro-

biome of the fruit fly Drosophila melanogaster. The microbiome of the fruit fly naturally

hosts only a few species of commensal bacteria (while the human microbiome hosts thou-

sands). In our research we cultivate a core group of five commensal bacteria, and associate

each possible combination of the five bacteria with a set of germ-free flies. Since the flies

were identically reared, the flies associated with each of these 32 bacterial combinations

carry a distinct microbiome-affiliated phenotype (e.g. lifespan or fecundity) that is a

function of the complex interactions in the microbiome. Furthermore, we found that the

complexity of these fly phenotypes was often reducible: we could approximate the pheno-

type of flies associated with more than one bacterial species by averaging the phenotypes

of the flies with the corresponding single-species associations.

This research quantitatively established a causal link between microbiome compo-

sition and host fitness in the fruit fly. Since bacteriotherapies are predicated on this

connection, it is motivating to see such unambiguous evidence in the fruit fly. Addi-

tionally, since we are interested in capturing the dynamics of more complex microbiomes

with coarse-grained ecological models, it is encouraging that we were able to find simple

models that could describe complex behaviors in the fly microbiome in this research. In

the future, we hope that the experimental fruit fly system can be used to validate the

theoretical direct and indirect control protocols that we discuss in this thesis.

8
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1.6 Thesis overview

In chapter 2 we experimentally demonstrate how microbiome composition affects host

health in the fruit fly Drosophila melanogaster. This work, carried out in collaboration

with Will Ludington, quantitatively demonstrates that fly life span, fecundity, and de-

velopment time significantly depend on their microbiome composition. Furthermore, we

found that the physiological traits of flies with diverse microbiomes could be predicted by

the measured traits of flies with simple microbiomes (e.g. containing only one species).

This is an instance where complex microbiomes can be understood in terms of simpler

microbiomes, which suggests that complexity in the microbiome can at least partially be

captured by models. These two experimentally findings motivate the theoretical results

discussed in the remainder of the thesis.

Chapter 3 characterizes the dynamical landscape of the CDI model through extensive

numerical simulations. This chapter also formalizes our implementation of direct bac-

teriotherapies in gLV systems, and demonstrates that these simulated bacteriotherapies

are capable of driving a disease-prone microbiome composition towards health. However,

for direct bacteriotherapies, both the transplant timing and transplant composition are

relevant to the efficacy of the treatment.

Chapter 4 introduces the steady-state reduction (SSR) method, and applies it to

clinically-relevant scenarios in the CDI model. As a result, the complex ecological dy-

namics of bistable gLV systems (previously only accessible numerically) can be mapped

to a low-dimensional approximate system that is analytically tractable. Specifically, the

cause of the time- and composition-dependent efficacy of direct bacteriotherapies is re-

vealed mathematically in terms of the reduced system. A derivation of SSR, proving that

it is the best possible two-dimensional gLV approximation of high-dimensional bistable

dynamics, is provided at the end of this chapter.

9



Introduction Chapter 1

Chapters 5 and 6 employ the computational framework of chapter 3 and the SSR

method of chapter 4 to inform the construction of direct and indirect bacteriothera-

pies that efficiently transition a system towards a target state. Chapter 5 introduces

the “attractor network” as a means of compressing the dynamical landscape of a high-

dimensional gLV system, by decomposing a multistable high-dimensional phase space into

a web of bistable subsystems. This attractor network acts as a “map” of the dynamical

landscape, and indicates how direct bacteriotherapies can be administered sequentially

to minimize the total required intervention size.

Finally, chapter 6 employs SSR to design indirect bacteriotherapies that drive a

bistable system towards a target state by modifying model parameters that alter the

system’s dynamics. Since the parameters of gLV models represent idealized ecological in-

teractions between microbial species, altering the parameters of these models corresponds

to altering the environment of the microbiome. Due to the complexity of high-dimensional

gLV systems, without a dimensionality-reduction tool like SSR, identifying which param-

eters should be changed to alter the system’s steady-state outcome is computationally

costly. Fortunately, SSR provides a straightforward link between the reduced model pa-

rameters and the high-dimensional parameters, and can thus identify the most relevant

and sensitive parameters of the original model that should be modified in an indirect

bacteriotherapy. SSR is also capable of isolating the high-dimensional interactions that

lead to bistability, which is an insight that would have been otherwise difficult to identify.

1.7 Permissions and Attributions

The content of chapter 2 is the result of a collaboration with Alison L. Gould, Vivian

Zhang, Lisa Lamberti, Benjamin Obadia, Nikolaos Korasidis, Alex Gavryushkin, Niko

Beerenwinkel, and William B. Ludington, and has previously appeared in the Proceedings
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of the National Academy of Sciences under the title “Microbiome interactions shape host

fitness” [8]. It is provided in an abbreviated form here with the permission of William

Ludington, the corresponding author of the paper. In this article, I was responsible for

the implementation of the averaging model and for analyzing how microbial interactions

change as a function of microbiome diversity. For details about the materials and methods

used in this experiment, we refer the reader to the original text.

The content of chapter 3 is adapted from the article “In silico analysis of antibiotic-

induced Clostridium difficile infection,” which was previously published in PLOS Com-

putational Biology [9]. The content of chapter 4 is adapted from the article “Steady-state

reduction of generalized Lotka-Volterra systems in the microbiome,” which was previously

published in Physical Review E [10]. The content of chapter 5 is adapted from the article

“Efficient navigation and control of outcomes in generalized Lotka-Volterra systems in

the microbiome,” which is under review for a Special Issue on Biological Systems Model-

ing as part of the AIMS Applied Mathematics Book Series [11]. Parker Shankin-Clarke,

an undergraduate research mentee of mine, contributed to this publication and is second

author. The content of chapter 6 is adapted from the article “Control of ecological out-

comes through deliberate parameter changes in a model of the gut microbiome,” which

was previously published in Physical Review E [12]. Zipeng Wang, an undergraduate re-

search mentee of mine, was first author of this publication. If the reader is interested in

the supplementary information for any article, we refer them to the original publication.
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Chapter 2

Microbiome composition affects host

physiology in the fruit fly

We begin with an explicit demonstration of how microbiome composition affects host

physiology, carried out in the fruit fly with experimental collaborator Will Ludington.

Bacteriotherapies, which seek to improve host health by modifying microbiome composi-

tion, rely on this fundamental connection. The fruit fly as an experimental model system

is extremely manipulable and replicable: hundreds of flies can be precisely colonized with

the same set of bacteria, and their behaviors then measured. The resulting statistics re-

veal quantitative and significant relationships between microbiome composition and host

traits.

In addition to its experimental accessibility, the fruit fly is also a natural model sys-

tem because its core microbiome naturally contains only a few microbial species (∼10

compared to ∼1000 in humans). Thus, the lab flies associated with between one and

five bacterial species have microbiomes that are comparable with the microbiomes of

wild fruit flies. In this chapter we demonstrate that the traits of flies with more complex

microbiomes can be predicted by averaging together the traits of flies with simpler consti-
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tutive microbiomes. This empirical evidence, showing that the fruit fly microbiome can

be coarse-grained, is welcome news to those that wish to model the much more complex

human microbiome.

The fruit fly is an excellent experimental vessel in which to study direct and indirect

bacteriotherapies. Direct bacteriotherapies can be implemented by modifying the bac-

terial slurry that the flies eat, while indirect bacteriotherapies can be implemented by

altering their microbiome environment (e.g. by changing the food’s acidity or compo-

sition, or adding antibiotics). The success of these interventions can be determined by

measuring the resulting microbiome composition of the fruit flies. By characterizing the

microbial dynamics of the fruit fly microbiome, these experiments could lead to insights

about how it can be reliably controlled.

2.1 Abstract of “Microbiome interactions shape host

fitness”

Gut bacteria can affect key aspects of host fitness, such as development, fecundity,

and lifespan, while the host in turn shapes the gut microbiome. However, it is unclear

to what extent individual species versus community interactions within the microbiome

are linked to host fitness. Here we combinatorially dissect the natural microbiome of

Drosophila melanogaster and reveal that interactions between bacteria shape host fit-

ness through life history tradeoffs. Empirically, we made germ-free flies colonized with

each possible combination of the five core species of fly gut bacteria. We measured the

resulting bacterial community abundances and fly fitness traits including development,

reproduction, and lifespan. The fly gut promoted bacterial diversity, which in turn ac-

celerated development, reproduction, and aging: flies that reproduced more died sooner.
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From these measurements we calculated the impact of bacterial interactions on fly fit-

ness by adapting the mathematics of genetic epistasis to the microbiome. Development

and fecundity converged with higher diversity, suggesting minimal dependence on inter-

actions. However, host lifespan and microbiome abundances were highly dependent on

interactions between bacterial species. Higher-order interactions (involving 3, 4, and 5

species) occurred in 13% to 44% of possible cases depending on the trait, with the same

interactions affecting multiple traits, a reflection of the life history tradeoff. Overall,

we found these interactions were frequently context dependent and often had the same

magnitude as individual species themselves, indicating that the interactions can be as

important as the individual species in gut microbiomes.

2.2 Significance

All animals have associated microbial communities called microbiomes that can in-

fluence the physiology and fitness of their host. It is unclear to what extent individual

microbial species versus interactions between them influence fitness of the host. Here

we mapped all possible interactions between individual species of bacteria in Drosophila

melanogaster fruit flies with host fitness traits. Our approach revealed that the same

bacterial interactions that shape microbiome abundances also shape host fitness traits.

The fitness traits of lifespan and fecundity showed a life history tradeoff, where equal

total fitness can be gotten by either high fecundity over a short life or low fecundity over

a long life. The microbiome interactions are as important as the individual species in

shaping these fundamental aspects of fly physiology.
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2.3 Introduction

In 1927, Steinfeld reported that germ-free flies live longer than their microbially

colonized counterparts, suggesting that bacteria hinder host fitness. This observation —

that the microbiome can impact aging — has been replicated in flies and vertebrates

[13, 14]. However, a decrease in lifespan does not necessarily indicate a negative impact

on the host. Organisms in their environment are selected for their fitness, which is a

function of lifespan, fecundity, and development time [15]. Life history tradeoffs can,

for instance, increase fecundity at the expense of lifespan [16, 17, 18] providing different

strategies for equal fitness. These observations set up two major questions: what is the

role of an individual bacterial species versus interactions between them in determining

host lifespan, and how is the microbiome effect on lifespan related to overall host fitness?

Identifying the host effects of specific bacteria has been difficult, in part due to high

gut diversity but also because interactions between bacteria can depend on context [19].

Non-additive effects of more than two variables are called higher-order interactions, and

they indicate that interactions depend on context. For example, a bacterium may produce

a specific B-vitamin in response to its neighbors [20, 21]. This response may impact the

host, and host feedbacks can mitigate or exacerbate changes in the microbial community

[22]. However, specific examples may be misleading, as the true complexity of a gut

microbiome has never been exhaustively quantified. Thus, it remains an outstanding

challenge to reverse engineer the interaction networks that characterize microbiome-host

effects relative to host interactions with individual bacterial species. Doing so would

allow us to address the role of microbial community complexity in shaping host fitness.

However, quantifying the set of all possible interactions of n species is a combinatorial

problem involving 2n distinct bacterial communities. As n approaches the diversity of

the mammalian gut with hundreds of species, this challenge becomes experimentally
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unfeasible.

The gut microbiome of the fruit fly Drosophila melanogaster is an effective combi-

natorial model because as few as five species of bacteria consistently inhabit the gut of

wild and laboratory flies [23, 24, 25], yielding 25 possible combinations of species. Be-

cause early work on the fruit fly microbiome suggested that it is a transient community

consisting only of recently ingested bacteria [26], we set up our experiments to maintain

bacterial colonization through frequent ingestion. However, newer studies demonstrate

that a modified fly diet as well as specific bacterial strains make for a persistent gut

microbiome [27, 28, 27], suggesting similarities with higher organisms. Here, we iso-

lated the five core laboratory fly gut bacteria species in culture, Lactobacillus plantarum

(Lp), L. brevis (Lb), Acetobacter pasteurianus (Ap), A. tropicalis (At), and A. orientalis

(Ao). These fermentative lactic acid bacteria and acetic acid bacteria commonly occur

in the wild fly gut [25, 29, 30], where they can maintain a stable association [28, 27].

We constructed germ-free flies by bleaching the embryos, and reinoculated the newly

emerged adult flies via continuous association with defined flora using established pro-

tocols [27, 31]. We made the 32 possible combinations of the five bacterial species and

then quantified the microbiome composition and resultant host phenotypes of (i) devel-

opment time, (ii) reproduction, and (iii) lifespan to determine the relationship between

gut microbe interactions and host fitness. We tested to what extent the presence and

abundance of individual bacterial species account for the fly physiology phenotypes we

measured.
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2.4 Results

2.4.1 Microbiome diversity confers a life history tradeoff

We hypothesized that microbiome-induced lifespan changes might be due to changes

in life history strategy, such as a tradeoff with fecundity. We therefore set up an experi-

ment to measure how defined species compositions change each of the host fitness traits

of lifespan, fecundity, and development time, which have been found to co-vary in life his-

tory tradeoffs [16, 17]. We measured these traits concomitantly in the same experiment

so that we could sum them together to calculate overall fly fitness (Fig. 2.1A).

We first isolated each of the five species of bacteria found in our laboratory flies:

Lactobacillus plantarum (Lp), L. brevis (Lb), Acetobacter pasteurianus (Ap), A. tropli-

calis (At), and A. orientalis (Ao). In order to test whether groups of bacteria have

additive effects, we made each of the 32 possible combinations of the 5 species (including

germ-free; Fig. 2.1A). We then made germ free flies and inoculated them with defined

bacteria compositions at 5-7 days post-eclosure to reduce variation in development and

gut maturation [32].

We performed five technical replicates of each experiment with 10 males and 10

females together in the same vial. The five replicates were performed over two separate

biological replicates for a total of 100 adult flies per each of the 32 treatments. We

transferred the flies every three days to fresh food that was inoculated with fresh bacteria

in order to reduce the effects of bacterial growth on the food. To measure lifespan, we

recorded the number of live flies daily. To measure fecundity, we kept the old vials that

flies were transferred from and counted the number of emerged live adults. To measure

development time in the population experiments where egg laying took place for three

days, we counted the number of days for the first adult to emerge from a pupal case.

We first asked the role of individual bacterial species on fly lifespan. Consistent
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with previous studies, our germ-free flies survived the longest (Fig. 2.1B; Table S1).

However, only Lp, At, and Ao shortened lifespan, while flies aged with Lb and Ap had

equivalent survival to germ free flies. We next asked the effect of microbial diversity on

fly lifespan. Germ-free flies survived ˜20% longer than flies colonized by all five bacteria

(mean lifespan ± standard error of the mean, 53.5 ± 1.5 germ-free vs. 43.5 ± 1.1 for

5-species gnotobiotics). Overall, we found a decrease in survival over many bacterial

associations as we increased gut diversity (Fig. 2.1B inset, S1, S2; r=–0.54, p=0.002,

n=32, Spearman correlation), consistent with the gut microbiome having a pathogenic

effect on the host.

We next asked whether the reduction in lifespan was offset by a life history tradeoff

in fecundity. Decreased lifespan corresponded to an increase in fecundity for female

flies (total daily fecundity vs. lifespan: r=–0.50, p=0.003, n=32, Spearman correlation;

Fig. 2.1C; Table S1) and is not explained by differences in fly activity (Fig. S3). Such life

history tradeoffs are well-documented in the literature and are believed to constitute a

differential allocation of resources between long-term body maintenance and reproduction

[15, 33].

A true tradeoff is one that allows an individual organism to adapt its life history

strategy with equal overall fitness. Fitness is a function of fecundity, development, and

lifespan, which gives an estimate of the maximum rate of population growth. We won-

dered whether the observed differences in lifespan were balanced by differential rates of

fecundity and development or whether these differences in fly physiology actually made

flies with distinct microbiome compositions more and less fit. To address this question,

we combined our data for development, fecundity, and lifespan (Table S1) in a Leslie

matrix [34], a classical model of discrete population growth, to calculate organismal fit-

ness under each bacterial association. Overall, fitness was constant across many distinct

bacterial associations (Fig. 2.1D). Thus, the changes in lifespan we observed are consis-
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Figure 2.1: The microbiome induces a life history tradeoff between lifespan
and reproduction. (A) Experimental design. The multi-color pies indicate which
species are present in a given combination along with the corresponding binary code.
Each species abbreviation (Lp, Lb, Ap, At, Ao) is indicated above its corresponding
locus in the binary string. Both notations, colored pies and binary are used consis-
tently throughout the chapter. The color code is included redundantly in the figures
to aid the reader. (B) Single bacterial associations decrease fly lifespan. (B inset)
Microbiome diversity decreases fly lifespan. Error bars S.E.M. (C) In agreement with
prior reports, higher total fecundity is associated with shorter lifespan. This tradeoff
is apparent for average daily fecundity as well as total fecundity per female. See Table
S1 for S.E.M. (D) Fitness calculations using a Leslie matrix reveals roughly constant
fitness across different microbiomes. Error bars are standard error of the estimate.
(E) The lifespan-fecundity tradeoff can be broken by putting flies on antibiotics after
their peak reproduction (red circles = gnotobiotic flies treated with antibiotics; see
Methods) after 21 days, which encompasses the natural peak fecundity (Fig. S4).
Note the shifts in lifespan between the regular treatment, the antibiotic treatment,
and the late-life bacterial inoculation treatment. Lifespan was significantly extended,
whereas total fecundity stayed high. Shifting germ-free flies to gnotobiotic treatment
after 21 days post-ecolsion decreased lifespan without increasing reproduction (blue
circles = germ-free flies made gnotobiotic 21 days post-eclosion). n=100 flies per treat-
ment for the standard and antibiotic-treated experiments n=60 flies per treatment for
the germ-free switched to gnotobiotic experiment. Error bars show S.E.M.
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tent with a differential allocation of resources to reproduction, a true life history tradeoff,

meaning that microbiome composition sets a fly’s life history strategy to maximize either

reproduction or longevity. In a co-submitted manuscript, Walters et al. (2018) show

evidence that such microbiome-based fitness tradeoffs also occur in wild flies.

2.4.2 Reproduction cannot be increased by mid-life microbiome

addition

The life history tradeoff suggests that a fly born into stark conditions in the wild

could maximize its fitness by first acquiring a longevity-promoting microbiome and then

converting to a fecundity-promoting one when environmental conditions improve. Fe-

male flies are primarily reproductive in the first part of their life, with a gradual decay

in fecundity approaching middle age (Fig. S4). To test whether individual flies can

switch life history strategy to match their microbiome, we aged germ-free flies for 21

days (roughly middle age) and then associated these flies with fecundity-promoting bac-

teria. There was no significant increase in total fecundity for these flies and a significant

decrease in lifespan compared to germ-free flies (Fig. 2.1E; p=0.054 for fecundity, n=275

flies pooled across four bacterial combinations, two sample one-sided t-test, p>0.05 for

all pairwise combinations after Tukey’s multiple comparison correction of two-sample

one-sided t-tests; p=2x10-7 for lifespan, n=400 flies pooled across four bacterial com-

binations, two-sample one-sided t-test; p<0.001 for 4 of 4 combinations after Tukey’s

correction for multiple pairwise comparisons, n=100 flies per combination, two-sample

one-sided t-tests; see Fig. 2.1E for specific bacterial combinations). These results are con-

sistent with the simple hypothesis that a fly’s reproductive window cannot be extended

by late-life improvement in nutrition.
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2.4.3 Microbiome interactions can change host physiology

We hypothesized that the microbiome may shorten lifespan through a process inde-

pendent of reproduction. To examine this hypothesis, we used antibiotics to remove the

microbiome of high-fecundity female flies and measured the resulting change in lifespan.

We first allowed female flies with high-fecundity microbiomes to reproduce for 21 days (to

a level greater than the total lifetime fecundity of germ-free flies; Fig. S4), and we subse-

quently eliminated the microbiome using an antibiotic cocktail (ampicillin, tetracycline,

rifamycin and streptomycin). In general, the midlife elimination of gut flora lengthened

the female fly lifespan by roughly 15% compared to flies continuously fed live bacteria

(Fig. 2.1E; p=9x10-7, n=560 flies pooled across bacterial combinations; p<0.05 for 4 of 7

combinations after Tukey’s correction for multiple pairwise comparisons, n=80 flies per

combination, two-sample one-sided t-test). Total fecundity decreased slightly (Fig. 2.1E;

p=0.01, n=560 flies pooled across bacterial combinations; p>0.05 for all 7 combinations

after Tukey’s correction for multiple pairwise comparisons, n=80 flies per combination,

two-sample one-sided t-test). This result demonstrates that the life history tradeoff is

not necessarily fixed and suggests that fly lifespan is shortened by some aspect of the bac-

teria rather than by reproduction. However, two specific bacterial combinations yielded

no increase in lifespan when removed from their host by antibiotics: Ao and Lp+Lb+Ao,

suggesting a memory in host physiology induced by these two combinations. Interest-

ingly, the intermediate microbiome composition, Lp+Ao, did not show this memory, nor

did the similar composition Lp+At+Ao (Fig. 2.1E) (with antibiotic elimination of the

microbiota extending lifespan) suggesting specificity of the microbiome composition in

this physiological memory. These experiments demonstrate that interactions between

bacteria can significantly impact the host’s ability to adjust its physiology.
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2.4.4 Higher-order microbiome interactions change host physi-

ology

We next calculated to what extent microbiome interactions change fly physiology.

We applied a multivariate linear regression model, a common statistical test for in-

teractions between experimental variables [35]. Here our variables are the 5 bacterial

species. We detected evidence of widespread pairwise interactions in the data (Tables

S2-5). Higher-order interactions are non-additive effects of more than two variables,

which would complicate efforts to predict physiology of hosts with high diversity micro-

biomes. We checked for 3-way, 4-way, and 5-way interactions using the same statistical

approach. Higher-order interactions for lifespan, fecundity, development, and bacterial

composition were evident at each level of diversity (Tables S2-5), indicating that species

interactions rather than just their direct effects change host phenotypes. Many of these

interactions have equivalent magnitude to the impacts of individual species. For instance,

the average lifespan of germ-free flies is 53 days (Fig. 2.1B). Individually, Ao can shorten

lifespan by 10 days. Pairwise interactions can change mean lifespan by 8 days (Table

S2). Likewise, flies colonized by all five species of bacteria survive an average of 43 days.

Microbiome interactions account for a 13 day (28%) increase in lifespan over the additive

prediction (Table S2). Overall, these findings demonstrate that microbiome interactions

can have major impacts on host physiology.

To confirm these interactions, we next asked whether the physiology of flies with more

than one bacterial species could be predicted by simply averaging the phenotypes of flies

with the corresponding single species associations (Fig. 2.2; e.g. for combination Lp-Lb-

Ap, phenotypes of flies living with either Lp, Lb, or Ap were averaged; Math Supplement

Section 10). This model showed minor predictive power for development time (27% total:

3/10 2-way; 3/10 3-way; 0/5 4-way; 1/1 5-way interactions predicted), better prediction
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Figure 2.2: Microbiome interactions impact host lifespan and bacterial load.
Mean fecundity per female per day was measured concomitantly with development
time and adult survival over the flies’ lifespans. (A) Variation in fecundity decreases
as gut diversity increases. Median n=65 vials measured per bacterial treatment. (B)
As described in Math Supplement Section 10, daily fecundity in multispecies bacterial
combinations can be predicted by averaging either the corresponding phenotypes of
the single species associations or the corresponding phenotypes of the pairwise species
associations. Error in the predictions (averaging prediction minus measured trait
value) is displayed. Single species averaging predictions in gray. Species pair averaging
predictions in black. Error bars are 95% confidence intervals. See Math Supplement
Section 10. (C) The number of days to adulthood was measured as the first pupa to
emerge from an individual fly vial during the lifespan experiment. Median n=24 per
bacterial treatment (Fig. S2). (D) Averaging models as in B applied to development
data. (E) Lifespan decreases as gut diversity increases. Median n=100 flies per
bacterial treatment. (F) Averaging models as in B applied to lifespan data. (G)
Mean bacterial load averaged over 48 replicates per combination. (H) Averaging
models as in B applied to bacterial load. Error bars for all plots are 95% confidence
intervals. Colored pies on the x-axis of B, D, F, H indicated bacteria combinations
and are consistently ordered with panels A, C, E, G.
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of lifespan (65% total: 9/10 2-way; 6/10 3-way; 2/5 4-way; 0/1 5-way phenotypes pre-

dicted), and reasonably accurate prediction of average daily fecundity (81% total: 7/10

2-way; 9/10 3-way; 4/5 4-way; 1/1 5-way phenotypes predicted). We also measured

total bacterial abundances in the flies (Table S1), which had little predictive power in

the simple averaging model (20% total: 4/10 2-way; 1/10 3-way; 0/4 4-way; 0/1 5-way

phenotypes predicted). We next asked whether averaging data from the corresponding

species pairs could predict phenotypes of 3-, 4- and 5-way combinations (Fig. 2.2; e.g.

for combination Lp-Lb-Ap, phenotypes of flies living with either Lp-Lb, Lp-Ap, or Lb-Ap

were averaged; Math Supplement Section 10). This model overall correctly predicted

78% of the fly traits (Fig. 2.2; 15/16 development; 9/16 lifespan; 15/16 fecundity; 11/16

bacterial load), indicating that pairwise interactions account for a majority of host varia-

tion. However, in the remaining cases (up to 44% unpredicted for lifespan), failure of this

simple model indicates higher-order interactions within the gut microbiome. Taking these

analyses together with the life history tradeoff, microbiome-host interactions (including

those of higher order) can significantly impact fly fitness traits. In a later section, we

analyze these interactions comprehensively to show how the context of bystander species

influences these interactions.

2.4.5 Bacterial presence-absence more than abundance impacts

fly physiology

The differences in host physiology we observed resulting from different microbiome

compositions could be due not only to which species are present but also to their abun-

dances. We reasoned that if a particular bacterial species drives a host physiological

trait, then its abundance should be correlated with that trait. We therefore measured

the abundances of individual bacterial species in the flies in order to determine the re-
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lationship to different fly physiologies. We first prepared gnotobiotic flies as before by

inoculating 5-7 day old mated germ free flies with defined bacterial compositions. Flies

were transferred to fresh food inoculated with fresh bacteria every third day for a total

duration of 10 days before they were washed in 70% ethanol, crushed, plated, and colony-

forming units (CFUs) enumerated (Fig. 2.3A). The experiments were performed in two

biological replicates for a total of 12 female and 12 male flies that were analyzed for each

of the 32 bacterial combinations (Fig. 2.3B). The total bacterial load was higher when

more species were present (r=0.63, p=0.0001, n=31 bacterial combinations, Pearson cor-

relation). However, on a species-by-species basis, abundance stayed constant or decreased

as species diversity increased (Fig. 2.3C; Lp: r=–0.07, p=0.8; Lb: r=–0.37, p=0.2; Ap:

r=–0.50, p=0.06; At : r=–0.59, p=0.02; Ao: r=–0.55, p=0.03; Spearman correlations),

suggesting competition plays a role in the interactions. To quantify the robustness of bac-

terial association in our experiments, we prepared a parallel experiment with the only

difference being that after the initial 10 days of inoculation, flies were transferred daily to

fresh, germ free food for five subsequent days before CFUs enumeration as before. Only

very minor differences occurred between the two experiments (Fig. S5), with the flies

transferred daily to germ free food for 5 days surprisingly having slightly higher CFU

counts than flies plated directly after day 10 of inoculation (Wilcoxon rank sum test,

median CFUs for flies transferred to germ free food: 105.65 CFUs vs flies directly plated

after day 10 of inoculation: 105.59 CFUs, p=0.01, N=1536 individual flies). Because only

minor differences were observed, we merged the two experiments to increase statistical

power. Median total bacterial load ranged from 49,000 CFUs per fly for Ap alone to

737,000 CFUs per fly for Lb+At+Ao, with an overall median of 425,000 CFUs per fly

(Fig. 2.3B). The robust colonization observed despite daily transfer to germ free food

indicates the gut microbiome is persistent under these conditions, which is in contrast

to some previous reports [26, 36]. Two variables that could account for this difference
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are different bacterial strains [28, 27] and our use of a fly food with minimal microbial

growth inhibitors [37].

To test whether bacterial abundances drive fly physiology, we next compared the

individual species abundances and total bacterial abundances in adult flies with the fly

physiology phenotypes (Fig. 2.2A,C,E,G, S2). We first calculated the correlation between

individual species abundances and each host physiology trait (Fig. S6). Out of 20 possible

correlations, two significant correlations were found, (i) between Lp abundance and total

female fecundity (Fig. 2.3D; r=0.52, p=0.04, n=16) and (ii) between Ao abundance

and decreased lifespan (Fig. 2.3E; r=-0.53, p=0.03, n=16), indicating that these two

individual species can explain 27% and 28% of the variation in fecundity and lifespan

respectively. We did not detect other significant relationships between bacterial load and

host physiology, leaving the remaining variation (73% of fecundity and 72% of lifespan)

unexplained by individual species abundances. However, as we showed in Fig. 2.1E,

the interaction between Ao and Lp can dramatically alter the fly’s ability to adjust its

physiology when treated with antibiotics, with a 21% change in lifespan (Fig. 2.1E). Thus,

individual bacterial species loads are not necessarily expected to determine impacts on

the host.

As a secondary test that bacterial abundance drives fly phenotypes, we examined

both load and phenotype variation. If the load of individual bacterial species drives

host physiology traits, we would expect that higher variation in bacterial load would

correspond to higher variation in host traits, yielding a positive correlation. When we

calculated the relationship between bacterial load variation and host trait variation, we

found no statistical evidence for an association between host bacterial load and host

physiology traits (Fig. S7). Taken together these results suggest that the long term

presence of bacterial species is more indicative of their effect on host physiology than

their abundances.
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Figure 2.3: Microbiome abundances correlate with some host physiology
traits. (A) Gnotobiotic flies were associated with defined bacterial flora for 10 days
before washing, crushing, and CFU enumeration. (B) Mean microbiome load (log10
scale) and relative abundances of the different species (linear scale) for all 32 possible
combinations of the five species. N=24 replicate flies from 2 independent biologi-
cal replicates were measured per combination. (C) Total bacterial load increases as
the number of species increases but Lb abundance drops. Mean abundances were
calculated from B as a function of the number of species present (see Fig S5 for
complete data). Black line indicates mean total bacterial load per fly. (D) Lp abun-
dance (from B) correlates with increased female fly fecundity (from Fig. 2.1C). (E)
Ao abundance (from B) correlates with decreased fly lifespan (from Fig. 2.1C). (F)
Development time from embryo to adult is accelerated by live bacteria. Development
assay from Fig. 2.2B was repeated with variation in food preparation and source of
embryos. ‘Standard’: data from Fig. 2.2B fitness experiment, ‘germ-free’: embryos
from germ-free females placed directly on fresh food inoculated with defined bacteria;
‘heat-killed’ and ‘non-heat-killed’: vials from fitness experiment cleared of flies and
either seeded directly with germ-free embryos (non-heat-killed) or placed at 60◦ C
for 1 hour and checked for sterility (heat-killed) before being seeded with germ-free
embryos. The number below the x axis indicates number of replicate vials assessed.
See Fig. S9 for complete bacterial combinations and individual replicates of F. All
error bars S.E.M.
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2.4.6 Live bacteria speed up fly development

We did find one notable exception to the presence-absence rule: Ao abundance in

the food sped up larval development time significantly (r=-0.95, p=0.003, n=7 bacterial

combinations with Ao, Spearman correlation; Fig. 2.2C, S8). However, consistent with

the adult results, there was no correlation with fly physiology for the four other species.

We next tested whether there was a maternal effect on development time by removing the

maternal bacterial association. We prepared the vials for this development experiment

by first setting up a replicate fitness experiment (as in Fig. 2.1A). After the first transfer

to fresh vials, we took the used vials, allowed all larvae to form pupae, and then removed

the pupae. Flies developing in these vials had an equal rate of development to the fitness

experiment (Fig. 2.3F; paired sample t-test, p>0.18, n=500), indicating no maternal

effect. We then tested whether live bacteria aid the flies under these conditions. We

performed a duplicate experiment but heat-killed the vials in a humidified (to prevent

drying) 60◦ C chamber for 1 hour (and tested for sterility). All the sterile vials were

inoculated with ˜30 germ-free embryos each. Flies in heat-killed vials developed ˜8 hours

more slowly (Fig. 2.3F; p<0.005, n=16, paired sample t-test), suggesting that active

bacterial metabolism [38] speeds up fly development (Fig. 2.3F, S9). Finally, we asked

whether bacteria degrade the fly food. We harvested eggs from germ-free flies, associated

them with all 32 bacterial combinations on fresh food, and measured development times.

This experiment uncovered a significant acceleration in development time compared with

the fitness experiment (Fig. 2.1A). These experiments demonstrate context-dependence

in terms of timing in microbiome experiments.
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2.4.7 Microbial abundance interactions correlate with host phys-

iology interactions

Are interactions between bacteria linked with host physiology? We first tested whether

microbial interactions detected through CFU counts were correlated with interactions

detected through development, fecundity and lifespan (Fig. S13). Focusing on the sta-

tistically significant interactions, there is a strong correlation between the interaction

strengths across these distinct phenotypes (Fig. S13D), indicating that the same micro-

biome abundance interactions also are associated with fly physiology interactions and

the life history tradeoff. Thus, interactions calculated from bacterial species abundances

may be predictive of fly traits. This relationship is notably in contrast to the relation-

ship between the individual bacterial species abundances and fly physiology phenotypes,

where only two weak correlations were established (Figs. 2.3D,E, and Fig. S6-7).

We next asked how the pairwise interactions between individual bacteria species

change under increasing numbers of species present. We used the abundance data for

individual species (Fig. 2.3) to calculate the pairwise interaction strengths between the

5 species.

We first calculated the pairwise correlations in species abundances as a function of the

total number of species present in the gut (Fig. 2.4A), correlations became more negative

for individual species pairs as diversity increased (p=0.03, n=10 species pairs, Kendall’s

Tau and Wilcoxon signed rank; see Math Supplement, Sections 11.3-11.4), consistent

with stronger competition at higher diversity.

We then calculated the directional interactions (i.e. A → B vs. B → A) using

Paine’s classic approach [39] where interaction strength is based on the change in abun-

dance of one species when a second species is removed (Fig. 2.4B,C, S14A,B; see Math

Supplement, Section 10.1). Comparing the pairwise interaction maps at high and low

29



Microbiome composition affects host physiology in the fruit fly Chapter 2

diversity, we found that interactions are generally positive when only two species are

present, consistent with interactions between two species in vitro (Fig. S14C). How-

ever, interactions become more negative at higher diversity, consistent with increasing

competition. An alternate approach to calculate the interactions by fitting the classic

generalized Lotka-Volterra model (see Math Supplement Section 10.2) gave qualitatively

similar results (Fig. S14D,E). However, parametrizing the model on low diversity data

did a poor job of estimating the bacterial abundances at higher diversity with n>=3

species (p=0.8, binomial test, N=16; see Math Supplement Section 11.3), in agreement

with the changing interaction landscape at higher diversity (Fig. 2.4, S14).

Lastly, we asked if the interaction networks we calculated are consistent with the

maintenance of diversity we observe. We calculated the asymmetry in the interaction

network using the approach of Bascompte et al. [40], where asymmetry of interactions is

indexed from 0 (perfectly symmetric) to 2 (exactly opposite). For the low diversity case

the mean asymmetry is 1.04 (SD = 0.13), and for the high diversity case the mean asym-

metry is 0.77 (SD = 0.08) (see Math Supplement Section 11.1), indicating significant

asymmetry. Furthermore, analysis of the variation in total bacterial load between indi-

vidual flies showed a decreased coefficient of variation for high diversity (p=0.02, Wald

test; Fig. S15, S16; see Math Supplement Section 10.5). Together with the strength

of interactions (Fig. 2.4), these calculations are consistent with community stability at

higher diversity [41].
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Figure 2.4: Microbiome interactions stabilize diversity in the fly gut. (A)
Pairwise correlations in abundance for the five species of bacteria in fly guts with totals
of two, three, four, and five species present. More positive correlations are apparent at
low diversity, whereas more negative correlations occur as diversity increases (p=0.03;
see Math Supplement Section 10.4). Direct calculation of interaction strength [39] at
low (B, one to two species) and high (C, four to 5 species) diversity based on CFU
abundance data (see Figs. 2.3B, S5) revealed asymmetric interactions that decrease in
strength at higher diversity (see Math Supplement Section 11.1; Fig. S14). Consistent
with the correlations in (A), more negative interactions occur in more diverse guts.
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2.5 Discussion

2.5.1 Bacterial abundance interactions may damage the host.

Taking the epistatic interactions and the directional interactions together, we found

that the biological interactions determining the bacterial community in the fly gut involve

more than just pairs of species [42]. Considering just the bacterial abundance interac-

tions, these generally become weaker and more negative as diversity increases, which is

consistent with community stability through competition. Time series experiments could

be a better way to evaluate community stability [43]. We also acknowledge that this 5

species gut community may have been selected for its stability. However, host immunity

is another potential factor shaping the detected interactions [22]. The negative interac-

tions we detect in the microbiome are associated with shorter lifespans in the host flies,

suggesting that negative bacterial interactions may damage the host. Consistent with

this finding, microbiome removal by antibiotic treatment (Fig. 2.1E) extended lifespan.

We speculate that molecular mechanisms for microbial damage to the host could include

nutrient depletion (Fig. S9), toxic secondary metabolite production, and physical injury

through e.g. bacterial secretion systems, which have been shown to trigger fly mortality

during to bacterial interactions [44].

2.5.2 How much do higher-order interactions matter?

While we found that higher-order interactions occur and are responsible for significant

changes in fly physiology, we also found that lower order interactions between bacterial

combinations can predict many phenotypes in 3-, 4-, and 5-way bacterial combinations.

And simply averaging lower order traits can predict >50% of higher diversity traits, a

substantial decrease in microbiome uncertainty. The convergence of traits such as fe-
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cundity under increasing diversity indicates we may harness good predictive power from

low diversity microbiomes. However, the lack of convergence in traits such as lifespan

and bacterial abundances suggests different rules may apply to different phenotypes, and

it is unclear what rules will apply to more diverse host-microbiome systems. Different

conditions, such as diet composition could may drastically change the microbiome inter-

actions. Decomposing interactions in increasingly diverse systems remains an important

goal for future studies.

2.5.3 Microbiome interactions mediate a life history tradeoff

between lifespan and fecundity

Overall, we found that interactions in the fruit fly gut microbiome structure both

the fitness of the fly and the composition of the microbiome. The magnitudes of these

interactions are equivalent to the effects of individual species. Thus, microbiome inter-

actions (and not just individual species) can be a major driver of host physiology. Many

studies have documented changes in fly lifespan as a function of various factors including

diet, host genetics, and microbiome composition [13, 45, 46, 47]. Our study suggests that

microbiome composition and the timing of association with the microbiome can have

major impacts on lifespan as well as life history tradeoffs [33]. In a paper submitted con-

currently with this one, Walters et al. show the consequences of this tradeoff for ecology

and evolution of wild flies [48].

2.5.4 The Drosophila gut microbiome serves as an effective

model of microbiome complexity

A pervasive challenge in host-microbiome science is the complexity of most host-

associated microbiomes. Drosophila melanogaster has a naturally low diversity micro-
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biome, which facilitates the study of complexity. Regarding suitability of this model, a

major question is whether such a simple system with just five species can recapitulate

the complex phenotypes associated with higher diversity microbiomes such as humans

and plants. The fact that we observe emergent properties in this simple and tractable

five species community makes it an attractive model for studies of microbiome complex-

ity. Based on our empirical results, we argue that interacting groups rather than just

individual species may be fundamental building blocks of microbiome-host relationships.
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Chapter 3

Implementing direct

bacteriotherapies in an ecological

model of the microbiome

In this chapter we lay out the mathematical foundation, based on a generalized Lotka-

Volterra (gLV) model, with which we will study bacteriotherapies. This chapter, devel-

oped before the creation of the steady-state reduction technique, primarily uses numerical

approaches to investigate a gLV model fit by Stein et al. to microbial abundance time-

series data collected by Buffie et al. in a mouse experiment of C. difficile infection (CDI).

This experimentally-fit CDI model serves as a clinically-relevant point of departure for

our analyses: in this chapter we map the steady states of this model that are reachable

from experimentally-measured initial conditions, we characterize the resilience of these

steady states to C. difficile (CD), and we show how potentially relevant behaviors of CD—

such as sporulation or the development of antibiotic-resistance— may be incorporated in

a gLV model.

Most importantly, this chapter formalizes the implementation of direct bacteriother-
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apies in gLV models. We deal specifically with fecal microbiota transplantation (FMT)

in which the transplants are composed of experimentally-measured mouse microbiome

compositions. The major result is that FMT is capable of altering the steady state out-

come of a CDI-prone initial condition, so that it attains a health steady state instead of a

CD-infected steady state. However, the efficacy of FMT is highly variable and dependent

on the transplant composition (some transplants drive the system towards the CDI state)

and timing (transplants are more effective when administered sooner than later).

At a fundamental level, these questions about FMT efficacy correspond to questions

about the dynamical landscape of high-dimensional gLV systems. The successful admin-

istration of FMT indicates that the intervention switched which basin of attraction the

system was in. The state of the system changes over time according to the system’s

ecological dynamics, and these dynamics give rise to the time-dependent efficacy of di-

rect bacteriotherapies. Direct bacteriotherapies endow the rich mathematical behaviors

of gLV systems with clinically-relevant motivations, and the initial analyses performed

in this chapter motivate our subsequent analytical work in chapters 4, 5, and 6.

3.1 Abstract of “In silico analysis of antibiotic-induced

C. difficile infection”

In this chapter we study antibiotic-induced C. difficile infection (CDI), caused by the

toxin-producing C. difficile (CD), and implement clinically-inspired simulated treatments

in a computational framework that synthesizes a generalized Lotka-Volterra (gLV) model

with SIR modeling techniques. The gLV model uses parameters derived from an exper-

imental mouse model, in which the mice are administered antibiotics and subsequently

dosed with CD. We numerically identify which of the experimentally measured initial
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conditions are vulnerable to CD colonization, then formalize the notion of CD suscep-

tibility analytically. We simulate fecal transplantation, a clinically successful treatment

for CDI, and discover that both the transplant timing and transplant donor are rele-

vant to the the efficacy of the treatment, a result which has clinical implications. We

incorporate two nongeneric yet dangerous attributes of CD into the gLV model, sporu-

lation and antibiotic-resistant mutation, and for each identify relevant SIR techniques

that describe the desired attribute. Finally, we rely on the results of our framework to

analyze an experimental study of fecal transplants in mice, and are able to explain ob-

served experimental results, validate our simulated results, and suggest model-motivated

experiments.

3.2 Significance

The burgeoning integration of big data and medicine is a portent of personalized

healthcare. There is a need for accurate, predictive, and mechanistic models that can

be relied upon to forecast the course of a disease, test treatments in-silico, and ulti-

mately inform the doctor’s prescription. These models, still nascent, are buoyed by

rich datasets available due to recent advances in experimental methods (e.g. 16S rRNA

high-throughput sequencing); one such model, which we build upon in this chapter, was

developed by Stein et al. to predict the growth of the infectious C. difficile (CD) and 10

other microbial genera. In this chapter we extend the existing model to capture clinical

treatments and biologically relevant phenomena. First, we incorporate fecal transplants

and identify the mechanism by which they treat C. difficile infection (CDI). Then, we

develop a methodology that endows a microbe with nongeneric attributes within the ex-

isting framework; specifically, we add CD sporulation and the developement of antibiotic-

resistant strains of CD. By better reflecting the clinically relevant properties of CDI we
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can “personalize” a mathematical model to a given disease; this construction of generic

yet customizable models will be relevant for personalized healthcare models in years to

come.

3.3 Introduction

Microbiota are covertly instrumental in bodily functions including immune response

[49] and colonization resistance [50, 51]. Some diseases are associated with an imbalanced

microbiome, due to disproportionate regulatory action of the host in response to the mi-

crobiome composition [52]. Ironically, another pathway to disease is through antibiotic

administration, which can dramatically alter microbial composition and diversity, hin-

der colonization resistance, and subsequently allow for pathogen infection. Specifically

in this chapter, we focus on antibiotic-induced C. difficile infection (CDI), a prevalent

nosocomial disease [53, 54].

The advent of high-throughput sequencing provides cheap and accurate time-series

abundance data of interacting microbial populations, which can then inform dynamic

models that extrapolate system behavior [55, 56]. One idealization of interacting species

is the generalized Lotka-Volterra (gLV) model, which assumes that the competitive dy-

namics of a system are entirely captured through pairwise (inter-species) and self (intra-

species) interactions [57]. The gLV model ignores explicit external factors like availability

of organic compounds, temperature, or location, but it is the most general possible second

order differential equation that describes interacting populations, with some reasonable

biological constraints.

Approximating microbiome dynamics as a gLV system is a first step towards quantify-

ing the complex interactions between competing microbes. Inarguably this model misses

many subtle, non-competition based, interactions: for example, a non-abundant type of
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bacteria (e.g. Escherichia) may produce proteins vital to general bacterial function (e.g.

pili production) [58], but this contribution would not explicitly appear in the model.

In this chapter we simulate the prevalence of C. difficile (CD) in the microbiome

with a generalized Lotka-Volterra model. The work by Stein et al. [7] and Buffie et al.

[6] serves as a point of departure, from which we develop a framework for evaluating

the efficacy of different treatment protocols for CDI. This framework develops causal

relationships between simulated therapies and microbiome compositions and also explores

how bacterial adaptations such as sporulation and antibiotic-resistant mutation may

be added to the gLV model. These clinically motivated approaches explain distinct

qualitative aspects of CDI that are otherwise unexplored or inconsistent with previous

models.

We begin by discussing the clinical background and existing models of CD infection,

including the mathematical model we use in this chapter, and by describing our in-silico

implementations of CD treatments. Then we numerically construct phase diagrams that

depict the available behaviors of the simulated system, implement in-silico clinical thera-

pies for CDI, and quantitatively track the efficacies of these therapies. Lastly we describe

how to include mechanisms for sporulation and mutation in our model, and evaluate their

impacts on the efficacy of antibiotic treatment. Through these techniques, we reveal the

importance of timing on the efficacy of fecal microbiota transplantation (FMT) and ad-

ditionally recover the clinical recommendation for pulsed antibiotic administration when

treating CD. Finally, we wield this framework to explain experimental FMT outcomes

[59], validate simulated results, and propose future experiments.

The era of personalized medicine and prevalence of high-throughput sequencing will

demand accurate microbiome models that can predict, diagnose, and recommend treat-

ment for microbiome disease, and the framework developed in this chapter builds upon

existing models [60] to progress towards this goal.
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3.4 Background

CD is a spore-forming bacterium that can produce toxins which cause CD associated

diarrhea, afflicting three million people each year [61]. CDI is especially common in

the elderly and in patients who are prescribed antibiotics, since antibiotics deplete the

microbiome so that ingested spores of CD— often acquired in healthcare facilities or

nursing homes— may invade the vulnerable microbiome [62].

The link between antibiotic treatment, CDI, and microbiome composition was inves-

tigated by Buffie et al. [6] in a study that gathered mouse time-series phylogenetic data

via high-throughput 16S rRNA sequencing. In the study three scenarios were considered,

in which the mice were either left alone as a control, exposed to CD, or dosed with the

antibiotic clindamycin and subsequently exposed to CD. Each scenario was performed in

triplicate and consisted of around 10 time points spanning four weeks, and each time point

consisted of thousands of phylogenetic 16S rRNA gene sequences which were mapped to

taxonomic species and tallied. The study found that after antibiotic administration of

clindamycin the mouse microbiome was less diverse (in terms of the Shannon diversity

index) and vulnerable to CDI, which is consistent with clinical observations of humans

who develop CDI [61, 62]. Because the anatomies of mice and humans are similar [63]

and the microbiomes of both species react to changes in diet in a similar manner [64], it

is common to treat the mouse model as a proxy for human CDI.

In a first attempt to model the relationship between CDI and antibiotic treatment,

Stein et al. [7] proposed a generalized Lotka-Volterra (gLV) model to explain the in-

teractions between different microbes. The parameters for this model were fit with the

previously mentioned data from Buffie et al. [6]. To reduce dimensionality, Stein et

al. assumed that bacteria within a given genus behave similarly, and consolidated the

species-level data into genus-level data. The parameter fitting procedure was tested on
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in-silico data, and the fitted parameters satisfied biologically reasonable restrictions. This

model— described in more detail in the text surrounding Eq (3.1)— produces microbiome

composition trajectories which allow for simulated antibiotic treatment or exposure to

CD. The Spearman rank correlation, a measure comparing the predicted microbe abun-

dances with the experimentally measured abundances, was 0.62 (the largest achievable

value is 1), and simulated trajectories for each microbe typically matched experimental

trajectories within an order of magnitude. Especially, the model preserved the clinical

and experimental conclusion that microbiomes treated with the antibiotic clindamycin

were vulnerable to CDI.

In this chapter, we start from a gLV model with previously fitted parameters [7],

analyze the steady states, and then build upon this model to explore clinically motivated

adaptations. In particular, we focus on simulated remedial treatments that can avoid or

reverse C. difficile infected steady states, which we interpret as microbiomes suffering

CDI.

3.5 Models and Methods

3.5.1 The generalized Lotka-Volterra equations

The generalized Lotka-Volterra equations track the abundance of N populations xi

through time; in our case, the populations are N − 1 genera plus the bacterial species

CD. They read, for i ∈ 1, . . . , N ,

d

dt
xi(t) = xi(t)

(
µi +

N∑
j=1

Mijxj(t) + εiu(t)

)
. (3.1)

The dynamics of each population are of the same form, so the distinct individual tra-

jectories are entirely determined by the choices of parameters and initial conditions. The
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parameters and initial conditions that are used to generate each figure are given in Table

A of the Supplementary Information. For a population xi, µi describes that population’s

self-growth while Mij describes the pairwise effect of population j on population i, an

interaction that can be interpreted as mutualistic, commensalistic, or parasitic. Lastly,

εiu(t) is an external forcing term, which in our model represents the effect of an adminis-

tered antibiotic u(t) operating with efficacy εi. In all, Eq (3.1) accounts for zeroth, first,

and second-order terms, and approximates the competitive dynamics as a power series

of the individual populations.

The procedure for parameter fitting is explained in detail and performed by Stein

et al. [7]. Briefly, the fitted parameter values satisfy µi > 0 and Mii < 0 for each i,

so that in isolation each population will grow and eventually self-limit. Most but not

all microbial groups are inhibited by the antibiotic clindamycin. Since the interactions

between populations have no clear hierarchy, we interpret the gLV model as microbes

on the same trophic level competing for a shared resource— the pairwise interactions,

then, effectively describe a food web which we visualize in Fig 5.1. While dynamical

systems such as this one may in principle display an array of behaviors, with these

fitted parameters we have only observed trajectories that approach biologically reasonable

steady states (e.g. no periodic orbits have been observed); if we interpret the negative

values in Mij as negative covariances between populations, then this stability is consistent

with the covariance effect [65].

3.5.2 Simulation of treatments for C. difficile infection

In clinical practice, CDI is defined by the presence of toxigenic CD or of CD toxins in

a patient experiencing diarrhea— since there are asymptomatic carriers of CD the mere

presence of CD is not sufficient for diagnosis [62]. However, since the model Eq (3.1) does
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Figure 3.1: Pairwise interactions between bacterial populations may be in-
terpreted as a microbial food web. An arrow from population j to population
i represents the effect of j on the growth of i, which we equate to the interaction
term Mij in a generalized Lotka-Volterra model, Eq (3.1). The width and opacity
of an arrow are proportional to |Mij |, and positive interactions (Mij > 0) are green
while inhibitory interactions (Mij < 0) are red. Mij was fit in [7] using experimental
mouse data from [6]. To reduce dimensionality, bacterial species of the same genus
are consolidated into one population; the exception is C. difficile (CD), which is a
single bacterial species. CD, the culprit behind C. difficile infection (CDI), is colored
red and located in the center of the food web.
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not predict toxigenicity or toxin production, for the purposes of this chapter we equate

CDI to the prolonged presence of CD in a simulated microbiome.

Stein et al. [7] investigated the existence and stability of steady states for the system

Eq (3.1). Additionally, they found that for some initial compositions, antibiotic admin-

istration can alter a microbial composition to the degree that the composition becomes

susceptible to CD colonization. Building upon their work, we propose the following three

clinically relevant interventions and their corresponding in-silico implementations:

1. inoculation with CD at time tI , corresponding to x(tI) 7→ x(tI) + xc where xc is

purely composed of CD,

2. antibiotic administration, corresponding to a u(t) that is (unless otherwise spec-

ified) a unit pulse of concentration c at t = 0, and

3. transplantation of CD-resilient microbiota into a CD-susceptible microbiome at

time tT , corresponding to x(tT ) 7→ x(tT )+xIC , where xIC is a transplant composed

of a CD-resilient initial condition.

We refer to a simulation which implements any combination of these external interven-

tions as a treatment scenario.

Simulations are run in Python with the scipy package and the scipy.integrate.odeint

function, which uses ordinary differential equation solver lsoda from odepack, written in

FORTRAN. This solver adaptively switches between stiff and non-stiff solvers, and sim-

ulations are run with an absolute tolerance of 10−12. The code used to generate the figures

in this chapter is freely available at https://github.com/erijones/simulated CDI with gLV.
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3.5.3 Implementation of simulated microbial transplants

Clinically, an external microbial transplant seeks to rejuvenate an unhealthy micro-

biome by infusing “healthy” microbes into the unhealthy patient. The infused samples

typically consist of probiotics or a microbiome (often fecal) sample from a healthy sub-

ject [66]. Microbial transplants can confer attributes (e.g. obesity) from the donor to the

donee [67], so in some sense a microbiome transplant is seeking to confer CD-colonization

resistance from a CD-resilient donor to a CD-susceptible donee. Since antibiotics tend to

be ineffective in treating CDI and additionally can facilitate the growth of drug-resistant

mutant strains of CD by providing them with a selective advantage, fecal transplants are

becoming an increasingly popular CDI treatment [61].

In our implementation we simulate transplants made of CD-resilient initial condi-

tions, and demonstrate how these treatments can guide the system into a desired (i.e.

noninfective) steady state. We model the administration of a transplant of some external

microbial source v at time t∗ as

dx(t)

dt
= f(x) + v δ(t− t∗) , (3.2)

where f(x) entirely encapsulates the right-hand sides of the gLV equations of Eq (3.1) in

vector form and δ(t) is the Dirac delta function, which will serve to instantaneously add

the transplant v to the microbial community x at time t∗.

3.5.4 Implementation of sporulation

Under environmental pressures CD can sporulate, entering a defensive state of dor-

mant spores that maintain the genetic information of CD while functioning at a fraction

of the vegetative cell’s metabolism. These spores are resilient to antibiotics, and CD
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sporulation may be induced by environmental stressors such as heat [68] and alcohol

[62]. While the entire gamut of environmental conditions that induce sporulation is not

yet known [69], there is some evidence that in murine models antibiotics may induce

sporulation [61]. The toxin-producing types of CD prevalent in nosocomial infections are

notoriously difficult to kill, and their resilience has in part been attributed to sporulation

[61].

Mathematically, sporulation can be modeled by creating a population of spores that,

through conversion of active CD, grows when environmental conditions are harsh and

declines when conditions are mild. This implementation is inspired by the treatment

of latently infected T-cells in SIR models of HIV, in which the latently infected T-cells

effectively hide from the immune response in the same way that the inert spore cells are

uneffected by the presence of antibiotics and other microbes [70]. To capture sporulation,

we augment the basic model Eq (3.1) by introducing a spore compartment s(t) so that

the populations of the original gLV model become

d

dt
xi(t) = xi(t)

(
µi +

∑
j

Mijxj(t) + εi u(t)

)
,

d

dt
xc(t) = xc(t)

(
µc +

∑
j

Mcjxj(t) + εc u(t)

)
+ βs(t)[u(t) < uspor] , and

d

dt
s(t) = αxc(t)[u(t) ≥ uspor]− βs(t)[u(t) < uspor],

(3.3)

where the terms in square brackets should be interpreted as conditional statements that

return 1 if true and 0 if false.

In Eq (3.3), we assume that the background microbes (which we define as the bacteria

that are not CD) are uneffected by the presence of the inert spores. In the presence of

antibiotics bacterial growth often acts as a step function, growing or not growing if
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the antibiotic concentration is lower or higher than the bacteria’s minimum inhibitory

concentration (MIC)[71]. We similarly model the inflow and outflow of spores as a step

function, where sporulation or germination occurs if the antibiotic concentration is larger

or smaller than some threshold uspor. Since the spores are robust, we assume they have no

death rate. We assume that some proportion α of the CD normally killed by antibiotics

are converted to spores, so there is no explicit α term in the CD growth term, and as a

consequence of this we require α < εcu(t). The experimental methods used to measure

CD sporulation are not yet standardized, so there is no clear consensus on the rate of CD

sporulation [68]; therefore, the sporulation parameters α, β, and uspor must be considered

in a qualitative fashion.

3.5.5 Implementation of mutation

The final augmentation we add to the gLV model is antibiotic-resistant mutation,

which is culpable for many of the difficulties in treating CDI [72]. Existing antibiotic

resistance models for both within-host [73] and between-host [74] versions of antibiotic-

resistance typically only consider isolated bacterial systems which include only the native

and mutant strains of a single bacterial species. Since we consider mutation in the gLV

framework, in this chapter we are able to probe the more realistic scenario of mutation

occurring within a complex microbial community.

We modify the standard gLV model in Eq (3.1) to include terms that allow for muta-

tion of CD into an antibiotic-resistant mutant strain of CD, denoted xm(t), so that the
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microbial dynamics are described by

d

dt
xi(t) = xi(t)

(
µi +

∑
j

Mijxj(t) + εiu(t)

)
,

d

dt
xc(t) = xc(t)

(
µc +

∑
j

Mcjxj(t) + εcu(t)

)
− k xc(t) , and

d

dt
xm(t) = xm(t)

(
µm +

∑
j

Mmjxj(t)

)
+ k xc(t).

(3.4)

In addition to the standard gLV pairwise interactions, the background microbes xi

of Eq (3.4) now interact with the CD mutant xm via the Mim term. Following existing

mutation models [74], we (1) group all potential antibiotic-resistant mutations into the

one mutant population xm and (2) neglect the possibility of mutation from a mutant

strain xm back to the native strain xc. Furthermore, we assume that the mutations

are fully resistant to antibiotics and so we omit the εm term in Eq (3.4). While other

candidate models for antibiotic-resistant mutation exist and have been examined [75],

here we focus on embedding this particular implementation of single-strain mutation into

the gLV framework; other types of mutation models may be implemented in a similar

way.

Since we are extrapolating beyond the mouse data collected in [6], it is not surprising

that the mouse microbiome data does not distinguish between native and mutant strains

of CD. Antibiotic resistant strains of CD are already rampant: one survey found that

close to half of tested CD strains were resistant to at least one antibiotic, and about one

quarter of tested strains were resistant to multiple antibiotics [76]. However, since the

antibiotic susceptibility of CD εc is non-zero, we assume that the administered CD used

to inoculate the mice is antibiotic-sensitive.
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3.6 Results

3.6.1 Mapping system behaviors of the CDI model

We first demonstrate the available behaviors of the system described by Eq (3.1).

In Fig 3.2 we evolve our system from the nine distinct initial conditions experimentally

measured by Stein et al. [7] for one particular treatment scenario, in which all initial

conditions are initially treated with antibiotics and later inoculated with CD. All but one

of these initial conditions are free of CD, and the remaining initial condition (IC 8) has

a trace amount of CD. Despite the diverse composition of the initial conditions, under

this treatment scenario the simulated trajectories evolve into only two steady states.

Then, in Fig 5.2 we apply four different treatment scenarios to one initial condition

and identify three different reachable steady states, indicating that the initial conditions

can be sensitive to which treatment scenario is applied. In this chapter, within a single

simulation microbe counts can vary by more than two orders of magnitude. For clarity, in

our figures we plot the total microbe count on a log scale (where the total microbe count

is the sum of all of the microbes in each microbial population), and then at each time we

linearly color each microbial population according to its proportion at that time, so that

at a given time regions of equal size correspond to equal microbe counts. The treatment

scenarios that result in Fig 5.2 mirror the experimental mouse treatments [6] and include

a control, high dosing with antibiotic (the inset of Fig 5.2b depicts the initial microbial

response to antibiotics), low dosing with antibiotic followed by inoculation with CD,

and high dosing with antibiotic followed by inoculation with CD. While the log scaling

disguises changes in total microbe count between the different steady states, the steady

state of Fig 5.2a contains seven times as many microbes as the depleted (in microbe

count) steady state of Fig 5.2b, and contains more than twice as many microbes as the

infected steady state of Fig 5.2d (for details on steady state compositions refer to Table
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Figure 3.2: Diverse initial conditions respond similarly for a simulated treat-
ment. Microbiome compositions are simulated forward in time from experimentally
determined and diverse initial conditions (a), but all initial conditions eventually equi-
librate to only two steady states (b) for this particular treatment scenario. Initial
conditions are experimentally measured microbiome compositions from mice [6] and
are time evolved according to the generalized Lotka-Volterra model, Eq (3.1), with
parameters fit in [7]. In this simulated scenario, the system is administered 1 dose of
antibiotic on day 0 and inoculated with the infectious CD (colored red) on day 10.
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B of the Supplementary Information). This figure elucidates the mechanism for CDI:

antibiotic-induced microbiome depletion followed by opportunistic CD colonization.

Taken together the complementary results of Figs 3.2 and 5.2 indicate that (1) for a

given treatment scenario there are a limited number of achievable steady states across

all initial conditions, and (2) for a given initial condition there are a variety of steady

states that may be achieved across different treatment scenarios. Since the model was

fit with data collected over a 30 day period but the obtained steady states are often

slow to equilibrate (e.g. around 100 days in Fig 5.2), we should proceed with caution

when extrapolating the model [77]. However, since the collected experimental data [6]

roughly equilibrates by day 30, and because experimental validation on longer time scales

is difficult to obtain, we follow convention [78] and study long-term system behavior

through steady state analyses.

In the four weeks before the mouse experiment the mice were identically housed and

fed, and during the experiment the microbial compositions of mice in the control group

were approximately constant over time [6]. Hence, what we consider “initial conditions”

may also be interpreted as steady states compositions of the mice before any external

intervention. However, the gLV model Eq (1) does not capture these initial conditions

as steady states. Over the course of the 13-day control group experiment the measured

bacterial abundances maintained a relatively stable composition, with the 7 or 8 colonized

bacteria varying by less than an order of magnitude over the course of the experiment.

However, the model Eq (1) predicts that the same control group initial conditions (ICs

2, 5, and 8) will tend towards a simpler steady state that consists of only 3 bacteria.

This inconsistency demonstrates two limitations of the gLV model: the paucity of

steady states, and the likelihood of their stability. For a generalized Lotka-Volterra

system of N species there are 2N steady states, each corresponding to a different subset

of bacteria— hence, there is just one steady state that consists exclusively of the 7
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Figure 3.3: External intervention can alter the steady state a given initial
condition achieves. All panels originate from the same initial condition, but differ-
ent panels correspond to different interventions: (a) no interventions occur; (b) one
dose of antibiotic is administered at day 0 (inset: the microbial dynamics during the
first 5 days, in response to the one-day administration of antibiotics); (c) half of a dose
of antibiotic is administered at day 0, and then at day 10 the system is inoculated
with CD; (d) one dose of antibiotic is administered at day 0, and then at day 10 the
system is inoculated with CD. The growth of C. difficile (colored red) is encouraged
by antibiotic treatment, since the antibiotics deplete the other microbes to a level at
which C. difficile gains a foothold.
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overlapping bacteria of the control group. Since there is variation between the control

experiments, there can be no steady state that would simultaneously and precisely fit all

three control trials. Furthermore, even if this steady state were relatively accurate for

each trial it is unlikely that it would be stable: Stein et al. [7] found that 98% of the steady

states of this system were unstable. Despite the fact that unperturbed initial conditions

are not stable steady states, other qualitative features of the model (including antibiotic-

induced depletion of the microbiome and opportunistic CDI) indicate the model’s utility

in modeling CDI.

To summarize the available system dynamics, we construct the phase diagrams in

Fig 3.4 by systematically sweeping through treatment scenarios for each initial condition;

specifically, we vary the concentration of antibiotic treatment and whether the system

is exposed to a small amount of CD. Though we simulate nine initial conditions (ICs),

the phase diagrams for some initial conditions are redundant. We classify the phase

diagrams of Fig 3.4 as (a) CD-susceptible, ICs which become infected upon exposure by

CD regardless of antibiotic usage; (b) CD-resilient, ICs which are not infected by CD

regardless of antibiotic usage; and (c) CD-fragile, ICs which switch from CD-resilient to

CD-susceptible upon sufficient administration of antibiotic (an antibiotic concentration

of approximately 0.71). We label the five reachable steady states A through E, cate-

gorize them as CD-infected or CD-uninfected, and plot their compositions in Fig. S1.

Each phase diagram is composed of a number of treatment scenarios; for each treatment

scenario, a 1-day pulse of antibiotic with varying antibiotic concentration is administered

on day 0, and then a small amount of CD may be administered on day 10 depending on

whether the scenario is with or without CD. For reference, the experimental antibiotic

dose was normalized in [7] to a 1-day pulse of antibiotic concentration 1.

With the phase diagrams of Fig 3.4, we may now identify the initial condition plotted

in Fig 5.2 as CD-fragile. Furthermore, the steady states of Fig 5.2a-d correspond, respec-
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Figure 3.4: Phase diagram of reachable steady states from initial conditions.
(a) Six initial conditions (ICs) are susceptible to C. difficile (CD-susceptible), result-
ing in infected steady state A if inoculated with any amount of CD. (b) Two initial
conditions are CD-resilient and always remain in uninfected steady state C regardless
of CD exposure. (c) One initial condition displays more complex behavior, becom-
ing susceptible to CD only after being treated with a sufficient dose of antibiotics
(CD-fragile). The steady states of the four external interventions of Fig 5.2 corre-
spond to different regions of the CD-fragile phase diagram (c). The phase boundaries
of Fig 3.4 are robust to the amount of CD inoculum (ranging from 10−10 to 1 in nondi-
mensionalized units) as well as to the timing of CD inoculation (ranging from on day
1 to on day 100). For details, refer to Table A of the Supplementary Information.
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tively, to steady states C, E, C, and D of Fig 3.4. Notably, IC 8 is CD-resilient despite

the fact that the initial condition contains a small amount of CD; in fact, according to

the fitted interactions the presence of CD promotes the growth of microbes that inhabit

the uninfected steady state. Therefore, the isolated presence of CD inhibits colonization

of an infected steady state.

One key takeaway from this survey of model behaviors is that there is no a priori

obvious predictor for whether an initial condition will be CD-susceptible, CD-resilient,

or CD-fragile, even with knowledge about the microbial food web. Often, the complex

interplay of microbial interactions can lead to unexpected and even counterintuitive re-

sults.

3.6.2 Invadability of C. difficile

In the numerical phase diagrams of Fig 3.4 we observe different regimes for different

initial conditions, but we can substantiate this phenomenon analytically as well. We

label steady state A in Fig 3.4 by x∗A, and similarly label all other steady states. After all

antibiotic has been administered, we perform a perturbative analysis of the uninfected

steady states by introducing a small amount of CD (notated xc(t)) to the uninfected

steady state x∗. This CD will invade the steady state only if
[
d
dt
xc(t)

] ∣∣
x∗ > 0. Since

the introduced xc(t) is positive, we may discern the invadability of an uninfected steady

state x∗ by the sign of I(x∗), defined to be

I(x∗) ≡ 1

xc(t)

[
d

dt
xc(t)

] ∣∣∣∣
x∗

= (µ+M x∗(t))c . (3.5)

Here, we have rearranged Eq (3.1), removed the antibiotic dependence u(t), consolidated

all the µi and Mij into their respective vector and matrix forms µ and M , and consol-

idated the individual populations xi(t) into their vector form x(t). Notationally, the
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Table 3.1: Analytic justification for CD-susceptibility. The ability of CD to
invade the three uninfected steady states x∗B, x∗C , and x∗E depends upon the sign
of I(x∗) ≡ 1

xc(t)

[
d
dtxc(t)

]
x∗ : a positive value indicates a CD-susceptiblity, while a

negative value indicates CD-resilience. This result follows from analysis of Eq (3.1).

steady
state

interpretation (I(x∗)) ‖x∗(t)‖1
x∗B CD-susceptible (0.24) 3.238
x∗C CD-resilient (-0.86) 24.770
x∗E CD-susceptible (0.28) 3.546

subscript c denotes the value of a vector corresponding to the index of CD. While mag-

nitude of the invadability |I(x∗)| will correspond to the initial rate at which CD will

grow or decay, only the sign of I(x∗) is relevant in determining long-term susceptibility

or resilience to CD.

In Table 3.1 we compute and compile this invadability for each of the three uninfected

steady states x∗B, x∗C , and x∗E. This table also provides the size of each steady state,

where size is interpreted as the sum of all the bacterial populations (here written as the

1-norm). These conclusions provide analytic justification for why some initial conditions

are susceptible to CD while others are not, and complement the phase diagrams in Fig 3.4.

CD is predominantly inhibited by the existence of other microbes (mostly, Mcj < 0)

and so a larger |x∗(t)| will tend to inhibit the growth of CD. Additionally, microbes

tend to be inhibited by antibiotics (mostly, εi < 0). Together, these tendencies allude

to a mechanism of CDI whereby antibiotic administration depletes the microbiome and

induces CD susceptibility.

While Table 3.1 indicates that the reachable CD-susceptible steady states are smaller

than CD-resilient steady states, the size of the initial condition had little effect on the

overall steady state profile: growing or shrinking the initial condition sizes only marginally

modified the resulting phase diagrams. Hence, the different steady states are robust to

variations in initial condition size.
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Having exhaustively explored the basic behaviorial regimes of Eq (3.1), we now im-

plement in-silico two commonly administered real-world medical interventions: fecal mi-

crobiome transplantation and antibiotic administration.

3.6.3 Simulated microbial transplants affect steady-state out-

comes

Following Eq (5.2), we choose a microbial transplant v that is derived from a CD-

resilient donor so that v is proportional to the composition of a CD-resilient initial

condition, and we choose the donee microbiome to be the CD-fragile initial condition so

that the effects of the transplant are more apparent. In the simulation we choose the

timing of the treatment scenario to match the clinical counterpart of CDI, in which CD

attempts to colonize a microbiome that has been recently depleted by antibiotics: we

administer antibiotics on day 0, inoculate with CD on day 1, and insert a transplant on

day d. By categorizing the resultant steady state as CD-infected or CD-uninfected and

sweeping over antibiotic concentrations, relative transplant sizes, and transplant times,

we realize the phase diagram in Fig 3.5.

Fig 3.5 demonstrates how a transplant can alter the steady state behavior of a system

exposed to CD. We can bias the initial condition towards a CD-uninfected steady state

with a proper fecal transplant via the mechanism of steady state conversion, wherein a

transplant can convert a state from CD-susceptible to CD-resilient. This result, consistent

with clinical practice, supplies a numerical framing for microbial transplants, narrowing

the gap between real-world practice and simulation.

For transplants that are applied after antibiotic administration, this figure indicates

that shorter transplant delays lead to more effective transplants. However, a transplant

applied concurrently with antibiotic administration on day 0 (labeled d=0 in Fig 3.5)
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Figure 3.5: Administration of microbial transplants can ward off infected
steady states. Starting from the CD-fragile initial condition, antibiotics of varying
antibiotic concentration are administered on day 0, and the system is exposed to CD
on day 1. Then, a “healthy” transplant made up of the CD-resilient initial condition
8 is infused on day d. The infected region corresponds to infected steady state D, and
the uninfected region corresponds to uninfected steady state E. Note that a transplant
on day 0 (dashed line), concurrent with the start of antibiotic administration, is less
effective than a transplant on day 1. A relative transplant size of 1 corresponds to
a transplant that has the same size as the initial condition that the transplant was
derived from. The phase boundaries of Fig 5 are robust for small amounts of CD
inoculum (ranging from 10−10 to 10−8 in nondimensionalized units), but for larger
amounts of CD inoculum (ranging from 10−5 to 10−2) transplants become more effec-
tive at all timings, requiring a smaller transplant to overcome a larger antibiotic dose.
For details, refer to Table A of the Supplementary Information.
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is less effective than a transplant applied after antibiotics on day 1. This reflects that

antibiotic administration depletes all microbes, so a transplant on day 1 will be unsullied

by antibiotics whereas applying a transplant on day 0 will lead to the depletion of the

aggregate composition.

In Fig 3.6 we examine the effect of transplant timing for a fixed antibiotic concen-

tration and transplant size. Steady state conversion is most effective immediately after

antibiotic administration, when the depleted microbiome has room to grow. During this

time the malleable microbiome is especially responsive to transplants, and introduction

of the right collection of microbes can direct the microbiome towards an infection-free

steady state. However, as indicated in Fig 5.2, without any transplant the CD-fragile

IC will naturally evolve towards a CD-susceptible steady state: hence, the timing of the

transplant is critical, with more immediate transplants being more effective.

We found that out of the measured ICs, the collection of microbes that best deter CDI

are derived from IC 8. This transplant replenishes the unclassified Lachnospiraceae (col-

ored purple), which promote constituents of the uninfected steady state while inhibiting

Blautia (colored yellow), a key member of the infected steady state. More surprisingly,

the existence of CD in IC 8 amplifies the effect of the transplant— the same transplant

but without CD was a functional but substantially less effective treatment, and similarly

mediocre results were obtained with a transplant derived from the other CD-resilient

initial condition (IC 2) as displayed in Fig. S2. This result is due to the deleterious and

contradictory effect of CD on the CD-infected steady state. As an aside, note that since

IC 8 contains CD, the transplant on day 0 effectively inoculates the system with CD on

day 0 rather than on day 1.

While appropriately derived and implemented transplants are effective at reversing

CDI, if we had mistakenly used a CD-susceptible donor instead, simulation confirms the

intuitive expectation that these results would be flipped. Since these initial conditions
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Figure 3.6: Mechanism of steady state conversion. Microbiome compositions
are identically dosed with antibiotic on day 0 and inoculated with CD (colored red)
on day 1. Transplants of the same size are administered on (a) day 1, leading to a
CD-uninfected steady state, and (b) day 7, leading to a CD-infected steady state.
Following the antibiotic-induced microbiome depletion, the transplant serves to re-
plenish the microbes responsible for the CD-uninfected steady state (e.g. unclassified
Lachnospiraceae, colored purple) while curbing the growth of those responsible for the
CD-infected steady state (e.g. Blautia, colored yellow).
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are a priori unidentifiable as CD-resilient or CD-susceptible, this prompts a clinically

relevant caution of whether some donor’s microbiome will be beneficial or detrimental to

another’s microbiome.

In a recent experimental study by Buffie et al. [59] CD-vulnerable mice exposed to CD

were given transplants consisting of a known microbial composition, and the transplant

efficacy for each composition was measured. Our work on simulated transplants, which

resembles the experimental study, provides context and explanation for the mechanism

of the experimental transplants. In conjunction, simulated and experimental transplants

could direct the development of model-guided and experimentally-validated “designer”

transplants.

3.6.4 Simulated antibiotic dosing alters gLV dynamics

Antibiotic administration has traditionally been the standard approach to fight infec-

tion, but antibiotics have struggled to control CD infection: CDI has a recurrence rate of

30-65% following antibiotic treatment, while fecal transplantation has cure rates upwards

of 90% [1]. Nonetheless, the Society for Healthcare Epidemiology of America (SHEA) and

the Infectious Diseases Society of America (IDSA) jointly recommend treating CDI with

antibiotics— often vancomycin— administered in one of three dosing regimens: a con-

stant dosing regimen, a pulsed dosing regimen, or a tapered dosing regimen [62]. Other

studies have found that vancomycin administered in tapered or pulsed doses reduced the

likelihood of recurrent infections of CD, compared with treatment at a constant dosage

[79]. Our model, which allows arbitrary control over the dosing schedule and concentra-

tion u(t), provides a computational framework on which we can compare the efficacy of

different dosing schedules: our implementations of the three dosing regimens are plotted

in Fig. S3.
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Over short time scales of 1-2 days we found that given the same total amount of

antibiotic, the rate at which antibiotics were administered (e.g. .5 doses for 2 days vs.

2 doses for .5 days) did not affect the eventual steady state. Over longer time scales of

around 2 weeks, we observed similar behavior— the model does not capture long-term

differences between different dosing regimens as long as the total amount of administered

antibiotic is the same, reflecting that the time-scale for microbial growth is longer than

the period over which antibiotics are typically administrated.

In modeling the different dosing regimens, we are faced with one main complication:

only one antibiotic, clindamycin, was fit in [7], and furthermore clindamycin was acting

to induce CDI rather than halt it. The antibiotic efficacy parameter ε therefore does

not serve as a realistic proxy for vancomycin or metronidazole, antibiotics which are used

to eliminate CD [79]. To simulate the effect of an antibiotic which eliminates CD, we

introduce an artificial “targeted antibiotic” ε̃, which by construction only inhibits CD;

specifically, ε̃c = −1 and ε̃i = 0 for i 6= c.

Even with this targeted antibiotic our model does not capture significant differences

between the treatment regimens, which is contrary to the clinical recommendation that

pulsed or tapered dosing be preferred over constant dosing [62]. In Figs 3.7a and 3.7b we

administer the same amount of targeted antibiotic via constant and pulsed dosing to the

CD-infected steady state and find that the two dosing regimens produce near-identical

microbe trajectories (a similar result, shown in Fig. S4, was found with tapered dos-

ing). We propose sporulation (which acts on a much shorter time-scale) as a biologically

relevant mechanism that could explain this inconsistency.
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Figure 3.7: Different antibiotic treatment regimens influence transient CD
dynamics when considering sporulation. All scenarios start from infected steady
state D. Over 10 days, the same volume of “targeted” antibiotic is administered via
a pulsed (a,c) or constant (b,d) dosing regimen. The top panels use the original gLV
model Eq (3.1) while the bottom panels use the sporulation gLV model Eq (3.3). For
details about the parameters used in this figure, refer to Table A of the Supplementary
Information.
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3.6.5 Sporulation affects microbial dynamics

In considering the model for sporulation detailed in Eq (3.3), the steady state analysis

we previously performed is still relevant since all steady states will eventually be spore-

free— we assume that the antibiotics will eventually cease, so the sporulation term of

Eq (3.3) will eventually decay exponentially. However, the näıve expectation that includ-

ing sporulation would make CD-infected steady states more common is incorrect; once

again, due to the interactions between CD and other background microbes (mediated by

the interaction matrix M), the presence of CD encourages growth of the microbes that

populate the infection-free steady state, and so increasing the prevalence of CD through

sporulation only entrenches the non-infective steady state. Since the steady states and

phase diagrams are mostly unchanged by the inclusion of sporulation, we concentrate on

the dynamics of CD and CD spores on shorter time scales.

In Fig 3.7 we compare the effects of the standard gLV model Eq (3.1) (top panels)

and the sporulation model Eq (3.3) (bottom panels) under constant and pulsed antibiotic

dosing regimens. Here, we use the targeted antibiotic previously described and apply

all treatments to the CD-infected steady state D. Sporulation causes spores to form as

antibiotics are administered, and germinate once the antibiotics cease, which is on display

in the pulsed dosing regimen scenario of Fig 3.7c. After targeted antibiotic administration

CD recovers slightly more quickly with sporulation than without, and we interpret this

expedited resurgence as a more robust CDI. For details about the parameters used in

Fig 3.7, refer to Table A of the Supplementary Information.

While many of the in-host dynamics and the biological mechanisms that underlie CD

sporulation and germination remain under active investigation, studies have identified

that both spores and vegetative CD colonize and persist in the gut [80], and other studies

have discerned the role of bile acids in promoting spore germination [81]. Our model does
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not allow for the long-term establishment of spores because we assume that germination

always occurs in the absence of antibiotics, and we include no mechanism for germination

induced by bile acids. However, more detailed sporulation models (e.g. models that

include bile acid-induced germination) may extend our basic model to build upon the

qualitative features of CDI it possesses.

We emphasize that sporulation is simply a proposed biological mechanism that would

modify the model’s predictions to better match clinical observations, and so these results

should be interpreted in a qualitative manner. However, by including sporulation we

regain (at least for short time scales) the clinically expected result [62] that pulsed dosing

is more effective than constant dosing at eliminating CD— comparing the top panels with

the bottom panels of Fig 3.7 indicates that a pulsed dosing regimen dramatically reduces

the buildup of CD spores compared to constant dosing.

3.6.6 Mutation in a gLV model

The mechanism of mutation, introduced in Eq (3.4), introduces new unconstrained

parameters for the mutation rate k as well as for pairwise interactions Mim and Mmi.

Here we identify an intuitive parameter choice that reflects the underlying biology, discuss

the resultant steady states, and then demonstrate the effects of mutation on transient

microbe dynamics.

Antibiotic-resistant mutations typically incur a fitness cost in the absence of an-

tibiotics since resources are being allocated for defense against antibiotics rather than

growth [82, 83, 84], so we choose µm = .9µc < µc. Our choice of M assumes that the

background microbes interact with mutant and native types identically (i.e. Mmi = Mci

and Mim = Mic for i 6= c, m). In real systems, the mutation rate k is variable and

depends on factors including the concentration of antibiotic, the type of antibiotic, the
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native strain type, and other environmental pressures. In our model we approximate

the mutation rate as a constant k = 2 ∗ 10−6 (in units of 1/day), a choice which is in

the range of measured mutation rates of some bacteria [85], but for our purposes mostly

serves to highlight the effects of mutation. For details about the parameters used in our

simulations of the mutation model, refer to Table A of the Supplementary Information.

Due to our parameter choices the steady states of the background microbes are largely

unchanged between the mutation model and the basic model (the CD-infected steady

states of the standard and mutation models are explicitly compared in Table B of the

Supplementary Information), but the transient dynamics shown in Fig 3.8 differ. In these

plots the same amount of targeted antibiotic is applied to the same initial state, but

Fig 3.8a uses the standard gLV model Eq (3.1) while Fig 3.8b uses the modified mutant

gLV model Eq (3.4). The targeted antibiotic severely inhibits CD in the standard gLV

model, but in the mutation model the antibiotic-resistant mutant compensates for the

antibiotics and reinforces the colonization of CD despite the antibiotic pressures.

At the scale of a single bacterium experiments now track the growth and decline

of individual lineages of bacteria when confronted with antibiotics [86], and at larger

scales experiments track the spread and fixation of mutations across an entire bacterial

community [87]. Since the gLV model considers populations of bacteria rather than

individual cells, the individual lineages cannot be resolved. However, our model does

capture the tendency of microbes with a selective advantage to outcompete microbes

with lower fitness (in our case, CD mutants outcompete native CD in the presence of

antibiotics), and these simulations resemble the selective sweeps found in experimental

data [87].

Existing mutation models have studied native and mutant strains of bacteria in iso-

lation, but by embedding mutation within a gLV framework we can probe the complex

behaviors of mutant strains within a microbial consortia. Accordingly, the wealth of
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Figure 3.8: Antibiotic-resistant mutation improves CD resilience to antibi-
otics in transient dynamics. These simulations are identical except that (a) uses
the original gLV model Eq (3.1) while (b) uses the mutation gLV model Eq (3.4).
This scenario starts from the CD-infected steady state D and administers an idealized
“targeted” antibiotic (that only inhibits CD) for 30 days. For details about the param-
eters and initial conditions used in this figure, refer to Table A of the Supplementary
Information.
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behaviors present in the simpler mutation models [74] may be observed within the gLV

model with mutation Eq (3.4). This comprehensive and community-level view is essen-

tial in identifying, understanding, and resolving the role of antibiotic-resistant mutants

in disease.

3.7 Discussion

3.7.1 Applications towards experimental explanation, model val-

idation, and model-motivated experiments

A study by Buffie et al. [59] follows the modeling method of Stein et al. [7] and

fits a gLV model to both mouse and human experimental time-series data in order to

predict the growth of CD following antibiotic administration. In this study they identify

the microbes anticorrelated with CDI in experimental data as well as the microbes that

most inhibit the growth of CD according to the interaction matrix M of the gLV model.

They create and administer transplants made up of a subset of these identified microbes:

four transplants consist of individual microbes in isolation while another consists of a

combination of all four microbes.

Buffie et al. [59] find that of the four transplants made up of isolated microbes only one

microbe is effective at curing CDI, despite the fact that the other three microbes were a

priori supposed to inhibit CD. We provide two explanations for their findings, motivated

by the results of our chapter: (1) the ability of CD-resilient transplants to confer CD-

colonization resistance is largely variable and depends on the transplant composition (e.g.

the variation in transplant efficacies between Fig 3.5 and Fig. S2), and (2) inhibiting the

growth of CD does not necessarily inhibit CD-infected steady states, since the presence

of CD inhibits some of the microbes that populate the CD-infected steady state. By
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applying the results of our simulations to microbiome transplant experiments, we can

offer a computational context for experimental results.

Many of the microbes identified by Buffie et al. [59] as potential transplants were of

the genus Clostridium; in fact, the only isolated-microbe transplant that was effective in

curing CDI was Clostridium scindens. If we resolve only to the genus level (as assumed

when constructing the gLV model in Stein et al. [7]), this experimental result is consistent

with our own transplant simulations in which a transplant made up of the CD-resilient IC

8 was significantly more effective with CD than without (Fig 3.5). Hence, the seemingly

contradictory computational result— that the presence of CD inhibits CD-infected steady

states— is validated by experiment.

Finally, we can formulate experimental questions that are couched in our computa-

tional framework. Our results point to the importance of timing when administering

microbial transplants, an area that is mostly unexplored both experimentally and thera-

peutically, and experiments could elucidate how the the timing of transplants effects their

efficacy. While Buffie et al. [59] inferred microbial interactions from a gLV model, when

predicting the CD-inhibiting microbes their analysis did not include dynamic simulations;

applying our method of simulated transplants to such experiments could inform the se-

lection of “personalized” transplants, and the corresponding experiments could then be

used to inform the model, the model’s limitations, and additional experiments.

3.7.2 Unidentifiability of beneficial bacterial communities

In this chapter, the principle driver of CDI was whether a given microbial composition

was CD-resilient or CD-susceptible: for example, when administering a fecal transplant,

the effectiveness of the treatment depended on the properties of the donor’s microbiome.

In general these properties are unknown a priori, so picking the right donor is a gamble.
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In clinical practice, the screening process for potential fecal donors consists primarily

of avoiding those with impaired microbiomes (e.g. due to recent antibiotic therapy) or

poor health, with only about 10% of prospective donors being accepted [88, 89]. While

fecal transplantation has been more successful at curing CDI than traditional antibiotic

treatments [90], predictive models are not currently being implemented to quantitatively

select an optimal donor. Eventually, predictive models could allow for “designer” fecal

transplants that are engineered to optimally confer colonization resistance. Until donor

selection methods consist of searching for optimal donors rather than excluding diseased

donors, our model warns that donor selection— even of seemingly healthy donors— can

have unexpected consequences.

3.7.3 Pharmacokinetic and pharmacodynamic approximations

In this chapter, we follow Stein et al. [7] and model the pharmacokinetics (the in-host

concentration of the antibiotic u(t)) as a pulse. In reality, clindamycin pharmacokinetics

are characterized by an initial spike in the in-host antibiotic concentration, after which

antibiotics are cleared from the system (driven by uptake and deterioration of the antibi-

otic) with a half-life of approximately 4 hours [91]. However, in our simulations we found

that over short durations (1-14 days) it is the total amount of administered antibiotic

that determines the long-term dynamics of Eq (1) rather than the shape of the dosing

regimen u(t) (meaning that administering .5 doses for 2 days leads to the same outcome

as administering 2 doses for .5 days). This insensitivity to the form of u(t) justifies our

simplified pharmacokinetic form.

Additionally, we model the pharmacodynamics (the microbial response or killing rate

due to antibiotics) as a linear response −εiu(t), while more realistic models use a satu-

rating Hill function [92, 93]. However, we only use one antibiotic concentration for each

70



Implementing direct bacteriotherapies in an ecological model of the microbiome Chapter 3

simulation, corresponding to one killing rate for each simulation. For any killing rate in

the range of the saturating Hill function, one may find an effective antibiotic concentra-

tion that achieves this killing rate via either the linear response or by the saturating Hill

function. Since both the linear response and the saturating Hill function are monotonic,

there is a nonlinear scaling for u(t) between the two response functions, meaning that our

results— acquired with the linear response function— may be extended to a model that

uses a saturating Hill function as long as the antibiotic scaling is observed (e.g. for the

phase diagram of Fig 3.5, stretch the antibiotic axis). Since a linear antibiotic response

qualitatively captures the same long-term dynamics that a saturating Hill function would,

we are justified in using a simplified pharmacodynamic model.

3.7.4 Limitations of the gLV model

The gLV model idealizes interspecies interaction, and this simplification imposes lim-

itations on our framework. The gLV model does not explicitly model why populations

grow or decay (due to the underlying resource excesses or limitations) [94], and popula-

tions are assumed to respond instantly to changes in other populations, failing to account

for the time required to respond to change [95]. The number of parameters required for

a gLV model scales as N2 for N species, and even with high-throughput sequencing,

the number of data points per parameter is still low (e.g. roughly 5 data points per

parameter in [7]). Despite these drawbacks, gLV models are commonly implemented to

describe microbial growth [60] since they are predictive, manipulable, and often capture

the qualitative characteristics of microbial consortia. Our framework attempts to resolve

some of these limitations by treating the gLV model as a base model, then offering ex-

tensions to the model that incorporate nongeneric and mechanistic features in order to

more accurately portray microbial growth.
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3.7.5 Analytic concerns of parameter fitting

There are many techniques that fit parameters to data [96, 97], but it is difficult to

know that these fitted parameters are indeed the true parameters. Stein et al. [7] fit

the parameters used in this chapter with regularized linear regression with a Tikhonov

regularization, but other fitting methods exist, such as LIMITs [98], a software specifi-

cally designed for fitting microbial time-series data to a gLV model. Analytically, there

are sufficient conditions on the model parameters that ensure the Lyapunov stability

of fixed points of generalized Lotka-Volterra systems [57], but the fitted parameter val-

ues in this chapter do not satisfy all of these conditions. Leveraging fitting methods

to simultaneously fit parameters to data while maintaining the analytic properties that

ensure stability would alleviate the potential for non-biological divergences in microbe

count (divergences which are not impossible in the given system since M has a single

positive eigenvalue). Regardless of this possibility, no unstable behavior was observed in

any of the simulations run for this chapter, perhaps due to the relatively few symbiotic

relationships.

3.7.6 Combining gLV and SIR techniques

In this chapter we fuse standard SIR techniques with the gLV model, thereby intro-

ducing specific mechanisms for sporulation and mutation. In this way, our framework

allows for non-generic attributes of populations to be captured and simulated, and the

resulting analyses provide qualitative insights into different mechanisms. Effectively, this

allows for the entire family of SIR methods to be used in conjunction with the gLV model.
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3.8 Conclusion

As the era of personalized medicine approaches, there is a growing need for accu-

rate computational models that reflect human biology and can predict the progress of

disease. This pursuit will be aided by the availability of “big data” in medicine, but

this data needs to be harnessed in a useful way. This chapter addresses initial steps in

developing these computation models by constructing a framework at the interface be-

tween computational models and clinical therapies. This modular framework allows for

“plug-and-play” implementations of clinical techniques and observed phenomena: in this

chapter, we implement fecal transplant therapy, antibiotic treatment regimens, sporula-

tion, and mutation.

Our in-silico implementations of clinical treatments were mostly congruent with the

actual clinical realizations— there exist initial conditions that become susceptible to CD

after exposure to antibiotics; administration of a fecal transplant can halt CDI; and (once

sporulation is included) pulsed dosing is more effective at eliminating CD than constant

dosing, though fecal transplants are more effective than antibiotic administration in the

long run. Introducing mechanisms for antibiotic-resistant mutations and sporulation

strengthens the resilience of CD to remedial treatments. In all, this framework captures

the intention and qualitatively the results of real-world clinical techniques.

There are many avenues stemming from this framework that may be explored in the

future, including research into “designer transplants” or of bile acid-mediated germination

of CD spores. Eventually this framework could be used to suggest clinical practices, but

first more experiments, better data, and novel modeling are needed. As we recognize

the advancement of gene sequencing in the past few years, it is not inconceivable that

user-specific personalized medicine programs, built upon mathematical models of human

health, will be accessible in the future.
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Chapter 4

Compression of high-dimensional

bistable dynamics with steady-state

reduction (SSR)

Chapter 3 revealed that in the CDI model, the efficacy of FMT is dependent on transplant

composition and the timing of administration. These results were gathered through

extensive numerical simulations and, while intriguing, stop short of explicitly identifying

the mechanisms within the gLV model that give rise to those behaviors. In this chapter

we introduce the dimensionality-reduction technique steady-state reduction (SSR), which

maps the bistable ecological dynamics of a high-dimensional gLV system to a compressed

two-dimensional (2D) gLV system that approximates the high-dimensional dynamics.

Critically, this reduced system retains the bistability of the high-dimensional system:

SSR maps a pair of stable steady states ~ya and ~yb in the high-dimensional system (each

of which areN -dimensional vectors) to a pair of stable steady states (‖~ya‖, 0) and (0, ‖~yb‖)

in the two-dimensional model, where ‖·‖ is the 2-norm. The development of SSR is the

key analytical result of this thesis.
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With SSR, the ecological dynamics that occur between a pair of stable steady states—

say, the dynamics between a diseased and healthy steady state— may be analyzed in

terms of the reduced 2D model. The high-dimensional dynamics mapped onto the plane

spanned by ~ya and ~yb are similar to the 2D dynamics of the SSR-reduced system, even

though the high-dimensional system has ∼ N2 parameters and the SSR-reduced system

only uses 6 parameters. Indeed, we prove that the choice of SSR parameters (each a

linear combination of the high-dimensional parameters and the steady states ~ya and

~yb) minimizes the error between the projected high-dimensional dynamics and the 2D

gLV dynamics. Therefore, there is a explicit correspondence between high-dimensional

bistable dynamics and the dynamics of their SSR-reduced counterpart.

With this correspondence, the high-dimensional dynamics that give rise to the pre-

viously observed composition- and timing-dependent efficacy of direct bacteriotherapies

may be mapped to behaviors in the SSR-reduced model. After applying SSR to the

transition between the healthy and CDI-susceptible steady states of the CDI model, we

find that the separatrix of the SSR-reduced system closely aligns with the location of

the separatrix in the high-dimensional system. Notably, the separatrix of the 2D sys-

tem may be derived analytically (and therefore efficiently) as a power series expansion

about a semistable fixed point. Determining the location of the separatrix in the high-

dimensional system is computationally expensive. The ability to instantly approximate

the location of the high-dimensional separatrix via SSR is handy, and will be valuable in

chapter 5 when it is used to efficiently map the dynamical landscape of high-dimensional

gLV systems. In chapter 6 this two-dimensional/high-dimensional correspondence will

be used once again to guide the creation of indirect bacteriotherapies.

Finally, as a forward-looking comment, note that the 2D gLV system can be inter-

preted as a normal form of bistability. While SSR employs this normal form to analyze

bistability in high-dimensional gLV systems, other mathematical models that feature
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bistability (e.g. resource-consumer models or gene regulatory networks) could feasibly

be represented by this 2D normal form as well. Thus, the direct and indirect control

protocols that we apply to gLV systems in chapters 5 and 6 might one day be relevant

for other types of bistable systems.

4.1 Abstract of “Steady-state reduction of general-

ized Lotka-Volterra systems in the microbiome”

The generalized Lotka-Volterra (gLV) equations, a classic model from theoretical

ecology, describe the population dynamics of a set of interacting species. As the number

of species in these systems grow in number, their dynamics become increasingly complex

and intractable. We introduce steady-state reduction (SSR), a method that reduces a

gLV system of many ecological species into two-dimensional (2D) subsystems that each

obey gLV dynamics and whose basis vectors are steady states of the high-dimensional

model. We apply this method to an experimentally-derived model of the gut microbiome

in order to observe the transition between “healthy” and “diseased” microbial states.

Specifically, we use SSR to investigate how fecal microbiota transplantation, a promising

clinical treatment for dysbiosis, can revert a diseased microbial state to health.

4.2 Introduction

The long-term behaviors of ecological models are proxies for the observable outcomes

of real-world systems. Such models might try to predict whether a pathogenic fungus

will be driven to extinction [99], or whether a microbiome will transition to a diseased

state [60]. In this chapter we explicitly account for this outcome-oriented perspective

with steady-state reduction (SSR). This method compresses a generalized Lotka-Volterra
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(gLV) model of many interacting species into a reduced two-state gLV model whose two

unit species represent a pair of steady states of the original model.

This reduced gLV model is defined on the two-dimensional (2D) subspace spanned by

a pair of steady states of the original model, and the subspace itself is embedded within

the high-dimensional ecological phase space of the original gLV model. We prove that

the SSR-generated model is the best possible gLV approximation of the original model on

this 2D subspace. The parameters of the reduced model are weighted combinations of the

parameters of the original model, with weights that are related to the composition of the

two high-dimensional steady states. We note that SSR could be extended to encompass

three or more steady states, but the resulting reduced systems would quickly become

analytically opaque. In Section 4.3 we describe SSR and its implementation in detail.

We apply this method to the microbiome, which consists of thousands of micro-

bial species in mammals [49], and which exhibits distinct “dysbiotic” microbial states

that are associated with diseases ranging from inflammatory bowel disease to cancer

[100]. Microbial dynamics are mediated by a complex network of biochemical interac-

tions (e.g. cellular metabolism or cell signaling) performed by microbial and host cells

[101, 102]. Ecological models, including the gLV equations, seek to consolidate these

myriad biochemical mechanisms into nonspecific coefficients that characterize the inter-

actions between microbial populations. We consider one particular genus-level gLV model

of antibiotic-induced C. difficile infection (CDI), which was fit with microbial abundance

data from a mouse experiment [7, 6].

This CDI model exhibits steady states that correspond to experimentally-observed

outcomes of health (i.e. resistance to CDI) or dysbiosis (i.e. susceptibility to CDI). The

transition between these healthy and diseased states is difficult to effectively probe due

to the high dimensionality of the system, so previous analyses have been largely limited

to numerical methods [9]. By reducing the dimensionality of the original gLV model,
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SSR enables this transition to be investigated with analytic dynamical systems tools.

We demonstrate the fidelity of SSR as applied to this CDI model in Section 4.4, and

describe the analytic tools accessible to reduced gLV systems in Section 4.5.

Finally, we use SSR to analyze the clinically-inspired scenario of antibiotic-induced

CDI. Specifically, we examine the bacteriotherapy fecal microbiota transplantation (FMT),

in which gut microbes from a healthy donor are engrafted into an infected patient, and

which has shown remarkable success in treating recurrent CDI [103]. In Section 4.5 we

implement FMT in the reduced model and successfully revert a disease-prone state to

health, and also find that the efficacy of FMT depends on the timing of its administra-

tion. In Section 4.6 we show that this dependence on FMT timing, also present in the

experimentally-derived CDI model [9], is preserved under SSR.

4.3 Compression of generalized Lotka-Volterra sys-

tems

We begin by demonstrating how to compress the high-dimensional ecological dy-

namics of the generalized Lotka-Volterra (gLV) equations, given in Eq. (4.1), into an

approximate two-dimensional (2D) subspace. This process, called steady-state reduction

(SSR), is depicted schematically in Fig. 5.4. The idea behind SSR is to recast a pair of

fixed points of a high-dimensional gLV model as idealized ecological species in a 2D gLV

model, and to characterize the interactions between these two composite states by taking

a weighted average over the species interactions of the high-dimensional system. Within

this subspace, these reduced dynamics constitute the best possible 2D gLV approximation

of the high-dimensional gLV dynamics.
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Figure 4.1: Schematic of steady State Reduction (SSR). A gLV system of N species
(Eq. (4.1)) exhibits two steady states ~ya and ~yb, characterized as diseased (red) and
healthy (green). SSR identifies the two-dimensional (2D) gLV system defined on the
2D subspace spanned by the two high-dimensional steady states (Eq. (5.3)) that best
approximates the high-dimensional system. Specifically, SSR prescribes 2D parame-
ters (Eq. (4.3)) that minimize the deviation between the N-dimensional gLV dynamics
d~y/dt and the embedded 2D SSR-reduced dynamics d~x/dt.
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The gLV equations model the populations of N interacting ecological species yi as

d

dt
yi(t) = yi(t)

(
ρi +

N∑
j=1

Kijyj(t)

)
, (4.1)

for i ∈ 1, . . . , N . In vector form, these microbial dynamics are written d~y
dt

=
∑N

i=1
dyi
dt
ŷi.

Here, the growth rate of species i is ρi, and the effect of species j on species i is given

by the interaction term Kij. In the following derivation, we assume this model observes

distinct stable fixed points ~ya and ~yb.

Define variables xa and xb in the direction of unit vectors x̂a and x̂b that parallel

the two steady states according to x̂a ≡ ~ya/‖~ya‖2, and x̂b ≡ ~yb/‖~yb‖2, where ‖·‖k is the

k-norm. The 2D gLV dynamics on the subspace spanned by x̂a and x̂b are given by

dxa
dt

= xa(µa +Maaxa +Mabxb), and

dxb
dt

= xb(µb +Mbaxa +Mbbxb).

(4.2)

The in-plane dynamics on this subspace in vector form are defined to be d~x
dt

= dxa
dt
x̂a +

dxb
dt
x̂b.

SSR links the parameters of the in-plane dynamics to the high-dimensional gLV dy-

namics by setting

µγ =
~ρ · (~y ◦2γ )

‖~yγ‖22
, for γ ∈ a, b, and

Mγδ =
(~y ◦2γ )TK~yδ

‖~yγ‖22‖~yδ‖2
, for γ, δ ∈ a, b.

(4.3)

Here, the Hadamard square represents the element-wise square of a vector, defined as

~v ◦2 = [v21, v
2
2, . . . , v

2
N ]T . The parameter definitions in Eq. (4.3) are valid when ~ya and

~yb are orthogonal; when they are not, the cross-interaction terms Mab and Mba become

more complicated, and are given in Eqs. (4.28) and (4.29) of the Appendix.

This choice of parameters minimizes the deviation between the in-plane and high-
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dimensional gLV dynamics ε = ‖d~y
dt
− d~x

dt
‖2 for any point on the subspace spanned by

x̂a and x̂b. This is proved in the Appendix by showing that, when evaluated with

the SSR-prescribed parameter values of Eq. (4.3), ∂ε
∂ci

= 0 for every coefficient ci ∈

{µa, µb, Maa, Mab, Mba, Mbb}, and that ∂2ε
∂ci∂cj

> 0 for every pair of coefficients ci and

cj.

Under this construction, the high-dimensional steady states ~ya and ~yb have in-plane

steady state counterparts at (‖~ya‖2, 0) and (0, ‖~yb‖2), respectively. It is for this reason

we call this method steady-state reduction. Further, if ~ya and ~yb are stable and orthog-

onal, then the corresponding 2D steady states are stable as well, which guarantees the

existence of a separatrix in the reduced 2D system. These properties are shown in the

Supplementary Information,which includes many other calculations that accompany the

results of this chapter. We provide a Python module that implements SSR on arbitrary

high-dimensional gLV systems in the Supplementary Code1.

If the ecological dynamics of the system lie entirely on the plane spanned by x̂a and

x̂b, the SSR approximation is exact. In this case, the plane contains a slow manifold on

which the ecological dynamics evolve. Therefore, the dynamics generated by SSR result

from a linear approximation of the slow manifold.

4.4 Steady-state reduction applied to a microbiome

model

Thousands of microbial species populate the gut microbiome [49], but for modeling

purposes it is common to coarse-grain at the genus or phylum level. Recently, many

experimentally derived gLV microbiome models have been constructed with tools such as

1Supplementary Code used to implement SSR and generate Fig. 2 available at
github.com/erijones/ssr module.
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MDSINE, a computational pipeline that infers gLV parameters from time-series microbial

abundance data [104]. SSR is applicable to any of these gLV systems, so long as it exhibits

two or more stable steady states.

We consider one such experimentally derived gLV model, constructed by Stein et al.

[7], that studies CDI in the mouse gut microbiome. This model takes the same form as

Eq. (4.1) and tracks the abundances of 10 different microbial genera and the pathogen

C. difficile (CD), all of which can inhabit the mouse gut. The 11-dimensional (11D)

parameters of this model were fit with data from an experimental mouse study [6]. The

parameters of this model, along with a sample microbial trajectory, are provided in the

Supplementary Information.

Despite the fact that this model did not resolve individual bacterial species, it still

captured the clinically- and experimentally-observed phenomenon of antibiotic-induced

CDI, suggesting that the true microbiome’s dimensionality could be approximated by

an 11-dimensional model. SSR further simplifies the dimensionality of the microbiome:

instead of thousands of microbial species or even eleven dominant genera, with SSR steady

states of the microbiome (each of which are multi-species equilibrium populations) are

idealized as individual ecological populations.

This CDI model exhibits five steady states that are reachable from experimentally

measured initial conditions [7]. In previous work, we identified which of these steady

states were susceptible or resilient to invasion by C. difficile (CD) [9]. Based on this clas-

sification, we interpret a CD-susceptible steady state ~ya of the 11D model as “diseased,”

and interpret a CD-resilient steady state ~yb as “healthy.” Explicit details about each of

these states are provided in the Supplementary Information. These two states are used

to demonstrate SSR.

The reduced 2D parameters are generated according to Eq. (4.3). We introduce new

scaled variables, za = xa/‖~ya‖2, and zb = xb/‖~yb‖2, so that the 2D system exhibits steady
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states at (1, 0) and (0, 1). In Fig. 4.2, trajectories of the reduced system (solid lines)

that originate from four initial conditions and tend toward either the healthy (green) or

diseased (red) steady states are plotted. The 2D separatrix is also plotted (light grey),

which divides the basins of attraction of the two steady states, and which is derived in

Eq. (4.6) of the Section 4.5.

To compare the original and reduced models, we consider 11D trajectories that origi-

nate from the 11D embedding of the four 2D initial conditions. The projections of these

11D trajectories onto the 2D subspace spanned by ~ya and ~yb (dashed lines) are shown

alongside the corresponding 2D trajectories in Fig. 4.2. The in-plane 11D separatrix is

also shown (dark grey), which is numerically constructed by tracking the steady state

outcomes of a grid of initial conditions on the plane.

We note that ~ya and ~yb are nearly orthogonal. However, in the Supplementary In-

formation we demonstrate that the high-dimensional and SSR-reduced trajectories and

basins of attraction agree for four different implementations of SSR; in two of these

implementations the pairs of steady states were orthogonal, and in the other two they

were not. It is important to understand when SSR is a good approximation, and under

what conditions it may be successfully applied— this issue will be addressed in a future

publication (in progress).

In the five realizations of SSR explored in this chapter and in the supplement, the

basins of attraction and microbial trajectories are largely preserved through SSR. Since

the 11D system has been compressed (from 132 parameters to 6), it is not surprising

that the low- and projected high-dimensional trajectories do not exactly match. Even

so, the basins of attraction agree almost entirely, and the dynamical trajectories share

clear similarities. The deviation between the original and reduced systems is examined in

more detail in the Supplementary Information. The close agreement between the original

and reduced systems intimates the reductive potential of SSR.

83



Compression of high-dimensional bistable dynamics with steady-state reduction (SSR) Chapter 4

0 1za ≡ xa
‖~ya‖2
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≡
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‖~y
b‖ 2

gLV (11D) trajectories

SSR (2D) trajectories

11D separatrix
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Figure 4.2: Fidelity of steady-state reduction (SSR). SSR is applied to an experimen-
tally-derived 11-dimensional (11D) gLV model of C. difficile infection (CDI) [7]. This
model exhibits steady states ~ya and ~yb that are vulnerable (diseased, red) and resilient
(healthy, green) to invasion by the pathogen C. difficile. We consider 11D microbial
trajectories whose initial conditions lie the plane spanned by these two steady states,
and plot the in-plane projection of these trajectories (dashed lines). The 2D SSR-gen-
erated dynamics (solid lines) are plotted alongside these high-dimensional trajectories.
The separatrix of each system is also plotted: as a proxy for the 11D separatrix (ac-
tually a 10-dimensional surface), the in-plane separatix (dark grey) is numerically
generated and plotted; the 2D separatrix is exact and given in Eq. (4.6) (light grey).
The code used to generate this figure is available in the Supplemental Code.
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4.5 Analysis of the 2D gLV equations

Having demonstrated a method of linking a high-dimensional gLV system to a 2D

gLV system via SSR, we now take advantage of the analytic accessibility of such 2D

systems. We consider biologically relevant systems that exhibit competitive dynamics by

assuming µα > 0 for α ∈ a, b, and Mαβ < 0 for α, β ∈ a, b. These systems exhibit two

stable and homogeneous fixed points at (−µa/Maa, 0) and (0, −µb/Mbb). In this case,

the system will also possess a hyperbolic fixed point at (x∗a, x
∗
b) with xa > 0 and xb > 0,

which topologically guarantees the existence of a separatrix.

In Section 4.5.1 this separatrix is explicitly calculated for the 2D gLV system Eq. (5.3).

This result, in conjunction with SSR, allows for an efficient approximation of the high-

dimensional separatrix. Then, Section 4.5.2 explores the steady state and transient

dynamics of a nondimensionalized form of the 2D gLV system with clinically-inspired

modifications.

4.5.1 Explicit form of the separatrix

The long-term dynamics of this system are dictated by the basins of attraction of the

stable steady states, and these basins are delineated by a separatrix that, for topological

reasons, must be the stable manifold of the hyperbolic fixed point (x∗a, x
∗
b). In Fig. 4.3

these basins are depicted topographically via isoclines of the split Lyapunov function

V (xa, xb) (lightly shaded contours), which acts as a potential energy landscape [105].

The separatrix h(xa) may be analytically computed in a power series expansion about

the hyperbolic fixed point (x∗a, x
∗
b),

h(xa) =
∞∑
n=0

cn
n!

(xa − x∗a)n, (4.4)
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which as an invariant manifold must satisfy [106]

dh(xa)

dxa
=

dxb
dt

/
dxa
dt

, (4.5)

resulting in the recursive relations

c0 = x∗b ,

c1 =
1

2Mabx∗a

[
Mbbx

∗
b −Maax

∗
a

−
√

(Mbbx∗b −Maax∗a)
2 + 4MabMbax∗ax

∗
b

]
,

c2 =
2c1(Mba +Mbbc1 −Maa −Mabc1)

2x∗aMaa + 3x∗aMabc1 −Mbbx∗b
, and

cn =
1

(nx∗aMaa + (n+ 1)x∗aMabc1 −Mbbx∗b)

×

{
ncn−1(Mba +Mbbc1 − (n− 1)(Maa +Mabc1))

+ n!
n−1∑
`=2

[
c`

`! (n− `)!
(Mbbcn−` − (n− `)Mabcn−`

−x∗aMabcn−`+1)

]}
, for n > 2,

(4.6)

as derived in Eqs. (S27-S38). This calculation allows the a priori classification of the

fate of a given initial condition, without need for simulation. We note that this algebraic

calculation of the separatrix is considerably faster than numerical methods that rely on

relatively costly quadrature computations. Further, in conjunction with SSR, this ana-

lytic form offers an efficient approximation to the in-plane separatrix of high-dimensional

systems.
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4.5.2 Dynamical landscape of the 2D gLV equations

Next, we analyze a two-state implementation of the gLV equations that parallels the

clinically-inspired scenario of antibiotic-induced CDI. In this scenario, antibiotics deplete

a health-prone initial condition, requiring administration of FMT in order to recover, as

in Fig. 4.3. FMT is implemented in the 2D gLV model by adding a transplant of size s

composed of the healthy steady state (0, 1) to an evolving microbial state at a specified

time following administration of antibiotics.

We consider a nondimensionalized form of the gLV equations Eq. (5.3) and designate

nondimensionalized variables with a tilde. Therapeutic interventions of antibiotics and

FMT are included in this model in a manner consistent with previous approaches [7, 9].

In all, this clinically-inspired two-state gLV model is given by

dx̃a
dt

= x̃a(1− x̃a − M̃abx̃b)

+ x̃aεau(t) + waδ(t− t∗), and

dx̃b
dt

= x̃b(µb − M̃bax̃a − x̃b)

+ x̃bεbu(t) + wbδ(t− t∗),

(4.7)

which includes optional antibiotic administration u(t) operating with efficacy ~ε, and

optional FMT with transplant ~w administered instantaneously at time t∗.

In the absence of antibiotics and FMT, the dynamical system Eq. (4.7) exhibits three

nontrivial steady states at (1, 0), (0, µb), and (x̃∗a, x̃
∗
b) ≡ ( 1−M̃abµ̃b

1−M̃abM̃ba
, µ̃b−M̃ba

1−M̃abM̃ba
). To

simplify the presentation of our results in the main text we assume µb = 1, though this

assumption is relaxed in the Supplementary Information.

As before, suppose the variable x̃a corresponds to a diseased state, and x̃b corresponds

to a healthy state. Also assume the transplant ~w consists of exclusively healthy microbes

so that wa = 0. Figs. 4.3, 4.4, and 4.5 are generated with parameter values M̃ab = 1.167

87



Compression of high-dimensional bistable dynamics with steady-state reduction (SSR) Chapter 4

0 1 x̃a
0

1

x̃b
IC

sep
aratri

x

RX

FMT
success

FMT delay

FMT
failure

FMT delay

healthy microbial state

diseased microbial state

Figure 4.3: The success or failure of fecal microbiota transplantation (FMT) de-
pends on the timing of its administration in a two-state gLV system (Eq. (4.7)). We
consider a clinically-inspired scenario that parallels antibiotic-induced CDI. First, a
health-prone initial condition (IC) is depleted by antibiotics (RX, orange). If FMT
(brown) is administered shortly after the antibiotics, the treatment steers the com-
position to a healthy state (FMT success). If FMT administration is delayed, the
microbial trajectory instead attains the diseased state (FMT failure). The basins of
attraction of the healthy and diseased steady states are delineated by the separatrix
Eq. 4.6, and isoclines of the potential energy landscape (light contours) are given by
the split Lyapunov function Eq. (S47) [105].
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Figure 4.4: The FMT transplant size needed to revert an antibiotic-depleted state back
to health grows as FMT administration is delayed. The minimum FMT transplant
size required to cure five distinct disease-prone microbial trajectories, each evolving
according to Eq. (4.7), are calculated and plotted. As trajectories attain the diseased
steady state, the required transplant size approaches s∗. The required transplant size
changes at two different rates, α and β, with the crossover point between these two
rates at size sc indicated by a hollow square. The transplant size dynamics ds/dt as
well as the rates α and β are derived in Eq. (4.9) and the surrounding text.

and M̃ba = 1.093, which give typical results.

Altering the fate of an initial condition requires crossing the separatrix by some ex-

ternal means, which is achieved through FMT. Fig. 4.3 shows two microbial time courses

in which long-term outcomes are determined by the timing of FMT administration. At

each point along a microbial trajectory in the diseased basin of attraction, the minimum

FMT size s required to transfer the microbial state into the healthy basin of attraction

is calculated. We use this metric to quantify our notions of “FMT efficacy.”

In clinical practice FMT administration varies in transplant size, transplant compo-

sition, and how many transplants are performed. Further, it is unclear how these factors
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influence the success of FMT [107]. For the purposes of this chapter, we consider a hy-

pothetical FMT treatment of size st (i.e. a horizontal cut across Fig. 4.4) and describe

how its success depends on the timing of its administration.

Fig. 4.4 presents the minimum FMT size s as a function of time (main panel) for

several trajectories that originate in the diseased basin of attraction (inset), including

the main trajectory of Fig. 4.3. This minimum required FMT size increases with time—

often dramatically— and there are two discernible rates of increase, denoted α and β

in Fig. 4.4. These two rates are related to the fast and slow manifolds of the ecological

system, which in turn govern the minimum required transplant size dynamics over time.

To reflect the importance of the separatrix in dictating the microbial dynamics, we

change coordinates to the eigenvectors (u, v) of the hyperbolic steady state, shown in

Fig. 4.5 (inset). In these coordinates the v-axis corresponds to the separatrix, and u

is proportional to the minimum FMT size required for a successful transplant s, such

that s = u/(û · x̂b), where (û, v̂) and (x̂a, x̂b) are the unit vectors associated with their

associated coordinates.

In this new (u, v) basis, the 2D gLV equations become

du

dt
= A10u− A11uv − A20u

2, and

dv

dt
= −B01v −B02v

2 +B20u
2,

(4.8)

where each coefficient is a positive algebraic function of the original gLV parameters given

analytically in Eqs. (S60-S74) of the Supplementary Information. When µb 6= 1, these

equations contain additional quadratic terms described in the Supplementary Information

that account for the nonlinearity of the separatrix. In the small u and small v limit this

model reduces to the linearization about the hyperbolic fixed point. Near this fixed point

there is a separation of time scales between u and v (B01/A10 > 1 always, with median
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Figure 4.5: The role of timing in FMT administration. For antibiotic-depleted dis-
ease-prone initial conditions in which antibiotics have been cleared (u(t) = 0), FMT is
most effective when administered immediately (t∗opt = 0, grey) or nearly immediately
(t∗opt > 0, colored) following antibiotic administration. The optimal transplant time
t∗opt is computed for any initial condition (u0, v0) (colorbar) according to Eq. (S88) of
the Supplementary Information, which can reduce to Eq. (4.10). Two representative
microbial trajectories are plotted in (u, v) (main panel) and (xa, xb) (inset) coordi-
nates. For v0 > 0 four possible FMT transplants are shown, including the optimal one
that occurs at t∗opt = 2.1. For v0 < 0 it is always best to administer FMT immediately
following antibiotic administration.
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of 5.9 and IQR of [2.7, 9.1] over random parameter draws), indicating that there are

inherent fast and slow manifolds in this system.

This coordinate change also reveals the role of timing in FMT administration, since

the minimum required transplant size s is precisely governed by Eq. (4.8), by proxy of

u. To demonstrate this analytically, we consider an initial condition condition (u0, v0)

that is located near the fast manifold in a system with clear separation of time scales,

so that (i) B20u
2
0 is negligible, (ii) A10 << B01, and (iii) B02v

2
0 << B01v0 (though this

assumption is relaxed in Eq. (S87)). In this case, the dynamics in the fast v̂ direction

are approximately v(t) ≈ v0e
−B01t, and the required transplant size dynamics reduce to

ds

dt
= s

(
A10 − A20(û · x̂b)s− A11v0e

−B01t
)
. (4.9)

Thus, the required transplant size rates α and β in Fig. 4.4 are approximately α =

ds(0)
dt

∣∣
s=sc

, and β = ds(∞)
dt

∣∣
s=sc

, where sc is the transplant size required at the crossover

point between these rates (e.g. as shown in Fig. 4.4).

For an initial condition with v0 < 0, which occurs in Fig. 4.3 when a nearly healthy

state is depleted by antibiotics, α > β. In this case the required transplant size monoton-

ically increases until it attains s∗ at the infected steady state, so it is best to administer

FMT as soon as possible. Alternatively, when v0 > 0, α < β. When A11v0 is sufficiently

large α becomes negative, which indicates there is a nonzero transplant time at which

the required transplant size is minimized (corresponding to ds
dt

= 0). The concave-up

trajectories in Fig. 4.4 exhibit this optimal transplant time. For v0 > 0 and under the

same conditions for which Eq. (4.9) was derived, this optimal transplant time t∗ is

t∗opt =
1

B01

ln

(
A11v0

A10 − A20u0

)
. (4.10)

92



Compression of high-dimensional bistable dynamics with steady-state reduction (SSR) Chapter 4

0 50 100
t∗ (days)

0

.1

.2

re
qu

ir
ed

F
M

T
si

ze
s

(ẑ
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Figure 4.6: Transient dynamics are preserved under SSR. (inset) Microbial trajectories
of the CDI model (in-plane projection, dashed) and the associated SSR-reduced model
(solid) as in Fig. 4.2 are shown. (main panel) At each time along these trajectories,
the minimum FMT size required to make the state health-prone is plotted, for a
transplant made up of ~yb (11D, dashed) or (0, 1) (2D, solid). Phase space is linked
to the FMT size dynamics by indicating the time at which zb begins to decrease with
a solid square (2D) or diamond (11D) in both the inset and main figure. Since the
required FMT size s is the distance between a state and the separatrix, the similarity
between the two time courses of s indicates that SSR preserves transient dynamics.

This nonzero transplant time reflects ecological pressures that temporarily drive the sys-

tem closer to the separatrix, overpowering the slow unstable manifold. Two trajectories

that numerically recapitulate these two cases are shown in Fig. 4.5.

4.6 SSR applied to fecal microbiota transplantation

In Section 4.5, FMT restored a CDI-prone microbial state in a 2D gLV model. In

previous work [9], we implemented FMT in the previously mentioned 11D CDI model

[7] and observed similar success. Here, the behavior of FMT in the CDI model and

in its SSR counterpart are shown to match closely, which indicates that SSR preserves
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Figure 4.7: Optimal transplant times are preserved under SSR. Optimal transplant
times t∗opt of the 11D Stein model (main panel) largely match the predictions of its
associated SSR-reduced model (inset). In the high-dimensional model, t∗opt is com-
puted numerically (as in Fig. 4.6) for a grid of points on the plane spanned by ~ya and
~yb for disease-prone initial conditions (located underneath the separatrix, which is
shown as a thick black line). The spatial and temporal resolutions of this simulation
are δza = 0.025, δzb = 0.01, and δtopt = 0.15, and the resulting data points were
smoothed with a Gaussian filter. (inset) We display the optimal transplant times of
the corresponding SSR-reduced model, as in Fig. 4.5. The SSR-reduced parameters
were nondimensionalized so that t∗opt could be generated with Eq. (S88), and the re-
sulting optimal transplant time predictions were redimensionalized and plotted. The
inset and the main panel share the same colorbar.
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transient microbial dynamics.

Fig. 4.6 (inset) contains the in-plane projections of the 11D (dashed) and correspond-

ing SSR-reduced 2D (solid) microbial trajectories with initial conditions that lie on the

plane spanned by (ŷa, ŷb) (11D) and (ẑa, ẑb) (2D), as in Fig. 4.2. Fig. 4.6 (main panel)

plots the required transplant size s at each state along the two trajectories: the 11D

(dashed) transplant is composed of ŷa, and s is calculated numerically with a bisec-

tion method; the 2D (solid) transplant is composed of ẑb = (0, 1), and s is computed

analytically with Eq. (4.6).

In both systems, the microbial trajectories follow a fast stable manifold before switch-

ing to a slow manifold of some hyperbolic fixed point. As in the 2D case, the flow along

these fast and slow manifolds underpins how the required transplant size s changes over

time. In Fig. 6, the transition between the fast and slow manifolds occurs at 8.37 days

in 11D (solid diamond, main panel and inset) and at 8.31 days in 2D (solid square).

As in the 2D case, the transition between these manifolds may result in a nonzero op-

timal transplant time t∗opt. The main panel of Fig. 4.7 displays these optimal transplant

times over a range of initial conditions, in which t∗opt is generated with the same nu-

merical bisection method as previously mentioned. Many of the high-dimensional initial

conditions exhibit a non-zero optimal transplant time, mirroring the results of Fig. 4.5.

Further, the high-dimensional optimal transplant times closely match those predicted by

SSR, which are displayed in the inset of Fig. 4.7, and which were analytically calculated

with Eq. (S88).

Since the SSR-reduced system largely preserves the high-dimensional transplant time

dynamics, and since in the 2D nondimensionalized system t∗opt can be examined ana-

lytically, the high-dimensional optimal transplant times may be approximated in terms

of the high-dimensional interaction parameters. First, for systems well-approxiated by

SSR, a nonzero optimal transplant time can only exist when v0 > 0— this tends to occur

95



Compression of high-dimensional bistable dynamics with steady-state reduction (SSR) Chapter 4

when the size of the initial condition is larger than that of the steady state ~yb, and when

its composition is similar to that of ~yb. For this class of initial conditions, topt will be

smaller when the eigenvalues of the semistable fixed point (A10 and B01) are larger, or

in terms of the SSR-reduced parameters, when Mab/Mbb and Mba/Maa are larger.

The similarities between the transient dynamics of the high-dimensional and 2D sys-

tems, as well as the correspondence in optimal transplant timings, suggest that the the-

oretical analyses of Section IV may inform more complex and highly-resolved systems.

4.7 Discussion

4.7.1 Compression of complex ecological systems

SSR differs from other model reduction techniques [108, 109] since it preserves core

observable ecological features of the original model, namely steady states and their sta-

bilities. The behavior of the model on the transition between two of these steady states is

approximated by SSR. Though the implementations of SSR demonstrated in this chapter

were accurate, in general the accuracy of SSR is not obvious a priori ; therefore, in future

work it is important to carefully examine the circumstances under which SSR is effective.

When SSR is accurate, properties of the steady states the original model may also be

extracted from this approximation— for example, the size of the basins of attraction in

the approximate system can inform the robustness of a given state in the original system,

and the separatrix of the reduced model can approximate the slow manifold on which

dynamics evolve in the original model. The speed-up gained by leveraging the analytic

tractability of these approximate systems highlights the utility of SSR.

Beyond applications to existing gLV models, SSR-based methods could create two-

state gLV systems from raw microbial data by choosing basis vectors during the fitting
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process that correspond to experimentally observed steady states [110]. The resulting

models would describe interactions between steady states rather than between individ-

ual species, and would consist of fewer variables and parameters that have improved

explanatory power. This perspective— which effectively changes the basis vectors of a

gLV model from species to steady states— may inform the transitions between steady

states in ecological models.

4.7.2 Simplification of gLV-based FMT frameworks

Bacteriotherapy is a promising frontier of medicine that relies on the notion that the

microbiome’s composition can both influence and be influenced by disease. Then, the

deliberate alteration of a dysbiotic microbiome, by FMT for example, might be a viable

treatment option for a range of diseases [111, 112]. Since FMT does not contribute to

antimicrobial resistance, it is an emerging alternative to antibiotics [113, 114]. Clinical

studies continue to regularly identify new diseases that are treated by FMT [115, 116,

117].

In this chapter we examined a bistable two-state gLV model from a clinical perspec-

tive, in which interventions such as FMT or antibiotics altered the outcome of a microbial

trajectory. The tractability of this two-state system allowed for an explicit understanding

of how the efficacy of FMT is influenced by the timing of its administration following

antibiotic treatment. In this model, delaying the administration of FMT in disease-prone

microbiomes could lead to its failure. Modifying the time course of a treatment has in-

novated treatment strategies in cancer immunotherapy [118] and HIV vaccination [119],

and the results of this two-state ecological model suggest that treatment timing may be

relevant for bacteriotherapy as well.

Indeed, some circumstantial evidence exists that supports the predictions of the two-
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state model, in which FMT efficacy is improved when administered shortly after antibi-

otics. Kang et al. [120] used a promising variant of FMT to induce seemingly long-term

changes in the microbiome and symptoms of children with autism spectrum disorders.

This FMT variant “Microbiota Transfer Therapy” first prescribed the antibiotic van-

comycin for two weeks, then bowel cleaning, then a large FMT dose of Standardized

Human Gut Microbiota, and finally two months of daily maitenance FMT doses. In

their study, they intended for the efficacy of FMT to be improved by first clearing out

the microbiome with antibiotics, which is consistent with the results of the 2D gLV sys-

tem. However, future experiments are needed to quantitatively test the extent to which

antibiotic-depleted states are receptive to FMT-like therapies.

4.8 Conclusion

Broadly, SSR realizes a progression towards the simplification of dynamical systems:

while linearization approximates a dynamical system about a single steady state, SSR

approximates a dynamical system about two steady states. We have shown that SSR

produces the best possible in-plane 2D gLV approximation to high-dimensional gLV dy-

namics. Further, we have demonstrated the extent to which the 2D model captures

the basins of attraction and transient dynamics of an experimentally derived model. In

addition to the computational efficiency of this technique, which employs analytic re-

sults rather than expensive simulations, SSR builds an intuition for the high-dimensional

system out of connected 2D cross-sections.

By approximating this complex and classic ecological model with analytically tractable

ecological subspaces, SSR anchors a high-dimensional system to well-characterized 2D

systems. Consequently, this technique offers to unravel the complicated landscapes that

accompany complex systems and their behaviors.
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4.9 Derivation of steady-state reduction

Consider an N-dimensional gLV system given by Eq. (4.1) that exhibits steady states

~ya and ~yb, with dynamics given by d~y
dt

=
∑N

i=1
dyi
dt
ŷi. As in the main text, define variables

xa and xb in the direction of the unit vectors x̂a ≡ ~ya/‖~ya‖2, and x̂b ≡ ~yb/‖~yb‖2, where

‖·‖k is the k-norm. Further consider the in-plane 2D gLV dynamics that exist on the

plane spanned by x̂a and x̂b. Here, we prove that the parameters prescribed by steady-

state reduction, given in Eq. (4.3), minimize the 2-norm of the deviation ~ε between the

high-dimensional and in-plane dynamics at every point on the plane.

Consider coefficients c = {c1, . . . , c6} that parameterize the 2D gLV equations,

dxa
dt

= xa (c1 + c2xa + c3xb) , and

dxb
dt

= xb (c4 + c5xa + c6xb) ,

(4.11)

so that the in-plane dynamics are d~x
dt

= dxa
dt
x̂a + dxb

dt
x̂b. Any point on this plane can be

written ~y = ~yaxa + ~ybxb.

The deviation between the high-dimensional and in-plane dynamics ~ε is

~ε(xa, xb) =
d~x

dt
− d~y

dt
, (4.12)

which is defined at every point on the plane (xa, xb). We will show that the parameters

precribed by SSR minimize the 2-norm of this deviation ‖~ε‖2 at point on the plane.

The deviation ~ε can be decomposed into the N-dimensional unit vectors ŷi, so that
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~ε =
∑

i ŷiεi, where the components εi are given by

εi = yaixa

(
(c1 − ρi) +

(
c2 −

N∑
j=1

Kijyaj

)
xa +

(
c3 −

N∑
j=1

Kijybj

)
xb

)

+ ybixb

(
(c4 − ρi) +

(
c5 −

N∑
j=1

Kijyaj

)
xa +

(
c6 −

N∑
j=1

Kijybj

)
xb

)

≡ ε10,ixa + ε20,ix
2
a + ε11,ixaxb + ε01,ixb + ε02,ix

2
b ,

(4.13)

where components εjk,i are defined to correspond to contributions by xjax
k
b terms. Here,

yai corresponds to the ith component of the unit vector x̂a ≡ ~ya/‖~ya‖2. In the same way,

the deviation vector may be decomposed according to

~ε = ~ε10xa + ~ε20x
2
a + ~ε11xaxb + ~ε01xb + ~ε02x

2
b . (4.14)

Minimizing this deviation at each point (xa, xb) is equivalent to minimizing each

orthogonal contribution ~εjk. Each contribution is a function of one or two parameters

(~ε10(c1), ~ε20(c2), ~ε01(c4), ~ε02(c6), and ~ε11(c3, c5)), which simplifies the minimization pro-

cess.

We now find the set of optimal coefficients c∗ = {c∗1, . . . , c∗6} that minimize the 2-

norm of each contribution ‖~εjk‖2. For convenience, we equivalently minimize the square

of this 2-norm. The Hadamard square represents the element-wise square of a vector,

defined as ~v ◦2 = [v21, v
2
2, . . . , v

2
N ]T .

The coefficient ‖~ε10‖22 is given by

‖~ε10‖22 =
N∑
i=1

y2ai(c1 − ρi)2. (4.15)
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When minimized with respect to c1, this quantity obeys

d‖~ε10‖22
dc1

=
N∑
i=1

2y2ai(c1 − ρi) = 0, (4.16)

which is satified for

c∗1 =

∑N
i=1 y

2
aiρi∑N

i=1 y
2
ai

=
~y ◦2a · ~ρ
‖~ya‖22

. (4.17)

In a similar way, ‖~ε20‖22, ‖~ε01‖22, and ‖~ε02‖22 are minimized when

c∗2 =

∑N
i=1

(
y2ai
∑N

j=1Kijyaj

)
∑N

i=1 y
2
ai

=
(~y ◦2a )TK~ya
‖~ya‖32

, (4.18)

c∗4 =

∑N
i=1 y

2
biρi∑N

i=1 y
2
bi

=
~y ◦2b · ~ρ
‖~yb‖22

, (4.19)

and

c∗6 =

∑N
i=1

(
y2bi
∑N

j=1Kijybj

)
∑N

i=1 y
2
bi

=
(~y ◦2b )TK~yb
‖~yb‖32

. (4.20)

Lastly, the squared norm of the cross-term ‖~ε11‖2 is given by

‖~ε11‖22 =
N∑
i=1

[
yai

(
c3 −

N∑
j=1

Kijybj

)

+ybi

(
c5 −

N∑
j=1

Kijyaj

)]2
.

(4.21)
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Minimizing with respect to c3 and c5 results in

d‖~ε11‖22
dc3

=
N∑
i=1

2

[
y2ai

(
c3 −

N∑
j=1

Kijybj

)

+yaiybi

(
c5 −

N∑
j=1

Kijyaj

)]

= 0,

(4.22)

and

d‖~ε11‖22
dc5

=
N∑
i=1

2

[
yaiybi

(
c3 −

N∑
j=1

Kijybj

)

+y2bi

(
c5 −

N∑
j=1

Kijyaj

)]

= 0.

(4.23)

After rearranging terms, these conditions read

c3

N∑
i=1

y2ai + c5

N∑
i=1

yaiybi =
N∑
i=1

N∑
j=1

yaiKij(yaiybj + ybiyaj), (4.24)

and

c3

N∑
i=1

yaiybi + c5

N∑
i=1

y2bi =
N∑
i=1

N∑
j=1

ybiKij(yaiybj + ybiyaj), (4.25)

which are satisfied when

c∗3 =

∑N
i,j=1Kij(yaiybj + ybiyaj)

(∑N
k=1 yaiy

2
bk − ybiyakybk

)
(∑N

i=1 y
2
ai

)(∑N
i=1 y

2
bi

)
−
(∑N

i=1 yaiybi

)2 , (4.26)
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and

c∗5 =

∑N
i,j=1Kij(yaiybj + ybiyaj)

(∑N
k=1 ybiy

2
ak − yaiyakybk

)
(∑N

i=1 y
2
ai

)(∑N
i=1 y

2
bi

)
−
(∑N

i=1 yaiybi

)2 . (4.27)

However, when ~ya and ~yb are orthogonal, the cross-term deviation ‖~ε11‖22 is simplified,

and the optimal coefficients c∗3 and c∗5 become

c∗3 =

∑N
i=1

(
y2ai
∑N

j=1Kijybj

)
∑N

i=1 y
2
ai

=
(~y ◦2a )TK~yb
‖~ya‖22‖~yb‖2

, (4.28)

and

c∗5 =

∑N
i=1

(
y2bi
∑N

j=1Kijyaj

)
∑N

i=1 y
2
bi

=
(~y ◦2b )TK~ya
‖~yb‖22‖~ya‖2

. (4.29)

Since the squared norms of the deviations ‖εjk‖2 are convex, the coefficient set c∗ is

a global minimum for ‖~ε‖2. Therefore, we have identified the parameters that minimize

the deviation between the in-plane and high-dimensional gLV dynamics for any point on

the plane spanned by ~ya and ~yb.
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Chapter 5

Control of ecological outcomes with

direct bacteriotherapies

Having carefully examined the ecological dynamics between a single pair of steady states

with SSR in chapter 4, in this chapter we generalize our approach to study the ecological

dynamics between multiple pairs of steady states. We compress the dynamical landscape

of a multistable high-dimensional gLV system (i.e., a gLV system that possesses several

steady states that are each point attractors) into an “attractor network,” which contains

information about the ecological dynamics between each possible pair of steady states.

The attractor network is a graph, where nodes are steady states and edges correspond to

ecological states that are convex combinations of the steady states. Along each edge we

indicate where the separatrix between the two steady states is located. Therefore, the

attractor network compresses the dynamical landscape of high-dimensional gLV systems

into an intuitive schematic that reveals how to transition from one steady state to another.

The attractor network of the CDI model informs how inherent ecological dynamics

can be leveraged to minimize the required size of successful direct bacteriotherapies. For

example, our results indicate that when attempting to drive a system towards a particular
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steady state, it can sometimes be more efficient (i.e. require a smaller net transplant size)

to drive the system first towards an intermediate state, and then towards the target state.

The attractor network therefore serves as a roadmap of the dynamical landscape, and

informs the optimal composition of direct bacteriotherapies.

Finally, the attractor network is derived from the same perspective as SSR— that

bistable subsystems provide useful information about the total system— but it can be

constructed without using SSR. However, constructing an attractor network without

SSR requires the high-dimensional gLV systems to be simulated for initial conditions

along each convex combination of steady states, which is computationally expensive.

Alternatively, SSR approximates the location of the separatrix on each edge instantly,

which is useful since the number of edges of an attractor networks grows as the square

of the number of steady states of interest. Therefore, due to the analytic properties of

2D gLV models, SSR holds great utility for efficiently mapping out high-dimensional gLV

systems.

5.1 Abstract for “Navigation and control of outcomes

in a generalized Lotka-Volterra model of the mi-

crobiome”

The generalized Lotka-Volterra (gLV) equations model the microbiome as a collec-

tion of interacting ecological species. Here we use a particular experimentally-derived

gLV model of C. difficile infection (CDI) as a case study to generate methods that are

applicable to generic gLV models. We examine how to transition gLV systems between

multiple steady states through the application of direct control protocols, which alter the

state of the system via the instantaneous addition or subtraction of microbial species.
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In the CDI model, the state of the system is more easily altered by direct control proto-

cols that introduce a foreign population composed of many species (e.g. a steady state

composition of the system) rather than protocols that are made up of a single microbial

species. Then, to better understand how to navigate the dynamical landscape of a gLV

system, the geometry of the basins of attraction of point attractors is compressed into

an attractor network, which decomposes a multistable high-dimensional landscape into

web of bistable subsystems. This attractor network is used to identify the most efficient

(total intervention volume minimizing) protocol to drive the system from one basin to

another. When trying to drive a system towards a target state, sometimes the most effi-

cient control protocol is circuitous and will take the system through intermediate states.

Clinically, the efficient control of the microbiome has pertinent applications for bacterio-

therapies, which seek to remedy microbiome-affiliated diseases by directly altering the

composition of the gut microbiome.

5.2 Introduction

In this chapter we characterize the dynamics of the generalized Lotka-Volterra (gLV)

equations, a set of nonlinear coupled differential equations that are traditionally used

in theoretical ecology to study interacting populations. In particular, gLV models are

examined in the context of the gut microbiome, which consists of an ensemble of mi-

croorganisms that inhabit the gastrointestinal tract. Our scope is restricted to ecological

dynamics that relax towards attractors; in this case microbial dynamics can be con-

strued as being generated by a psuedo-energy landscape similar to a Lyapunov function,

in which minima of the landscape correspond to steady states of the system. Canonically,

landscape-based descriptions of biological processes have been used to describe how cell

fates are determined in Waddington’s epigenetic landscape, and more recently they have
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been employed to study the genetic landscape of gene regulatory networks [121]. To bet-

ter understand these high-dimensional dynamics, the geometric structure of the basins of

attraction of a system are compressed into an attractor network, which represents the full

landscape of a multi-stable gLV system as a web of interconnected bistable landscapes.

By mapping the structure of dynamical landscapes, attractor networks inform the control

of steady-state outcomes in gLV systems.

The study of the microbiome is motivated by a desire to better understand the eco-

logical dynamics that underlie microbiome behavior, which might advance the ability

of clinicians to respond to microbiome-associated disorders and to improve microbiome

health. Experimental evidence linking microbiome to host health is reviewed in section

5.5.1, and alternative mathematical models of the microbiome are summarized in section

5.5.2.

As a case study, we consider an experimentally-derived gLV model of Clostridiodes

difficile infection (CDI), and use attractor networks to inform how to navigate between

stable microbial communities of the system. The system is manipulated with direct inter-

ventions that modify an existing microbial state by either introducing a foreign microbial

population (referred to as a transplant) or by removing existing microbial species. These

direct intervention are interpreted as numerical implementations of bacteriotherapies,

and when they are successful these interventions drive a microbial state into the basin

of attraction of a target state. Broadly, these results examine the ecological mechanisms

that underlie the successful administration of bacteriotherapies, and inform how the in-

trinsic ecological dynamics of the microbiome might be harnessed to improve the efficacy

of bacteriotherapies.
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5.3 Background

5.3.1 Generalized Lotka-Volterra (gLV) models

In this chapter the generalized Lotka-Volterra (gLV) equations are treated as a math-

ematical proxy for the microbial dynamics of the gut microbiome. The gLV equations

describe the dynamics of a microbial population xi in a system of N total interacting

populations as

dxi
dt

= xi

(
µi +

N∑
j=1

Mijxj

)
, i ∈ 1, . . . , N, (5.1)

where the growth rate of species i is given by µi, and the pairwise interaction Mij encodes

the ecological effects of species j on species i.

A gLV system with N populations can exhibit up to 2N steady states, where each

steady state is specific to a distinct presence/absence combination of the N species. Mo-

tivated by clinical bacteriotherapies like fecal microbiota transplantation (FMT) that

seek to drive a diseased microbiome towards a healthy composition, we consider how to

control the steady-state outcomes of gLV systems with direct interventions that instan-

taneously supplement or deplete the microbial state of a system. Towards this end, as in

previous work [7, 9] the gLV model is extended to include the instantaneous addition of

a foreign microbial transplant v at time t∗, as well as the administration of an antibiotic

treatment u(t), so that

dxi
dt

= xi

(
µi +

N∑
j=1

Mijxj

)
+ viδ(t− t∗) + u(t)εixi, (5.2)

where vi is the ith component of the foreign transplant v, δ(·) is the Dirac delta function,

and εi is the antibiotic susceptibility of population i.

Three types of bacteriotherapy-inspired direct interventions are examined, corre-
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Figure 5.1: Pairwise interactions between bacterial populations interpreted
as a microbial food web. An arrow from population j to population i represents the
effect of j on the growth of i, as described by the interaction term Mij in a generalized
Lotka-Volterra model Eq (5.1). The width and opacity of an arrow are proportional
to |Mij |, and positive interactions (Mij > 0) are green while inhibitory interactions
(Mij < 0) are red. The pairwise interactions Mij here were fit from an experimental
mouse model of C. difficile infection (CDI) [7, 6]. C. difficile, the culprit behind CDI,
is colored red and located in the center of the food web. This figure and caption are
adapted from [9].
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sponding to three types of transplant v: the addition of a single species (interpreted

as a probiotic), the addition of a stable external microbial community (interpreted as fe-

cal microbial transplant), and the removal of a particular species (interpreted as a phage

therapy). More explicitly, we consider the direct control problem in which an initial

condition is in the basin of attraction of some attractor xa, and the goal is to identify

the smallest intervention v that is able to drive the system into the basin of attraction

of some other target state xb.

5.3.2 Experimentally-derived gLV model of C. difficile infec-

tion

We use a gLV model of C. difficile infection (CDI) as a case study for how to tran-

sition between basins of attraction. In this model, the growth rates µ and interaction

parameters M were fit by Stein et al. to microbial abundance time-series data from a

mouse experiment performed by Buffie et al. [7, 6]. To reduce the number of parameters

of the model, Stein et al. assumed that bacteria within a given genus behave similarly,

and consolidated the species-level data into genus-level data. In Fig. 5.1 the interaction

parameters are displayed as a food web where the circles are microbial populations, and

the edges describe the effect of one population on another, where positive interactions

(Mij > 0) are black and inhibitory interactions (Mji < 0) are red. The interactions

between populations have no clear hierarchy, indicating that the fitted model describes

microbes on the same trophic level competing for shared resources. The fitted antibiotic

susceptibilities εi were mostly negative, indicating that antibiotics tend to deplete the

growth rates microbial populations.

The CDI model produces microbial trajectories that allow for the simulated appli-

cation of medical interventions. Previous work explored the effects of antibiotics on
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microbial dynamics [7, 9] in this CDI model, and found that the CDI model exhibits

the clinically- and experimentally-observed outcome that antibiotic-treated microbiomes

were vulnerable to CDI.

To demonstrate antibiotic-induced CDI in the gLV model, Fig. 5.2 shows simulated

microbial trajectories that result from applying four separate intervention scenarios to an

initial condition measured by Buffie et al. For clarity, these figures plot the total microbe

count on a log scale (in which the total microbe count is the sum of all of the microbes in

each microbial population), and at each time each microbial population is linearly colored

according to its proportion at that time. First, in Fig. 5.2a the system is not perturbed

and the system evolves to a “healthy” steady state, in the sense that CD is unable to

invade this steady state. In Fig. 5.2b the system is exposed to a unit dose of antibiotics

(i.e., u(t) = 1 for 0 ≤ t ≤ 1, and u(t) = 0 otherwise) which drives the system to an

“antibiotic-depleted” state, in the sense that CD is able to invade it. Bearing this out, in

Fig. 5.2c the system is exposed to a unit dose of antibiotics and then inoculated with CD

on day 10 (i.e. the transplant v is a unit vector of CD applied at time t∗ = 10), and this

system evolves towards an “CD infected” steady state in which CD is present. Finally,

in Fig. 5.2d the system is exposed to a unit dose of antibiotics, inoculated with CD on

day 1, and then also supplemented with an external foreign transplant (i.e. the foreign

population v is composed of an experimentally-measured initial condition introduced at a

time t∗ = 1); due to the direct intervention, this system now evolves towards the healthy

steady state.

In each panel of Fig. 5.2 the colored mice represent attained steady state micro-

biome compositions: green represents healthy, yellow represents antibiotic-depleted, and

red represents CD-infected. These three steady states of the CDI model resemble the

compositions of the experimentally-observed mouse microbiome compositions, including

their susceptibility or resilience to CD exposure [6, 7]. In addition to these three steady
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Figure 5.2: External interventions can alter the steady-state outcome of
an initial condition. All panels originate from the same experimentally-measured
initial condition, but different panels correspond to different interventions: (a) no in-
terventions occur; (b) one dose of antibiotics administered at day 0; (c) one dose of
antibiotic administered at day 0, and CD inoculation on day 10; and (d) one dose
of antibiotic administered at day 0, CD inoculation on day 1, followed by the im-
mediate introduction of a foreign microbial population made-up of a stable microbial
community on day 1. Together these panels demonstrate that antibiotic-induced CDI
may be remedied by the administration of a direct intervention, as in fecal microbiota
transplantation. This figure and caption are adapted from [9].
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states, two other steady states can be reached by initializing the system at one of the nine

experimentally-measured initial conditions and then applying some type of intervention.

We call this set of five steady states the “reachable” steady states of the CDI model, and

focus on the ecological dynamics nearby them. The microbial compositions of these five

steady states are displayed in Fig. 5.3. In this figure, the previously-mentioned health

state is labeled steady state C, the antibiotic-depleted state is labeled steady state E,

and the CD-infected state is labeled steady state D.

This experimentally-characterized CDI model provides a clinically-motivated case

study in which different steady states can be associated with biologically meaningful mi-

crobiome compositions. It is pertinent to be able to efficiently switch basins of attraction

in order to attain a “healthy” state, and in the remainder of this chapter we investigate

this goal in detail.

5.3.3 Approximation of bistable gLV dynamics

The ecological dynamics of high-dimensional gLV systems are straightforward to sim-

ulate, but difficult to investigate analytically. Often the most fundamental features of a

model are captured not by the particular high-dimensional vector that describe the state

of a system, but rather by an abstract biological outcome associated with the state of

a system. For example, in the case of the CDI model, the most important question is

whether the system will tend towards a healthy (steady state C) or an antibiotic-depleted

state (steady state E), and the precise composition of those steady states is not as impor-

tant. Thus, in some sense there is a low-dimensional description of the transition between

a pair of steady states, even as the actual ecological dynamics flow in a high-dimensional

state space.

In earlier work we exploited this abstract outcome-oriented perspective to design
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Figure 5.3: Microbial composition of reachable steady states. Under the gLV
model Eq. (5.1) and for each of the nine experimentally-measured initial conditions,
every treatment scenario tested in this chapter resulted in one of the steady states A-E.
Together these five steady states encompass a region of phase space that is relevant
for systems originating near the nine measured initial conditions. Note that while
steady states A and D appear indistinguishable in this plot, their compositions vary
slightly. This figure and caption are adapted from [9].
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Figure 5.4: Schematic of steady-state reduction (SSR). A gLV system of N
species (Eq. (5.1)) exhibits two steady states ~ya and ~yb, characterized as diseased (red)
and healthy (green). SSR identifies the two-dimensional (2D) gLV system defined on
the 2D subspace spanned by the two high-dimensional steady states (Eq. (5.3)) that
best approximates the high-dimensional system. Specifically, SSR prescribes 2D pa-
rameters (Eqs. (5.4) and (5.5)) that minimize the deviation between the N-dimensional
gLV dynamics d~y/dt and the embedded 2D SSR-reduced dynamics d~x/dt. This figure
and caption are adapted from [10].
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steady-state reduction (SSR) [10]. This method compresses a bistable region of a high-

dimensional gLV model into a reduced two-state gLV model whose two unit species

represent a pair of steady states of the original model. As depicted in Fig. 5.4, this

reduced two-dimensional (2D) gLV model is defined on the 2D subspace spanned by a

pair of steady states of the original model, and the subspace itself is embedded within

the high-dimensional ecological phase space of the original gLV model. The parameters

of the reduced model are weighted combinations of the parameters of the original model,

with weights that are related to the composition of the two high-dimensional steady

states. Within this subspace, these reduced dynamics constitute the best possible 2D

gLV approximation of the high-dimensional gLV dynamics. Though gLV systems in

general are capable of displaying periodic or chaotic behaviors, here our attention is

restricted to trajectories that approach a fixed point, and in particular to regions of

phase space that are nearby the interface of the basins of attraction of a pair of steady

states (i.e., nearby the separatrix).

More explicitly, to determine the SSR-reduced 2D gLV system associated with a

bistable high-dimensional gLV model, first define variables xa and xb in the direction of

unit vectors x̂a and x̂b that parallel the two steady states according to x̂a ≡ ~ya/‖~ya‖2,

and x̂b ≡ ~yb/‖~yb‖2, where ‖·‖2 is the 2-norm. The 2D gLV dynamics on the subspace

spanned by x̂a and x̂b are given by

dxa
dt

= xa(µa +Maaxa +Mabxb), and

dxb
dt

= xb(µb +Mbaxa +Mbbxb).

(5.3)

Here, the in-plane dynamics on this subspace in vector form are written d~x
dt

= dxa
dt
x̂a +

dxb
dt
x̂b.

The 2D parameters generated by SSR are chosen to minimize the deviation between
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the in-plane and high-dimensional gLV dynamics ε = ‖d~y
dt
− d~x

dt
‖2 for any point on the

subspace spanned by x̂a and x̂b. The values of the SSR parameters that minimize ε are

derived in [10]. When the two steady states ~ya and ~yb are orthogonal, the 2D parameters

are given by

µγ =
~ρ·~y◦2γ
‖~yγ‖22

, and

Mγδ =
(~y◦2γ )TK~yδ

‖~yγ‖22‖~yδ‖2
, (5.4)

where ~y◦2 ≡ diag(~y)~y is the element-wise square of ~y. When ~ya and ~yb are not orthogonal

the interspecies interaction terms become slightly more complicated and are given by

Mab =
∑N
i,j=1Kij(yaiybj+ybiyaj)(

∑N
k=1 ybiy

2
ak−ybiyakybk)

(
∑N
i=1 y

2
ai)(

∑N
i=1 y

2
bi)−(

∑N
i=1 yaiybi)

2
, and

Mba =
∑N
i,j=1Kij(ybiyaj+yaiybj)(

∑N
k=1 yaiy

2
bk−yaiybkyak)

(
∑N
i=1 y

2
bi)(

∑N
i=1 y

2
ai)−(

∑N
i=1 ybiyai)

2
, (5.5)

where γ, δ ∈ a, b, and yai is the ith element of the steady state ~ya. Under this construction,

the high-dimensional steady states ~ya and ~yb have in-plane steady state counterparts at

(‖~ya‖2, 0) and (0, ‖~yb‖2), respectively.

Crucially, this reduced 2D gLV system is analytically tractable: the separatrix can

be written analytically [10], and bifurcation analyses readily inform how interaction

parameters alter the basins of attraction of a system [12]. SSR associates complex

high-dimensional dynamics with an intuitive low-dimensional system. In the context

of the CDI model, this SSR-based understanding informs the transition between e.g. the

healthy “green” and antibiotic-depleted “yellow” microbial states, and eschews the high-

dimensional details. Later, we will decompose multistable gLV systems into a web of

bistable subsystems, then use this web to describe the geometry of the basins of attrac-

tion of steady states of the model as an attractor network. Further, SSR will be leveraged
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to analytically compute the location of the separatrix in each subsystem, which is much

more efficient than computing the locations of the separatrices numerically.

5.3.4 Transplant size and timing affect the efficacy of direct

interventions

It is difficult to discern the influence of transplant size and timing on transplant

efficacy in high-dimensional gLV systems, since only numerical methods are available to

probe this relationship. However, SSR provides a link between high-dimensional and

reduced 2D systems, allowing the mechanisms that underlie direct interventions in high-

dimensional systems to be understood in terms of their low-dimensional counterparts.

Fig. 5.5 demonstrates how variability in transplant size and timing affects steady-

state outcomes in a clinically-motivated scenario of CDI in a 2D gLV system. Here, an

initial condition is depleted by antibiotics (RX) to the extent that it enters a diseased

basin of attraction. Immediately, the reduced system makes clear that the location of the

separatrix is crucial in determining the outcome of a microbial state: successful direct

interventions must cross the separatrix. The transplant size required for success depends

on the composition of the transplant (in this figure transplants are composed entirely of

x̃b). Furthermore, the required transplant size is variable, and depends on the ecological

dynamics of the system— in Fig. 5.5 a transplant of the same size and composition is

administered at two different times, but the later transplant is unsuccessful.

SSR allows for the relationships between transplant size, composition, and timing to

be examined analytically in terms of an intuitive low-dimensional system. Next, having

characterized the operation of direct transplants in a two-dimensional system, we examine

how direct transplants may be used to transition between steady states in the full context

of a multistable gLV system.
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Figure 5.5: The success of direct interventions depends on the size and
timing of the transplant. We consider a clinically-inspired scenario that paral-
lels antibiotic-induced CDI in the 2D gLV system Eq. (5.3). First, a health-prone
initial condition (IC) is depleted by antibiotics (RX, orange). If a direct transplant
(FMT, brown) is administered shortly after the antibiotics, the treatment steers the
composition to a healthy state (FMT success). Also, if the direct transplant is large
enough to cross the separatrix, the intervention will be successful. Alternatively, if
FMT administration is delayed and the transplant is too small, the microbial trajec-
tory will instead attain the diseased state (FMT failure). The basins of attraction of
the healthy and diseased steady states are delineated by the separatrix, and the light
contours depict isoclines of the potential energy landscape (given by a split Lyapunov
function). This figure and caption are adapted from [10].
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5.4 Results

5.4.1 Transplant compositions and their success rates

The ecological state of a system can be permanently altered by deliberately intro-

ducing some foreign microbial composition or by selectively depleting the population of

a single species. Fig. 5.3 provides proof-of-concept that an ecological trajectory can be

shifted from one basin of attraction to another by introducing a foreign microbial popula-

tion v, and Fig. 5.5 demonstrates the same phenomenon graphically in a reduced 2D gLV

system. In this section, the influence of transplant composition on direct intervention

efficacy is examined using the high-dimensional CDI model.

Different types of direct interventions vary in their ability to switch a trajectory

between basins of attraction. Three intervention types are considered: the introduction

of a single-species “probiotic,” a stable community via “fecal microbiota tranplantation”

(FMT), or the elimination of a single species via “phage therapy.” These interventions

act as in silico proxies for medical therapies. The success rates of these interventions

are plotted as a function of the intervention magnitudes in Fig. 5.6. As an example, the

transplant administered in Fig. 5.2d is considered a “successful” intervention, since it

was able to alter a trajectory tending towards steady state D (the CD-infected steady

state) and drive it towards steady state C (the healthy steady state).

Fecal microbiota transplantation is implemented in the model by setting the trans-

plant v proportional to a steady state of the gLV system. In particular, transplants v are

set proportional to one of the five reachable steady states depicted in Fig. 5.3, or they

are set proportional to one of the nine experimentally-measured initial conditions from

the mouse experiment performed by Buffie et al. [6]. Probiotics are realized by setting

the transplant v proportional to a single microbial species. Lastly, phage therapies are

described by making the transplant v negative, and setting it proportional to a single
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microbial species (so that it depletes a particular species).

In Fig. 5.6 these interventions are applied to initial conditions located at the reach-

able steady states of the CDI model depicted in Fig. 5.3. Interventions are considered

successful when they shift the basin of attraction of an initial condition, and for each

type of intervention several transplants are considered. For the single species “probi-

otic,” transplants are solely composed of one of the 11 bacterial species of the model.

The steady state “FMT” populations are composed of one of the five reachable steady

states. There are 11 “phage” interventions that each deplete a single bacterial species.

Lastly, the nine “experimental IC” foreign populations are proportional to the experi-

mental initial conditions measured by Buffie et al. [6]. In Fig. 5.6 the success rates of

each intervention are plotted according to their magnitude (i.e. the one-norm ‖v‖1 of

each foreign population). For scale, the five reachable steady states of the CDI model

vary in size between 3× 1011 and 24× 1011 microbes, which informs the range of direct

intervention sizes considered here.

As shown in Fig. 5.6, the success rates of multi-species interventions (steady states and

experimental ICs) are significantly higher than the single-species interventions (single-

species and phage therapies). In particular, phage therapies are complete ineffective at

altering the basin of attraction that an initial condition is in. For each type of inter-

vention, the success rates of each candidate transplant within each intervention type are

plotted in dashed lines. The bulk success rates of each intervention are plotted in bold,

and are computed by averaging the success rates of the individual introduced foreign

populations within each intervention type.
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Figure 5.6: Success rates of different microbial interventions at altering
steady state outcomes. Initial conditions were located one of the five steady states
of the CDI model (displayed in Fig. 5.3) that were reached from experimentally-mea-
sured initial conditions. Then these initial conditions were subjected to the introduc-
tion of a foreign population v over a range of sizes ‖v‖1 (as shown on the x-axis). If
the introduced foreign population drove the initial condition into a different basin of
attraction, the intervention was considered “successful.” For each of the four types
of intervention, several candidate transplants v were implemented, and the success
rates of each candidate intervention were plotted (dashed lines). A bulk success rate
for each type of intervention (bold lines) was produced by averaging the success rates
of the candidate transplants for each intervention type. Details about the candidate
transplant compositions used for each type of intervention are described in the main
text.
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5.4.2 The dynamical landscape of a gLV system

The ecological dynamics of gLV systems are dictated by complex feedbacks between

populations. Conceptually, in the absence of periodic or chaotic dynamics these ecological

dynamics can be interpreted as flowing downhill a dynamical landscape (e.g. a Lyapunov

function) towards a point attractor. A visualization of a dynamical landscape for a

two-dimensional state space is displayed schematically in Fig. 5.7a. Here, the stable

steady states A (yellow), B (blue), and C (green) are located at the minima of the

landscape. Basins of attraction are displayed topographically and are the same color as

their associated steady state.

In the CDI model, as demonstrated in Fig. 5.2 three distinct steady states can be

reached from the same initial condition by administering different interventions (antibi-

otic administration and CD exposure). In earlier work we showed that the transition

between these steady states is sudden as a function of the magnitude of the intervention

(for example, an antibiotic dose of 0.70 units leads to steady state C, while a dose of

0.72 units leads to steady state E) [9]. Thus, the basins of attraction of these three

steady states are touching, but the structure of this high-dimensional dynamical land-

scape is difficult to visualize. To rectify this, attractor networks can be used to compress

information about the basins of attraction of the high-dimensional phase space into a

visually-digestible form. Attractor networks were originally introduced by Wang et al.

to study the controllability of gene regulatory networks associated with cancer [122].

In the schematic Fig. 5.7, panel (B) displays the attractor network for the dynamical

landscape in panel (A). In the attractor network, nodes are steady states of the high-

dimensional system, edges are convex combinations of pairs of steady states, and the

colors along edges correspond to the basins of attraction along each convex combination.

Attractor networks are especially valuable for mapping the landscape nearby a few
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(A) Dynamical Landscape (B) Attractor Network

compression

Figure 5.7: Schematic of a dynamical landscape and its corresponding
attractor network. (A) Ecological dynamics that are not periodic or chaotic may
be represented as particles flowing on a dynamical landscape. Here, this artificial
landscape exhibits three stable steady states at A (yellow), B (blue), and C (green).
The basins of attraction are colored according to the color of their associated steady
state, and isoclines of the landscape are also plotted. The black dotted line displays the
value of the energy landscape along convex combinations of steady state pairs. (B) To
compress this dynamical landscape into an attractor network, a graph is made in which
nodes are steady states and edges are convex combinations of those steady states. The
edge color for a particular convex combination corresponds to the basin of attraction
of that ecological state. The small black circles in the attractor network correspond
to the separatrices of the dynamical landscape. The transplants ~̃v1, ~̃v2, and ~̃v3, whose
compositions are given in the main text, demonstrate how direct interventions can
alter the basin of attraction a state is in.
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steady states in a high-dimensional system. For example, Fig. 5.8 presents an attractor

network for the five reachable steady states of the CDI model (described in Fig. 5.3).

The attractor network preserves geometric information about the basins of attraction of

these five steady states, without requiring awkward visualization of an 11-dimensional

state space.

The realization of antibiotic-induced CDI, as demonstrated in Fig. 5.2, indicated that

(i) antibiotic administration shifted a microbial trajectory from the healthy steady state

C towards the antibiotic-depleted steady state E, (ii) antibiotic exposure coupled with

CD inoculation caused the microbial trajectory to flow towards the CD-infected steady

state D, and (iii) trajectories in the basin of attraction of the CD-infected steady state

D could be driven to the healthy steady state C through the introduction of a foreign

population. The attractor network provides a compressed description of how an ecological

state responds to external interventions, and complements and strengthens the numerical

proof-of-concept analysis of antibiotic-induced CDI in Fig. 5.2.

5.4.3 Efficient navigation of an attractor network

The attractor network acts as a “roadmap” for a dynamical landscape, places micro-

bial trajectories in the context of other nearby attractors, and can guide the administra-

tion of interventions in a gLV model. In discussing how to navigate gLV systems, we will

assume that we are able to drive the state of the system along convex combinations of

pairs of steady states.

Explicitly, represent steady states A, B, and C in Fig. 5.7 by the vectors ~xA, ~xB, and

~xC , respectively. Then, starting from steady state i, a direct intervention in the direction

of steady states j corresponds to a transplant ~̃v = p(~xj − ~xi) in the gLV equations

Eq. 5.2, where p varies between 0 and 1 and describes the severity of the intervention.
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Figure 5.8: Attractor network of the five reachable steady states in the CDI
model. The small black circles on each edge represent the numerically-generated
separatrices of each convex combination of steady states, which denote the boundary
of the basins of attraction for a pair of steady states. The relationships between
steady states C (healthy), D (CD-infected), and E (antibiotic-depleted) are explored
numerically in Fig. 5.2. Representing the basins of attraction of these reachable steady
states as an attractor network allows for an intuitive low-dimensional description of
the dynamical landscape of the high-dimensional CDI system.
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For example, in the schematic attractor network Fig. 5.7b, starting from steady state A

an introduced transplant ~̃v1 = 0.3(~xB − ~xA) will drive the state of the system into the

basin of attraction of steady state B.

Explicitly, we seek to minimize the size of the intervention required to drive a system

from an initial steady state into the basin of attraction of a target steady state ‖~̃v‖.

Using the same schematic attractor network from Fig. 5.7b, driving an initial condition

at steady state B into the basin of attraction of steady state C will require a transplant

~̃v2 = 0.3(~xC−~xB). Then, assuming that the distances between each pair of steady states

are one unit, applying these two interventions in a sequential manner will cause an initial

condition at steady state A to transition into steady state C with a total intervention

size of 0.6. Alternatively, to drive steady state A to steady state C directly requires a

transplant ~̃v3 = 0.7(~xC − ~xA), with a total intervention size of 0.7. Thus, constructing

an attractor network demonstrates that inherent ecological dynamics can be leveraged

to efficiently control the state of an ecological system.

In the CDI model, the attractor network in Fig. 5.8 reveals that scenarios exist in

which the most efficient control method goes along indirect paths. In Fig. 5.9 the mi-

crobial time courses associated with two control protocols— one that goes along a direct

path, and the other that goes along a circuitous path— are compared.

Explicitly, let the steady state i of the CDI model correspond to the vector ~yi. To

transition from the antibiotic-depleted steady state E directly to the healthy steady state

C requires a transplant ~v1 = 0.162(~yC − ~yE), with total transplant size ‖v3‖ = 2.576,

where ‖·‖ is the 2-norm and each transplant is in units of 1011 microbes. A similar

control protocol is plotted in Fig. 5.9a, which successfully drives the state of the system

into the basin of attraction of steady state C (the plotted transplant ~w1 is chosen to be

slightly larger than the required transplant ~v1 for demonstrative purposes).

However, in this CDI model it is most efficient to apply two sequential interventions
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Figure 5.9: Direct control protocols drive a microbial composition at
steady state E (antibiotic-depleted, yellow mouse) towards steady state
C (healthy, green mouse). (a) The microbial trajectory associated with a con-
trol protocol that drives the system directly from steady state E to steady state C.
This control protocol introduces a transplant ~w1 = 0.18(~yC − ~yE) on day 10. The
introduced transplant is of size ‖~w1‖ = 2.85× 1011 microbes. (b) A circuitous control
protocol drives the system at steady state E first towards steady state D (CD-in-
fected, red mouse), and then applies a second transplant to drive the system to steady
state D. By administering two smaller transplants sequentially, this control protocol
requires fewer total microbes. The first transplant ~w2 = 0.001(~yD − ~yE) has a size
of ‖~w2‖ = 0.03 × 1011 microbes, and the second transplant ~w3 = 0.04(~yC − ~yD) has
a size of ‖~w3‖ = 0.64 × 1011 microbes. By navigating the dynamical landscape in a
roundabout manner, the protocol in (b) requires total transplant size that is 23% the
size of the protocol in (a).
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~v2 and ~v3: the first transplant drives the system towards the CD-infected steady state D,

~v2 = 0.001(~yD − ~yE); and the second transplant drives the system towards the healthy

steady state C, ~v3 = 0.022(~yC−~yD). Here, since steady state E is unstable in the direction

of steady state D, an infinitesimal transplant is all that is needed (though for practical

purposes we use a value of 0.001). The sizes of these two sequential transplants are

‖v2‖ = 0.0001 and ‖v3‖ = 0.360. A similar sequential control protocol is demonstrated

in Fig. 5.9b; once again, for demonstrative purposes the transplants ~w2 and ~w3 are chosen

to be slightly larger than the required transplants ~v2 and ~v3.

Taken together, the indirect control protocol E → D → C (total transplant size

0.36× 1011 microbes) requires a smaller total direct intervention than the direct path E

→ C (total transplant size 2.57 × 1011 microbes). In general, taking advantage of this

“ecological inertia” may reduce the magnitude of the intervention required to drive the

system towards a target state.

5.4.4 Efficient construction of attractor networks with steady-

state reduction

Finally, attractor networks can be approximated in constant time (in algorithmic com-

plexity terms) with the dimensionality-reduction technique SSR. The attractor network

for the CDI model in Fig. 5.8 was generated numerically by simulating a set of micro-

bial trajectories, each originating at initial conditions along convex convex combinations

of steady state pairs, and then tracking the steady-state outcome of each simulation.

This procedure is computationally expensive even when bisection-type algorithms are

implemented to identify the location of the separatrix.

As derived in previous work, SSR allows for the separatrix of the approximate SSR-

reduced 2D gLV system to be computed analytically in a Taylor series about a semi-
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Figure 5.10: Attractor network generated exactly (numerically) and approx-
imately (with SSR). This figure is identical to Fig. 5.8, but in addition to the small
black circles corresponding to the numerically generated separatrix, the small black
squares correspond to the separatrix locations as predicted by SSR. SSR erroneously
predicts that any convex combination of steady states B and D will evolve towards
steady state D, when in fact any convex combination of these steady states will evolve
towards steady state A. Despite this error, SSR effectively and efficiently approximates
the geometry of the dynamical landscape of the CDI gLV system.
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stable fixed point (x∗a, x
∗
b) of the reduced system [10]. For example, the separatrix of the

2D gLV system in Fig. 5.5 was created in this fashion. Though the current attractor

network is relatively small, consisting of five nodes and
(
5
2

)
edges, scaling up the size of a

numerically-generated attractor network quickly becomes computationally infeasible. On

the other and, larger attractor networks can be efficiently approximated with SSR: as a

demonstration of the accuracy with which SSR captures the location of the separatrices,

in Fig. 5.10 the squares on each edge represent the separatrix predicted by applying SSR

to the corresponding steady state pair.

The SSR-generated attractor network incorrectly predicts that convex combinations

of steady states B and D will flow towards steady state D, when in fact they will flow

towards steady state A. Still, the strong agreement between the exact and SSR-generated

separatrices indicates the potential of SSR to efficiently generate large attractor networks

to first-order that intuitively describe relevant ecological dynamics.

5.5 Discussion

5.5.1 Microbiome composition is associated with host health

Microbiome research has been the recent beneficiary of advances in experimental 16S

pyrosequencing techniques that have revealed similarities in the microbiome compositions

of people suffering various diseases, which differ from the microbiome compositions of

healthy individuals [123]. These disease-associated microbiome compositions are called

dysbiotic, and are observed in people that suffer cardiovascular disease, ulcerative colitis,

and irritable bowel disease [124, 123].

In this chapter we studied a mathematical model of C. difficile infection (CDI). CDI

occurs when the bacteria C. difficile (CD) colonizes the gut and becomes sufficiently
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abundant to induce colon inflammation and diarrhea via the production of toxins TcdA

and TcdB [125]. This disease is an explicit example of how impaired microbiome com-

positions cause disease.

Traditional treatments for CDI seek to eliminate the presence of CD by administering

antibiotics like vancomycin or metronidazole [126]. However, CDI recurrence rates that

range from 30-65% and concerns about antibiotic resistance have heralded fecal micro-

biota transplantation (FMT) as an alternative treatment for CDI [127, 128]. FMT is a

bacteriotherapy that attempts to alter the composition of a dysbiotic microbiome (e.g.,

the microbiome of a person suffering CDI) by engrafting a foreign microbial population

provided by a healthy donor into it. When successful, FMT causes the restoration of

a healthy microbiome, which suppresses the growth of CD as well as the production of

CDI-associated toxins [129]. The success rate of FMT for treating CDI approaches 90%

[127].

FMT has been proposed as a treatment for other gastointestinal diseases including ir-

ritable bowel syndrome (IBS), inflammatory bowel disease, ulcerative colitis, and Crohn’s

disease. Recent clinical trials have returned promising but inconclusive evidence regard-

ing the success of FMT in treating these conditions [2, 3, 4, 5]. For other conditions

with distinct microbial signatures— for example, autism spectrum disorder (ASD) or

metabolic syndrome [130, 131] — a more intrinsic question regarding the efficacy of bac-

teriotherapies remains: can symptoms of these conditions be ameliorated by altering the

gut microbiome composition? For ASD, preliminary evidence supports this hypothesis.

Patients with ASD were given Microbiota Transfer Therapy, a treatment that consists

of an initial course of antibiotics followed by regular FMT treatments for ten weeks, and

this treatmenet caused lasting shifts to their microbiome compositions and reductions in

their ASD symptoms [132].

At this time, the ability of FMT to treat microbiome-associated diseases is variable.
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FMT appears to be an effective treatment for CDI and ASD, but recent clinical studies

have been unable to conclusively show that FMT is an effective treatment for IBS [133].

Part of this discrepancy might be due to antibiotics, which are typically administered

to CDI patients before FMT is attempted, and which precede the Microbiota Transfer

Therapy treatment. More broadly, the factors that contribute to the success or failure

of FMT— that is, whether a diseased microbiome is able to be altered or not— are not

yet fully known. To shed light on these factors, this chapter used mathematical models

to examine the ecological dynamics that underlie FMT.

5.5.2 Advances in modeling the microbiome

Models of the microbiome can span levels of organization, stochasticity, neutrality,

and complexity. Recent advances in multi-omics sequencing have buoyed microbiome

modeling by measuring the abundances of the microbial genomes, mRNA transcripts,

proteins, and metabolites contained in the microbiome [134].

For microbial ecosystems with well-characterized metabolic pathways, flux balance

analysis (FBA) predicts the production and consumption of metabolites by microbes at

steady state using inferred stochiometric matrices [134]. In dynamic flux balance analysis

(dFBA), FBA is generalized to track metabolite abundances over time, at the expense of

requiring additional kinetic parameters in the model [134]. In both of these metabolite-

based analyses, fine-grained details about metabolite kinetics need to be either measured

or fit. This required level of detail makes FBA and dFBA ill-suited for analyzing complex

microbial ecosystems like the human microbiome which, for example, consists of ∼1000

microbial species and ∼100000 metabolites [100, 135].

To account for the complexity present in real-world microbial systems, coarse-graining

approaches have been employed to model aggregate microbial dynamcs and processes.
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For example, in wastewater treatment activated sludge models (ASMs) track the abun-

dance of only a few nutrients (e.g. organic carbon, nitrogen, and phosphorus) and the

population dynamics of only a few aggregate microbial populations (e.g. microbes that

consume carbon, nitrogen, and phosphorus) [60].

Though less detailed than FBA and dFBA models, ASMs require significantly fewer

parameters and are able to provide relevant information regarding the design and function

of wastewater treatment processes.

Generalized Lotka-Volterra (gLV) models, which were studied in this chapter, assume

that the production and consumption of nutrients can be implicitly captured by pairwise

interactions between microbial populations. Thus, gLV models only track microbial

population abundances. Often, gLV models assume that microbial species within a genus

are indistinguishable, and study microbial dynamics coarse-grained at the genus level.

Part of the convenience of gLV models is that they may be parameterized with time-

series microbial abundance data, which is readily available due to advances in genomic

sequencing. Several algorithms have been developed to infer growth rate and interaction

parameters of gLV models from time-series abundance data (e.g. LIMITS [98, 104]). gLV

models have been used to investigate microbial interactions in cheese [136], to probe how

antibiotic perturbations alter the gut microbiome in the context of CDI [7], and to inform

treatment of polymicrobial urinary tract infections [137]. When gLV models accurately

approximate the underlying microbial systems, simulated interventions (e.g. antibiotic

administration or fecal microbiota transplantation) can guide clinical efforts to alter the

composition of diseased microbiomes [7, 59, 9].

Each of these previously discussed models make the simplifying assumption that mi-

crobial processes and the resulting microbial dynamics are deterministic. In ecology these

deterministic approaches are typically used to model niche processes. While microbial

dynamics can be relatively consistent in some systems (e.g. in soil microbial communi-
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ties [138]), variability— reflecting neutral processes— is generally evident in microbial

communities (e.g. in human [139] or fly [27] microbiomes). Mathematical models have

been developed to account for this variability [140]. For example, Sloan et al. proposed

a model to predict microbial abundances based solely on birth-death processes and im-

migration following Hubbell’s neutral theory [141], while the Ricker model has been used

to introduce stochasticity into gLV models [98].

5.6 Conclusion

The ability to control steady state outcomes of ecological systems has a broad practi-

cal appeal. These control protocols will rely on a foundation of ecological theory that is

still under exploration. Here we introduce a technique to map the dynamical landscape

of gLV systems with attractor networks. Although our analysis was solely concerned

with gLV systems, fundamental ecological behaviors are demonstrated. For example,

when attempting to control the steady-state outcome of a gLV system, the relevant

objective is driving the system into the target basin of attraction rather than exactly

driving the system to the target steady state. Additionally, when attempting to drive an

ecosystem towards a target state, it might be more efficient to use a multi-step control

protocol. With the steady progression of ecological theory it is feasible that precision bac-

teriotherapies, based upon ecological models of the microbiome, will become a regularly

administered medicine for the microbiome.
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Control of ecological outcomes with

indirect bacteriotherapies

Finally, we take advantage of the analytic tractability of 2D gLV models to create in-

direct bacteriotherapies. While the previously studied direct bacteriotherapies switch

which basin of attraction the system is in by modifying the state of the system, indirect

bacteriotherapies alter the size of the basins of attraction by modifying parameters of

the high-dimensional gLV model. Interpreted biologically, these indirect bacteriothera-

pies correspond to altering the gut microbiome environment (e.g. microbiome acidity or

macronutrient availability) to drive the system towards a target state.

Without a technique like SSR, the complexity of high-dimensional gLV models im-

pedes the identification of indirect bacteriotherapies: it is a priori unclear which of the N2

interaction parameters should be modified, and so searching for right parameter mod-

ification must occur through trial and error. For gLV systems with large numbers of

species, this process is computationally expensive. Fortunately, SSR can compress the

high-dimensional microbial interactions that are most relevant for the transition between

two steady states into a reduced set of four interaction parameters in a 2D gLV model. In
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the reduced model it is straightforward to identify which of these four parameters should

be modified to alter the 2D system’s steady state outcome, and these 2D parameters

correspond to a change in the parameters of the high-dimensional system. Therefore,

using SSR as a guide, indirect bacteriotherapies in high-dimensional gLV systems may

be immediately identified.

6.1 Abstract of “Control of ecological outcomes through

deliberate parameter changes in a model of the

gut microbiome”

The generalized Lotka-Volterra (gLV) equations are a mathematical proxy for ecolog-

ical dynamics. We focus on a gLV model of the gut microbiome, in which the evolution

of the gut microbial state is determined in part by pairwise inter-species interaction pa-

rameters that encode environmentally-mediated resource competition between microbes.

We develop an in silico method that controls the steady-state outcome of the system

by adjusting these interaction parameters. This approach is confined to a bistable re-

gion of the gLV model. In this method, a dimensionality reduction technique called

steady-state reduction (SSR) is first used to generate a two-dimensional (2D) gLV model

that approximates the high-dimensional dynamics on the 2D subspace spanned by the

two steady states. Then a bifurcation analysis of the 2D model analytically determines

parameter modifications that drive an initial condition to a target steady state. This

parameter modification of the reduced 2D model guides parameter modifications of the

original high-dimensional model, resulting in a change of steady-state outcome in the

high-dimensional model. This control method, called SPARC (SSR-guided parameter

change), bypasses the computational challenge of directly determining parameter modifi-
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cations in the original high-dimensional system. SPARC could guide the development of

indirect bacteriotherapies, which seek to change microbial compositions by deliberately

modifying gut environmental variables such as gut acidity or macronutrient availability.

6.2 Introduction

A shared goal in environmental management, ecology, and medicine is to drive an

ecosystem towards a target community structure. For example, ocean and lake ecosys-

tems benefit from the suppression of algal blooms, the control of invasive fish species

helps preserve the biodiversity of local fish populations, and certain microbial composi-

tions of the gut microbiome that resist pathogenic infections improve the health of the

host [142, 143, 7]. It is common to control these ecosystems by directly altering the

ecological composition of the community: unwanted algae can be removed by clay, inva-

sive fish species can be killed by biocides, and gut pathogens can be killed by antibiotics

[142, 144, 145].

In contrast to these direct methods that modify the ecological state of the system,

indirect methods can control ecological outcomes by modifying environmental variables

which effectively change the dynamical landscape of the system [9]. For example, indirect

control methods commonly applied to the previously mentioned systems include reducing

nutrient concentrations in water to inhibit algal blooms, lowering the water level to

disrupt the spawning of invasive fish, and introducing prebiotics to promote biodiversity

in the gut microbiome [142, 146, 147].

In this chapter, we create an in silico technique that drives an ecological model

towards a target outcome by manipulating parameters that correspond to coarse-grained

interactions between populations. Specifically, we seek a finite-time modification of the

dynamical landscape that drives an arbitrary initial condition towards a target state.
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Although the intervention is temporary, the change in the ecological outcome can be

permanent.

This control method is demonstrated in the context of a data-driven model of the gut

microbiome [6]. Ecological dynamics are simulated using the generalized Lotka-Volterra

(gLV) equations, a commonly used model in theoretical ecology [148]. In these equations,

species-species interaction parameters represent environmentally-mediated competition

for resources. These systems are often modeled by high-dimensional gLV equations in

order to capture the dynamics of the large number of microbial species that inhabit

the gut microbiome. In these models, the many inter-species feedbacks lead to complex

dynamics. Accordingly, it is difficult to achieve a target steady-state outcome by naively

modifying parameter values, as such an approach requires exhaustively searching a large

parameter space.

To address these challenges, we focus on a bistable region of the ecological phase space

that includes one target steady state and another alternative steady state within the gLV

system. Then, a dimensionality-reduction technique called steady-state reduction (SSR)

is used to approximate the bistable region of interest and to create a low-dimensional

system with a compressed set of interaction parameters [10]. A bifurcation analysis of

this 2D system determines a parameter modification that produces a targeted change

in steady-state outcome. Lastly, the low-dimensional interaction parameter change is

associated with a parameter change in the high-dimensional model, which drives the

original system to the target state.

This control method, referred to as SPARC (SSR-guided parameter change), is ap-

plied to an 11-dimensional gLV model fit to time-series data from a mouse microbiome

experiment [6, 7]. In this experimentally-derived gLV model, SPARC successfully alters

the steady-state outcomes of initial conditions by modifying interaction parameters of

the model. SPARC as an in silico approach is effective when applied to generic gLV
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systems, but its applicability to real-world systems is dependent on the fidelity of the

underlying gLV model. More generally, this method offers a systematic understanding of

how environmental factors and species-species interactions can be manipulated to control

ecological outcomes.

6.3 Materials and methods

6.3.1 The generalized Lotka-Volterra equations

The generalized Lotka-Volterra (gLV) equations are a traditional model in theoretical

ecology. Due to their flexibility, gLV models have been used to describe a wide variety of

system dynamics, including the market values of firms in the stock market, wolf predation

of multiple prey species, and the infection dynamics of RNA viruses [149, 150, 151]. In

context of the microbiome, the gLV equations have been used to model the population

dynamics of gut microbial communities [152], and are given by

d

dt
yi(t) = yi(t)

(
ρi +

N∑
j=1

Kijyj(t)
)
, (6.1)

where yi(t) denotes the abundance of microbes of species i at a given time t, ρi is the

growth rate of species i, and Kij is the interaction coefficient between two populations

i and j. The interaction parameters Kij form the N × N interaction matrix K, where

N is the number of species. The growth rate parameters ρi are constrained by ρi >

0. The interaction parameters Kij capture prototypical ecological interactions such as

competition, symbiosis, and amensalism [152]. Specifically, the parameter Kij represents

the effect of species j on species i, which is mediated by environmental factors such as

available nutrients. Thus, if environmental factors are changed, the parameters Kij will

change as well.
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In general, gLV systems can exhibit periodic and chaotic behaviors [153, 154], and

the criteria that predict the stability of ecosystems based on their structure have been

prominently studied in theoretical ecology [155, 156, 157]. Here, we focus on ecological

dynamics that relax to point attractors. In this regime, the gLV dynamics of concern

can be represented by a pseudo-energy landscape (e.g. a Lyapunov function), which

is a scalar field in ecological state space that behaves analogously to a physical energy

landscape.

We wish to determine a coordinated modification of these interaction parameters Kij

that drive the system to a target state. The growth rates ρi and interactions Kij deter-

mine the dynamical landscape on which the microbial system evolves. A modification of

the interaction parameter matrix K reshapes the dynamical landscape of the gLV system.

This reshaping process is visualized schematically in Fig. 6.1.

All simulations in this chapter were run with the quadrature method odeint from

the Python module scipy.integrate. A Python module that implements SPARC and

recreates Fig. 6.3 is provided in the Supplementary Code1.

6.3.2 A gLV model fit to experimental data

In a mouse experiment, Buffie et al. demonstrated that mice that are administered the

antibiotic clindamycin become susceptible to Clostridioides difficile infection (CDI) [6].

Stein et al. fit a gLV model, referred to as the CDI model, to the time-series microbial

abundance data from this mouse experiment [7]. For modeling purposes, microbial species

are coarse-grained at the genus level, resulting in 11 microbial populations, each described

by a population yi in the gLV model. This gLV model captures the CDI-resistant and

CDI-susceptible steady states that are observed in the experiment [7, 9].

1Supplementary Code used to implement SPARC and generate Fig. 6.3 is available at
http://github.com/erijones/ssr module.
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The dynamical structure of this CDI model is characterized by the composition and

stability of its steady states. Two steady states in this model, including the experimentally-

observed CDI-resistant state, are locally stable (i.e., the eigenvalues of the Jacobian

matrix evaluated at these steady state compositions are exclusively negative). Addi-

tionally, the CDI model features six steady states whose Jacobian matrices have one

non-negative eigenvalue (referred to as having one “unstable direction”); it also features

23 steady states, including the CDI-susceptible state, whose Jacobian matrices have two

non-negative eigenvalues (i.e., with two unstable directions). The CDI-susceptible state

is composed of 5 coarse-grained species and the CDI-resistant state is composed of 3

coarse-grained species. In these steady states, the abundance of all other species is zero.

The detailed compositions of these steady states are given in the Supplementary Infor-

mation.

In this chapter, we examine the transition between the CDI-susceptible state and the

CDI-resistant state, and apply SPARC to the bistable region formed by these states.

First, we demonstrate SPARC in the “infection” scenario in which the CDI-susceptible

steady state is treated as the target state and the CDI-resistant steady state is designated

the alternative state. We consider an initial condition on the plane spanned by the

target state ~ya and the alternative state ~yb that tends towards ~yb in the absence of any

intervention. The goal of SPARC is to find a modification to the interaction matrix ∆K

that alters the evolution of this initial condition and drives it towards the target state.

In the infection scenario, this parameter change represents a disruption of the microbial

dynamics that can drive the system towards a state susceptible to CDI.

We later consider the “recovery” scenario in which the target state is the CDI-resistant

state and the alternative state is the CDI-susceptible state. In this scenario too, SPARC

alters the steady-state behavior of an initial condition so that it flows towards the target

CDI-resistant state. The parameter change generated by SPARC in this scenario informs
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Figure 6.1: A schematic overview of how SPARC (SSR-guided parameter
change) controls steady-state outcomes. (A) A bistable region in a high-dimen-
sional gLV model, with two steady states and an initial condition tending towards
the alternative steady state (shown in red), is represented as a pseudo-energy (Lya-
punov) landscape. This landscape is parameterized by the interaction matrix K of
the high-dimensional gLV system. (B) The high-dimensional landscape is compressed
into a reduced 2-dimensional landscape, generated by the dimensionality-reduction
technique steady-state reduction (SSR) as described in Eq. (6.4). This 2D landscape
is parameterized by a 2×2 interaction matrix M . (C) Guided by a bifurcation analysis
of this reduced 2D system, a modification of the interaction matrix ∆M changes the
Lyapunov landscape in a targeted way. After this change, the initial condition tends
towards the healthy steady state (shown in green) in the low-dimensional system.
(D) A high-dimensional parameter modification ∆K, informed by the 2D parameter
change ∆M via the SSR formulae, changes the high-dimensional Lyapunov landscape.
It is computationally difficult to identify this parameter change directly from the orig-
inal model (A to D), but using SSR and the bifurcation analysis of the 2D model, this
change is straightforward (A to B to C to D).
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the intervention needed to recover from the CDI-susceptible state in this model. These

results demonstrate that, for this pair of steady states in the CDI model, SPARC is able

to drive microbial dynamics in the direction of either steady state.

6.3.3 SSR-guided parameter change (SPARC)

We develop a multi-step control framework to determine a parameter change that

drives a given initial condition towards a target state. A bistable landscape of interest in

a high-dimensional gLV model is first reduced into a 2D gLV model using steady-state

reduction (SSR) [10]. This control framework is called SPARC (SSR-guided parameter

change), and summarized in Fig. 6.1.

Steady-state reduction

Steady-state reduction (SSR), developed by Jones and Carlson, is a mathematical

technique that compresses a high-dimensional gLV system into a 2D gLV system, as shown

in Fig. 6.1A and B [10]. In a high-dimensional gLV model of N species, there are N2

interaction parameters. Due to the complexity of the feedbacks of the ecological system,

it is analytically intractable and computationally expensive to numerically determine

how modifications of interaction parameters affect the asymptotic behavior of arbitrary

initial conditions.

To understand the dynamics in the high-dimensional phase space, we consider bistable

systems and focus on the subspace spanned by the two steady states ~ya and ~yb. The

SSR technique views steady states ~ya and ~yb of the high-dimensional model as idealized

composite states and constructs a new set of 2D gLV equations in which the basis vectors

correspond to the high-dimensional steady states. This 2D gLV system approximates the
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slow manifold that connects ~ya and ~yb, and is the best possible gLV approximation of the

high-dimensional dynamics on the subspace spanned by ~ya and ~yb [10]. Explicitly, the

approximate 2D gLV system has the form

dxa
dt

= xa(µa +Maaxa +Mabxb), and

dxb
dt

= xb(µb +Mbaxa +Mbbxb), (6.2)

where xa corresponds to the high-dimensional gLV system’s component in the direction

x̂a = ~ya
‖~ya‖2

, xb corresponds to the direction x̂b = ~yb
‖~yb‖2

, and ‖~v‖2 is the 2-norm of ~v.

The parameters µa and µb represent the growth rates of xa and xb, and the Mij inter-

action parameters form a 2D interaction matrix M . SSR yields the reduced interspecies

interaction parameters Mab and Mba, which are given by

Mab =

∑N
i,j=1Kij(yaiybj + ybiyaj)

(
yai − ybi

∑N
k=1 yakybk

)
1− (

∑N
i=1 yaiybi)

2
, and

Mba =

∑N
i,j=1Kij(ybiyaj + yaiybj)

(
ybi − yai

∑N
k=1 ybkyak

)
1− (

∑N
i=1 ybiyai)

2
, (6.3)

where yai and ybi are the ith components of the unit vectors ŷa ≡ ~ya/||~ya||2 and ŷb ≡

~yb/||~yb||2, respectively. The other 2D parameters µa, µb, Maa, and Mab are given by

µγ =
~ρ·~y◦2γ
‖~yγ‖22

, and

Mγδ =
(~y◦2γ )TK~yδ

‖~yγ‖22‖~yδ‖2
, (6.4)
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where γ, δ ∈ a, b. When the high-dimensional steady states ~ya and ~yb are orthogonal, the

interspecies interaction parameters Mab and Mba in Eq. (6.3) reduce to the interaction

parameters in Eq. (6.4). In these formulae, ~y◦2 ≡ diag(~y)~y is the element-wise square

of ~y. Note that SSR maps the high-dimensional steady states ~ya and ~yb to the points

(||~ya||2, 0) and (0, ||~yb||2), which are the steady states of the 2D model. Additionally, if

the high-dimensional steady states are stable, SSR guarantees that their low-dimensional

counterparts are stable as well. The fidelity of the SSR method is demonstrated in

Fig. 6.3, where it is applied to an experimentally-derived gLV system. Additional exam-

ples are provided in the Supplementary Information.

Bifurcation analysis

After the high-dimensional gLV model is reduced to a 2D model, the next step is

to find a parameter change in the 2D model that changes the steady-state behavior of

the system, as shown in Fig. 6.1B and C. Simplifying the high-dimensional system using

SSR results in a 2D gLV model with two growth rate parameters, µa and µb and four

interaction parameters, Maa, Mab, Mba, and Mbb.

When the steady states of the original high-dimensional bistable system are stable,

SSR guarantees two stable steady states at (1, 0) and (0, 1). In addition to these two

steady states, the system possesses a trivial unstable steady state at (0, 0), and another

hyperbolic fixed point with nonzero xa and xb components. The separatrix, which de-

lineates the basins of attraction of the (1, 0) and (0, 1) steady states, is topologically

required to pass through this hyperbolic fixed point.
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When nondimensionalized, the 2D gLV equations Eq. (6.2) become

dx̃a
dT

= x̃a(1− x̃a − M̃abx̃b), and

dx̃b
dT

= x̃b(µ̃b − M̃bax̃a − x̃b), (6.5)

where x̃a = −Maa

µa
xa, x̃b = −Mbb

µa
xb, T = µat, M̃ab = Mab/Mbb, M̃ba = Mba/Maa, and

µ̃b = µb/µa. In terms of these nondimensionalized parameters, the two steady states are

now at (1, 0) and (0, µ̃b). The coordinate of the hyperbolic fixed point is given by

(
M̃abµ̃b − 1

M̃abM̃ba − 1
,
M̃ba − µ̃b
M̃abM̃ba − 1

)
. (6.6)

Since the separatrix passes through this steady state, adjusting the parameters M̃ab and

M̃ba alters its position and stability, as shown in Fig. 6.2.

A necessary condition for the steady states (1, 0) and (0, µ̃b) to be stable is that

M̃abM̃ba − 1 > 0 [10]. Thus, when M̃ab is made smaller than 1/µ̃b with M̃ba fixed, the

x̃a coordinate of the unstable steady state becomes negative. Equivalently, in Fig. 6.2

this corresponds to system moving from the top-right configuration to the top-left con-

figuration. A linearized stability analysis finds that the topological structure of the 2D

phase space also changes after this parameter change is made. As shown in the top-left

panel of Fig. 6.2, the steady state at (0, µ̃b) becomes unstable once M̃ab is smaller than

1/µ̃b, which forces initial conditions in the top-right quadrant of the phase space towards

the stable state at (1, 0). Similarly, once M̃ba is smaller than µ̃b, the x̃b coordinate of

the hyperbolic steady state becomes negative. In Fig. 6.2 this corresponds to crossing

from the top-right to the bottom-right, at which point the steady state at (1, 0) becomes

unstable. The bifurcation diagram in Fig. 6.2 provides a guide for how the steady-state

structure of the 2D gLV equations depends on the interaction parameters.
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Figure 6.2: A bifurcation diagram of nondimensionalized 2D gLV systems.
This diagram shows phase space representations of different topological classes of 2D
gLV dynamical landscapes, and their dependence on the nondimensionalized parame-
ter values M̃ab, M̃ba, and µ̃b of Eq. (6.5). The lines at M̃ab = 1/µ̃b and M̃ba = µ̃b split
the parameter space into four quadrants that each correspond to a different topological
configuration of phase space. The graph inside each quadrant shows a representative
phase space configuration of the nondimensionalized gLV system, where x̃a and x̃b
are the rescaled populations in Eq. (6.5). The hollow dots represent unstable steady
states, and the filled dots represent stable steady states. The basins of attraction of
the steady states (1, 0) and (0, µ̃b) are shaded in green and red, respectively. The up-
per-right quadrant, labeled with a blue star, represents the parameter regime in which
bistable 2D landscapes occur. An alternative visualization of this bistable landscape
is schematized in Fig. 6.1 as a pseudo-energy landscape. The reduced 2D gLV mod-
els, generated by applying SSR to bistable regions in high-dimensional gLV models,
reside in this upper-right quadrant. In this bistable quadrant, the separatrix passes
through the hyperbolic steady state with non-negative coordinates. The steady states
at (1, 0) and (0, µ̃b) undergo transcritical bifurcations in response to changes in M̃ab

and M̃ba, yielding the diagrams in adjacent panels. The lower-left quadrant is included
for completeness.
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This bifurcation analysis indicates how to move the separatrix in a particular direc-

tion. Numerical methods determine the minimal change of parameters M̃ab or M̃ba that

switch the asymptotic steady-state behavior of a given initial condition. In simulations

where the target steady state is located at (1, 0), the value of M̃ab is decreased incremen-

tally, spanning from its original value through 1/µ̃b. In terms of the dimensionalized 2D

gLV system, this corresponds to keeping Mbb constant while Mab is modified until the

separatrix is shifted to a position where the initial condition switches from one basin of

attraction to the other.

Correspondence between 2D and high-dimensional gLV models

Changes in the 2D interaction parameters that drive an initial condition to a target

state are associated with changes in the high-dimensional interaction parameters, since

the 2D reduced parameters are functions of the high-dimensional parameters via the SSR

formulae. This is schematically shown in the transition from Fig. 6.1C to Fig. 6.1D. More

explicitly, Eq. (6.4) can be re-written as

Mγδ =
∑
i,j

αγδij (~ya, ~yb)Kij, (6.7)

where γ, δ ∈ {a, b}, and ~ya and ~yb are the two steady states of interest. In this chapter,

since the target state is placed at (1, 0), it is most important to modify the parameter

M̃ab = Mab/Mbb. For simplicity we only consider modifications to Mab, and therefore are

primarily concerned with the coefficients αabij , hereafter referred to as αij. Thus, from

this correspondence a modification in the 2D interaction matrix M may be reproduced

in the high-dimensional system by modifying the high-dimensional interaction matrix K.

This choice is degenerate — there is more than one way to change the high-dimensional

interaction matrix K that corresponds to the same 2D parameter modification. Note
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that the smallest possible high-dimensional parameter change ∆Kij is associated with

the largest coefficient αij.

6.4 Results

SPARC (SSR-guided parameter change) controls the steady-state outcome of a high-

dimensional gLV system by deliberately changing the geometry of its dynamical land-

scape. SPARC (i) approximates a bistable landscape of a high-dimensional gLV system

by its 2D SSR-generated counterpart, (ii) identifies a 2D interaction parameter change

that switches the asymptotic behavior of an initial condition on this bistable landscape,

and (iii) associates the 2D parameter change with a parameter modification in the high-

dimensional gLV system. This parameter modification shifts the high-dimensional land-

scape so that an otherwise disease-prone initial condition will instead tend towards the

target state.

Note that since the steady states of the high-dimensional model are dependent on the

interaction matrix K, a small change in this matrix will slightly modify the coordinates

of the steady states. Thus, to allow the system to evolve back to the original steady

states, this parameter modification must be turned off after some time. To initially

demonstrate SPARC, the parameter modification is turned off once the system stabilizes

at the shifted steady state (Fig. 6.3). When SPARC is applied to the CDI model, the

parameter modification is small enough that the changes in steady state locations are

negligible. Later, when considering the “recovery” scenario, the parameter modification

is turned off before the system stabilizes at any steady state; in this case there is a critical

duration that the parameter modification must be active for in order for the intervention

to be successful (Fig. 6.5).

In this section, SPARC is first applied to the CDI model fit by Stein et al. to data from
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a Clostridioides difficile infection (CDI) experiment in mice [7]. Then, the robustness of

SPARC is examined by applying it to synthetic gLV models.

6.4.1 Steady-state reduction (SSR) produces a 2D approxima-

tion to bistable dynamics in a high-dimensional gut mi-

crobiome model

First, bistable dynamics in the CDI model are approximated by reduced dynamics

on a 2D subspace generated by steady-state reduction (SSR). We focus on two steady

states of this gLV model that correspond to experimentally observed CDI-resistant and

CDI-susceptible microbiome compositions. For the initial demonstration of SPARC, we

consider the “infection” scenario in which the CDI-susceptible state is defined as the

target state and the CDI-resistant state is defined as the alternative state.

The target state and the alternative state are represented by the high-dimensional

vectors ~ya and ~yb, respectively. The microbial dynamics that result from the initial

condition (0.5~ya + 0.5~yb) tend towards the alternative steady state ~yb. To visualize these

dynamics, the trajectory is projected onto a plane spanned by the steady states ~ya and ~yb,

as displayed in Fig. 6.3A. In this figure, the axes are rescaled so that the steady state ~ya

is located at point (1, 0) and the steady state ~yb is located at point (0, 1). The separatrix

shown in Fig. 6.3A is numerically generated from trajectory simulations. Notice that on

this subspace, the initial condition is above the separatrix, and hence the initial condition

evolves towards the alternative steady state at (0, 1).

This 11D bistable landscape is approximated by a reduced 2D gLV model gener-

ated by SSR, according to Eq. (6.4). The SSR-generated parameter values and their

nondimensionalized counterparts are provided in the Supplementary Information. The

dynamics of the reduced 2D trajectory were initial condition (0.5, 0.5) are displayed in
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Figure 6.3: A realization of SPARC, as described in Fig. 1, applied to the
infection scenario of the CDI model. (A) The phase space of the CDI model [7] is
projected onto the 2D plane spanned by the target steady state ~ya and the alternative
steady state ~yb. The target and alternative steady states at (||~ya||2, 0) and (0, ||~yb||2)
are rescaled in this plot to the points (1, 0) and (0, 1). The in-plane separatrix, gen-
erated numerically, delineates the basins of attraction. (B) Steady-state reduction
(SSR) generates an approximate 2D phase space. Notice that the 2D separatrix and
trajectory qualitatively resemble those in (A). (C) The 2D separatrix moves as the
2D interaction matrix M is modified. Four separatrices corresponding to four changes
with increasing magnitude in the interaction matrix ∆M are shown. The matrix ele-
ment and direction of this change are guided by the bifurcation analysis in Fig. 6.2. A
sufficiently large parameter change alters the steady-state outcome of the initial con-
dition (0.5, 0.5). (D) Changes in the low-dimensional interaction parameter ∆M are
associated with changes in high-dimensional parameter ∆K by SSR formulae. The
resulting shift in the high-dimensional separatrix is qualitatively similar to that of
the low-dimensional system. In particular, the initial condition (0.5~ya + 0.5~yb) now
evolves towards the target steady state. SPARC successfully alters the steady-state
outcome without having to search a 121-dimensional parameter space.
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Fig. 6.3B, and are similar to the projection of the 11D dynamics in Fig. 6.3A. Note that

the position of the separatrix, which is generated analytically in the 2D model [10], is

well-approximated by SSR. In the Supplementary Information it is further demonstrated

that this reduced 2D model accurately approximates the high-dimensional trajectories

that originate from other initial conditions.

It is difficult to identify the interspecies feedbacks that induce bistability in a high-

dimensional system: in general, it is unclear how the separatrix changes as a function

of the system parameters. On the other hand, in the reduced 2D gLV system, there are

well-defined conditions for bistability, namely

M̃abµ̃b = (Mab/Mbb)(µb/µa) > 1, and

M̃ba = Mba/Maa > µ̃b = µb/µa. (6.8)

Since these low-dimensional parameters Mab and Mba are linear combinations of the high-

dimensional parameters Kij, the conditions for bistability can be decomposed into their

relative contributions from the high-dimensional interspecies feedbacks Kij.

Specifically, consider the numerators of these inequalities, Mab =
∑

ij α
ab
ijKij and

Mba =
∑

ij α
ba
ijKij (as in Eq. (6.7)). Then, the relative contributions to Mab by each of

the αabijKij terms may be compared (and likewise for Mba). When ~ya corresponds to the

CDI-susceptible state and ~yb corresponds to the CDI-resistant state, the contributions

to Mab are dominated by the inhibition of Barnesiella on both Blautia and undefined

genus of Enterobacteriaceae (i.e., the contributions αab9,1K9,1 and αab5,1K5,1). Contributions

to Mba are dominated by the inhibition of undefined genus of Enterobacteriaceae and

Blautia on unclassified Lachnospiraceae and Barnesiella (i.e., the contributions αba3,9K3,9,

αba3,5K3,5, α
ba
1,9K1,9, and αba1,5K1,5). Additional details about these contributions are pro-

vided in the Supplementary Information. Thus, the bistability between steady states ~ya
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and ~yb is largely driven by feedbacks between a pair of species present in ~ya (undefined

genus of Enterobacteriaceae and Blautia) and a pair of species present in ~yb (unclassified

Lachnospiraceae and Barnesiella).

6.4.2 Bifurcation analysis guides interaction parameter changes

that modify steady-state outcomes in reduced 2D gLV

systems

Next, the bifurcation analysis of 2D gLV systems depicted in Fig. 6.2 indicates how

to drive an initial condition (0.5, 0.5) towards the target steady state (1, 0). This requires

enlarging the basin of attraction of the steady state (1, 0), which is equivalent to rotating

the separatrix counter-clockwise. The SSR-generated 2D system is bistable, and thus

belongs to the topological class in the upper-right quadrant of Fig. 6.2. Accordingly,

the parameter Mab is decreased. When Mab = Mbbµa/µb, the alternative steady state

at (0, 1) becomes unstable, guaranteeing the initial condition (0.5, 0.5) will tend towards

the target state at (1, 0). However, to identify the minimal intervention that drives the

system towards the target state, we consider intermediate steps between the original

value of Mab and the bifurcation point Mbbµa/µb.

Four incremental parameter changes are plotted in Fig. 6.3C. On the fourth step, the

separatrix is sufficiently modified so that the initial condition tends towards the target

healthy steady state. The original 2D interaction matrix M , the parameter change to

Mab, and the resulting interaction matrix M + ∆M are visualized in Fig. 6.4E-G. The

trajectory plots in the bottom-left and the bottom-right corners of Fig. 6.4 illustrate

the behavior of the 2D gLV system parameterized by M and M + ∆M , respectively.

Therefore, SPARC can identify and modify interaction parameters to switch the steady

state behavior of this 2D model.
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Figure 6.4: Visualization of the SSR-guided changes to gLV interaction pa-
rameters. As described in SPARC, the original high-dimensional interaction matrix
K (A), SSR-guided parameter change ∆K (B), and the resulting interaction matrix
K + ∆K (C) are displayed. The steady-state reduced parameter matrix M (E), bi-
furcation analysis guided parameter change ∆M (F), and the resulting 2D interaction
matrix M +∆M (G) are also displayed. The low-dimensional parameter change ∆M ,
is related to high-dimensional parameter changes through the SSR formulae Eq. (6.4).
The αij coefficients represent the weights of the elements of the high-dimensional in-
teraction matrix K in the steady-state reduced interaction matrix M , as in Eq. (6.7)
and these coefficients are visualized in panel (D). To minimize the size of the high-
-dimensional parameter change, the interaction parameter Kij that corresponds to
largest coefficients αij is chosen to be modified. In this case, the coefficient α5,3 is the
largest, which determines the choice of ∆K. The phase space diagrams in each corner
illustrate the trajectory of the initial condition (0.5~ya + 0.5~yb) or (0.5, 0.5), for each
of the adjacent interaction matrices.
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6.4.3 SSR maps low-dimensional bifurcation behavior to the

high-dimensional system

Finally, having determined the low-dimensional parameter modification that alters

the separatrix in the reduced 2D model (as shown in Fig. 6.3C), corresponding high-

dimensional parameters that alter the system outcome in the original model can be

identified. Due to the degeneracy associated with mapping from the low-dimensional to

high-dimensional parameters, as is clear in the SSR formulae given by Eq. (6.4), there are

numerous modifications to the high-dimensional interaction matrix K that correspond

to the same change in the 2D interaction matrix, as shown in Fig. 6.4D. In the CDI

model, if the parameter change is confined to only one element of K, there are a total

of 121 choices. In order to make the smallest change in the interaction matrix K, the

coefficient Kij corresponding to the largest αij value is chosen, as described in Eq. (6.7).

Specifically, the parameter change ∆K5,3 = 0.1744 is used.

In Fig. 6.4D the magnitudes of the αij coefficients are plotted, and the largest co-

efficient is highlighted with a dashed box. In the bottom row of Fig. 6.4, the original

K matrix (panel A), the required modification ∆K corresponding to that αij coefficient

(panel B), and the resulting modified interaction matrix K+∆K (panel C) are displayed.

The trajectories in the upper-left and upper-right corners indicate the behavior of the

systems parameterized by K and K + ∆K, respectively.

Fig. 6.3D displays the results of a representative 11D interaction matrix change ∆K

that drives the initial condition to the target state ~ya. As in Fig. 6.3C, four incremental

parameter changes that each modify the separatrix are plotted. The largest of these

four parameter changes rotates the 11D separatrix counter-clockwise so that the initial

condition (0.5~ya + 0.5~yb) tends towards the healthy steady state ~ya. Although small

discrepancies exist between Fig. 6.3C and Fig. 6.3D due to the SSR approximation,
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SPARC successfully alters the steady-state outcome of a high-dimensional gLV system

by deliberately changing its interaction parameters.

6.4.4 SPARC generates a finite-time intervention that drives a

disease-prone initial condition towards a healthy state in

the CDI model

Next, we consider the recovery scenario in which the “healthy” CDI-resistant state

is the target state ~ya and the “diseased” CDI-susceptible state is the alternative state

~yb. The initial condition at (0.1~ya + 0.9~yb) is chosen to demonstrate that SPARC can be

effective even when the initial condition is closer to the alternative state than to the target

state. As in the previous case, SPARC is applied to change the steady-state outcome of

this initial condition, which is shown in Fig. 6.5. For clarity, the shifted separatrices in

Fig. 6.5C and D are not displayed.

Without any parameter modification, the bistable region is exactly the reflection of

the previous case, as shown in Fig. 6.5A and B. However, the parameter modification

generated by SPARC shifts the separatrix in the opposite direction. In this case, the

separatrix is already close to the alternative steady state at (0, 1). The 2D parameter

modification makes M̃ab < 1/µ̃b, resulting in the steady state at (0, 1) becoming unstable,

as shown in Fig. 6.2 (top-right and top-left panels). Therefore, although the initial

condition is nearby the alternative steady state, after modifying the low-dimensional

parameters it tends towards the target state at (1, 0).

The successful 2D parameter change is projected to the high-dimensional model.

Notably, the applied parameter change causes the steady state ~yb in the high-dimensional

model to become unstable. Thus SPARC is capable of altering the stability properties of

high-dimensional steady states, which enables the control of initial conditions even when
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Figure 6.5: A realization of SPARC applied to the CDI model in the recovery
scenario. Here, the target state ~ya is the CDI-resistant state and the alternative state
~yb is the CDI-susceptible state. The target and alternative steady states at (||~ya||2, 0)
and (0, ||~yb||2) are rescaled in this plot to the points (1, 0) and (0, 1). (A) With the
positions of the steady states switched, the 2D projection of the high-dimensional
bistable region shown in Fig. 6.3 is redrawn. Here the separatrix is close to the
alternative state ~yb. The initial condition at 0.1~ya+0.9~yb tends towards the alternative
state ~yb. (B) The SSR formulae are applied to generate a 2D approximate model. (C)
After a parameter change ∆Mab, the steady state at (0, 1) becomes unstable and the
initial condition now tends towards the target state. (D) The parameter change in
the 2D model is associated with a parameter change in the original CDI model. The
yellow line plots the trajectory when the parameter modification is turned off after
the system stabilizes, as in the case of Fig. 6.3. The red line shows the trajectory
when the parameter change is turned off before the critical time, and the green line
shows the trajectory when the parameter change is turned off after the critical time.
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they are located at or nearby an alternative steady state.

Fig. 6.5D also shows the effect of the duration of the parameter modification. For

SPARC to succeed, the parameter modification needs to be active long enough for the

microbial state to escape its original basin of attraction. The red trajectory in Fig. 6.5

demonstrates that the system returns back to the alternative steady state if the param-

eter change is applied for too short of a duration. The green trajectory illustrates that

the system will evolve towards the target state as long as the parameter change is ac-

tive beyond a critical duration. This critical duration varies from case to case and was

determined here numerically by trial-and-error. The orange trajectory occurs when the

parameter change is active until the system stabilizes at the shifted steady state, as in

Fig. 6.3.

6.4.5 SPARC successfully changes steady state outcomes in

synthetic gLV models

“Permuted” synthetic models

To verify that SPARC is generalizable, it is applied to 100 synthetic parameter sets

generated by permuting the interaction parameters of the CDI model. In these synthetic

parameter sets, the growth rates ρi are kept the same as in the CDI model. The diagonal

entries of the interaction matrix K are all negative (as shown in Fig. 6.4A), which is

biologically reasonable since positive diagonal entries imply unphysical infinite growth.

To ensure the synthetic data sets preserve this property, the diagonal and off-diagonal

entries of the K matrix are permuted independently. All 100 parameter sets are generated

in this way. This permutation process is demonstrated in Fig. 6.6A and B.

In the next step, bistable regions for each synthetic system must be identified in

order for SPARC to be applicable. Steady state analysis shows that, for a randomly
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Figure 6.6: SPARC is effective at modifying steady-state outcomes in syn-
thetic gLV models. (A, B) The interaction matrix K from the CDI model is ran-
domly permuted to generate 100 synthetic parameter sets. From these 100 synthetic
gLV systems, 140 bistable regions are identified. SPARC is applied to these synthetic
models. (C) SPARC is considered successful if the parameter modification changes
the trajectory of the initial condition so that it tends towards the target state (green),
rather than the alternative state (red). (D, E) Two types of errors in SPARC are
possible. SPARC can fail during the steady-state reduction process if the outcome of
the high-dimensional system does not agree with the steady-state outcome of the re-
duced system (SSR Error, panel D). It can also fail if the high-dimensional parameter
change ∆K does not appropriately alter the steady-state outcome (Correspondence
Error, panel E). (F) SPARC successfully modifies 57% (77/136) of the synthetical-
ly-generated bistable landscapes. These numbers represent a baseline error rate of
SPARC that may be further improved through manual intervention.

160



Control of ecological outcomes with indirect bacteriotherapies Chapter 6

permuted parameter set, stable steady states are small in number. From 100 permuted

gLV parameter sets, there are on average 0.8 completely stable steady states and 5.3

steady states with at most one unstable direction (i.e., steady states whose Jacobian

matrices have at most one non-negative eigenvalue) per parameter set.

To ensure there are enough steady states to form bistable landscapes, we compute all

2N steady states of each synthetic parameter set, then identify all steady states whose

Jacobian has 0 or 1 positive eigenvalues in each parameter set, and use numerical sim-

ulations to test whether each steady state pair forms a bistable landscape. Specifically,

for a steady state pair ~ya and ~yb, trajectories with initial conditions (0.95~ya+ 0.05~yb) and

(0.05~ya + 0.95~yb) are simulated to test whether they tend towards their nearest steady

state. In addition, if initial conditions at (0.8~ya + 0.2~yb) or (0.2~ya + 0.8~yb) tend towards

some other third steady state, the steady state pair is excluded. Out of the 100 synthetic

parameter sets, a total of 136 bistable landscapes were identified.

In this context, SPARC is considered successful if it identifies high-dimensional inter-

action parameter changes that alter the steady-state outcome in a bistable system, as in

Fig. 6.6C. This success relies on the correspondence between the 11D and 2D landscapes

generated by SSR, the bifurcation analysis of the 2D system, and the correspondence

between 2D and 11D parameters governed by the SSR formulae. Therefore, if an initial

condition in both the unperturbed 11D and 2D models tends towards the same steady

state, and the same initial condition in both the perturbed 11D and 2D models tend to-

wards the other steady state in the bistable landscape, SPARC is considered successful.

To examine the fidelity of SPARC on synthetic parameter sets, it is applied to an

ensemble of synthetically generated models. The two steady states of the synthetic

bistable system are arbitrarily labeled as ~ya and ~yb. In Fig. 6.3 the initial condition was

located at (0.5~ya + 0.5~yb), but for these synthetic parameter sets the initial condition is

located at (0.2~ya + 0.8~yb). Since SSR is more accurate near the two steady states, this
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choice of initial condition improves the success rate of SPARC. SPARC can fail at two

steps, corresponding to the arrows A to B and C to D in the schematic Fig. 6.1. The

first type of error occurs when SSR fails to preserve the steady state behavior of the

gLV model; this error is demonstrated in Fig. 6.6D, where the high-dimensional initial

condition tends towards steady state ~yb but the initial condition of the SSR-reduced model

tends towards steady state ~xa. The second type of error occurs when associating the low-

dimensional parameter change with a high-dimensional parameter change; this error is

demonstrated in Fig. 6.6E, where the modified low-dimensional trajectory correctly tends

towards steady state ~xa, but its corresponding high-dimensional trajectory erroneously

tends towards steady state ~yb. Since the choice of a high-dimensional parameter change

is degenerate, modifications to four interaction parameters Kij corresponding to the four

largest αij coefficients are tested. Small changes in the interaction matrix K will slightly

change the location of the steady states, so this perturbation is turned off after the system

has relaxed to the shifted steady states to allow the system to return to its original steady

states.

Out of the 136 bistable landscapes generated from 100 synthetic parameter sets,

SPARC successfully identified parameter modifications that led to the targeted transi-

tion between steady-state outcomes 57% (77/136) of the time. Details about specific

errors rates occurred are provided in Fig. 6.6F: 17% (23/136) occurred during the SSR

compression step, and 26% (36/136) occurred during the mapping from the 2D param-

eters to high-dimensional parameters. Manual intervention (e.g., trying different sizes

of the prescribed parameter change) can improve this success rate. Therefore, SPARC is

effective at altering steady-state behavior in generic gLV systems.
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“Noisy” synthetic models

Finally, since inferring parameter values in gLV systems is an intrinsically noisy pro-

cedure, it is valuable to understand whether parameter changes generated by SPARC are

robust to noise in the fitted parameters. We consider the “infection” scenario in which the

CDI-susceptible state is the target state ~ya and the CDI-resistant state is the alternative

state ~yb. Implementing the parameter change prescribed by SPARC (∆K5,3 = 0.1744)

successfully drives an initial condition at (0.5~ya + 0.5~yb) towards the target state ~ya. To

test the robustness of the SPARC method, this parameter change is applied to synthetic

“noisy” systems that are generated by independently scaling each interaction parameter

Kij by a number randomly drawn from a uniform distribution between 1− β and 1 + β.

This parameter β is called the “noise.” In the Supplementary Information the following

analysis is also performed using a parameter change 20% larger than the original one

(∆K5,3 = 0.2092). This increment compensates for the deviation between the original

and the SSR-generated separatrices.

The steady states of these synthetic systems are functions of the interaction parame-

ters, and therefore differ from the steady states of the original CDI model. In gLV systems

the presence/absence combination of species uniquely identifies a steady state, so it is

straightforward to identify the two steady states in these noisy systems, called ~̃ya and ~̃yb,

that correspond to the target and alternative steady states ~ya and ~yb of the original CDI

model. Many of these newly-generated steady states are biologically unreasonable: for

a noise of β = 0.025, nearly half of the noisy steady states ~̃ya contain negative entries.

Additional details regarding the deviations of the noisy steady states as a function of the

noise β are provided in the Supplementary Information.

We only consider noisy synthetic systems (i) that do not contain any negative entries

in the steady states ~̃ya and ~̃yb, and (ii) in which an initial condition at (0.5~ya+0.5~yb) flows
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towards the alternative state ~̃yb in the absence of any intervention (note that the initial

condition is based on steady states of the original CDI model). Then, the parameter

change ∆K5,3 = 0.1744 is applied to the noisy models for an initial condition (0.5~ya +

0.5~yb); if the system flows towards the target state ~̃ya the parameter change is considered

successful, and if it does not it is considered an error. The error rate of SPARC as

a function of the noise β is plotted in the Supplementary Information. For each noise

value, 1000 synthetic systems are created to generate statistics for the error rates. Using

the original parameter change ∆K5,3 = 0.1744 works well for very small noise values

(β < 0.005), rapidly increases to an error rate of 40% with a noise of β = 0.02, and

eventually approaches 80% for a noise of β = 0.5. With the incremented parameter

change of ∆K5,3 = 0.2092, the CDI model works nearly perfectly for synthetic systems

with small noise values (β < 0.02). Then, as the noise increases the error rate worsens:

a noise of β = 0.1 corresponds to a 30% error rate, and a noise of β = 0.5 approaches

an 80% error rate. These analyses indicate that interventions generated by SPARC are

effective for gLV systems whose parameters are known precisely, but are less effective

when parameters are relatively unconstrained. Taken another way, these results place a

limit on the required accuracy of parameter estimation, beyond which point two measured

systems will differ enough in their parameter values that they diverge in their behavior.

6.5 Discussion

6.5.1 SPARC is efficient and flexible

SPARC generates a 2D gLV model to guide high-dimensional parameter modifications

that alter the system outcome. Without such a guide, this parameter change must be

instead selected through trial-and-error. A study about T-cell cancer networks used this
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exhaustive trial-and-error method to find parameter perturbations that drive the system

between attractors, but it was computationally expensive to search their parameter space

[122]. In gLV systems, the number of computations needed for this trial-and-error method

grows as O(N2), where N is the number of species in the gLV model. As the number of

species N becomes large, the exhaustive method becomes computationally intractable.

Rather than exploring the N2-dimensional parameter space of K, SPARC allows

exploration of a 2-dimensional subspace of M associated with the bistable dynamics

of interest of the high-dimensional model. In the SSR-generated 2D model, parameter

modifications are analytically tractable using bifurcation analysis, which determines the

sign of the parameter change according to the direction of the required separatrix shift.

After the 2D model parameter change is determined, SSR formulae provide a direct

correspondence between the 2D and the high-dimensional parameter modifications that

produce the same steady-state outcome. For example, since bistability is well-defined in

the 2D gLV system, SSR reveals the interspecies feedbacks most responsible for bistability

in the high-dimensional system.

Furthermore, SPARC is flexible enough to drive the dynamical system bidirectionally

between steady states, as demonstrated in the infection and recovery scenarios. When

one steady state in the bistable region is desirable, as in the clinically-motivated recovery

scenario considered here, SPARC identifies both which parameter changes to avoid and

which to perform in order to achieve the target outcome. Both types of parameter changes

are informative when trying to prevent the system from tending toward an undesirable

steady state.

Finally, we note that the applicability of the parameter changes recommended by

SPARC is sensitive to the accuracy of the fitted gLV interaction parameters. For exam-

ple, in the CDI system (as demonstrated by the noisy synthetic models), the SPARC

parameter change becomes less effective as the noise in the interaction parameters in-
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creases. This analysis quantifies the tolerable level of uncertainty in fitted interaction

parameters before they result in fundamentally different classes of model behavior.

6.5.2 Perturbing ecological interactions indirectly controls steady-

state outcomes

Direct control methods modify the steady-state outcome of the gut microbiome by

changing the state of the microbial system while retaining the same dynamical landscape.

Implementations of this direct control method include bacteriotherapies such as Fecal

Microbial Transplantation (FMT), which has been shown to be an effective treatment

for Clostridioides difficile infection (CDI). FMT introduces a foreign microbial transplant

that alters a host’s microbiome composition, thereby ameliorating symptoms of CDI [103].

As realized in the gLV model, this amounts to an instantaneous shift in the microbial

composition that moves the microbial state from one basin of attraction to another.

In contrast to this direct control method, SPARC indirectly controls the steady-

state outcomes of a high-dimensional gLV model by modifying its dynamical landscape.

Instead of adding foreign microbes, SPARC perturbs the interaction parameters of the

gLV model, which we interpret as changing the environment in which the microbes live.

Fig. 6.3 illustrates how this parameter-altering control method changes the steady-state

outcome of a simulated gut microbial system.

SPARC could be applied to other ecological systems in order to attain a target commu-

nity structure. In marine ecosystems, the target community structures may correspond

to ecological states without harmful algal blooms or invasive fish species. In these cases,

environmental factors such as the abundance of chemical fertilizers or pesticides, the pH,

and the velocity of stream flows influence the state of the ecosystem [158, 142]. Previ-

ously, algal blooms and population dynamics of invasive fish species have been modeled
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with gLV systems [159, 160]. Therefore, SPARC could provide a systematic framework

that guides environmental interventions to remove harmful algae or invasive fish species.

SPARC identifies a single entry in a high-dimensional interaction matrix that can be

altered to change the system behavior. However, it might not be possible in practice

to identify environmental factors that, when modified, change only one entry of the

interaction matrix. Importantly, the parameter entry generated by SPARC is not unique,

as shown in Eq. (6.7). As a result, it is possible to find a linear combination of changes

in the environmental factors that maximize the parameter changes in the most effective

entries (i.e., entries with the largest αij values) and minimize other changes, especially

the most effective entries in the opposite direction. This more complex parameter change

can then be simulated to assess its effectiveness.

6.5.3 SPARC provides a lens for understanding the effect of the

environment on microbial composition

Having demonstrated the effectiveness of SPARC in silico, it would be valuable to

verify this method in an experimental model system of the microbiome. SPARC relies

on changing interactions between microbial species in the gut microbiome, which could

be achieved by deliberately changing environmental factors in a controlled experimental

setting. Therefore, any realization of this method would require an experimental mi-

crobiome model of limited microbial diversity that allows the manipulation of oxygen

levels, nutrient availability, or other factors. One such experimental model might be the

intestine-on-a-chip system, which simulates the human gut microbiome in a manipulable

in vitro environment [161, 162, 163]. By fitting gLV models to time-series data from the

intestine-on-a-chip, it may be possible to isolate the effect of environmental perturbations

and identify the corresponding interaction matrix change ∆K underlying SPARC.
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In real microbial systems, changes in environmental factors potentially affect the in-

teractions between many species, thus changing multiple interaction parameters at a

time. For example, Lin et al. found that four dominant bacterial genera with carbon

assimilation pathways gain ecological advantages when there is a lack of dissolved carbon

in the environment [164]. Therefore, environmental changes such as the removal of dis-

solved carbon will alter the effective microbe-microbe interactions between these species.

In cases such as these, SPARC could systematically specify how environmental changes

alter the dynamical landscape.

In future applications, the environmental degrees of freedom will be as myriad as

diet, designer probiotics, or designer prebiotics. The combinatorial complexity of these

contributions will require a systematic framework, such as SPARC, in order to understand

how to drive the system towards a target state. Once environmental interventions are

associated with changes in species-species interaction parameters in gLV models, SPARC

could help predict how environmental changes affect gut microbiome compositions.

6.6 Conclusion

SPARC controls the steady-state outcome of bistable regions in gLV systems by al-

tering ecological interaction parameters. This method circumvents the computational

task of performing numerical trials to exhuastively search a high-dimensional parameter

space. Instead, SPARC uses a recently-developed dimensionality-reduction technique to

reduce the problem to searching a 2-dimensional parameter subspace. Consequently, we

are able to efficiently and systematically identify a minimal parameter change that results

in desired system behavior.

SPARC provides a novel alternative to canonical control methods that modify the

system state directly. SPARC instead focuses on how environmental factors and microbial
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interactions dictate microbial dynamics. Eventually, indirect and direct methods could

be used in conjunction to provide a comprehensive framework for the control of ecological

systems.
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Conclusion

7.1 Overview

In my doctoral research I employed novel theoretical approaches and tractable ex-

perimental systems to study simplified instances of complex microbial dynamics in the

microbiome. This research was motivated by a desire to inform the mechanism of action

and development of bacteriotherapies. This thesis applied an engineering perspective—

that a system is fully understood only when it can be controlled— to an ecological

system, and presented theory that pertains to the development of direct and indirect

bacteriotherapies.

To manage the complexity of high-dimensional ecological models, we introduced

steady-state reduction, a dimensionality-reduction technique that maps bistable dynam-

ics in a high-dimensional generalized Lotka-Volterra (gLV) system to an approximate

reduced system. The correspondence between the high-dimensional system and this

analytically-tractable reduced system enables us to identify the dynamics of the high-

dimensional system that are most pertinent for the system’s eventual steady state out-

come. This compressed system significantly reduces the space of control parameters that
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need to be searched by potential interventions, and therefore facilitates the development

of direct and indirect bacteriotherapies.

7.2 Future work: A statistical mechanical treatment

of the microbiome

Our results have not yet been tested experimentally, but in the future I am excited to

validate these theories in the fruit fly microbiome. Before these results are applied to real

experimental systems, a few additional considerations are needed to refine our theoretical

implementation of direct and indirect bacteriotherapies. First, biological systems by na-

ture are non-equilibrium and full of noise, but gLV systems are deterministic (and we have

assumed that ecological dynamics equilibrate towards point attractors). Thus, statistical

mechanics must be incorporated into our models to properly describe the stochasticity

of microbial dynamics. Second, driving an ecological system between states requires an

understanding of its out-of-equilibrium dynamics, and these dynamics— especially in

thermodynamic systems— are difficult to characterize.

As a postdoctoral researcher, I plan to address these challenges by applying recently

developed methods from out-of-equilibrium thermodynamics to ecological systems. The

microbiome is a natural candidate for this statistical mechanical treatment, since it is

composed of many stochastic microscopic units that individually are governed by rela-

tively simple rules, but as a whole exhibit robust collective behaviors [165, 166].

The first hurdle will be to draw a correspondence between thermodynamic systems

(which have a well-defined conserved energy) and ecological systems (which do not).

Ecological dynamics are typically separated into two regimes. The first regime is niche

theory, in which species deterministically colonize a specific habitat, leading to the prin-
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ciple of competitive exclusion in which only the fittest species survives. The alternative

regime is neutral theory, which supposes that the colonization of species on the same

trophic level is entirely stochastic, and that competition does not play a factor. Natu-

rally, ecologists agree that the true ecological dynamics lie somewhere in-between these

two extremes [167, 98]. In statistical mechanics, systems are biased but not forced to oc-

cupy a low-energy state— this behavior is similar to ecological systems, which are biased

(niche) but not forced (neutral) to form stable ecological networks of species.

As an example of these two regimes, in my research with experimentalist Will Lud-

ington examining variability in the fruit fly microbiome, we find that colonization of the

fruit fly microbiome is probabilistic, and that there exist clear signatures of bacterial

species that are “strong” and “weak” colonizers of the microbiome [27]. Thus, even this

simple model system has evident roles for both stochastic variability and deterministic

competition in ecological systems.

It therefore seems natural to apply methods from statistical mechanics to ecology,

but the complexity of ecological systems— which are much more complicated than the

uniform bouncing molecules that form the basis for thermodynamics— has constrained

previous attempts, which typically introduce a statistical flair by studying ecological mod-

els with randomly drawn parameters. These existing approaches specify the breadth of

behaviors that an ecological model can exhibit, and they often permit insightful analytic

analyses, but they do not incorporate the competing roles of niche and neutral behav-

iors [168, 169]. By interpreting ecological dynamics as a thermodynamic system, our

proposed method will inherently reflect these deterministic and stochastic components.

The population dynamics of microbes within the microbiome are mediated by a com-

plex network of biochemical interactions (e.g., cellular metabolism) performed by mi-

crobial and host cells [101, 102]. Ecological models seek to consolidate these myriad

biochemical mechanisms into nonspecific coefficients that characterize the interactions

172



Conclusion Chapter 7

between microbial populations. When these ecological models relax towards equilibrium

states, their dynamics may be construed as following an ecological dynamical landscape

“downhill” (in dynamical systems theory, this landscape is called a Lyapunov function).

In traditional statistical mechanics, the state of a system is dependent on an energy land-

scape, with the states of lower energy being preferentially abundant. We will seek to find

a correspondence between ecology and nonequilibrium statistical mechanics by formally

associating these two landscapes.

Once the problem has been posed in the language of out-of-equilibrium thermody-

namics, I can employ the non-equilibrium control theory developed by my postdoctoral

research advisor David Sivak. This control theory designs optimal protocols that drive

a microscopic system between states, for example informing the function and thermody-

namic efficiency of the molecular machine ATP synthase, and describing how torque can

be applied to ATP synthase to be maximally efficient [170]. By applying these methods

to ecological systems via the correspondence between Lyapunov and energy landscapes,

they could inform how to drive a ecosystem between states with an ecological control

protocol (for example through culling, quarantining, or transplantation of species pop-

ulations). Since David’s research deals with abstract control parameters, his methods

should be agnostic to whether the controls are microscopic torques or the introduction of

a new species. Even though his research has traditionally functioned at time and length

scales disparate from ecological dynamics, we expect that parallel approaches will be

fruitful when applied to an ecological domain.
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7.3 Future work: Experimental validation in the fruit

fly microbiome

Finally, to bridge the gap between theory and experiment, we will test our approaches

in the fruit fly experimental system with Will Ludington. Success criteria for our ap-

proach will be based on whether we develop a mathematical formalism that explicitly

captures niche/neutral ecological dynamics in a statistical mechanical framework, and

experimentally observe that our constructed theory properly balances the niche and neu-

tral components of ecological systems in the fruit fly model system. If we do not observe

these niche/neutral behaviors, it will indicate that our approach is too coarse-grained:

for example, it might signal that we need to consider nutrient concentrations and fly gut

geometry in addition to microbial abundances. In this case, we will proceed by running

experiments in a turbidostat (a simpler though less clinically-relevant experimental sys-

tem in which microbes grow in a fixed concentration gradient) rather than in the living

fruit fly, which should provide a sufficiently well-characterized experimental system for

our research approach to succeed.

7.4 Closing remarks

It is a prosperous time for microbial ecology. Ecological models are more valuable

than ever in their ability to explain the wealth of microbial data that is now available.

More and more clinical evidence linking microbiome composition to host physiology is

established each week. And many clinicians are captivated by the therapeutic potential

of bacteriotherapies, and are actively pursuing clinical studies to test them on all sorts

of diseases that are associated with impaired microbiome compositions.

Eventually, “medicine for the microbiome” might become widespread and provide
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people with personalized recommendations that improve their health. Before this can

occur, ecological models of the microbiome and mechanistic models of bacteriotherapies

must be created. Crucially, these theories will depend on the union of engineering and

ecology, well-characterized experimental systems, and years of incremental progress. The

contents of this thesis contribute to this formidable goal, and will serve as a foundation

for future progress.
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