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ABSTRACT OF THE DISSERTATION

Essays on Optimal Tests For Parameter Instability

by

Dong Jin Lee

Doctor of Philosophy in Economics

University of California, San Diego, Graduation Year

Professor Graham Elliott, Chair

There are a large number of tests for parameter instability designed for

specific types of unstable parameter processes and error distributions. However,

it is difficult to identify those types in practice based on a priori knowledge. My

dissertation studies methods and conditions under which asymptotically efficient

tests are obtained without the knowledge of the unstable parameter process and

the error distribution.

First, I examine asymptotically optimal tests for parameter instability

in which the difficulty in identifying the unstable process is explicitly considered.

Elliott and Müller (2006) provide conditions under which a large class of breaking

processes lead to asymptotically equivalent optimal tests. Their finding, however,

is restricted to linear Gaussian models. I improve upon their work in two ways.

First, I show that the asymptotic equivalency of the efficient tests for parameter

instability holds even in a broader set of parametric models which includes nonlin-

ear models with non-Gaussian error distributions. It implies that the knowledge

of the unstable parameter process is asymptotically irrelevant for testing purposes.

Second, I suggest a test statistic that is asymptotically optimal for a broad set of

unstable parameter processes.

xiii



Second, I study asymptotically efficient tests for parameter instability

in general semiparametric models in which the error distribution is unknown but

treated as an infinite dimensional nuisance parameter. I first derive the asymptotic

power envelope with unknown density and suggest conditions under which a semi-

parametric model would have the same asymptotic power envelope with known

error distribution. The conditions are weak enough to cover a wide range of error

distributions by relaxing the twice differentiability and allowing for skewness. An

efficient test statistic is then suggested, which is adaptive in the sense that al-

lowing unknown error distribution gives no loss of asymptotic power. This implies

that the knowledge of the error distribution is asymptotically irrelevant under mild

conditions.

Finally, the suggested parameter instability tests are applied to various

quantile models for U.S. inflation process such as Phillips curve, P- star model,

and AR models. The tests result shows a strong evidence of parameter instability

in most quantile levels of all models.
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Chapter I

A Review of Optimal Tests for

Parameter Instability

This chapter studies the asymptotic optimality in the hypothesis testing

of parameter instability. I first review the behavior of asymptotically point opti-

mal tests in the presence of unknown nuisance parameters, which will provide a

conceptual background of the current optimal parameter instability tests and my

tests in the dissertation. The classic concept of optimal tests based on a sufficient

and complete statistic is evaluated in terms of the most powerful tests in the least

favorable parametric submodels. I then examine popular optimal tests for param-

eter instability; Andrews and Ploberger (1994), Elliott and Müller (2006), and

Nyblom (1989). This chapter presents that these optimal tests are interpreted as

the weighted average of the asymptotically point optimal tests in the least favorable

parametric submodels.

1
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I.1 Introduction

The object of this review chapter is to discuss the asymptotic optimality

of the hypothesis test that the parameters of interest are unstable in time series.

Consider a parametric model indexed by (βt, η) for t = 1, . . . , T , β ∈ Rk, and

η ∈ Rq. Parameter instability indicates that βt permanently changes across time.

Examples of unstable models most widely used in economics are ’Structural Breaks’

and ’Time Varying Parameter’.

Parameter instability is a long-standing problem in econometric modeling

when we deal with time series data. Much effort has been devoted to obtaining a

powerful test to detect the instability. However, the parameter instability testing

problem generally violates regularity conditions for the classical likelihood ratio

test to pertain optimality, causing us difficulty in obtaining optimal tests. One

of the reason is because the testing problem includes nuisance parameters which

are present only under the alternative hypothesis. In structural break models, the

parameter representing unknown break point appears only under the alternatives.

In time varying parameter models, any parameters that determine the shape of the

distribution of the unstable parameters is not identifiable under the null of stable

parameters.

In this regard, only a few works suggest asymptotically optimal tests.

Andrews and Ploberger (1994) suggest a class of optimal tests for structural breaks

in the sense that they provide asymptotically best average power results. Elliott

and Müller (2006) suggest an asymptotically optimal invariant test in a linear

Gaussian model which is most powerful against a broad set of unstable parameter

processes, including both structural breaks and time varying parameters. Nyblom

(1989) derives a asymptotically locally most powerful test when the parameter
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follows martingale process. These tests explicitly and implicitly get around the

nonstandard problem by constructing the weighted average of the optimal tests

across all possible value of the nuisance parameters that is not identified under the

null hypothesis.

This chapter evaluates the optimality of the current popular tests. I first

review the behavior of standard asymptotically optimal tests for a regular problem

of finite dimensional parameters, under local alternative hypothesis. The regular

problem indicates that local asymptotic nomality (LAN) type approximation of

likelihood ratio function is available and
√

T− regular estimates of the nuisance

parameters exist. The regular estimates of the parameter of interest does not

necessarily have to exist because this chapter consider a testing problem that

focus on specific point of alternative hypothesis, which most optimal parameter

instability tests do.

I study the classical standard optimal test in terms of the optimal test in

the least favorable parametric submodel(LFPS). LFPS method has an advantage in

that it avoids complicate mathematics, and can be easily generalized to obtain the

asymptotic power envelope in the semiparametric problem in which the nuisance

parameter is infinite dimensional.

The existing optimal tests are then reviewed associated with the optimal-

ity in the least favorable parametric submodel. Even though their testing problems

are non-standard, their optimality coincides with that of LFPS in the sense that

the test are interpreted as the weighted average of the optimal tests in LFPS.
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I.2 Behaviors of Asymptotic Optimal Tests

This section reviews general concepts of asymptotically optimal tests with

and without nuisance parameter. An optimal test is defined as a test that has the

maximal power against a particular alternative within a class of tests. Different

classes of alternative hypotheses and tests give different concepts of optimal tests

such as uniformly most powerful (UMP) tests, locally most powerful test, and

point optimal or β−optimal tests (King (1988)).

A UMP test maximizes the testing power for any parameter process in

the alternative hypothesis. Although it is most powerful among all other tests by

definition, it is well known that there is no UMP test for parameter instability.

A locally most powerful test and a point optimal tests are useful concepts of

optimality when UMP test does not exist. A locally most powerful test maximizes

the slope of the power function when the parameters of interest are at the boundary

of the null and the alternative hypothesis. One problem of this test is that the point

at which the test has the maximum power is too close to the null space so that it

sometimes fail to adequately reflect that the alternative parameter space is apart

from the null in a distinguishable distance. A point optimal test maximizes power

at a predetermined point under the alternative hypothesis. An adequate choice

of the optimal point allows the point optimal test to have the power close to the

optimal in the other points of alternative. In parameter instability tests, Nyblom

(1989) suggests a locally most powerful tests, while Andrews and Ploberger (1994)

and Elliott and Müller (2006) consider point optimal tests.

One problem of the exact optimal test is that these finite sample theories

of optimality are applied only to rather special parametric families. On the other

hand, asymptotic optimality will apply more generally to parametric families sat-
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isfying smoothness conditions. Most of the exact optimal tests in finite sample

have their counterparts for large samples. The existing optimal tests for parame-

ter instability consider asymptotic counterparts rather than looking for an exact

optimal test, and the optimal tests derived in the dissertation are also focused on

the asymptotic optimality .

In this regard, this section provides the conceptual background of the

tests suggested in my dissertation by restricting our interest to the asymptotic

counterparts of point optimal tests in general. I first deal with the case when

there is no nuisance parameters. Then I generalize to a testing problem when

unknown nuisance parameters are present. The latter is more realistic and models

with unstable parameters generally contain nuisance parameters such as the initial

value of the unstable parameters, and stable part of the parameter set.

I.2.A Optimal Tests without Nuisance Parameter

Consider i.i.d. stochastic process, Z ≡ {Zt : Ω → Rp, p ∈ N, t =

1, ..., T}, of which the conditional density is characterized as a parametric model

P = {F (z|β) : β ∈ Rk} with dominating measure µ and corresponding densities

f(z|β) = dF (z|θ)/dz. Suppose we are interested in testing H0 : β = β0 against a

simple alternative H1 : β = β1. Let’s denote a test function as φT . If we restrict

our interest to the size-α tests, i.e. Eβ0 [φT ] ≤ α, Neyman-Pearson lemma implies

that the most powerful test rejects when the log likelihood ratio statistic

LRT ≡ log[LT (θ1)/LT (θ0)]

is sufficiently large, where

LT (θ) =
T∏

t=1

f(Zt; θ) (I.2.1)
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denotes the likelihood function. For simplicity, I assume that βt is scalar. We are

interested in the asymptotic counterpart of the likelihood ratio. For this purpose,

we would like to obtain certain expansion of the likelihood ratio. The classical

Taylor expansion, however, requires the twice differentiability of the density func-

tion with further assumption of the remainder terms, which is often too strict to

be satisfied. In order to avoid such strong assumptions, it turns out to be use-

ful to work with square roots of densities. Furthermore, imposing conditions for a

mean property of densities provides a way to mitigate conditions for the remainder

terms. The following smoothness condition, called quadratic mean differentiability

is desirable to obtain the local expansion.

Definition 1 (Quadratic Mean Differentiability: QMD) Let ξt(·, β) =
√

f(Zt|β). The density f(·|β) is quadratic mean differentiable (QMD) at β0 if

there exists a vector of real-valued functions ξ̇t(·, β0) such that

Eβ0




[(
ξt(·, β0 + hβ)

ξ(·, β0)
− 1

)
− hβ

ξ̇t(·, β0)

ξt(·, β0)

]2

 → 0 as ‖hβ‖ → 0, ∀t ≤ T (I.2.2)

The vector-valued function ξ̇(·, β), called Hellinger derivative, takes over

the role of the classical score vector. It will be shown that, under standard cir-

cumstances, the Hellinger derivative has all the information about the random

property for testing purpose so that the test based on (ξ̇t(·, β)) is asymptotically

optimal. QMD is weak enough to be satisfied by a wide variety of densities and

strong enough to deliver the approximation similar to the Taylor expansion. Let’s

define ˙̀
t(β0) and the Fisher information Iβ as
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˙̀
t(β0) = 2 · ξ̇(·, β0)

ξ(·, β0)

Iβ = 4 · Eβ0




(
ξ̇(·, β0)

ξ(·, β0)

)2



The following lemma, due to LeCam, provides the asymptotic expansion

of the likelihood ratio and its distributional property. (Theorem 12.2.3 in Lehman

and Romano (2005))

Lemma 1 (Local Asymptotic Normality:LAN) Suppose f(·|β) is quadratic

mean differentiable with ˙̀
t(β0) and the positive definite fisher information Iβ. Let’s

define ST = 1√
T

∑T
i=1

˙̀
t(β0) and β1 = β0 + 1√

T
hβ where ‖hβ‖ ≤ M < ∞.

Then under H0, Eβ0 [
˙̀
t(β0)] = 0 and

LRT = hβST − 1
2
h2

βIβ + opβ0
(1) = L̃RT + opβ0

(1) (I.2.3)

ST Ã N(0, Iβ) (I.2.4)

where Ã denotes convergence in distribution

Note that the asymptotic expansion and its distribution in Lemma 1

are suggested only under the null hypothesis. However, the power of a test is

the property under the alternative hypothesis. Accordingly, in order to obtain

an asymptotically optimal test, we need to guarantee that the approximation in

Lemma 1 holds also under the alternative hypothesis. An useful concept to derive

this property is the contiguity.
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Contiguity is an asymptotic version of absolute continuity. In order to

motivate the concept, let Q = F (·; θ1) and P = F (·; θ0) be probability distribu-

tions under H1 and H0, respectively. Then Q is absolutely continuous with respect

to P if P (A) = 0 implies Q(A) = 0 for every measurable set A. If the alternative

distribution is absolutely continuous with respect to the null distribution, the al-

ternative distribution of a test statistic, T = T (Z), and thereby the power of a

test can be calculated from the null distribution through the following formula.

EQ[f(T )] = EP

[
f(T )

dQ

dP

]
(I.2.5)

where f is some measurable function. Contiguity permits an analogous statement

in the large samples, which implies that it has two useful properties: First, if a

sequence of a statistic TT converges in probability to T under H0, then the con-

vergency holds even under H1. Second, asymptotic counterpart of (I.2.5) provides

a way to obtain the distribution of TT under H1. By plugging 1(T ) into (I.2.5)

where 1(·) is an indicator function, we get the asymptotic distribution of TT is

TT Ã EP [1(T ) exp(LR)] under H1 (I.2.6)

where LR is the asymptotic counterpart of the log-likelihood ratio. (Theorem 6.6

in Vaart (1998) ) Consider sequence of the null and the alternative distribution,

{PT , QT}. Suppose we have a test statistic TT = TT (Z) of which the asymptotic

null distribution and other properties are easily obtained. Our purpose is to eval-

uate the power property of TT , and thereby to find out an asymptotically optimal

test. It turns out that the local alternative, θT = θ0 + 1√
T
hβ, together with QMD.,

provides contiguity of QT . Then the contiguity implies that the asymptotic al-

ternative properties of TT can be obtained from the asymptotic null distribution,

which is summarized as
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1. (LeCam’s first lemma) For any statistics TT : Ω → Rp, if TT → 0 under H0,

then TT → 0 under H1.

2. (LeCam’s third lemma) The score function ST is asymptotically as follows

ST Ã N(Iβhβ, Iβ) (I.2.7)

These properties provide a convenient way to derive an asymptotically

(point)-optimal test. A suggested test statistic is based on the LAN of the likeli-

hood ratio,L̃RT . Lemma 1 gives that |L̃RT − LRT | converges to zero under the

null hypothesis. LeCam’s first lemma indicates that the asymptotic equivalency

holds even under H1, which implies that any increasing transformations of L̃RT

are asymptotically most powerful (AMP) against a point alternative hypothesis

hβ
1. Since the score function ST is the only random factor in the LAN, An asymp-

totically point optimal test against a point alternative hβ is to reject the null

hypothesis if ST is sufficiently large, i.e. the asymptotically point optimal test φT

is defined as

φT =





1 if ST ≥ cα

0 otherwise




Note that the test function is equivalent to Rao’s score test which is known

to maximizes the derivative of the power function at β0. It is asymptotically locally

most powerful in the sense that it maximizes the slope of the power function.

Consequently, we would infer that the asymptotically point optimal tests have

equivalent power properties to that of asymptotically locally most powerful test

in this standard LAN testing problems. By LeCam’s third lemma, the asymptotic

power (ψh) and the critical value (ch,α) can be derived as,

1The asymptotic optimality holds even under unknown h in one-sided test. See Lehman and
Romano (2005).
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cα = I
1/2
β z1−α (I.2.8)

ψhβ
= 1−Ψ[z1−α − hβI

1/2
θ ] (I.2.9)

where z1−α = Ψ−1(1 − α) is the 1 − α quantile of N(0, 1) (See Lehman

and Romano (2005) Lemma 13.3.1 for details.).

I.2.B Optimal Tests in the Presence of Unknown Nuisance

Parameter

The previous section assumes that the parameter of interest β is the only

parameter in the model. However, it is more plausible to allow that the nuisance

parameters are present. A familiar example is when only a pat of the regression

coefficients are to be tested in a linear regression model. In structural break tests,

this is called a partial structural break test. Another familiar case is to test the

regression coefficients where the error term belongs to some parametric family of

distributions indexed by finite numbers of parameters such as asymmetric power

distribution.

In this section, I generalize the previous model by introducing a finite

dimensional nuisance parameter η. The true set of conditional densities of Zt is

now characterized as a parametric family Pη = {F (z|θ) : θ = (β, η), β ∈ R, η ∈ Rq}
with dominating measure µ and corresponding densities ft(z|θ) = dFt(z|θ)/dz.

In this asymptotic set-up, we consider the local parametrization of θ such

that the alternative distribution is contiguous to the null distribution.
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β = β0 +
1√
T

hβ η = η0 +
1√
T

hη

where η0 is the true value of η and h = (hβ, h′η) ∈ Hθ is bounded where the local

parameter space Hθ is a Hilbert space. Analogous to the previous model without

nuisance parameter, I impose the smoothness condition that the density f(z|θ) is

QMD with respect to both β and η. Consequently, LAN can be written as

LRN
T ≡ log

(
LT (θ1)

LT (θ0)

)
= h′ST − 1

2
h′Ih + opθ0

(1) = L̃RT + opθ0
(1) (I.2.10)

ST =


 Sβ

T

Sη
T


 =




1
T

∑ ˙̀β
t

1
T

∑ ˙̀η
t


 Ã N(0, I) under H0

I =


 Iβ Iβη

I ′βη Iη




where ˙̀β
t and ˙̀η

t are the first derivative with respect to β and η, respectively,

Iβη = E[ ˙̀βt ˙̀η′
t ], and Iη = E[ ˙̀ηt ˙̀η′

t ]. The alternative distribution is shown to be

contiguous in the local alternatives so that ST is also asymptotically normal with

mean h and variance I under H1. Let’s define (1+ q)×1 vector ι1 = (1, 0, . . . , 0)′).

The problem is to test

H0 : ι′1θ = β0 vs H1 : ι′1θ = β0 +
1√
T

hβ

Since the model has unknown perturbation hη, we need to restrict a set

of a test under which an optimality is defined to have the best asymptotic power

among the set that covers the perturbation. One way is to restrict the set of tests
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that have correct asymptotic size property regardless of the perturbation hη, i.e. I

consider a set of tests that are, for a fixed α > 0

lim
T→∞

SupE(0,hη)φT (Z) ≤ α for every hη (I.2.11)

In order to obtain an asymptotically optimal test and the power enve-

lope, it is useful to use the method of limits of experiments. An experiment can be

regarded as a synonym of a probability model, and a sequence of experiments is de-

fined to converge to a limit experiment if the sequence of likelihood ratio processes

converges in distribution to the likelihood ratio process of the limit experiment,

i.e. for every h ∈ H, there exists a probability measure L(θ) such that

LT (θ1)

LT (θ0)
Ã L(θ1)

L(θ0)
under θ0

The reason that a limit experiment method is a useful tool is because

a limit experiment is always statistically easier then a given sequence. Suppose

a sequence of tests TT converges under a given parameter h in distribution to a

limit Lh, for every parameter h. Then the asymptotic property of the sequence

TT may be judged from the set of limit laws, {Lh}. Theorem 9.3 of Vaart (1998)

implies that every weakly converging sequence of test statistics converges to a

test statistic in the limit experiment. A consequence is that asymptotically no

sequence of statistical procedures can be better than the best procedure in the

limit experiment. In this way the limit experiment obtains the character of an

asymptotic power envelope. The following theorem (Theorem 13.4.1 in Lehman

and Romano (2005) ) summarizes it.

Theorem 2 Suppose {QT,h, h ∈ Hθ} is an asymptotically normal sequence of mod-
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els with covariance matrix I, Let φT be a test function. Let ψT (h) denote the power

of φT against QT,h. Then for every subsequence {Tj}, there exists a further sub-

sequence {Tjm} and a test φ in the limiting experiment N(h, I−1) such that, for

every h,

ψnjm
(h) −→ ψ(h)

where ψ(h) is the power of φ.

Now according to Theorem 2, we can approximate the power of a test

sequence φT by the power of a test in the limit experiment φ(X), where X =

I−1S ∼ N(h, I−1) under H1. Section 3.9 of Lehman and Romano (2005) implies

that there exists an asymptotically point optimal test based on X which rejects

for large values of ι′1X. Note that under H1,

ι′1X ∼ N(hβ, σ2
0) (I.2.12)

where

σ2
0 = ι′1I

−1ι1 = (1, 1)th element of I−1 (I.2.13)

Hence, the critical value (c∗α) and the power (ψ∗) of the test is then

c∗α = z1−ασ0 (I.2.14)

ψ∗h = 1− Φ(z1−α − σ−1
0 hβ) (I.2.15)

Consequently, Theorem 2 implies that, (I.2.15) provides the asymptotic

power envelope of any asymptotically size-α test, φT . The asymptotic power enve-
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lope (I.2.15) is called sharp if it is possible to derive a feasible optimal test sequence

which asymptotically hits (I.2.15). It can be shown that the feasible sequence can

be constructed if a certain regular estimator sequence is available. Note that the

inverse of I can be written in the form

I−1 =
1

σ2
0


 1 −I ′βγI

−1
γ

−I−1
γ Iβγ I−1

η + I−1
γ IβγI

′
βγI

−1
γ


 (I.2.16)

where

σ2
0 = Iβ − IβγI

−1
γ Iβγ (I.2.17)

The limit test function ι′1X is accordingly rewritten as

ι′1X = ι′1I
−1S =

1

σ2
0

[
Sβ − I ′βγI

−1
γ Sη

] ≡ 1

σ2
0

S∗ (I.2.18)

Since ST (θ0) weakly converges to S both under H0 and H1, a sequence of

tests based on the finite sample counterpart of S∗, denoted as S∗T (θ0)(= Sβ,T (θ0)−
I ′βγI

−1
γ Sη,T (θ0)), attains the asymptotic power envelope. The statistic S∗T is called

effective score and the variance of S∗T is σ2
0 which is called the effective information.

The regularity condition for the existence of a feasible optimal test is

consequently the condition that enables S∗T to be asymptotically invariant even

if η0 is replaced by a
√

T -consistent estimator, η̂. I assume that under H0 the

sequence of the score function satisfy the linear stochastic expansions

Sβ,T (η0 +
1√
T

hη) = Sβ,T (η0)− I ′βηhη + op0(1)

Sη,T (η0 +
1√
T

hη) = Sη,T (η0)− Iηhη + op0(1) (I.2.19)
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uniformly for bounded hη. Consequently, for
√

T -consistent estimator η̂ = η0 +

1√
T
ξ,

Sβ,T (η̂) = Sβ,T (η0)− I ′βηξ + op0(1)

Sη,T (η̂) = Sη,T (η0)− Iηξ + op0(1) (I.2.20)

Thus, assuming further that I is continuous, plugging (I.2.20) into the

effective score function gives

S∗T (η̂) = S∗T (η0) + op(1) (I.2.21)

under H0. And the contiguity implies that (I.2.21) holds even under H1. Conse-

quently, the test based on S∗T (η̂) is asymptotically optimal.

It is interesting to study the influence of the unknown nuisance parameter

by comparing the asymptotic power (I.2.15) with the situation in which the nui-

sance parameters are known. If η are fixed and known, the best limiting power of

an asymptotically size-α test is obtained in (I.2.9). Comparing this with (I.2.15),

we see that

I−1
β ≥ σ2

θ0
≡ I−1

β − IβηI
−1
η I ′βη

which implies that the limiting power under known nuisance parameter dominates

that under unknown η. Equality holds when Iβη is a zero vector. since Iβη is the

covariance between the score of the parameter of interest,Sβ,T and the score of the

nuisance parameter, Sη,T , The zero vector condition implies that there is no loss

of asymptotic power if Sβ,T and Sη,T are orthogonal. Note that this condition is

equivalent to Stein (1956)’s necessary condition for the adaptive estimation. A test
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is adaptive if it has the same asymptotic properties as the one obtained under the

assumption that the true distribution is known. Under smooth alternatives with

QMD likelihood, parametric models with unknown nuisance parameters provide

insight on the optimality in semiparametric models.

The asymptotic optimal tests can be derived from a different concept

using the least favorable parametric submodel. The following is the intuition: First

consider an arbitrary alternative of nuisance parameters hη. The power envelope of

the test under the alternative will be greater than that of any asymptotically size-

similar test without the restriction because the information for statistical inference

decreases if one enlarges the model, i.e. for any feasible test function φ̂ without

knowledge of η0 and h0
η,

Eβ1 [φ̂] ≤ SupEβ1 [φ(η0, h
0
η)] (I.2.22)

Since this argument holds for all types of hηs, the infimum of the power envelopes

over the class of all hηs provides an upper bound of the power envelope of the

test under unknown nuisance parameters. Geometrically, we get the lower bound

by projecting the score function of β onto orthogonal complement of the linear

subspace generated by all possible score functions for the nuisance parameter.

In order to demonstrate the idea more precisely, I first assume that η0

is known and consider an asymptotically optimal test. Applying the Neyman-

Pearson lemma to (I.2.10), we find an optimal test of asymptotic level α to be of

the form φ̃T = 1 if

L̃RT ≡ log

(
LT (θ1)

LT (θ0)

)
= h′ST − 1

2
h′Ih > cT (I.2.23)
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and φ̃T = 0 otherwise. The asymptotic distribution of L̃RT is N(−1
2
h′Ih, h′Ih)

under H0 and N(1
2
h′Ih, h′Ih) under H1. Consequently, the power of the test

depends on h′Ih. The purpose of this section is to derive the asymptotic power

envelope under unknown η0. Let ψT is the power function of a test under unknown

η0. Since φ̃T is optimal for any known η0, the following inequality holds,

lim sup ψT ≤ inf
hη

[
lim inf Ehφ̃T

]
(I.2.24)

which implies that the infimum provides the asymptotic power envelope. The

asymptotic alternative distribution of L̃RT implies that the infimum is obtained

when h′Ih is minimized. Simple algebra shows that h′Ih is minimized in hη when

hη = −I−1
η Iηβhβ (I.2.25)

which we call the least favorable direction. Note that the alternative space lies on

the orthnormal complement of the null space under the least favorable direction,

under which the null is most difficult to distinguish from the alternative. By

plugging (I.2.25) into L̃RT yields

L̃R
∗
T = hβS∗T −

1

2
hβI∗hβ (I.2.26)

where S∗T and I∗ are the effective score and the effective information defined in

(I.2.18) and (I.2.17). Consequently, the test based on the effective score S∗T is

asymptotically optimal. But it is the same as asymptotically optimal test derived

using the classic method, which implies that the method of the least favorable

parametric submodel delivers the same optimality result.
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This approach has advantages in the sense that it can be generalized to

the testing problem in semiparametric model (Choi et al. (1996)), in which the

semiparametric power envelope is defined to be the infimum of the power enve-

lope associated with smooth parametric submodels. It also can be extended to

non-standard testing problem in which LAN does not hold. In many important

situations, the quadratic term (counterpart of the fisher information I) stays ran-

dom even in the limit. Such a case is called locally asymptotically quadratic (LAQ)

if the alternative distribution is contiguous. It is well known that the least fa-

vorable direction methods holds under some LAQ circumstances if the score is

asymptotically normal and independent of the quadratic term (LAMN).

Even in more general LAQ, this method is still useful to obtain asymp-

totic optimality in the sense that (I.2.26) provides the asymptotic power envelope

in locally asymptotically invariant tests. Let L̃R and L̃R
∗

be the asymptotic coun-

terpart of L̃RT and L̃R
∗
T , respectively. A sequence of a test ψT is said to be locally

asymptotically α−invariant if a test function ψ(S, I) satisfies

ψ(S, I) = E[ψ(S, I)|S∗, I] (I.2.27)

If Sη is conditionally independent of I, then it is shown that

E[exp(L̃R)|S∗, I] = exp(L̃R
∗
).(See Jansson (2006) for details.) Combining this

with (I.2.27), the following equality holds.

E
[
ψ(S, I) exp[L̃R]

]
= E

[
ψ(S, I) exp[L̃R

∗
]
]

(I.2.28)

which implies that LR∗ would give the asymptotic power envelope among all lo-

cation invariant test.
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Next section shows that the parameter instability tests are also non-

standard and LAN does not applied to them because the asymptotic normality

of the score function does not hold under the local alternative hypothesis. It in-

validates the direct use of the least favorable direction method because the zero

correlation of the efficient scores S∗T with Sη
T , which is equivalent to the orthogonal-

ity of the scores, indicates the independency only under the normality condition.

Instead, it is shown that they implicitly use the least favorable direction based on

the contiguity property only, which corresponds to LeCam’s 1st lemma, as follows:

First, they impose the direction IβηI
−1
η hβ to the local variation of the nuisance

parameter hη which is equivalent to the least favorable direction in standard LAN.

Then they derive a feasible test function under unknown nuisance parameters. Fi-

nally they show that the feasible test function is asymptotically equivalent to the

likelihood ratio with the suggested direction. The contiguity justifies the asymp-

totic equivalency under the alternative hypothesis too, which proves the asymptotic

optimality.

The asymptotic optimal test in LFPS coincides with various methods

dealing with unknown nuisance parameters. One example is the method of profile

likelihood. Profile likelihood methods are frequently used for eliminating nuisance

parameters and for making statistical inference on parameters of interest. Murphy

and der Vaart (2000) demonstrate that under local perturbation of the unknown

nuisance parameters if the least favorable direction exists, the profile likelihood be-

haves very much like the ordinary likelihood and correctly selects a least favorable

direction. The profile likelihood for β reduces the number of independent param-

eters to the dimension of β by imposing the nuisance parameter η as a function of

β, which maximizes the likelihood function, i.e.
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plT (β) ≡ sup
η

fT (β, η)

Using the profile likelihood function, we can construct a function analo-

gous to the original likelihood ratio, called profile likelihood ratio, which is defined

as

PLRT ≡ plT (β1)

plT (β0)
=

supη fT (β1, η)

supη fT (β0, η)
(I.2.29)

Note that the profile likelihood ratio is not the true likelihood function,

and profiling generally breaks down the iid structure which is one of the main

conditions for the existence of the local quadratic approximation. However, Mur-

phy and der Vaart (2000) show that, as long as the least favorable maps exist in

the model, one can keep the iid structure so that the local asymptotic quadratic

approximation is possible. They show that for any sequence βt → β0,

ln plT (βT )− ln plT (β0) = (I.2.30)

(βT − β0)S
∗
T −

1

2
(βT − β0)

′I∗(βT − β0) + opβ0,η0
(
√

T‖βT − β0‖+ 1)2

where ‖ ‖ is the norm. An interesting finding is that if we replace βT by the local

alternative β0 + 1√
T
hβ, then (I.2.31) is asymptotically equivalent to the LAN of the

original likelihood ratio in the least favorable parametric submodel. Consequently.

we could obtain the result that the test based on the profile likelihood ratio is

asymptotically equivalent to the optimal test in LFPS.
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I.3 Review of The Optimal Tests for Parameter

Instability

This section examines the asymptotic optimality of the existing popular

tests for parameter instability. Three tests are considered; Andrews and Ploberger

(1994), Elliott and Müller (2006), and Nyblom (1989). This section shows that the

first two tests coincides with the optimality considered in the previous section, in

the sense that they are the weighted average of the asymptotically point optimal

tests in the least favorable parametric submodel. Nyblom (1989)’s test is different

from the other two because it maximize the slope of the power function at the

boundary of the stable and unstable parameter space. But it can be shown that

it has a room to coincide with the other two.

I.3.A Andrews and Ploberger (1994)

Andrews and Ploberger (1994) consider a class of optimal tests for struc-

tural break in the sense that they provide a greatest asymptotic weighted average

power result. Consider a single structural break case in which the parametric

model is indexed by (βt, η, π) for t = 1, . . . , T . η = (β0, γ) is a (k + q)× 1 vector of

nuisance parameters that are constant for all t. π is the nuisance parameter that

represents the time of a break as a portion of the sample size, and βt is a k × 1

vector of parameters that have a break at time s = πT . The sample observations

is given by {Zt} = {(yt, Xt)} where yt is endogenous variable and Xt are weakly

exogenous variables. The hypothesis to be tested is
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H0 : βt = 0 ∀t ≤ T (I.3.1)

H1 : βt 6= 0 πT < t ≤ T

Their test is based on the likelihood ratio, but is built as a weighted

function of the standard LR tests for all permissable fixed break dates. This con-

figuration is driven by defining the alternative likelihood as the weighted average

with respect to the parameters that are identified only under the alternative. Two

types of weights are involved. The first applies to parameter π, denoted as dJ(π),

which represents the possible break dates. The other is related to how far the

alternative value is from the null hypothesis within an asymptotic framework that

treats alternative values as local to the null hypothesis. If we define the local al-

ternative process as (β, η) = θ = θ0 + (1/
√

T )h where θ0 = (0, β0, γ0), then the

weight function is assigned with respect to h, denoted as DQπ(h). Consequently,

they consider the likelihood function under the null and the alternative hypothesis

as

Under H0 : L0
T =

T∏
t=1

f(yt|θ0)fX(Xi) (I.3.2)

Under H1 : L1
T =

∫ T∏
t=1

f(yt|θ0 +
1√
T

h)fX(Xt)dQπ(h)dJ(π) (I.3.3)

A possible reinterpretation of the weight function is that they are the

probability measure of the random process {βt} which leads to a particular random

parameter model with probability measure dQπ(h)dJ(π). The likelihood ratio is

now defined as
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LRAP
T =

∫ T∏
t=1

f(yt|θ0 + 1√
T
h)

f(yt|θ0)
dQπ(h)dJ(π) (I.3.4)

Under the assumption that the likelihood function is twice differentiable,

they derive a local quadratic approximation of the integrand of (I.3.4) under H0,

so that the likelihood ratio would be asymptotically equivalent to

L̃R
AP

T =

∫
exp [h′ST + h′Ih] dQπ(h)dJ(π) (I.3.5)

where ST is a vector of the score functions, and I is nonrandom positive definite

Fisher information matrix. Note that, given h and π, the integrand in (I.3.4) is

reduced to the standard likelihood ratio against the local alternative θ = θ0 +

(1/
√

T )h. and it can be shown without difficulty that the alternative distribution

given h and π is contiguous. It implies that the integrand in (I.3.5) is considered

as the exponential of LAN given h and π. Consequently, the likelihood function

(I.3.5) is interpreted as a weighted average of LAN with respect to h and π. Note,

however, that the local approximation is not exactly the same as the standard

concept of LAN because the score function is not asymptotically normal under

H1. The asymptotic normality under the alternative comes when both ST and

LRT are asymptotically normal under H0. But since LRAP
T is not asymptotically

normal, the asymptotic normality of ST does not hold in this setup. It implies

that we cannot use LeCam’s third lemma to obtain an asymptotically optimal

test. Instead, they implicitly show that the least favorable direction idea still hold

by using only the contiguity property.

In order to get around the problem of unknown nuisance parameter η,

Andrews and Ploberger (1994) choose a particular weight function Qπ(h). Let V

denote the linear subspace of Rk+p defined by
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V = {θ ∈ Rk+p|θ = (0′, η′)′for some η ∈ Rq}

Then, they consider a weight function Qπ(·) on Rk+p that concentrates

on the orthogonal complement of V with respect to the inner product h′IST . The

orthogonal complement they consider is now defined as,

V ⊥ =



h ∈ Rk+p|h =


 λ

−I−1
η I ′βηλ


 for some λ ∈ Rk



 (I.3.6)

But plugging h in (I.3.6) into the likelihood ratio (I.3.5) gives the inte-

grand as a function of the efficient score and the efficient information matrix as

.

L̃R
AP∗
T =

∫
exp [λ′S∗T + λI∗λ] dQλ

π(λ)dJ(π) (I.3.7)

They show that replacing the integrand in L̃R
AP∗
T by a suggested feasible

test function gives a asymptotically equivalent test function. Since any feasible

test function satisfies inequality (I.2.22), the suggested feasible test function in

the integrand is regarded as the asymptotically optimal test in the least favorable

parametric submodel. Consequently, under the assumption that the error term is

iid, Andrews and Ploberger (1994)’s test is implicitly interpreted as the weighted

average of the asymptotically optimal test in the least favorable parametric sub-

model. It is also possible that the test function coincides with profile likelihood

ratio as in the standard testing problem in the sense that a possible suggested test

function in the integral is shown by them to be the profile likelihood ratio.
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I.3.B Elliott and Müller (2006)

Elliott and Müller (2006) study asymptotically point optimal invariant

tests for instability in coefficients in linear regression models. They consider a

variety of unstable parameter processes that could possibly occur in the economy,

and provide conditions under which the unstable processes lead to asymptotically

equivalent optimal tests. The set of unstable processes they consider includes not

only traditional structural breaks but also the case when β is an unstable random

variable. They also suggest a feasible test function that is asymptotically point

optimal. The linear regression model they consider is

yt = X ′
t(β0 + βt) + Z ′

tδ + εt t = 1, . . . , T (I.3.8)

where εt is iid normal. The null hypothesis is that βt is a zero vector for all

t = 1, . . . , T . Under the alternative, {βt} are any unstable random vectors which

are applicable to heterogeneous mixing functional central limit theorem. (Theorem

7.30 in White (2001)) It implies that the unstable process {βt} is asymptotically

well approximated by a k × 1 Wiener process. They show that this condition

is weak enough to cover a wide range of unstable processes including structural

breaks and time varying parameters.

In addition to this, they give a normalization condition that the average

value of the random parameter path is always the same as that under the stable

model. It implies that the average of the unstable parameter is normalized to zero,

i.e. 1
T

∑
βt = 0. This normalization ensures that the likelihood ratio statistic

efficiently detects the variation in the coefficient, rather than differences between

the average value of the parameter. In this set up, the likelihood functions under

H0 and H1 are defined as
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Under H0: L0
T =

1√
2πσ

exp

[
1

2σ2

T∑
t=1

e2
t

]

Under H1: L1
T =

∫
1√
2πσ

exp

[
1

2σ2

T∑
t=1

(et −X ′
tβt)

2

]
dνβ (I.3.9)

where et = yt −X ′
tβ0 − Z ′

tγ and νβ is the measure of {βt}. The likelihood ratio is

now defined as

LREM
T =

∫ exp
[

1
2σ2

∑T
t=1(et −X ′

tβt)
2
]

exp
[

1
2σ2

∑T
t=1 e2

t

] dνβ

=

∫
exp

[
1

σ2

T∑
t=1

etX
′
tβt − 1

2σ2

T∑
t=1

β′t(Xtet)(Xtet)
′βt

]
dνβ (I.3.10)

Note that the integrand in (I.3.10) is equivalent to the likelihood ratio

function for fixed {βt}, leading to the interpretation that (I.3.10) is also regarded as

the weighted average of the standard LR, as is the case of Andrews and Ploberger

(1994). With this insight, one important determinant of optimal tests of parameter

instability is the choice of weight function dνβ, or equivalently, the probability

distribution it posits of {βt}. Different weight functions lead to different unstable

parameter processes. Therefore, the choice of weight function implies the choice of

specific unstable process. An innovative finding of Elliott and Müller (2006) is that

the choice of weight function, or equivalently, the unstable process is asymptotically

irrelevant if {βt} is asymptotically characterized by a vector of Wiener process.

In order to deal with unknown nuisance parameters (β0, δ), they focus on

deriving the optimal test that is invariant to transformation of the form
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(y, (X, Z)) → (y + Xb̄ + Zd̄, (X, Z))

Using the fact that any invariant test can be written as a function of

a maximal invariant group of transformation, they suggest a maximal invariant

transformation defined as (MQy, (X,Z)) where MQ = IT − Q [QQ′]−1 Q′, and

Q = (X, Z). Note that MQ is equivalent to the annihilator in OLS estimation,

which indicates that MQy is identical to the OLS residuals. Let e∗t be tth component

of MQy. Then under the maximal invariant transformation, Elliott and Müller

(2006) show that the likelihood ratio is asymptotically equivalent to

L̃R
EM

T =

∫
exp

[
1

σ2

T∑
t=1

β̂′tXte
∗
t −

1

2σ2

T∑
t=1

β̂′tΣX β̂t

]
dνβ (I.3.11)

where β̂t = βt − 1
T

∑
βi, and ΣX = E[XtX

′
t]. The likelihood ratio L̃R

EM

T is

interpreted as the weighted average of the likelihood ratio in the least favorable

parametric submodel where the probability measure νβ is assigned as the weight

function. Let’s define the local alternative θt = θ0 + 1√
T
ht where θt = (β′t, η′1)

′,

θ0 = (0′, η′0)
′, ht = (

√
Tβ′t, h′η)

′, and η = (β′0, δ′). For fixed {βt}, chapter 2

demonstrates that LAQ can be applied to the likelihood ratio so that the local

approximation is

L̃T = exp

[
1√
T

∑
˙̀′
tht − 1

2T
h′tIht

]
(I.3.12)

Note that the first derivative and the Fisher information in a linear Gaus-

sian model are
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˙̀
t = ( ˙̀β′

t , ˙̀η′
t )′, ˙̀β

t =
1

σ2
Xtet, ˙̀η

t =


 ˙̀β0

t

˙̀δ
t


 =

1

σ2


 Xtet

Ztet




I =


 Iβ Iβη

I ′βη Iη


 Iβη =

1

σ2
[ΣXZ ] Iη =


 ΣX ΣXZ

Σ′
XZ ΣZ


 (I.3.13)

where ΣXZ = E[XtZt], and ΣZ = E[ZtZt]. Simple calculation shows that applying

the candidate for the the least favorable direction ht = −I−1
η Iηββt gives

1√
T

θt = (β′t,−
1

T

∑
β′i, 0′) (I.3.14)

Plugging (I.3.14), and (I.3.13) into (I.3.10) gives that the likelihood ra-

tio is equivalent to the integrand in (I.3.11) except e∗t is replaced by et. Since

OLS estimator is the regular maximum likelihood estimator under Gaussian error

distribution, we can apply the result in (I.2.21), which implies that replacing e∗t

by et provides equivalent asymptotic properties. The likelihood ratio with {et}
and {e∗t} are asymptotically equivalent. Consequently, the integrand of Elliott and

Müller (2006)’s likelihood, (I.3.12), is asymptotically equivalent to the likelihood

ratio in the least favorable parametric submodel under given {βt}, which leads to

the suggested interpretation.

I.3.C Nyblom (1989)

Nyblom (1989) proposes an asymptotically locally most powerful test

against the unstable parameter process that is a martingale, i.e. E[βt|=t−1] = βt−1,

where =t is the information set up to time t. Like Elliott and Müller (2006), he
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shows that the martingale processes cover both structural breaks and time varying

parameter processes. A central difference of his test from Andrews and Ploberger

(1994) and Elliott and Müller (2006) is that it maximizes the slope of the power

function at βt = 0. His model does not require the contiguity of the alternative

process, nor LAQ of the likelihood ratio. Instead, he focuses on the case in which

{βt} is very close to zero so that the higher order term than the second one in the

Taylor expansion of the likelihood ratio is asymptotically negligible, leading to the

likelihood ratio equivalent to

L̃R
N

T =

∫
exp

[∑
˙̀′
tβt − 1

2
β′tItβt

]
dνβ (I.3.15)

where It = ∂2logft(·)
∂βt∂β′t

and νβ is the measure of {βt}. His test is locally most powerful

if the error term is iid so that It is nonrandom. One problem of this method is

that the optimal property does not hold if the model introduces unknown nuisance

parameters. But this condition delivers the integrand in (I.3.15) coincided with

LAQ as those in (I.3.5) and (I.3.12). Consequently, (I.3.15) has the possibility to be

alternatively interpreted to be the weighted average of the optimal test associated

with the likelihood ratios of Andrews and Ploberger (1994) and Elliott and Müller

(2006) under suitable conditions that bring forth the local quadratic approximation

and contiguity.

I.4 Concluding Remark

This chapter reviews the concept of asymptotic optimality in testing pa-

rameter instability of time series models. I first study the standard optimal testing

method in the presence of unknown nuisance parameters under which the optimal
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test is interpreted as the most powerful test in the least favorable parametric

submodel. The standard method of optimality cannot be directly applied to the

parameter instability test because the parameter instability test has nonstandard

properties such as the existence of the unknown nuisance parameter that presents

only under the alternative hypothesis. This chapter, however, shows that the cur-

rent optimal tests coincides with the standard optimal test in the sense that they

are interpreted as the weighted average of the standard optimal tests in the least

favorable parametric submodel.



Chapter II

Optimal Tests for Parameter

Instability in General Time Series

Models

It is difficult to select the appropriate test for parameter instability in em-

pirical work because there are a large number of tests designed for different possible

unstable processes. Elliott and Müller (2006) resolve this problem by providing

conditions under which a large class of breaking processes lead to asymptotically

equivalent optimal tests. Their finding, however, is restricted to linear conditional

mean equations with normal error distributions. I improve upon their work in

two ways. First, I show that the asymptotic equivalency of the efficient tests for

parameter instabilities holds even in a broader set of parametric models which

includes nonlinear models with non-Gaussian error distribution. It implies that

the knowledge of the unstable parameter process is asymptotically irrelevant for

testing purposes. Second, I suggest a test statistic that is asymptotically optimal

for a broad set of unstable parameter processes which allows for both structural

31
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breaks and time varying parameters. Monte Carlo studies show that the suggested

test has better small sample powers against various breaking processes, compared

to the existing optimal tests.

II.1 Introduction

Structural instability is a common problem in macroeconomic and finance

models dealing with time series data. A change in economic policy or market

conditions may cause the adjustment of the behavior of economic agents, thereby

changing the economic relationship. As a result, parameter instability has always

been an important concern in econometric modeling and much effort has been

devoted to obtaining convenient and powerful tests for parameter instability.(See

the review papers by Perron (2006).) Several distinctive features, However, cause

difficulty in testing the parameter instability. First and foremost is the problem

that there are many possible ways for an instable parameter to occur. Single break,

multiple breaks and time varying parameter processes are examples of such ways.

The alternative processes are usually not recognized from data, which presents the

problem of how to specify the alternative process. Another difficulty is that there

exist nuisance parameters that are not identified under the null hypothesis. In

structural break models, the parameter representing unknown break point appears

only under the alternatives. In time varying parameter models, any parameter that

determines the shape of the parameter distribution is not identifiable under the

null of stable parameters. This property violates the regularity conditions for the

optimality of the classical Likelihood Ratio, Wald, and Lagrangian Multiplier tests.

Furthermore, local asymptotic normality of the tests is inapplicable in general.

Therefore, a novel test with new asymptotic distribution is required to obtain the

optimality. However, the asymptotic null distribution of the test generally depends
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on the unidentified nuisance parameters, which implies that the tests relies on the

specific instable parameter process that the researcher has in mind.

For these reasons, research has restricted its attention on the specific types

of breaking processes. Franzini and Harvey (1983), and Shively (1988) consider

models where the parameter is subject to Gaussian breaks of constant variance

every period. Nyblom and Makeläinen (1983) consider the random walk parameter

processes. Andrews (1993), Bai (1996), and Vogelsang (2005) construct tests for

one-time structural change under various circumstances. Andrews and Ploberger

(1994), Bai and Perron (1998), and Lavielle and Moulines (2000) generalize to

multiple structural breaks cases.

Attempts to cover a wide range of parameter instabilities are done by

Nyblom (1989) and Elliott and Müller (2006). Nyblom (1989)’s test is locally most

powerful only when the initial point of the parameter is known, which is generally

infeasible in economic applications. Elliott and Müller (2006) show that, in a

linear model with Gaussian error distribution, any optimal test for specific unstable

process has the same asymptotic power against any other unstable processes as

long as it is in the broad set they define. However, the linear conditional mean

model is sometimes too simple for economic applications. Furthermore, larger

movements in economic time series seem to occur more often than would be implied

by normality. Therefore, inference designed for a larger variety of economic models

and distributions should be relevant for applied econometric work.

This chapter makes two contributions. First, I extend Elliott and Müller

(2006)’s finding to general parametric models. This implies that, in a broad set

of parametric models, any optimal test for parameter instability is asymptotically

equivalent, as long as the instability is in a very general set. The set of insta-

ble parameter processes allows for multiple structural breaks, regularly occurring



34

breaks, smooth adjustment of the model to an economic shock, and time varying

parameters. The set of parametric models are wide enough to include nonlinear

models and quantile models. A wide range of densities are applicable by relaxing

the twice differentiability of likelihood functions. Hence I show that the precise

form of the instable parameter process is unnecessary for testing purpose in the

asymptotic sense.

Second, I suggest a convenient test statistic for this set of instable pa-

rameter processes. The test statistic is asymptotically equivalent to the likelihood

ratio test statistic under both the null and the alternative hypotheses. This implies

that the test statistic is asymptotically optimal. The test statistic is easy to com-

pute because it requires only the maximum likelihood estimation under the null

hypothesis. I also calculate small sample powers of the test against various types

of the instable parameter processes. The test has better small sample powers than

the existing optimal tests for almost all alternative processes. The test is used to

investigate the quantile parameter stability in the U.S. inflation model.

This chapter is organized as follows: Section 2 points out some distinctive

properties of the testing problem. Section 3 derives an asymptotically optimal test

statistic and suggests an implication. Section 4 provides some examples for the

optimal test statistic in economic applications. And Section 5 concludes

II.2 Distinctive Features Parameter Instability

Tests

This section considers the distinctive features of parameter stability tests

and reviews the current test methods. I consider a parametric model indexed by
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(βt, γ) for t = 1, . . . , T . γ is a (k + q)× 1 vector of constant parameters, and βt is

a k × 1 vector of parameters varying across time. The hypothesis to be tested is

H0 : βt = 0 ∀t
H1 : βt 6= 0 for some t > 1

(II.2.1)

In case of tests of pure parameter instabilities, q is zero and γ is the

parameter vector of the initial point of βt. The hypothesis in (III.2.2) seems

identical to that of the standard test problem. However, it has some distinctive

features which make it difficult to use standard LM, Wald and LR test. One

difficulty is that there exist a large variety of ways in which βt is not stable. Any

specific assumption on unstable βt would lead to a different testing problem, and

a test developed for one alternative βt might not be useful in another specific

βt. Existing tests can be categorized into two big streams based on types of βt

processes: One is the test of structural breaks, and the other is the test of time

varying parameters.

Structural break tests regard βt as fixed and described by a vector of

unknown parameters. Most tests of structural breaks focus on single break cases,

in which

βt = 0 for t ≤ τT

βt = β for τT < t ≤ T
(II.2.2)

where τ is the time of structural change as a fraction of the sample size. Traditional

approaches such as Chow (1960), Zellner (1962), Goldfeld and Quandt (1978), and

Rothenberg (1984) assume that the time of the structural change is known. In

general, however, we do not know the true change point. Even if we know the cause
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of a structural break, we usually do not know the exact time of the occurrence. For

example, one might want to test for structural change occurring sometime during

the war period 1939-1949, but it is hard to identify in what exact year the break

is suspect to occur. Furthermore, although we know the time of the structural

breaks, sometimes change occurs only after a lag of unknown length, or before the

event due to anticipation of the event.

In these circumstances, if no structural change occurs, the time of struc-

tural change is redundant. The nuisance parameter τ appears under the alternative

hypothesis, but not under the null. This feature makes it difficult to use tradi-

tional tests such as LR, LM and Wald tests. Davies (1977) shows that the test

does not fit into the standard regular testing framework. Consequently LM, Wald,

and LR-like tests, constructed with τ treated as a parameter, do not possess their

standard large sample asymptotic distributions such as χ2 distribution.

Quandt (1958, 1960), Davies (1977, 1987) and Hawkins (2000) suggest

the use of supremum of LR, LM and Wald tests (sup F tests) over all values of

τ . This search over a set of dependent F-statistics affects the asymptotic distri-

bution of the test, which ceases to be χ2. Andrews (1993) finds the asymptotic

distribution of the statistic in a very general setting, and shows that the tests have

non-trivial asymptotic power. The SupF tests are not optimal, however, except

in a very restrictive sense. Andrews and Ploberger (1994) propose an optimal test

by maximizing weighted average power of LM tests at given τ . The weighting

function is designed so that each LM has constant weight on the same ellipses in

the parameter space.

Tests for multiple structural breaks are, in principle, extensions of single

break cases. Andrews and Ploberger (1994)’s test can be applied to multiple

break cases with different weight functions with respect to break times. Bai and
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Perron (1998) extend the alternative to multiple structural break processes and

examine the maximum of the F-statistic over all combinations of (τ1,...,τN). The

computation in practice is, however, cumbersome because they have to calculate

the statistic for all possible combinations of the break dates. For example, Bai

and Perron (1998)’s test needs to compute


 T

p


 different F statistics for T

observations and p possible breaks.

Another stream is testing time-varying parameters in which βt is consid-

ered as random. Even in the time varying parameter approaches, there are many

possible alternatives based on the assumptions of stationarity and distributions of

βt. Any specific assumption leads to a different testing problem. Engle and Wat-

son (1985) consider stationary autoregressive processes in which βt deviates only

temporarily from zero. Nyblom and Makeläinen (1983) consider βt as a random

walk with a constant Xt. A similar difficulty with the case of structural breaks

occurs, since parameters describing the distribution of βt are identified only under

the alternatives. This renders the typical intuition of optimality of general LR,

LM, and Wald tests, and asymptotic normality not applicable.

The introduced test functions have good power properties under their

specific alternative processes. The problem is to decide what testing method we

should use for the specific economic model of interests. Data give little information

about the choice of the test statistic. Economic theory also provides restricted

guide as to what type of alternative process one would expect in practice. There

are few ways, other than to depend on what one has in mind.

Methods to overcome this problem are suggested by Nyblom (1989),

Eliasz et al. (2004), and Elliott and Müller (2006). Their methods are based

on the idea that structural breaks processes and time varying parameter processes
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are not truly distinctive. For example, consider

βt = βt−1 + γtδt t = 1, . . . , T (II.2.3)

(II.2.3) is reduced to random walk process if γt is constant for all t and δt

is iid N(0, Ik) where Ik is k × k identity matrix. (II.2.3), however, can be defined

as a single structural break process. Let (γ1, . . . , γT ) be a multinomial vector with

Pr(γt = 1) = pt, Pr(γt = 0) = 1 − pt, and (δ1, . . . , δT ) are iid and independent

of (γ1, . . . , γT ). Then exactly one of γt is one with others are zero and {βt} has

only one break at a random time in the sample period. This conformability allows

them to construct optimal tests against both structural break and time varying

parameters.

Nyblom (1989) and Eliasz et al. (2004) derive a locally most powerful

test for the martingale alternative processes. These alternatives provide a wide

range of breaking processes that include the finite time structural breaks as well

as the random-walk processes. Nyblom (1989)’s test, however, retains optimality

only when there are no unknown parameters, γ, under the null hypothesis, which

rarely occurs in practice. Eliasz et al. (2004)’s optimality applies to linear Gaussian

model only.

Elliott and Müller (2006) provide conditions under which optimal tests

are asymptotically equivalent. By allowing for the dependency of the change of

the breaks and heteroscedasticity, their condition covers many breaking processes,

including relatively few breaks, clustered breaks, regularly occurring breaks, and

smooth transitions to change cases. In other words, they find that the precise form

of the breaking process βt under the alternative is irrelevant for the asymptotic

power of the tests, as long as they satisfy some conditions. This result simplifies
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the practice of testing against parameter instability because it allows applied re-

searchers to leave the exact form of the alternative unspecified without forgoing

asymptotic power.

The result obtained by Elliott and Müller (2006) is innovative, but, like

Eliasz et al. (2004), is restricted to the case with linear conditional mean model

and Gaussian errors, even though their suggested test statistic is valid under non-

Gaussian distribution. Unfortunately, there are many economic circumstances

where the linear Gaussian model is not satisfied. As for the mean linearity, mod-

ern macroeconomic theory emphasizes the interaction among representative agents

who are, in general, assumed to behave according nonlinear decision rules that are

obtained as optimal solutions to dynamic optimization problem. (See Barnett

et al. (1992) and Barnett et al. (2000) for details.) Also increasing attention has

been devoted to the characteristics other than the mean relationship such as condi-

tional quantiles because they can provide a more informative view of the economic

relationship.

As for the normal distribution, there are many evidences that distribu-

tions which explicitly accommodate skewness and excess kurtosis often have bet-

ter explanatory power for variables in macroeconomics and finance. Many types

of non Gaussian distribution are suggested in economic modeling. Theodossiou

(1998) suggests a type of skewed generalized t distribution. Fernandez and Steel

(1998), Komunjer (2006), and Theodossiou (2000), address the use of asymmet-

ric exponential family of distribution. Consequently, relaxing the linear Gaussian

assumption is crucial for wide applications.
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II.3 An Asymptotically Optimal Test for Param-

eter Instability

In this section, I construct an asymptotically optimal test for a broad set

of unstable processes. The parametric model considered in this section is nonlinear

and non-Gaussian so that various types of economic models can be applied. The

test uses the average magnitude of the break, which is described by the global

covariance, as the only information for the breaking process. It suggests that,

as long as the average sizes are equal, any optimal tests for particular unstable

processes are asymptotically equivalent.

II.3.A The Model and the Test Statistic

The model I consider is parametric time series model that is suitable for

maximum likelihood estimation, and is based on non trending observations, given

as

yt = g(Xt, β0, βt) + εt (II.3.1)

where g(·) is continuous and differentiable with respect to βt. βt is the k×1 vector

of parameters to be tested and β0 is the k × 1 vector of nuisance parameters. To

examine asymptotic local power, the alternative hypothesis is considered to be

local to the null. Specifically, I assume that {βt} take the form.

β1
0 = β0 +

1

T
δ0, βt =

1

T
δt ∀t = 1, . . . , T



41

I define θt as 2k × 1 vector of all parameters in the model at t, i.e.

θt = θ0 + 1
T
dt where θ0 = (β′0, 0

′
k)
′, dt = (δ′0, δ

′
t)
′, and 0k is the k × 1 vector

of zeros. Unlike the standard testing problem, the appropriate neighborhood in

order for the test to have nontrivial asymptotic power is where βt is of order T−1

in probability. The reason for this is that the test focuses on alternatives with

a persistently varying {δt}, in the sense that permanent change of the parameter

has more implication in both economic and statistic concepts. It is implicit in

the formulation that the (yt, Xt), and θt may depend on T, but I suppress the

dependency for the purpose of notational convenience. Specifically, I consider

unstable processes that satisfy the following condition.

Condition 1 1. {∆δt} is uniform mixing with mixing coefficient of size -r/(2r-

2) or strong mixing of size -r/(r-2), r>2

2. E[∆δt]=0 and E[|∆δt,i|r] < K < ∞ for all T,t,i

3. {∆δt} is globally covariance stationary with nonsingular long-run covariance

matrix, Ω

Condition 1 does not consider time varying parameter processes as the

only type of unstable processes. It includes many kinds of structural breaks by

choosing suitable distributional forms. For example, If we let ∆δt have a continuous

distribution with probability p and equal zero with probability (1 − p), then the

process is expected to have T · p breaks.

Admitting both heteroscedasticity and dependency makes Condition 1

capture almost all persistent breaking processes. Heteroscedasticity of ∆δt allows

different types of breaks to occur in the sample period. Breaks caused by different

shocks may not be homogeneous, and the size of the shocks may also be unequal.
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Thus, it is more plausible to assume that the breaking processes are heteroscedastic.

Heteroscedasticity also covers processes that have fewer breaks in certain periods

and more breaks in other periods.

By allowing dependency of ∆δt, Condition 1 allows the parameter to

smoothly adjust to a new level after a break. This covers the general set of breaking

processes that occur frequently. For example, the oil price shock in 1973 might

have had a lagged effect on productivity. Also there may be a movement from one

regime to another with a transition period in between.

The sample of observations is given by {(yt, Xt)}. The following condi-

tion specifies the model and the conditional likelihood function for (yt, Xt) given

(y1, . . . , yt−1, X1, . . . , Xt−1).

Condition 2 1. εt is independent of (y1, . . . , yt−1, X1, . . . , Xt) with conditional

distribution f(εt|θt). The distribution does not depend on dt in the null hy-

pothesis.

2. Xt has conditional distribution fX(Xt|=t−1) with respect to some sigma-finite

measures, where =t−1 is a σ-field generated by (y1, . . . , yt−1, X1, . . . , Xt−1).

{fX(Xt|=t−1)} does not depend on θt for all t = 1, . . . , T .

3. Under H0, {Xt} are mixing with either φ of size -r/2(r-1), r =2 or α of size

-r(r-2), r> 2. E
[|Xt,i|r/2+δ

]
< ∆∞ for some δ and all t = 1, . . . , T and

i = 1, . . . , k.

Condition (2) implies that the likelihood function for the data is factored

into two pieces, one of which captures the contribution to the distribution of yt,

f(εt|θt), and depends on θt and the other which contains conditional distribution

of Xt and does not depend on θt, fX(Xt|=t). In such likelihood functions, fX(·)
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need not be known in order for one to construct the test statistics considered here.

Under Condition 2, the likelihood function when no break occurs is

f0(y, X|θ0) =
T∏

t=1

f(εt|θ0)fX(Xt|=t−1) (II.3.2)

The likelihood function under the alternative hypothesis is

f1(y, X|θ0, . . . , θT ) =

∫ T∏
t=1

f(εt|θ0 +
1

T
dt)fX(Xt|=t−1)dνd (II.3.3)

where dνd is the measure of d = (d′1, . . . , d
′
T )′. If νd is known, the Neymann-Pearson

Lemma implies that rejecting H0 for large value of the likelihood ratio statistic,

defined as

LRT =

∫ T∏
t=1

f(εt|θ0 + 1
T
dt)

f(εt|θ0)
dνd (II.3.4)

has the best power against the alternative distribution (II.3.3). Most optimal tests

for parameter instability are manipulations of (III.3.3) that make the test feasible

and easy to compute. Since the test statistic may depend on the distribution f(·)
and the distributional properties of breaking processes, νd, the different types of

optimal test statistics come from the choice of νd and f(·).

In principle, LRT can be used if one specifies the error distribution and

the parameter process. However, it has an integral in its form which makes the

computation too complicated to be used in practice. The method proposed in this

section to resolve the problem is to suggest another test statistic, B, that converges

in probability to the same limit as that of (II.3.4) and is easy to compute.
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In order to define the test statistic, we need some notations and defi-

nitions. Let ˙̀ = ( ˙̀′
1, . . . ,

˙̀′
T )′ be the first derivative of the log of the likelihood

f(εt|·) with respect to δt, and J1 = E[ ˙̀t ˙̀′
t]. Let Ω∗ = J

1
2
1 ΩJ

1
2
1 . I decompose Ω∗

into the orthonormal matrix of its eigenvectors, P, and the diagonal matrix of the

eigenvalues, Λ = diag(a2
1, . . . , a

2
k), such that PΛP ′ = Ω∗ and ai > 0,∀i.

Let IT be the T × T identity matrix, and e be the T × 1 vector of ones.

The first derivative normalized to have unit variance and zero covariance can be

written as ˙̀∗(β̂) = (IT⊗P ′J−1/2
1 ) ˙̀(β̂) or ˙̀∗

t (β̂) = P ′J−1/2
1

˙̀
t(β̂). Furthermore, define

˙̀∗
i,t be the ith element of ˙̀∗

t (β̂) and ζi be the vector of the partial sum of ˙̀∗
i,t, i.e.

jth element of ζi is
∑j

t=1
˙̀∗
i,t. The test statistic I suggest is

B(Ω) =
k∑

i=1

ζ ′i(β̂, Ĵ1)
′
[

a2
i

T 2
IT − FMeF

′
]−1

ζi(β̂, Ĵ1) (II.3.5)

where Me = IT − 1
T
ee′ , F =




1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 . . . . . . 1




, and β̂ and Ĵ1 are the

maximum likelihood estimators under H0. The test statistic, B(β̂, Ĵ1, Ω), does not

have the integral so that the computation is tractable. Note that the test statistic

depends on the distribution of the unstable parameter process only through the

eigenvalues of the covariance matrix. Therefore, proving the optimality of B(·)
will provide an evidence of my argument: asymptotic irrelevancy of the knowledge

of the unstable process.
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II.3.B Asymptotic Optimality of the Test Statistic

The purpose of this section is to present how the optimality of B(·) can

be obtained. I suggest another test statistic L̃RT which is an increasing transfor-

mation of B(·) and show that L̃RT is asymptotically equivalent to LRT . I first

focus on the integrand of LRT to suggest an asymptotically equivalent formula

that makes LRT equal L̃RT . Then I address that, under some conditions, the

equivalence of the integrands is sufficient for the asymptotic equivalence of the two

test statistics, both under the null and the alternative hypotheses.

I first simplify the integrand of LRT . The integrand is considered as

the likelihood ratio for specific alternative parameters, d. A simple and powerful

method for simplification is to use the Taylor expansion of the logarithm of the

likelihood. However, it can be made rigorous under moment or continuity condi-

tions on the 2nd derivative of the log likelihood that many distributions do not

satisfy. Fortunately, these density functions have an alternative expansion under a

single condition that only involves a first derivative, i.e. the square roots of density

functions correspond to unit vectors in space of square integrable functions. The

following condition gives the differentiability assumption and additional assump-

tions for the asymptotic properties of the score function.

Condition 3 Let ξt(·, θt) be the square root of the error density, f(εt|θt). Under

H0,

1. There exists a 2k × 1 random vector ξ̇t(·, θt) =
(
ξ̇0′
t , ξ̇t′

t

)′
such that

Eθ‖ξ̇t(·, θ)‖2 < ∞
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Eθ




[(
ξt(·, θt + h)

ξt(·, θ) − 1

)
− h′

ξ̇t(·, θt)

ξt(·, θt)

]2

 → 0 as ‖h‖ → 0, ∀t ≤ T

(II.3.6)

2.

Ĵ(s) =
1

T

[sT ]∑
t=1

4
ξ̇t(·, θt)ξ̇t(·, θt)

′

ξt(·, θt)2
−→ sJ(θ)

for some positive definite nonrandom 2k × 2k matrix function J(θ) and for

any s ∈ [0, 1] and Ĵ(1) is positive definite for all t

The derivative ξ̇(·, θ) is called Hellinger derivative. Part (1) of Condition

3, called quadratic mean differentiability (QMD), is weak enough to be satisfied by

a wide variety of densities and strong enough to deliver the approximation similar

to the Taylor expansion. Local asymptotic approximation of a likelihood ratio

statistic under Condition 1 is well developed in standard testing problems (LeCam

(1970)) and nonstandard problems (Jansson (2006) and Jeganathan (1995)). How-

ever, no work has considered the approximation under the nonstationary time

varying parameter alternatives. The following lemma is the extension of the local

approximation to the time varying parameter processes.

Lemma 2 Let’s define ˙̀θ
t = 2 ξ̇t

ξt
, and J = 4E[ ξ̇t

ξt

ξ̇t

ξt

′
]. Under Condition 1 to 3, the

integrand of (II.3.4), denoted as LT , is equivalent to:

LT = (1 + op(1))exp

[
1

T

T∑
t=1

d′t ˙̀θ
t −

1

2T 2

T∑
t=1

d′tJdt

]
(II.3.7)
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As a next step, I deal with the measure of d, νd in order to eliminate

the integral in LRT . The measure, νd, consists of two parts: One that represents

the Condition 1 process of δt, and the other that corresponds to the measure

of δ0. The latter can be interpreted as the weighting function for the unknown

nuisance parameter, δ0. It implies that, (II.3.4) is set to have the best weighted

average power for the chosen weight function. With regard to the choice for the

weight function, I consider δ0 that concentrates on the orthogonal complement of

the linear subspace, V , generated by all possible score functions for the nuisance

parameter. This type of selection provides the power envelope of the tests in which

the nuisance parameters are unknown and the sizes are asymptotically similar for

all δ0. The following is the intuition: First consider an arbitrary alternative of

nuisance parameters. The power envelope of the test under the alternative will

be greater than that of any asymptotically size-similar test without the restriction

because the information for statistical inference decreases if one enlarges the model.

Since this argument holds for all types of alternative δ0s, the infimum of the power

envelopes over the class of all alternative δ0s gives an upper bound of the power

envelope of the test under unknown nuisance parameters. Geometrically, we get

the lower bound by projecting the score function of δt onto V , which implies

that δ0 lies on the orthogonal complement of V. This logic corresponds to the

concept of Pfanzagl and Wefeylmeyer (1978)’s least favorable hypothesis in which

the perturbation of the initial parameter is defined around the alternative value,

i.e. β0
0 = β1

0 + 1
T
δ0, and the power function, say φ̄(βt, β0), is defined as

φ̄(βt, β
1
0) = inf

δ0
φ(βt, β

1
0 ; δ0) (II.3.8)

where φ(βt, β
1
0 ; δ0) represents the power of any asymptotically size α tests for given

β1
0 and δ0. The following condition specifies it.
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Condition 4 Let ˙̀
0 and ˙̀ be the score functions for δ0 and δ, respectively.

δ0 = −E[ ˙̀0 ˙̀′
0]
−1E[ ˙̀0 ˙̀′]δ (II.3.9)

or equivalently,

d = (IT×k, −E[ ˙̀0 ˙̀]E[ ˙̀0 ˙̀′
0]
−1])′δ (II.3.10)

Condition 4 can be simplified to δ0 = − 1
T

∑T
t=1 δt. Therefore, it has

another interpretation that the average value of the unstable parameter path is

always the same as the one under the model of stable parameter.

As for the measure of δt, I replace {δt} by another random sequence {δ̃t}
and show that the integrand, LT based on {δ̃t}, weakly converges to the same limit

as that of LT based on any {δt}. The random vector δ̃ = (δ̃′1, . . . , δ̃
′
T )′ is defined as

δ̃ ∼ N(0, FF ′ ⊗ Ω), (II.3.11)

where F is as defined in (III.3.7). (II.3.11) means that {δ̃t} follows a mul-

tivariate random walk process, i.e. ∆δ̃t ∼ iid N(0, Ω), which satisfies Condition 1.

Therefore, in order to present the asymptotic equivalence of the integrands, it suf-

fices to show that each term of the integrand, (II.3.7), converges to a well-defined

random variable regardless of νd, as long as it satisfies Condition 1. The following

lemma demonstrates the asymptotic equivalency.

Lemma 3 Let’s define L̃T as

L̃T = exp

[
˙̀′(Me ⊗ Ik)β̃ − 1

2
β̃′(Me ⊗ J1)β̃

]
(II.3.12)
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where β̃ = 1
T
δ̃. Under Condition 1 to 4, |L̃T − LT | weakly converges to zero under

H0.

Now we have a new test function given as

L̃RT =

∫
exp

[
˙̀′(Me ⊗ Ik)β̃ − 1

2
β̃′(Me ⊗ J1)β̃

]
dνβ̃ (II.3.13)

Note that L̃T represents the standard form of the optimal test in the

presence of unknown nuisance parameters if β̃ is replaced by the standard form of

alternative hypothesis 1√
T
e⊗ δ. Neyman-Pearson Lemma asserts that a test based

on the effective observation - effective score and information - is most powerful.

( See theorem 5.3.2 of Lehman and Romano (2005) and Choi et al. (1996). )

Therefore, Condition (4) has another interpretation that it gives the extended

version of the optimal test under the existence of unknown nuisance parameters

in the sense that the test statistic, (II.3.13), is interpreted as the weighted average

of the optimal test statistics in the presence of nuisance parameters, where the

weighting function is dνδ̃

The advantage of replacing {δt} by {δ̃t} is that the integral is easily calcu-

lated because both the integrand L̃T and the density function of δ̃ are of exponential

quadratic form. Through some matrix manipulations, we get the following lemma.

Lemma 4 Let B̄(Ω) be defined as (III.3.7) except the normalized score function

˙̀∗
t (β̂, Ĵ1) is replaced by its demeaned counterpart with true null parameters i.e.

˙̀∗
t (β0, J1)− 1

T

∑T
i=1

˙̀∗
i (β0, J1).

B̄(Ω) =
1

2
lnL̃RT + c

where c is constant.
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Lemma 4 implies that the test statistic B̄(β0, J1, Ω) is asymptotically

optimal if |L̃RT−LRT | converges to zero in probability both under the null and the

alternative hypotheses. The convergence of |L̃RT−LRT | under the null hypothesis

is basically the convergence in expectation because LRT and L̃RT are identical to

the expectations of their integrands with respect to β and β̃, respectively. Note

that the integrands LT , and L̃T weakly converge to the same limiting distribution.

In Theorem 3, I show that the weak convergence is enough for the convergence

in quadratic mean of |LT − L̃T |, and thereby, the convergence in probability of

|L̃RT − LRT |.

The convergence under the alternative can be presented by showing that

the asymptotic null distribution is contiguous. Let φT (Z|Ω, β0) be a critical func-

tion for testing breaking processes where Z = (y, X). That is, φT (Z|Ω, β0) is a

[0, 1] valued function determined by Z. I consider asymptotically α-significant test,

i.e. limT→∞
∫

φT (Z|Ω, β0)f0(Z|β0) dZ = α. The power function of the test is

defined as
∫

φT (Z|Ω, β0)f1(Z|β0)dZ. The following theorem gives the optimality

result of the test statistics B̄(Ω).

Theorem 3 Let ψT (Z|Ω, β0) be a critical function for B̄(β0, Ω), i.e.

ψT (Z|Ω, β0) = 1[B̄(β0,Ω)>kα] where kα is the continuous function satisfying
∫

ψT (Z|Ω, β0)f0(Z|β0)dZ = α. Under Conditions 1 to 4, the test B̄(β0, Ω) satisfies

limT→∞
∫ ∫

φT (Z|Ω, β0)f(Z|θ0 + 1
T
d)dνδdZ ≤

limT→∞
∫ ∫

ψT (Z|Ω, β0)f(Z|θ0 + 1
T
d)dνδdZ

Theorem 3 implies that the power of the optimal test does not depend on
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the particular distributional form of δt other than its global covariance matrix, Ω.

The main argument of this chapter follows from this property: The knowledge of

the exact distribution of the unstable process is asymptotically useless for conduct-

ing an optimal test, as long as the process satisfies Condition 1. As sample size gets

larger, there is little loss of power by relying on B̄(Ω) rather than tailored LRT .

Theorem 1 also implies that any small sample optimal test designed to detect any

specific unstable process will have the same asymptotic power against any other

Condition 1 processes. It gives an important, practical implication about how to

choose among a variety of different test statistics. One suggestion is to use the

test statistic that is easy to compute in practice because one can get the similar

result with using other hard-to-compute test statistic even though the unstable

parameter process is not correctly specified.

Now I replace the unknown β0 and J1 by their consistent estimators to

make the test statistic feasible. In general, this replacement causes the loss of

power. But I show that replacing β0 and J1 by their maximum likelihood estimators

does not affect the asymptotic properties of B̄(·), which implies that the feasible

test would have the best asymptotic power among the test under unknown initial

parameters. This is possible because Condition 4 make the test have the power

that is asymptotically equivalent to the power envelope of asymptotically α-similar

tests under unknown nuisance parameters. Theorem 4 shows that this convergence

holds if Ĵ1 and β̂ satisfies the following condition.

Condition 5 Under the null hypothesis, the maximum likelihood estimator, Ĵ1

and β̂, satisfies

1. T−1/2
∑[sT ]

t=1
˙̀
t(β0 + T−1/2h) = T−1/2

∑[sT ]
t=1

˙̀
t(β0)− sK(β0)h + op(1)

2.
√

T (β̂ − β0) = Op(1) and Ĵ1 = J1 + op(1)
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uniformly for s ∈ (0, 1), and any nonrandom K(β0), where h < M < ∞ .

Consider a class of asymptotically similar size tests; that is, tests that

have limiting size α for all values of d0. The critical function of the test is denoted

as φ̂T (Z|Ω, β0). The following theorem shows that the test B(Ω) has the best

asymptotic power among asymptotically similar size tests.

Theorem 4 Let ψ̂T (Z|Ω) be a critical function for B(Ω). Under Conditions 1 to

3, and 5, the test B(Ω) satisfies

lim
T→∞

∫ ∫
φ̂T (Z|Ω)f(Z|θ0 +

1

T
d)dνddZ ≤ lim

T→∞

∫ ∫
ψ̂T (Z|Ω)f(Z|θ0 +

1

T
d)dνddZ

Note that Theorem 4 does not require Condition 4. It implies that the

test has asymptotically the best power among all tests that are asymptotically

size-α and the initial parameter is unknown. The asymptotic null distribution of

B(Ω) is given in the following lemma.

Lemma 5 Under Conditions 1 to 3 and 5, the asymptotic null distribution of

B(Ω) is

B(Ω) −→
k∑

i=1

[aiJi(1)2 + a2
i

∫ 1

0

Ji(s)
2ds +

2ai

1− e−2ai
{e−aiJi(1) + ai

∫ 1

0

e−aisJi(s)ds}2 − {Ji(1) + ai

∫
J i(s)ds}2]

(II.3.14)
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where Ji(s) = Wi(s) − sWi(1) − ∫ s

0
eλ−s[Wi(λ) − λWi(1)]dλ, and Wi is the ith

element of the independent k × 1 standard Wiener process W .

Selected asymptotic upper tail percentiles are calculated by Elliott and

Müller (2006). (See table 1 of Elliott and Müller (2006).)

II.3.C An Asymptotically Point Optimal Test Statistic

I have developed the test statistic B(Ω) based on the assumption that the

covariance matrix of δt, Ω, is known. However, the covariance matrix is unknown

in practice. Therefore, there is no uniformly most powerful test in this framework.

Instead, if we focus on one point in the alternative parameter space, we can find a

most powerful test in the neighborhood of the predetermined point. Such a test is

called a point optimal test. (see King (1988) and Nyblom (1986) for details.) Fol-

lowing this idea, I choose a specific Ω which implies selecting a point of alternative

processes in which the test has maximal power. One possibility is to let Ω∗ have a

constant value, Ω̂. As long as the eigenvalues of Ω∗ are of similar magnitudes, the

power of the statistic will become close to the optimal power over a wide range of

true Ω. Here I choose Ω̂ = c2Ik where c = 10. Replacing by C, the point optimal

test statistic, B(Ω̂), is given by

B(Ω̂) =
k∑

i=1

ζ ′i(β̂, Ĵ1)
′{ c2

T 2
IT − FMeF

′}−1ζi(β̂, Ĵ1) (II.3.15)

In addition to the simplicity, using Ω̂ also has merit because it enables

B(Ω̂) to be invariant with respect to re-parameterizations. Since ˙̀∗
i (β̂) does not

change to any parameterization and {IT − 100
T 2 FMeF

′} is constant, we immediately
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observe that B(Ω̂) is invariant to reparameterization. The invariance may be

reinterpreted as meaning that the direction of breaks under the alternative should

not affect the outcome of the test. The point optimal test, B(Ω̂), distorts the true

size in two ways; absolute size, and relative size which is the relative magnitude of

one parameter’s break compared to those of the other parameters in the model.

Figure II.1 compares the asymptotic power of the point optimal test

statistic to the power envelope, which is the power under known Ω∗. The first

panel is for k=1. In univariate case, the point optimal test misspecifies the abso-

lute size, but it does not distort the relative size. The asymptotic power is very

close to the power envelope, which means that misspecifying how far the alterna-

tive process is from the null hypothesis gives little loss of power. It implies that

the choice of c has little effect on the asymptotic power of the point optimal test.

The second panel examines the k=2 case where only one eigenvalue of Ω∗

is set to have positive value while the other is set to be zero. Since eigenvalues

describe the average magnitude of the breaking process in the direction of the

corresponding eigenvectors, our setup considers the case that only one component

of the 2 × 1 vector βt breaks. The panel shows that there is some loss of power

due to the replacement of Ω. However, the magnitude of the loss is not severely

large. The largest loss occurs when the nonzero eigenvalue is 11 but the loss is

less than 6%. The third panel describes when both parameters are non-stable and

the average magnitude of the breaking processes differ. The average size of one

breaking process is set to be four times greater than the other. In this case, the

loss of power due to wrong identification is quite large, which implies that using C

may break down the optimality of the test statistic. In conclusion, the goodness of

B depends on the difference in the relative sizes of parameters breaking processes.
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II.4 Examples

II.4.A Linear Model with Asymmetric Laplace Distribu-

tion

Consider the model

yt = X ′
t(β0 + βt) + εt t = 1, . . . , T (II.4.1)

where yt is a scalar, Xt, β0 and βt are k × 1 vectors, {yt, Xt} are observed, β0, βt

are unknown, and {Xt} are assumed to be exogenous and satisfy Condition 2 with

E[XtX
′
t] = ΣX . εt is iid from asymmetric Laplace distribution which is defined as

ϕα(ε) = exp

[
− 1

α
ε · 1{ε<0} +

1

1− α
ε · 1{ε>0}

]
(II.4.2)

where 1{ } is an indicator function. X ′
t(β0 +βt) represents αth conditional quantile

of yt, that is,

Pr[yt > X ′
t(β0 + βt)|X1, . . . , Xt] = α (II.4.3)

Consequently, εt is not a zero mean disturbance. It has the property that

Pr[εt < 0] = α. The score and its covariance with maximum likelihood estimators

are defined as
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Table II.1: Monte Carlo Estimates of the Empirical Sizes (Laplace Error)
Sample α Empirical Size(%)

Size k=1 k=2
1 5 10 1 5 10

50 0.3 1.42 5.22 9.94 1.72 5.38 9.48
0.5 0.8 4.62 8.88 1.11 4.38 8.44

100 0.3 1.00 4.58 9.02 1.10 4.58 8.64
0.5 0.96 5.24 10.38 1.06 4.96 9.56

200 0.3 1.24 5.64 10.28 1.28 5.00 9.48
0.5 1.02 4.76 9.98 1.14 5.36 9.70

˙̀
t(β̂) =

1

1− α
Xt − 1

α(1− α)
Xt1{yt<Xtβ̂}

Ĵ1 =
1

Tα(1− α)

T∑
t=1

XtX
′
t (II.4.4)

Let us check Conditions 2 to 5. Conditions 2 and 4 are satisfied by

construction. The Laplace distribution is known to be differentiable in quadratic

mean. (See Pollard (1998) for details.) Chapter 4 shows the maximum likelihood

estimator satisfies Condition 5. Therefore we can use B(Ω̂) as the optimal test

statistic. β̂α can be estimated simply by using Koenker and Bassett (1978)’s

quantile regression method.

I simulate the empirical size and the power of the test to examine how well

the test performs in small samples. Two types of Xt are considered: {Xt} = {Zt}
and {Xt} = {(1, Zt)}, where {Zt} are generated from AR(1) model with iid

Gaussian error. For each Xt, I consider 18 combinations of 3 different critical

levels (1%, 5%, and 10%), 3 sample sizes (50, 100, and 200), and 2 quantile levels

(0.3, 0.5). 5,000 replications are generated for each of 18 combinations. Table II.1

shows the experimental result of the empirical sizes. The test performs fairly well

for all significant levels. The differences between empirical sizes and actual sizes
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Table II.2: Alternative Processes for Power Simulations
Single Break : βt = 1√

T
δ for t > τT

fixed time : τ = 50%, τ = 80%

random time : τ ∼ uniform[π, 1− π]

smooth adjustment : βt−1 = 0.7βt for t ≤ τT

Multiple Breaks(fixed time) : 2 breaks, 4 breaks
Time varying parameters : T∆βt ∼ N(0, δ2)

do not exceed one percent, even when the sample size is as small as 50.

As a next step, I perform monte carlo experiments to calculate small

sample powers of the test and compare them with those of other optimal tests. I

consider various types of alternative processes which are described in Table II.2.

The powers are compared with those of SupF test, Andrews and Ploberger (1994)’s

test (ExpLM) and Nyblom (1989)’s test (Nyb). SupF and ExpLM are designed

for single break processes. Nyb considers martingale processes which include the

single break with random occurrence and the random walk process. B covers the

random walk and also the single break with random occurrence in small samples.

The size adjusted small sample powers are shown at figure II.2 and II.3.

ExpLM has a severe size distortion problem in the model. ExpLM statistic has

size of 8 to 14 percent for T = 100 and 7 to 9 percent for T=200. It becomes

severer as the number of parameter or the degree of asymmetry increase. The

figures show that B performs best among 4 test statistics. B has the best power

against the random walk process and the multiple breaks. The gaps become larger

as the number of breaks increase. The powers of B for the single break alternatives

are pretty close to ExpLM and SupF even though both ExpLM and SupF explicitly

consider single break alternatives.

The differences of the powers, however, are mild for all unstable processes.

Even though SupF and ExpLM are not designed for time varying parameter pro-
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cesses, the two test show pretty reasonable power properties against the random

walk case. Note that the breaking processes considered in SupF, ExpLM, and Nyb

do not satisfy Condition 1. This gives an important empirical implication: The

asymptotic equivalence of the optimal tests I showed in the previous section can

be more or less applied even in small samples and in the breaking process which

are a little bit apart from Condition 1. The loss of power by misspecifying the true

unstable parameter process is allowable. I also perform the simulation for different

sample sizes and quantile levels. I don’t present the simulation results for them

because they are similar to what I present here.

II.4.B Mean-Variance Instability under Univariate Normal

Distribution

Let x1, . . . , xt be independent random variables drawn from normal dis-

tribution with mean µ and variance σ2. Now Conditions 1 to 5 are almost trivially

true.1 I consider the case of a break in mean and that of breaks in both mean

and variance. The former case is considered in linear models such as in Elliott

and Müller (2006), while the latter case needs to be considered in the nonlinear

set-up. The standard estimation of the scores and Fisher information matrix based

on OLS can be used here.

I perform the same Monte Carlo simulations as the previous example and

examine the performance of B in this set-up. Table II.3 shows the simulation result

for empirical sizes. The empirical sizes are pretty close to the actual sizes in mean

1The test in the previous section does not explicitly consider variance parameter. But it is
trivial to include σ2 because the likelihood ratio in (II.3.4) still holds and all the lemmas can
be applied. However, the nonzero property of the variance makes its replacement by the normal
random variable ((II.3.11)) be somewhat irrelevant, and thereby cause some loss of power in the
small sample
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Table II.3: Monte Carlo Estimates of the Empirical Sizes (Gaussian Error)
Sample Empirical Size(%)

Size break in µ breaks in µ and σ2

1 5 10 1 5 10

50 1.24 4.46 9.10 0.78 4.02 8.82
100 1.50 5.76 10.28 0.88 4.20 8.86
200 1.12 5.90 10.34 0.84 4.44 9.02

break case. But they are mildly lower than actual sizes in mean-variance breaks

case at all significant levels, which implies that the test, B, is conservative. Figure

II.4 and II.5 show the size adjusted small sample powers of the tests. ExpLM

still has a size distortion problem. But the distortion is less severe than that in

linear quantile models: The empirical sizes range from 8 to 10 percents. The size

adjusted powers results are similar to those of the previous example. But the power

gaps between B and SupF/ExpLM are bigger for random walk break and multiple

breaks cases. The simulation gives a similar implication that the difference of the

power among different optimal tests are too big except a few cases. But B is still

preferred because it performs better than the other tests in all models and breaking

processes considered in the section. I also examine the cases that the conditional

mean is the linear function of exogenous variable xt as in the previous example.

The results are practically the same.

II.4.C Binary Choice Model with Logistic Error

Consider the model

yt = I{(β0 + βt)
′Xt + εt > 0} (II.4.5)

where I is the indicator function, Xt and βt are as defined in the previous
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Table II.4: Monte Carlo Estimates of the Empirical Sizes (Logit model)
Sample Empirical Size(%)

size 1 5 10

50 0.62 3.60 8.28
100 0.72 4.16 8.84
200 1.08 4.16 8.98

example, and εt is iid with standard logistic distribution. (II.4.5) is the traditional

form of the times series binary choice model. The binary choice model is widely

used in macroeconomic and finance time series especially when analyzing discrete

or qualitative policy change such as central banks’ bank rate. ( see Eichengreen

et al. (1985), and Dueker (2005) for details.) The first derivative of the log likeli-

hood is defined as

˙̀
t =

exp [(β0 + βt)
′Xt]

1 + exp [(β0 + βt)′Xt]
Xt if y = 1

−Xt +
exp [(β0 + βt)

′Xt]

1 + exp [(β0 + βt)′Xt]
Xt if y = 0 (II.4.6)

For the simulation, I consider {Xt} = {(1, Zt)}, where {Zt} are gener-

ated from AR(1) model with iid Gaussian error. Monte Carlo simulation results of

the empirical sizes are shown at table II.4. The test has reasonable empirical sizes

for all sample sizes. The largest gap when the sample size is as small as 50 does not

exceed 2%p. Similar to the mean-varinace test in the previous example, they are

consistently lower than actual sizes, which implies that the test, B, is somewhat

conservative.

Figure II.6 shows the size adjusted small sample powers of the tests. All

four tests have similar small sample powers in single structural break cases. How-

ever, there exist non-negligible power gaps among the tests for multiple breaking
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processes. For example, B has up to 65 percent more powers than the other tests

when there are four breaks in the sample period. The small sample power similar-

ity in the previous examples does not seem to always hold in this nonlinear model.

The good performance of B is more clear in this model. B has the power similar

to those of the other tests in any type of single break cases. It fairly dominates

the other tests in all other alternative processes.

II.5 Conclusion

Parameter instability is an important issue in applied economics because

disregarding the instability causes a serious distortion in measuring and forecasting

economic relationships. This chapter gives three implications for testing parameter

stability.

First, asymptotically optimal tests for parameter instability do not re-

quire information about the specific form of the nonconstant parameter process.

Many tests are designed to have good powers against specific unstable processes.

The result in this chapter implies that a tailored test for specific instability does

not have any power gain in the asymptotic sense, which means that attempts to

derive tailor-made tests are asymptotically useless.

Second, A small sample optimal test designed to detect a specific type of

unstable parameter process has powers close to the best asymptotic powers even

against other types of unstable processes. Monte carlo simulation results show

that misspecifying the unstable process results in only a mild loss of power even

in small samples. This suggests that one can choose any specific form of unstable

parameter process which is easy to compute.
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Finally, I suggest an easy-to-compute asymptotically optimal test statis-

tic. The test statistic requires the maximum likelihood estimation under the null

hypothesis only. Small sample simulations show that the test statistic has correct

sizes and better powers than those of the other optimal tests for almost all unstable

processes even in small samples.
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II.A Proofs

II.A.A proof of Lemma 2

Let ξ0
t , ξ1

t be the square root of f(ε0
t |θ0), and, f(ε1

t |θt) respectively. Dif-

ferentiability in quadratic mean, which is defined in (II.3.6), implies that ξ1
t is

expanded by

ξ1
t = ξ0

t +
1

T
d′tξ̇

0
t + rt (II.A.1)

where E[( rt

ξ0
t
)2] = op(‖(dt/T )‖2). By using (III.A.1), the square root of the inte-

grand of the LR statistics in (II.3.4) can be written as,

√
LT =

T∏
t=1

(
ξ1
t

ξ0
t

)
(II.A.2)

=
T∏

t=1

(
ξ1
t − ξ0

t

ξ0
t

+ 1

)

=
T∏

t=1

(
1

T
d′t

ξ̇0
t

ξ0
t

+
rt

ξ0
t

+ 1

)

=
T∏

t=1

(1 + ηt)

where ηt = 1
T
d′t

ξ̇0
t

ξ0
t

+ Rt and Rt = rt

ξ0
t
. Thereofre LT can be rewritten as,

Lt = exp

[
T∑

t=1

log(1 + ηt)

]
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Note that
∑T

t=1 log(1 + ηt) =
∑T

t=1 ηt − 1
2

∑T
t=1 η2

t + op(1) if maxt |ηt| =

op(1) ‘and
∑T

t=1 η2
t = Op(1). Hence Lemma 2 is proved by showing

1.
∑T

t=1 ηt = 1
2T

∑T
t=1 d′tl̇t − 1

8T 2

∑T
t=1 d′tJdt + op(1)

2.
∑T

t=1 η2
t = 1

4T 2

∑T
t=1 d′tJdt + op(1)

3. maxt |ηt| = op(1)

Proof of (1) : To prove (1), we have only to show that
∑T

t=1 Rt =

− 1
8T 2

∑T
t=1 d′tJdt + op(1). Squaring both sides of (III.A.1) gives

(ξ1
t )

2 = (ξ0
t )

2 + r2
t +

2

T
ξ0
t d
′
tξ̇

0
t + 2ξ0

t rt +
2

T
d′tξ̇

0
t rt +

1

T 2
d′tξ̇

0
t ξ̇

0
t

′
dt

⇒ 2ξ0
t rt = (ξ1

t )
2 − (ξ0

t )
2 − r2

t −
2

T
ξ0
t d
′
tξ̇

0
t −

2

T
d′tξ̇

0
t rt − 1

T 2
d′tξ̇

0
t ξ̇

0
t

′
dt

⇒ 2Rt =

(
(ξ1

t )
2

(ξ0
t )

2
− 1

)
−R2

t −
1

T
d′t ˙̀

t − 1

T
d′t ˙̀

tRt − 1

4T 2
d′t ˙̀

t
˙̀′
tdt (II.A.3)

By taking conditional expectation with respect to dt, we get

2E[Rt|dt] =

(
E[

(ξt)
2

(ξ0
t )

2
|dt]− 1

)
− E[R2

t |dt]− 1

T
d′tE[ ˙̀t|dt]− 1

T
d′tE[ ˙̀tRt|dt]−

1

4T 2
d′tE[ ˙̀t ˙̀′

t|dt]dt (II.A.4)

Let R̃t = 1{‖dt/
√

T‖ < MT}Rt denote a truncated version of Rt where

MT√
T
→ 0 and MT →∞. The sequences R̃t and Rt are asymptotically equivalent in

the sense that
∑T

t=1 Rt =
∑T

t=1 R̃t +op(1). Note that max{‖dt/
√

T‖<MT }(
1

T 2 d
′
sds)

−1×
E[R2

s|ds] = op(1) from (III.A.1) and 1
T 2

∑
dtd

′
t = Op(1) from Condition 1. There-

fore
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T∑
t=1

E[R̃2
t |dt] =

T∑
t=1

1{‖dt/
√

T‖ < MT}E[R2
t |dt] (II.A.5)

≤
T∑

t=1

max
{‖dt/

√
T‖<MT }

(
(

1

T 2
d′sds)

−1E[R2
s|ds]

)
1

T 2
d′tdt

= max
{‖dt/

√
T‖<MT }

(
(

1

T 2
d′sds)

−1E[R2
s|ds]

)
1

T 2

T∑
t=1

d′tdt

= op(1)×Op(1) = op(1)

Also, using Chebychev inequality

1

T
dtiE[ ˙̀tiRt|dt] ≤ 1

T
dtiE[ ˙̀2t,i|dt]

1/2E[R2
t |dt]

1/2 (II.A.6)

= Op(T
−1/2)× (Op(1))1/2 × (op(T

−1/2))1/2 = op(T
−1)

Note that E[ ˙̀t|dt] = 0, and E[ ˙̀t ˙̀′
t|dt] = J ,(see Vaart (1998)). Using

(II.A.6) together with (II.A.7), we prove (1) by showing that

T∑
t=1

Rt =
T∑

t=1

E[Rt|dt] + op(1) (II.A.7)

=
1

8T 2

T∑
t=1

d′tJdt + op(1) (II.A.8)

proof of (2):

T∑
t=1

η2 =
1

4T 2

T∑
t=1

d′t ˙̀
t
˙̀′
tdt +

1

T

T∑
t=1

d′t ˙̀
tRt +

T∑
t=1

R2
t

=

(
1

4

T∑
t=1

d′tJdt + op(1)

)
+ op(1) + op(1) (II.A.9)
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where the last two terms of the last equality comes from (II.A.7) and (II.A.8).

Proof of (3):

max
t

ηt ≤ 1

2
max

t,‖ 1√
T

dt‖≤MT

| 1√
T

dt|′ · |
˙̀
t√
T
|+ max

t
Rt + op(1)

≤ 1

2
max

‖ 1√
T

dt‖≤MT

‖ 1√
T

dt‖ · ‖
˙̀
t√
T
‖+ max

t
Rt + op(1)

≤ MT√
T
‖ ˙̀

t‖+ max
t

Rt + op(1)

= op(1) + op(1) + op(1) = op(1) (II.A.10)

The first term of the 2nd inequality comes from Cauchy-Schwarz inequal-

ity, the first term of the last equality comes from E[ ˙̀
t
2
] ≤ ∞ and the second term

comes from

maxt|Rt|2 ≤
T∑

t=1

R2
t = op(1)

which completes the proof. ¦

II.A.B proof of Lemma 3

Note that E[ ˙̀0 ˙̀′] = e′⊗J1 and E[ ˙̀0 ˙̀′
0] = e′e⊗J1 so that E[ ˙̀0 ˙̀′

0]
−1E[ ˙̀0 ˙̀′] =

(e′e ⊗ J1)
−1(e′ ⊗ J1) = 1

T
e′ ⊗ Ik. Also note that ˙̀θ = ( ˙̀′

1, . . . ,
˙̀′
T ,

∑ ˙̀′
t)
′ = (IT ⊗

Ik, e⊗ Ik)
′ ˙̀. Under Condition 4, (II.3.7) can be rewritten as
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LT = exp

[
1

T
d′ ˙̀θ − 1

2T 2
d′[IT ⊗ Ik, e⊗ Ik]

′(IT ⊗ J1)[IT ⊗ Ik, e⊗ Ik]d

]

= exp[
1

T
δ′[IT ⊗ Ik,− 1

T
e⊗ Ik][IT ⊗ Ik, e⊗ Ik]

′ ˙̀− 1

2T 2
δ′[IT ⊗ Ik,− 1

T
e⊗ Ik]×

[IT ⊗ Ik, e⊗ Ik]
′(IT ⊗ J1)[IT ⊗ Ik, e⊗ Ik][IT ⊗ Ik,− 1

T
e⊗ Ik]

′δ]

= exp

[
1

T
δ′(Me ⊗ Ik) ˙̀− 1

2T 2
δ′(Me ⊗ J1)δ

]
(II.A.11)

Note that (II.A.11) is the same as (II.3.12) except δ̃ is replaced by δ.

Therefore, I need only to show that for any δ that satisfies Condition 1, 1
T
δ′(Me⊗

Ik) ˙̀ and 1
2T 2 δ

′(Me ⊗ J1)δ converge to well defined limiting variables.

(1)

1

T
δ′(Me ⊗ Ik) ˙̀ =

1

T
δ′ ˙̀− 1

T 2
δ′(ee′ ⊗ Ik) ˙̀

=
1

T
δ′ ˙̀− 1

T 2
[(e′ ⊗ Ik)δ]

′[(e′ ⊗ Ik) ˙̀]

=
1

T

T∑
t=1

δ′t ˙̀
t − 1

T 2
(

T∑
t=1

δt)
′(

T∑
t=1

˙̀
t) (II.A.12)

Therefore, I prove that each term of the last equation converge to well

defined limiting distributions.

1

T

T∑
t=1

δ′t ˙̀
t = tr[Ω∗ 1

2
1

T

T∑
t=1

Ω− 1
2 δ′t ˙̀

tJ
− 1

2
1 ]

= tr[Ω∗ 1
2

∫
WδdW ′

`]

=

∫
W ′

δΩ
∗ 1

2 dW` (II.A.13)

where Wδ and W` are multivariate standard Wiener processes. And,
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1

T 2
(

T∑
t=1

δt)
′(

T∑
t=1

˙̀
t) = tr

[
Ω∗ 1

2 (T
3
2

T∑
t=1

Ω− 1
2 δt)(T

1
2

T∑
t=1

J−
1
2 ˙̀

t)
′
]

= tr

[
Ω∗ 1

2

∫
Wδ(r)drW`(1)′

]

=

∫
Wδ(r)drΩ∗ 1

2 W`(1) (II.A.14)

(2)

1

T 2
δ′(Me ⊗ J1)δ =

1

T 2
δ′(IT ⊗ J1)δ − 1

T 3
δ′(ee′ ⊗ J1)δ

=
1

T 2
δ′(IT ⊗ J1)δ − 1

T 3
[(e′ ⊗ J1/2)δ]′[(e′ ⊗ J

1/2
1 )δ]

=
1

T

T∑
t=1

δ′tJ1δ − 1

T 3
(

T∑
t=1

δt)
′J1(

T∑
t=1

δt) (II.A.15)

1

T 2

T∑
t=1

δ′tJδt = tr

[
Ω∗ 1

T 2

T∑
t=1

(
Ω− 1

2 δt

)(
Ω− 1

2 δt

)′]

= tr

[
Ω∗

∫
Wδ(r)Wδ(r)

′dr

]

=

∫
Wδ(r)

′Ω∗Wδ(r)dr (II.A.16)

1

T 3

(
T∑

t=1

δt

)′

J1

(
T∑

t=1

δt

)
= tr

[
Ω∗

(
T

3
2

T∑
t=1

Ω− 1
2 δt

)(
T

3
2

T∑
t=1

Ω− 1
2 δt

)′]

= tr

[
Ω∗

∫
Wδ(r)dr

∫
Wδ(r)

′dr

]

=

∫
Wδ(r)

′drΩ∗
∫

Wδ(r)dr (II.A.17)

which completes the proof. ¦
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II.A.C Proof of Lemma 4

Let’s denote the variance of β̃, FF ′/T 2⊗Ω as K. The test statistic L̃RT

can be written as

L̃RT =

∫
(2π)−

k(T−1)
2 |K|− 1

2 exp

[
˙̀′(Me ⊗ Ik)β̃ − 1

2
β̃′(Me ⊗ J1)β̃ − 1

2
β̃′K−1β̃

]
dβ̃

= |K(Me ⊗ J1) + ITk|1/2 exp

[
1

2
˙̀′(Me ⊗ Ik){(Me ⊗ J1) + K−1}−1

]

[
×(Me ⊗ Ik) ˙̀

] ∫
(2π)−

k(T−1)
2

∣∣(Me ⊗ J1) + K−1
∣∣ 1

2

× exp

[
−1

2

(
β̃ − {(Me ⊗ J1) + K−1}(Me ⊗ Ik) ˙̀

)′
{(Me ⊗ J1) + K−1}

]

[
×

(
β̃ − {(Me ⊗ J1) + K−1}(Me ⊗ Ik) ˙̀

)]
dνβ̃

= |K(Me ⊗ J1) + ITk| exp

[
1

2
˙̀′(Me ⊗ Ik){(Me ⊗ J1) + K−1}−1(Me ⊗ Ik) ˙̀

]

= c · exp

[
1

2
˙̀′(Me ⊗ Ik){Me ⊗ J + T 2(FF ′)−1 ⊗ Ω−1}−1(Me ⊗ Ik) ˙̀

]

= c · exp[
1

2
˙̀′(Me ⊗ Ik)(I ⊗ J−1/2P ){Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ Λ−1}−1

×(IT ⊗ J−1/2P )′(Me ⊗ Ik) ˙̀]

= c · exp

[
1

2
¯̀̇∗′{Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ Λ−1}−1 ¯̀̇∗′

]
(II.A.18)

where c = |K(Me ⊗ J1) + ITk|, ¯̀̇∗ = (¯̀̇∗
′

1 , . . . , ¯̀̇∗′
T )′, and ¯̀̇∗

j = ˙̀∗
j − 1

T

∑T
t=1

˙̀∗
t . I then

change the expression of the test statistic. Let’s define (a2
i , . . . , a

2
k) be the vector

of the diagonal elements of Λ, and ιi be the k×1 vector which is one at ith element

and zeros otherwise.
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Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Λ = Me ⊗ Ik +

k∑
i=1

a2
i (

FF ′

T 2
)−1 ⊗ ιiι

′
i

=
k∑

i=1

(Me + K−1
ai )⊗ ιiι

′
i (II.A.19)

where Kai = a2
i

(
FF ′
T 2

)−1
. Note that ιiι

′
i · ιjι′j is k × k zero matrix if i 6= j

and ιiι
′
i if i = j. It makes the inverse of Me ⊗ Ik + (FF ′

T 2 )−1 ⊗ Λ easy as below.

(Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Λ)−1 =

k∑
i=1

(Me + K−1
ai )−1 ⊗ ιiι

′
i (II.A.20)

because

[
k∑

i=1

(
Me + K−1

ai

)⊗ ιiι
′
i

][
k∑

i=1

(Me + K−1
ai )−1 ⊗ ιiι

′
i

]
(II.A.21)

=
k∑

i=1

IT ⊗ ιiι
′
i +

k∑
i=1

∑

j 6=i

(
Me + K−1

ai

) (
Me + K−1

aj

)−1 ⊗ (ιiι
′
i)(ιjι

′
j) = IT ⊗ Ik

Therefore,

¯̀̇∗′(Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Ω∗−1)−1 ¯̀̇∗′

= ¯̀̇∗′
[

k∑
i=1

(Me + K−1
ai )−1 ⊗ ιiι

′
i

]
¯̀̇∗′

=
k∑

i=1

¯̀̇∗′F (FMeF + (
a2

i

T 2
)IT )−1F ′ ¯̀̇∗′ (II.A.22)

Taking log of (II.A.18) and applying (II.A.22) completes the proof. ¦
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II.A.D proof of Lemma 5

Let’s define Ai = IT + K−1
ai . The inverse of Ai can be expressed as,

A−1
i = (I + K−1

ai )−1 = Kai(I + Kai)
−1 = I − (I + Kai)

−1

By Sherman-Morrison Lemma,

[Me + K−1
ai ]−1 = A−1

i − (A−1
i e)(1 + e′A−1

i e/T )−1(e′A−1
i ) (II.A.23)

= I − (I + Kai)
−1 + (1 + e′A−1

i e/T )−1

[
ee′ − 2(I + Kai)

−1ee′ + (I + Kai)
−1ee′(I + Kai)

−1
]

Let’s define T × (T − 1) vector Be as BeB
′
e = Me. Then

Me[Me + K−1
ai ]−1Me

= Me −Me(I + Kai)
−1Me

+(1 + e′A−1
i e/T )−1Me(I + Kai)

−1ee′(I + Kai)
−1Me

= Me −Me(I + Kai)
−1Me

+(e′(I + Kai)
−1e)−1Me(I + Kai)

−1ee′(I + Kai)
−1Me

= Me −Be(Be(I + Kai)B
′
e)
−1B′

e

= Me −Gai (II.A.24)

where, Ga = H−1
a −H−1

a e(e′H−1
a e)−1e′H−1

a ,
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and Ha = r−1
a FAaA

′
aF

′, Aa =




1 0 · · · 0 0

−ra 1 · · · 0 0
...

...
...

...

0 0 · · · −ra 1




and ra = 1− aT−1. The

third equality uses the fact that Mee = 0. and The last equality is by Lemma 4 of

Elliott and Müller (2006). Therefore the test statistic can be written as

B(β0, Ω) =
k∑

i=1

˙̀∗′
i (β0){Me −Gai

} ˙̀∗
i (β0) (II.A.25)

Lemma 6 of Elliott and Müller (2006) gives us the distribution of the test

statistic which is given as below,

k∑
i=1

[
aiJi(1)2 + a2

i

∫ 1

0

Ji(s)
2ds+

]
(II.A.26)

[
2ai

1− e−2ai

{
e−aiJi(1) + ai

∫ 1

0

e−aisJi(s)ds}2 − {Ji(1) + ai

∫
J i(s)ds

}2
]

where Ji(s) = T− 1
2

∑[Ts]
t=1

˙̀∗
t −

∫ s

0
e−c(s−λ)(T− 1

2

∑[Tλ]
t=1

˙̀∗
t )dλ

Under Condition 2 and 3, 1√
T

∑[sT ]
t=1

˙̀∗
t = sW (s) where W (s) is multivari-

ate standard wiener processes, which completes the proof.

II.A.E proof of Theorem 3

Theorem 1 can be proven by showing that P [|LRT − L̃RT | > ε] → 0

under both the null and the alternative hypothesis.
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(1) Proof of the convergence under the null hypothesis: For 0 < M < ∞,

define

LRT (M) =

∫
ΠT

t=1

f(ε1
t |β0)

f(ε0
t |β0, βt)

1{‖δ‖ <
√

TM}dνδ (II.A.27)

L̃RT (M) =

∫
exp

[
˙̀′(Me ⊗ Ik)β̃ − 1

2
β̃′(Me ⊗ J)β̃

]
1{‖δ‖ <

√
TM}dνδ̃

(II.A.28)

Note that for any ε > 0, the following is satisfied

P [|LRT − L̃RT | > 3ε] ≤ P [|LRT − LRT (M)| > ε] (i)

+ P [|L̃RT − L̃RT (M)| > ε] (ii)

+ P [|LRT (M)− L̃RT (M)| > ε] (iii) (II.A.29)

Therefore, it suffices to show that each term of (III.A.15) converges to

zero, respectively.

(i) P [|LRT − LRT (M)| > ε] ≤ ε−1E[|LRT − LRT (M)|]
= ε−1E[

∫

‖δ‖>√TM

ΠT
t=1

f(εt|β0)

f(ε1
t |β0, βt)

dνδ]

= ε−1

∫

‖δ‖>√TM

dνδ = ε−1P [‖δ‖ >
√

TM ]

(II.A.30)

The first inequality comes from Chebychev inequality. The last equality

uses Fubini Theorem. The right hand side of the last equality can be made arbi-
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trarily small for all T by taking M large enough by the property of β defined in

Condition 1.

Proof of (ii):

∣∣∣L̃RT − L̃RT (M)
∣∣∣ =

∫
L̃T dνδ̃ −

∫

‖δ‖<√TM

L̃T dνδ̃

= c · exp

[
1

2
¯̀̇∗′{Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ Λ−1}−1 ¯̀̇∗′

]

= ×
∫

(2π)−
k(T−1)

2

∣∣(Me ⊗ J1) + K−1
∣∣ 1

2

= × exp[−1

2

(
β̃ − {(Me ⊗ J1) + K−1}(Me ⊗ Ik) ˙̀

)′

= × {(Me ⊗ J1) + K−1}
(
β̃ − {(Me ⊗ J1) + K−1}(Me ⊗ Ik) ˙̀

)
]dνβ̃

= c · exp

[
1

2
B̄(β0, J1, Ω)

] ∫

‖δ‖>√TM

dνβ̃ (II.A.31)

The first term on the last equation is Op(1) by Lemma 5, and the second

term can be made arbitrarily small by taking M large by Condition 1. In conse-

quence, P [|L̃RT − L̃RT (M)| > ε] can be made arbitrarily small for all T large by

taking M sufficiently large.

Proof of (iii): Let’s define

LT (M) =
T∏

t=1

f(ε1
t |βt)

f(ε0
t )

· 1{‖
√

Tβ‖ < M} = LT · 1{‖
√

Tβ‖ < M}

L̃T (M) = exp

[
˙̀′(Me ⊗ Ik)β̃ − 1

2
β̃′(Me ⊗ J)β̃

]
· 1{‖

√
Tδ‖ < M}

= L̃T (β̃) · 1{‖
√

Tβ‖ < M}
L̃∗T (M) = exp

[
˙̀′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ J)β

]
· 1{‖

√
Tβ‖ < M}

= L̃T (β) · 1{‖
√

Tβ‖ < M}
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The test statistics are defined as LRT (M) =
∫

LT (M)dνβ, L̃RT (M) =
∫

L̃T (M)dνβ̃. We define additional test statistic, L̃R
∗
T (M) =

∫
L̃∗T (M)dνβ. I prove

(iii) by showing that LRT (M) − L̃R
∗
T (M) →p 0 and L̃RT (M) − L̃R

∗
T (M) →p 0.

The first convergence is proved as

LRT (M) =

∫
LT (M)dνδ

=

∫
(1 + op(1|β)L̃∗T (M)dνβ

= L̃R
∗
T (M) + op(1) (II.A.32)

The second equality follows from Lemma 2 with Condition 4. The third

equality uses L̃R
∗
T (M) is bounded in probability which is shown as

P [L̃R
∗
T (M) > K] ≤ K−1E

[
L̃R

∗
T (M)

]

= K−1

∫
E [LR∗

T (M)] dνβ

= K−1

∫
E[LT |β]1{‖

√
Tβ‖ < M}dνβ (II.A.33)

which can be made arbitrarily small by choosing K sufficiently large. To prove

the second convergence, we use an additional indicator function 1{B̄(·) > K} and

define new test statistics LRT (M,K), L̃RT (M, K), and L̃R
∗
T (M, K) as LRT (M),

L̃RT (M), and L̃R
∗
T (M) multiplied by 1B(·) > K, respectively. Note that for any

ε > 0,
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P [|L̃RT (M)− L̃RT ∗ (M)| > 3ε]

≤ P [|L̃RT (M)− L̃RT (M, K)| > ε] + P [|L̃R
∗
T (M)− L̃R

∗
T (M,K)| > ε]

+P [|L̃RT (M,K)− L̃R
∗
T (M,K)| > ε] (II.A.34)

The convergence of the first term can be easy to show by using the similar

method of (III.A.17), i.e.

‖L̃RT (M)− L̃RT (M,K)‖ = c exp

[
1

2
B̄(·)

]
1{B̄(·) > K}P

[
‖
√

Tβ‖ < M
]

(II.A.35)

in which P [‖L̃RT (M)− L̃RT (M, K)‖ > ε] can be made arbitrarily small by taking

K sufficiently large. The convergence of the second term can be shown as

P [|L̃R
∗
T (M) − L̃R

∗
T (M, K)| > ε] ≤ 1

ε
E

[∣∣∣L̃R
∗
T (M)− L̃R

∗
T (M, K)

∣∣∣
]

=
1

ε

∫ ∫
L∗T

(
1− 1{B̄(·) > K})1‖

√
Tβ‖ < Mdνβdνz

≤ 1

ε

∫
1‖
√

Tβ‖ < Mdνβ = P
[
‖
√

Tβ‖ < M
]

(II.A.36)

where the second equality uses Fubini theorem and the third inequality comes

from
∫

L∗T dνz = 1. (II.A.36) can be made arbitrarily small for all T by taking M

sufficiently large. In order to prove the convergence of the third term, we define

additional random elements γ and γ̃, which have the same distribution as β and

β̃, respectively and are independent of β and β̃ and of each other. We prove

LR∗
T (M) − L̃RT (M) convergence in mean square which implies the convergence
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in probability. Note that LR∗
T (M) and L̃RT (M) can be alternatively written as

integrals with respect to the measure of γ and γ̃, respectively. Let LR∗
T (M,K, θ)

and L̃RT (M,K, θ) be LR∗
T (M, K) and L̃RT (M, K) integrated with respect to the

measure of θ.

E[(LR∗
T (M, K)− L̃RT (M, K))2]

= E
[
(LR∗

T (M,K, β)− L̃RT (M,K, β̃))(LR∗
T (M, K, γ)− L̃RT (M, K, γ̃))

]

= E[LR∗
T (M, K, β)LR∗

T (M, γ)− LR∗
T (M,K, β)L̃RT (M, K, γ̃)−

L̃RT (M, K, β̃)LR∗
T (M,K, γ) + L̃RT (M,K, β̃)L̃RT (M,K, γ̃)

= E [LR∗
T (M, K, β)LR∗

T (M,K, γ)]− E
[
LR∗

T (M,K, β)L̃RT (M, K, γ̃)
]

−E
[
L̃RT (M, K, β̃)LR∗

T (M, K, γ)
]

+ E
[
L̃RT (M, K, β̃)L̃RT (M,K, γ̃)

]

=

∫ ∫ ∫
L̃T (β)1{‖

√
Tβ‖ < M}L̃T (γ)1{‖

√
Tγ‖ < M}

×1{B̄(·) > K}dνβdνγdνz

−
∫ ∫ ∫

L̃T (β)1{‖
√

Tβ‖ < M}L̃T (γ̃)1{‖
√

T γ̃‖ < M}
×1{B̄(·) > K}dνβdνγ̃dνz

−
∫ ∫ ∫

L̃T (β̃)1{‖
√

T β̃‖ < M}L̃T (γ)1{‖
√

Tγ‖ < M}
×1{B̄(·) > K}dνβ̃dνγdνz

+

∫ ∫ ∫
L̃T (β̃)1{‖

√
T β̃‖ < M}L̃T (γ̃)1{‖

√
T γ̃‖ < M}

×1{B̄(·) > K}dνβ̃dνγ̃dνz

Lemma 3 implies that the integrands of all four terms weakly converge

to the same limiting distribution. Thus, Crystal Ball condition give us that it is

enough to show that SupE[L̃T (M, K)2+δ] is finite. It can be proved by computa-

tions close to those in the proof of Lemma 4.
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E[L̃T (M, K)a]

=

∫ ∫
(2π)−

k(T−1)
2 |K|− 1

2 exp[a ˙̀′(Me ⊗ Ik)β̃ − aβ̃′(Me ⊗ J1)β̃ − 1

2
β̃′K−1β̃]

× 1[‖
√

Tβ‖ < M ]1[B̄(·) < K]dβ̃dνz

= c1 ·
∫

exp[
a2

4
˙̀′(Me ⊗ Ik)(a(Me ⊗ J1) + K−1)−1(Me ⊗ Ik) ˙̀]

×
∫

(2π)−
k(T−1)

2 |a(Me ⊗ J1) + K−1| 12

× exp[−1

2
(β̃ − a(aMe ⊗ J1 + K−1)(Me ⊗ Ik)2 ˙̀)′(a(Me ⊗ J1) + K−1)

× (β̃ − a(aMe ⊗ J1 + K−1)(Me ⊗ Ik)2 ˙̀)1[‖
√

Tβ‖ < M ]1[B̄(·) < K]dβ̃dνz

= c1

∫
exp

[
a2

4
¯̀̇∗′(Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ 1

a
Ω∗−1)−1 ¯̀̇∗′

]

1[B̄(·) < K]dνzP
[
‖
√

Tβ‖ < M
]

= c1P
[
‖
√

Tβ‖ < M
] ∫

exp
[a

4
B(Ω,

√
aJ1, β0)

]
1[B̄(·) < K]dνz

≤ c1P
[
‖
√

Tβ‖ < M
]
exp

[a

4
K

]

(II.A.37)

so that, for sufficiently large K there exits S such that SupE[L̃T (M,K)2+δ] < S.

(2) Proof of convergence under the alternative hypothesis: The proof

can be done by showing that the distribution under the alternative hypothesis,

f(ε1
t |β0, βt) is contiguous to that under the null hypothesis, f(ε0

t |β0). The condigu-

ity of the distribution in which the likelihood ratio has the asymptotic distribution

as (III.3.9) has alredy been shown by Elliott and Müller (2006).

II.A.F proof of Theorem 4

Let’s define the power function of φ̂T (Z|Ω) as h(Ω), i.e.
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h(Ω) =

∫ ∫
φ̂T (Z|Ω)f(Z| 1

T
δt, β0 +

1

T
δ0)dZdνδ (II.A.38)

Note that the test does not depend on the measure of δ0 because of the

asymptotic regularity of the test. Since the test B̄(β0, Ω) is asymptotically most

powerful for testing that f(Z|β0) is the true density versus f(Z| 1
T
δt, β0+ 1

T
δ̄0(δt)) is

true and φ̂T (Z|Ω) has asymptotic α-size for δ̄0(δt), Neyman-Pearson Lemma gives

the following inequality.

h(Ω) ≤
∫ ∫

φ̂T (Z|Ω)f

(
Z| 1

T
δ, β0 +

1

T
δ̄0(δ)

)
dZdνδ + op(1) (II.A.39)

Therefore, theorem 2 is proved if B(Ω) is asymptotically equivalent to

B̄(β0, Ω) under both the null and the alternative hypothesis. Let’s rewrite β̂ as

β̂ = β0 + T− 1
2 WT

where WT is a k×1 random variable with P [|WT | > M ] → 0 for arbitrarily

large M. By using Condition 5 and continuous mapping theorem, we could get

T−1/2

[sT ]∑
t=1

Ĵ
−1/2
1

˙̀
t(β̂) = T−1/2

[sT ]∑
t=1

Ĵ
−1/2
1

˙̀
t(β0 + T−1/2WT ) + op(1)

= T−1/2

[sT ]∑
t=1

Ĵ
−1/2
1

˙̀
t(β0)− sK(β0)WT + op(1)

(II.A.40)
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Since WT (1) is constant for all t ≤ T , it can be easily proved by showing

that the test statistic B̄(β0, Ω) doesn’t change for the transformation from { ˙̀
i(β0)}

to { ˙̀
i(β0) + c} where c is the T × 1 vector of constants. Note that Me

˙̀∗
i (β0) =

Me

[
˙̀∗
i (β0) + c

]
. By using (II.A.24) and (II.A.25), we could get

B̄(β0, Ω) =
k∑

i=1

˙̀∗′
i (β0){Me −Gai

} ˙̀∗
i (β0)

=
k∑

i=1

˙̀∗′
i (β0)Me[Me + K−1

ai ]−1Me
˙̀∗
i (β0)

=
k∑

i=1

[
˙̀∗′
i (β0) + c

]
Me[Me + K−1

ai ]−1Me

[
˙̀∗
i (β0) + c

]

=
k∑

i=1

˙̀∗′
i (β̂0){Me −Gai

} ˙̀∗
i (β̂0) + op(1)

= B(Ω) + op(1) (II.A.41)

which shows the asymptotic equivalency under the null hypothesis. The

asymptotic equivalency under the alternative hypothesis comes from the contiguity

of B̄(β0, Ω), which completes the proof. ¦



81

00.20.40.60.81

1 3 5 7 9 11 13 15Alternative
B(   )PowerEnvelope �Ω

k=1
Power

00.20.40.60.81

1 3 5 7 9 11 13 15 17 19 21Alternative
B(   )PowerEnvelope �Ω

k=2, One nonzero eigenvalue
Power

00.20.40.60.81

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6Alternative
B(   )PowerEnvelope �Ω

k=2, different eigenvalues(c1 = 2c2)
Power
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Chapter III

Efficient Tests For Parameter

Instability in General Models

with Unknown Error Distribution

This chapter examines asymptotically efficient tests for parameter insta-

bility in general semiparametric models in which the error distribution is unknown

but treated as an infinite dimensional nuisance parameter. I first derive the asymp-

totic power envelope with unknown density and suggest conditions under which a

semiparametric model would have the same asymptotic power envelope with known

error distribution. The conditions are weak enough to cover a wide range of error

distributions by relaxing the twice differentiability and allowing for skewness. An

efficient test statistic is then suggested, which is adaptive in the sense that allowing

unknown error distribution gives no loss of asymptotic power. This implies that

the knowledge of the error distribution is asymptotically irrelevant under mild con-

87
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ditions. Monte Carlo experiments show that the adaptive test has improved small

sample powers over the existing tests under various error distributions.

III.1 Introduction

The instability of economic relationships is a common problem and is of

central importance in econometric modeling. As a result, there has been substan-

tial literature on testing for parameter instability. Recent attention has been paid

to obtaining a test that has the best asymptotic power. Andrews and Ploberger

(1994) suggest an optimal test for structural breaks which has the asymptotically

best average power. Elliott and Müller (2006) provide a test in a linear Gaussian

model which is most powerful against a broad set of unstable parameter processes,

including both structural breaks and time varying parameters. Chapter 2 gener-

alizes Elliott and Müller (2006)’s test so that it obtains the asymptotic optimality

in a wide range of nonlinear non-Gaussian models.

These tests are optimal only when the underlying distribution is known.

In many data sets, however, it is more likely that the error distribution is incor-

rectly specified. In this circumstance, it is to be expected that tests lose validity

by mistakenly recognizing outliers. The optimal tests partly work through this

problem by providing distribution-free size property to the test, but at the ex-

pense of losing efficiency. Unfortunately, no work has been devoted to discovering

an efficient test under unknown error distribution.

The purpose of this chapter is to examine the asymptotically efficient

tests for parameter instability in a semiparametric set-up in which the fact that

the underlying distribution is unknown is explicitly considered. I analyze the test
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in a single unified framework of the unstable parameter processes which is wide

enough to include various nonstationary time varying parameters and permanent

structural breaks. Therefore, it will be shown that the test set-up in this chapter

is general enough to cover a wide range of unstable parameter processes and error

distributions, but requires only modest information about them.

This chapter makes two contributions. First, I derive asymptotic power

envelopes for testing general parameter breaking processes in a semiparametric

set-up. This asymptotic power bound is sharp in the sense that it is attainable by

feasible test statistics. An important finding is that the asymptotic power envelope

in a semiparametric model is equivalent to that under known error distribution.

The asymptotic equivalency holds even under rather mild conditions that allow for

the asymmetry of distributions while most existing work requires symmetry. This

equivalency implies that the knowledge of the underlying distribution is asymptot-

ically irrelevant in obtaining an efficient test function. The power envelope does

not require the information of the exact parameter breaking process as long as it

is in a suggested set. Therefore, this chapter works through the problem of identi-

fying two unobservable random processes in the model, unstable parameters and

the error term, by providing conditions under which the attainable power envelope

is asymptotically free of their distributional information.

Second, I suggest a test statistic that is asymptotically efficient in the

sense that its power converges to the semiparametric power envelope. The test

statistic is derived based on the method of adaptation using kernel estimates of

the score function. An estimator or a test is adaptive if it has the same asymptotic

properties as the one obtained under the assumption that the true distribution is

known. Since the seminal work by Bickel (1982), numerous authors have employed

adaptation in time series models. Choi et al. (1996) extend this idea to the stan-

dard testing problem, to show that the test based on adaptive estimation is also
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efficient. Banerjee (2005), and Murphy and der Vaart (1997) examine the property

of likelihood ratio test in semiparametric models. Benghabrit and Hallin (1998),

and Hallin and Jurečová (1999) use adaptivity to derive asymptotically efficient

tests in AR model. Shin and So (1999), and Ling (2003) use it for unit root tests.

Most research has focused on standard testing problems in which the

locally asymptotic normal (LAN) property of the class of likelihood is involved.

However, the testing problem considered in this chapter is nonstandard in the

sense that the parameter to be tested is nonstationary random. Hence, the in-

ference based on LAN is not applicable straightforward to this set-up. Recent

research extends the adaptation to such nonstandard settings as a locally asymp-

totic quadratic (LAQ) likelihood ratio, in which the quadratic term of the local

approximation stays random even in the limit. (See Jeganathan (1995), and Ling

and McAleer (2003) for examples.) Jansson (2006) extends the LAQ to a unit

root testing problem. However, the testing problem in this chapter is different

from the previous considerations in the sense that the likelihood ratio is not LAQ,

but a weighted average of LAQ. This chapter shows that this non-standard testing

problem is still amenable to adaptation by using extant semiparametric methods

developed for standard problems. In this sense, this chapter provides an example

of the extent to which one can obtain adaptive tests in models far from LAN.

This chapter is organized as follows: Section 2 introduces the model and

the hypothesis to be tested. Section 3 studies efficient tests under the assumption

that the underlying distribution is known. Section 4 extends the result of section 3

to parametric submodels. Section 5 suggests an adaptive test in a semiparametric

set-up. Section 6 performs Monte Carlo studies. And Section 7 concludes.
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III.2 The Model and the Breaking Processes

This section defines the model and the hypothesis to be tested. Consider

a stochastic process (y, X) ≡ Z ≡ {Zt : Ω → Rr+1, r ∈ N, t = 1, ..., T} defined on

a complete probability space (Ω, F, P ) where F = {Ft, t = 1, ..., T} and Ft denotes

the smallest σ-algebra that Zt is adapted to, i.e. Ft ≡ σ(Z1, ..., Zt). Define Ft(y)

as the conditional distribution of yt, and ft(y) as the corresponding conditional

density. Consider the model

yt = m(Xt, β0, βt) + εt (III.2.1)

where m(·) is continuous and differentiable with respect to βt. βt is the k×1 vector

of parameters to be tested and β0 is the k× 1 vector of nuisance parameters which

are constant for all t = 1, . . . , T . εt is a mean zero error term with a distribution

g. The mean zero property is to identify the model and can be replaced by other

moment conditions such as quantile restriction, if necessary. The objective of this

chapter is to test whether the parameter vector that links the observables Xt to yt

remains stable over time, i.e.

H0 : βt = 0 ∀t
H1 : βt 6= 0 for some t > 1

(III.2.2)

so that the parameter vector is β0 under H0 and β0 + βt under H1. To examine

asymptotic local powers, the alternative hypothesis is considered to be local to the

null by assuming that {βt} take the form
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βt =
1

T
δt ∀t = 1, . . . , T

Unlike the standard testing problem, the appropriate neighborhood in

order for the test to have nontrivial asymptotic power is where βt is of order T−1

in probability. The reason for this is that the test focuses on alternatives with

a persistently varying {δt}, in that permanent change of the parameter has more

implications in both economic and statistic concepts. It is implicit in the formula-

tion that (yt, Xt), δt, and their distributions may depend on T, but I suppress the

dependency for the purpose of notational convenience.

Note that different specification of the unstable βt would lead to a different

testing problem. For example, the problem is reduced to a structural break test

such as Andrews (1993), Andrews and Ploberger (1994), and Bai and Perron (1998)

if we regard βt as fixed and described by a vector of unknown parameters. On the

other hand, considering βt as random variables makes (III.2.2) a test for time

varying parameters as in Nyblom and Makeläinen (1983). However, there are few

ways to identify in a priori a specific breaking process in one’s model. For this

reason, an effective test is one that is powerful against a wide range of parameter

instabilities. The set-up in this chapter leaves the breaking processes unspecified

as long as they are in a set which is broad enough to cover a lot of unstable

parameter processes that might happen in the economy. Specifically, I consider

unstable processes that satisfy the following condition.

Condition 6 i) {∆δt} is uniform mixing with mixing coefficient of size -r/(2r-

2) or strong mixing of size -r/(r-2), r>2

ii) E[∆δt]=0 and E[|∆δt,i|r] < K < ∞ for all t=1,. . . ,T, and i=1,. . . ,k.

iii) The initial value of {δ} satisfies δ0 = − 1
T

∑T
t=1 δt
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iv) {∆δt} is globally covariance stationary with nonsingular long-run covariance

matrix, Ω

The basic idea of Condition 6 is that the seemingly different approaches of

structural breaks and time varying parameters are in fact not distinctive. Both are

considered as specific forms of a unified framework of unstable processes as defined

in Condition 6. For example, if we let ∆δt have a continuous distribution with

probability p and equal zero with probability (1− p), then Condition 6 captures a

multiple structural break model with (T · p) expected breaks. On the other hand,

it is reduced to a random walk parameter model if ∆δt is iid normal.

Admitting both heteroscedasticity and dependency makes Condition 6

capture many possible persistent breaking processes. Heteroscedasticity of ∆δt

allows different types of breaks to occur in a sample period in the sense that

breaks caused by different shocks may have different sizes. Heteroscedasticity also

covers processes that have fewer breaks in certain periods and more breaks in

other periods. Dependency of ∆δt allows the parameter to smoothly adjust to a

new level after a break. This covers the general set of breaking processes that occur

frequently. For example, the oil price shock in 1973 did not change the economy

at a time, but might have had a lagged effect.

Part (iii) of Condition 6 is necessary to identify the process {δt}. It implies

that the average value of the random parameter path is always the same as that

under the stable model. Consequently, the test in this set-up detects permanent

variation in the parameter, rather than differences between the average value of

the parameters. Another benefit of this condition is that it provides the best

power under the existence of unknown nuisance parameter β0, in the sense of least

favorable parametric submodels. β0 is generally unknown and should be replaced

by an estimator, which causes some loss of power. This condition plays the role
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of the least favorable direction of the alternative hypothesis, in which the test has

the minimal loss by unknown β0. (See Chapter 2 for details.)

In order to construct the likelihood ratio, we need additional assumptions

on the distributions of {εt} and {Xt}. The following condition specifies this.

Condition 7 i) εt is iid with conditional distribution g(εt|β0, βt). εt is condi-

tionally independent of Xt given Ft−1. The error distribution does not depend

on βt in the null hypothesis.

ii) Xt has conditional distribution fX(Xt|=t−1) with respect to some σ-finite mea-

sures, {fX(Xt|=t−1)} does not depend on parameters β0 and βt for all t =

1, . . . , T .

iii) Under H0, {Xt} are mixing with either φ of size -r/2(r-1), r =2 or α of size

-r/(r-2), r> 2.

iv) Under H0, E [|Xt,i|r] < ∆ < ∞ for all t = 1, . . . , T and i = 1, . . . , k.

T−1
∑[sT ]

t=1 ṁ(Xt)ṁ(Xt)
′ → sJm uniformly in s where ṁ(·) is the 1st derivative

of m(·) with respect to βt. Jm = E[ṁ(Xt)ṁ(Xt)
′]. T−1

∑T
t=1 ṁ(Xt)ṁ(Xt)

′ is

uniformly positive definite.

Condition 7 implies that the likelihood function for the data is factored

into two pieces, one which captures the contribution to the distribution of yt,

f(yt|Ft−1, Xt, β0, βt), and depends on (β0, βt), and the other which contains con-

ditional distribution of Xt and does not depend on (β0, βt), fX(Xt|Ft−1). In such

likelihood functions, fX(·) need not be known in order for one to construct the test

statistics considered here. The iid assumption on εt is crucial in this set-up. How-

ever, it can be extended to the non iid case in which some finitely parameterized

transformation of the data leads back to the iid model such as (non)stationary
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ARMA (Akharif and Hallin (2003)), GARCH (Drost and Klaassen (1997), Ling

and McAleer (2003)), and quantile ARCH (Koenker and Zhao (1996)) Models.

III.3 Asymptotically Optimal Tests in Paramet-

ric Models

This section reviews asymptotically efficient tests under the counterfac-

tual assumption that the error distribution, g(ε|·), is known. It would give a

benchmark for tests under more realistic distributional assumptions by providing

the upper bound of their asymptotic power envelopes. Under Condition 6 and 7,

the likelihood function under H0 is

f0(y,X|β0) =
T∏

t=1

g(εt|β0)fX(Xt|=t−1) (III.3.1)

The likelihood function under the alternative hypothesis is

f1(y,X|β0, β) =

∫ T∏
t=1

g(εt|β0, βt)fX(Xt|=t−1)dνβ (III.3.2)

where β = (β′1, . . . , β
′
T )′, νβ is the measure of β. If νβ is known, the

Neymann-Pearson Lemma implies that rejecting H0 for a large value of the likeli-

hood ratio statistic, defined as

LRT =

∫ T∏
t=1

g(εt|β0,
1
T
δt)

g(εt|β0)
dνβ (III.3.3)

has the best power against the alternative distribution (III.3.2). The asymptoti-

cally efficient test considered in this chapter is based on the local approximation of
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(III.3.3). To do this, we need a condition for the differentiability of the likelihood

function of the error term. The following condition gives the differentiability as-

sumption and an additional assumption for the asymptotic properties of the score

function.

Condition 8 Let ξt(·|β0, βt) be the square root of the error density, g(·). Under

H0,

i) There exists a k×1 random vector ξ̇β
t (·|β0, βt) such that E‖ξ̇β

t (·|β0, βt)‖2 < ∞,

and

E




[(
ξt(·|β0, h)

ξt(·|β0, 0)
− 1

)
− h′

ξ̇β
t (·|β0, 0)

ξt(·|β0, 0)

]2

 → 0 as ‖h‖ −→ 0, ∀t ≤ T

(III.3.4)

ii)

Jβ(s) =
1

T

[sT ]∑
t=1

4
ξ̇β
t (·|β0, 0)ξ̇β

t (·||β0, 0)′

ξt(·|β0, 0)2
−→ sJβ

for some positive definite nonrandom k × k matrix function Jβ and for any

s ∈ [0, 1] and Jβ(1) is positive definite for all t

If the error density is twice differentiable, ξ̇β
t (·|β0, βt) = 1

2
ṁt(Xt) ˙̀g

t where

˙̀g
t is the first derivative of the log of g(·). Part (i) of Condition 8, called quadratic

mean differentiability (QMD), is weak enough to be satisfied by a wide variety

of densities and strong enough to deliver the approximation similar to the Taylor

expansion. Under QMD, Chapter 2 suggests a second order local approximation

for Condition 6 random parameter models. Let’s define Me as Me = IT − 1
T
e′e

where IT is a T ×T identity matrix, and e is a T × 1 vector of ones. The following

lemma gives the local approximation of the integrand in (III.3.3).
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Lemma 6 Let ˙̀β = (
˙
`β
1 (β0), . . . ,

˙
`β
T (β0)) where

˙
`β
t (β0) = 2

ξ̇β
t (·|β0,0)

ξt(·|β0,0)
. Under Condi-

tion 6 to 8, the integrand of (III.3.3), denoted as LT , is equivalent to

LT = (1 + op(1))exp

[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
(III.3.5)

This approximation can be considered as a locally asymptotic quadratic

(LAQ) approximation defined by Jeganathan (1995) in the sense that the quadratic

term is random because of the random parameter, and the null and the alternative

distribution is contiguous, which is shown in Theorem 1). Using Lemma 5, it can

be shown that LRT is asymptotically equivalent to

L̃RT =

∫
exp

[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
dνβ (III.3.6)

I suggest an asymptotically efficient test statistic, denoted as B(Ω), which

is asymptotically equivalent to an increasing transformation of L̃RT . Let Ω∗ =

J
1
2
β ΩJ

1
2
β . I decompose Ω∗ into the orthonormal matrix of its eigenvectors, P, and the

diagonal matrix of the eigenvalues, Λ = diag(a2
1, . . . , a

2
k), such that PΛP ′ = Ω∗ and

ai > 0,∀i. The first derivative normalized to have unit variance and zero covariance

can be written as ˙̀β∗(β0) = (IT ⊗ P ′J−1/2) ˙̀β(β0) or ˙̀β∗
t (β0) = P ′J−1/2 ˙̀β

t (β0).

Furthermore, define ˙̀β∗
t,i to be the ith element of ˙̀β∗

t (β0) and ζβ
i (β0, Jβ) to be the

vector of the partial sum of ˙̀β∗
t,i , i.e. jth element of ζβ

i to be
∑j

t=1
˙̀β∗
t,i . The test

statistic I suggest is

B(Ω) =
k∑

i=1

ζβ′
i

[
T 2

a2
i

IT + FMeF
′
]−1

ζβ
i (III.3.7)

where F is a T × T lower triangular matrix in which all the nonzero elements

are ones. By matrix manipulation it can be shown that B(Ω) = 1
2
ln L̃RT +
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constant, if the distribution of β is normal with zero mean and variance 1
T 2 FF ′⊗Ω.

Consequently, B(Ω) is proved to be asymptotically efficient if L̃RT with any specific

νβ for Condition 6 parameter process converges in probability to the same test

function under both the null and the alternative hypotheses.

Let φT (Z|Ω) be a critical function for testing breaking processes. That

is, φT (Z|Ω) is a [0, 1] valued function determined by Z. I consider asymptotically

α-significant tests, i.e. limT→∞
∫

φT (Z|Ω)f0(Z|β0)dZ = α. The power function of

the test is defined as
∫

φT (Z|Ω)f1(Z|β0)dZ. The following theorem implies that

the test function B(Ω) provides the asymptotic power envelope under known error

distribution.

Theorem 5 Let ψT (Z|Ω) be a critical function for B(Ω) and Ψ(Ω) be the asymp-

totic power function of ψT (Z|Ω), i.e. Ψ(Ω) = lim
∫ ∫

ψT (Z|Ω)f(Z|β0, β)dνβdZ.

Suppose the error distribution g(εt|β0, βt) is known. Under Conditions 6 to 8, the

test B(Ω) satisfies

limT→∞

∫ ∫
φT (Z|Ω)f1(Z|β0, β)dνβdZ ≤ Ψ(Ω)

The test function B(Ω), however, is not feasible because it is a function of unknown

nuisance parameters β0 and Jβ. They should be replaced by their maximum likeli-

hood estimators in order to make B(Ω) feasible. When constructing efficient tests,

we need the following.

Condition 9 Under H0, the likelihood function satisfies.

T−1/2

[sT ]∑
t=1

˙̀β
t (β0 + T−1/2h) = T−1/2

[sT ]∑
t=1

˙̀β
t (β0)− sK(β0)h + op(1) (III.3.8)
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Condition 9 is similar to the notion of regular score in the sense of Hall

and Mathiason (1990) and weaker than Nyblom (1989). This condition is generally

satisfied when an asymptotic normal MLE does exist, and can be extended to other

cases. The following lemma indicates that the plug-in version of B(Ω), denoted as

B(Ω, β̂, Ĵβ) attains the asymptotic power envelope.

Lemma 7 Suppose there exist a
√

T -consistent estimator β̂ of β0 and a consistent

estimator Ĵβ of Jβ. Under Condition 6 to 9, the following holds both under H0 and

H1

B(Ω, β̂, Ĵβ) = B(Ω) + op(1)

Lemma 5 in Chapter 2 shows that the asymptotic null distribution of

B(Ω) is

B(Ω) −→ Λ(c) ≡
k∑

i=1

[aiJi(1)2 + a2
i

∫ 1

0

Ji(s)
2ds +

2ai

1− e−2ai

×{e−aiJi(1) + ai

∫ 1

0

e−aisJi(s)ds}2 − {Ji(1) + ai

∫
J i(s)ds}2]

where Ji(s) = W β
i (s)− sW β

i (1)− ∫ s

0
eλ−s[W β

i (λ)− λW β
i (1)]dλ, and W β

i is the ith

element of the independent k × 1 standard Wiener process W β.
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III.4 Asymptotically Optimal Tests in Paramet-

ric Submodels

The optimal test considered in the previous section assumes that the

error distribution is correctly specified, which is generally infeasible in practice.

Sections 4 and 5 extend the previous results by investigating asymptotically effi-

cient tests under unknown error distribution. This relaxation modifies the model

in the previous section into the semiparametric one with a real valued parametric

component θ = (β′0, β
′
1, . . . , β

′
T )′ ∈ Rk(T+1), and a single nonparametric component

g ∈ G which denotes the unknown distribution of the error term, where G is a

specified set of density functions.

In this section, I assume that the error density is known to belong to a

specific parametric family of distribution indexed by finite dimensional parameters.

A familiar case is testing partial structural breaks in which only the part of the pa-

rameters are suspected to have structural breaks while the others remain constant.

Another case occurs when testing stability of the coefficient of a linear regression

model in which, instead of standard Gaussian error term, the error term is iid

from a more generalized distribution, such as an asymmetric exponential family (

Fernandez and Steel (1998)) with unknown skewness and kurtosis parameters.

The true set of conditional densities of yt is characterized as a parametric

family Pη = {Ft(y|η) : η ∈ Rq} with dominating measure µ and correspond-

ing densities ft(y|η) = dFt(y|η)/dy such that g(·) = ft(y|η). The model with

this parametrization P = {Pθ,η : θ ∈ Rk(T+1), η ∈ Rs} is called a parametric

submodel. For the convenience, I consider a parametric submodel with a single

unknown nuisance parameter η ∈ R. The extension to the finite dimensional case

is straightforward.
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In this section, I confine my attention to contiguous alternatives for η.

Define a
√

T neighborhood of the true nuisance parameter η0 as η = η0 + 1√
T
h for

bounded h ∈ Hθ where the local parameter space Hθ is a Hilbert space. In order

to ensure that the asymptotic power envelope covers the unknown perturbation

of the nuisance parameter h, we need an additional restriction to the test. One

widespread way is to confine the tests that have the invariant asymptotic size

regardless of h. This type of tests, which is called an asymptotically similar test,

is defined as below.

Definition 6 Let φT (Z) be the test function for the breaking processes and f0(Z|h)

be the null distribution of Z given h. The test function φT (Z) is asymptotically

similar at η0 if for a fixed α > 0,

lim
T→∞

∫
φT (Z)f0(Z|h)dZ ≤ α for every h (III.4.1)

Note that the asymptotic size restriction is imposed for every value of h.

This requirement is crucial and plays the role of restriction to regular estimates

in estimation theory. (see Hall and Mathiason (1990) for details.) Following the

way I analyzed the previous section, my investigation is based on the LAQ of

the integrand in the likelihood ratio of the model. The likelihood ratio function

associated with Pη is written as

LRS
T =

∫ T∏
t=1

g(εt|β0 + βt, η0 + 1√
T
h)

g(εt|β0, η0)
dνβ (III.4.2)

Analogous to the parametric model case, we need a differentiability con-

dition for the density f(·|η) in order to get the LAQ of the integrand in LRS
T . The

following condition is the modified version of the QMD in Condition 8.
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Condition 10 Let ξS
t (·|βt, η) be the square root of the error density, g(εt|βt, η)

and b be the (k + 1)× 1 vector. Define θη
t = (β′t, η)′, and θη

0 = (0′, η0)
′. Under H0,

i) There exists a (k + 1) × 1 random vector ξ̇S
t (·, θη

t ) =
(
ξ̇β
t
′, ξ̇η

t ,
)′

such that

Eθ‖ξ̇S
t (·, θη

t )‖2 < ∞ and

E




[(
ξS
t (·, θη

0 + b)

ξS(·, θη
0)

− 1

)
− b′

ξ̇S
t (·, θη

0)

ξS
t (·, θη

0)

]2

 → 0 as ‖b‖ −→ 0

ii)

JS(s) =
1

T

[sT ]∑
t=1

4
ξ̇S
t (·, θη

t )ξ̇
S
t (·, θt)

′

ξS
t (·, θη

t )
2

−→ sJS

for some positive definite nonrandom (k +1)× (k +1) matrix function JS and

for any s ∈ [0, 1] and JS(1) is positive definite for all t

{ξ̇S
t (·, θη

0)} is still a function of β0 but I suppress the dependency for the

purpose of convenience. Lemma 8 gives locally asymptotic quadratic approxima-

tion of the integrand in LRS
T .

Lemma 8 Let’s define ˙̀η
t = 2

ξ̇η
t (θη

0 )

ξS
t (θη

0 )
, and Jη = 4E

[(
ξ̇η
t (θη

0 )

ξS
t (θη

0 )

)2
]
. Under Condition

6, 7, and 10, the integrand of (III.4.2), denoted as LS
T , is equivalent to

LS
T = (1 + op(1)) exp

[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
· exp

[
h√
T

T∑
t=1

˙̀η
t −

h2

2
Jη

]

(III.4.3)
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Now using (III.4.3), it can be shown that the likelihood ratio function is

asymptotically equivalent to

L̃R
S

T =

∫
exp

[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
dνβ · exp

[
h√
T

T∑
t=1

˙̀η
t −

h2

2
Jη

]

(III.4.4)

Note that the integral part in (III.4.4) is the same as the likelihood ratio

function in the parametric model, except the first derivative ˙̀β depends on the

value of the nuisance parameter η0. Throughout deriving the power envelope, I act

as if η0 is known, and then show that the asymptotic power envelope is attainable

by replacing η0 by its consistent estimator.

I use the method of limits of experiments to derive the asymptotic power

envelope. An experiment can be regarded as a synonym of a probability model.

The implication in the limits of experiments is that if a sequence of experiments

converges to a limit experiment, the best asymptotic power function is the best

power function in the limit experiment. In such cases as the existence of the

nuisance parameter, finding the power envelope of the limit experiment is much

easier than using a classical method. Using the results in the previous section, and

functional central limit theorem, the asymptotic null distribution of log(LRS
T ) is

log(LRS
T ) →d ΛS(Ω, h) = Γ + Λ(Ω) + hW η(1)− h2

2
Jη (III.4.5)

where Γ = −∑k
i=1 log

(
2ai exp[−ai]
1−exp[−2ai]

)
, Λ is the limiting counterpart of B(Ω) in the

parametric model, and W η is a univariate brownian motion with variance Jη. Since

the convergence holds for all subset I where θ ∈ I ⊂ Θ , the sequence of the models

converges to a limit experiment so that we can focus on the power envelope of the

limit experiment.
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The best power can be achieved if the nuisance parameter has the true

value, i.e. h = 0, so that the power envelope can be calculated by maximizing

E
[
φ(Z)exp

(
ΛS(Ω, 0)

)]
. This type of power envelope, however, does not give the

practical implication in the sense that the power under h = 0 does not correctly

reflect the problem of unknown h. It is therefore sensible to derive the power

envelope under certain nonzero h by maximizing E
[
φ(Z)exp

(
ΛS(Ω, h)

)]
. This

power envelope is generally less than that of the previous section, because the

latter does not achieve true error distribution. However, Theorem 7 below shows

the interesting result that both power envelopes are identical in this set-up.

The intuition is as follows; the LR function (III.4.4) and its asymptotic

counterpart (III.4.5) are factored into two parts, containing the measure of the

parameter of interest, νβ and the perturbation of the nuisance parameter, h. The

power of the test with respect to the size of the break is determined only by

the first part, and the asymptotic size restriction is imposed only to the second

part. Therefore, the test based on the first part is expected to provide the power

envelope, while it avoids the size dependency of unknown h. Since the first part

Λ(Ω) is equivalent to the best limit test function in parametric models, it is possible

to construct a test based on Λ(Ω), that has the same asymptotic power as the power

envelope under known error distribution. Let’s define the limit power function ΨS

as

ΨS(Ω) = E
[
1{Λ(Ω)>kα

h}exp
(
ΛS(Ω, h)

)]
(III.4.6)

where kα
h is the continuous function that ensures the test function has asymptotic

size-α. The following theorem proves the argument.
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Theorem 7 Under Conditions 6, 7, and 10, any asymptotic similar test function

φT (Z|Ω, η) associated with Pη satisfies

lim
T→∞

∫ ∫
φT (Z|Ω, η)f1(Z|θ, η)dZdνδ ≤ ΨS(Ω) = Ψ(Ω) (III.4.7)

where Ψ(Ω) is the asymptotic power envelope in a parametric model defined in

Theorem 5.

Theorem 7 implies that it is possible not to lose any power even though

we do not know the true value of the nuisance parameter η0, as the sample size

gets large. The main reason for this is because the alternative process, βt − β̄ is

invariant to the parametric transformation in a locally linearized neighborhood. In

general, the invariance property implies that the likelihood function is represented

as a function of the score of the parameter of interest ˙̀β
t only through its effective

score function, which is defined as

˙̀βe
t = ˙̀β

t − JβηJ
−1
η

T∑
i=1

˙̀η
i

where Jβη = E[ ˙̀βt ˙̀η
t ]. The effective score function lies on the orthonormal comple-

ment of the space spanned by the score of the nuisance parameter, so that
∑ ˙̀βe

t

and
∑ ˙̀η

t are asymptotically independent. The likelihood ratio in (III.4.5) is a

function of ˙̀β
t through ˙̀β

t −
∑T

i=1
˙̀β
i . Subtracting JβηJ

−1
η

∑T
i=1

˙̀η
i from the first

term and adding it to the second term gives that

˙̀βe
t −

T∑
i=1

˙̀βe
i = ˙̀β

t −
T∑

i=1

˙̀β
i
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which implies that the test is locally invariant to η. Therefore, not knowing η0

does not give any loss of asymptotic power. The intuition is similar to Stein’s

necessary condition for adaptation which is that Jβη is zero. Under this condition,

the effective score is always equivalent to the actual score so that the invariance

property always holds. The set-up in this section does not satisfy Stein’s condition

while it obtains the same inference. The orthogonality in this set-up does not

come from the property of the error distribution, but from the property of the

alternative process, βt − β̄.

The asymptotic power envelope suggested in Theorem 7 is achievable in

practice if we have a
√

T -consistent estimator of η0. Let BS(Ω) be the small sample

counterpart of Λ(Ω), i.e. BS(Ω) is the same as B(Ω) in (III.3.7) except the first

derivative of the log likelihood function with respect to β depends also on the true

nuisance parameter η0, and let BS(Ω, η̂0) be the plug-in version of BS(Ω). BS(Ω)

achieves the asymptotic power envelope in Theorem 7 because it is a finite sample

counterpart of Λ(Ω). Therefore, it suffices to show that the feasible test statistic

BS(Ω, η̂0) converges in probability to BS(Ω) under both H0 and H1. Lemma 9

below proves the argument.

Lemma 9 Suppose there exist
√

T -consistent estimators η̂ and β̂, and a consistent

estimator Ĵβ. Assume that ˙̀β
t (η) satisfies condition 4) for both η0 and β0. Under

Conditions 6, 7, and 10

|BS(Ω; η̂)−BS(Ω)| −→ 0 in probability under H0 and H1 (III.4.8)

An important implication of Lemma 9 is that it is better to use an error
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distribution which is more general than normal. Note that the asymptotic power

function of B(Ω) is an increasing function of Ω∗ = J
1
2
β ΩJ

1
2
β which is proportional to

the Fisher information of the error distribution. Accordingly, the power envelope

is strictly increasing in the Fisher information. Suppose that the true error density

is in a generalized exponential family, i.e. the error density has the form as,

g(εt) = A(η) exp [B(η)|εt|η] (III.4.9)

where η > 1/2 and A(η) and B(η) are decided to satisfy
∫∞
−∞ g(ε)dε = 1.. Normal

density is a special case of (III.4.9) when η = 2. The fisher information of this type

of density ranges [1,∞] where it is one when g(εt) is normal and ∞ when η = 1/2.

Therefore, the Fisher information has the minimal if we use normal distribution and

would be increased if we use any other g(εt) than normal. Consequently, any non-

Gaussian density in (III.4.9) would have a higher asymptotic power envelope than

normal. Since the asymptotic power envelope is attainable with
√

T -consistent

estimator of η, we may get a significant power gains by using (III.4.9) rather than

normal density whenever η 6= 2. Figure III.1 presents asymptotic power envelopes

for various value of the Fisher information in (III.4.9), where the bottom line

represents Gaussian case. It shows a large increase in power, which justifies the

use of a test with non-Gaussian error density.
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III.5 Asymptotically Optimal Tests in Semipara-

metric Models

The previous section investigates an optimal test under which finite num-

bers of nuisance parameters in the error distribution g are unknown, while it is

known that g is in a specific set G. This section extends the idea to a model in

which the error distribution g is entirely unknown. Rather than allowing for the

unknown error distribution to be fully nonparametric, I give a mild restriction

that the error distribution is parameterized by an infinite dimensional unknown

nuisance parameter. Consequently, the true density f(·) is only known to belong

to a class S which contains all parametric families.

The set S can be considered as the union of all parametric submodels Pη

in which the semiparametric power envelope can be defined to be the infimum of the

power envelope of all submodels. The previous section shows that every parametric

submodel has the same asymptotic power envelope, ΨS(Ω), that is equivalent to

that under known error distribution. It implies that the power envelope of the

semiparametric models would also be equivalent to ΨS(Ω). Unlike the previous

section, however, the
√

T -consistent estimator for the infinite dimensional nuisance

parameter is generally not available. Hence, the plug-in version of the efficient test

BPS(Ω; η̂) is inappropriate in this set-up.

This problem is similar to that of adaptive estimation, which is originally

proposed by Bickel (1982). The adaptive estimator is defined as the estimator

constructed without knowledge of g but is asymptotically as efficient as any well-

behaved estimator that relies on knowledge of g. This idea has been extended

to a standard testing problem to show that the definition and the method of

adaptive estimation can be directly employed in a standard testing problem; if a
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model satisfies the condition for the adaptive estimation and thereby the adaptive

estimator exists, we can construct asymptotically efficient test statistics.

This duality between estimation and test holds only when the model sat-

isfies LAN approximation. However, LAN is not available in out set-up, and there

is no parameter of interest to be estimated, so that the duality is not applicable.

It has not been considered whether the duality holds in a more general model

where LAN condition is not satisfied. Instead, Jansson (2006) suggests working

with a notion of adaptation that depends only on the model under consideration

and makes no reference to any other particular type of inference. Accordingly, we

get similar inference to that of the adaptation in this testing problem, by looking

back to the likelihood ratio in a parametric model in (III.3.5). The purpose is to

find a feasible test statistic B∗(Ω) which converges in probability to B(Ω) both

under the null and the alternative hypothesis. Based on (III.3.5), it implies that

there exist estimators { ˆ̀̇βt } and Ĵβ which satisfy

T∑
t=1

(βt − 1

T

T∑
i=1

βi)
ˆ̀̇β
t =

T∑
t=1

(βt − 1

T

T∑
i=1

βi) ˙̀β
t + op(1)

Ĵβ = Jβ + op(1) (III.5.1)

for all {βt} in Condition 6. The objective of this section is to show the exis-

tence of the estimators that satisfy (III.5.1), and to demonstrate that it provides

the existence of an efficient test function. A possible construction of the efficient

estimator is to use a kernel estimation method. Using data and the consistent esti-

mator of β0, compute the residuals ε̃1, . . . , ε̃T with ε̃t = ε(y1, . . . , yt, X1, . . . , XT , β̂)

for t = 1, . . . , T . A kernel density estimator is defined as for all e in a small

neighborhood of each value of ε̃t
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f̂T (e; ε̃1, . . . , ε̃T ) =
1

(T − 1)aT

∑

i6=t

k

(
e− ε̃i

aT

)
(III.5.2)

f̂
′
T (e; ε̃1, . . . , ε̃T ) =

1

(T − 1)a2
T

∑

i6=t

k′
(

e− ε̃i

aT

)
(III.5.3)

where aT is a bandwidth and the kernel k(·) is three times continuously differ-

entiable with derivative k(i) satisfying ‖k(i)(z)‖ < ck(z) with i = 1, 2, 3 for some

positive c, and
∫

z2k(z)dz < ∞. (See Schick (1993).) The score estimator is

defined as

ˆ̀̇β
t (ε̃t; ε̃1, . . . , ε̃T ) =

f̂ ′T (ε̃t; ε̃1, . . . , ε̃T )

bT + f̂T (ε̃t; ε̃1, . . . , ε̃T )
(III.5.4)

Ĵβ =
1

T

T∑
t=1

ˆ̀̇β
t (ε̃t)

ˆ̀̇β
t (ε̃t)

′ (III.5.5)

where {bT} is a sequence of constants such that (Ta3
T bT )−1 → 0. Note that { ˆ̀̇βt }

uses the entire sample data. Most existing research splits the sample period and

uses only the observations in one sample period to estimate { ˆ̀̇βt } of the other split

sample. They use the method not because of the elegancy, but because it yields

a relatively easy way to obtain the asymptotic result under minimized conditions.

From a practical point of view, however, it is desirable to use all sample data in

moderate sample sizes in order to avoid the size distortion problem, and thereby

to produce a better power. Schick (1987) suggests a general condition to use the

whole data. Koul and Schick (1997) use all data in adaptively estimating nonlinear

time series models under additional conditions on the boundeness of ṁ(·) and the

memory property of {XT}. The method in this section is generally similar to

them, and Conditions 6 and 7 are shown to be enough to satisfy their conditions,
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so that no additional condition is required in order to use the whole sample data

for adaptation. Let’s define the critical function ψT (Z|Ω) = 1[B∗>kα] where kα is

the continuous function satisfying E0[ψT (Z|Ω)] = α and B∗(Ω) as

B∗(Ω) =
k∑

i=1

ζ̂ ′i

[
a2

i

T 2
IT − FMeF

′
]−1

ζ̂i (III.5.6)

where ζ̂i = (ζ̂i,1, . . . , ζ̂i,T )′, ζ̂i,j =
∑j

t=1
ˆ̀̇β∗
t,i , and ˆ̀̇β∗

t,i is the ith element of ˆ̀̇∗β
t . Let

Ψ∗(Ω) be the asymptotic power function of B∗(Ω) i.e.

Ψ∗(ω) = limT→∞

∫ ∫
ψT (Z|Ω)f1(Z|η)dZdνδ

The following theorem shows that we can construct an asymptotically

efficient test based on (III.5.4) and (III.5.5), without further strict conditions.

Theorem 8 Under Condition 6 to 9, any asymptotically similar test φ(Z|Ω) as-

sociated with S satisfies

lim
T→∞

∫ ∫
φT (Z|Ω)f1(Z|η)dZdνδ ≤ Ψ∗(Ω) = Ψ(Ω)

where Ψ(Ω) is the asymptotic power envelope in a parametric model defined in

Theorem 5

Theorem 8 indicates that the asymptotic power function based on B∗(Ω)

provides the asymptotic power envelope in a semiparametric model, and B∗(Ω) is

adaptive in the sense that its asymptotic power function attains the asymptotic

power envelope when the error distribution is known. This property provides
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the main argument of this chapter: The knowledge of the error distribution is

asymptotically irrelevant for conducting an optimal test under mild conditions

suggested in this chapter. As sample size gets larger, there’s little loss of power

by not using the test based on the correctly specified error distribution. Note

that I do not restrict the set of error distribution to a symmetric case, while most

research including Jansson (2006) requires the symmetry. The proposed algorithm

to construct an asymptotically efficient test statistic is as follows.

Step 1) Estimate β0 under H0 denoted as β̂. Any method of the estimation such as

QMLE, M-estimation, and GLS is possible as long as β̂ is
√

T−consistent.

Calculate the residuals ε̃t = yt −m(Xt, β̂)

Step 2) Estimate the error density and its derivatives by using (III.5.3). Band-

width aT can be chosen by the optimal window width method. Calculate

the estimates of ˆ̀̇β
t and Ĵβ and thereby ˆ̀̇β∗

t = Ĵ
− 1

2
β

ˆ̀̇β
t :

ˆ̀̇β
t = ṁ(Xt, β̂0)

f̂
′
T (e, ε̃1, . . . , ε̃T )

bT + f̂T (e, ε̃1, . . . , ε̃T )
(III.5.7)

Ĵβ =
1

T

T∑
t=1

ṁ(Xt, β̂0)ṁ(Xt, β̂0)
′
(

f̂
′
T (e, ε̃1, . . . , ε̃T )

bT + f̂T (e, ε̃1, . . . , ε̃T )

)2

(III.5.8)

where bT can be chosen to be small, but large enough to eliminate the

technical difficulty caused by a too small denominator in (III.5.7). Denote

ith elements of { ˆ̀̇β∗t } by { ˆ̀̇β∗t,i}, i = 1, . . . , k.

Step 3) For each { ˆ̀̇β∗t,i}, generate a new variable, ŵt,i = rŵ∗
t−1,i + ∆ˆ̀̇β∗

t,i and ŵt,1 =

ˆ̀̇β∗
t,1.

Step 4) Regress {ŵt,i} on {rt
ai
} for each i to get the sum of squared residuals where

ra = 1− aT−1. Sum all of those over i = 1, . . . , k.
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Step 5) Multiply this sum by r, and subtract it from
∑k

i=1

∑T
t=1

ˆ̀̇β∗
t,i .

III.6 Comparative Simulation Study

This section examines the performance of the asymptotically efficient test

B∗(Ω) in finite samples through Monte Carlo experiments. I consider the simple

linear regression model as below.

yt = X ′
t(β0 + βt) + εt t = 1, . . . , T (III.6.1)

where yt is a scalar, Xt, β0 and βt are k × 1 vectors, {yt, Xt} are observed, β0,

βt are unknown, and {Xt} are assumed to be exogenous and satisfy Condition 7

with E[XtX
′
t] = ΣX . εt is iid from a unknown distribution but satisfies Conditions

7, and 10, that is the error distribution is independent of βt and differentiable in

quadratic mean. Therefore, (III.6.1) satisfies conditions in this chapter and B∗(Ω)

can be used as an asymptotically efficient test statistic.

β0 can be estimated simply by OLS which is
√

T -consistent in this set-up.

For the estimate of the density, I use standard Gaussian kernel estimation where

the bandwidth is chosen by an optimal window width method based on Gaussian

distribution. Reasonable changes of kernel, such as logistic and Epanechnikov do

not significantly alter the result. bT is chosen to be 0.001× a1/3.

I perform the Monte Carlo simulation to calculate the empirical sizes

and the powers of the test under various error distributions. Five different error

distributions are designed, which are listed below.
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A1) Standard Normal Distribution

A2) Symmetric Laplace Distribution

A3) Asymmetric Laplace Distribution with skewed parameter= 0.2

A4) Student t-distribution with ν = 4 degree of freedom

A5) Mixture of two standard Normal distributions with mean 2, and -2, respec-

tively

The small sample sizes and powers are compared with those of SupF test,

Andrews and Ploberger (1994)’s test (ExpLM), Nyblom (1989)’s test (Nyb), and

the test in Chapter 2 (B(Ω)) . SupF and ExpLM are designed for single structural

break processes. Nyb considers martingale processes which include a single break

with random occurrence and the random walk process. B(Ω) considers the same

breaking processes with this chapter, but assumes the error distribution is known.

B(Ω) is reduced to Elliott and Müller (2006)’s test if the error distribution is

normal. I set up these tests based on Gaussian error distribution, because it is

most widely applied. Therefore, these tests might have the best powers in A1 but

lose some powers under other distributions. Following Andrews et al. (1996) and

Bai and Perron (1998), I choose a 5% trimming for SupF test and 2% trimming for

ExpLM test. B∗(Ω) and B(Ω) are not feasible because Ω is generally unknown. I

choose a specific Ω as Ω∗ = 100× I followed by Chapter 2, and Elliott and Müller

(2006). Hence, the tests are point optimal and there might be some loss of power

when the true Ω is not Ω∗.

I consider the simple regression model with univariate Xt with a constant

term where {Xt} are generated from the AR(1) model with iid Gaussian error.

I consider 30 combinations of 3 different critical levels (1%, 5%, and 10%), 2
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sample sizes (100, and 200), and 5 error distributions to compute the empirical

sizes. In calculating small sample powers, four different types of breaking processes

are considered: single break, multiple breaks (2 and 4 times) and random walk

parameters. Five thousand replications are generated for each distribution and

sample size.

Table III.7 shows the experimental result of the empirical sizes. The small

sample sizes performance of B∗(Ω) is fairly good in distribution A1-A4. However,

it has size distortions when the error distribution is bimodal. For example, it

has a size of 10%, while the actual size is 5% when T = 100. The gap becomes

moderated as sample size gets larger, but still not negligible when T is increased

to 200. The degree of the size distortion depends on the choice of bandwidth,

aT . It has empirical sizes close to the actual ones if aT is chosen to be small so

that the estimated density is smooth not to clearly identify bimodality. However,

it costs a loss of small sample power. Therefore, the problem of the efficient

choice of bandwidth is still in question. Other tests have good size properties in

all distributions, except the Exp-LM test. The asymptotic efficient test function

B∗(Ω) has little gain in size performance in finite samples.

The selected results of the simulated small sample powers are shown in

figures III.2 to III.5. The powers of all six tests are close to each other when the

error distribution is unimodal and symmetric. Figure III.2 shows that B∗(Ω∗) has

similar powers to the others even when they correctly identify the error distribution

as Gaussian. It implies that B∗(Ω) is little outperformed by the existing tests

based on Gaussian distribution, even in the worst case. Figure III.3 shows that in

t-distribution, B∗(Ω) performs the best against multiple breaks and random walk

parameter. However, the power gaps between B∗(Ω) and others are small. Unlike

the large sample case (figure III.1), substantial power gains by using non-Gaussian

error distribution are not clear in this small sample instance. The result in the
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Laplace distributional case is similar to the t-distribution case, and I do not present

the results in this chapter. Since the distinctive feature of Gaussian, Laplace and

student-t distributions is thickness of tail, these results imply that the relative

finite sample powers are not very sensitive to tail behavior of error distribution.

Figure III.4 shows that B∗(Ω∗) performs the best when the error distribution is

skewed and the gaps become larger as the number of breaks increase. The gaps are

relatively bigger than previous distributions. This may imply that power property

depends more on the skewness rather than the tail behavior. The power gaps

become fairly consequential in bimodal error distribution, as shown in figure III.5.

B∗(Ω∗) has the powers 62%p greater than the best of the others, at its greatest

extent. In summary, there is considerable power improvement of the adaptive

test B∗(Ω∗). The degree of the improvement depends on the modality and the

skewness, rather than the tail behavior.

III.7 Conclusion

Parameter instability is of central importance in time series models. This

chapter has an advancement in that it suggests an asymptotically optimal test by

using little information about the underlying distribution and unstable parameter

process. Adaptation has shown to be possible in this nonstandard testing problem,

which makes the knowledge of the error distribution inappropriate. It implies that

an attempt to find a well-fitted error distribution is asymptotically useless under

mild conditions because one may not gain any asymptotic power. This asymptotic

irrelevancy is consequential because widely assumed normal density is generally

far from macroeconomics and financial data, and choosing another specific density

might be too discretionary. By avoiding the sample-split method, the test B∗(Ω)

also shows good power performance even in small samples.
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III.A Proofs

III.A.A Proof of Lemma 6

Differentiability in quadratic mean, (III.3.4), implies that ξ1
t is expanded

by

ξ1
t = ξ0

t +
1

T
δ∗
′

t ξ̇0
t + rt (III.A.1)

where δ∗t = δt− 1
T

∑T
i=1 δi, E[( rt

ξ0
t
)2] = op(‖(dt/T )‖2). By using (III.A.1), the square

root of the integrand of the LR statistics in (III.3.3) can be written as,

√
LT =

T∏
t=1

(
ξ1
t

ξ0
t

)
(III.A.2)

=
T∏

t=1

(
ξ1
t − ξ0

t

ξ0
t

+ 1

)

=
T∏

t=1

(
1

T
δ∗
′

t

ξ̇0
t

ξ0
t

+
rt

ξ0
t

+ 1

)

=
T∏

t=1

(1 + ηt)

where ηt = 1
T
δ∗
′

t
ξ̇0
t

ξ0
t

+ Rt and Rt = rt

ξ0
t
. Therefore LT can be rewritten as,

Lt = exp

[
T∑

t=1

log(1 + ηt)

]

Note that
∑T

t=1 log(1 + ηt) =
∑T

t=1 ηt − 1
2

∑T
t=1 η2

t + op(1), if maxt |ηt| =
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op(1) and
∑T

t=1 η2
t = Op(1). Hence Lemma 1 is proved by showing

1.
∑T

t=1 ηt = 1
2T

∑T
t=1 δ∗

′
t l̇βt − 1

8T 2

∑T
t=1 δ∗

′
t Jβδ∗t + op(1)

2.
∑T

t=1 η2
t = 1

4T 2

∑T
t=1 δ∗

′
t Jβδ∗t + op(1)

3. maxt |ηt| = op(1)

These conditions are the same as those in the proof of Lemma 1 in Chap-

ter 2 except that each ηt is now the function of whole alternative parameters

(δ′1, . . . , δ
′
T )′. Since δt is independent of ˙̀β

t under the null hypothesis, condition (1)

to (3) can be proved through the same way as in Chapter 2. ♦

III.A.B Proof of Theorem 5, Lemma 7

The proof of Theorem 1) and Lemma 7 is not much different from the

proofs of Theorem 1) and 2) in Chapter 2. I skip the proof. ♦

III.A.C Proof of Lemma 8

Let θt = (δ′t,
√

Tη)′, ˙̀θ
t = ( ˙̀β′

t , ˙̀η
t )
′ and J =


 Jβ Jβη

J ′βη Jη


 where Jβη =

E[ ˙̀βt ˙̀η
t ]. By Lemma 1) of Chapter 2. The integrand, LS

T can be written as

LS
T = (1 + op(1))exp

[
1

T

T∑
t=1

θ′t ˙̀θ
t −

1

2T 2

T∑
t=1

θ′tJθt

]
(III.A.3)

The second order term in the exponential of (III.A.3) is rewritten as
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1

2T 2

T∑
t=1

θ′tJθt =
1

2T 2

T∑
t=1

δ′tJβδt +
1

2T

T∑
t=1

η′Jβη +
1

2T
3
2

T∑
t=1

η′Jβη′βt

Since
∑T

t=1 δt = 0 by Condition 6 (iv), the last term is a zero vector.

Consequently replacing δt by δt −
∑T

i=1 δi completes the proof. ♦

III.A.D Proof of Theorem 7

Since the test function φT is bounded in probability, Prohorov’s Theorem

implies that for every subsequence φT ′ , there exists a further subsequence with

φT ′′ →d φ as T
′′ → ∞ under H0. Theorem 6.6 of Vaart (1998) gives the asymp-

totic distribution of φT ′′ under H1 as L = I{φ}exp[ΛS]. Accordingly the following

convergence holds

lim
T
′′→∞

E [φT ′′(ZT )] −→d E
[
φ(Sβ,Wη)exp[ΛS]

]
(III.A.4)

(III.A.4) enables us to use the limits of experiments to obtain the asymp-

totic power envelope for the testing problem. Let’s define the two power functions

in the limit experiments as follows

Ψ(Ω) = E
[
1{Λ>kα} exp[Λ]

]

ΨS(Ω, h) = E
[
1{Λ>kα} exp[ΛS]

]
(III.A.5)

Ψ(Ω) gives the asymptotic power envelope in parametric models by the-

orem 1, ΨS. By construction ΨS(Ω, h) ≤ Ψ(Ω). Therefore it is enough to show



120

that

ΨS(Ω, h) = Ψ(Ω) for all Ω, h

ΨS(Ω, h) = E
[
1{Λ>kα} exp[ΛS]

]

= E

[
1{Λ>kα} exp[Λ] exp

[
hWη − h2

2
Jη

]]

= E

[
1{Λ>kα} exp[Λ]E

[
exp

[
hWη − h2

2
Jη

]
|Sβ

]]

where Sβ = (
∫

W ′
βdWε−

∫
W ′

βWε(1),
∫

W ′
βWβ−(

∫
Wβ)′(

∫
Wβ)), Wβ is a Brownian

motion independent of Wη and Wε, and Wε is a Brownian motion of which the

covariance with Wη is Jβη. Note that Wη has zero covariance with
∫

W ′
βdWε −

∫
W ′

βWε(1) so that Wη is independent of Sβ and normal with zero mean and

variance Jη. Consequently,

E

[
exp

[
hWη − h2

2
Jη

]
|Sβ

]

=

∫
exp

[
hWη − h2

2
Jη

]
exp

[
−1

2
W ′

ηJ
−1
η Wη

]
dWη

=

∫
exp

[
−1

2
(Wη − hJη)

′J−1
η (Wη − hJη)

]
dWη = 1 (III.A.6)

Consequently, we get

ΨS(Ω, h) = E
[
1{Λ>kα} exp[Λ]

]
= Ψ(Ω) (III.A.7)

which completes the proof. ¦
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III.A.E Proof of Lemma 9

Let’s rewrite η̂ as η̂ = η0 + T− 1
2 WT + T− 1

2 op(1)

where WT is a k×1 random variable with P [|WT | > M ] → 0 for arbitrarily

large M. By using Condition 4) and continuous mapping theorem, we could get

T− 1
2

[sT ]∑
t=1

Ĵ
− 1

2
1

˙̀β
t (η̂) = T−1/2

[sT ]∑
t=1

Ĵβ− 1
2 ˙̀β

t (η0 + T−1/2WT ) + op(1)

= T−1/2

[sT ]∑
t=1

Ĵβ− 1
2 ˙̀β

t (η0)− sK(η0)WT + op(1)

(III.A.8)

Since WT (1) is constant for all t ≤ T , it can be easily proved by show-

ing that the test statistic BPS(η0, Ω) doesn’t change for the transformation from

{ ˙̀β
i (η0)} to { ˙̀β

i (η0) + c} where c is the T × 1 vector of constants. Note that

Me
˙̀β∗
i (η0) = Me

[
˙̀β∗
i (η0) + c

]
. Lemma 5 of Chapter 2 shows that Me −Gai

=

Me[Me + K−1
ai ]−1Me where Kai = a2

i

(
FF ′
T 2

)−1
. Under H0,

BPS(β0, Ω) =
k∑

i=1

˙̀β∗′
i (η0){Me −Gai

} ˙̀β∗
i (η0)

=
k∑

i=1

˙̀β∗′
i (η0)Me[Me + K−1

ai ]−1Me
˙̀β∗
i (η0)

=
k∑

i=1

[
˙̀β∗′
i (η0) + c

]
Me[Me + K−1

ai ]−1Me

[
˙̀β∗
i (η0) + c

]

=
k∑

i=1

˙̀β∗′
i (η̂0){Me −Gai

} ˙̀β∗
i (η̂0) + op(1)

= BPS(η̂, Ω) + op(1) (III.A.9)
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which shows the asymptotic equivalency under the null hypothesis. The asymp-

totic equivalency under the alternative hypothesis can be proved if the alternative

distribution is contiguous to the null distribution which means

E[exp(ΛS(Ω))] = 1.

E
[
exp[ΛS]

]
= E

[
exp[Λ] exp

[
hWη − h2

2
Jη

]]

= E

[
exp[Λ]E

[
exp

[
hWη − h2

2
Jη

]
|Sβ

]]

= E [exp[Λ] · 1] = 1 (III.A.10)

The third equality comes from (III.A.6) and the last equality is by The-

orem 1), which completes the proof. ¦

III.A.F proof of Theorem 8

Let’s define the two test statistics.

L̃RT =
∫

exp
[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
dνδ ' B(Ω) (III.A.11)

L̂RT =
∫

exp
[
ˆ̀̇β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Ĵβ)β

]
dνδ ' B∗(Ω) (III.A.12)

Theorem 8 is proven by showing that P [|LRT − L̃RT | > ε] → 0 under

both the null and the alternative hypothesis. Since LRT is contiguous as shown

in the proof of Theorem 1, it suffices to show it only under the null hypothesis.

Throughout the proof, I assume that β0 is known. The asymptotic invariancy of

replacing β0 by β̂ has already been shown in Lemma 7. For 0 < M < ∞, define
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L̃RT (M) =

∫
exp

[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
1{‖δ‖ <

√
TM}dνδ

(III.A.13)

L̂RT =

∫
exp

[
ˆ̀̇β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
1{‖δ‖ <

√
TM}dνδ

(III.A.14)

Note that for any ε > 0, the following is satisfied

P [|L̃RT − L̂RT | > 3ε] ≤ P [|L̃RT − L̃RT (M)| > ε] (i)

+ P [|L̂RT − L̂RT (M)| > ε] (ii)

+ P [|L̃RT (M)− L̂RT (M)| > ε] (iii)(III.A.15)

Therefore, it suffices to show that each term of (III.A.15) converges to

zero, respectively.

Proof of (i):

∣∣∣L̃RT − L̃RT (M)
∣∣∣ =

∫
L̃T dνβ −

∫

‖√Tβ‖<M

L̃T dνδ

= c · exp

[
1

2
˙̀β′{Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ Λ−1}−1 ˙̀β′

]

×
∫

(2π)−
k(T−1)

2

∣∣(Me ⊗ Jβ) + K−1
∣∣ 1

2

× exp

[
−1

2

(
β − {(Me ⊗ Jβ) + K−1}(Me ⊗ Ik) ˙̀β

)′]

[
× {(Me ⊗ Jβ) + K−1}

(
β − {(Me ⊗ Jβ) + K−1}(Me ⊗ Ik) ˙̀β

)]
dνβ

= c · exp

[
1

2
B(β0, Jβ, Ω)

] ∫

‖√Tβ‖>M

dνβ (III.A.16)
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The first term on the last equation is Op(1) by (III.3.9), and the second

term can be made arbitrarily small by taking M large by Condition 1). In conse-

quence, P [|L̃RT − L̃RT (M)| > ε] can be made arbitrarily small for all T large by

taking M sufficiently large.

Proof of (ii):

∣∣∣L̂RT − L̂RT (M)
∣∣∣ =

∫
L̂T dνβ −

∫

‖√Tβ‖<M

L̂T dνβ

= (1 + op(1))c · exp

[
1

2
ˆ̀̇∗′{Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ Λ−1}−1 ˆ̀̇∗′

]

×
∫

(2π)−
k(T−1)

2

∣∣(Me ⊗ Jβ) + K−1
∣∣ 1

2

× exp[−1

2

(
β − {(Me ⊗ Jβ) + K−1}(Me ⊗ Ik)

ˆ̀̇
)′

× {(Me ⊗ Jβ) + K−1}
(
β − {(Me ⊗ Jβ) + K−1}(Me ⊗ Ik)

ˆ̀̇
)
]dνβ

= c · exp

[
1

2
B(β̂0, Ĵβ, Ω)

] ∫

‖√Tβ‖>M

dνβ (III.A.17)

The first term on the last equation is Op(1) by (III.4.5), and the second

term can be made arbitrarily small by taking M large by Condition 1). In conse-

quence, P [|L̂RT − L̂RT (M)| > ε] can be made arbitrarily small for all T large by

taking M sufficiently large.

Proof of (iii): Let’s define
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L̃T (M) = exp

[
˙̀β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
· 1{‖

√
Tβ‖ ≤ M}

= L̃T (β) · 1{‖
√

Tβ‖ ≤ M}
L̂T (M) = exp

[
ˆ̀̇β′(Me ⊗ Ik)β − 1

2
β′(Me ⊗ Jβ)β

]
· 1{‖

√
Tβ‖ ≤ M}

= L̂T (β) · 1{‖
√

Tβ‖ ≤ M}

We need to show that

ln(L̃T ) = ln(L̂T ) + op(1) (III.A.18)

so that

L̃RT (M) =

∫
L̃T (M)dνβ =

∫
(1+op(1)L̂T (M)dνβ = L̂RT (M)+op(1) (III.A.19)

For the notational convenience, The proof is done based on univariate βt,

The extension to the vector case is straightforward. Let β∗t = βt1{|
√

Tβt| ≤ M}.
Then (III.A.18) is proved by showing that

T∑
t=1

(β∗t −
1

T

T∑
i=1

β∗i )
′ṁ(Xt)

ˆ̀̇g(εt) =
T∑

t=1

(β∗t −
1

T

T∑
i=1

β∗i )
′ṁ(Xt) ˙̀g(εt) + op(1)

(III.A.20)

Ĵβ = Jβ + op(1) (III.A.21)

where ˙̀g(εt) is the 1st derivative of ln g(εt). To simplify the proof, I replace ṁ(Xt)

by ṁ(Xt)
∗ = ṁ(Xt)1{|ṁ(Xt)| ≤ Mm}. It can be easily shown that the replacement
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does not affect the result by using exactly the same way as the proof of (i) and

(ii). The proof of Lemma 4.3 of Schick (1987) implies that if
√

T
∫ ˆ̀̇g(ε)dε 9 0,

1√
T

T∑
t=1

(
ˆ̀̇g(εt)− ˙̀g(εt)

)
=
√

T

∫
ˆ̀̇g(ε)g(ε)dε + op(1) (III.A.22)

(III.A.22) implies that (III.A.20) can be obtained if we have the following

T∑
t=1

β∗t ṁ
∗(Xt)

(
ˆ̀̇g(εt)− ¯̀̇g(εt)

)
= T β̄∗ ¯̇m∗

∫ (
ˆ̀̇g(ε)− ¯̀̇g(ε)

)
g(ε)dε + op(M)

(III.A.23)

where β̄∗ and ¯̇m∗ are the their sample mean. I first show that

1√
T

T∑
t=1

ṁ∗(Xt)
(

ˆ̀̇g(εt)− ˙̀g(εt)
)

=
√

T ¯̇m∗(Xt)

∫
ˆ̀̇g(ε)g(ε)dε + op(1) (III.A.24)

Theorem 6.2 of Koul and Schick (1997) implies that (III.A.24) holds if

for some sequence < τT > of positive integers tending to infinity, the following is

satisfied (See pp.269-271)

1

T

∑

1≤l,t≤T

∑

|t−l|>τt

E
(|ṁ∗(Xt)− E[ṁ∗(Xt)|ε1, . . . , εl−1, εl+1, . . . , εT ]|2) = op(1)

(III.A.25)

Note that E [ṁ∗(Xt)|ε1, . . . , εl−1, εl+1, . . . , εT ] = E[ṁ∗(Xt)|ε1, . . . , εl−1] if

l > t because of Condition 2). Consequently we have only to show that
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1

T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(|ṁ∗(Xt)− E[ṁ∗(Xt)|ε1, . . . , εl]|2

)
= op(1) (III.A.26)

for all l < t. Let’s set τt = T 1/2−α where 0 < α < 1/2. Then,

1

T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(|ṁ∗(Xt)− E[ṁ∗(Xt)|ε1, . . . , εl]|2

)
(III.A.27)

=
1

T

∑

1≤t,l≤T

∑

|t−l|>τt

E (|(ṁ∗(Xt)− E[ṁ∗(Xt)]) +|)
(|(E[ṁ∗(Xt)]− E[ṁ∗(Xt)|ε1, . . . , εl])| 2

)

≤ 1

T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(|ṁ∗(Xt)− E[ṁ∗(Xt)]|2 +

)

E
(|E[ṁ∗(Xt)]− E[ṁ∗(Xt)|ε1, . . . , εl]|2

)

The first term converges is Op(T
−2α) because

1
T

∑
1≤t,l≤T

∑
|t−l|>τt

E
(|ṁ∗(Xt)− E[ṁ∗(Xt)]|2

)
< T−2αM2

x = Op(T
−2α). Ibragi-

mov theorem implies that the second therm is also is Op(T
−2α) because,

1

T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(|E[ṁ∗(Xt)]− E[ṁ∗(Xt)|ε1, . . . , εl|2

)

≤ 1

T

T∑

t=[T 1/2−α]+1

(t− [T
1
2
−α])E[36 · |ṁ∗(Xt)|2]

≤ T−2αMx = Op(T
−2α)

where [x] is the the largest interger less than x. I satisfies (III.A.26). Prov-

ing (III.A.23) based on (III.A.24) is equivalent to proving (III.A.24) based on
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(III.A.22). Therefore we have only to show that
√

Tβ∗t satisfies (III.A.25). Note

that β∗t is independent of {εt} and by Condition 1) E [β∗t |ε1, . . . , εl−1, εl+1, . . . , εT ]

for all l. Consequently,

1

T

∑

1≤l,t≤T

∑

|t−l|>τt

E

(∥∥∥
√

Tβ∗t − E[
√

Tβ∗t |ε1, . . . , εl−1, εl+1, . . . , εT ]
∥∥∥

2
)

=
1

T

∑

1≤l,t≤T

∑

|t−l|>τt

E

(∥∥∥
√

Tβ∗t
∥∥∥

2
)

(III.A.28)

≤ 1

T

∑

1≤t,l≤T

∑

|t−l|>τt

M = Op(T
−2α)

which satisfies (III.A.26). Convergence of Ĵβ is proved by Schick (1987) which

completes the proof. ¦
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Table III.1: Monte Carlo Estimates of the Empirical Sizes (Linear Equation)

(a) Standard Normal Distribution

T = 100 T = 200
Size B∗ B Nyb Sup AP B∗ B Nyb Sup AP

10% 8.88 9.20 8.84 8.70 14.40 10.58 10.16 10.20 9.60 12.20
5% 4.16 4.84 4.28 4.80 8.02 5.12 4.86 4.90 5.12 7.66
1% 0.76 0.92 0.46 1.46 3.02 0.82 1.04 1.00 1.46 2.38

(b) Symmetric Laplace Distribution

T = 100 T = 200
Size B∗ B Nyb Sup AP B∗ B Nyb Sup AP

10% 9.68 8.88 9.18 8.36 14.52 10.26 10.04 10.08 10.04 13.86
5% 4.70 4.28 3.94 4.98 9.14 5.42 5.08 4.66 5.36 8.28
1% 0.78 0.74 0.74 1.76 4.00 1.26 1.14 0.96 1.76 3.20

(c) Asymmetric Laplace Distribution

T = 100 T = 200
Size B∗ B Nyb Sup AP B∗ B Nyb Sup AP

10% 11.30 8.96 9.16 10.24 15.62 11.80 9.38 9.66 9.94 13.30
5% 6.12 4.64 4.52 6.06 10.46 6.42 4.96 4.72 5.80 8.02
1% 1..48 0.78 0.82 2.42 5.22 1.46 1.20 0.80 1.96 3.42

(d) Student t(4) Distribution

T = 100 T = 200
Size B∗ B Nyb Sup AP B∗ B Nyb Sup AP

10% 9.86 8.50 9.15 9.84 16.58 9.86 9.38 9.68 9.98 13.76
5% 5.54 3.96 4.12 5.64 10.50 4.64 4.72 4.18 5.20 8.02
1% 1.20 0.76 0.66 2.02 4.66 1.00 1.06 0.84 1.94 3.42

(e) Bimodal Distribution

T = 100 T = 200
Size B∗ B Nyb Sup AP B∗ B Nyb Sup AP

10% 10.71 9.49 9.25 8.77 12.94 10.74 10.03 10.18 9.96 12.05
5% 5.35 4.80 4.49 4.68 7.57 5.78 5.35 5.19 5.39 6.82
1% 1.24 0.97 0.87 1.50 2.55 1.39 1.22 0.87 1.53 2.20

note) Sup: Sup-F test, AP: Exp-LM test
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Figure III.1: Asymptotic Power Envelopes for Various Fisher Information

note) Powers are plotted from 10,000 draws using 1,000 standard normal steps to ap-

proximate Wiener Processes.
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Figure III.2: Small Sample Powers, Linear Regression Model with Gaussian Error,

T=100
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Figure III.3: Small Sample Powers, Linear Regression Model with Student t(4)

Error, T=100
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Figure III.4: Small Sample Powers, Linear Regression Model with Asymmetric

Laplace Error, T=100
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T=200



Chapter IV

Testing Parameter Stability in

Quantile Models: An Application

to U.S. Inflation Process

This chapter considers testing parameter instability in conditional quan-

tile models. The asymptotically optimal parameter instability tests obtained in

Chapter 2 and 3 are applied to quantile models both in parametric and semipara-

metric set-up. In parametric models, Komunjer (2005)’s tick-exponential family of

distributions is used as the underlying distribution. The suggested parametric test

is still valid even when the error distribution is misspecified. I apply our test statis-

tic to a various quantile model of the U.S. inflation process such as Phillips curve,

P-star model, and autoregressive models. The test result shows an evidence of pa-

rameter instability in most quantile levels of all models. The semiparametric test

rejects the stability even in more recent period with moderate economic volatility.

Phillips curve model and autoregressive model have asymmetric test results across

quantile levels, implying the asymmetric response of inflation to economic shocks.

135
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IV.1 Introduction

The majority of economic empirical work has focused on conditional mean

models. In this type of model, the relationship between X and y is described by

how the mean of y changes with X solely. The crucial and convenient assumption

for this is that X affects only the mean of the conditional distribution of y. In

general, however, covariates X may influence the conditional distribution of the

response in many other ways, such as expanding its dispersion as in traditional

models of heteroscedasticity, stretching one tail of the distribution, and even in-

ducing multimodality. Explicit investigation of these effects via quantile estimation

can provide a more nuanced view of the relationship, and therefore a more infor-

mative empirical analysis. In this sense, increasing attention has been devoted to

quantile relationships.

Another reason to pay much attention to the quantile estimation method

is that the conditional mean model is insufficient to make inferences about the risks

of the variable of interest. The measurement and management of risk has been

an important issue in finance and macroeconomics. There is no doubt that the

quantification of the tradeoff between risk and expected return is one of the main

problems in finance, which makes the estimation of risk of central importance. In

addition, in many of the central banks, density forecasts of inflation are preferred

to point forecasts in the sense that the former contains the uncertainty structure of

the forecast. Conditional quantiles have more information than just the conditional

mean in that they contain other information about the uncertainty structure of the

variable of interest such as skewness, kurtosis and any other factors that determine

the shape of the distribution. Therefore, quantile estimation provides a better way

to measure risks.
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In estimating and forecasting quantiles, it is crucial to investigate whether

the model of interest is stable over time. Many economic factors may cause a model

to become unstable. Technology shocks, changes in economic policy, and changes

in economic regimes such as a shift from a closed economy to an open one are

such examples. As long as the instability is not too strong, standard estimation

methods are still acceptable. However, in instances of strong instability, such as

the nonstationary time varying parameter case, inference using standard methods

will be misleading.

This chapter applies the optimal parameter instability tests suggested in

Chapter 2 and 3 to linear conditional quantile models. Application of semipara-

metric optimal test is straightforward in that quantile models can be associated

with conditions in Chapter 3. Using parametric optimal tests requires likelihood

based models. I use Komunjer (2005)’s tick-exponential family of distributions as

the underlying distribution in which the location parameter represents the quantile

level. It also provides the quasi maximum likelihood estimate in the sense that

the maximum likelihood estimator is still consistent to the true quantile parameter

even though the error distribution is misspecified. The quasi maximum likelihood

estimation property of tick-exponential distribution allows the test function to have

asymptotically correct size property even though the underlying distribution is not

tick-exponential.

The test is used to investigate the quantile parameter stability in the

U.S. inflation model. Phillips curve, P-star model, and autoregressive models are

considered for the testing purpose. The tests result shows an evidence of param-

eter instability in most quantile levels of all models. Semiparametric test rejects

stability even after 1990’s. In Phillips curve and autoregressive model, different

quantile levels delivers different test results. Considering that the instability is

mainly caused by various economic shocks, the non-identical test result implies
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that the inflation process has asymmetric response to the economic shocks.

IV.2 Notation and Preliminaries

This section considers the basic concept of conditional quantile models

and examines the distinction between quantile parameters and mean parameters.

Since both parameters have similar role in the inference of the relationship between

X and y (how much of the variation of y is explained by that of X ), one may

argue that test for the constancy of mean parameters is identical to that of quantile

parameters. By comparing these two parameters, however, this section shows that

the argument is misleading.

Consider a stochastic process (Y,X) ≡ Z ≡ {Wt : Ω → Rk+1, k ∈
N, t = 1, ..., T} defined on a complete probability space (Ω,F, P ) where F =

{Ft, t = 1, ..., T} and Ft denotes the smallest σ-algebra that Xt is adapted to,

i.e. Ft ≡ σ(X1, ..., Xt). Define F0,t (y) as the conditional distribution of Yt, i.e.

F0,t (y) ≡ P (Yt ≤ y | Ft). Consider the model,

yt = X ′
tβt + X ′

tγtεt (IV.2.1)

where yt is a scalar, Xt is a k× 1 vector, βt and γt are k× 1 vectors of parameters.

εt is an error term independent of Xt from a distribution with quantile function

Qα(ε). Note that βt and γt may not be constant. βt is called the mean parameter

and X ′
tγt represents the heteroscedasticity of the error term. The assumption that

the conditional variances are linear to X might be too restrictive. But this linear

scale model of heteroscedasticity is an important special case of the general class

of models with linear conditional quantile functions. It subsumes many models of



139

systematic heteroscedasticity which have appeared in the econometrics literature:

Goldfeld and Quandt (1965)’s model( σ(x) = σxk) is a special case when γt = σe,

and Harvey (1976) and Godfrey (1978)’s multiplicative heteroscedasticity model

can be considered as a case when σ(x) = xγ + o(||γ||).

We are interested in the αth quantile of the distribution of Yt conditional

on the information Ft. Denoting this as Qα, it is defined as

Qα(yt | Ft) ≡ inf
v∈R

{v : F0,t(v) > α}
or if F0,t is continuous, Qα(yt | Ft) ≡ F−1

0,t (α) (IV.2.2)

In words, conditional quantile Qα(yt) is the value that the probability

of yt being less than this value is α. The conditional quantile of yt in the model

(IV.2.1) is then simply,

Qα(yt | Ft) ≡ X ′
tβt + X ′

tγt ·Qα(εt) (IV.2.3)

From equation (IV.2.3), the αth conditional quantile of yt can be ex-

pressed as a linear function of Xt,

Qα(yt | Ft) ≡ X ′
t[βt + γtQα(εt)] = X ′

tβα,t (IV.2.4)

where βα,t = βt+γtQα(εt). Hence, the quantile parameters are determined not only

by the mean parameters β, but also by the scale parameters γ and other factors

that may affect the shape of the conditional distribution Qα such as skewness and

kurtosis. This property depends on whether the error term is heteroscedastic or
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not. Under homoscedasticity, all elements of γt are zero except that of the constant

term. If this is the case, equation (IV.2.3) reduces to X ′
tβ + Qα(εt) , which implies

βα,t = βt + (Qα(εt), 0, ..., 0)′ (IV.2.5)

Hence, βα is equivalent to the parameters of the conditional mean except

for the constant term. As noted in the introduction, however, the heteroscedas-

ticity is general in the model of econometrics. For example, in the analysis of a

household budget, residuals from the regression model exhibit variance increasing

with household income. In finance, GARCH is a widely used method in modeling

the financial relationship, in which σt(Xt)
2 is defined as α0 + α1y

2
t−1.

In this regard, mean parameter constancy does not provide enough infor-

mation about quantile parameter constancy. Even if mean parameters are constant

(βt = β̄), quantile parameters may vary over time due to either scale parameter

(γt) or other factors( Qα). Consequently, in testing the hypothesis for the param-

eters of quantile such as tests for structural breaks, treating quantile parameter as

having the same testing information as mean parameters may be misleading.

IV.3 Testing Parameter Stability in Quantile

Models

This section describes methods to perform tests for quantile parameter

instability. I use both test statistic considered in Chapter 2 and Chapter 3; one is

based on parametric likelihood function (B) and the other is based on the semi-

parametric setup (B∗). The suggested test function is
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B(Ω̂) =
k∑

i=1

ζ ′i(β̂, Ĵ1)
′
[

a2
i

T 2
IT − FMeF

′
]−1

ζi(β̂, Ĵ1) (IV.3.1)

where ζi be the vector of the partial sum of the first derivative of the log likeli-

hood function. Me = IT − 1
T
ee′ , F =




1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 . . . . . . 1




, and β̂ and Ĵ1 are the

maximum likelihood estimators under H0. In parametric circumstances, ζi can be

calculated from the underlying density. In semiparametric set-up, it is calculated

from the nonparametric estimation such as kernel estimation. Application of Semi-

parametric Test is straightforward because the conditions for the semiparametric

optimal tests considered in Chapter 3 are possible to be associated with quan-

tile models. Under iid assumption quantile restriction on the error term simply

replaces the zero mean moment condition to identify the model. Since I do not

impose any other restrictions on the error term such as the symmetry around zero,

the semiparametric setup in Chapter 3 can be directly applied to quantile models.

In parametric test, a likelihood based model is required to obtain the test

function. The most researches on quantile models have focused on non-likelihood

based estimation which makes the use of the existing LR, LM and Wald type

test statistics difficult. The majority of the works have used a quantile regression

framework; Koenker and Bassett (1978, 1982), Powell (1986), Koenker and Zhao

(1996) are the examples. Recently, Komunjer (2005) gives a way to use LR type

test by suggesting a class of likelihood functions in which there exist a quantile

parameter and the maximum likelihood estimator of it is QMLE, i.e. the estimator

is consistent to the true quantile parameter even though the error distribution is

misspecified. The class of likelihood function, called tick-exponential family, has

the form
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ϕα
t = exp

[−(1− α){at(Xtβ)− bt(y)}1{y<Xtβ} + α{at(Xtβ)− ct(y)}1{y≥Xtβ}
]

(IV.3.2)

where at(·) is continuously differentiable and at(·), bt(·), ct(·) are functions such

that (i) ϕα
t is a probability density, i.e.

∫
R ϕα

t dy = 1; (ii) Xtβ is the α-conditional

quantile of ϕα
t . For a given value of probability α the density function ϕα

t in (IV.3.2)

is exponential by parts where the two parts have different slopes, proportional to

1 − α and α, respectively. The special case is an asymmetric type of a Laplace

distribution by defining at(Xtβ) = [1/(α(1−α))]Xtβ and bt(y) = ct(y) = [1/(α(1−
α))]y, which is defined as,

ϕα
t = exp[

1

α
(yt −Xtβ)1{y<Xtβ} −

1

1− α
(yt −Xtβ)1{y≥Xtβ}] (IV.3.3)

The distribution (IV.3.3) is proportional to an asymmetric slope function

and is reduced to the Laplace distribution when α is 0.5. This type of likelihood

function, as proposed by Komunjer (2005), is advantageous for analyzing condi-

tional quantile models. First, parameters in (IV.3.2) represent conditional quantile

parameters. In distributions with parameters as functions of mean, variance, and

other moments (such as the normal and t-distribution), we need to re-parameterize

in order to present them as a function of quantile parameters. As shown before,

this re-parametrization makes the quantile parameter a function of the shape of

the distribution. This hinders the use of the condition that the distribution is

stable across breaks. However, since the parameters of the likelihood in (IV.3.2)

represent the conditional quantile, the shape of the distribution may stay stable

over different variations of parameter β. As a result, we can easily construct the

likelihood ratio test statistic.
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Another merit of this function is that maximum likelihood estimators

based on this likelihood are consistent even if the likelihood function is misspec-

ified. Komunjer (2005) shows that the QMLE is consistent if any form of the

tick-exponential type likelihood function is used for MLE. Koenker and Bassett

(1978)’s quantile regression method is regarded as MLE when the likelihood func-

tion is a Laplace form of (IV.3.2). This property implies that, as pointed out by

White (1982), even though the test statistic is not optimal due to the misspecifica-

tion, the test statistic is still reasonable if we correct some problems. Later in this

section, we will show that using (IV.3.3) makes B(Ω̂) valid even though the true

distribution is not. Although (IV.3.2) is not differentiable at points where either

yt = X ′
tβ̄ or yt = X ′

tβ̄ + X ′
tβt, it is easy to show that (IV.3.2) is quadratic mean

differentiable so that Lemma 2 in Chapter 2 is applicable in this case. This chapter

considers Laplace type case of (IV.3.3) as the underlying distribution because its

MLE is equivalent to the widely known Koenker and Bassett (1978)’s Quantile

Regression Estimator and it is easy to compute the test statistic B(Ω̂). Any other

type of (IV.3.3) would be a simple expansion of the Laplace type case. Now the

Hellinger derivative and the fisher information of the Laplace type case can be

written as,

˙̀
t =

1

1− α
Xt − 1

α(1− α)
Xt1{yt<Xtβα}

J =

[
1

(1− α)2
+

1− 2α

α(1− α)2

]
E[XtX

′
t] (IV.3.4)

The maximum likelihood estimation of βα is estimated by solving a linear

programming problem such as

min
z

c′z subject to: Az = y, z ≥ 0 (IV.3.5)
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where A = (X,−X, IT ,−IT ), y = (y1, ..., yT )′, z = (β+′, β−′, u+′, u−′)′, c = (0′, 0′, θ ·
e′, (1 − θ) · e′)′, X = (X1, ..., XT ), and e is an T×1 vector of ones. subscript +

and - are defined as for any a, a+ = max[a, 0] and a− = −min[a, 0]. Buchinsky

(1997a) and Koenker and Park (1996) suggest its solution methods and show the

uniqueness of the solution. traditionally there are two methods to solve the linear

programming problem. One is to travel from vertex to vertex along the edges of

the polyhedral constraint set, choosing at each vertex the path of steepest descent,

until we arrive at the optimum. The other is to take Newton steps from the

interior of a deformed version of the constraint set toward boundary. Recently,

Buchinsky (1997b) suggests GMM estimation by letting the first order conditions

of minimization problem (IV.3.5) be the moment conditions. In order for the

likelihood to be applied to the test statistics B(Ω̂), it should satisfies the conditions

described in the previous section. The following Lemma shows that it suffices

Lemma 10 Suppose a quantile model satisfies Condition 2 in chapter 2 in which

the error distribution is a tick-exponential in (IV.3.3). Then the maximum likeli-

hood estimator using the methods described in the above satisfies Condition 4 where

K(β̄) = 1
α(1−α)

1
T

∑T
t=1 E [XtX

′
tϕ

0
t (y,Xt)].

Therefore the test statistic, B(Ω̂), using the score and the Fisher infor-

mation in (IV.3.4) has the asymptotic distribution given in (III.3.9). The test

statistic is point-optimal when the true distribution is (IV.3.3). However, it might

be argued that the distributional assumption is too strict to be used to macroeco-

nomic or financial applications. As Komunjer (2005) noted, (IV.3.3) is proposed

to be used as a QMLE. Therefore the test statistic is required to be valid even in

misspecified cases. As noted above, MLE of (IV.3.3) has a nice property that the

estimators are consistent even when the true distribution is not. This property

makes it easy to show that 1
T

∑[sT ]
t=i J−1/2 ˙̀

t in (IV.3.4) is still converging to Brown-
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ian bridge. The following lemma shows the test function based on the asymptotic

laplace distribution is asymptotically valid.

Lemma 11 Let BL(Ω̂) be the test statistic B(Ω̂) under (IV.3.3) where ˙̀
t and J is

defined in (IV.3.4). Suppose a quantile model satisfies Condition 2) in Chapter 2

with the underlying distribution {f(εt)} which is not necessarily tick-exponential.

The asymptotic distribution of BL(Ω̂) under the null hypothesis of constant param-

eters is the same as Lemma 5 in Chapter 2.

IV.4 Quantile Models in Inflation Process

Quantile models of inflation is arousing more attention for both economics

and policy making. It is importantly used as an alternative method of density

forecasts which are being increasingly used in practice. (See Tay and Wallis (2000)

for a survey of application in macroeconomics and finance.) Point forecasts, namely

the central tendency of the forecasts, are currently the most widely used methods,

but are being increasingly criticized in that they contain no description of the

associated uncertainty.

Density forecasts of inflation is estimates of the probability distribution of

its possible future values. They provide a description of forecast uncertainty, and

act as supplement to the point forecast in that the point forecast is considered as

the central points of ranges of forecast uncertainty. Since density forecasts estimate

a complete description of the uncertainty structure, they can be seen to provide

information on all possible intervals and quantiles. However, density forecasts

generally require the function form of the density to be specified or complicate

nonparametric estimation of the density which sometimes has poor forecasting
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power in relatively small samples. Quantile forecast can avoid fully nonparametric

method and has the advantage of not requiring the density and will thus be more

robust to certain types of misspecification such as tail behavior of the distribution.

Sometimes it is enough to obtain a finite levels of quantile for certain forecasting

purposes. In addition, even though the purpose is the density forecast, Thompson

and Miller (1986) show that a natural way to summarize the predictive distribution

is by presenting selected quantiles.

An example of quantile type forecasts of inflation is the U.S. Survey of

Professional Forecasts (SPF), known as the ASA-NBER survey. In this survey,

forecasters are asked not only to report the point forecast and forecast horizons, but

also to attach the density forecasts for inflation and output growth. In each case,

a number of bins, in which the future value of output/inflation might fall are pre-

assigned, and each survey respondents is asked to report their associated forecast

probabilities. The forecast is thus represented as a histogram on a preassigned grid

which is associated with the inverse of forecast quantiles.

The second example is the Bank of England Monetary Policy Commit-

tee’s density forecast of inflation, known as the inflation fan chart. Figure IV.1

shows the inflation fan chart. The density forecast is represented graphically as a

set of prediction intervals, covering 10, 20, ...,90 percentiles of probability distribu-

tion. The lighter shades are for the bands further from the mode (or the median).

Since the distribution becomes increasingly dispersed, the quantiles fan out as the

forecast horizon increases.

The original Bank of England’s fan chart chooses the mode of the density

forecast as its preferred central projection. Thus the central tendency is apart
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Figure IV.1: Bank of England Inflation Fan Chart

from the median when the predicted distribution is asymmetric. It implies that

the graphed prediction intervals do not coincide with quantiles so that, for ex-

ample, 90 percent prediction intervals is not formed by 5 percent and 95 percent

quantiles under asymmetry of distribution. Wallis (1999) gets around the problem

by suggesting an alternative fan chart based on central prediction intervals.

The fan chart is analytically drawn by choosing a particular probability

density function. Once the values have been assigned to the underlying parame-

ters in the density function, probabilities can be readily calculated. The density

function Bank of England uses is the skewed version of the normal distribution,

called two piece normal, in which an additional parameter describing the asymme-

try of the distribution is introduced. However, it is well known that tails of normal

distribution is too thin to adequately describe inflation and other macroeconomic

data. In addition, the two piece normal density has only 3 parameters to describe

the whole distribution. Consequently, each eighteen quantile levels are determined
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by 3 parameters.

The problem can be overcome either by using nonparametric forecasting

of density (Fujiwara and Koga (2002)) or by directly forecasting quantile. Taylor

and Bunn (1999) apply quantile regression approach to generating forecast intervals

of various macroeconomic data to show that the quantile forecasting method is

encouraging.

Bank of England’s fan chart is the combination of model based point fore-

cast and the Monetary Policy Committee (MPC)’s subjective probability forecast.

Once the point forecast and the variance are estimated based on the macroeco-

nomic model, MPC judges whether the uncertainty will be increased and whether

the upward and downward risks are balanced. Thus the fan chart explicitly al-

lowed the structural breaks at the time of the forecast. However, the model is

estimated based on the assumption that the parameters are constant, leading to a

conflict that an acknowledged instability at time t is reversed to be stable at any

time periods later than t. Cogley et al. (2005) get around this problem by using

a Bayesian vector autoregression in which the parameters follow driftless random

walks. Vega (2005) also Bayesian method where the parameters are allowed to be

non constant but assumes they are stable.

IV.5 Testing Quantile Parameter Stability of

U.S. Inflation Process

This section explores the empirical evidence of the instability in quantile

models for the U.S. inflation process. Structural break is a widely accepted phe-

nomena in models for inflation, and many researchers have devoted much effort
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to identifying structural breaks in the inflation processes. Clak and McCracken

(2006) find a break in 1982, while Estrella and Fuhrer (2003) suggest another break

in 1984. Jouini and Boutahar (2003) find evidence of a structural break in the AR

coefficient in 1990. These researches find no break after the 1990’s. On the other

hand, recent studies such as Stock and Watson (2006), and Atkeson and Ohanian

(2001) argue that economic relationships have become unstable, even in recent

years, so that the predictive powers of the models for forecasting inflation are still

doubtful, even after the reduction of the volatility in the great moderation. Those

tests are performed for the mean parameter stability and occasionally the variance

stability. No works have been devoted to the instability of inflation quantiles.

The test in this section serves three purposes. First, I analyze whether

assuming unstable parameters is justified by the data. The test will provide in-

sights on how to choose a relevant model. Second, I analyze if the commonly used

sample splitting method overcomes the instability problem in the presence of struc-

tural break. For example, it is generally perceived that around 1982 there were

significant changes in macroeconomic behaviors, such as the investment prices’

average rate of decline, the conduct of monetary policy, macroeconomic volatil-

ity and the regulatory environment. Most studies explicitly considering the break

generally make effort to overcome the problem by reestimating the model on split

subsamples. Gali et al. (2003), Fisher (2006), Clarida et al. (2000), and Barth and

Ramey (2005) suggest to split into pre-Volcker period (post war-1979) and Modern

era (1982 to the present). With this insight, I examine whether the split sample

method could resolve the instability problem by performing the stability tests to

each split sample period. The more recent subsample period (1991-current) is

also considered to evaluate the recent debates about whether the inflation forecast

models become more stable after 1990s.

Third, I observe whether the breaking processes are identical for all levels
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of quantile. This will provide an inference on the asymmetry of policy effect in that

nonidentical test results implies the different responses of the inflation to policy

variables associated with different points on its conditional distribution. It will also

give an implication of the quantile forecasting method. Most of the literatures on

inflation quantile forecasts, especially the inflation fan chart, are based on specific

parametric distributions in which a few number of parameters determine the shape

of the distribution. In this case, for any level of quantile, quantile parameters are

functions of these few parameters only. Thus a breaking process in one parameter

would affect all levels of quantiles. This implies that the test should have identical

results at all quantile levels. Consequently, if a model has different test results

across different levels of quantiles, it would provide an evidence of inadequacy

of the parametric distributional assumption. In addition, different test results

will give an inference about potential asymmetry of monetary policy and business

cycle. Analysis of different levels of quantiles provides a broader picture of inflation

process against a various external and policy shocks. To perform the test, I consider

various types of predictive models which are listed below.

Phillips Curve(BPC) : πt = β0 + β1(L)πt + β2(L)ĝt + εt

P-star Model : πt = ηα ln
(

Pt−1

P ∗t−1

)
+ β1(L)πt + εα

t

: P ∗
t =

MtV ∗t
y∗t

Autoregressive Model(AR) : πt = β0 + β1(L)πt + εt

πt = inflation rate ĝt = NAIRU gap

mt = money supply (M2) yt = output (industrial production)

where X(L) represents the lag operator, and P ∗, V ∗ and y∗ indicate their lon-

grun equilibrium level, respectively. BPC is a backward-looking statistical Phillips

Curve which is believed by many to be the preferred tool for forecasting infla-
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tion. (See Stock and Watson (1999).) On the other hand, recent research such

as Stock and Watson (2006), and Bachmeier and Swanson (2005) cast doubt on

the predictive power of the Phillips Curve model. P-star model has first proposed

by Federal Reserve Board as a simple inflation forecasting method. It uses money

equation as a longrun relationship of inflation, output, and money in which P-star

is interpreted as the longrun price level. However, the forecasting power of P-star

model is cast doubt on by many researchers, especially suspected on the stable

relationship between inflation and money quantity. (See Bachmeier and Swanson

(2005), and Christiano (1989).) The AR model has an advantage and has been

used by many in that it is simple and has a good forecasting power.

The data spans the period between January 1962 and October 2007. I

also consider a couple of subsamples; Jan.1982-Oct.2007, and Jan.1991 to Oct.2007.

The split period is chosen based on the findings of a structural breaks by the current

researches. Tests in the later period will provide implications on the stability after

the great moderation.

I use urban CPI to calculate inflation, πt, and industrial production index

for the output, yt. M2 is used for the money supply. Unemployment is the civilian

unemployment rate. NAIRU, y∗t and V ∗
t are estimated by Hodrick-Prescott filter-

ing. The lags are determined by Akaike Information Criteria(AIC) and all data

are seasonally adjusted.

Table IV.5 shows the test results. The adaptive test B∗(Ω) shows strong

evidence of instability of Phillips Curve in all sample periods, while the test B(Ω)

could not reject the instability in the upper quantile parameters of the sample peri-

ods 1962-2007, 1982-2007, and all quantile levels in the recent period (1991-2007).

Throughout all the models, the parametric test B has a tendency not to reject the

stability compared to B∗(Ω). Note that B(Ω) does not have asymptotic optimality
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Table IV.1: Test Results: Stability of the U.S. Inflation Process

α B B
(quantile) 1962- 1982- 1991- 1962- 1982- 1991-

2007 2007 2007 2007 2007 2007

Philips Curve
0.30 39.11† 51.10† 17.20 57.40† 53.54† 21.43
0.40 32.13∗∗ 36.22† 23.85 50.26† 46.72† 28.62∗∗

0.50 28.97∗ 28.84∗∗ 23.99 52.95† 51.67† 26.82
0.60 26.77 27.66 18.64 50.15† 55.35† 32.68∗∗

0.70 21.33 23.45 12.71 60.94† 35.06† 30.99∗∗

P-star Model
0.30 25.54∗∗ 23.16∗ 20.69 30.98† 16.94 7.29
0.40 28.36∗∗ 14.32 14.24 33.97† 15.04 10.19
0.50 24.25∗ 16.09 17.07 29.31† 11.56 11.60
0.60 22.09 17.45 17.50 33.64† 16.42 18.50
0.70 17.19 14.97 12.00 40.28† 19.78 17.49

AR(3) Model
0.30 28.69∗∗ 24.58 15.39 26.45∗∗ 24.64∗ 17.25
0.40 33.02† 26.02∗∗ 15.87 31.52† 24.63∗ 17.53
0.50 28.10∗∗ 15.97 14.73 24.74∗ 25.36∗∗ 28.77∗∗

0.60 19.47 19.50 17.73 25.85∗∗ 38.47† 43.79†

0.70 15.73 17.25 19.25 32.10† 43.53† 50.04†

AR(1) Model
0.30 19.33† 23.76† 24.89† 31.72† 37.69† 53.56†

0.40 18.99† 27.39† 26.28† 31.33† 38.89† 53.60†

0.50 23.92† 30.76† 32.16† 29.96† 36.88† 54.05†

0.60 18.18† 24.34† 22.05† 30.14† 37.48† 53.61†

0.70 17.07† 18.32† 24.79† 30.34† 38.18† 53.52†

note: 1. *, **, † mean that the test rejects parameter stability at 10%, 5%, and 1% significant

levels, respectively.

2. the lag lengths are set by AIC.
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Table IV.2: Test Results: Mean/Variance Stability

Model 1982-2007 1982-1989 1991-2007

Phillips Curve(BPC) 30.53∗ 20.72 25.22

P-star Model 44.11∗ 44.33∗ 36.53

AR(1) 25.42† 13.02∗ 32.84†

AR(3) 24.31 22.17 20.01

Unconditional Vairance 42.96† 15.45† 38.77†

because different quantile levels use different likelihood function although they are

all from the same data generating process. Considering that B∗(Ω) is asymptoti-

cally optimal, we would expect that the different test results are from the power

property of the tests rather than the small sample size distortion, which implies

that B(Ω) result is more favored. This inference becomes clearer if we compare

the them with the test of the mean and variance stability. Table IV.2 shows the

B∗(Ω) test result for the mean and variance parameters using the same model

with the same data. The test could not reject the mean stability in the sample

period 1991-2007, which is similar to B(Ω) test result for quantile instability. But

the variance presents instability in all subsample period. As noted in section 2,

quantile parameter can be interpreted as the function of not only the mean but

also the variance and other distributional behaviors, which implies that any breaks

in mean or variance cause breaks in quantiles. In this regards B∗(Ω) test is more

associated with the mean-variance tests.
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Based on B∗(Ω) test result, we find evidence that Phillips curve are still

unstable even in the ara of great moderation. This result coincides with Atkeson

and Ohanian (2001) and Stock and Watson (2006)’s findings that the forecasting

power of backward looking type of inflation models is not improved even after

1990’s because of instability.

Another finding is that the test does not have identical results across

quantiles and it depends on the sample periods. B(Ω) has a tendency to strongly

reject the null hypothesis for parameters of lower quantile levels, while it accept

it for higher quantile levels in periods 1962-current, and 1982-current. In 1991-

current period, B∗(Ω) rejects stability in upper quantile levels and accept it in

lower quantiles. It has similar test result in AR(3) models. Consequently, the

test supports the asymmetry of the inflation response to economic shocks. It also

implies that the inflation density forecast methods based on parametric distribution

such as inflation fan charts may lose the accuracy of the forecast because, as noted

above, assumed stability of the shape of the distribution contradicts the test result.

For P ∗ models, both B(Ω) and B∗(Ω) reject the stability in whole sample

period (1962-2007), But they could not reject in more recent subsample periods.

However, it should be cautious to admit the forecasting power of P ∗ model. The

main problem of the forecasting power P ∗ model is the weak relationship between

P ∗ gap and the inflation. But accepting the stability of the model does not neces-

sarily mean that the model shows the close relationship.

The AR(1) model is shown to be most unstable. Both tests reject the

stability at 1% significant level. For the AR model based on AIC lag decision

(AR(3)), B(Ω) could not reject the stability in 1991-2007. However, B∗(Ω) shows

evidence of instability in lower quantile while it has opposite test results in upper

quantiles.
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In summary, I find evidence of instability in all models for the whole

sample periods (1962-2007). The evidence of instability after 1990’s depends on

the selected model. For some models, we find different test result across different

quantile levels.

IV.6 Conclusion

This chapter applies the optimal tests for parameter instability to linear

conditional quantile models both in parametric and semiparametric setups. Tests

functions obtained in Chapter 2 and 3 are shown to be applicable. Tick-exponential

distribution allows the parametric test function to be asymptotically valid even

under misspecified underlying distribution.

The application of the tests to quantile models for the U.S. inflation

process shows evidence of instability of various quantile models. The quantile

models are still rejected to be stable even after 1990’s, while the conditional mean

is shown to be stable in some of the inflation models such as Phillips Curve.

The nonidentity of instability test results implies that inadequacy of the density

forecast based on parametric density function as well as the asymmetric response

of inflation to various economic shocks.
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IV.A Proofs

IV.A.A Proof of Lemma 10

Let ∆ȧt = ȧt(β̄+T−1/2δ)−ȧt(β̄) and ∆1t = 1[yt<Xtβ̄+T−1/2Xtδ]−1[yt<Xt
¯beta].

The score function can be written as

˙̀
t(β̄ + T−1/2δ) = ˙̀

t(β̄) + ∆ȧt
˙̀
t(β̄)− ȧt(β̄)Xt∆1t + ∆ȧtXt∆1t (IV.A.1)

⇒ T−1/2

[sT ]∑
t=1

˙̀
t(β̄ + T−1/2δ) = T−1/2

[sT ]∑
t=1

˙̀
t(β̄) + T−1/2

[sT ]∑
t=1

∆ȧt
˙̀
t(β̄)−

T−1/2

[sT ]∑
t=1

ȧt(β̄)Xt∆1t + T−1/2

[sT ]∑
t=1

∆ȧtXt∆1t

(IV.A.2)

Following two Taylor expansions are used to prove the lemma.

∆ȧt = T−1/2ät(β̄)X ′
tδ + op(

√
T ) (IV.A.3)

F (T−1/2X ′
tδ)− F (0) = T−1/2X ′

tδf(0) + op(
√

T )

By using (IV.A.3), (IV.A.2) can be rewritten as,

T−1/2

[sT ]∑
t=1

˙̀
t(β̄ +T−1/2δ) = T−1/2

[sT ]∑
t=1

˙̀
t(β̄)+T−1/2

[sT ]∑
t=1

ätXt
˙̀
t(β̄)′δ−sK(β̄)δ +op(1)

(IV.A.4)
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The second term converges to zero because

T−1
∑

E
[
ät(β̄)Xt

˙̀
t(β̄)

]
= T−1

∑
E

[
(α− 1[εt<0])ät(β̄)XtX

′
t
˙̀
t(β̄)

]

= 0

which completes the proof. ¦

IV.A.B Proof of Lemma 11

By Lemma 5 in Chapter 2, Lemma 11 is proved if 1√
T

∑[sT ]
t=1

˙̀∗
t = sW (s)

where W (s) is a Wiener process. Lemma A.2 of Komunjer (2005) shows that

1√
T

∑[sT ]
t=1

˙̀
t satisfies the conditions to apply the CLT for α−mixing sequence. But

by Condition 2 (iv) and the condition that εt is iid, {Xtf(εt)} is globally covari-

ance stationary with long-run covariance E[XtX
′
tf(εt)

2]. Therefore, it satisfies the

conditions for the FCLT for α−mixing sequence (theorem 7.30 in White (2001)),

which completes the proof. ¦
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