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Abstract!

An Indirect Analogical Mapping Model (IMM) is
proposed and preliminary tests are described. Most
extant models of analogical mapping enumerate explicit
units to represent all possible correspondences between
elements in the source and target analogs. IMM is
designed to conform to more reasonable assumptions
about the representation of propositions in human
memory. It computes analogical mappings indirectly --
as a form of guided retrieval -- and without the use of
explicit mapping units. IMM's behavior is shown to
meet each of Holyoak and Thagard's (1989)
computational constraints on analogical mapping. For
their constraint of pragmatic centrality, IMM yields
more intuitive mappings than does Holyoak and
Thagard's model.

Introduction

The central function of analogical thinking is
10 aid in creating coherent, structured representations of
important novel situations. By finding a mapping --
that is, a set of correspondences -- between a known
situation (the source analog) and a novel one (the farget
analog), the structure of the source can be used as a kind
of blueprint for building a representation of the target.
While analogy involves a number of component
processes, the mapping process is pivotal because the
correspondences it establishes constrain the inferences
that can be generated about the target.

This paper presents our preliminary
investigations into an Indirect Analogical Mapping
Model (IMM). The primary goal of this effort is to
develop an algorithm for analogical mapping consistent
with reasonable assumptions about the representation of
propositional information in human memory. Extant
models of analogical mapping typically posit explicit
processing units for all possible correspondences
between the elements of the source and target analogs
(e.g., Falkenhainer, Forbus & Gentner, 1989; Holyoak
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& Thagard, 1989). There are a number of serious
problems associated with such enumeration of mapping
units (Hofstadter & Mitchell, in press). Although it
can be argued that mapping units are a notational
convenience rather than a literal claim about the nature
of mental representations, it is unclear how the critical
processes posited by such models (e.g., parallel
constraint satisfaction) would operate under more natural
representational assumptions. A related difficulty with
explicit mapping units is that they exist strictly for the
purpose of analogical mapping and have no obvious
usefulness for other cognitive processes. The primary
goal of IMM is to simulate analogical mapping within
an architecture more consistent with realistic
assumptions about the representation of propositions in
memory.

Theoretical Motivation

Representation of Propositions. The central
problem in representing propositions involves encoding
their internal structure, Representing a proposition
entails creating a set of bindings between the arguments
of the proposition and the case roles they fill. For
example, to distinguish the representation of (chase
Amold Bill) from (chase Bill Amold), Amold must be
bound to the agent role of "chase" in the first
proposition and to the patient role in the second. A
basic tenet of our approach is that active representation
of propositional information (i.e., in working memory)
and its long-term storage require different solutions to
this binding problem.

Let us first consider the problem of case role-
argument binding in an active representation. It is
possible to imagine a representation for propositions in
which dedicated units (or patterns of activation)
represent each role-argument binding. For example,
units could be created de nove each time a proposition
enters working memory, or -- as proposed by
Smolensky (1990) -- bindings could be represented by
explicitly calculating a tensor product of the activation
vectors representing the individual case roles and
arguments (Halford, Wilson, Guo, Gayler, Wiles &
Stewart, in press). In both these cases, the bindings are
static because they are represented by units dedicated to
specific conjunctions of elements.

This approach to the representation of attribute
conjunctions suffers numerous limitations (cf. Hummel
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& Biederman, 1992). The most serious is that by
coding conjunctions of case roles and arguments, static
binding units cannot represent the individual case roles
(predicates) and arguments (objects); hence, the natural
similarity structure of the predicates and objects is lost.
For example, if separate static units represent (a) Armold
as the agent of chasing, (b) Amold as the patient of
chasing, (c) Bill as the agent, and (d) Bill as the patient,
then the proposition (chase Armold Bill), represented by
units a and ¢, would be no more similar to (chase Bill
Amold), represented by b and d, than it is to (says My-
doctor Caffeine-makes-me-nervous). And although this
example assumed a localist representation, the
underlying problem cannot be solved simply by
postulating a more distributed representation. In
Smolensky's (1987) tensor product representation,
which uses distributed representations, the
representation of a given object bound to one case role
will not necessarily overlap ar all with the
representation of the identical object bound to a different
case role.

An alternative to static binding is dynamic
binding, in which units representing case roles are
temporarily bound to units representing the arguments
of those roles. Following Shastri and Ajjanagadde
(1990) and others, IMM represents dynamic case role-
argument bindings as synchronized firing of units
representing the bound elements. For example, (chase
Amold Bill) is represented by units for the agent role of
"chase” firing in synchrony with units for Amold, while
units for the patient role of "chase" fire in synchrony
with units for Bill. Naturally, the agent/Arnold set
must fire out of synchrony with the patient/Bill set.

Dynamic binding permits a small set of units
to be reused in an unlimited number of specific
bindings. The capacity to reuse units allows the
representation of case roles and objects to be completely
independent of one another. The theoretical and
practical advantages of this independence are vast, but
the most important is that it preserves similarity across
different bindings. For example, all propositions in
which Bill serves as an argument will be similar by
virtue of their sharing the units that represent Bill;
likewise, all propositions involving the predicate
"chase” will employ the same "chase” units. As such,
the independence afforded by dynamic binding permits
essentially complete isomorphism between the meaning
of a proposition and its representation: the
representation of two propositions will overlap exactly
to the extent that their meanings overlap. Some
practical advantages of this isomorphism will become
clear when IMM's operation is described.

Although dynamic binding affords critical
benefits in the active representation of propositions, it
is of course completely impractical as a solution to the
storage of role-argument bindings in long-term
memory. In long-term memory, bindings must be
represented in a static form (e.g., as "synaptic”

strengths) that can remain dormant until the proposition
is reactivated. Importantly, the long-term representation
must be capable of reinstating the original dynamic
bindings of arguments to case roles when it is
reactivated2, To this end, IMM encodes propositions
into its long-term memory as connections from units
representing objects and predicates to semantically
empty units called sub-proposition (SP) units. A
proposition is retrieved from long-term memory by
activating the SP units that encode it. When an SP
unit fires, it activates and synchronizes the object and
predicate units to which it is connected. Separate SPs
within a proposition remain out of synchrony
(desynchronized) with one another. Together, a
proposition's SPs reconstruct the synchronized firing of
predicate and object units that represents the structured
semantic content of the proposition.

Computational Constraints on Mapping. The
computational theory underlying IMM as a model of
analogical mapping is borrowed from Holyoak and
Thagard's (1989) Analogical Constraint Mapping
Engine (ACME). ACME posits three broad classes of
constraints on natural correspondences between the
elements of analogs. (1) The structural constraint of
isomorphism has two components: (a) structural
consistency implies that if a particular source and target
element correspond in one context, they should do so in
all others; (b) one-to-one mapping implies that each
element should have a unique correspondent in the other
analog. (2) Semantic similarity implies that elements
with some prior semantic similarity (e.g., by virtue of
joint membership in a taxonomic category) should tend
to map to each other. (3) Pragmatic centrality implies
that a mapping should give preference to elements that
are deemed especially important to goal attainment, and
should maintain correspondences that can be presumed
on the basis of prior knowledge.

The Indirect Mapping Model

ACME implements the mapping constraints
directly, via parallel constraint satisfaction on explicit
mapping units of the type described previously. Our
goal is to achieve analogical mapping according to these
constraints, but to do so indirectly -- i.e., without
directly implementing the constraints as connections
among mapping units. Rather, IMM treats analogical
mapping as a form of guided retrieval: propositions in a
source analog drive the activation of propositions in a
target analog. This process is mediated by a set of
predicate units that are shared by the propositions in

2This is true by definition; any long-term representation
that could not reproduce the active representation of a
binding would not encode that binding in any
meaningful way.
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both analogs. When a proposition in the source
becomes active, its SPs create a synchronized pattern of
firing across the predicate units. This pattern then
activates the proposition(s) in the target analog to
which it most closely matches. The resulting match
(i.e., mapping) is then learned by updating modifiable
connections between units across the analogs. The
asymptotic strengths of these connections are interpreted
as the model's preferred mappings.

The implementation described here was
designed to test IMM's basic capacity for this type of
mapping. To unconfound the properties of the
architecture from the properties of any specific units of
which it might be composed, we have made a number
of strong simplifying assumptions that idealize IMM's
operation. These assumptions will be relaxed in future
implementations.

Architecture

Figure 1 illustrates IMM's basic architecture
using the following analogs:

Source Target
(chase Amold Bill) (eat fox goose)
(chase Bill Charles) (eat goose corn)

IMM is composed of three types of units: predicate
units, object units, and sub-proposition (SP) units.
Predicate units represent the semantic content of
predicates in a distributed fashion. For example, the
predicate “chase" is represented by one pattern of
activity over these units, and the predicate "pursue”
would be represented by a different but overlapping
pattern. (These patterns are not detailed in the figure.)
Similarly, objects such as Amold and Bill share some
predicates (e.g., both are human and male) and differ on
others. The similarity between two objects or two
predicates is defined by their degree of overlap on the
predicate units. The precise content of these
representations is less important for our current
purposes than the architecture in which they reside.
Propositions are encoded into IMM's long-term
memory by symmetrical, excitatory connections from
predicate and object units to SP units. Each SP
permanently encodes a binding of one object to some
number of single-place predicates and to one role of one
multi-place predicate. For example, (chase Amold Bill)
is represented by two sub-propositions. The first
encodes Amold as the agent of chasing, and is denoted
chase(Amold _). Chase(Amold _) has excitatory links
to (a) the object unit for Arnold, (b) each single-place
predicate unit that describes Amold (e.g., person, male,
etc.), and (c) the units for agent role of the two-place
predicate “chase". The second SP, chase(_ Bill), has
excitatory links to Bill, Bill's single-place predicates,
and the patient role of “chase". Predicate units do not
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directly communicate: their only connections are to SP
units. Predicate and object units are temporally yoked
to SP units -- i.e., they fire only when they receive
excitatory inputs from SPs. Therefore, when an SP
fires, all predicate and object units to which it is
connected also fire.

Source (chase Amold Bill) (chase Bill Charles)
| % 1

chase_ Bill)  (chase Bil ) (chase_(h)

Target  (cat fox goose)

(eal goose com)

Figure 1. IMM representation for the example
above. Not shown: Modifiable connections;
connections between SPs within an analog; full
SP-predicate connectivity.

Because predicate and object units are yoked to
SPs, it is critical that separate SPs fire out of
synchrony with one another. If chase(Arnold _) and
chase(_ Bill) fired in synchrony, all their predicates and
objects would also fire in synchrony, and it would be
impossible to tell who was chasing whom. Therefore,
SPs in the same proposition are assumed to share links
that desynchronize their outputs. In the current
implementation, all SPs within an analog are forcibly
desynchronized (i.e., they are forced to fire one at a
time).

Modifiable connections (of initial strength
zero) exist between SP units across analogs and between
object units across analogs; their function is described
below.

The IMM Algorithm

The state of the network is updated in discrete
cycles. The following sequence of operations is
performed on each cycle:

1) One SP in the source analog fires; its output is
set to 1.0 and propagated to the predicates, objects,
and target SPs to which it is connected.

2) The SPs in the target update their activations
(A;) based on their excitatory inputs (E;) and their
lateral inhibitory inputs from one another. Lateral
inhibition is implemented by the equation:

Aj =Ej3 [T Ej°.

3) The object units in the target update their
activations based on their excitatory inputs from



the target SPs and their lateral inhibitory inputs
from one another. Lateral inhibition is
implemented by the above equation.

4) The SPs in the target recalculate their activations
based on their excitatory inputs from the predicates,
source SPs, and target objects, and their lateral
inhibitory inputs from one another.

5) SPs in the target update their connections to SPs
in the source, and objects in the target update their
connections to objects in the source by the Hebbian
rule

AWjj = AjAj,

where Wi is the connection weight from source
element j to target element i. Reflecting the one-
to-one mapping constraint, connections to a target
unit (both SP and object) and from a source unit are
constrained to add to 1.0. This constraint is
enforced by normalizing the modifiable connections
at the end of each cycle by the ratio:

Wij = Wijl(Wij+ ZxWij + ZiWj )i =k, | = j.
This normalization resets each connection according
to its weight and the weights of all other
connections to the same target SP and from the
same source SP.

Simulations

Six tests of IMM are reported here, five based
on small examples designed to test specific capacities of
the model, and one based on a larger example. All tests
were run ten times. The modifiable (SP-to-SP and
object-to-object) connection weights were initialized to
zero at the beginning of each run. Each run consisted of
20 iterations through the source analog, and each
iteration consisted of one cycle (as described above) for
each SP in the source analog. The firing order of the
SPs was randomized at the beginning of each iteration.
Mapping results are reported below in terms of the
mean modifiable connection weights (object-to-object
and, in one case, SP-to-SP) developed across analogs
over the ten runs.

Test 1 was based on the analogs depicted in
Figures 1 and 2. In this example, the predicates and
objects are assumed to have no semantic overlap across
the analogs, so the mapping must be solved purely on
the basis of structural isomorphism. The most natural
solution maps Bill to goose because they share the
structural property of appearing in both the second place
of the first proposition and the first place of the second.
Because of the one-to-one mapping constraint, Arnold
should then map to fox, and Charles to corn.

A detailed illustration of IMM's operation on
the first cycle of this test is given in Figure 2. (1) The
SP chase(Amold _) fires and sends activation to the
object unit for Amold and the predicate P1 (shaded cells
in Figure 2). Pl is a structural predicate indicating that
its argument (Arnold) appears in the first place of some

multi-place predicate, i.e., that its argument is the
subject of some proposition. (2) The target SPs eat(fox
_) and eat(goose _) each rcceive an excitatory input of
1.0 from P1. Since this is the first cycle through the
source, all SP-to-SP connections and object-to-object
connections are zero. After lateral inhibition, both
target SPs' activations are 0.5. (3) The target objects
fox and goose each receive inputs of 0.5 from their
respective SPs, and after lateral inhibition, their
activations are 0.5. (4) The target SPs recalculate their
activations, again settling on 0.5 each. (5) SP-to-SP
and object-to-object connections are updated. The
weights from chase(Amold _) to both eat(fox _) and
eat(goose _) become 0.5, and the weights from Arnold
to both fox and goose become 0.5.

OUICE (chae Am._) (chase_Bill) (chase Bill ) (chase_Ch)

Target (afox ) (eu _goow) (cagoose) (ex_com)

Figure 2. Illustration of the sequence of events in
one cycle with the example above.

On the second, third and fourth cycles, these
steps are repeated for chase(_ Bill), chase(Bill _) and
chase(_ Charles), respectively. The second and third
cycles are the most critical for finding the mapping
from Bill to goose. On the second, Bill updates its
connections both to goose and corn; on the third, it
updates it connections to goose and fox. Over repeated
iterations, Bill updates its connections to goose twice as
often as it does to fox or comn, and -- due to the
normalization of connection weights -- the Bill-goose
connection eventually overpowers all other connections
involving either Bill or goose. This reduction of other
connections involving goose allows Amold and Charles
to map less strongly to goose, and more strongly to fox
and corn, respectively. IMM successfully mapped these
analogs on the basis of their structure alone. Over 10
runs, the mean object-to-object connection weights
(after 20 iterations per run) were: Arnold --> fox = 0.99;
Bill --> goose = 0.98; Charles --> corn = 0.99. All
other object-to-object connections were zero.

Our second example tests IMM's sensitivity to
the structure of information within propositions. It is
based on the analogs:

Source
(bite dog man)

Target
(pet boy cat)
(sit-on cat boy).

The predicates bite, pet, and sit-on are assumed to have
no semantic overlap. The objects dog and cat share the
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single-place predicate unit for "animal", and the objects
boy and man share the predicate "human”. Both target
propositions share four predicate units with the source
proposition (pl, p2, animal, and human). However,
(bite dog man) should map to (sit-on cat boy) because,
in each case. an animal appears in the agent role, and a
human in the patient role. In (pet boy cat), the human
and animal are bound to opposite roles. Thus, this
example constitutes a test of semantic similarity in
which successful mapping depends on sensitivity to
structure. Run with this example, IMM
unambiguously mapped man to boy and dog to cat: dog
--> cat = 0.99; man --> boy = 0.99; all other object-to-
object connections were zero. As indicated by the the
SP-to-SP connections, IMM also correctly mapped (bite
dog man) to (sit-on cat boy), and correctly mapped
corresponding roles within those propositions:

bite(dog_ ) bite(__ man)
sit-on(cat _) 0.66 0.00
sit-on(__boy) 0.00 0.66
pet(boy _) 0.04 0.27
pet(__ cat) 0.27 0.04

Holyoak and Thagard's (1989) ACME model
encounters difficulty with the constraint of pragmatic
centrality. It does not respond appropriately to source
elements that are marked as "important" (Spellman &
Holyoak, in preparation; Hummel, Burns & Holyoak,
in press). Therefore, IMM's treatment of important
elements is a particularly critical test. Tests 3 - 5
examine the effect of object importance on mapping.
Importance is implemented in IMM by allowing SPs
containing important objects to fire more often than
SPs containing objects not given extra importance,
This convention is based on the assumptions that (1)
firing rate reflects the activation of a unit, and (2) more
important elements are more active than elements not
given special importance. In these simulations,
important SPs were allowed to fire twice (rather than
only once) on each iteration through the source analog.

Tests 3 - 5 were based on the following
analogs:

Source Target
(chase coyote roadrunner) (chase pig rabbit)
(eat Popeye spinach) (eat rabbit carrot).

On every test with this example, IMM correctly mapped
coyote exclusively to pig (connection weight 0.99) and
spinach exclusively to carrot (connection weight 0.99).
The interesting question concerns the degree to which
Popeye vs. roadrunner will map to rabbit based on
which (Popeye or roadrunner) is deemed "important”.
With neither given importance (Test 3), IMM mapped
both equally to the rabbit (connection weights were
0.49), reflecting the ambiguity of the mapping. With

special importance given to roadrunner (Test 4), IMM
mapped roadrunner to rabbit more strongly than Popeye
to rabbit (0.65 vs. 0.34). Similarly, with special
importance given to Popeye (Test 5), it mapped Popeye
to rabbit more strongly than it did roadrunner (0.66 vs.
0.33). Thus, IMM was able to adjudicate between
ambiguous mappings on the basis of the relative
importance of an element. In contrast, ACME produces
less clear mappings for these simple examples
(Hummel et. al., in press).

How does IMM differ from ACME so that the
former succeeds on these simple tests of pragmatic
centrality? In ACME, the success of a particular
mapping depends upon the activity of the corresponding
mapping unit relative to its competitors. An element
(object or predicate) is marked as important by
increasing the activities of all units representing
mappings involving it. The increased activity
associated with an important element's mapping units
has the effect of increasing the tendency for those
mappings to dominate other mappings. As such, the
important element tends to map more to everything,
rather than selectively mapping more to those other
elements with which it already matches well.

By contrast, consider how an element in the
source analog (SE) establishes a mapping with a target
element (TE) in IMM. Each time an SE fires, ils
tendency to map to a specific TE is a function of (1)
how closely the pattern of which the SE is a part
matches the pattern(s) of which the TE is a part (as
determined by the number of predicate units they share)
and (2) how often and how strongly the SE has mapped
to that TE in the past (as captured in the modifiable
object-to-object and SP-to-SP connections). Like
ACME, IMM implements increased importance as
increased activity. In IMM, increased activity results in
an increased firing rate. But note that an SE's tendency
to map to any given TE, as defined by (1), has nothing
to do with how often either unit fires; rather it is
strictly a function of how well they match when they do
fire. Therefore, increasing an SE's firing rate simply
increases the number of opportunities that the SE has to
map to those TEs for which it already has a preference.
Each time an SE maps to a TE, they strengthen the
connection between them at the expense of their other
connections. Thus, a greater firing rate (i.e., more
importance) means more opportunities for an SE to
monopolize its preferred TE's connections.

The first five examples were designed to test
specific capacities of the IMM architecture, and were
deliberately kept small. The sixth test was designed to
reveal IMM's capacity to deal with larger analogies.
Test 6 is based on the "radiation to lightbulb" problem
from Holyoak and Thagard (1989, Table 3). Space
limitations prohibit full elaboration of the analogy, but
it can be summarized as follows: The source analog
states that there is a lightbulb with a broken filament
that can be fused back together by a laser beam. The
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laser can generate either strong or weak beams. The
strong beam would break the glass bulb surrounding the
filament, but a single weak beam is too weak by itself
to fuse the filament. The goal is to fuse the filament
without breaking the glass bulb. The target analog
states that there is a tumor surrounded by healthy tissue,
and there is a radiation machine that can destroy the
tumor. The radiation machine can generate either strong
or weak rays. A strong ray would damage the healthy
tissue surrounding the tumor, but the weak ray is too
weak to destroy the tumor by itself. The goal is to
destroy the tumor without damaging the healthy tissue.
The intuitively correct mapping between these analogs
generates the following object correspondences: laser -->
radiation machine; strong laser beam --> strong rays;
weak laser beam --> weak rays; tumor --> filament;
glass bulb --> healthy tissue. IMM discovered all the
correct mappings (mean modifiable connection strengths
corresponding to correct mappings were all greater than
0.97) and did not discover any incorrect mappings
(mean modifiable connection strengths corresponding to
incorrect mappings were all zero).

Discussion

The initial simulations reported here, although
run with a highly idealized version of IMM, have
yielded encouraging results. IMM clearly demonstrates
sensitivity to all the mapping constraints postulated by
ACME: isomorphism, semantic similarity, and
pragmatic centrality. It also scaled well to the larger
analogy on which it was tested. Importantly, this
behavior emerges from an architecture exploiting
deliberately general principles for the representation of
propositional information.

One strength of the IMM representation that
we have not yet discussed is its capacity to scale with
larger knowledge bases. Each proposition is encoded by
a small number of SP units (typically three or fewer,
depending on the number of argument places in the
proposition). Therefore, the number of SP units
required to represent an analogy grows linearly with the
size of the analogs, and the number of modifiable
connections between SPs across analogs grows linearly
with the product of the number of propositions in the
source and target.

The modifiable weights on object-object and
SP-SP connections allow a relatively stable
representation of the mapping between source and target
elements to emerge. These modifiable connections are
analogy-specific, making it possible for the system to
learn contextually constrained correspondences between
analogs without necessarily altering the structure of
semantic memory. For example, the fact that a tumor
maps to a filament in the context of the
radiation/lightbulb analogy need not imply that these
two concepts should now be closely related in semantic
memory. At the same time, the asymptotic weights on
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the modifiable connections may provide inputs to post-
mapping mechanisms that support the generation of
analogical inferences about the target, as well as
induction of relational generalizations based on the
mapping between the source and target analogs.

It remains to be seen how IMM will perform
with more realistic processing assumptions. The
current implementation works largely because the
sequence of events is globally and tightly controlled. If
IMM proves highly sensitive to imperfections in the
timing of events, it could be difficult to make it work
with locally-controlled mechanisms for dynamic binding
(i.e., for maintaining synchrony). Nonetheless, the
indirect approach to analogical mapping seems
sufficiently promising as to merit further exploration.
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