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Abstract
Purpose Triple-negative breast cancer (TNBC) often metastasizes to the central nervous system (CNS) and has the highest 
propensity among breast cancer subtypes to develop leptomeningeal disease (LMD). LMD is a spread of cancer into lep-
tomeningeal space that speeds up the disease progression and severely aggravates the prognosis. LMD has limited treatment 
options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine 
TNBC LMD.
Methods A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for 
further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo test-
ing, CNS metastasis was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic 
MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging and immuno-
histochemistry. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry.
Results Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast 
cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative 
MDA-MB-231-BR. In animal studies, MBZ reduced leptomeningeal spread, and extended survival in brain metastasis model 
produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model.
Conclusions We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC CNS metastasis. 
Our findings are concordant with previous efforts involving MBZ and CNS pathology and support the drug’s potential utility 
to slow down leptomeningeal spread.

Keywords Breast cancer · Leptomeningeal disease · Drug repurposing · Mebendazole

Introduction

Triple-negative breast cancer (TNBC) is an aggressive 
breast cancer subtype that metastasizes to the central nerv-
ous system (CNS) in up to 50% of affected patients [1]. Once 
disseminated to CNS, TNBC carries poor prognosis, with 
limited treatment options [2], and a median survival of only 
5 months [1]. Patient’s prognosis is severely aggravated 
when cancer spreads to leptomeninges and cerebral spinal 
fluid (CSF), developing leptomeningeal disease (LMD, also 

known as leptomeningeal carcinomatosis, neoplastic menin-
gitis, or carcinomatous meningitis) [3]. While LMD is docu-
mented to occur in a minority of breast cancers, its incidence 
is increasing [4, 5]. Among breast cancer subtypes, TNBC 
accounts for the shortest time between primary diagnosis 
and CNS metastasis [6]. Rapid metastatic dissemination of 
TNBC is likely based on its high migratory potential [7]. 
Current standard-of-care for LMD involves systemic and 
intrathecal chemotherapy with- or without palliative whole 
brain radiation, with limited efficacy [8].

Given the paucity of effective treatments and challenges 
with identifying and approving new drugs for relatively 
small patient populations, recent work has begun to focus 
on repurposing previously approved pharmaceutical agents. 
This approach has two main advantages over the de novo 
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development: substantially reduced costs and an accelerated 
time-to-patient use [9]. In the field of neuro-oncology, drug 
repurposing is of particular interest due to the high cost of 
new therapies and the limited effectiveness of available treat-
ments [3, 4, 8].

In the study of CNS tumors, drug repurposing efforts 
have highlighted the benzimidazole anti-helminthic class, 

including mebendazole (MBZ), albendazole (ABZ), and fen-
bendazole (FBZ) [10, 11]. This drug class is widely used in 
the control of human and animal parasitic infections by dis-
rupting microtubule function, and via this mechanism, it has 
demonstrated efficacy against paclitaxel and doxorubicin-
resistant cancer cells [12] and in multiple animal models 
of cancer, including glioma and metastatic TNBC [10, 13, 
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14]. MBZ and ABZ have been used against CNS patholo-
gies (e.g., neurocysticercosis and cerebral echinococcosis) 
[15–17], indicating sufficient CNS bioavailability. This has 
allowed for the fast transition to clinical testing of MBZ in 
adult high-grade glioma and pediatric glioma [18–20].

The effectiveness of MBZ in animal models of glioma 
and metastatic TNBC highlights both its potential as an 
alternative oncologic therapeutic and its potential utility 
against TNBC CNS metastasis. The identification of prom-
ising agents in preclinical CNS models would represent 
substantial progress in the investigation and treatment of 
CNS metastases. In the present study, we hypothesized that 
the tubulin-binding properties of MBZ would counter the 
migratory capacity of TNBC, reduce active metastatic dis-
semination (LMD) and, therefore, delay mortality.

Methods

Cell culture

Brain-tropic TNBC MDA-MB-231-BR cell line was a kind 
gift from Dr. J.E. Price (M.D. Anderson Cancer Center, Hou-
ston, TX), and was obtained from brain metastases formed 
after internal carotid (ICA) injection of MDA-MB-231 cells, as 
described [21]. Brain-tropic luminal A MCF7-BR cell line was 
established in our laboratory from MCF7 cells through two 
cycles of ICA injection, selection from brain cell population, 
and in vitro propagation. All cell lines were maintained in Dul-
becco's Modified Eagle Medium (DMEM) supplemented with 

10% fetal bovine serum and antibiotics, and incubated at 37 °C 
in humidified air containing 5%  CO2. The MDA-231-BR and 
MCF7-BR cell lines were transfected with firefly luciferase to 
enable later in vivo luminescence imaging.

High‑throughput cytotoxicity assay

The high-throughput screen of the Sum149PT and 
MCF10a cell lines was conducted as previously described 
[22]. The viability of MDA-MB-231 and MCF7 cell lines 
was determined 24 h and 48 h after compound addition, 
respectively. Cell-Titer Blue assay and Bright-Glow 
luciferase assay (Promega, WI) were used to assess cell 
viability. For all assays, the compounds were tested in a 
7-point dose response at a final concentration of 20, 10, 5, 
2.5, 1.25, 0.625, and 0.3125 μM. We tested the following 
libraries: LOPAC1280, Microsource Spectrum (2000 com-
pounds), and the Biomol ICCB bioactive (480 compounds) 
and FDA-approved library (640 compounds).

Cell viability assay

Cells were seeded at 500–1000 cells/well in 96-well tis-
sue culture plates. MBZ was added to the cells after 16 h 
incubation at 37 °C. The MTS assay (CellTiter Aqueous 
One Assay, Promega, WI) was performed on day 7 follow-
ing drug addition.

Migration assay

Cell migration was evaluated using transwell migration 
assay (6.5  mm diameter inserts with 8  μm pore size, 
polycarbonate membrane (Costar 3422, Corning)). Cells 
resuspended in serum-free media at a density of 500,000/
ml were pretreated with various concentrations of MBZ 
and 200 μl of cell suspension was added to a top cham-
ber of a 24 well plate. Cells were allowed to settle for 
10 min, placed into a lower chamber containing 500 μL 
of complete media (DMEM-10% FBS) and incubated at 
37 °C. At the end of each incubation period, cells were 
washed twice by gently dipping chamber into a beaker 
with cold PBS, fixed with 100% methanol for 10 min at 
-20 °C and stained with crystal violet (0.5% crystal violet 
in 25% methanol/PBS) at room temperature for 10-15 min. 
Stain was removed by dipping the chamber in tap water 
until dye stopped coming off. The membranes were coun-
terstained with 0.3 μM DAPI and rinsed in PBS. Non-
migrated cells in the top chamber were rubbed off with a 
cotton swab stick, making sure that all cells from the edge 
of the membrane in the top chamber were removed. The 
membrane was allowed to dry, carefully excised from the 

Fig. 1  Benzimidazoles as potential treatment for migratory cancers, 
such as TNBC. a Small molecule screen used to identify pharma-
cologic compounds active against TNBC cell line SUM149PT, but 
not against a non-tumorigenic breast cell line MCF10a [22]. b Ben-
zimidazoles are more effective against metastatic TNBC cell line 
MDA-MD-231 compared to a metastatic luminal A breast cancer 
cell line MCF7. (a,b) Diagonal line is placed for agents equally effec-
tive against indicated cell lines. Benzimidazoles are labeled in red. 
c Breast cancer cells with high migratory capacity (such as TNBC 
and HER2 subtype) are more sensitive to tubulin binders. Result 
of a query of the Genomics of Drug Sensitivity in Cancer (GDSC) 
database, which included 53 breast cancer cell lines and microtu-
bule inhibitors docetaxel, paclitaxel, vinblastine, and vinorelbine. d 
GO enrichment terms associated with migration are overrepresented 
in nematodes and underrepresented in flatworms. The data are taken 
from the study [31] comparing gene expression in nematodes vs flat-
worms. e Disruption of ligand-receptor interactions (important for 
cell migration and metastasis) represent a common consequence of 
benzimidazole treatment in mammalian cells (a query of the Drug-
Path database [34], The pathways strongly associated with cell migra-
tion (red color) are affected by the majority of tested benzimidazoles 
(albendazole (A), fenbendazole (F), mebendazole (M), nocodazole 
(N), parmendazole (N), and thiabendazole (T)) and have a low false 
discovery rate (FDR). f Mechanism: Lower concentrations of tubulin 
binders are needed to inhibit migration. Therefore, migratory cancers 
should be more responsive to these drugs

◂
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well, mounted on a microscope slide, and imaged. Alter-
natively, the membrane was incubated in 500 μl of 10% 
acetic acid to dissolve stain with shaking for 10–15 min 
at room temperature. 150 μL was transferred to a 96 well 
plate and read OD at 570 nM (Fig. S1).

Mass spectroscopy detection of MBZ in CSF

Individual analyte and internal standard primary stock solu-
tions (10 mM) were prepared in DMSO. Intermediate stock 
solutions of MBZ and ABZ were prepared separately in 
acetonitrile/water (1:1 v/v) buffer. MBZ intermediate stock 
solution was serially diluted with acetonitrile/water (1:1 
v/v) buffer to obtain standard working solutions to gener-
ate calibration curves. Calibration curves were prepared by 
spiking 10 µL of each of the standard working solutions into 
50 µL of blank mouse plasma or into 10 µL artificial CSF 
followed by the addition of 10 µL internal standard solution 
of ABZ (250 ng/mL for plasma analysis and 25 ng/mL for 
CSF analysis). Calibration curves were prepared fresh with 
each set of samples. Calibration curve ranges for MBZ were 
4 to 4000 ng/mL for plasma and 0.5 to 500 ng/mL for CSF.

50 µL aliquots of plasma or 10 µL aliquots of CSF were 
used for analysis. 10 µL internal standard solution was added 
to 50 µL plasma (or 10 µL CSF) aliquot and mixed by vortex-
ing. 200 µL ice cold solution of methanol/1% acetic acid was 
added to the sample, samples were vortexed and incubated 
1 h at -20 °C to facilitate protein precipitation. After centrifu-
gation, 50 µL (plasma) or 40 µL (CSF) of supernatant was 
transferred to a new vial, diluted with 25 µL (plasma) or 20 
µL (CSF) water, and analyzed by LC–MS/MS.

All analyses were carried out by positive electrospray 
LC–MS/MS using a Waters Acquity I-class UPLC system 
with Waters Xevo TQ-XS triple quadrupole mass spectrom-
eter (RRID:SCR_018510). Chromatographic conditions: a 
Acquity UPLC® BEH C18 2.1 × 50 mm 1.7 µm particle size 
column (Waters Corp., part number 186002352) was oper-
ated at 40 °C at a flow rate 0.25 mL/min. Mobile phases con-
sisted of A: 0.2% formic acid in water and B: 0.2% formic 
acid in acetonitrile. Elution profile: initial hold at 25% B for 
3 min, followed by a linear gradient of 25%-98% in 3 min, 
hold at 98% for 1 min, equilibrate back to 25% B; total run 
time was 7 min. Injection volume was 10 µL. Quantitative 
analysis was done with TargetLynx quantification software 
(Waters Corp.) using an internal standard approach.

Infra‑red spectra identification of MBZ polymorphs

MBZ was procured from Sigma Aldrich (catalog #M2523, 
CAS # 31431–39-7). Infrared spectra were measured using 
a Nicolet iS50 FT/IR spectrometer (Thermo Fisher, MA) 
using an attenuated total reflectance (ATR) accessory 
equipped with a diamond ATR crystal.

Animal model and tumor implantation

All animal studies were approved by the Administrative Panel 
on Laboratory Animal Care of Stanford University. Unilateral 
ICA injections were performed in female NuNu mice (Charles 
River Laboratories) as previously described [23]. Cells were 
injected in a volume of 20 μl: MDA-MB-231-BR (20,000 cells) 
and MCF7-BR (50,000 cells). To prevent cell reflux, both the 
ipsilateral external carotid artery and ipsilateral common carotid 
artery were ligated. The ICA injection method has also been 
used previously to model the spread of helminthic cysts [24].

The mice were randomly divided into treatment and control 
groups once tumor size exceeded 2.5 ×  105 photons/sec on bio-
luminescence imaging (BLI). MBZ was given daily at 50 or 
100 mg/kg as oral voluntary ingestion as previously described 
[25]. These doses have been shown to be effective in murine 
models of glioma [11, 13, 26]. MBZ emulsion in pure sesame 
oil was diluted 1:1 with honey and the resulting suspension was 
diluted 1:1 with 1% hydroxycellulose. Sesame oil was used to 
augment MBZ enteral absorption [26], and hydroxycellulose 
was used to prevent MBZ precipitation. Honey increased ani-
mal motivation to voluntarily eat the suspension [25]. Con-
trol animals received a suspension of hydroxycellulose, pure 
sesame oil and raw honey. The animals were treated with oral 
MBZ or control solution daily for the first 21 days and then 
every 48 h thereafter. Twice-weekly BLI provided quantitative 
in vivo approximates of tumor size, and Kaplan–Meier curves 
assessed differences in survival. Mice were monitored daily 
for signs of drug toxicity. For further immunohistochemistry 
analyses brain tissues were perfused with PBS, dissected and 
frozen in Optical Cutting Tissue embedding medium.

Immunohistochemistry

Frozen sections (10 μm) were dried, fixed in 4% paraformalde-
hyde, quenched in 50 mM NH4Cl and permeabilized by 0.5% 
Triton X-100. MDA-MB-231-BR3 cancer cells were detected 
using antibodies against human vimentin (Millipore, CBL202) 
followed by a secondary Alexa Fluor 488 anti-mouse Fc-gamma 
subclass 2a specific antibody (Jackson ImmunoResearch Labs, 
115–545-206). The following secondary antibodies were used 
in other applications—Alexa Fluor 488, Alexa Fluor 594, Alexa 
Fluor 568 (Molecular Probes). MCF7 cells were detected by 
anti-Pan-cytokeratin antibody (Novus Biologicals, NBP2-
33200) or mouse monoclonal anti-human estrogen receptor 
alpha antibody (Santa Cruz Biotechnology, sc-8002-AF594). 
Endothelial cells were detected using rat anti-mouse CD31 
(BD Pharmingen, 550274) or rat anti-mouse PV1 (BioRad, 
MCA2539T) antibodies. Cell nuclei were detected with DAPI. 
Whole skulls were fixed for 72 h using a combined fixation and 
decalcification protocol (Cal-Ex II, Fisher Scientific, CS511-
1D), sectioned and stained with hematoxylin and eosin.
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Results

Benzimidazoles as potential treatment 
for migratory cancers, such as TNBC

Initial small molecule screen performed as part of a high-
throughput screen [22] revealed that several benzimidazole 
drugs selectively inhibited growth of a TNBC cell line, 
SUM149PT, in comparison to a non-tumorigenic epithe-
lial breast cell line, MCF10a (Fig. 1a). In addition, this 

pharmacologic class exhibited greater inhibition of growth 
of another TNBC cell line, MDA-MB-231, compared to a 
luminal A breast cancer cell line MCF7 (Fig. 1b). To test 
if selectivity of benzimidazole towards TNBC (Fig. 1a, b) 
was based on their ability to bind tubulin, we quierried the 
Genomics of Drug Sensitivity in Cancer (GDSC) database 
[27] for data on other tubulin binding drugs. We found that 
sensitivity of TNBC cell lines to clinically relevant tubulin 
binders from taxane and vinca alkaloid families was signifi-
cantly higher compared to luminal breast cancer isotypes 

Fig. 2  Mebendazole (MBZ) as a potential treatment against leptome-
ningeal cancer spread. (a, b) Sensitivity to MBZ of TNBC cell line 
MDA-MB-231 and of hormone receptor positive cell line MCF7 (a), 
and of their brain-tropic derivatives MDA-MB-231-BR and MCF7-
BR (b). Brain-tropic MDA-MB-231-BR cell line is slightly more 
resistant to MBZ than the parental cell line MDA-MB-231: MDA-
MB-231-BR (IC50 = 0.16  µM), MDA-MB-231 (IC50 = 0.14  µM), 
MCF7-BR (IC50 = 0.19  µM) and MCF7 (IC50 = 0.19  µM). c Infra-
red spectra (FT-IR) of MBZ polymorphs revealing the presence 

of MBZ polymorph C (MBZ-C) and polymorph B (MBZ-B) in the 
MBZ from Sigma, CAS # 31,431–39-7. d MBZ given at an oral 
dose of 100  mg/kg reaches therapeutic concentrations in the cer-
ebrospinal fluid (CSF) of NuNu mice (median [MBZ] = 105.9  ng/
ml ~ 0.36 µM). Plasma MBZ concentrations represent total quantity of 
MBZ, and CSF concentrations represent free, unbound MBZ. A hori-
zontal line at 59 ng/mL corresponds to the IC50 = 0.20 µM of MBZ. 
MDA231 = MDA-MB-231. MDA231-BR = MDA-MB-231-BR. Sig-
nificance: ***, p < 0.001, NS = not significant
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(Fig. 1c). In addition to TNBC, these tubulin binders sig-
nificantly reduced the growth of another migratory breast 
cancer subtype, HER2 (Fig. 1c).

A clue about pathways affected by benzimidazoles in 
TNBC may come from the helminths’ biology: selective 

binding of benzimidazoles to helminths’ tubulin has been 
found to correlate with high efficacy towards helminths and 
little toxicity towards mammalian cells [28–30]. In addi-
tion, benzimidazoles had higher efficacy against parasitic 
roundworms (Phylum Nematoda) than that of the flatworms 
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(Phylum Platyhelminthes) [28] (Table S1). To find which 
tubulin-dependent processes might be associated with higher 
sensitivity to benzimidazoles in nematodes compared to flat-
worms, we querried a dataset with gene expression data on 
56 nematodes and 25 flatworms [31]. Our analysis revealed 
that Gene Ontology (GO) enrichment terms associated 
with migration within extracellular matrix (ECM), such as 
cytokine activity, basement membrane, adhesion, ECM, etc., 
were overrepresented in nematodes and underrepresented in 
flatworms (Fig. 1d). These GO terms are known to be associ-
ated with invasion and penetration of ECM or other tissue 
barriers during metastatic dissemination [32]. Of note, the 
free-living nematode Caenorhabditis elegans that has been 
widely used to model parasitic nematodes, is now being used 
as an in vivo model for the invadopodia-mediated metastatic 
cancer invasion through the basement membrane [33].

A subsequent query of the Drug-Path database (http:// 
www. cuilab. cn/ drugp ath) [34], revealed cell migration as 
significantly impacted by benzimidazoles in mammalian 
cells. The biological pathways affected by six benzimida-
zoles found in the database converged into common path-
ways of cell receptor-ligand interactions (Fig. 1e, Table S2), 
and included interactions with cytokines and ECM. Addi-
tionally, the gene ontology analysis of genes induced 
by mebendazole in TNBC cell lines MDA-MB-231 and 
SUM159 releaved overrepresentation of GO terms (13 out 
of 38) directly related to migration (Additional File 3 in 
[14]). Thus, in metastatic TNBC cells, as in the nematodes’ 
developing larvae, benzimidazoles might target processes 
necessary for cell migration.

An often overlooked feature of tubulin binders’ action 
that may provide explanation to their specificity to migratory 
cancers, such as TNBC, is that the concentrations of tubulin 
binding drugs that are required to affect cell migration are 
lower than the concentrations required to trigger cytotoxic 

effects (Fig. 1f) [35–38]. At low, subtoxic, concentrations 
tubulin binders inhibit microtubule dynamics and, as a 
result, the microtubules are not able to remodel in response 
to demands imposed by changes in cell shape that occur 
during metastatic cell migration/invasion (Fig. 1f). At high, 
toxic concentrations, tubulin binders begin to interfere with 
tubulin polymerization, and as a result inhibit cell division, 
leading to cell death.

Given that benzimidazoles target migration-associated 
pathways, have sufficient CNS bioavailability, and are active 
against TNBC, we hypothesized that these drugs might be 
particularly effective against TNBC CNS metastasis. We 
chose to investigate the efficacy of benzimidazoles in our 
previously described animal model of TNBC brain metasta-
sis with a documented spread to leptomeninges [23].

Mebendazole (MBZ) as a potential treatment 
against TNBC LMD

MBZ is one of the most common benzimidazoles commer-
cially available and has been previously studied in a vari-
ety of cancer models. The MDA-MD-231  (IC50 = 0.14 µM) 
cell line exhibited higher sensitivity to MBZ compared to 
MCF7  (IC50 = 0.19 µM), which was consistent with the high-
throughput screen results (Fig. 2a). Sensitivity to MBZ was 
not different between brain-tropic MCF7-BR and MDA-MB-
231-BR cells (Fig. 2a,b).

MBZ is commonly manufactured as a mixture of sev-
eral different polymorphs that are all variably bioavailable 
and differentially penetrant of the blood–brain-barrier [13]. 
FT-IR analysis of two different MBZ manufacturers revealed 
Polymorph C (in black) as the predominate polymorph in 
one sample (Sigma Aldrich Cat# M2523), as identified by 
the location of carbonyl and amine functional group absorb-
ance (Fig. 2c). Polymorph B (in red) was the predominate 
polymorph in the sample from the seco nd manufacturer 
(Sigma Aldrich Cat# 1,375,502). Since polymorph C was 
previously described to have superior blood–brain-barrier 
penetrance and bioavailability in brain, we used MBZ from 
Sigma Aldrich Cat# M2523 for all subsequent experiments. 
CSF and plasma samples taken 4 h after oral MBZ adminis-
tration at a 100 mg/kg dose reached therapeutic concentra-
tions (Fig. 2d), with an average CSF/plasma ratio of 0.09.

MBZ reduced the migration of TNBC cell lines 
MDA‑MB‑231 and MDA‑MB‑231‑BR

Like most benzimidazoles, the mechanism of action of 
MBZ hinges on selective binding to tubulin of helminths 
[28] (Table S1). We hypothesized above that benzimidazoles 
may be effective against migrating cancer cells in the same 
way they are effective against migrating cells in the develop-
ing nematode. CellToPhenotype predictor developed by Nair 

Fig. 3  MBZ reduces the migration of TNBC MDA-MB-231 and 
MDA-MB-231-BR cells. a, b TNBCs have higher migratory capac-
ity compared to other breast cancer subtypes. Migration scores 
from Nair et  al. [7] were compared among breast cancer subtypes 
in TCGA patient data (a) and cell lines (b). c, d MDA-MB-231 and 
MDA-MB-231-BR have higher migration capabilities than MCF7 
and MCF7-BR cells. Migratory capability of MDA-MB-231 cells 
increases upon acquiring brain-tropic status and is effectively inhib-
ited by MBZ. Neither MCF-7 nor MCF-7-BR migrated significantly 
during 20 h. (c) Representative inverse fluorescence images of DAPI-
stained membranes from Boyden chamber during 20 h. DAPI-stained 
cell nuclei are shown as dark gray spots in the background of white 
membrane pores. Scale bar: 200  μm. (d) Quantitation of migration 
in MCF7, MDA-MB-231, and brain-tropic MCF7-BR and MDA-
MB-231-BR cells from (c). The numbers of migrated cells are nor-
malized to survival from (e). e Survival during 20 h treatment with 
MBZ. Plating efficiencies of untreated cell lines were not significantly 
different. MDA231 = MDA-MB-231, MDA231-BR = MDA-MB-
231-BR. FOV = field of view. Significance analysis: ANOVA, **, 
p < 0.01, ***, p < 0.001, ****, p < 0.0001

◂
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et al. [7] applied to both the TCGA patient tumor samples 
(Fig. 3a) and to breast cancer cell lines isolated from patient 
tumors (Fig. 3b) identified TNBCs as the most migratory 
cancers compared to other breast cancer subtypes. Support-
ing these results, we showed using in vitro migration assays 
that the triple-negative MDA-MB-231 cell line (migration 
score = 14.8 by the CellToPhenotype predictor [7]) exhib-
ited notably greater migration capability than the luminal 
A MCF7 (migration score = 10.5) cell line (Fig.  3c,d). 
Importantly, the migratory capability of the MDA-MB-231 
cells increased even further upon acquiring brain-tropic 
status, while the migration of both MCF7 and MCF7-BR 
remained low (Fig. 3c,d). During the 20-h migration period 
MBZ effectively inhibited migration of both MDA-MB-231 
and MDA-MB-231-BR cell lines (Fig. 3c,d), while cell sur-
vival was only modestly affected by MBZ in all cell lines 
(Fig. 3e). Nair et al. [7] have previously demonstrated that 
cytoskeletal drugs (such as tubulin binder MBZ) are more 
effective against cancers with high predicted migration 
capacity. Consistently, MBZ has been shown to slow down 
tumor growth and/or prevent metastatic spread of TNBC 
in animal models using multiple cell lines [14, 39, 40]. To 
our knowledge, no studies compared MBZ effect on tumor 
growth and/or survival for distinct breast cancer isotypes. 
Therefore, we decided to proceed with comparative testing 
of MBZ and hypothesized that MBZ would be more effec-
tive in the MDA-MB-231-BR-based model of CNS metas-
tasis compared to the MCF7-BR-based one.

MBZ effect in mouse model of TNBC CNS metastasis

Previous studies demonstrated that migration was a better 
predictor of breast cancer patient survival than proliferation 
[7]. The strong inhibitory effect of MBZ on migration of 
the triple-negative MDA-MB-231-BR (Fig. 3c,d) implied 
that MBZ might be more effective against active metastatic 
dissemination. To produce CNS metastasis, cells were 
injected using the ICA injection method (Fig. 4a), which 
we have previously shown to result in leptomeningeal spread 
[23] similar to human LMD (Fig. 4b,c). We chose the ICA 
method over the more widely used intra-cardiac method to 
produce CNS-specific metastasis clear of systemic spread 
which often accompanies the intra-cardiac injection.

To identify the MDA-MB-231-BR cells in mouse brain we 
used antibody against human vimentin (hVim), a marker of 
epithelial-to-mesenchymal transition that is highly expressed 
in the MDA-MB-231 cells [41] (Fig. 4d). MCF7-BR cells 
were identified by staining with antibodies against pan-
cytokeratin (PanCK) or human estrogen receptor (ESR1). 
Both cell lines produced metastases in leptomeningeal space, 
as shown by the location of cells relative to the pia basement 
membrane identified by anti-laminin (Lam) antibody staining 
(Fig. 4e,f). Parenchymal involvement was different between 

the cell lines, with MCF7-BR cell line producing more globu-
lar and less invasive metastases than the MDA-MB-231-BR 
cell line (Fig.S2). Presence of parenchymal metastases is con-
sistent with the clinical observations, where in up to 83% of 
LMD patients, leptomeningeal metastases coexist with paren-
chymal brain metastases [3, 4, 42]. LMD displayed similar 
gross heterogeneity in both models, consisting of large bulky 
metastases, small metastases (< 50 cells/cluster) and a single-
cell spread [23] (Fig.S3). Compared to MDA-MB-231-BR, 
there were very few single-cell/small metastases present in 
the MCF7-BR population (Fig.S3). In both models, single 
cell- and small metastasis populations were confined to lep-
tomeningeal space, while large metastases were found both in 
leptomeningeal and parenchymal compartments. Finally, as in 
human LMD, in both models some animals developed spinal 
metastases (Fig. 4g,h).

The experimental timeline is shown in Fig. 5a. MBZ 
had a notable effect on the growth of MDA-MB-231-BR 
tumors at both 50 mg/kg and 100 mg/kg doses (Fig. 5b,c 
and Fig.S4). No difference in mean BLI signal was observed 
between the 50 mg/kg and 100 mg/kg groups. Compared to 
the control, MBZ treatment significantly extended survival 
in the MDA-MB-231-BR model, with no statistically signifi-
cant difference in survival between 50 mg/kg and 100 mg/
kg groups. In the MCF7-BR model, neither tumor growth 
(Fig. 5e) nor survival (Fig. 5f) were significantly affected 
by MBZ treatment (50 mg/kg). Histological examination 
of brain sections revealed that MBZ effectively reduced 
metastatic dissemination in the MDA-MB-231-BR model, 
with a significant effect on single cell- and small metastasis 
populations (Fig. 5g). MBZ effect on these populations in 
the MCF7-BR model was not discernible, possibly due to 
their notably ((20–50)-fold) lower abundance (Fig. 5g and 
S3b) compared to the MDA-MB-231-BR model (Fig. 5g and 
S3a). Large metastases were slightly (but not significantly) 
affected by MBZ in the MDA-MB-231-BR model, with no 
effect detected in the MCF7-BR model (Fig. 5g). Animal 
weights were not significantly different between treated 
and control groups (Fig.S5 and Table S3), suggesting low 
toxicity.

Discussion

LMD is a devastating diagnosis for patients with TNBC. 
Given the universally poor prognosis and limited efficacy 
of standard-of-care treatments, the investigation of alterna-
tive therapies for LMD carries increased importance. Drug 
repurposing confers obvious advantages in time-to-approval, 
cost, and safety. We identified MBZ as a drug that through 
its ability to hamper dissemination of highly migratory 
TNBC cells in leptomeningeal space, may, therefore, be a 
suitable candidate for LMD treatment.
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MBZ was developed in the 1960s to treat a range of gas-
trointestinal helminth infections, and it is still one of the 
most commonly used medications in the world. MBZ safety 
has been evaluated in 6276 subjects in 39 clinical trials 
[18]; it can be taken safely in humans at doses as high as 
200 mg/kg/day [18, 43, 44] and in rare cases, has been used 

in humans to treat CNS infections, including neurocysticer-
cosis and echinococcus [17, 45, 46]. Indeed, its relatively 
small size and lipophilic properties render it an appropriate 
agent to be repurposed for CNS pathologies [10, 13, 20].

MBZ was successfully tested in multiple preclinical 
tumor models, including glioma [11, 13, 47] and TNBC 

Fig. 4  The internal carotid injection (ICA) model of brain metastasis 
describes leptomeningeal disease (LMD). a Schematics of an internal 
carotid artery injection of tumor cells. b H&E-stained section from 
mouse brain affected by LMD. Arrows point to cancer cells in lep-
tomeningeal space. c Patient brain T1W + C MRI sequence shows the 
anatomical location of LMD (red arrow). (d-h) Immunofluorescence 
images depict dissemination of neoplastic cells into leptomeningeal 
space. BP = brain parenchyma. Arrows point to cancer cells in lep-
tomeningeal space. d, e Vimentin, a marker of epithelial-to-mesen-
chymal transition, is highly expressed in MDA-MB-231 cells. Anti-

body against human vimentin (hVim) identifies MDA-MB-231-BR 
breast cancer cells. (f) Antibody against pan-cytokeratin (PanCK) 
identifies MCF7-BR breast cancer cells. e, f Antibody against laminin 
(Lam) shows the location of pia. g Bioluminescence images reveal 
intracranial disease and spinal dissemination (red arrows). (e) Spinal 
metastases identified by bioluminescence were verified by subsequent 
H&E staining. Right panel is a magnified version of a region indi-
cated in the left panel. Black arrows point to the same spinal metasta-
sis in the 4 × image and a magnified (× 20) image
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[14, 39]. Several active and/or recruiting clinical trials 
investigating the anticancer effect of MBZ, alone or in 
combination with other drugs, are currently registered at 
clinicaltrials.gov [18, 19]. This includes the recent Phase 
I study conducted by Patil et al. exploring the safety of 
high-dose MBZ among patients with recurrent glioblas-
toma [19]. In 11 patients, no dose-limiting toxicity was 
reached, and the rate of adverse events was low, even 
when used in combination with temozolomide or lomus-
tine. Other studies, including those involving high-grade 
glioma, are actively enrolling patients.

Our study is the first effort to test the efficacy of the drug 
in the treatment of CNS metastasis. We were able to dem-
onstrate that the oral administration of MBZ, at both 50 mg/
kg and 100 mg/kg doses, was able to slow tumor growth 
and increase survival in an aggressive preclinical model of 
TNBC CNS metastasis. Importantly, our dosing protocol, in 
which mice voluntarily consumed MBZ in a mix of sesame 
oil and honey, reached therapeutic concentrations in the 
CSF, and effectively reduced the leptomeningeal dissemina-
tion in MDA-MB-231-BR model. The median CSF concen-
tration was 106 ng/mL for animals treated at the 100 mg/kg 
dose, which was almost twice the  IC50 of 56 ng/mL. While 
CSF concentrations at the 50 mg/kg dose were not meas-
ured, animals treated at that concentration still experienced 
slower tumor growth and increased median survival, both 
at statistically significant levels, suggesting a robust thera-
peutic effect.

Bai et al. [13] reported the variability in the efficacy of 
MBZ across different batches, emphasizing its dependence 
on the polymorph content. Furthermore, bioavailability 

and efficacy of MBZ are known to be influenced by intake 
of fat, which strongly facilitates benzimidazole absorption 
[48]. These findings suggest that these factors alone could 
introduce substantial variability in drug efficacy across 
studies and potentially impact the outcome of clinical tri-
als. Therefore, the dependence of MBZ bioavailability on 
the drug administration protocol (particularly, fat content) 
and dosage formulation should be taken into account. For 
instance, in our study MBZ consisted of highly bioavail-
able polymorphs B and C, which are optimal for maxi-
mum efficacy. Yet, the plasma levels of MBZ in our study, 
albeit therapeutically significant, were notably lower than 
those reported by Bai et al. [13]. The observed disparity in 
plasma MBZ levels compared to the reference study [13] 
may have resulted from significantly lower fat uptake per 
MBZ dose in our case.

Our data suggest that MBZ targets cancers with high 
migratory capacity, and may be particularly effective when 
these cancers spread into leptomeningeal space, where can-
cer cell migration could be further enhanced in response to 
abundant cytokine/chemokine signaling [49]. We’ve shown 
that among breast cancer subtypes, the TNBCs had the high-
est migration potential. Consistent with the strong inhibitory 
effect of MBZ on migration of TNBC MDA-MB-231-BR 
cells, MBZ extended survival of mice with TNBC LMD. 
The non-migratory luminal A MCF7-BR cells produced 
less aggressive CNS metastasis, and were non-responsive 
to MBZ both in in vitro migration assay and in the in vivo 
model.

Conclusion

In summary, MBZ was demonstrated to be a safe and effec-
tive oral agent in an aggressive animal model of TNBC 
CNS metastasis. MBZ may function by selectively target-
ing migrating tumor cells. These findings are concordant 
with previous efforts involving MBZ and CNS pathology 
and further support the drug’s potential utility to hamper 
leptomeningeal dissemination.
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Fig. 5  MBZ effectively reduces leptomeningeal dissemination in 
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the BLI signal of (2 – 5) ×  105 for MDA-MB-231-BR cell line and 
(5–10) ×  105 for the MCF7-BR cell line. b Representative biolumines-
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MBZ slows metastatic growth as detected by bioluminescence imag-
ing (c) and improves survival (d) in the MDA-MB-231-BR mouse 
model. Number of animals per group: control (n = 11), 50  mg/kg 
MBZ (n = 7), 100 mg/kg (n = 9). e, f MBZ shows no effect on meta-
static growth (e) and survival (f) in the MCF7-BR model. Number of 
animals per group: control (n = 6), 50  mg/kg MBZ (n = 5). Experi-
ments in (c, e) were analyzed using repeated measures method. Post 
hoc pairwise comparisons were performed using a Tukey adjustment 
for multiple comparisons. Black arrows in (c, e) point to a day of 
treatment start. g MBZ effectively reduces leptomeningeal dissemina-
tion (single cell spread and small metastases) in MDA-MB-231-BR 
model, with no significant effect on big metastases (see Fig.  S3 for 
images). Small metastases are defined as clusters of cells with ≤ 50 
cells/cluster without co-option of blood vessels. Data collected from 
n ≥ 3 mice. Single-cell and small metastatic populations are (20–50)-
fold lower in MCF7-BR compared to MDA-MB-231-BR CNS metas-
tasis. Data are mean ± SD. Significance analysis: t-test;*, p < 0.05, 
***, p < 0.001, NS = not significant
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