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Abstract 

Design Development for Steel Strongback Braced Frames  

to Mitigate Concentrations of Damage 

by 

Barbara Gwynne Simpson 

Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

University of California, Berkeley 

Professor Stephen A. Mahin, Chair 

 

Steel braced frames are characteristically efficient seismic force-resisting systems. However, 

multi-story steel braced frames tend to concentrate demands in one or a few stories in response to 

severe ground shaking. Brace buckling and yielding results in a reduction in story strength and/or 

stiffness. Unless a mechanism exists to re-distribute the inelastic demands to other stories, 

demands tend to concentrate in the story where the inelastic response was initiated, indicative of 

story mechanism behavior. 

Research has identified the advantages of using pivoting seismic force-resisting systems, 

herein termed strongback-braced frames, to mitigate story mechanism behavior. Strongback-

braced frames employ an essentially elastic truss, or “strongback”, that provides an explicit 

mechanism of re-distributing demands to adjacent stories. Yielding and energy dissipation is 

provided through inelastic actions, or fuses (e.g., through brace yielding/buckling and/or beam 

plastic hinging). Forces and moments developed in these fuses are transferred vertically to adjacent 

stories by the flexural stiffness and strength of the strongback. As such, strongback-braced frames 

are expected to result in more uniform drift distributions, reduced peak inelastic demands, and 

improved design flexibility compared to conventional seismic force-resisting systems. 

Despite being employed successfully in both research and practice, systematic assessment 

of the strongback’s behavior and practical design methods have not been developed or 

validated. Since the behavior of strongback systems is not characterized by the formation of story 

mechanisms, prior studies have found it difficult to proportion the elastic members in the 

strongback truss and have recognized detailing issues related to large deformation demands 

induced in the fuses. As such, a series of investigations were aimed at understanding the dynamic 

behavior and seismic performance of steel strongback-braced frames.  

Archetype designs were numerically analyzed to characterize the seismic demands in the 

strongback elements. A four-story strongback-braced frame was used to benchmark the dynamic 

behavior observed during nonlinear dynamic analysis. Improved numerical models were calibrated 

to more realistically simulate the buckling-restrained brace response and to characterize the 

modeling parameters influencing brace buckling and low-cycle fatigue. The FEMA P695 
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methodology was used to assess potential design methods based on collapse performance. 

Extensive parametric studies were carried out on strongback geometries with a range of bracing 

configurations, ground motion characteristics, and design alternatives. 

Higher mode effects were identified as the cause of substantial force amplification in the 

elastic strongback truss. Unlike typical yielding systems where force demands are limited by the 

capacity of the fuses in every mode, force demands in the strongback are characterized by a 

yielding first-mode “pivoting” and elastic higher-mode “bending” force demands. Since the 

strongback is designed to remain elastic in all modes, it can exhibit significant strength and 

stiffness in higher mode bending. Under the second and higher modes, the strongback truss 

remains elastic and continues to accumulate force demands after the fuses have yielded and as the 

ground shaking intensifies. These force demands in the strongback members can be significantly 

larger than those estimated per traditional capacity design assuming first mode-only demands.  

The addition of a strongback results in improved dynamic response from typical yielding 

systems, including a more uniform drift profile compared to reference buckling-restrained braced 

frames. Based on this research, this study proposes recommendations for the design, analysis, and 

modeling of strongback-braced frames. Simplified static methods to estimate the dynamic 

demands in the strongback truss are also proposed, including modal pushover and modal 

enveloping analysis methods. 
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1 Introduction 

1.1 BACKGROUND 

Steel braced frames are inherently stiff systems that are naturally efficient in resisting seismic 

demands. During earthquakes, concentrically braced frames dissipate energy through tensile 

yielding and compression buckling of the braces. Successful designs recognize and account for the 

re-distribution of forces as braces buckle in compression, yield in tension, and subsequently lose 

strength after buckling. But reliance on brace buckling can be less than ideal, and braced frames 

can exhibit a number of undesirable damage modes, such as deterioration of brace compression 

capacity, local buckling of the braces, and rupture of the connections and members.  

To attain acceptable behavior, diagonal braces are specially detailed to exhibit a stable 

inelastic response. The introduction of special ductile-detailing, buckling-restrained braces, and 

capacity-design principles in modern building codes has resulted in improved brace deformability 

and protection of critical connections and elements. However, though these and other design 

recommendations have improved their reliability and ductility, conventional steel braced frames 

are still susceptible to concentrations of demand in one or a few stories [e.g., Uang and Bertero 

(1986), Foutch et al. (1987), Khatib et al. (1988), Sabelli (2001), Tremblay (2003), Rai and Goel 

(2003), Hines et al. (2009), Uriz and Mahin (2008), Chen and Mahin (2012), Lai and Mahin (2013), 

Simpson and Mahin (2018a), etc.], indicative of story mechanism behavior like that shown in 

Figure 1.1(a). 

Story mechanisms in braced frames stem from the strength deterioration of the buckled 

braces and resulting reduction in story strength and stiffness. Though this tendency is reduced, the 

low post-yield stiffness in buckling-restrained braces can cause analogous behavior in buckling-

restrained braced frames (BRBFs) (Tremblay, 2003; Chen & Mahin, 2012). Unless a mechanism 

exists to redistribute yielding to other stories, inelastic demands tend to concentrate in the story 

where the braces buckled or yielded first. These concentrations of demands can increase localized 

structural and nonstructural damage, increase �Δ effects and residual displacements, and render 

repairs impractical or uneconomical. 

Providing an alternative vertical force path to adjacent stories can aid in distributing these 

inelastic demands. Studies employing the continuity of lateral or gravity columns in conventional 

(Ji et al., 2009; MacRae et al., 2004) or multi-tiered [e.g., Imanpour et al. (2016b)] systems have 

demonstrated that the re-distribution of demands to adjacent stories can be accomplished through 

column flexural stiffness and strength. Likewise, dual systems with back-up moment-resisting 
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frames utilize frame action to compensate for the loss of story shear capacity due to brace buckling 

(Whittaker et al., 1990; Kiggins & Uang, 2006).  

Though the flexural strength and stiffness of beams and columns can implicitly re-

distribute demands, such methods raise issues related to the sizing of such members and detailing 

of the load path in the case where gravity columns are expected to provide additional flexural 

stiffness (Ji et al., 2009; Imanpour et al., 2016a). If the implicit mechanism is insufficient or 

unreliable, alternative bracing configurations, like zipper (Khatib, 1988) or tied eccentrically 

braced frames (Martini et al., 1990), provide an explicit mechanism to distribute yielding. 

Similarly, the inclusion of an essentially elastic truss, or strongback, provides a defined force path 

that can delay or prevent story mechanisms; see Figure 1.1(b).  

The strongback-braced frame (SBF) is a hybrid of a conventional inelastic system and an 

essentially elastic steel truss. Input seismic energy is dissipated by supplemental fuses typical of a 

traditional system; e.g., through primary yielding and/or buckling in the bracing elements and 

secondary flexural yielding in the beam links. The strongback truss is then proportioned to remain 

essentially elastic, resulting in a relatively stiff and strong vertical spine. Axial forces and bending 

moments developed in the fuses are transferred vertically to adjacent stories through the 

strongback.  

The strongback is not intended to provide supplemental lateral strength. Rather, the spine 

pivots about its base to maintain an imposed first-mode shape. Inelastic demands are not eliminated 

but distributed and averaged, resulting in smaller peak and residual drifts distributed across the 

frame height, increased behavior predictability, and reduced probability of yellow or red tagging 

following an earthquake.  

The flexibility of brace location inherent to the strongback system provides the engineer 

with a choice of a number of arrangements to bypass potential geometric or mass irregularities; 

see Figure 1.2. Provided the strongback is strong enough to bridge across multiple stories, one or 

more of the inelastic braces could be removed to satisfy architectural constraints or to compensate 

for un-anticipated failures in the fuses; see Figure 1.2(c). Inelastic braces can also be dis-

proportionally sized to their expected demand-to-capacity ratios, allowing the same inelastic brace 

sizes to be used across multiple stories. One or more strongbacks separated from the braced bay 

can be used to rehabilitate existing buildings (Pollino et al., 2017); see Figure 1.2(d). Depending 

on building height, the strongback truss could also be efficiently designed as a deep column or 

shear wall (Qu et al., 2012; Djojo et al., 2014). 

In research, numerical analyses (Merzouq & Tremblay, 2006; Tremblay & Poncet, 2007; 

Lai & Mahin, 2013) and one experimental test (Simpson & Mahin, 2018b) have demonstrated that 

strongbacks can successfully distribute inelastic demands and mitigate concentrations of damage, 

even after degradation in stiffness and strength in the opposite inelastic braces. Strongback-braced 

frames have also been implemented and constructed in practice with comparable cost to 

conventional systems (Mar, 2010; Panian et al., 2015) and greater design flexibility (Osteraas et 

al., 2017).  

However, none of these prior investigations have identified a dependable, economical, and 

practical design method for strongback-braced frames. Numerical studies have been preliminary, 

have found it difficult to identify appropriate strongback sizes, and have recognized practical 

detailing issues related to large deformation demands induced by the strongback truss. Limited 
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experimental studies have been loaded quasi-statically and have not included the system’s dynamic 

response. Trial-and-error designs developed in practice have been iterative in nature and validated 

through nonlinear dynamic analyses; requiring extensive data reduction, modeling expertise, and 

computational expense. Such methods also require expert knowledge of earthquake engineering 

within the context of dynamic response history analysis.  

While an iterative nonlinear dynamic analysis approach would be capable of simulating 

transient dynamic demands, it is not a design method that would be regularly used by design 

engineers for most steel structures. Moreover, an iterative design approach still needs a preliminary 

design to initiate the iteration process. As such, this study seeks to systematically characterize the 

strongback’s dynamic response and to develop and evaluate simple design and analysis methods 

for strongback-braced frames. 

 

 
(a) (b) (c) 

+ – inelastic brace � – beam link 

: – inelastic column 5 – essentially elastic (strongback) brace 

� – beam outside link 	 – strongback column ; – vertical tie strut 

Figure 1.1. (a) weak story mechanism; (b) strongback mechanism; (c) member labels. 
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(a) (b) (c) (d) (e) 

Figure 1.2. Strongback brace configurations. 

 (a) inverted-V or chevron, (b) double story-X, (c) intermittent chevron, (f) separated bay, (e) offset scheme. 

1.2 DESIGN PHILOSOPHY 

Strongback systems are characterized by an essentially elastic strongback designed to engage the 

designated fuses, distribute demands uniformly, and mitigate story mechanism behavior. However, 

though the strongback system has been employed successfully in both research and practice, its 

dynamic behavior has not been systematically assessed or evaluated. Just as importantly, practical 

code-oriented design methods have not yet been developed or validated. 

To engage the opposite fuses, the strongback must be designed to have appropriate strength 

and stiffness. Figure 1.1(b) shows the desired plastic mechanism for an SBF. Designated 

deformation-controlled actions, or fuses, are those actions intended to dissipate energy in the 

strongback system and are designed with ductile detailing. The remaining actions are considered 

force-controlled – those actions that are protected and designed to remain essentially elastic. The 

deformation-controlled and force-controlled designated actions for strongback-braced frames 

utilizing BRBs are listed in Table 1.1. Member designations are labeled in Figure 1.1(c). 

For the SBF systems studied herein, the strongback portion of the system should be 

proportioned so that [i] primary inelastic activity is accomplished through axial yielding and/or 

buckling in the designated inelastic braces and [ii] secondary inelastic activity is accomplished 

through flexural yielding in the beam links. Provided the strongback is strong and stiff enough, 

axial forces and bending moments induced by the inelastic braces and inelastic beam links would 

then be transferred vertically to adjacent stories through the strongback.  

Considering these designated actions, conceptually, the following design concepts apply 

to inelastic and strongback elements in strongback braced frames:  

1. the ductile yielding elements – e.g., buckling-restrained braces (BRBs), beam links, or 

other fuses – are proportioned for load combinations including seismic loads reduced by 

a response modification, or <, coefficient;  

2. inelastic deformations, concentrated within the yielding core of the BRB and beam links, 

are checked against acceptable limits;  
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3. the remainder of the system is designed to remain essentially elastic based on the 

expected capacity of the yielding elements and the demands generated from the ground 

motion. 

The required strength of inelastic braces and beam links in [1] can be determined by conventional 

analysis methods for reduced seismic forces as required by ASCE-7-16 (2016) or an equivalent 

building code. However, a supplemental analysis is needed to determine the required strength for 

strongback elements, connections, and force-controlled actions in the beams and columns.  

This study addresses the development of the supplemental analysis needed to determine 

the required strength/stiffness for the strongback portion of the system. It focuses on the 

development of guidelines consistent with code-based design approaches and basic performance 

criteria. To achieve this objective, an analytical and numerical study was undertaken to: (i) 

characterize the strongback’s behavior, (ii) optimize the strongback’s required strength and 

stiffness; (iii) simplify estimation of the strongback-force demands, and (iv) propose simple design 

methods for multi-story strongbacks. 

 

Table 1.1. Deformation- and force-controlled actions. 

Action 
Deformation-

Controlled Action 
Force-Controlled 

Action 

Inelastic Brace P - 

Strongback Brace - P 

Strongback Tie - P 

Beam M P, V 

Column M a P 

Connection - M, P, V 

M = moment; P = axial, V = shear 
a At column base only. 

1.3 RESEARCH PROGRAM OBJECTIVES 

The overarching goal of this research is to investigate and develop analysis methods for estimating 

demands in the strongback elements. To this end, the study: 

• identifies promising design approaches and other issues of concern.  

• develops optimized designs consistent with these concerns and conducts nonlinear 

dynamic analyses to characterize behavior and performance.  

• Investigates the ability of various simple and refined analysis methods to estimate demands 

extracted from the nonlinear dynamic response. 
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The study focuses on the development of simple and robust analysis tools for design that have a 

physical basis in the strongback’s dynamic response without relying on nonlinear dynamic 

analysis.  

1.4 REPORT ORGANIZATION 

This study is organized into 9 chapters. Following the introduction, Chapter 2 provides a literature 

review of the relevant research on strongback-braced frames and similar systems. Chapter 3 

presents an analytical investigation of a simple, one-story strongback system. This simple frame 

was used to define the parameters influential to the strongback’s behavior. Special attention was 

paid to optimization of an offset bracing configuration to reduce deformation demands caused by 

the kinematics of the strongback system; see Figure 1.2(e). Chapter 4 describes the numerical 

model used to investigate the strongback’s behavior under nonlinear dynamic analyses, including 

development of the modeling method used for the strongback and buckling-restrained inelastic 

braces. Chapter 5 describes the optimization process used to design a four-story benchmark 

strongback-braced frame. Comparison of the benchmark’s performance was made to a reference 

BRB system. Chapter 6 presents a parametric study investigating the sensitivity of peak dynamic 

response quantities to different design alternatives. The analytical investigation presented in 

Chapter 3 is extended to multi-story strongback systems in Chapter 7. This chapter also studies the 

dynamic behavior of multi-story strongbacks in terms of higher-mode effects. Chapter 8 introduces 

proposed design and analysis methods for strongback-braced frames. Finally, Chapter 9 

summarizes the work and conclusions of this study and suggests future work. Appendix A through 

Appendix E provide additional plots of the work described in the body of this text. 

1.5 SYMBOLS 

Due to the two distinct inelastic and essentially elastic portions of the strongback, a descriptive set 

of labels was used to concisely represent the portion of the system that a parameter refers to. The 

strongback portion of the system is typically hatched in gray to illustrate which elements are part 

of the essentially elastic truss. The subscripts (∙)> and (∙)? represent the &th story or floor level and 

the roof level. The subscripts, (∙)@ and (∙)A represent the inelastic and elastic portions of the system, 

respectively. The super-script (∙)∗ is used in some figures to indicate the flexural or axial capacity 

of an element. For force-controlled actions, this capacity is calculated using the nominal yield 

strength of the material, 	C. For deformation-controlled actions, this capacity is calculated using 

the expected yield strength of the material (i.e., 	C∗ = <C	C in the strength equations in AISC-360-

16).  
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2 Literature Review 

2.1 INTRODUCTION 

The intent of this chapter is to discuss the research on strongback-braced frames and similar 

systems. Due to the extent of the relevant body of research, this section only summarizes systems 

relevant to the development of the strongback concept. Emphasis has been placed on the expected 

mechanism of energy dissipation for each system. This chapter is broken into three parts: [i] 

conventional braced-frame mechanisms, [ii] methods of mitigating story mechanisms, and [iii] 

research on strongback-braced frames.  

2.2 CONVENTIONAL BRACED FRAME MECHANISMS 

Available literature on braced frames extends over several decades. The parallel evolution of 

seismic design provisions and braced frame research has led to inconsistencies between much of 

the research described in this section and now-typical detailing requirements. However, the 

fundamental observations made in these studies are often salient to the behavior of modern 

systems. As such, this section summarizes the design and expected inelastic response of 

concentrically braced frames, eccentrically braced frames, and buckling-restrained braced frames. 

Emphasis is placed on design considerations relevant to the design of the strongback system. The 

reader is referred to in-depth literature reviews for more detailed information on previous research 

on braced frames and their performance in past earthquakes [e.g., Lee and Bruneau (2005), Uriz 

and Mahin (2008), Bruneau et al. (2011), Lai and Mahin (2013), etc.].  

2.2.1 Concentrically Braced Frames 

Concentrically Braced Frames (CBFs) are expected to dissipate energy primarily through brace 

buckling and yielding. To achieve adequate hysteretic response of the braces, ductile details are 

required for both the braces and connections; see Table 2.1. Remaining elements, like beams and 

columns, are then expected to develop the unbalanced demands generated from the difference 

between the tension and post-buckled compression strength of the braces.  

Modern building codes have implemented simplified capacity design procedures to 

estimate the force re-distributions resulting from brace buckling and yielding. For example, beams 

in inverted-V, or “chevron”, configurations are required to remain essentially elastic under the 

bending demands developed by an unbalanced load – the vertical load resulting from the difference 



8 

 

between the tension and post-buckled compression brace expected capacities. This results in the 

“strong” beam plastic mechanism favored by current building codes; see Figure 2.1(a). The strong 

beam aids yielding in the tension brace after buckling occurs in the compression brace.  

In contrast, the inelastic response of weak beam mechanisms additionally includes beam 

flexural yielding; see Figure 2.1(b). Some researchers have hypothesized that beam flexural 

yielding may be a more stable form of energy dissipation compared to brace buckling and yielding 

[e.g., Khatib et al. (1988)]. This mechanism, however, leads to plastic hinge formation in the beam, 

resulting in potentially large vertical deflections that may cause unwanted damage in the slab and 

floor diaphragm. Vertical deflections may also increase axial shortening in the braces, leading to 

larger deformation demands in the bracing elements. The occurrence of this “weak beam” 

phenomenon in multistory CBFs has been well demonstrated by research [e.g., Uang et al. (1986), 

Foutch et al. (1987), Khatib et al. (1988), Sen et al. (2016), Bradley et al. (2017), Simpson and 

Mahin (2018a), etc.] and by post-earthquake reconnaissance reports [e.g., Tremblay et al. (1995), 

Tremblay et al. (1996)]. 

Table 2.1. Special CBF member ductility requirements. 

Member Action Highly 
Ductile 

Moderately 
Ductile 

Adjusted 
Strength of Fuse 

braces deformation-
controlled 

X  (1.0 or 0.3)∙1.14	D@ a 
or <C	C b 

beams  force-controlled  X - 

columns  force-controlled X  - 

a in comrpession, critical buckling stress determined per AISC-360 Chapter E using expected yield 
stress <C	C, in lieu of 	C. 
b in tension. 

 

 
(a) (b) (c) 

Figure 2.1. Braced frame mechanisms. 

(a) CBF strong beam mechanism; (b) CBF weak beam mechanism; (c) EBF mechanism 

2.2.2 Eccentrically Braced Frames 

In the 1970s and 1980s, eccentrically braced frames (EBFs) were studied in both Japan [e.g., 

Fujimoto et al. (1972), etc.] and the United States [e.g., Roeder and Popov (1978), Engelhardt and 

Popov (1989), Hjelmstad and Popov (1984), Kasai and Popov (1986), Ricles and Popov (1989), 

etc.] as a means of combining the high elastic stiffness associated with CBFs with the greater 

ductility capacity associated with moment-resisting frames.  
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In EBFs, energy is dissipated through flexural or shear yielding in a small segment of the 

beam, or beam “links”. Since the braces in EBFs are not expected to buckle or yield, many of the 

ductility-related detailing requirements for CBFs are not needed for EBFs. Braces in EBFs are 

designed by capacity design principles to develop yielding in the beam link, including material 

overstrength and cyclic strain hardening; see the <C and the 1.25 strain hardening adjustment factor 

in Table 2.2. Axial forces induced by the braces are transferred throughout the system by shear or 

bending in the beam link, the primary energy dissipating “fuse”.  

Current design codes permit limited yielding in the beam outside of the beam link. This is 

recognized by a 0.88 reduction factor in calculating the beam link’s expected capacity (AISC-341-

16, 2016). These recommendations caution that a larger adjustment factor should be utilized when 

a floor slab is not present. As it is not expected that all the beam links will yield at the same time 

(Whittaker et al., 1990), a similar 0.88 reduction factor is also allowed for the design of columns 

for frames three stories and greater. Since the braces are designed to remain essentially elastic, 

ordinary details are permitted for the brace connections.  

Shear versus flexural hinging in the beam link is dependent on the beam link length, �. 

Flexural hinging is expected when the length of the link is greater than 2.6 E∗/%E∗ and shear 

hinging is expected when the length of the link is less than 1.6 E∗/%E∗; where  E∗ = expected 

plastic moment strength of the beam and %E∗ = expected shear strength of the beam; see Figure 

2.2. Simultaneous shear and flexural yielding occur for intermediate beam links between these 

limits (Engelhardt & Popov, 1989).  

Within this context, the weak beam mechanism for CBFs is similar to that of EBFs with 

long flexural links; see Figure 2.1(b) and (c). Piece-wise allowable link deformation limits, F, were 

developed in AISC-341-16 (2016) to represent the effect of link length on deformation capacity; 

see Figure 2.2. Shorter link lengths are expected to develop relatively uniform shear yielding along 

the link length, corresponding to larger deformation capacities. Longer link lengths, on the other 

hand, are controlled by flange local buckling with only limited web yielding and are generally 

associated with less deformation capacity – and smaller deformation limits – than shorter links 

(Kasai & Popov, 1986). 

Table 2.2. EBF member ductility requirements. 

Member Action Highly 
Ductile 

Moderately 
Ductile 

Adjusted 
Strength of Fuse 

beam links deformation-
controlled 

X a  1.25<C	C 

braces force-controlled  X - 

beams outside links force-controlled  X b 

columns  force-controlled X  c 

a Some exceptions apply. 
b Reduction of 0.88 allowed. A larger adjusted strength factor should be used when a floor slab is 
not present. 
c Reduction of 0.88 only allowed for frames of three or more stories. 
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(a) (b) 

Figure 2.2. (a) Classification and (b) deformation limits of EBF links. 

2.2.3 Buckling-Restrained Braced Frames 

Over the last two decades, buckling-restrained braces (BRBs) (Watanabe et al., 1988) have become 

increasingly popular as fuses in lateral force-resisting systems (Clark et al., 2000). BRBs restrain 

buckling of a steel core, allowing the brace to yield in both compression and tension. This results 

in improved hysteretic behavior and energy dissipation capacity at the component level; see Figure 

2.3.  

Simplified capacity design procedures are used to proportion the remaining frame (beams, 

column, and connections). The adjustment factors, (, account for the significant combined 

isotropic and kinematic hardening that can be exhibited by the steel core. A second adjustment 

factor, ), accounts for the difference in BRB compression and tension strength due to Poisson 

expansion and friction between the BRB core and restrainer; see Table 2.3. Since BRBs are a 

proprietary device in the U.S., these factors are typically given to the engineer by manufacturers 

such as CoreBrace (www.corebrace.com), Nippon Steel (www.unbondedbrace.com), etc. 

Buckling-restrained braced frames tend to be more flexible than CBFs, because the BRB 

core areas are selected based on yielding rather than buckling strength. In some cases, they can be 

governed by drift rather than strength requirements (Kersting et al., 2015). The low post-yield 

stiffness of BRBs can result in permanent deformations that may be larger than that of a 

conventional CBF [e.g., Sabelli (2001), Uriz and Mahin (2008), Kiggins and Uang (2006), 

Fahnestock et al. (2007), Ariyaratana and Fahnestock (2011), Chen and Mahin (2012), etc.]. 

Performance-based studies based on peak and residual story drifts and floor accelerations have 

also found that BRB frames can exhibit increased repair time and repair costs compared to other 

conventional systems (Terzic & Mahin, 2017).  
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Table 2.3. BRBF member ductility requirements. 

Member Action Highly 
Ductile 

Moderately 
Ductile 

Adjusted 
Strength of Fuse 

buckling-restrained 
braces 

deformation-
controlled 

X  (<C	C or ()<C	C 

beams force-controlled X  - 

columns  force-controlled X  - 

 

 

Figure 2.3. Buckling versus buckling-restrained brace hysteretic response.  

(Kersting et al., 2015) 

2.2.4 Story mechanisms 

Though capacity design principles and other design requirements have resulted in improved 

ductility capacity for braced frame systems, numerical studies [e.g., Khatib et al. (1988), Sabelli 

(2001), Tremblay (2003), Hines et al. (2009), Uriz and Mahin (2008), Chen and Mahin (2012), 

Lai and Mahin (2013)] and experimental tests [e.g., Uang and Bertero (1986), Foutch et al. (1987), 

Simpson and Mahin (2018a)] have demonstrated that braced frames tend to concentrate damage 

in a few “weak” stories in response to strong earthquake shaking.  

An idealized diagram demonstrating story mechanism behavior in concentrically braced 

frames is shown in Figure 2.4. The braces are oriented in a “chevron” configuration with equal 

brace sizes and mass in each story. It is assumed that the majority of the story stiffness and strength 

comes from the braces in that story (i.e., the contribution of column shear to the story shear is 

small and can be neglected). If an inverted triangular load distribution is laterally applied to the 

frame, the first-story brace will buckle under the story shear demand, 'G. After brace buckling, the 

first-story will be relatively weaker than the upper stories where the braces did not buckle. 

Assuming the forces remain similar before and after buckling, this relative reduction in story 

strength, !, and stiffness, �, promotes concentrations of demands in the first-story.  

Unless these demands can be re-distributed to other stories by some other force path, e.g., 

frame action provided by the columns and/or beams, this concentration of demands can lead to 

story mechanism behavior. While the extent of this phenomenon is dependent on a variety of 

factors (e.g., the size, slenderness, and configuration of the braces, the type of ground motion, the 

number of stories, etc.), story mechanisms arise because of an insufficient means of distributing 



12 

 

demands to adjacent stories. These concentrations in demand cause localized story drift demands 

that could lead to irreparable residual drift or global instability due to P-Δ effects (Kersting et al., 

2015). 

Both vintage and modern braced frames are susceptible to story mechanism behavior. 

Modern designs mitigate story mechanisms by recommending near uniform demand-to-capacity 

ratios with building height. However, any non-uniformity or failure along the lateral load path can 

reduce a braced frames ability to resist seismic demands. This behavior has been recognized in 

post-earthquake reconnaissance studies [e.g., Rai and Goel (2003)]. Figure 2.5 shows locations 

observed damage in a four-story commercial building after the 1994 Northridge earthquake. This 

damage was concentrated in the second-story, typical of story mechanism behavior. 

Though the tendency is reduced, the low post-yield stiffness of BRBs can result in 

concentrations of drift demands in one or a few stories, resulting in story mechanisms similar to 

systems with buckling braces [e.g., Tremblay (2003), Chen and Mahin (2012), etc.]. Using BRBs 

with large strain hardening can aid engagement of adjacent stories. However, realistic 

consideration of the magnitude of this strain hardening in capacity design can impact the size of 

columns, foundations, and other surrounding structural elements. To aid the columns in 

distributing demands, Canadian design provisions require columns to be designed for interaction 

between the axial forces developed by the BRBs and twenty-percent of the column’s plastic 

moment strength (CSA-S16-14, 2014). “Tuning” the steel grades of the BRB cores has also been 

suggested as a means of providing controlled yielding with positive stiffness at larger drift 

demands (Atlayan & Charney, 2014). 

(a) (b) (c) 

 
Figure 2.4. Story mechanism behavior in concentrically braced frames. 

(a) prior to initial brace buckling; (b) after initial brace buckling; (c) story mechanism. 
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Figure 2.5. Locations of observed damage after 1994 Northridge earthquake (Rai & Goel, 2003). 

2.3 MITIGATING STORY MECHANISMS 

In light of the story mechanism tendency described in Section 2.2.4, researchers have investigated 

a number of alternative methods of mitigating story mechanism behavior. This section describes 

approaches used in the following systems: [i] dual systems, [ii] zipper braced frames, [iii] tied 

eccentrically braced frames, [iv] continuous column systems, [v] walls-type systems, and [vi] 

rocking and self-centering braced frames. 

2.3.1 Dual systems 

A dual system is comprised of at least two different, yet compatible, structural systems that in 

combination are intended to overcome shortcomings of the individual systems. They resist the 

total seismic force through a combination of conventional primary lateral-resisting frames and 

secondary moment-resisting “back-up” frames. The primary frames supply energy dissipation 

under major earthquakes while the secondary frames aid in re-distributing inelastic demands, 

supply an elastic self-centering restoring force (Kiggins & Uang, 2006), and improve redundancy 

of the combined system against structural collapse (Whittaker et al., 1990).  

Though dual systems have been recognized in building codes for several decades, 

distributing inelastic demands solely by frame action has been recognized as an inefficient means 

of mitigating story mechanisms (Tremblay, 2003). Additionally, the relationships between the 

relative lateral stiffness, deformability, ductility, and yielding strengths of the combined primary 

and secondary frames is complex (Whittaker et al., 1990; Ariyaratana & Fahnestock, 2011), and 

the necessary strength and stiffness of the back-up system is not easily quantified in terms of 

achieving a desired performance goal (Khatib, 1988).  

2.3.2 Zipper Braced Frames 

In the late 1980s, Khatib (1988) proposed a zipper braced frame as a means of distributing inelastic 

demands over multiple stories. The unbalanced force induced by brace buckling and yielding pulls 
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down or pushes up on a weak beam. The addition of a vertical tie strut to connect stories can be 

used to engage adjacent stories through this vertical unbalanced load; see Figure 2.6(a). The 

vertical movement transfers demands between stories, resulting in a more uniform distribution of 

inelastic response with frame height. The example commercial building in Figure 2.5 was 

retrofitted as zipper frame to mitigate the weak story mechanism behavior observed after the 1994 

Northridge earthquake (Kelly et al., 2000). 

Though effective, subsequent analyses and designs using zipper frames have found this 

distribution of unbalanced load to be complicated, and it can be difficult to identify appropriate 

member sizes to achieve the desired response (Tremblay, 2003). Large unbalanced forces must be 

transferred through the vertical tie strut, causing the size of the tie to approach that of an additional 

column. Higher-mode effects in multi-story zipper frames can be problematic, and global collapse 

can occur upon formation of a complete mechanism. This has been especially apparent for zipper 

frames subjected to near-fault effects (Tremblay & Tirca, 2003). Yang et al. (2008) proposed an 

essentially elastic hat truss to re-direct unbalanced forces back to the ground to avoid full-height 

mechanisms [see Figure 2.6(b)]. However, even though they are referenced in the design 

commentary in AISC-341-16 (2016), current seismic codes do not provide specific requirements 

for the design of zipper braced frames.  

  
(a) (b) 

Figure 2.6. Zipper braced frame: (a) full mechanism and (b) mechanism with essentially elastic hat truss. 

2.3.3 Tied Eccentrically Braced Frames 

Researchers have observed that beam links in EBFs can exhibit non-uniform deformations with 

building height (Whittaker et al., 1990). This tendency can be reduced with proper proportioning 

of the beam links with respect to their height-wise distribution demands. However, as the height 

of the EBF increases, the contribution of higher modes to the total response tends to increase shears 

in the upper stories and decrease shears in the middle and lower stories. Popov et al. (1992) noted 

that inclusion of the second and third mode response in determining static demands was key to 

avoiding non-uniform link deformations with building height.  

Martini et al. (1990) proposed a tied eccentrically braced frame, or “zipper EBF”, as an 

alternative method of inducing uniform deformations in the beam links; see Figure 2.7(a). Tied 

EBFs sandwich the beam links between two “super” columns. These columns are pinned at the 
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base and engage the beam link like a coupled shear wall. To counteract the added cost of the tied 

EBF, the study proposed reduced strength for the beam links to complement the overstrength of 

the super columns. Emphasis was placed on the behavior predictability of the tied EBFs and the 

supplemental “back-up” story stiffness provided by the columns, braces, and ties in the super 

columns.  

Rossi (2007) proposed a displacement-based design approach for tied EBFs. The beam 

links were designed per elastic response spectrum analysis. The study then noted that, unlike 

conventional EBFs, axial forces of the braces, ties, columns, and beam segments outside of the 

links were not solely a function of the shear force in the links but also a function of higher-mode 

effects. As such, elements outside the links were additionally designed for higher-mode effects 

corrected by a reduction factor to account for link yielding in the higher modes.  

Tremblay et al. (2014) developed a modular approach for tall tied EBFs; see Figure 2.7(b). 

The super columns were divided into segmented modules to reduce the large demands that develop 

in the tie with increasing building height. Beam links were designed for the average story shear 

force in a module. This modular configuration resulted in reduced tie demands but increased drift 

demands at locations between modules. Supplemental energy dissipation devices - including 

BRBs, friction dampers, and self-centering braces - were able to reduce these drift effects; see 

Figure 2.7(c). 

   

(a) (b) (c) 

Figure 2.7. Tied EBF braced frame: (a) full mechanism; (b) and (c) with modules. 

2.3.4 Continuous Column Systems 

Studies employing the continuity of lateral or gravity columns in conventional (MacRae et al., 

2004; Ji et al., 2009; Imanpour et al., 2016a) or multi-tiered (Imanpour et al., 2016b) systems have 

shown that vertical re-distribution of demands can be accomplished through column flexural 

stiffness and strength. If provided with sufficient in-plane flexural stiffness and strength, 

continuous columns in both the lateral and gravity systems can elicit inelastic response in adjacent 
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stories; see Figure 2.4. As the combined stiffness of these columns increases, story drift 

concentrations are reduced and the lateral frame experiences a more uniform drift distribution. 

In multi-tiered systems, suitability of a column is determined by progressive yielding in 

the tiers, beginning in the critical story where brace inelastic behavior is first initiated. The 

horizontal unbalanced force arising from the brace tension and compression capacities between 

tiers can be used to obtain flexural demands in the columns. For multi-tiered systems using BRBs 

where the difference between compression and tension adjusted brace strength is small, a notional 

load can be used to account for unbalanced demands due to variations in brace strains, yield core 

strength, and tolerances in the core (AISC-341-16, 2016). This method allows for direct relation 

between the applied loading, brace axial force, column internal shear, and column internal bending 

moments. Columns are then designed for flexural-axial interaction imposed by yielding and/or 

buckling of the braces.  

However, analysis by progressive yielding in multi-tiered braced frames becomes 

increasingly complex with more stories or where the critical story is not immediately evident 

(Imanpour & Tremblay, 2017). Moreover, the amount of mass is small at each tier-level. As such, 

this method is indeterminate in multi-story buildings where inertial forces are distributed on a 

story-by-story basis. Sizing of continuous columns in both multi-tiered and conventional systems 

has been found to become cost inhibitive (Ji et al., 2009). If utilizing the collective flexural strength 

and stiffness of gravity columns, the distributed nature of continuous columns can also raise other 

issues related to detailing of the load path between the seismic and gravity load-resisting systems 

and is neither an efficient or dependable mechanism of distributing demands  

2.3.5 Wall-type Systems 

Due to their deep cross section, shear walls can be an effective means of controlling story drift and 

mitigating story mechanism behavior. Shear walls establish a stiff vertical element that provides 

continuous lateral resistance over the height of the frame, enforcing a global tilting mode [e.g., Qu 

et al. (2015) Grigorian and Grigorian (2016)]. This mechanism can be imposed by either a concrete 

or steel plate shear wall (Wiebe et al., 2007; Djojo et al., 2014) and can be designed to engage 

additional supplemental energy dissipation devices (Qu et al., 2012). 

Shear wall designs should be provided with proportions and details that enable it to form 

the intended inelastic mechanism. Walls pinned at their base are not expected to contribute lateral 

strength or stiffness but are expected to maintain a global tilting mode through interaction with the 

surrounding structural elements. Comparably, fixed slender concrete walls are designed to yield 

in a flexural “cantilever-like” mode. To enforce these responses, the shear capacity of the wall is 

capacity-designed to develop the expected strength of the inelastic actions (e.g., the expected 

flexural overstrength of the wall base in the fixed case) plus amplification of the dynamic shear 

due to the wall’s higher-mode response.  

Amplification of dynamic shear has been well-documented in experimental tests of 

concrete shear walls [e.g., Aoyama (1986), Ghosh and Markevicius (1990), Eberhard and Sozen 

(1993), Panagiotou and Restrepo (2011), etc.]. In the case of slender concrete walls, moments at 

the base of the wall are well-constrained by the wall’s moment strengths. However, moments and 
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shears in essentially elastic regions of the wall are less well constrained because inertial forces are 

constantly changing with time.  

Inertial forces can experience a sign reversal due to higher-mode effects. In some cases, 

this can result in a downward shift of the force resultant, producing larger base shear than that 

suggested by a first-mode inertial force distribution; see Figure 2.8. Flexural yielding at the base 

of the wall limits the contribution of the first-mode response to the total response, but shear forces 

in the higher modes are not similarly limited by the wall’s shear capacity. Thus, these shear forces 

continue to increase as the earthquake shaking intensity increases (Moehle, 2014). Amplification 

in these shear forces can be over three times the shear calculated from a purely first-mode response 

(Kelly, 2009). An extensive bibliography on the effects of higher-mode effects in shears in 

concrete walls is provided by Rutenberg (Rutenberg, 2013). 

To approximate this dynamic shear effect, researchers have proposed various design 

approaches (Aoyama, 1986; Ghosh & Markevicius, 1990; Eberhard & Sozen, 1993). A scalar 

dynamic amplification factor, (, of 1.25 to 4.1 has been recommended to account for dynamic 

effects in the design base shear (NZS3101, 2006; SEAOC, 2008). Note that this factor is an 

amplification factor that cannot account for the height-wise distribution of lateral forces; see Figure 

2.8. It has also been suggested that such behavior can be approximated by combining the modal 

responses using a strength adjustment factor, < = 1, for the higher modes (Eibl & Kreintzel, 1988). 

This is the method that has been adopted by Eurocode 8 (2004) for concrete shear walls. Ongoing 

research is still investigating appropriate approaches for the design of concrete shear walls.  

 

 

Figure 2.8. Dynamic shear effect in shear walls. 

2.3.6 Rocking and Self-Centering Braced Frames 

Similar to but distinct from the pivoting response characteristic of wall-type systems, rocking 

frames dissipate energy through uplift and impact or through supplemental devices installed in the 

direction of uplift; see Figure 2.9(a). The rocking frame itself is a stiff vertical truss that is designed 

to remain essentially elastic. Fuses outside of this truss are expected to be replaceable after 
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yielding. Post-tensioning (Roke et al., 2006) or self-centering braces (Christopoulos et al., 2008; 

Miller et al., 2012) can additionally be provided to reduce permanent displacements.  

The rocking frame engages the building in a uniform drift response. Some of the earliest 

investigations and experiments of rocking frames were conducted in the 1970s and 1980s (Clough 

& Huckelbridge, 1977; Yim et al., 1980). More recently, researchers have conducted quasi-static 

tests [Roke et al. (2006), Eatherton et al. (2014a)], shake table tests [Ma et al. (2011), Tremblay 

(2008), Weibe (2013a; 2013b)] and hybrid simulation [Sause et al. (2010), Eatherton and Hajjar 

(2014)] of rocking and self-centering systems. 

Similar to wall-type systems, the elastic nature of the rocking frame amplifies higher-mode 

contributions to the system’s total dynamic response. Though the base overturning moment is 

primarily dominated by a first-mode response, story shears are more heavily influenced by higher-

modes effects (Roke et al., 2009; Eatherton et al., 2014b; Wiebe & Christopoulos, 2015b). Since 

these higher-mode effects can play a dominant role in design of the rocking frame, researchers 

have proposed providing multiple uplift location to mitigate these higher-mode effects (Wiebe & 

Christopoulos, 2009; Tremblay et al., 2014); see Figure 2.9(b). 

Proposed methods to incorporate higher-mode response in the design of rocking frames are 

briefly summarized here and compared extensively by Steele and Wiebe (2016). Eatherton and 

Hajjar (2010) and Ma et al. (2011) proposed enveloping the responses from several proposed 

lateral-force distributions to estimate higher-mode amplification; see Figure 2.6. An inelastic 

modal analysis method utilizing a modified complete quadratic combination (CQC) rule to 

combine the modal responses was developed by Roke et al. (2009). Other simplified modal 

combinations have also been proposed (Wiebe et al., 2015), for example: 

4 = |4G| + I4JJ + ⋯ + 4LJ + ⋯ + 4MJ  Equation 2.1 

4 = total response; 4G = first-mode response including yielding of the fuses; 4J, …, 4L, …, 4M = 

higher-mode responses. This modal combination assumes that the higher modes oscillate about a 

dominant fundamental mode. Wiebe and Christopoulos (2015a) further extended this modal 

method to include an equivalent cantilever beam analogy to estimate the profile of higher-mode 

inertial force distributions; see Figure 2.11. A linear dynamic analysis method using a truncated 

response spectrum to determine higher-mode response was also developed by Steele and Wiebe 

(2016); see Figure 2.12(b). In this method, transient modes were estimated per eigenvalue analysis 

of a numerical model utilizing the inelastic tangent stiffness at locations of expected yielding, as 

recommended by Sullivan et al. (2008); see Figure 2.12(a).  

Eatherton et al. (2014b) provides a detailed summary of possible configurations and 

locations of re-centering and uplifting fuses, collector details with slotted holes or pin details, and 

alternative slab framing details to isolate the floor from the vertical motion of the rocking frame 

(Eatherton & Hajjar, 2010). However, design procedures for rocking frames are still active areas 

of research and refinement of proposed design methods is ongoing. 
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(a) (b) 

Figure 2.9. Rocking frame: (a) base uplift with re-centering post-tensioning; (b) multiple rocking joints. 

 

 
Figure 2.10. Envelope of loading cases and story shears proposed by Eatherton and Hajjar (2010). 

 

 
Figure 2.11. Discretization of second and third mode response with fixed base model  

(Wiebe & Christopoulos, 2015a). 
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(b) (c) 
Figure 2.12. Schematic of simplified modal analysis method.  

(a) modified boundary conditions; (b) truncated response spectrum (Steele & Wiebe, 2016). 

2.4 RESEARCH ON STRONGBACK SYSTEMS 

The strongback system investigated in this study is an offshoot of the zipper frame, tied 

eccentrically braced frame, and continuous column concept. Like dual systems, strongback 

systems utilize a hybrid of two systems. Its kinematic mechanism combines the weak beam braced 

frame mechanism with buckling-restrained brace yielding. In embedding an essentially elastic 

truss within a conventional system, the strongback leverages the full energy dissipation of the fuses 

by distributing demands across multiple stories. The addition of the tie completes the strongback 

truss and mimics the vertical propagation strategy proposed for zipper and tied EBF systems. The 

essentially elastic nature of the strongback truss is also linked to that of pivoting wall and rocking 

frames. This section presents a summary of the limited numerical and experimental research on 

strongback systems. 

2.4.1 Numerical Analysis on Strongback Systems 

Several studies have examined the strongback system from an entirely numerical perspective. 

These studies have illustrated the ability of the SBF system to defer or eliminate weak stories. 

However, they have also demonstrated the difficulty in identifying appropriate sizes of the 

members of the essentially elastic strongback. Herein, emphasis is placed on proportioning 

strategies proposed by these studies. 

2.4.1.1 Elastic Truss Systems 

Strongback-braced frames were proposed as a dual buckling-restrained brace system by Tremblay 

(2003); herein termed elastic truss systems. The system was composed of two vertical steel trusses: 

one that dissipated energy through its inelastic response and one whose members were designed 

to remain essentially elastic. The study recognized the promise of the addition of a strongback to 

reduce potential dynamic instabilities in braced frames. However, the study did not provide 

specific requirements for the design of the elastic truss, and emphasized that nonlinear dynamic 

analysis was required to determine demands in the strongback members.  
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Tremblay and Poncet (2007) examined elastic truss systems with heights of 12- and 16-

stories with braces oriented in an inverted-V, or “chevron”, configuration. Buckling-restrained 

braces were utilized for the inelastic braces in the system. Similar brace and tie sizes were used at 

every story of the elastic truss. The strongback brace size was selected based on two times the 

force developed from yielding of the first story buckling-restrained brace. The tie was designed 

based on the unbalanced load generated from the adjusted compression capacity of the BRBs and 

yield capacity of the adjacent strongback brace. Though the elastic truss system was found to result 

in better performance compared to conventional buckling and buckling-restrained braced frames, 

the study noted that the design approach used for the comparison was not optimal and that more 

refined design guidelines were needed. 

Merzouq and Tremblay (2006) extended this study to two-bay 8-, 12-, 16, 20-, and 24-story 

elastic truss systems; see Figure 2.13(a) and (b). The buildings were designed for a site located in 

Victoria, British Columbia, Canada and were subjected to near-fault and simulated subduction 

ground motion suites. Braces and ties in the elastic truss were designed in groups of four successive 

stories. The study noted that the BRBs yielded in a sequence of batches of stories between 1/5 and 

1/4 the height of the frame (Merzouq, 2006). Peak demands in the elastic braces similarly occurred 

in batches of 1/4 and 1/3 the height of the frame, but experienced a lag behind the that of the BRBs. 

The study also noted that higher-mode effects resulted in increased elastic brace demands in the 

upper stories of the frame. 

Based on this propagation phenomena, Merzouq and Tremblay (2006) proposed empirical 

guidelines for the design of the elastic truss members. Elastic brace demands were calculated by 

empirically amplifying demands delivered by the inelastic braces by a factor varying with building 

height and a chosen level of probability. Tie demands were calculated based on the accumulation 

of unbalanced demands from the inelastic and elastic brace forces summed twice from the top and 

from bottom of the structure. The peak tie demands were then taken as the minimum envelope of 

this cumulative unbalanced demand. Empirical correction factors dependent on frame height were 

applied for the design of the vertical tie to account for: [i] amplification of the response in the 

upper stories and [ii] the variation in brace forces in consecutive stories. It was noted that tie 

demands were maximized when the brace demands changed sign in consecutive stories.  

Comparison between the resulting elastic truss system and similarly designed BRB frames 

found that the elastic truss system exhibited more uniform distributions of deformations with 

building height and had greater reserve capacity compared to a conventional BRB frame. The 

study also indicated that the duration of subduction events could be critical to the performance of 

elastic truss systems, possibly leading to formation of a full collapse mechanism and global 

instability. Accelerations were observed to be uniform but higher than that of a BRB frame.  

2.4.1.2 Strongback-braced frames 

Lai and Mahin (2015) compared 6-story chevron and X-braced frames with buckling braces and 

strongback-braced frames utilizing BRBs. The study examined the use of an offset configuration 

where the intersection of the strongback and inelastic braces was shifted from the centerline of the 

bay; see Figure 2.13(c). This facilitated longer yield lengths in the BRBs and increased length of 

the beam, reducing strains in the BRBs and shear and plastic hinge rotations in the beam links. 

The study also examined the use of low-yield strength BRBs capable of increasing stiffness for 
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the same strength, resulting in reduced period, decreased lateral displacements, and increased BRB 

yield-to-tensile failure capacity.  

Members in the strongback were designed to remain essentially elastic under design-level 

seismic forces. The strongback braces were designed utilizing the system overstrength factor, ΩO = 2.0, for BRBFs (ASCE-7-16, 2016). Stress ratios in the strongback elements were checked 

to be less than ΩO/2 = 0.5 under code-level forces. Vertical ties were designed based on the 

unbalanced forces derived from the adjusted tension and compression force induced in the BRBs 

and the expected yield strength of the strongback braces. It was expected that under severe ground 

shaking, some elements of the strongback would buckle.  

The study noted that utilization of a strongback resulted in near uniform distribution of 

deformations with building height. However, the study also noted that the design strategy provided 

under-estimated demands in the upper stories of the strongback. Additional studies employing the 

addition of gravity columns had little effect on the strongback’s behavior. A simplified cost 

analysis indicated that the strongback design resulted in similar costs to a double-story X-braced 

frame and reduced costs compared to a chevron braced frame employing buckling braces. Though 

the strongback system studied utilized BRBs, no comparisons in behavior and cost were made to 

a conventional BRB frame.  

2.4.1.3 Spine Systems 

Takeuchi et al. (2015) proposed a non-uplifting spine system utilizing supplemental buckling-

restrained columns; see Figure 2.13(d). A back-up moment frame was provided as a partial re-

centering mechanism to reduce peak and residual drift response. The system’s behavior was 

comparable to systems utilizing self-centering post-tensioned strands and was employed in a 

building in Japan in 2015.  

Chen et al. (2017) subsequently proposed a stiffness-based design method for the spine 

frame. The method simplified the spine into a single equivalent column. The spine frame’s 

response was characterized by an inelastic-to-elastic frame stiffness ratio and a moment frame-to-

spine frame stiffness ratio. As the stiffness of the spine was increased relative to fuses and moment 

frame, the spine frame became more effective at achieving a uniform drift demand. The study also 

proposed a simplified design procedure utilizing a single-degree-of-freedom model.  

A more recent study by Chen et al. (2018) has since noted that higher-mode effects can 

dominate demands in the spine – especially in taller structures – and that estimates of spine 

demands using of a first mode-only response can be prone to large errors. The study proposed 

modal pushover and response spectrum procedures to estimate these higher-mode demands. A 

segmented spine frame was proposed to reduce demands in the spine elements while achieving 

similar drift response to a continuous spine frame; see Figure 2.13(e). Two-segmented spine frame 

was recommended for buildings less than 30-stories. 

2.4.1.4 Implementation in Practice 

Strongback-braced frames have been implemented and constructed in practice (Mar, 2010; Panian 

et al., 2015; Osteraas et al., 2017). Tipping structural engineers constructed a four-story laboratory 

building similar to the embedded strongback system proposed herein (Mar, 2010; Panian et al., 

2015). The frame was iteratively designed utilizing nonlinear dynamic analysis. Supplemental 
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checks were also conducted using elastic modal response spectrum analysis and the code-

prescribed overstrength factor for BRBFs, ΩO (Panian et al., 2015). The constructed frame 

employed the offset bracing configuration scheme proposed by Lai and Mahin (2015); see Figure 

2.13(c). Pins were provided at the base of the columns in the lateral frame to facilitate the desired 

pivoting motion.  

Tipping successfully made the case that the strongback system could be designed utilizing 

a redundancy factor, P = 1 (ASCE-7-16, 2016). This was justified by leveraging the strongback’s 

ability to re-distribute demands vertically to adjacent stories after consecutive removal of the 

inelastic braces. This allowed the building to be designed utilizing two lateral-resisting frames in 

both directions, resulting in significant cost savings. It is imagined that an engineer would have to 

demonstrate the applicability of this assumption on a case-by-case basis to local regulatory 

authorities using code mandated procedures [e.g., ASCE-7-16 (2016)]. 

 

 

(a) (b) (c) (d) (e) (f) 

Figure 2.13. Schematic of strongback studies. 

(a) and (b) two-bay elastic truss systems by Merzouq and Tremblay (2006);  

(c) offset strongback scheme by Lai and Mahin (2015); (d) spine frame by Chen et al. (2017);  

(e) segmented spine frame by Chen et al. (2018); (f) stiff rocking core by Slovenac et al. (2017)  

2.4.2 Experimental Tests of Strongback-braced frames 

Strongback-braced frames have been subjected to few experimental tests. Limited experiments on 

strongback systems to date have been loaded statically, and nonlinear numerical models described 

in Section 2.4.1 have yet to be comprehensively verified through dynamic testing. 

2.4.2.1 Quasi-static Testing of Strongback-braced frames 

Simpson and Mahin (2018b) carried out nearly full-scale laboratory quasi-static experiments on a 

strongback retrofit braced frame. The retrofit was intended as an upgrade to two previously tested 

vintage CBFs representative of 1970s and 1980s construction practices. Results showed that the 

strongback can effectively limit weak story behavior and result in uniform drift demands. 

Schematics of the inelastic behavior of the two vintage braced frame tests and strongback retrofit 

are shown in Figure 2.14.  
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A number of practical detailing issues were identified during the experiment. the 

strongback geometry and corresponding kinematic relations can induce relatively large demands 

on the components of the inelastic portion of the system. In a centered scheme where the 

strongback intersects the beam at half the bay width, these demands are approximately double the 

demands of a conventional braced frame where the beam does not yield and deflect vertically at 

midspan; see the idealized kinematic diagram in Figure 2.15(a). The undesirable failures observed 

in the inelastic bracing element and beam-column connections during the experiment confirmed 

the significance of these demands; see Figure 2.16(a) and (c). These inelastic demands can be 

reduced utilizing an offset bracing configuration where the intersection of the braces is offset from 

the centerline of the bay, like that proposed by Lai and Mahin (2015). A supplemental numerical 

study by Simpson and Mahin found that this scheme allowed the strongback frame to go to larger 

displacement amplitudes with less deformation demands than configurations without offsets.  

The connections at the base of the strongback column and between the inelastic and 

strongback portions of the system can be complex and involve loading conditions not encountered 

in conventional braced frame construction. For example, the base of the strongback experiences 

significant plastic rotations, shears, and axial load demands. In the strongback test specimen, the 

strongback column was oriented in weak-axis bending to minimize strains associated plastic hinging 

in a fixed base column. However, it was noted that a weak axis orientation may not be possible in all 

cases. Though adequate, details used for the region between the inelastic and strongback portions of 

the system were deemed conservative. 

The design of the test specimen assumed the plastic mechanism shown in Figure 2.15(a) 

subjected to an inverted triangular force distribution. The elastic braces were designed to be 1.1 

times stronger than the forces delivered by the expected capacity of the inelastic braces and flexural 

yielding of the beam at incipient collapse, as shown by the moment and axial force diagrams in 

Figure 2.15 (b and c). However, it was noted that this design method could not reasonably be 

extended to a system subjected to dynamic loading conditions where the applied demand 

distribution generated by the ground accelerations was unknown. 

 

  

(a) (b) (c) 

Figure 2.14. Schematic of damage in experiments conducted by Simpson and Mahin (2018b). 

(a) benchmark vintage braced frame; (b) concrete-filled brace upgrade; and (c) strongback retrofit. 
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 (a) (b) (c) 

Figure 2.15. Idealized behavior of strongback experiment (Simpson & Mahin, 2018b).  

(a) kinematic; (b) moment; and (c) axial force diagrams. 

 

    
(a) (b) (c) 

Figure 2.16. Observed damage in experimental test of a strongback retrofit (Simpson & Mahin, 2018b). 

(a) BRB; (b) center gusset; (c) beam-column connections. 

2.4.2.2 Pseudo-dynamic Hybrid Testing of Stiff Rocking Cores 

Researchers have investigated the addition of stiff rocking cores for the rehabilitation for existing 

braced frames. Slovenec et al. (2017) investigated this rehabilitation technique on two 

approximately 1/3-scale experimental specimens. The prototype frames were subjected to slow 

pseudo-dynamic hybrid testing to simulate dynamic effects in a six-story building. The lower 

three-stories of the building were tested experimentally and the upper three stories were simulated 

numerically. The stiff rocking core was separated from the braced bay and only extended over the 

first three stories of the prototype structure; see Figure 2.13(f). Equilibrium and compatibility in 

the rotational and vertical translational degrees of freedom at the boundary between the 

experimental specimen and numerical simulation were neglected during the test.  

Peak story drift demands and their associated dispersion were reduced with the addition of 

a stiff rocking core. Column shears, however, exceeded the design column shear forces. A 

subsequent design methodology was proposed by Pollino et al. (2017) including additional higher-

mode stiffness for the design of the rocking core. The study concluded that the proposed design 

method was conservative and inaccurately considered higher-mode forces, concluding that further 

research was needed.  



26 

 

2.5 SUMMARY 

This chapter summarized the expected inelastic behavior and traditional design strategies for 

conventional steel braced-frame systems. As these systems are susceptible to story mechanism 

behavior, alternative methods of mitigating story mechanisms were also highlighted. Though these 

methods can be successful at distributing drift demands, essentially elastic elements in such 

systems can result in amplified higher-mode effects (e.g., tied EBF systems, shear wall systems, 

and rocking systems). Since higher-mode effects are critical to the design of essentially elastic 

“spine” systems, they likely also need to be considered in design methodologies for strongback-

braced frames. Although the inclusion of higher-mode effects in the design procedures for rocking 

and wall-like systems offers insight into potential static analysis methods, the characteristics of the 

behavior of such systems may not be directly applicable to strongback-braced frames. 

Numerical studies have illustrated the effectiveness of strongback-braced frames in 

delaying or preventing story mechanisms in low-, mid-, and high-rise steel braced frames. 

However, nonlinear dynamic analyses have been inconsistent, utilized simple models for the fuses, 

or were not calibrated to relevant experimental data. Proposed static design methods for 

strongback-braced frames have consistently under-represented upper story strongback demands. 

Though revealing of potential detailing issues, experimental tests have been conducted under static 

loading. Moreover, numerical models intended to simulate the nonlinear dynamic behavior of 

spine systems have not been comprehensively verified through dynamic testing. None of these 

prior investigations have identified dependable, economical, or practical design methods. Nor have 

they described simple or robust means of modeling higher-mode effects. 
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3 Analytical Investigation of Offset 
Configurations 

3.1 INTRODUCTION 

The strongback geometry and corresponding kinematic relations can induce relatively large 

demands on the fuses in strongback-braced frames; see Section 2.4.2.1. In a centered scheme where 

the strongback intersects the beam at half the bay width, these demands are double the demands 

of a conventional braced frame where the beam does not yield and deflect vertically at midspan, 

see Figure 3.1(a) versus (b). The undesirable failures observed in the inelastic bracing element and 

beam-column connections of an experimental test of a two-story SBF with a centered scheme 

(Simpson & Mahin, 2018b) confirm that these imposed demands can be significant.  

The offset scheme introduced in two previous numerical studies (Lai & Mahin, 2015; 

Simpson & Mahin, 2018b) is capable of reducing these inelastic demands. The kinematics of an 

offset configuration, as shown in Figure 3.1(c), address the relatively high axial strains in the 

inelastic braces by providing longer yield lengths for the buckling-restrained braces. The offset 

scheme also provides longer beam lengths that reduce the in-plane rotational demands that can 

develop at the ends of the beam links. Because of these desirable properties, an offset configuration 

was used for the bracing configuration of a constructed strongback building in Berkeley, CA 

(Panian et al., 2015). 

Like the length of a link in an eccentrically braced frame (Hjelmstad & Popov, 1984), the 

amount of offset determines both the elastic stiffness and strength of the lateral-resisting system 

under low-to-moderate shaking and the ductility demand on the inelastic braces and beam links 

under severe shaking. In an SBF system, the strongback components of the frame must additionally 

remain essentially elastic while the inelastic braces and beam links deform inelastically. Thus, the 

amount of offset is constrained by three objectives: [i] providing enough strength and stiffness to 

limit displacements in the elastic range, and [ii] reducing plastic deformations to provide enough 

energy dissipation in the inelastic range, and [iii] limiting the demands on the elastic “strongback” 

truss. Determination of the maximum offset to meet elastic requirements and the minimum offset 

to limit inelastic demands bound the optimal length of the offset.  

The analysis of a simple one-story frame was conducted to: [1] describe the fundamental 

response of the strongback and characterize the parameters important to the strongback’s behavior; 

[2] develop the premise for an analysis procedure based on perfectly plastic idealization; and [3] 

determine the optimal location of the offset. For this purpose, a conventional braced frame was 
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compared to a family of strongback-braced frames with offsets varying from zero to half the bay 

width. A simple one-story-by-one-bay system was characterized by its behavior in terms of 

geometry in both the elastic and inelastic ranges; see Figure 3.2. Based on this characterization, a 

set of criteria were designated as critical for the successful design of an SBF. These multi-objective 

criteria were used to establish a “give-and-take” optimization study to determine a suitable offset 

location for the one-story system. The selection of this offset location was then verified through 

nonlinear dynamic analysis of the one-story frame.  

  

(a) (b) (c) 

Figure 3.1. Example of plastic mechanism: (a) conventional braced frame scheme,  

(b) centered strongback scheme, and (c) offset strongback scheme. 

3.2 ANALYTICAL METHOD 

It is instructive to compare strongback geometries with a range of offsets in both the elastic and 

inelastic ranges in an analytical, closed-form sense to quantify the influence of geometry on the 

SBF system. For this purpose, consider the variation of the simplest SBF shown in Figure 3.2(b) 

as a function of the strongback lateral width, �, normalized by the total bay width, Q.  

In this system, (∙)@ and (∙)A represent the inelastic and elastic portions of the system 

respectively. A continuous spectrum of offsets is available from a centered, “chevron”, scheme 

representing the stiffest and strongest arrangement (
RS = GJ) to a single diagonal bracing 

configuration representing minimum plastic demands (
RS = 0). In this system, 7 = Q − � represents 

the horizontal width of the fuses; ℎ represents the vertical height of the frame; and 4 = √7J + ℎJ 

and � = √�J + ℎJ represent the elastic and inelastic brace lengths. Since the horizontal component 

of the stiffness, strength, and ductility demands depend on the cosine angle of the braces, each of 

these parameters will change nonlinearly with varying offset.  

The normalization of the offset scheme in Figure 3.2(b) by the centered scheme represents 

the range at which the parameters vary from the centered, or ( ∙ )O, configuration. In the following 

sections, parameters of interest derived from the offset scheme, :, are plotted in terms of their ratio 

to the same parameter derived from the centered scheme, :O. The horizontal line, 
DDV = 1, represents 
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the centered scheme. Any deviation from 
DDV = 1 represents the offset’s influence on the chosen 

parameter with normalized offset, 
RS.  

For simplicity, the following analytical investigations were based on a perfectly plastic 

material assumption. As such, the inelastic braces in this study are representative of idealized 

BRBs with negligible strain hardening and no strength degradation behavior. Beam and column 

elements of the surrounding frame are assumed to be inextensible; energy dissipation occurs only 

in zero-length plastic hinge regions. Moments at the ends of all bracing elements are released. In 

this initial study, nonlinear geometry effects and flexural-axial interaction were neglected for 

simplicity.  

 
(a)                              (b) 

Figure 3.2. Simplified study of an offset scheme (a) centered case and (b) offset case. 

3.3 ELASTIC CHARACTERISTICS OF OFFSET GEOMETRIES 

Drift control is satisfied by providing the strongback with sufficient elastic stiffness. Static 

equilibrium under elastic analysis also dictates how much demand is imposed on the inelastic 

braces prior to yielding. Thus, quantifying elastic stiffness and strength as a function of the amount 

of offset determines both the initial strength and stiffness of the frame under low to moderate 

shaking.  

3.3.1 Elastic lateral stiffness 

Let $ and � be the horizontal and vertical translational degrees of freedom respectively; see Figure 

3.3(a). Neglecting nonlinear geometry effects, the total stiffness matrix, W, for the translational 

degrees of freedom can be written as the sum of the following: 

W = WR@ + WX@  WX@ = stiffness matrix of the surrounding frame, WR@ = stiffness matrix of the braces. Each of 

these matrices can be condensed to the two translational degrees-of-freedom, $ and �: 

WR@ = Y�R@,ZZ �R@,ZC�R@,ZC �R@,CC[ = "#@ ⎣⎢⎢
⎡ 7J4_ + ) �J�_ ℎ74_ − ) ℎ��_ℎ74_ − ) ℎ��_ ℎJ4_ + ) ℎJ�_ ⎦⎥⎥

⎤
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WX@ = Y�X@,ZZ �X@,ZC�X@,ZC �X@,CC[ 

) = cdecdf = the ratio of the elastic stiffness of the strongback brace ("#A) to the inelastic brace 

("#@). For the centered scheme (i.e., � = Q/2), the brace lengths are equal, 4 = � = 4O, and the 

condensed stiffness matrix for the braces can be re-written as: 

WR@,O = "#@ ⎣⎢⎢
⎢⎡ QJ44O_ (1 + )) ℎQ24O_ (1 − ))ℎQ24O_ (1 − )) ℎJ4O_ (1 + )) ⎦⎥⎥

⎥⎤
 

Assuming equal brace area for the inelastic and strongback brace () = 1), the horizontal and 

vertical component of the brace stiffness decouple for the centered scheme: 

WR@,O = "#@ ⎣⎢⎢
⎢⎡ QJ24O_ 0

0 2 ℎJ4O_⎦⎥⎥
⎥⎤
 

WR@,O = brace contribution to the lateral stiffness in the centered scheme when � = 7; 4O = brace 

length if � = 7. The WR@ and WX@ matrices can be condensed to the lateral translation, $, by: 

�h = i�R@,ZZ + �X@,ZZj − i�R@,ZC + �X@,ZCjJ�R@,CC + �X@,CC  

�h = lateral stiffness condensed to direction $. Neglecting the stiffness contributions from the 

surrounding frame, the condensed lateral stiffness of the braces can be re-written as: 

�hR@ = "#A QJ)4_ + �_ Equation 3.1

�hR@,O = "#@ QJ24O_ Equation 3.2

�hR@ = brace lateral stiffness for the offset scheme; �hR@,O = brace lateral stiffness for the centered 

scheme. The normalized stiffness of the offset scheme with respect to the centered scheme, �hR@\�hR@,O, is: 

�hR@�hR@,O = 2)4O_)4_ + �_ Equation 3.3



31 

 

The ratio in Equation 3.3 is plotted in Figure 3.4(a) for different height-to-bay width ratios, 
lS, and 

equal inelastic and elastic brace stiffness () = 1). As 
RS approaches 

GJ, the frame stiffness 

approaches that of an inverted-V configuration, and both braces contribute equally to the lateral 

stiffness. As 
RS approaches 0, the frame tends towards a single diagonal, and the strongback 

contribution to the lateral stiffness decreases to zero. As the offset increases, the system’s lateral 

stiffness tends to decrease. 

The strongback brace is expected to be stronger, and therefore stiffer, than the inelastic 

brace. To incorporate this effect, the influence of the strongback stiffness relative to the inelastic 

brace stiffness, ), is plotted in Figure 3.4(b) with constant 
lS. The stiffer the strongback brace is 

with respect to the inelastic brace () = cdecdf m 1), the higher the lateral stiffness of the frame. 

However, this effect becomes less significant as the offset, �, approaches 0 and the bracing 

configuration becomes a single diagonal. Figure 3.5 shows similar plots in terms of an estimate of 

the elastic period, �. 

In summary, too much offset will significantly decrease the overall stiffness of the frame. 

This effect is reduced by providing ) m 1 so long as the offset is not too large.  

 
(a) (b) (c) 

Figure 3.3. Schematic of (a) degrees-of-freedom; (b) applied loads; (c) internal forces. 

 

  
(a) (b) 

Figure 3.4. Influence of offset on elastic stiffness.  
(a) variations of stiffness for different aspect ratios with constant member sizes;  

(b) variations of stiffness with strongback strength. 
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(a) (b) 

Figure 3.5. Influence of offset on estimate of period.  
(a) variations in estimated period for different aspect ratios with constant member sizes;  

(b) variations in estimated period with strongback strength. 

3.3.2 Elastic equilibrium 

Let � and % represent possible applied horizontal and vertical lateral loads; see Figure 3.3(b). The 

equilibrium equations in the horizontal and vertical direction in the global coordinate system can 

be written as: 

±� =  D,@ +  D,Aℎ −  R,@ +  R,Aℎ + 74 �@ − �� �A Equation 3.4

−�o =  R −  R,A� +  R,@ +  R7 − ℎ4 �@ − ℎ� �A Equation 3.5

The horizontal applied load, �, can act in both the ±$ direction and is representative of equivalent 

seismic loading while the vertical load, �o, acts only in the −� direction and is representative of 

typical gravity loading. Internal forces are defined in Figure 3.3(c). Equation 3.4 and Equation 3.5 

assumes positive moments are counterclockwise and axial forces are positive in tension.  

Since the one-story frame is statically indeterminate, the equilibrium solutions for the axial 

force in the braces can be separated into a particular solution describing the influence of the applied 

loading on the brace force, (∙)E, and a homogeneous solution describing the influence of the 

internal force distributions on the brace force, (∙)l.  

3.3.2.1 Particular Brace Force Solution 

The particular solution of the applied load can be written in terms of the magnitude of the brace 

axial force: 

p�@Ep = 4Q |�| ∓ �4ℎQ |�o|
p�AEp = �Q |�| ± 7�ℎQ |�o| Equation 3.6
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The sign of �A acts opposite the force in the inelastic brace, �@. The gravity load, �o, can be additive 

or subtractive depending on the direction of the horizontal load, � (i.e. if +�, the gravity load is 

subtractive for �@ and additive for �A; the opposite is true for −�).  

It is apparent from Equation 3.6 that the brace angle has a significant influence on the brace 

axial force. Neglecting �o, as the offset, �, decreases, the magnitude of the axial force in the 

inelastic and elastic braces, �@ and �A, tends to increase and decrease as the brace lengths, 4 and �, 

become longer and shorter respectively. In other words, the axial force in the inelastic brace will 

tend to increase with increasing offset and decreasing angle of inclination. In contrast, the axial 

force in the strongback brace will tend to decrease with increasing offset and increasing angle of 

inclination.  

3.3.2.2 Homogeneous Brace Force Solution 

The homogeneous solution including the internal forces in the surrounding beam and column 

elements can be written in terms of the contributing internal moments,  (∙), or shears, %(∙): 
�@l = 4ℎ  R,@ +  R7 − 4ℎ  D,@ +  D,AQ = �4ℎQ (%R,@ − %R,A) − 4Q i%D,@ + %D,Aj
�Al = �ℎ  R,A −  R� − �ℎ  D,@ +  D,AQ = 7�ℎQ i%R,A − %R,@j − �Q i%D,@ + %D,Aj Equation 3.7

%R,@, %R,A = beam shear in the inelastic and strongback portion of the beam, %D,@, %D,A = column 

shear in the inelastic and strongback columns.  

3.3.2.3 Total Brace Force Solution 

If the frame displaces to the right under +�, the beam moments are negative and the column 

moments are positive; see Figure 3.7. Substituting appropriate signs for these moments into 

Equation 3.7 and combining the particular and homogeneous solutions, the total solution for the 

magnitude of the axial force in the braces can be written as:  

|�@| = p�@Ep + p�@lp = 4Q |�| ∓ �4ℎQ |�o| − 4ℎ | R,@| + | R|7 − 4ℎ | D,@| + | D,A|Q|�A| = p�AEp + p�Alp = �Q |�| ± �7ℎQ |�o| + �ℎ | R| − | R,A|� − �ℎ | D,@| + | D,A|Q  Equation 3.8

These equations can be simplified if it is assumed that the beam ends and the column bases are 

pinned (i.e.,  D,@ =  D,A =  R,@ =  R,A = 0): 

|�@| = 4Q |�| ∓ �4ℎQ |�o| − 4ℎ | R|7|�A| = �Q |�| ± �7ℎQ |�o| + �ℎ | R|�  Equation 3.9

The algebraic signs in Equation 3.9 can be dissected to determine how the offset and corresponding 

particular and homogeneous solutions affect the axial force in the braces. Neglecting �o, the 

particular solution of �@ tends to increase with � as the offset, �, decreases and the brace length, 
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4, increases. The beam shear, 
rst , tends to reduce �@; the magnitude of this shear force decreases 

as the beam link length, 7, increases. In contrast, the particular solution of �A tends to decrease with � as the offset, �, and brace length, �, decreases. However, the beam shear in the strongback half 

of the beam, 
rsA , tends to increase �A; the magnitude of this shear force increases with decreasing 

offset, �.  

In summary, though the axial force in the strongback brace tends to decrease with 

increasing offset, the beam shear and vertical gravity loading contributions will increase with 

increasing offset. More information on this effect is provided in Section 3.4.2. 

3.4 INELASTIC CHARACTERISTICS OF OFFSET GEOMETRIES 

The effective performance of a frame under severe seismic excitation depends on its ability to 

absorb and dissipate energy without loss of strength. In an SBF system, the strongback components 

of the frame must additionally remain essentially elastic while the inelastic braces and beam links 

deform inelastically. An estimate of the ductility and strongback demands can be obtained from a 

rigid, plastic analysis of the structure at the “limit load” – the load needed to form a mechanism at 

incipient collapse.  

3.4.1 Ductility demand 

The plastic mechanism of the simple frame under a rigid, plastic assumption is shown in Figure 

3.6. The strongback “weak” beam plastic mechanism is compared to a conventional braced frame 

“strong” beam plastic mechanism in Figure 3.7 and Figure 3.8. Conventional braced frames are 

typically designed with strong beams that remain elastic under the unbalanced load induced by 

yielding in the braces; see Figure 3.6(b). In contrast, strongback-braced frames allow the beam to 

secondarily dissipate energy through flexural yielding; see Figure 3.6(a). The strong and weak 

beam mechanism are differentiated by the relative flexural strength of the beam to the braces. 

Energy dissipation in strong beam mechanisms is dominated by the hysteretic response of the 

braces, while a weak beam response includes beam yielding. 

Plastic hinging in the beam causes the beam to displace vertically in the weak-beam 

mechanism. From rigid-plastic geometry, the vertical deflection, �, is: 

� = 1� Equation 3.10

Geometric considerations including this vertical deflection lead to the following deformation 

relations for the weak-beam (i.e., strongback) mechanism.  

1Q = 1R7 Equation 3.11u@$ = � + 74 = Q4 , uA$ = 0 Equation 3.12

The deformation relations for the strong-beam (i.e., conventional braced frame) mechanism (� =0) are: 
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1 = 1R Equation 3.13u@$ = 74 , uA$ = �� Equation 3.14

1 = Zl = story drift ratio; 1R = flexural deformation of the beam link; u@ , uA = axial deformation 

of the inelastic and strongback brace respectively. The axial deformations can be converted to axial 

strains by dividing by the yield length, �@ = vf@w and �A = veAw, where 4C and �C are the yield lengths 

of the inelastic and strongback braces respectively.  

Plastic deformations for four different cases of offset, 
RS = GJ, 

G_, 
Gx, and 1, for both plastic 

mechanisms are shown in Table 3.1. Case D with � = 0 represents a single diagonal geometry 

when the deformations of the strong and weak beam mechanisms are equal. Case A with � = SJ 

represents the centered scheme when the deformations of the weak-beam mechanism are double 

that of the strong-beam mechanism.  

The deformations, u@ and 1R, in the weak-beam mechanism are the ratio of 
St  times that of 

the strong-beam mechanism. The ratio 
St  is a measure of the amplification in deformations seen in 

the SBF mechanism compared to a conventional CBF mechanism. As the length, 7, increases with 

increasing offset, 
tS increases and the strongback deformations approach that of the strong-beam 

mechanism.  

The plastic deformations for the strongback mechanism are normalized by the centered 

scheme in Figure 3.9. As the offset decreases, the beam vertical deflection, beam rotations, and 

brace axial deformations decrease with increasing 7. Beam rotations are independent of the ratio 

of story height to bay width, 
lS.  

Table 3.1. Comparison of “weak” and “strong” beam plastic mechanism. 

Case 

Offset SBF or weak-beam CBF Strong-beam CBF 

yz  
{z  

y{   |y|   
}~~�   

}���   
|y|   

}~~�   
}���   

A 1/2  1/2  1  2  Q/4 = 27/4 = 2�/4  0  1  Q/24 = 7/4 = �/4  Q/2� = 7/� = �/�  

B 1/3  2/3  1/2  3/2  Q/4 = 37/24 = 3�/4  0  1  2Q/34 = 7/4 = 2�/4  Q/3� = 7/2� = �/�  

C 1/4  3/4  1/3  4/3  Q/4 = 47/34 = 4�/4  0  1  3Q/44 = 7/4 = 3�/4  Q/4� = 7/3� = �/�  

D 0  1  0  1  Q/4 = 7/4  0  1  Q/4 = 7/4  0  
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 (a) (b) 

Figure 3.6. Locations of yielding for the plastic mechanisms of a one-story system. 

(a) weak-beam (stongback) mechanism and (b) strong-beam (conventional braced frame) mechnism. 

 

 
(a) (b) 

Figure 3.7. Plastic mechanisms for one-story system, +�. 

(a) weak-beam (stongback) mechanism and (b) strong-beam (conventional braced frame) mechnism. 

 

  
(a) (b) 

Figure 3.8. Plastic mechanisms for one-story system, −�. 

(a) weak-beam (stongback) mechanism and (b) strong-beam (conventional braced frame) mechnism. 
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(a) (b) (c) 

Figure 3.9. Variation of ductility demands.  

(a) vertical translation; (b) inelastic beam rotation; (c) inelastic axial deformation 

3.4.2 Limit load 

The equilibrium at the limit load can be used to approximate the axial-force demands in the 

strongback brace. By virtual work, the magnitude of the horizontal limit load, �∗, needed to form 

the weak-beam mechanism can be written in terms of the plastic capacity of the yielding elements: 

|�∗| =  D,@∗ +  D,A∗ℎ + Q7  R,@∗ +  R∗ℎ + Q4 �@∗ ± �ℎ |�o| Equation 3.15

( ∙ )∗ = plastic capacity of the beam, column base, and inelastic brace elements. The definitions of 

the variables used in these equations are called out in the moment diagrams of Figure 3.7(a) and 

Figure 3.8(a). The sign of the gravity load, �o, depends on the direction of lateral loading, � (+�o 

for +�; −�o for −�). 

Substituting the limit load, �∗, from Equation 3.15 for � in the equilibrium equation for 

the strongback demand in Equation 3.8 gives the magnitude of the axial force in the strongback 

brace, �A, at incipient collapse: 

|�A| = �ℎ Q7�  R∗ + �ℎ  R,@∗7 − �ℎ p R,Ap� + �4 �@∗ ± �ℎ |�o| Equation 3.16

This equation is independent of the column capacity for the one-story frame. Equation 3.16 can be 

simplified by assuming the beam ends are pinned (i.e.,  R,@∗ =  R,A∗ = 0): 

|�A| = �ℎ Q7�  R∗ + �4 �@∗ ± �ℎ |�o| Equation 3.17



38 

 

At the limit load, the demands in the strongback brace depend directly on the gravity loading, �o; 
the capacity of the beam,  R∗; and the capacity of the opposite inelastic brace, �@∗.  

The strongback brace demand in Equation 3.17 is a convex function of the offset. 

Neglecting �o, the magnitude of �A at the limit load is plotted against the normalized offset, 
RS, for lS  = GJ in Figure 3.10(a). When the derivative, 

��e�R = 0, the axial force in the strongback brace is 

minimized. The derivative of the strongback demand for different beam capacities,  R∗, is plotted 

against the amount of offset in Figure 3.10(b). Generally, strongback brace demands are minimized 

around 
RS = G_, depending on the relative strength of the beam to the inelastic brace. 

 

  
(a) (b) 

Figure 3.10. Minimization of �A at incipient collapse.  

(a) function of the offset and (b) derivative with respect to the offset. 

3.5 OPTIMIZATION OF THE OFFSET 

The normalization of a response quantity in an offset scheme by the same response in the centered 

scheme illustrated how demands are influenced by the offset location. In summary of the results 

in Sections 3.3 and 3.4 –  

1. The lateral stiffness of the braces, �hR@, decreases as the offset increases in the elastic 

range. As the offset increases, the inclination angle of the inelastic brace decreases while 

the inclination angle of the strongback brace increases. This angle causes the inelastic brace 

to contribute more and strongback brace to contribute less to the lateral stiffness of the 

frame. However, the stiffness contributions of the inelastic and the strongback brace to the 

total lateral stiffness are not one-to-one. As the angle of the strongback brace increases, its 

contribution to the lateral stiffness decreases at a higher rate than the inelastic brace 

contribution increases. Thus, even though the inelastic brace contributes more to the lateral 

stiffness as its angle decreases, the total brace lateral stiffness tends to decrease as the offset 

increases. Use of a stiffer strongback brace relative to the inelastic brace can increase the 

total brace lateral stiffness but is advantageous only if the offset is not too large.  
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2. The inelastic brace demand, �@, increases as the offset increases in the elastic range. 

Similar to observation [1], the inelastic brace contributes increasingly more to the lateral 

strength of the frame as the angle of inclination of the brace decreases. This results in larger 

axial-force demands in the inelastic brace, �@, in the elastic range. In contrast, the elastic 

brace demand, �A, tends to decrease with increasing offset in the elastic range. In both cases, 

the gravity loading can have an additive effect on the particular solution of the brace force 

depending on the direction of loading. 

 

3. The plastic deformations (�, 1R, u@, and �@) decrease as the offset increases in the inelastic 

range. The in-plane rotation of the beam link, 1R, is inversely proportional to the inelastic 

width, 7. Therefore, the beam plastic rotation angle, 1R, and vertical displacement, �, tend 

to decrease as the offset increases. The inelastic brace deformations, u@ and �@, are 

inversely proportional to the length of the inelastic brace in the inelastic range. Thus, as 

the length of the inelastic brace increases with increasing offset, the axial strain, �@, and 

the axial deformation, u@, decrease. These deformations are fundamentally different from 

the deformations of a conventional strong-beam mechanism where � = 0. 

 

4. The elastic brace demand, �A, is a convex function of the offset in the inelastic range of 

response. At the limit load, �∗, the axial-force demand in the strongback brace, �A, depends 

on the limit load and the flexural and axial capacities of the beam link and inelastic brace; 

see Equation 3.17. Depending on the flexural capacity of the beam, the axial-force demand 

in the strongback brace at the limit load can be minimized for offsets between 
Sx ≤ � ≤ S_. 

  

Each of these parameters is minimized at different offset locations. Only the equation for �A at the 

limit load in [4] is convex and has a minimum between 0 < � < SJ; see Figure 3.10(a). Other 

response quantities can only be minimized at the boundaries of the beam link length (i.e., at either � = 0, for observations [1] and [3] or � = SJ for observation [2]).  

3.5.1 Optimization Objectives 

An optimal offset location should maximize the lateral stiffness under the constraint that the 

member ductility demands are physically realizable. The offset is additionally constrained by 

limiting force demands on the strongback truss. To satisfy these constraints, the following goals 

are desirable for the optimization of the offset location: 

 Maximization of the lateral brace stiffness, �hR@, to achieve appropriate drift control in the 

elastic range. 

 Minimization of the plastic deformations (�, 1R, u@, and �@) to achieve adequate ductility in 

the inelastic range. 
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 Minimization of the axial load in the inelastic brace, �@, to reduce design demands in the elastic 

range. 

 Minimization of the axial load in the elastic strongback brace, �A, to reduce demands on the 

strongback at the limit load. 

To achieve the desired optimization goals, the ideal offset depends on a give-and-take of coupled 

parameters. Analysis of the strongback’s behavior in the elastic and inelastic range lends itself well 

to multi-objective optimization. The amount of offset is also constrained by satisfying code-

prescribed limits on allowable plastic deformations. The following section demonstrates a range 

of choices for the offset location based on: [i] a simplified multi-objective optimization study and 

[ii] code-prescribed minimums. 

3.5.2 Multi-Objective Optimization 

Several multi-objective criteria were used to evaluate the give-and-take of different parameters in 

the elastic and inelastic ranges of response for the following three optimization objectives: 

 

1. The maximization of �hR@ in the elastic range and the minimization of the plastic 

deformations (�, 1R, u@, and �@) in the plastic range. 

2. The minimization of �@ in the elastic range and u@ or �@ in the inelastic range. 

3. The minimization of �A in the inelastic range. 

 

The goal of this multi-objective optimization scheme was to find the offset, �, that simultaneously 

minimized two sub-functions, :G and :J, that depend on the strongback width, �. The weighted 

sum optimization method allows multi-objective functions to be written as a single objective 

function. The multi-objective function is minimized by setting its derivative with respect to � equal 

to zero: 

�G 5:G(�)5� + �J 5:J(�)5� = 0, 0 ≤ � ≤ Q2 Equation 3.18

�� = weights representing the contribution of each of the sub-functions to the multi-objective 

function. Equal weights were assigned to each sub-function as each of the objectives was 

considered to be equally desirable.  

The weighted sum method highly depends on normalization of the sub-functions, :G and :J. This study utilized feature normalization – normalizing : to a number between 0 and 1 subject 

to the boundary constraint 0 < RS ≤ GJ. This ensured that each goal contributed equally to Equation 

3.18.  

:L�@� = : − :S:� − :S 

:S = lower bound (utopia point) optimal value; :� = the upper bound (Nadir point) optimal value. 

If : is to be minimized, :S = min : and :� = max :. If : is to be maximized, :S = max : and :� =
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min :. Feature normalization allows the weighted sum method to compare paired parameters of 

equal relative magnitudes.  

Feature normalization for objectives [1] and [2] are shown in Figure 3.11(a) and (b). The 

corresponding multi-objective functions are shown in Figure 3.11(c) and (d). Objective 3 is a 

convex function of the offset and can be minimized by setting the derivative, 
��e�R = 0, as shown in 

Figure 3.10(b). The following represent the optimal offset location based on each multi-objective 

function:  

• For a trade-off between maximizing �hR@ and minimizing the plastic deformations, � ≅ S_; 

see Figure 3.11(c). 

• For a trade-off between minimizing �@ and u@ or �@, � ≅ Sx; see Figure 3.11(d). 

• For minimizing �A at the limit load, � ≅ S_; see Figure 3.10(b). 

The ideal offset range for the one-story strongback is between 
Sx ≤ � ≤ S_ depending on the selected 

parameter criteria and associated optimization goals. Note that other optimization methods or 

normalization strategies may give different results, and the intention of this relatively simple 

optimization study was to find a range of ideal offset locations, not to find a global minimum for 

all possible design alternatives.  
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(a) (c) 

  

 
 

(b) (d) 

Figure 3.11. Results of multi-objective optimization.  

(a-b) normalized parameters using feature normalization and (c-d) minimization function. 

3.5.3 Code Limits 

Modern seismic provisions recommend acceptable limits for deformation demands in the fuses. 

These deformation limits can also be utilized in choosing an offset location.  

For example, the beam link in the strongback system can be regarded as a long link in an 

eccentrically braced frame. Based on this consideration, the maximum in-plane rotation of the 

beam link is limited to 0.02 radians by AISC-341-16 (2016); see Figure 2.2. Equation 3.11 for the 

in-plane beam rotation can be estimated in terms of this limit as: 
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1R = Q7 1 ≤ 0.02 Equation 3.19

Equation 3.19 can be written in terms of the offset �/Q by solving for 7 = Q − �: �Q ≤ 1 − 10.02 Equation 3.20

The offset location, �, can then be selected based on the design story drift ratio, 1. 

The maximum axial strain of the inelastic brace can be limited in a similar fashion. ASCE-

41-17 (2017) limits design-level axial strains in an existing BRB frame to 2.5%. Equation 3.12 for 

the axial deformation can be estimated in terms of the axial strain, �@, and this limit: 

�@ = u@4C = Q44C $ ≤ 0.025 Equation 3.21

Assuming the yield length of the brace is some proportion of the workpoint brace length (4C =�4), the minimum brace length, 4, can be written in terms of the design drift ratio, 1, as: 

4J ≥ Q� 1ℎ0.025 Equation 3.22

The amount of offset can be estimated based on the appropriate brace length, 4 = √�J + ℎJ: 

�J ≥ Q� 1ℎ0.025 − ℎJ Equation 3.23

The amount of offset can then be selected in terms of the overall frame geometry, yield length 

ratio, �, and the design story drift ratio, 1. 

An appropriate offset can additionally be selected based on minimum stiffness or drift 

requirements. This process has been omitted but follows standard structural analysis and design 

procedures. Between the selection of an offset based on stiffness requirements and the use of 

Equation 3.20 and Equation 3.23, an appropriate range of offset can be selected based on code 

limits for ductility demands and stiffness.  

3.6 NONLINEAR DYNAMIC ANALYSIS 

An archetype one-story strongback frame was subjected to nonlinear dynamic analysis to confirm 

the analytical results in this chapter. The ground motion suite consisted of forty-four far-field 

ground motions scaled to the design response spectrum at the approximate fundamental period of 

the building (FEMA-P695, 2009); see Section 5.3.2 for information on the ground motion suite. 

The design of this archetype strongback was based on the equations of equilibrium in Equation 3.9 

and Equation 3.16. The intent of this section is to verify trends from the static elastic and plastic 

analyses. As such, the simple strongback design is used for illustrative purposes only and should 

not be applied to multi-story strongback frames with significant higher-mode contributions. 
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The columns were fixed at the base and oriented in strong-axis bending. The beams were 

modelled as non-composite, and all beam-column connections were modelled as fixed. Elastic 

material models were used for the strongback braces. The inelastic brace was modelled with a 

single co-rotational truss element with isotropic and kinematic hardening calibrated to the 

experimental test conducted by Simpson and Mahin (2018b). Distributed-plasticity elements were 

utilized for the beams and columns. Rigid elastic elements were representative of beam-column 

and brace connection regions. Applied mass was typical of a one-story office building with a 

mechanical penthouse on the roof. Tributary gravity loading was included on the main lateral 

frame, and leaning columns on either side of the frame simulated �Δ effects. Mass- and stiffness-

proportional Rayleigh damping was specified as 3% at the fundamental period, �G, and 1.5�G. 

Other numerical modelling parameters are similar to those described in Section 4.5. 

 To isolate the contribution of elastic stiffness to the archetype’s period and dynamic 

deformation response, two suites of analysis were conducted: [1] holding the elastic lateral brace 

stiffness, �hR@, constant while changing the inelastic brace size with offset and [2] holding the 

inelastic brace size constant and letting the elastic lateral brace stiffness, �hR@, change with offset. 

The two analysis suites are presented side-by-side in Figure 3.12 and Figure 3.13. Beam, column, 

and strongback sizes are constant for both analysis suites; see Table 3.2. 

 Plotted response quantities were normalized by the response derived from the centered 

scheme. Offsets varied from 
RS = GGO to 

GJ. The story drift ratio, 1, and vertical displacement 

response, �, are plotted in Figure 3.12 against the elastic spectral displacement, *�,�t at �. For both 

analysis suites, � tends to decrease with increasing �. The drift response was more variable. With 

constant lateral stiffness, drifts tend to decrease with increasing offset. For variable lateral stiffness 

and constant inelastic brace size, the trend is less clear but drifts tend to increase with increasing 

offset and decreasing lateral stiffness. 

The inelastic brace axial strains and the beam link rotation are plotted against elastic 

spectral displacement at � in Figure 3.13. With constant lateral stiffness, the deformations tend to 

decrease with increasing offset and follow similar trends to those observed for the static analyses. 

For variable lateral stiffness and constant inelastic brace size, the inelastic deformations still tend 

to decrease with increasing offset, but were also influenced by the growing global displacements 

associated with the smaller lateral stiffness and longer period at larger offsets.  

The peak axial-force demand in the strongback brace is plotted against the elastic spectral 

pseudo-acceleration, *�,�t, in Figure 3.14. Though these demands were similar, under constant 

lateral stiffness, the strongback brace demands tend to be minimized for an offset of 
RS = G_. For 

variable lateral stiffness and constant inelastic brace size, demands tend to become smaller with 

increasing offset. Note, however, that the axial force in the strongback seems less affected by the 

amount of offset than other response parameters. This may indicate that strongback demands may 

not be a primary parameter for the selection of the offset location.  

In summary, provided the elastic lateral stiffness (and period) remains unchanged with 

increasing offset, trends from the nonlinear dynamic analyses are generally similar to trends 

observed from the static analyses. If the lateral stiffness is allowed to vary with offset, the global 

displacements increase and the trends from static analysis may no longer hold.  



45 

 

Table 3.2. Design of one-story strongback. 

Offset y/z  Element Sizes 

Beam Column Strongback Brace BRB 

1/2 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  2.500 in2 

1/3 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  3.912 in2 

1/4 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  4.885 in2 

1/5 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  5.567 in2 

1/6 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  6.067 in2 

1/8 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  6.745 in2 

1/10 W14 × 68  W12 × 50  HSS10 × 10 × 5/8  7.182 in2 

 

 

 
(a) (b) 

Figure 3.12. Global demands: (a) same �h with different inelastic brace sizes;  

(b) different �h with same inelastic brace size 
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(a) (b) 

Figure 3.13. Deformation demands: (a) same �h with different inelastic brace sizes;  

(b) different �h with same inelastic brace size 

 

 
(a) (b) 

Figure 3.14. Force demands: (a) same �h with different inelastic brace sizes;  

(b) different �h with same inelastic brace size 
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3.7 SUMMARY AND CONCLUSIONS 

The amount of offset determines the elastic strength and stiffness of the frame under low-to-

moderate shaking and the plastic deformations and imposed strongback demand under severe 

shaking. An analytical study of the simplest strongback system was conducted to investigate the 

influence of the geometric configuration, or offset, on strongback behavior. Parameters derived 

from an offset scheme were compared to parameters from a centered scheme. In summary –  

1. Elastic lateral stiffness of the system tends to decrease with increasing offset. 

2. Axial force in the inelastic brace tends to increase with increasing offset in the elastic range.  

3. Plastic deformation demands tend to decrease with increasing offset. 

4. Strongback demands depend on the capacity of the elements in the system and can increase 

or decrease relative to the centered scheme depending on the amount of offset.  

The strongback “weak” beam mechanism is characterized by vertical displacement of the beam 

due to beam flexural yielding. This vertical deflection can significantly impact inelastic 

deformation demands. As such, its significance should be recognized in designs employing 

strongbacks embedded within the same bay as the fuses. 

A multi-objective optimization scheme combined pairs of design criteria to find a range of 

optimal offset locations. This range fell between 
S_ ≤ � < Sx. Selection of offset can also be derived 

based on deformation limits recommended by modern building codes. Provided the lateral stiffness 

of the strongback frame remained unchanged, these trends generally hold under nonlinear dynamic 

analysis. Inelastic deformation demands and lateral stiffness depended more on offset location than 

strongback brace axial force. 

Extrapolations to more complex assemblages can be based on this study of a one-story SBF 

system. However, note that some observations may not apply to multi-story strongback systems. 

Demands in the strongback were derived from equilibrium of the one-story frame at the limit load, 

but it must be kept in mind that failure may also result from other causes, such as [i] stability, [ii] 

excessive deformations, or [iii] fatigue fracture. Higher-mode effects can also significantly 

exacerbate multi-story strongback demands; these higher-mode effects are described in more detail 

in Chapter 7. 
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4 Numerical Model Development 

4.1 INTRODUCTION 

Braced frame behavior primarily depends on the hysteretic response of the braces. However, the 

cyclic inelastic response of steel braces is notoriously difficult to represent and involves several 

physical phenomena, including yielding in tension, buckling compression, post-buckling strength 

deterioration, and low-cycle fatigue (Ikeda & Mahin, 1986). Global buckling, yielding, or fracture 

causes deteriorating element strength and/or stiffness and a corresponding decrease in story 

strength and/or stiffness, resulting in new and potentially unanticipated load paths. Such force re-

distributions put greater demands on adjacent elements and connections and can result in other 

subsequent failure modes, especially near collapse. These failure modes and resulting force re-

distributions can impact the strongback demands, peak displacements, and structural integrity of 

the braced frame under severe earthquake ground motions.  

Accurate characterization of strongback behavior and evaluation of performance depends 

on adequately simulating these force re-distributions. Though many studies have recommended 

numerical modeling procedures for conventional braced frames, it is difficult to recognize which 

recommendations are suitable for investigation of strongback systems, especially since recent 

recommendations have primarily focused on the post-buckling response rather than the initial 

buckling capacity of conventional braces. While this behavior is important in simulating global 

displacements after the braces in the strongback buckle, it is not a critical mode of energy 

dissipation for the strongback system, which herein dissipates energy primarily through yielding 

in the buckling-restrained braces and secondarily through flexural yielding in the beam links. 

In the case of strongback-braced frames, simulating [i] yielding and strain hardening in the 

buckling-restrained braces, [ii] potential brace buckling in the strongback braces, and [iii] potential 

failure in the fuses due to low-cycle fatigue is critical to the determination of the global system 

response and the demands in the strongback elements. As such, this chapter emphasizes the 

buckling-restrained brace hysteretic response and strongback brace buckling response, rather than 

the post-buckling response.  

This chapter describes the development of a nonlinear modeling approach for strongback-

braced frames. Specifically, this chapter is divided into four parts: (4.2) typical modeling methods, 

(4.3) nonlinear modeling of the strongback braces, (4.4) nonlinear modeling of the buckling-

restrained braces, and (4.5) numerical modeling of the strongback system. 
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4.2 TYPICAL MODELING METHODS 

To summarize, numerical modeling recommendations for steel members typically fall into three 

categories:  

1. Phenomenological models, 

2. Physical-theory models, and 

3. Continuum finite-element models 

Phenomenological models represent the simplest and most computationally-efficient method of 

modeling brace behavior. Braces are represented by a truss element with material behavior that 

mimics the hysteretic behavior of a bracing element (Zayas et al., 1980; Ikeda et al., 1984; Khatib, 

1988). Flexurally-dominant beams are represented by a linear elastic beam-column element with 

inelastic springs concentrated at the element ends (Ibarra, 2005; Lignos & Krawinkler, 2011). 

These types of beam models are typically used for collapse assessment and are included in the 

modeling recommendations for beam and column elements in ASCE-41-17 (2017), the ATC-114 

project (2017), and the Tall Building Initiative project (PEER, 2017). However, phenomenological 

models need extensive calibration to existing experimental data and can require a large number of 

parameters to mimic stiffness and strength hardening and softening response. Though it can be 

considered, these types of formulations typically lack axial-flexural interaction. Simplifications 

introduced during the calibration process can result in errors in stiffness, energy dissipation, and 

peak responses (Uriz & Mahin, 2008). 

Three-dimensional continuum models represent the most sophisticated of the numerical 

models. Such models can simulate the local response of the material under large deformation 

theory and are capable of modeling localized behavior like local yielding, local buckling, and 

potentially fatigue (Fell et al., 2009; Huang & Mahin, 2010; Lai & Mahin, 2013). While such 

models are attractive, they can be computationally expensive and are not normally used to model 

large structures or for running a large number of analyses (e.g., for the collapse simulation 

involving a large number of archetype structures) in structural engineering applications.  

As the name implies, physical-theory models (i.e., beam-column models) simulate some 

of the physical phenomena occurring in the elements, overcoming certain limitations of 

phenomenological models while remaining relatively simple and computationally efficient 

compared to three-dimensional finite-element models (Ikeda & Mahin, 1986). Physical-theory 

models include distributed plasticity models able to model the section response at several points 

along the element length or along a specified plastic hinge length. Fiber discretization of the cross-

section at specified integration points along the element length can simulate the combined effect 

of axial and flexural demands by integration of the material model over the cross section. Though 

physical-theory models have a number of advantages – including less dependency on empirical 

parameters - physical-theory models often derive strains based on the assumption that plane-

sections remain plane. As such, physical-theory models can fail to account for a number of factors 

– including changes in shape of the cross-section during loading, triaxial stress states, etc. – and 

may require empirical parameters to improve fidelity  
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4.3 NONLINEAR MODELING OF STRONGBACK BRACES 

Numerical models incorporating brace buckling and low-cycle fatigue have been calibrated to a 

number of existing experiments on brace component and sub-assemblage braced frame tests [e.g., 

Uriz and Mahin (2008), Hsiao et al. (2012), Salawdeh and Goggins (2013), Karamanci and Lignos 

(2014), Tirca and Chen (2014), Sizemore et al. (2017), Simpson and Mahin (2017), etc.]. As such, 

a considerable amount of literature exists on the numerical simulations of braces in concentrically 

braced frames and detailed literature reviews on their simulation can be found elsewhere [e.g., 

Uriz and Mahin (2008)].  

Though many of these simulations follow similar modeling techniques, modeling criteria 

– like number of integration points, number of elements, and number of fibers – can be variable, 

especially since brace hysteretic response depends on a broad range of geometric, material, and 

numerical parameters; see Table 4.1. The bulk of this modeling criteria has been placed on post-

buckling response rather than on buckling initiation. However, representation of buckling initiation 

is a more critical behavior mode in strongback systems. Moreover, past parametric studies have 

focused on modeling tubular steel braces, but wide-flange (WF) sections are more likely to be used 

for the strongback elements. As such, a parametric study was undertaken to better understand the 

parameters influencing buckling in WF members, especially as related to simulating the critical 

brace buckling load. Some emphasis was also placed on the post-buckling response of the braces 

for collapse studies. 

This section introduces modeling methods typical for brace buckling and low cycle fatigue. 

Emphasis has been placed on simulating the buckling response of WF sections. Numerical models 

were implemented in OpenSees (McKenna, 1997). A parametric study of simulation variables, 

like number of fibers, integration points, elements, etc., is also presented. Finally, calibration of 

brace buckling is optimized with respect to the nominal buckling capacity as calculated from the 

elastic and inelastic buckling equations in AISC-360-16 (2016).  

4.3.1 Modeling Buckling 

The modeling approach utilized herein was based on the fiber-based approach developed by Uriz 

and Mahin (2008); see Figure 4.1. In this approach, each brace is sub-divided into nonlinear sub-

elements based on the force-formulation by Spacone et al. (1996). Equilibrium in the absence of 

second-order effects is satisfied directly under the force-formulation and errors in the response 

only depend on the accuracy of the numerical integration. Alternatively, a displacement-based 

formulation could be utilized provided a large enough number of sub-elements was used to 

approximate the section deformations along the brace length.  

Fibers are used to discretize the cross-section at designated integration points along each 

element. The mechanical properties of each fiber are defined by a uniaxial stress-strain material 

model; herein the Menegotto-Pinto material model (Filippou et al., 1983). Interaction of axial-

force and bending moment are calculated by integration of the steel material model over the cross-

section of the brace. This section response is then monitored at the integration points located along 

the element length. To initiate out-of-plane buckling, an initial out-of-plane perturbation, Δ, is 

specified at the midpoint of the brace. If more than two sub-elements are utilized, nodes adjacent 

to this mid-point perturbation can be located in a parabolic (Uriz & Mahin, 2008), sinusoidal 
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(Karamanci & Lignos, 2014), or linear (Lai & Mahin, 2013) scheme. The brace simulation 

accounts for the large displacements associated with brace buckling through a co-rotational 

transformation (de Souza, 2000). As summarized in Table 4.1, a number of studies have 

investigated the sensitivity of cyclic response to the initial camber, number of elements, number 

of integration points per element, and number of fibers at each section. 

4.3.2 Modeling Low-Cycle Fatigue 

Low-cycle fatigue in the braces can be empirically represented by tracking the strain history in 

each fiber. Herein, the low-cycle fatigue wrapper developed by Uriz and Mahin (2008) was used 

to simulate rupture of the critical sections. Other fatigue models are also available [e.g., Lee and 

Goel (1987), Shaback and Brown (2001), Tremblay et al. (2003), Kanvinde and Deierlein (2007), 

Yoo et al. (2008), Huang and Mahin (2010), Hsiao et al. (2013), etc.].  

The fatigue material model “wraps” around any OpenSEES uniaxial material that monitors 

strain. The algorithm uses a modified rainflow counting scheme to determine the recent strain 

history in each fiber. The material fatigue wrapper assumes a linear log-log relationship between 

fatigue life, 
X, and the equivalent strain amplitude experienced by a fiber, ��, as shown in the 

following Coffin-Manson relationship (Manson, 1965): 

�� = �Oi
Xj�
 Equation 4.1

� = the cycle increment; � = relationship between fatigue life and equivalent strain amplitude, �� 
(i.e., slope of the log-log relation); and �O = the strain at which fracture of the undamaged material 

occurs in one cycle. The parameters � and �O are values calibrated to experimental data. The 

damage in a fiber during each cycle, '�, is expressed by the ratio of the number of cycles at a strain 

amplitude, ��(��), to the number of cycles to failure at that amplitude, 
X,�: 
'� = ��
X,� = 110 G� �������V�  Equation 4.2

Damage is accumulated through Miner’s rule (Miner, 1945): 

' = � '��  Equation 4.3

If the accumulated damage, ', in a fiber is greater than one, that fiber’s fatigue life has been 

exceeded, the engineering stress of the wrapped material is reduced to near zero, and the fiber 

exhibits a computationally negligible strength and stiffness. Full rupture is determined when all 

fibers at a section (i.e., integration point) have reached damage measures greater than one. 

Values for �O and � from different calibration studies for WF braces are shown in Table 

4.1. The calibrated values, �O and �, are conditioned on both the experimental data and the 

OpenSEES model. As empirical parameters, � and �O relate the geometry of the brace to the 

numerical parameters used in the simulation. Re-calibration is necessary for braces with different 

geometries or numerical parameters. In the past, � and �O have been calibrated to braces sub-
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divided to twenty sub-elements (Uriz & Mahin, 2008). While two to four sub-elements may be 

enough to simulate brace buckling, ten to twenty elements have been recommended to represent 

the inelastic strains needed for the low-cycle fatigue model; see Equation 4.1.  

 

Table 4.1. Modelling Recommendations for WF braces. 

Year Study �  ��   ¡¢  �y£  �¤¥  y  ¦  §¨  

2014 Karamanci and 
Lignos 

Q/1000  2 5 6 2 0.001 -0.3 a 

2013 Salawdeh and 
Goggins 

Q/100 to Q/1000  

2 10 J(l©R)_   3 0.008 b 

2013 Lai and Mahin Q/1000  4 5 4 4 0.003 -0.458 0.22 

2012 Hsiao et al. Q/500  10 4 10 2 0.01 c 

2008 Uriz and Mahin Q/2000 to Q/1000 
20 for fatigue 

2 for symmetric buckling 

4 for asymmetric buckling 

3 5 5 0.003 -0.458 d 0.191 d 

Δ = initial camber, �� = number of sub-elements, 
�� = number of integration points, ��	 = number of fibers across the flange depth, �ª� = number of fibers across the web thickness, � = strain hardening ratio, � and �O = fatigue parameters, ℎ = section depth, � =
section width. 

a �O = 0.0391 �¬t@ �­O.J_x ® R¯J°¯±­O.G²³ � l°´�­O.O²µ ® c¶w±O._µG
 for 27 ≤ ¬t@ ≤ 85, 4.2 ≤ R¯J°¯ ≤ 30.4, 223 MPa ≤ ºC ≤ 532 Mpa 

b calibrated for HSS braces only. 
c used alternative fatigue model [see Hsiao et al. (2013)] 
d calibrated to flextural tests only (Ballio & Castiglioni, 1995) 

4.3.3 Numerical Parameters for Buckling Braces 

The results of a parametric study of a pin-ended brace model are presented in this section to 

demonstrate the sensitivity of the model parameters to the simulated brace buckling response. For 

comparison purposes, a WF brace from a previous sub-assemblage experiment (Lai & Mahin, 

2013) was used as a benchmark for the parametric study. Based on the number of fibers, number 

of sub-elements, and number of integration points selected from this parametric study, empirical 

values for the fatigue parameters, � and �O, and brace camber, Δ, were calibrated to that of other 

numerical models and the buckling equations from AISC-360-16 (2016).  

4.3.3.1 Model Description 

The benchmark numerical model used throughout the parametric study is shown in Figure 4.1. In 

particular, focus was placed on comparing the simulated buckling load, � to the nominal tensile 

yielding and buckling load, �∗, and the strain history, �(ª). 

Numerical modeling was conducted in two-dimensions with three-degrees of freedom 

(DOFs) per node. Fiber sections representing the WF section were oriented in weak-axis bending 

to simulate likely buckling about the weak axis direction of the brace. Several wide-flange sections 
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were compared to observe the effect of different cross-sections on the model response. A W8 × 28 

section modeled from a previous experimental test (Lai & Mahin, 2013) was compared to heavier 

and deeper WF sections, W12 × 152 and W14 × 257.  

The effective brace buckling length, Q, was estimated as 0.9 times the workpoint-to-

workpoint length of a typical brace. The bracing element in the benchmark simulation was 

modeled with two force-based nonlinear beam-column elements with an out-of-plane camber of Q/500 and co-rotational transformation to initiate out-of-plane buckling. Where a greater number 

of sub-elements was utilized, notes were placed in a parabolic shape about the initial camber. Five 

integration points per the Gauss-Labotto quadrature rule were initially assigned to each sub-

element. The material model is based on the Menegotto-Pinto uniaxial material (Filippou et al., 

1983) with nominal yield strength of 50 ksi, Young’s modulus of 29,000 ksi, and isotropic strain 

hardening ratio of 0.1%. 

Gusset-to-brace connections were modeled as pins for simplicity, though a number of 

models exist for simulating the out-of-plane flexural strength and flexibility of the gusset plates 

[e.g., Uriz and Mahin (2008), Hsiao et al. (2012)]. Open circles in Figure 4.1 represent the locations 

of these pins. Rigid elastic end elements were provided outside of the pin connections to represent 

the regions where gusset plates would intersect with the beams and columns. Thick black lines in 

Figure 4.1 represent the locations of these rigid regions. Rigid elements were assigned with 10 

times the area, #, and the moment inertia about the weak-axis direction, �C, of the interior bracing 

element.  

The numerical model was subjected to static cyclic loading. Except where noted, a constant 

displacement amplitude history was applied at the end of the element end. These constant 

amplitude cycles were similar to the displacement protocol conducted by Uriz and Mahin (2008). 

Strains were monitored at the outermost tension and compression fibers of the cross section and 

can be identified in plots by their respective sign: positive for tension and negative for 

compression. 

 
Figure 4.1. Model geometry and loading. 

4.3.3.2 Number of Fibers 

Fibers were oriented in one direction to reflect the two-dimensional nature of the simulation. Focus 

was placed on the fibers oriented along brace flanges as these were the regions of critical strain. 
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The number of fibers across the brace flange, ��X, were varied from 4, 8, 12, 16, to 32 fibers. Two 

fibers across the web depth were kept constant. Other modeling parameters were fixed as described 

for the benchmark model in Section 4.3.3.1. The buckling load remained similar for each case, 

regardless of the cross-section and number of fibers, see Figure 4.2(a). The strain response was 

little changed from twelve to a greater number of fibers; see Figure 4.3. The wider the flange, the 

more fibers needed to simulate the response. This is consistent with the fiber discretization 

recommended by Kostic and Filippou (2012) of 24 to 40 fibers for WF sections oriented in weak-

axis bending. 

 

  

 (a) (b) 

Figure 4.2. Number of fibers, ��	: (a) buckling load and (b) peak strains (with 
�� = 5, �� = 2). 

 

 

 

with 
�� = 5, �� = 2 

W8 × 28  

  W12 × 152 W14 × 257 

Figure 4.3. Number of fibers, ��	: strain pseudo-history. 
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4.3.3.3 Number of Elements and Integration Points 

The number of sub-elements was varied from 2, 4, 10, and 20 and the integration points in each 

sub-element was varied from 2 to 10. The maximum number of integration points per element that 

can be used in OpenSees is 10. Based on the results from Section 4.3.3.2, the number of fibers 

across the flange was fixed to 12. 

As shown in Figure 4.5(a), the brace element needs at least two sub-elements to simulate 

symmetric buckling. However, a finer sub-division is needed to achieve constant estimates for the 

strains used in the low cycle fatigue material model discussed in section 4.3.2; see Figure 4.5(b). 

As noted by Uriz and Mahin, an applied constant displacement history does not result in constant 

amplitude strains; see Figure 4.6 and Figure 4.7. This can be attributed to the co-rotational 

transformation used to model large deformations associated with the buckling response and 

localization of the inelastic response at a few integration points.  

Deformations are calculated from the weighted sum of the curvatures at the integration 

points. The larger the number of integration points, the shorter the length associated with each 

integration point and the larger the curvature needed to maintain the same displacement response. 

To illustrate this numerical problem, the peak curvature response, ½, is plotted over half the brace 

length in Figure 4.8(a). As the number of integration points increases, the finite length associated 

with each integration point decreases, resulting in increased curvature and strains near the middle 

of the brace. Since strains due to buckling exhibit little strain hardening and spread of plasticity, 

strains extracted from a buckled brace become constrained to the end integration point and are 

dependent on the nearness of the end integration point to its neighbor integration point.  

The use of force-based fiber elements minimizes the error in displacement-compatibility 

and force-equilibrium at the element level by iteratively satisfying material constitutive relations 

at the section-fiber level. However, as noted in the previous paragraph, the material constitutive 

relations non-objectively depend on the number of integration points used to obtain the 

deformations. In the case of a hardening material, plasticity will spread beyond the first integration 

point and this problem depends on providing enough integration points to model the smooth 

spreading of inelastic behavior (Neuenhofer & Filippou, 1997). In the case of buckling, strain 

hardening is small and plasticity does not spread far from the buckled location to neighboring 

integration points; see Figure 4.8(b). This behavior is similar to that described by Coleman and 

Spacone (2001) for a cantilever utilizing an elastic perfectly plastic material model; see Figure 4.9. 

These adjacent integration points remain elastic, confining inelastic curvature to the sub-element 

end where buckling was initiated. This results in large localized strains where a large number of 

integration points are utilized and the length associated with the end integration point is small. Any 

of these observations are further exacerbated by small values of material strain hardening. 

Mesh refinement (i.e., use of a greater number of sub-elements) results in a converging 

estimate of the strains needed to model low cycle fatigue; see Figure 4.7. However, the use of 20 

elements as recommended by Uriz and Mahin can result in unusual buckling modes, is 

computationally expensive, and belies the advantage of using force-based over displacement-based 

elements. Since the strain response is non-objective, the empirical damage parameters, � and �O, 

must be re-calibrated to new integration point locations (i.e., strains) when using a smaller number 

of sub-elements. This issue can be circumvented by the use of fiber hinge elements, like the beam 
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with hinges element in OpenSees (Scott & Fenves, 2006), provided the plastic hinge length was 

chosen consistently between calibrations. 

Other studies have recommended concentrations of short sub-elements near the expected 

plastic hinge region (Chen & Mahin, 2012; Simpson et al., 2017). This approach results in similar 

values of � and �O so long as the integration points of the new numerical model are at the same 

location of the integration points used during the calibration process. A brace model with one or 

two concentrated sub-elements of length, Q/20, near the plastic hinge region results in similar 

strains to a model utilizing 20 equally spaced sub-elements and is computationally cheaper. 

Alternatively, the strains observed in a brace model utilizing twenty sub-elements could be 

mimicked by two sub-elements with user-defined weights and manual placement of the integration 

points at similar locations to that of a brace model using twenty sub-elements. These approaches 

would allow for similar values for �O and � to that calibrated for 20 sub-elements.  

Herein, five integration points with two sub-elements were chosen for the final brace 

numerical model. Five integration points provide enough integration points for integration over 

the sub-element length while keeping strains relatively consistent with the applied displacements. 

The odd number of integration points explicitly provides an integration point at the midpoint of 

the sub-element and is capable of simulating symmetric curvature. Though outside the scope of 

this study, the fatigue model specified in Equation 4.1 could alternatively be defined in terms of 

element deformation rather than fiber strain to achieve an objective damage quantity. 

 

  

 (a) (b) 

Figure 4.4. Number of integration points, 
��: (a) buckling load and (b) peak strains (with with ��	 = 12, �� = 2). 
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 (a) (b) 

Figure 4.5. Number of sub-elements, ��: (a) buckling load and (b) peak strains (with ��	 = 12, 
�� = 5). 

 

 

 

  

with ��	 = 12, �� = 2 
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  W12 × 152 W14 × 257 

Figure 4.6. Number of integration points, 
��: strain pseudo-history. 
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with ��	 = 12, 
�� = 5 

W8 × 28  

  W12 × 152 W14 × 257 

Figure 4.7. Number of sub-elements, ��: strain pseudo-history. 
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  W8 × 28  W8 × 28 

  `W12 × 152  `W12 × 152 

  W14 × 257  W14 × 257  

(a) (b) 

 
 

  
Figure 4.8. Variation of curvature with element length: (a) with 
�� and with ��. 
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Figure 4.9. Moment and curvature profiles for an elastic perfectly plastic cantilever by Coleman and Spacone (2001). 

4.3.4 Calibration of Perturbation 

The previous section provided a detailed parametric study of brace numerical modeling 

parameters. In that parametric study, the brace out-of-plane perturbation used to initiate buckling 

was kept constant at Δ = Q/500. However, previous studies hypothesized that this perturbation 

could be varied with brace slenderness to better represent the initial buckling load of the member 

(Goggins & Salawdeh, 2013; Sizemore et al., 2017).  

Initial perturbations used in the brace numerical models are substitutes for initial 

crookedness of the member, accidental eccentricity of load, and residual stresses that affect the 

buckling load. Column strength curves (i.e., average tress versus slenderness ratio curves) in 

column design formulas empirically account for these factors through corrections to the buckling 

load to account for variability in behavior exhibited by experimental tests. Since brace buckling 

was considered to be a critical behavior mode for the strongback braces, the out-of-plane 

perturbation, Δ, was fit to the nominal buckling loads provided in AISC-360-16 (2016), repeated 

below for convenience: 

�∗ = ºD@#o 

ºD@ = ⎩⎨
⎧0.658¶w/¶ÂºC �Q/4 ≤ 4.71I"/ºC

0.877º� �Q/4 m 4.71I"/ºC 

º� = ÃJ"(�Q/4C)J 

Equation 4.4

�∗ = nominal buckling strength; ºD@ = critical buckling stress; º� = Euler elastic buckling stress; �Q/4C = effective slenderness ratio; ºC = nominal yield stress; " = Young’s modulus. The piece-

wise nature of the column design formulas provides a transition between elastic buckling and 

yielding – represented by an exponential function and the Euler hyperbola – that reflect the effects 

of residual stresses. These equations were considered to be vetted estimates for the brace buckling 

capacity and representative of data from a large number of experimental tests [e.g., Hall (1981)].  
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An optimization study was conducted to find an empirical function for Δ to best match the 

nominal buckling load with the buckling strength extracted from the brace numerical models. The 

optimization study was performed on numerical models with 12 fibers across the depth of the 

flange, 2 fibers across the web width, two sub-elements, and five integration points per sub-

element; brace lengths corresponding to a bay width of 30’-0”; story heights of 5’, 15’, 18’, and 

25’; and a strongback offset to 1/3 the bay width. To represent the full breadth of cross-sectional 

shapes considered typical for the strongback braces, all of the W8, W12, W10, and W14 sections 

found in AISC-360-16 (2016) were used for test data set.  

The optimization scheme employed the Mesh Adaptive Algorithm (Abramson et al., 2009) 

available in MATLAB (Version 9.3.0.713579, 2017b). The optimization study minimized an 

objective function, �, representing the difference between the buckling load in the model, �����t∗ , 

dependent on the perturbation, Δ, and the nominal buckling capacity, �∗, calculated per AISC-

360-16: 

�(Δ) = �����t∗ (Δ) − �∗ Equation 4.5

The model buckling load, �����t∗ (Δ), was simulated by monotonically applying a compressive 

force at one end until buckling occurred about the weak-axis of the brace. 

Optimized camber, Δ, is plotted against brace slenderness in Figure 4.10. Stockier braces 

with low �Q/4C required smaller initial perturbations while slender braces with larger �Q/4C required larger initial perturbations; see Figure 4.10(a). This trend agrees with observations 

made by Goggins and Salawdeh (2013) and Sizermore et al. (2017). For inelastic buckling (i.e., �Q/4C ≤ 4.71Ä"/ºC), the data hovers about cambers of Q/500 (0.2% of the brace length, Q). As 

the slenderness increases beyond 200, the optimized camber approaches infinity.  

A smooth piece-wise curve representing the needed perturbation for a given �Q/4C given 

elastic or inelastic buckling was fit to the data in Figure 4.10(b). To account for the transition 

between elastic and inelastic buckling, the data was fit to a third order and second order polynomial 

respectively: 

Δ = Å−0.002($ − $O)_ − 0.2545($ − $O)J − 7.8698($ − $O) + 385.9262 �Q/4C ≤ $O0.0403($ − $O)J − 7.8698($ − $O) + 385.9262 �Q/4C m $O Equation 4.6

$O = 4.71Ä" ºC⁄  is the point where the Euler hyperbola and exponential function become tangent 

to each other in Equation 4.4 for ºC = 50���. To enforce a smooth transition between the elastic 

and inelastic buckling curves at $O, the parameter Δ($O) and the first derivative at $O were 

constrained to be equal during the curve fitting process. Because the data was fit to the piecewise 

line in Equation 4.4, the correlation coefficient is close to one. Use of actual test data would result 

in more scatter. 

Equation 4.6 is valid only for ºC = 50���, and the WF sections used for the test data set. 

Other yield strengths, cross-sections, or simulation parameters would result in different scatter and 

fit of Δ. For example, the optimization and fitting study was conducted again for ºC = 36���, as 

shown in Figure 4.11 and below: 
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Δ = Å−0.0013($ − $O)_ − 0.2020($ − $O)J − 7.1512($ − $O) + 474.5841 �Q/4C ≤ $O0.0274($ − $O)J − 7.1512($ − $O) + 474.5841 �Q/4C m $O 

Because the parameters are fit to a piecewise line rather than scattered data, these equations could 

be generalized to depend on #o, ºC, and �Q/4C (i.e., the independent variables in Equation 4.4). 

Though a generalized equation may be useful for future studies, an empirical equation for Δ was 

not pursued beyond that shown in Equation 4.6. 

The piecewise curve in Equation 4.6 was fit to slenderness ratios, �Q/4C ≤ 200, as the 

likelihood of using braces with higher slenderness ratios was considered small. Braces with higher 

slenderness ratios, noncompact sections, or different boundary conditions may not suitably fit 

within the described empirical equation. Other significant parameters influencing brace buckling, 

like reduction in capacity due to local buckling, were also not included.  

  
(a) (b) 

 

Figure 4.10. Calibrated perturbation with 	C = 50���: (a) optimized perturbation; (b) fitted perturbation 
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(a) (b) 

 

Figure 4.11. Calibrated perturbation with 	C = 36���: (a) optimized perturbation; (b) fitted perturbation 

4.3.5 Validation of Buckling Model 

The derived buckling model was validated against the experimental results of a W8X28 brace from 

a sub-assemblage experiment, TCBF-B-3, tested by Lai and Mahin (2008). The geometry was 

modeled to reflect the brace length including gusset regions of the first story west W8 × 28 steel 

brace. The applied displacement loading protocol for the simulation was extracted from wire pots 

located to either side of the brace to monitor brace elongation and shortening.  

The buckling model proposed herein was similar to that described in Section 4.3.4. Brace 

perturbation was tuned to the buckling equations from Equation 4.4 using the mill-certificate yield 

strength of the experimental specimen (
ÈS = 436; ºC = 54���). As discussed in Section 4.3.3.3, 

the strain response is non-objective, and the empirical damage parameters, � and �O, must be re-

calibrated to the numerical parameters used in the new brace model. Calibration of the fatigue 

parameters to the initiation of brace fracture in the experiment resulted in � = −0.458 and �O =0.22. 

Numerical modeling parameters and fatigue parameters from Uriz and Mahin (2008), Lai 

and Mahin (2013), and Karamanci and Lignos (2014) for WF sections were compared to interpret 

the impact of simulation parameters on the fatigue results; see brace sub-element layout in Figure 

4.12. The study by Uriz and Mahin was additionally modified with concentrations of sub-elements 

with length of Q/20 near the plastic hinge region to reflect the numerical modeling method 

outlined in Chen and Mahin (2012). Other modeling parameters used by these studies are shown 

in Table 4.1.  

Global parameters were similar for all the numerical models considered, and brace axial 

force adequately matched results from the experimental test; see Figure 4.13(a) and (b). However, 

estimates for strain and damage, ', in the outermost tension fiber varied widely; see Figure 4.13(c) 

and (d). Fatigue life was smallest and largest for the studies by Karamanci and Lignos and Uriz 

and Mahin, respectively. These studies used different damage slopes of � = −0.3 and � =



64 

 

−0.458. The fatigue parameters proposed by Karamanci and Lignos appear to be ill-suited to 

represent the experimental results for the WF section considered. As expected, the modified 

numerical model with concentrated elements from Chen and Mahin resulted similar damage states 

to that of Uriz and Mahin.  

Fatigue parameters from Lai and Mahin resulted in the closest representation of the fracture 

initiation observed in the experiment; see proximity to the vertical red line in Figure 4.13(d). Note 

that the fatigue parameters from Uriz and Mahin were calibrated to the experiments conducted by 

Ballio and Castiglioni (1995) conducted under purely flexural loading conditions while the fatigue 

parameters from Lai and Mahin were calibrated directly to the sub-assemblage experiment and 

accounted for axial-flexural interaction due to buckling. The initiation of fatigue from the 

calibration study was similar to that of Lai and Mahin and closely matched the initiation of fracture 

observed in the experimental results. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.12. Schematic of fatigue models: (a) Uriz and Mahin (2008), (b) Lai and Mahin (2013), (c) concentrated sub-
elements (Chen & Mahin, 2012), and (d) Karamanci and Lignos (2014) and the calibration study herein. 
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(a) (b) 

  
(c) (d) 

  

Figure 4.13. Calibration of fatigue parameters, � and �O for �8�28: (a) hysteretic shape; (b) brace axial force 
pseudo-history; (c) strain pseudo-history; (d) damage pseudo-history 

4.3.6 Summary of Buckling Brace Model 

The parametric study conducted in this section focused on WF cross-sections and the use of two 

sub-elements to simulate brace buckling. Twelve fibers across the width of the flange, two fibers 

across the web thickness, and five integration points were found to acceptably simulate the brace 

buckling phenomenon. Calibration studies found that fatigue parameters, � = −0.458 and �O =0.22 and the initial perturbation, Δ in Equation 4.6, could be used to simulate brace buckling and 

fatigue response using the described numerical brace model. This buckling model was validated 

against results extracted from an experimental test of a braced frame sub-assemblage using WF 

braces. 

 The use of two, rather than 20, sub-elements has the advantage of computational efficiency. 

Upon rupture at the mid-length of the brace, numerical problems resulting from the abrupt loss of 

strength and stiffness in both sub-elements are easily controlled. The use of a greater number of 
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sub-elements may require manual removal of the sub-elements of the brace (e.g., remove element 

command in OpenSEES) to ensure convergence. The use of fewer sub-elements also eliminates 

any undesirable or unusual buckling modes. 

 However, the use of two sub-elements ignores the possibility of buckling away from the 

mid-length of the brace. Strains in force-based beam-column elements non-objectively depend on 

the number of integration points used to integrate across the brace length. Elements with manual 

calibration of the location and weights of the integration points, use of an alternative integration 

scheme besides Gauss-Lobatto quadrature (Scott, 2011), or the use of other nonlinear beam-

column elements [e.g., beamwithhinges element in OpenSEES (Scott & Fenves, 2006)] can 

alternatively be used to simulate brace buckling and post-buckling response. 

The observations made in this study focused on highly ductile WF seismically compact 

sections. Local buckling response, especially for non-compact sections, is not modeled using fiber-

based sub-elements and care should be taken in extending the findings of this study to brace 

properties other than those described herein. 

4.4 BUCKLING-RESTRAINED BRACE CALIBRATION 

Numerical modeling of buckling-restrained braces is relatively simple compared to modeling 

buckling behavior in conventional braces; see Section 4.3. Typically, buckling-restrained braces 

are represented by phenomenological models defined by truss element and a material model. Such 

models require empirical calibration of the material model to experimental test data to accurate 

simulation of the buckling-restrained brace response. 

Accurately simulating strain hardening in the inelastic braces is critical to characterizing 

the demands in the strongback elements. Moreover, any capacity design principles used in the 

design of force-controlled actions must rely on accurate adjustment factors, ) and (, used to 

account for the expected strain hardening of the BRB in tension and friction that can develop 

between the core and the fill material of the BRB in compression; see Figure 4.14. In this sense, 

modeling of the buckling-restrained brace elements depends on two factors: 

i. The BRB material model used in the simulation. 

ii. The BRB adjustment factors, ( and ), used for capacity design. 

The adjustment factors in [ii] should be consistent with the material model used in [i]. To achieve 

these conditions, the following calibration process was implemented in OpenSEES (McKenna, 

1997): 

1. Calibrate a generalized material model to available BRB experimental data. 

2. Subject component BRB simulations with different core areas and yield lengths to the 

qualification test protocol from Section K3.2 of AISC-341-16 to determine ( and ) 

factors consistent with the generalized material model in [1].  

3. Utilize the ( and ) factors from [2] for the capacity design of relevant force-controlled 

actions in the strongback system. 
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4. Characterize the behavior of the strongback system through nonlinear dynamic 

analyses using the design from [3] and the calibrated BRB material behavior from [1].  

In following these steps, any simulations in later chapters used to characterize the strongback 

behavior and to develop design methods are based on adjustment factors, ( and ), that are 

consistent with a realistic BRB numerical model. 

 

 
Figure 4.14. Bilinear BRB material behavior. 

4.4.1 Material Model 

In the past, buckling-restrained braces have been modeled with bilinear phenomenological models 

including expected strain hardening and adjustments for compression overstrength; see Figure 

4.14. Some studies have also incorporated material models with more accurate estimates of energy 

dissipation by accounting for Bauschinger effects [e.g., Bouc-Wen material model (Bouc, 1971) 

used by Black et al. (2002)] and for kinematic and isotropic hardening [e.g., Menegotto-Pinto 

material model (Filippou et al., 1983) used by Uriz and Mahin (2008)].  

Recently, the Menogotto-Pinto material model has been extended to include asymmetric 

kinematic and isotropic strain hardening that is more suitable for simulating the asymmetric 

response of yielding of the BRB core in tension and compression. This material model has been 

implemented as steel4 in OpenSees (Zsarnoczay, 2013) and has the advantage of explicitly 

including distinct modeling parameters for asymmetric isotropic and kinematic hardening. For this 

reason, this was the material model utilized herein to simulate the buckling-restrained braces.  

Though the steel4 material model has a number of obvious advantages, it can be also be 

prone to marginal errors. Errors can occur in the stiffness of unloading from high strain levels in 

compression, continued hardened strength upon unloading to smaller amplitude cycles (i.e. no 

reduction in the yield surface), and inadequate simulation of the friction between the concrete 
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casing and steel core upon large compression amplitudes. The optional ultimate stress asymptote 

of the steel4 material was also not utilized herein as it tended to result in unrealistic compression 

behavior when the ultimate strength was reached in tension. These errors are well documented in 

Zsarnoczay (2013). 

4.4.2 Stiffness Modification 

The inelastic response in buckling-restrained braces is restricted to the portion of the BRB length 

contained within the restraining mechanism, termed the yield length, 4C. To estimate the brace area 

and stiffness outside of this yielding zone, an inelastic truss component was sandwiched between 

two rigid elastic elements representing the end connection regions; see Figure 4.15. As 

summarized in more detail below, an effective stiffness was then used to represent the larger areas 

associated with transition regions within the BRB core per Tsai et al. (2014).  

The total inelastic brace length, 4, was broken into three lengths of different stiffness: the 

joint connection region, 4>, the transition region, 4°, and the yielding region, 4C; see Figure 4.15. 

The stiffness of the truss was modified by a stiffness adjustment factor, É, to obtain the effective 

stiffness of the truss, �Ê, including the transition regions. This adjustment factor was calculated 

from the series sum of the stiffness of transition region, �° = 4°/"#°, and yielding region, �C =4C/"#@: 

�Ê = 12�° + 1�C
= 124°"#° + 4C"#@

= 124°/4Ë#°/#@ + 4C4Ë
"#@4 = (É")#@4 = "Ê#@4  

Equation 4.7 

The stiffness adjustment factor can be extracted from this series model: 

É = 124°/4Ë#°/#@ + 4C4Ë
 

Equation 4.8 

Using this method, one element with effective material stiffness, "Ê = É", and length, 4, can be 

used to model the full stiffness of the BRB without explicit modeling of the transition regions. 

This stiffness adjustment factor excludes the end connection regions as they were explicitly 

modeled in the simulations; see Figure 4.15. 
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Figure 4.15. Schematic of BRB model. 

4.4.3 Test Data 

A considerable amount of test data is available for buckling-restrained braced frames from 

manufacturers, such as Nippon, StarSeismic, and CoreBrace. Test data is also available from 

limited research on BRBF sub-assemblies and components [e.g., Merritt et al. (2003a; 2003b; 

2003c), Uriz and Mahin (2008), Fahnestock et al. (2007), Simpson and Mahin (2018b), etc.]. 

Herein, the OpenSees material, steel4, was calibrated to cyclic tests of eight pin-ended braces 

(Merritt et al., 2003b) and one sub-assemblage test utilizing a weld-ended buckling-restrained 

brace in a strongback-braced frame (Simpson & Mahin, 2018b); see Section 2.4.2.1.  

4.4.4 Optimized Calibration 

A minimization study was conducted to calibrate the material model described in Sections 4.4.1 

and 4.4.2 to the experimental data summarized in Section 4.4.3. This was step [1] in the process 

outlined in the introduction of Section 4.4. The measured material yield strengths and geometric 

properties of each BRB experiment were used to define the geometry and known uniaxial material 

properties in the simulations; see Table 4.2. Rigid end zones representing the additional length of 

the BRB from the pin connection to the workpoints were not included in for the calibration of the 

CoreBrace component tests as the experimental data had been previously modified to exclude the 

end zone regions. End zones were considered for calibration to the BRB sub-assemblage test. Each 

simulated brace was subjected to the same displacement-controlled loading protocol of its 

corresponding experimental test.  

To automate the calibration process, an optimization scheme was used to minimize the 

squared QJ-norm, ‖ ∙ ‖JJ, of the difference between the forces observed in the experiment, £, and 

the forces extracted from the numerical simulation, £Ê: 
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Í£ÊL − £LÍJJ = i£ÊL − £LjËi£ÊL − £Lj Equation 4.9� = experimental test being calibrated. To avoid interpolation of the full test data at the points 

sampled by the numerical simulation, load-drift pairs were compared at select characteristic points 

in the loading protocol. These load-drift pairs, termed critical points, corresponded to points of 

zero displacement, three-quarters of the displacement amplitudes, zero load, and peak load 

amplitudes. Each cycle of the loading protocol was thus represented by 10 characteristic points. 

Additional fatigue loading cycles were not included as critical points. This optimization scheme 

was individually conducted for each of the experiments to obtain the expected range of the input 

parameters for the steel4 material model. This resulted in different optimized parameters for the 

steel4 material for each experimental test. 

A second optimization study was then conducted to generate input parameters capable of 

being generalized to all the available experimental data. This second calibration study minimized 

the summed QJ norm for each experiment normalized by the number of critical points, �L, used 

for that experimental calibration:  

min 1∑ �LL Ï� �LJi£ÊL − £LjËi£ÊL − £Lj�LJL  Equation 4.10

The vectors, £ and £Ê, only contain the critical points. The weights, �L, of the component BRB 

tests were set to 1.0. The sub-assemblage experiment was assigned a weight of 2.0. This was done 

to more highly weigh the sub-assemblage experimental test as it was the only experiment that 

tested the BRB under the large strain demands expected of a strongback-braced frame; see Section 

2.4.2.1. These deformation demands can result in a different strain hardening profile than that of a 

typical BRB component test under a standard loading protocol.  

Minimization employed the fmincon command available in MATLAB (Version 

9.3.0.713579, 2017b), which minimizes a constrained nonlinear multivariable function, herein 

Equation 4.10. Constraints on the parameters were based on the range of results from optimization 

of the experiments individually. The transition parameters, <O, 4G, 4J, <�, and 7CE were held 

constant during this optimization process. The saturated hardening ratio, �t, was constrained to be 

equal in tension and compression. Other upper and lower bounds on the material parameters can 

be found in Table 4.3. The resulting optimized steel4 material parameters are shown in Table 4.4. 

Comparisons of the experimental and numerical results using the generalized material 

model are plotted in Figure 4.17 for the sub-assemblage strongback test and in Figure 4.16 for the 

component tests. The fit of the generalized material model somewhat under-estimates the tension 

force for the sub-assemblage test and somewhat over-estimates the tension force for the component 

experiments. Note that this fit could be calibrated to better match the experimental hysteretic shape 

on an individual-by-individual basis, but the resulting generalized model represents the best fit of 

all of the experimental tests considered, including the large strain data from the strongback sub-

assemblage experiment.  

Errors in the loading history can be seen when the experimental component tests are 

subjected to fatigue loading cycles; see component tests PC160, PC750B, and PC1200B in Figure 
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4.16. This error stems from the material model, steel4, continuing to exhibit hardened strength 

upon unloading to smaller amplitude cycles (i.e. no reduction in the yield surface). More 

experimental data could further refine the results of this calibration study, especially as related to 

developing different material parameters based on different BRB manufacturers, different 

connection details, and different core profiles. 

 

Table 4.2. Properties of experimental tests. 

Specimen 1 2 3 4 5 6 7 8 9 

Name PC160 PC250 PC350 PC500 PC750A PC750B PC1200A PC1200B 
NCBF-B-

3SB 	C  [ksi] 41.3 41.3 41.3 37.9 41.3 41.3 41.3 41.3 40.0 #@  [in2] 3.8 6.0 8.3 12.7 17.9 17.9 28.5 28.6 5.0 #°/#@   4.0 2.8 2.2 2.0 2.1 2.7 1.9 2.2 7.7 #>/#@a 

 - - - - - - - - 2.0 4 a [in.] - - - - - - - - 171 4Ë  [in.] 252 252 252 252 252 252 252 252 138 4C  [in.] 176 179 183 185 184 179 185 181 76 4C/4Ë  
 

0.70 0.71 0.73 0.73 0.73 0.71 0.73 0.72 0.55 

a Connection regions not included for calibration of BRB component experiments. 

Table 4.3. Optimization constraints. 

Constraints yÐ  yÐ,Ñ  yÒ  yÒ,Ñ  y{ = y{,Ñ  ÓÒ  ÓÒ,Ñ  

Lower bound 0.001 0.01 0.001 0.001 0.0001 1.0 0.5 

Upper bound 0.01 0.05 0.01 0.01 0.001 1.5 1.0 

All other material parameters were assumed constant and can be found in Table 4.4. 

Table 4.4. Generalized BRB material model. 

Asymmetric 
behavior 

Kinematic Hardening Isotropic Hardening 

yÐ  Ô¨  ~Õ  ~Ö  yÒ  ÓÒ  y{  ÔÒ  {×Ø  

Tension 0.003 25.0 0.9 0.15 0.0025 1.34 0.004 1.0 1.0 

Compression 0.023 25.0 0.9 0.15 0.0045 0.77 0.004 1.0 - �¬ = kinematic hardening ratio, <O, 4G, 4J = transition from linear elastic to hardening asymptote,  �� = initial isotropic hardening ratio, P� = intersection location between intiial and saturated hardening asymptotes, �t = saturated hardening ratio, <� = exponential transition from initial isotropic to saturated asymptote,  7CE = length of yield plateau. 
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Figure 4.16. BRB calibration to CoreBrace component experiments. 
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(a) (b) 

 
Figure 4.17. BRB calibration to stronback sub-assemblage test.  

(a) estimated brace force-deforamtion relation; (b) global hysteretic response. 

4.4.5 Generalized Material Model 

The generalized material parameters derived in Section 4.4.5 were used to estimate the adjustment 

parameters, ( and ), needed for capacity design. This was step [2] in the process outlined in the 

introduction of Section 4.4. Conceptually, this step uses a simulated BRB – rather than an 

experimental BRB – to conduct the qualification testing procedure in AISC-341-16 (2016). In this 

way, derived factors for adjusted brace strength used during the design development phase would 

be consistent with the generalized material model used in the numerical simulations.  

The numerical model was similar to the model used for the previous calibration study; see 

Figure 4.15. The length of BRBs considered was based upon a benchmark building archetype that 

will be outlined in more detail in Chapter 5. The strongback width, �, was fixed to 1/3 the bay 

width, Q, of 30 ft. The story brace workpoint-to-workpoint length, 4, corresponded to story heights, ℎ, of 18 and 15 ft, the first and typical story heights of the archetype building respectively.  

The length of the BRB yielding core, 4C, and the length of the truss defining the connection 

regions, 4Ë, were set to 60% and 80% of the workpoint length, 4, respectively. Connection regions 

were defined with area, #>, of 7 times the area of the BRB core, #@. Transition areas, #°, were 

taken as 1/3 the area of these connection regions. These area and length parameters were 

considered typical of buckling-restrained braces with a range of different lengths and core areas 

provided by CoreBrace. A stiffness adjustment factor, É, of 1.4 for the total BRB length including 

the end connection regions was found to be representative of the effective stiffness of several BRBs 

(Lopez & Sabelli, 2004). Nominal brace material yield strength was 	C = 42���. 
The adjusted brace strength used in capacity design is determined by the expected brace 

deformation. The AISC-Seismic Provisions (2016) require consideration of deformations at the 

greater of twice the design story drift ratio or 2% story drift ratio. The brace deformation at twice 

the design story drift, including expected inelastic action can be estimated as: 
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u@,� = 2!�u@,C Equation 4.11u@,C = �C4C = brace yield deformation; �C = material yield strain; !� = 5 = deflection 

amplification factor for BRBs per ASCE-7-16 (2016). At 1 = 2% story drift ratio, the deformation 

in the inelastic braces including vertical deflection of the beam, �1, assuming rigid rotation of the 

strongback can be estimated as: 

u@,� = Ä(ℎ + �1)J + (7 + ℎ1)J Equation 4.12

The 2% story drift ratio controlled for all of the BRBs considered. The generalized brace 

simulation was subjected to the cyclic loading sequence of Section K3.2 of AISC-341-16 (2016), 

repeated below for convenience and shown in Figure 4.18: 

 

a. 2 cycles of loading at the deformation corresponding to u@ = u@,C 

b. 2 cycles of loading at the deformation corresponding to u@ = 0.5u@,� 

c. 2 cycles of loading at the deformation corresponding to u@ = 1.0u@,� 

d. 2 cycles of loading at the deformation corresponding to u@ = 1.5u@,� 

e. 2 cycles of loading at the deformation corresponding to u@ = 2.0u@,� 

f. Additional fatigue cycles of loading at the deformation corresponding to u@ = 1.5u@,� as 

required for the brace test specimen to achieve a cumulative inelastic axial deformation 

(CPD) of at least 200u@,C. 

 u@ = imposed amplitude of deformation. A CPD of 200u@,C was reached during cycles [a] through 

[e] without needing to apply the additional fatigue cycles in [f]. More research is needed to verify 

whether a higher !�-factor would be more appropriate for SBF designs. This loading protocol was 

performed on core areas of 2.5:0.5:5 in2, 5:0.5:10 in2, and 10:1.0:20 in2, where : (∙): represents the 

increment between the first and last areas in a consecutive list. 

The adjustment factors, ) and (, were calculated at each strain amplitude of the loading 

protocol and are diagrammatically shown Figure 4.19. Similar ( and ) values were found upon 

comparison to (- and )- backbone curves provided by CoreBrace at similar strain amplitudes, 

confirming the appropriateness of this calibration process. These adjustment parameters were 

independent of core area and varied little with story height. 

The strains of BRBs in a conventional BRBF would be expected to be less than the strains 

of BRBs in an SBF subjected to similar story drift ratios. The simulated loading protocol was 

repeated to obtain appropriate ) and ( factors for a BRBF system (i.e. u@,� = ÄℎJ + (7 + ℎ1)J 

with �1 = 0 in Equation 4.12). To reach a CPD of 200, fatigue cycles in [f] were additionally 

included in the above loading protocol. Adjustment parameters at these additional cycles can be 

seen in the BRBF plots in Figure 4.19. As stated in Section 4.4.4, the material model, steel4, 

exhibits errors in continued hardened strength upon unloading to the smaller amplitude fatigue 

cycles.  
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The derived adjustment parameters, ( and ), for an SBF brace and BRBF brace with brace 

lengths corresponding to story heights of 15 ft and 18 ft can be found in Table 4.5. Note that these 

parameters may be further differentiated by connection region, manufacturer, or yielding lengths 

given a larger database of experiments. 

 

Table 4.5. Derived adjusment parameters, Û and Ü. 

System Type Story height [ft] Û  Ü  

Strongback-braced 
frame 

15 1.47 1.20 

18 1.48 1.20 

Buckling-restrained 
braced frame 

15 1.34 1.15 

18 1.34 1.15 

 

 
Figure 4.18. BRB cyclic loading sequence. 
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Figure 4.19. Adjustment factors. 

4.4.6 Low-Cycle Fatigue 

Incorporation of a realistic fatigue model for the buckling-restrained braces was important to 

determining the strongback’s global response and in accurately characterizing demands in the 

strongback elements. These numerical models used the low cycle fatigue material model described 

in Section 4.3.2. This model determines whether fatigue has occurred based on empirical input 

parameters and a fiber’s strain history. 

The default parameters provided by Uriz and Mahin (2008) for buckling-restrained braces 

simulated the observed rupture of the BRB in the sub-assemblage strongback test by Simpson and 

Mahin (2008); see Figure 4.17. However, it was also important that the modeled fatigue life of the 

BRBs did not exceed the valid range of the numerical model, especially since little experimental 

data is available for buckling-restrained braces subjected to a few cycles of large strain amplitudes 

under dynamic loading conditions. As such, simulation of fatigue also considered a maximum 

strain limit to ensure appropriate simulation of BRB fracture. If this maximum strain limit, ���Z, 

was exceeded, the fatigue material model triggered rupture of the BRB truss element.  
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Maximum strain could be chosen to correspond to ductility requirements specified by code. 

These requirements are summarized below: 

1. The strain needed to achieve !�' = 200u@,C under the loading protocol specified in 

Figure 4.18 per AISC-341-16. 

2. The strain at a story drift ratio, 1 = 2% per the minimum deformation requirements in 

AISC-341-16. 

3. A maximum strain of 14.3�C as provided by the acceptance criteria for collapse 

prevention for BRBs in ASCE-41-17. This was derived based on the !�' specified in 

[1]. 

4. A maximum design level strain of � = 2.5% per the footnotes for the acceptance 

criteria of BRBs in ASCE-41-17.  

Note, however, that these limits are meant to assess the performance of a BRBF which depends 

almost entirely on the adequacy of the BRBs. In an SBF, the strongback could bridge across the 

story of a ruptured BRB and still engage the remaining stories in reserve capacity. Moreover, 

design iterations by BRB manufacturers have resulted in greater fatigue life than that indicated by 

code (Haselton Baker Risk Group, 2018), and previous experimental studies have tested BRBs to 

cumulative plastic deformations much greater than a !�' of 200.  

For these reasons, ���Z = 5% was determined to be an appropriate value for the maximum 

strain limit. This assumption was supported by observed BRB rupture at an estimated strain of 

4.5% during the sub-assemblage experiment by Simpson and Mahin (2018b). The empirical 

fatigue values, �O and �, were kept the same as that of Simpson and Mahin (2018b) and Uriz and 

Mahin (2008). Alternatively, �, �O, and ���Z could be calibrated to published S/N curves if these 

S/N include data for ultra-low cycle fatigue under a few large amplitude cycles [e.g., Nakamura et 

al. (2000)]. 

The strain parameters, �O and ���Z, used in this fatigue model were adjusted to account for 

the yielding region, 4C, of the BRBs, 4C; in Section 4.4.2. These parameters were multiplied by the 

ratio of the truss length to the yield length, 4Ë/4C, to adjust the fatigue parameters to represent the 

geometry of the inelastic truss used in the numerical model. 

4.4.7 Summary and Limitations of the BRB Model 

This section summarized the qualification testing of the simulated buckling-restrained braces. A 

simplified simulation utilizing a stiffness modification factor, É, was used to model the BRB 

transition and yielding regions with a single truss element. The material model, steel4, used in 

conjunction with a low cycle fatigue material wrapper was capable of simulating asymmetric 

isotropic and kinematic strain hardening and rupture of the BRBs when properly calibrated to 

experimental data. Though this material model has the advantage of explicitly accounting for 

asymmetric hardening, some error cases were noted. 

This qualification testing was performed based on the loading protocol specified in AISC-

341-16 for quality assurance of new buckling-restrained braced frames. The two-step process of 

[i] calibration to obtain a generalized material model fit to the experimental data and [ii] 
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subsequent calculation of adjusted strength parameters, ( and ), allowed for consistent design 

parameters with realistic simulation of the BRB response.  

Though the generalized material model was calibrated to component buckling-restrained 

brace test data and one cyclic sub-assemblage test of a strongback system, these experiments have 

not included strongback specimens under different loading protocols, geometries, dynamic 

conditions, or different BRB types and manufacturers. A larger database of experimental data 

could allow these calibrated studies to be differentiated based on similarities and differences in the 

response due to the BRB connection, manufacturer, or core profile. This may be especially 

significant in calibration of the material model to experimental tests under the large strain demands 

exhibited by SBFs. Fatigue parameters could also be refined given more data on the fatigue life of 

the BRBs under different loading conditions. 

4.5 NUMERICAL MODEL 

The parametric and numerical studies of Sections 4.3 and 4.4 were used to develop a benchmark 

numerical model to simulate SBF and comparison BRBF systems. This benchmark numerical 

model was implemented in the structural analysis framework, OpenSees (McKenna, 1997); see 

Figure 4.20. Numerical models of conventional BRBF systems were implemented using a similar 

modeling approach.  

 
Figure 4.20. Schematic of numerical model. 
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4.5.1 Constraints and Boundary Conditions 

Numerical models considered herein are two-dimensional with three degrees-of-freedom per node. 

Brace end conditions were modeled as pinned. Open circles in Figure 4.20 represent the locations 

of these pins.  

Beam-column connection tests have indicated bare steel shear tabs and shear tabs with 

slabs can on average develop 20% and 30 to 45% of the plastic moment of the connecting beam 

(Liu & Astaneh-Asl, 2000). If supplemented by gusset plates, yield strengths range between 50 to 

84% the expected plastic moment of the beam (Stoakes & Fahnestock, 2011). To consider this non-

negligible reserve capacity, beam-column connections were modeled with springs per the 

backbone curves provided in ASCE-41-17 (2017) for partially restrained beam-column 

connections without slab. Moment capacity of beam-column connections with and without gusset 

plates was specified as 30% and 70% of the expected plastic moment strength of the connecting 

beam respectively. Strain hardening corresponded to 0.3%. Green circles in Figure 4.20 represent 

the locations of these beam-column springs. 

Elastic elements at the beam-column connections and brace-to-framing connections were 

used to represent the physical size and stiffening effect of the gusset plates (Yang et al., 2009; Uriz 

& Mahin, 2008; Hsiao et al., 2012). The area and moment of inertia of these elements were the 

same as that described for the calibration studies of the braces (e.g., 10 times the moment of inertia 

of the connecting element for all connection regions; 10 times area of the connecting buckling 

brace, beam, or column; and 7 times the area of the connecting buckling-restrained brace). Thick 

black lines in Figure 4.20 correspond to these elastic element regions. 

A semi-rigid truss element connected the beam workpoint nodes to include axial effects of 

a concrete slab. The material model for this slab exhibited resistance in compression-only. The 

truss area was equal to the effective width and depth of the concrete slab. Composite action 

between the beam and slab was neglected. Modeling of this diaphragm was the subject of a 

parametric study conducted in Section 6.2.5. 

4.5.2 Material 

A uniaxial Giuffre-Menegotto-Pinto steel material model (Filippou et al., 1983) with 0.3% 

kinematic strain hardening was used for all the beams, columns, and braces, except for the BRB 

which utilized the calibrated material model from Section 4.4.4. 

The yield strength assigned to deformation-controlled components corresponded to the 

expected yield and ultimate strengths per AISC-341-16 (i.e., 	C∗ = <C	C and 	Ý∗ = <°	Ý). Force-

controlled components, like those elements used for the strongback, used a yield strength equal to 

the nominal strength of the chosen material. Buckling-restrained braces were modeled with a yield 

strength of 46���. Note that the material model for the BRBs was calibrated using the nominal 

yield strength, 	C = 42���. Using an expected yield strength of 	C∗ = 46��� accounts for potential 

overstrength of the BRB with respect to nominal values used for design. 

The OpenSEES low-cycle fatigue wrapper (Uriz & Mahin, 2008) was used to model 

fracture of the buckling and buckling-restrained braces under axial loading (Uriz & Mahin, 2008; 

Lai & Mahin, 2013; Simpson et al., 2017) and the beams and column under flexural loading (Uriz 
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& Mahin, 2008; Simpson & Mahin, 2018b). The maximum strain of the beams and column was 

limited to ���Z = 10% to ensure strains were reasonable under large deformations. Beams and 

column material models used an asymptotic ultimate strength after which the material exhibited 

perfectly plastic behavior to limit strain hardening of the beams and columns to realistic values.  

 

Table 4.6. Material parameters. 

Element 

Material Parameters Fatigue Parameters 

£×  £Þ  ß  y  ¦  §¨  §¦à�  
[ksi] [ksi] [ksi]     

buckling 
braces 

50 - a 29,000 0.003 -0.458 0.22 - b 

Buckling- 
restrained 

braces 
46 - a É 29,000 0.003 -0.458 0.15 4Ë/4C c 0.05 4Ë/4C c 

beams and 
columns 

55 71.5 29,000 0.003 -0.458 0.191 0.10 

a not implemented for braces. 
b not implemented for bucklng braces. 
c strain parameters multiplied by 4Ë/4C to adjust for BRB yield length. 

4.5.3 Sections 

Fiber elements were used for all fuses except for the buckling-restrained braces. Fibers were 

oriented in one direction to reflect the two-dimensional nature of the simulations. Wide-flange 

sections oriented in strong-axis bending utilized four fibers across the flange thickness and four 

across the section depth. Wide-flange sections oriented in weak-axis bending, like the buckling 

braces and some select columns, utilized 12 fibers across the flange width and two fibers across 

the web thickness as outlined in the parametric study in Section 4.3.3.2. Note that buckling braces 

were oriented in weak-axis bending to preserve in-plane buckling in the two-dimensional model. 

The thickness of the flanges and webs were modified so that the area of the fiber section was equal 

to the actual area of the section including any rounded corners. 

4.5.4 Elements 

Force-based nonlinear beam-column elements were used for the beams, columns, and buckling 

braces. Buckling braces were modeled with two force-based nonlinear beam-column elements 

with co-rotational transformations and calibrated initial imperfections to simulate buckling; see 

Section 4.3.4. Directions of these imperfections were randomly assigned to each of the buckling 

elements in the simulation. Five integration points were used for all elements, except the buckling-

restrained braces.  
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The modeling parameters used for the buckling-restrained braces were chosen to match 

those of the calibration study conducted in Section 4.4. The yielding length of the braces, 4C, was 

60% of the work-point-to-work-point length, 4. The total effective stiffness, É, of the buckling-

restrained braces including the rigid end conditions fluctuated around 1.4, depending on the length 

of the elastic elements used to model the connection regions.  

4.5.5 Mass and Gravity Effects 

Two leaning columns located one bay width to either side of the lateral-resisting frame (Chen & 

Mahin, 2012) accounted for P-delta effect from loads on the gravity system. The horizontal 

displacement of these leaning columns was constrained to be equal to the associated floor 

displacement of the subject braced bay (equalDOF command in OpenSees). These leaning 

columns were assigned the sum of the area and moment of inertia of the gravity columns included 

in the analysis. Potential inelasticity in the leaning columns was accounted for through bilinear 

moment-rotation springs with 0.1% strain hardening at the ends of each column at each floor level. 

The strength of these springs was assigned the sum of the plastic moment capacity of the 

contributing gravity columns. The axial load on a leaning column, �o,tD was taken as the portion 

of the total system gravity load that could be attributed to a braced bay, excluding the load directly 

tributary to the braced bay. Tributary column gravity loads were applied directly to the lateral 

frame by point loads at the workpoint nodes of the columns, �o,D. Distributed loads on the beam, �o,R, were applied through equivalent point loads at the workpoint nodes of the beams, �o,R. The 

following gravity load combination was applied in the numerical model per FEMA-p695 (2009): �o = 1.05' + 0.25(0.5Q) Equation 4.13' = dead load; Q = live load.  

This gravity combination was also used to calculate the mass applied in the numerical 

model. Horizontal mass, �l, was assigned to the workpoint nodes of the lateral frame considering 

the floor mass attributed to the brace bay. The vertical floor mass, �á, tributary to the beam in the 

braced frame was modeled at the workpoints of the main lateral resisting frame. The remaining 

vertical mass, �á,tD, was applied to the leaning columns. In this fashion, the gravity loading, 

horizontal mass, and vertical mass contributing to the braced bay were consistent in the simulation. 
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Figure 4.21. Attributed mass and gravity loading. �l =horizontal mass; �á = vertical mass on braced bay; �á,tD = vertical mass on leaning column;  �o,tD = gravity loading on leaning column; �o,R = distributed gravity loading on beam;  �o,D = gravity loading on leaning column. 

4.5.6 Damping 

There are many different methods of incorporating damping in OpenSees, including Rayleigh 

damping, modal damping, and supplemental numerical damping (such as the Hilber-Hughes-

Taylor integration method). The numerical models herein utilized Rayleigh damping with a target 

damping ratio, âL = 2.5%, in 1.5�G and �_, where �G is the fundamental elastic period and �_ is 

the third mode elastic period. This was deemed representative of steel structures exhibiting 2-3% 

damping (PEER, 2017; ASCE-41-17, 2017). 

The first and third mode periods were selected to ensure that damping ratios were not too 

large or too small in the first four modes; see Table 4.7 and Figure 4.22. The multiplier of 1.5 was 

used to account for potential period elongation due to the inelastic response of the structure (SNZ, 

2004; ASCE-41-17, 2017). Selection of these target damping ratios resulted in a minimum 

damping ratio of Ä+O+G = 1.6% at a period of 
GJã Ä+O/+G = 0.5 �. 

Use of the committed rather than initial stiffness was found to reduce spurious damping 

forces by a number of researchers [e.g., Charney (2008), Petrini et al. (2008), Chopra and 

McKenna (2016a)]. As such, damping of the high frequency modes was applied by stiffness 

proportional damping based on the committed stiffness, âL,¬. Damping of the low frequency modes 

was applied by mass proportional damping, âL,�, at the primary nodes where mass was specified.  

To reduce over-damping of near-rigid elastic regions with high initial stiffness (Charney, 

2008), elastic elements representing the connection regions were reduced by the multiplier used to 

impose rigidity in those regions (e.g., a factor of 10 for buckling brace, beam, and column elements 

and a factor of 7 for buckling-restrained brace elements). Where concentrated plasticity zero-

length elements were used, the stiffness-proportional damping of the connecting element was 

modified to account for the elastic stiffness of the adjacent plastic hinge regions (e.g., in the leaning 

columns). Zero-length elements did not include damping. 
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Note that other methods of damping, such as modal damping, would effectively eliminate 

spurious forces that can develop using Rayleigh damping (Chopra & McKenna, 2016a). However, 

modal damping depends on the elastic modes and cannot explicitly account for period elongation 

due to inelastic behavior unless modal damping is evaluated at every time step or unless the 

damping matrix is explicitly re-formulated to determine damping contributions at the elongated 

periods. Rayleigh damping was used herein to be consistent with current modeling practice and to 

allow explicit target damping ratios to be specified at elongated periods. The reader is referred to 

more detailed studies for assessment of spurious or artificial damping forces [e.g., Hall (2006), 

Charney (2008), Petrini et al. (2008), Chopra and McKenna (2016a), Chopra and McKenna 

(2016b), etc.].  

 

Table 4.7. Rayleigh damping. 

Mode Õ. äåÕ a åÕ b  åÖ/åÕ  åæ/åÕ  åç/åÕ  

Period, �L 1.4 �  0.94 �  3  5  7  

Damping ratio, âL 2.5% 1.9% 1.8% 2.5% 3.3% 

a Estimate of period elongation. 
b Upper design period of a four-story strongback-braced frame per ASCE-7-16 (2016). 

 

Figure 4.22. Rayleigh damping in 1.5�G and �_ ≅ 5�G. 

4.5.7 Non-Simulated Limit States 

Simulating sidesway collapse requires simulation of material or element strength degradation and 

softening. Concentrated plasticity models, represented by zero-length plastic springs at the end of 

an elastic element, are often used for collapse assessment. Such models can model post-capping 

negative stiffness through empirical force-deformation relationships calibrated to past 

experimental tests. This negative stiffness is critical for accurate simulation of collapse. However, 



84 

 

such series models do not include axial-flexural interaction as currently implemented in 

OpenSEES.  

Since axial demands in all elements of braced frames can be significant, distributed-

plasticity elements were used herein to characterize the behavior of regions of potential inelasticity 

in the strongback system. Distributed plasticity models (e.g., elements utilizing fiber sections) can 

allow plasticity to distribute along the element length while explicitly accounting for axial-flexural 

interaction. Implementing a softening response in fiber-based models, however, can be onerous, 

especially since softening must be implemented at the material level instead of the force-

deformation level.  

Non-simulated limit states can be considered in lieu of direct simulation of collapse where 

high-fidelity modeling of the softening response is limited. To the extent possible, the numerical 

model includes explicit deterioration mechanisms that could lead to structural collapse, including 

the effects of a low-cycle fatigue material model (Uriz & Mahin, 2008). However, non-simulated 

failure modes that were difficult to model were accounted for indirectly using post-process limit-

state checks on responses measured during the analyses. This approach evaluated non-simulated 

failure modes based on comparisons between the modeling criteria in ASCE-41-17 (2017) and the 

demands extracted from the analysis. This assumes that the first exceedance of a limit state would 

result in collapse of the structure, which can result in an overly conservative estimate of the median 

response where these limit-state checks were used to assess collapse performance. 

A summary of the simulated, non-simulated, and neglected failure modes is listed in Table 

4.8. Gusset plate connection failures have been neglected and were assumed to be prevented 

through adequate detailing. Though a node was provided in the columns to simulate in-plane 

buckling, the two-dimensional nature of the simulation did not allow for out-of-plane buckling in 

the columns. As such, geometric instability of the columns was checked through limit state checks 

based on the nominal buckling capacity of the columns. Generally, beam and column elements 

were assumed to be adequately braced to prevent out-of-plane buckling and lateral torsional 

buckling.  

Deformation limits are shown in Table 4.9. These limits correspond to the deformation 

limits specified in ASCE-41-17 prior to loss of load-carrying capacity (denoted by + in ASCE-41-

17) and are used to ensure the deformations do not exceed the valid range of the numerical model. 

Flexural limits assume that flange and web slenderness satisfy requirements for highly ductile 

sections. Flexural limits were reduced by the axial load taken within a time instant. The yield 

rotation, 1C, was estimated based on the point of contraflexure along the length of the element 

depending on moments measured at the element’s ends. Where the axial demand-to-capacity ratio, �/�∗, exceeded 20%, the estimated yield strength was reduced to 1ÊC = 1C(1 − |�o|/�C∗) (�o = 

axial force due to gravity loading, �C∗ = #	C∗ = the expected tensile yield strength of the element). 

Elastic properties of elements with |�| ≥ 0.6�C∗ were modified by èR per AISC-360, Chapter C 

(2016).  
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Table 4.8. Numerical modeling of deterioration modes. 

C
o

m
p

o
n

e
n

t 

Action 

Modeling 

Explicitly 
Modeled 

Non-Simulated 
Limit State Checks 

Neglected 

B
u

c
k
li
n

g
 

B
ra

c
e

 Global Buckling X   

Low Cycle Fatigue X   

Local Buckling   X 

B
R

B
 Low Cycle Fatigue X   

Concrete Crushing and Casing Failure   X 

B
e
a
m

 

Global Beam Buckling  X  

Laterial Torsional Buckling   X 

Shear Failure   X 

Flexural Deformation Limit States  X  

C
o

lu
m

n
 

Fracture X   

Splice / Baseplate Failure   X 

In-Plane Column Buckling X   

Out-of-Plane Column Buckling   X a  

Torsional Buckling   X a 

Flexural Deformation Limit States  X b  

C
o

n
n

e
c
ti

o
n

 

Beam-column connection failure X c   

Brace-to-gusset connection failure   X 

Net Section Failure   X 

a Strength checked per the compression capacity of column about the weak-axis of bending.  
b Limit state check based on plastic rotation angle in ASCE-41-17 for beams and columns in flexure.  
c Spring modeled per backbone curve in ASCE-41-17 for partially-restrained shear connection without slab. 
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Table 4.9. Plastic Deformation limits. 

Component or Action Axial Load Plastic Deformation Limit, |Ø 

Beam-column in compression 
|�é|�w∗ ≤ 0.6 a 0.8 ®1 − �é�w∗±J.J ®0.1 t@w + 0.8 l°´±­G − 0.0035 ≥ 0  

Beam-column in tension |�é|�w∗ < 0.2  91ÊC  

0.2 ≤ p�ép�w∗ ≤ 0.6 a Y13.5 ®1 − µ_ |�é|�w∗ ±[ 1ÊC ≥ 0  

Shear connections without slab - b 0.15 − 0.00365Ro  5Ro = 5 − 2���A = estimate of the depth of the bolt group. 1C = yield rotation. 

a Elements with 
|�é|�w∗ m 0.6 or 1E = 0 are considered force-controlled in flexure. 

b not applicable. 

4.5.8 Limitations of the Numerical Model  

Though the OpenSEES benchmark model incorporated many aspects critical to the response of 

the SBF and comparison BRBF systems, the following limitations of the benchmark numerical 

model should be noted:  

 

1. The fiber elements used in this model assume that plane sections remain plane. Distortions 

and multi-axial stress states in the cross-section are not considered (e.g., due to local 

buckling).  

2. The described model is two dimensional. Three-dimensional (e.g., out-of-plane or 

torsional) behavior is not represented by the simulation. Columns were allowed to buckle 

only in the plane of bending (strong-axis bending in most cases) and were checked through 

post-process limit state checks to ensure efficacy of the simulation. 

3. Gusset plate connections were assumed to be adequately detailed. Failures in these regions 

were not modeled in the simulation and were considered through post-process limit state 

checks.  

4. The low-cycle fatigue parameters used in this study were derived assuming a maximum 

strain capacity of 5% in the BRBs and were calibrated to experiments on smaller WF 

sections. More data is needed to sufficiently calibrate these parameters to real member 

sizes. 

5. Rayleigh damping was assumed to be 2.5% at 1.5�G and �_. This means that damping will 

be less than the target damping ratio in the first and second modes. Other methods of 

damping (e.g., modal damping) may offer an alternative method of explicitly modeling 

damping in each mode. 
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5 Benchmark Strongback 

5.1 INTRODUCTION 

Simulations of a working strongback were needed to understand the strongback’s behavior and to 

develop initial design methods. If the response of this preliminary, or benchmark, strongback under 

nonlinear dynamic analysis was considered an accurate representation of system’s potential 

dynamic response, the benchmark design could be used to evaluate the demands from proposed 

static analysis methods.  

 This chapter studies the optimized design of a four-story benchmark strongback-braced 

frame using an iterative nonlinear dynamic design scheme, herein termed dynamic capacity design. 

This benchmark design was used to characterize the dynamic response of the strongback system 

and to assess the static analysis methods proposed in later chapters. In this chapter, characterization 

of behavior is empirical and based on observations of response quantities extracted from the 

numerical analysis. Acceptability of the benchmark design was determined through statistical 

evaluation of its response using the methodology outlined in FEMA-P695 (2009) and incremental 

dynamic analysis. The general methodology, ground motions, benchmark design, and a discussion 

of the results are outlined in the following sections. To give the results context, peak response 

quantities from the final benchmark-strongback design were also compared to that of a 

conventional BRBF system. 

5.2 METHODOLOGY FRAMEWORK 

A developed design method for strongback systems did not exist at the start of this study. 

Therefore, dynamic capacity design supplemented by the performance-based methodology 

provided in FEMA-P695 was used as a rational basis for preliminary design of the benchmark 

strongback. Dynamic capacity design was used to compare demands extracted from nonlinear 

dynamic analyses to the acceptable performance metrics provided in FEMA-P695. This design 

and assessment framework is outlined in this section. 

5.2.1 Dynamic capacity design 

Though traditional capacity design presented a good starting point for design for the benchmark 

strongback, it was unclear at the start of the design development process whether a purely capacity 
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design approach would account for all aspects of strongback behavior while providing an 

appropriately conservative representation of the strongback’s dynamic response. Since the 

behavior of a successful strongback was uncertain, study of a benchmark design was initially 

approached using an iterative design scheme, termed dynamic capacity design, that was able to 

account for uncertainty in demands in the force-controlled actions, the randomness of the ground 

motions, and the variability in the element’s capacities and construction quality. 

 Like traditional capacity design, dynamic capacity design designates desirable locations of 

inelastic actions, termed deformation-controlled actions. Statistical metrics are then used to 

characterize demands in the remaining force-controlled actions. Use of nonlinear dynamic analysis 

during the design process explicitly simulates higher-mode effects and variations in demands over 

time that may be absent in a traditional capacity design approach.  

Dynamic capacity design also directly incorporates uncertainty in the random behavior of 

the selected ground motions and variations in structural characteristics like material properties and 

construction quality. Force-controlled actions are designed in terms of an acceptably low 

probability of failure, including uncertainty in both the median demands, ', in terms of a rare 

enough event, F', and the capacities, !, times a resistance factor, ê!, where ( m 1 and ê < 1. 

In this fashion, the dynamic capacity method approaches design in terms of achieving less than $% probability of “failure” by any one of the force-controlled actions in � years. A schematic of 

this process is shown in Figure 5.1. Herein, demands are typically compared to the 85th percentile 

of peak demands extracted from nonlinear dynamic analyses. Variability in capacities are 

accounted for by traditional strength reduction factors, ê, in load and resistance factor design 

(AISC-360-16, 2016). Based on this approach, the steps for the dynamic capacity design 

methodology are as follows: 

1. Designate deformation- and force-controlled actions. 

2. Design deformation-controlled actions (e.g., axial force in the inelastic braces, 

flexural force in the beams, etc.) by traditional analysis methods, such as those 

provided in ASCE-7-16 (2016).  

3. Estimate the stiffness and capacity of the force-controlled actions (e.g., area and 

moment of inertia). 

4. Perform nonlinear dynamic analyses for several relevant ground motion records. 

5. Calculate statistics (e.g., median and 85th percentile) for the force demands, ', 

designated as force-controlled actions. 

6. Check that the demands accounting for dispersion, F', are less than the associated 

capacities, !, of the force-controlled actions times a resistance factor, ê!. 

7. Check the deformation capacity of the deformation-controlled actions and drift 

requirements.  

8. Iterate between steps 3-7 until the design is considered acceptable. 

Dynamic capacity design incorporates dynamic characteristics that may not be represented by 

static plastic or pushover analysis methods or a strict capacity design approach where demands are 

calculated on an element- or story-wise basis. The principles embedded in traditional capacity 
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design can still be used to establish a clear hierarchy of desirable and anticipated responses, but 

dynamic capacity design extends that hierarchy to also include uncertainty and time-varying 

dynamic behavior. If the demands from these analyses are considered close to the “true” demands, 

the acceptability of any proposed design method could then be measured against the statistics of 

the estimated benchmark response and an associated resistance factor.  

 
Figure 5.1. Schematic of dynamic capacity design. 

5.2.2 Performance Evaluation 

The nonlinear dynamic procedure from the FEMA-P695 (2009) methodology was used to evaluate 

acceptability of the benchmark design and to incorporate uncertainty metrics into the design 

process. Even though the FEMA-P695 methodology evaluates structures primarily in terms of 

collapse assessment, the procedure was used herein to determine the probability of “failure” in the 

force-controlled actions (i.e. the initiation of inelastic behavior in the designated essentially elastic 

portions of the strongback). In terms of the dynamic capacity design procedure outlined in Section 

5.2.1, the FEMA-P695 methodology was used in steps 4 through 6. 

In this methodology, the given ground motion set is scaled by increasing median intensity 

until half of the ground motion in the set cause “failure” in the structural model. Failure is 

characterized by inelastic action in the strongback elements, triggering of non-simulated limit 

states, or global instability. This median failure intensity level, *ëìË, is representative of the median 

intensity above the Maximum Considered Earthquake ( !"-level) ground motion intensity, *rË, 

and is quantified through a collapse margin ratio, ! <: 

! < = *ëìË*rË Equation 5.1

*rË =  !" intensity level representative of the 5% damped, spectral acceleration at the upper 

limit period, �; *ëìË = the median spectral intensity above the  !"-level at which less than one-

half of the ground motions cause failure. In FEMA-P695, the upper limit period is defined as:  

� = !Ý�� = !Ý!°ℎLZ $ = 0.75, !Ý = 1.4, !° = 0.02 
Equation 5.2
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ℎL = building height in feet. Parameters $, !Ý, and !° were calculated per ASCE-7-16 (2016) 

based on the criteria for a BRBF system. 

Acceptability is achieved when the median strongback response is an acceptable ratio 

above the  !" response. This is an alternative way of characterizing F' ≤ ê! in Figure 5.1. The 

following sections provide more details on adjustments to the ! <, characterization of 

uncertainty, ), and the acceptance criteria, #! <(∙)%. The overall method used in the dynamic 

capacity design process is more fully summarized in Section 5.2.3. 

5.2.2.1 Adjusted Collapse Margin Ratio and Spectral Shape 

The FEMA-P695 methodology adjusts the ! < to account for the frequency content, or spectral 

shape, of the scaled ground motion suite. The unrealistic shape of the response spectrum arises 

from near uniform intensities at periods longer and shorter than the fundamental period of interest. 

The **º adjusts the ! < to account for the expected spectral characteristics of extreme ground 

(Baker, 2005; Baker & Cornell, 2006). The adjusted ! <, or #! <, including the **º modifier 

is: 

#! < = **º(í, �, *'!) ∙ ! < Equation 5.3� = building’s upper design period; �, í = period-based ductility; *'! = seismic design 

category. The values for **º given í, �, and *'! are tabulated in FEMA-P695. The period-based 

ductility is calculated based on displacement values from pushover analysis results under a first-

mode force distribution. 

Acceptability is measured by comparing the adjusted ! <, or #! <, to values 

representing an acceptably low probability of failure for  !" ground motion. Note that spectral 

shape could also be directly accounted for by using a suite of ground motions uniquely selected 

for each hazard level and conditioned on multiple periods.  

5.2.2.2 Uncertainty 

Acceptability per FEMA-P695 considers record-to-record uncertainty, )?Ë?; design requirement 

uncertainty, )î?; test data uncertainty, )Ëî; and modeling uncertainty, )rîS. Acceptable values 

of the adjusted collapse margin ratio assume a lognormal distribution of failure-level spectral 

intensities with median intensity, *ëìË, and total uncertainty, )°�°: 

)°�° = I)?Ë?J + )î?J + )ËîJ + )rîSJ  Equation 5.4

Uncertainties associated with quality ratings (i.e., )î?, )Ëî, )rîS) are subjective in nature and are 

described in more detail in FEMA-P695.  

In this study, design requirements were categorized as good ()î? = 0.2) as the proposed 

design criteria is expected to be developed similar to that of BRBF systems. While the numerical 

models were calibrated to a range of available component buckling-restrained brace test data and 

one cyclic sub-assemblage test of a strongback specimen (see Section 4.4.3), this test data did not 

include strongback specimens under different loading protocols, geometries, dynamic conditions, 

or different BRB types and manufacturers. As such, the test data was categorized as good ()Ëî =
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0.2). Numerical modeling was characterized as good ()rîS = 0.2) as it simulated many, but not 

all, possible failure modes; see Section 4.5.  

The record-to-record variability reflects the variation in response from ground motion-to-

ground motion. Ideally, explicit calculation of record-to-record variability would be conducted by 

fitting a lognormal distribution to the data points. For simplicity, it was assumed that the constant 

value of record-to-record variability used in FEMA-P695 was adequate for this preliminary design 

phase. FEMA-P695 assumes a fixed value of )?Ë? = 0.4 for building with í ≥ 3. 

The above uncertainties can be combined in Equation 5.4 for a total system uncertainty of )°�° = 0.525.  

5.2.2.3 Acceptable probability of collapse 

Acceptable values of the adjusted collapse margin ratio, or # !<(∙)%, depend on the total 

uncertainty, )°�°, and an acceptable probability of failure, (∙)%. If the #! < is greater than these 

acceptable values (e.g., #! < ≥ #! <GO%, #! <JO%, etc.), the assumptions used to design the 

benchmark building are considered acceptable. Re-evaluation is required if the #! < is less than 

these acceptable values. #! < < #! <(∙)% → unacceptable Equation 5.5

On average, the probability of collapse due to an  !"-level ground motion is limited to 10%, or #! <GO%. 

By default, a conventional BRBF system is expected achieve less that 10% probability of 

collapse at the  !"-level, because it is a typical structural system in modern building codes. As a 

better performing system, the strongback system would hypothetically achieve better performance. 

Thus, the benchmark strongback was designed for a more stringent measure of acceptability than 

a conventional system. In addition to achieving less that 10% probability of collapse, the 

benchmark strongback was required to achieve less that 10% probability of inelastic behavior in 

any one of the force-controlled actions at the  !"-level. As such, calculated #! < values were 

assessed against #! <GO% values corresponding to a 10% failure probability. This ensured 

confidence in the strongback’s behavior if ordinary details were used in the strongback portion of 

the system. Note that less stringent acceptance criteria would also be acceptable if the strongback 

portion of the system was provided with ductile detailing. 

5.2.3 Framework Summary 

In summary of the FEMA-P695 framework, acceptability per FEMA-P695 is determined through 

the following steps: 

1. Scale the normalized ground motion to the target spectral acceleration, *rË, at the upper 

limit period, � =  !Ý��. 

2. Scale the suite of ground motion records until half of the record set result in failure. The 

intensity level at which this occurs is the median failure intensity, *ëìË. 

3. Calculate the collapse margin ratio, ! < = ðëñòðóò 
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4. Adjust the collapse margin ratio to account for spectral shape, #! < = **º ∙ ! <. 

5. Evaluate acceptability in terms of the acceptable collapse margin ratio, #! < m #! <(∙)%, based on the total system uncertainty, )°�°. 

To assess the performance of an individual building using dynamic capacity design, the above 

process can be “reverse-engineered” to the following: 

1. Define the failure level. 

a. Choose the quality rating uncertainties (i.e., )î?, )Ëî, )rîS) and use the default record-

to-record uncertainty, )?Ë?, to calculate the total system uncertainty, )°�°. Choose a 

failure probability (e.g., 10%, 20%, etc.) and determine the associated acceptance 

criteria, #! <(∙)%. 

b. Determine the spectral shape factor, **º, based on the structure’s period-based 

ductility, í, upper limit period, �, and seismic design category, *'!. 

c. Scale the ground motion record suite to the required median failure-level intensity, *ëìË, 

at the upper limit period, �, back-calculated from the following: 

! < = *ëìË*rË = #! <(∙)%**º  Equation 5.6

2. Iterate upon the benchmark design. 

d. Designate deformation- and force-controlled actions and design the deformation-

controlled actions for code-level reduced design forces. Define appropriate limit states. 

e. Estimate the stiffness and capacity for the force-controlled actions.  

f. Perform nonlinear dynamic analyses with the scaled ground motion suite from [c] and 

evaluate performance. 

If less than one-half of the records at the intensity level calculated in [c] cause failure, the trial 

design is acceptable. If one-half or more of the records cause failure, then the benchmark design 

needs to be re-designed and re-evaluated. 

5.3 BENCHMARK ARCHETYPE DESCRIPTION 

A four-story strongback archetype was chosen for the preliminary benchmark structure. The 

number of stories for the benchmark frame was chosen to be simple enough for hand calculations 

while having enough degrees-of-freedom to simulate higher-mode contributions under dynamic 

loading conditions.  

5.3.1 Structural System Description 

For the four-story benchmark building, design requirements were assumed to be given and the 

system design requirements for buckling-restrained braced frames (BRBF) in AISC-341-16 (2016) 

were used as an initial framework. All pertinent design requirements (e.g. <, !�, etc.) of ASCE/SEI 
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7-16 (2016), including drift limits and minimum base shear requirements were assumed equal to 

that of a BRBF; see Table 5.1. The benchmark frame was assumed to be an exterior frame of a 

four-story building that is rectangular in plan; see Figure 5.2. 

Recall that an offset scheme (Chapter 3) can reduce the significant inelastic demands that 

can develop in the strongback system. An offset of 1/3 the braced bay width was utilized for the 

benchmark configuration. This offset provided enough stiffness to limit displacements in the 

elastic range and reduced plastic deformations in the inelastic range compared to a centered bracing 

configuration. The benchmark building and gravity framing were designed to be consistent with a 

typical office occupancy; see Table 5.2 and Figure 5.3. Details of the benchmark loading and 

general layout were the product of relevant conversations with local engineering offices. 

Accidental eccentricity was not considered during the design process. More information on the 

four-story benchmark building can be found in Figure 5.2.  

The design base shear, %R, used to design the inelastic (deformation-controlled) elements 

was based on spectral accelerations calculated at the upper limit period, � per FEMA-P695. The 

fundamental period of vibration, �G, was calculated from an eigenvalue analysis of the numerical 

models and may be different from �.  

 

Table 5.1. Design Properties. 

Seismic Design 
Criteria 

Design  
Parameters 

<  8  �  1.0 !�  5 ΩO  2.5 � [�] 0.94 �G [�] 0.84 (SBF); 0.93 (BRBF) %R/� [;] 0.08 *rË(�) [;] 0.96 

 

Table 5.2. Gravity loading. 

Weights/story Floor Area 
Design  

Seismic Weight a 

Numerical 
Seismic Weight b 

Penthouse 3,600 ft2 438 kips 352 kips 

Roof 18,000 ft2 1483 kips 1552 kips 

Typical Floor 21,600 ft2 1794 kips 1926 kips 

First Floor 21,600 ft2 1812 kips 1945 kips 

a Used for design base shear. 
b Used in numerical model per Equation 4.13. 
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Building Description 

Occupancy category: office 

Generic building site per FEMA-P695 

Gravity loading: perimeter framing 

Building Geometry 

Number of stories: 4 stories 

Typical story height ℎ = 15′ 
First story height ℎG = 18′ 
Bay width Q = 30′ 
Offset, � = Q/3 

Seismic Design Parameters 

Design Codes: ASCE-7-16, AISC-341-16 

Analysis procedure: dynamic capacity design 

Seismic Design Category (SDC): '��Z 

Risk Category II 

Figure 5.2. Benchmark building floor plan and elevation. 

 

 

 
Figure 5.3. Gravity loading. 
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5.3.2 Ground Motion Suite 

The Far-Field ground motion set provided in the FEMA-p695 methodology was used for the 

ground motion suite. This set includes twenty-two component pairs of horizontal ground motions 

from sites located greater than or equal to 10 km from fault rupture. Vertical excitation was not 

included since FEMA-P695 does not consider that direction to be of primary importance for 

performance evaluation. Future studies may wish to incorporate the vertical ground motion 

component as it can impact the brace buckling response (Chen & Mahin, 2012).  

Each of the ground motions in the set were normalized by their peak ground motion 

velocities to remove unwanted variability in the record set per FEMA-P695. These normalized 

ground motions records were then collectively scaled so that the median spectral response, *rË, 

matched the  !" target design spectra at the upper limit period of the building, � (Equation 5.2); 

see Figure 5.4. Note that this results in large pseudo-accelerations at higher-mode periods in the 

constant acceleration range of the design response spectrum. More information on the ground 

motion record set can be found in FEMA-P695. 

This target spectrum is intended to represent a generic building site for *'! = ', per the 

FEMA-P695 methodology. The maximum  !" spectral values for *'! ', or '��Z, are shown 

in Table 5.3. It was inferred that adequate performance for '��Z would imply acceptability for 

lower seismic design categories like '��L. 

 

Figure 5.4. Scaled response spectra for the FEMA-P695 far-field record set. 
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Table 5.3. Spectral values for õö÷ = ö¦à�. 

Intensity 
Pseudo-

acceleration  *A  1.5 g *G  0.6 g *rð  1.5 g *rG  0.9 g *îð  1.0 g *îG  0.6 g 

5.4 DESIGN SPACE 

A grid-search optimization study was conducted to explore the design space of possible reference 

frames. Ideally, such a preliminary design would be representative of acceptable, or benchmark, 

strongback behavior and would be neither over- or under-conservative. It was also expected that 

additional insight into the seismic behavior of strongback systems would be gained during the 

optimization process. 

The optimization procedure was not performed in the rigorous numerical sense (i.e. in 

finding a global minimum solution for all possible design alternatives), but was deterministically 

achieved by iterating through possible W12 section sizes for the strongback braces. The beams, 

columns, tie, and inelastic bracing elements were fixed during this process. If the force-controlled 

actions of the beams, columns, and tie were not acceptable, another round of iterations for the 

strongback brace sizes was performed with new beam, column, and tie sizes. A design was 

considered “minimized” if the design was acceptable and had least-weight strongback sizes.  

5.4.1 Design of Fuses and Beam-Column Elements 

Inelastic braces were designed based on the design base shear calculated per the structural system 

description in Section 5.3.1. Typically, BRB sizes would be selected in proportion to a height-wise 

distribution of story shear demands to achieve a uniform demand-to-capacity ratio with building 

height. However, it was anticipated that some re-distribution of internal forces should be 

permissible with the inclusion of a strongback. To account for the plastic capacity of the strongback 

as an entire system, similar BRB sizes were used in every story. Thus, all four BRBs were designed 

with the same steel core area, #@. 

Fuses were designed in terms of the total resistance of the structure at the limit load rather 

than at yield. A 20% reduction factor for design base shear was used to account for increased 

capacity in the upper stories at the limit load due to use of the same BRB size in every story. This 

is similar to the 20% reduction allowed for moment re-distribution in reinforced concrete beams 

to account for shifts the moment diagram after yielding (Cohn, 1965; Bondy, 2003). In this sense, 

BRB sizes were selected based on the base shear at the ultimate capacity of the system which 
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depends on yielding in all the fuses yielding rather than the elastic base shear capacity which 

depends on the strength of the first-story braces. 

Since beams were deformation-controlled in flexure, flexure in the beam links was 

designed only for gravity loading assuming the braces below and above were not present. Shear 

capacity of the beam links was capacity-designed for the shear developed from plastic hinging at 

the beam link ends. As beam and column axial action was considered force-controlled, beam and 

column sizes were iteratively designed based on the compression capacity extracted from the 

nonlinear dynamic analyses.  

 
Figure 5.5. Deformation-controlled components. 

5.4.2 Design of Strongback Elements 

All strongback elements were iteratively designed during the optimization procedure per the 

dynamic capacity design procedure. A higher strongback brace-to-inelastic brace stiffness ratio 

would be more capable of asserting a uniform drift response. As such, the strongback brace 

stiffness in a story, �A,>, was scaled with respect to the lateral stiffness of the opposite inelastic 

brace, �@. This lateral stiffness was simplified to include only the lateral component of the global 

elastic stiffness matrix at each story: 

�@ = É"#@7@ ®74±J
 �A,> = "#A,>7A,> ø��>ùJ

 Equation 5.7

7@, 7A = yielding length of the inelastic and strongback brace, respectively. Strongback braces were 

also scaled by the ratio of the inelastic brace area, #@, to the strongback brace area in a story, #A,>. 

Scaling by area is similar to exploring the ratio of the strongback brace to inelastic brace stiffness, "#A/"#@.  

The first-story strongback brace area was used as the control during the iteration process 

as it consistently exhibited the largest axial-force demands. To explore the distribution of the 
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strongback brace stiffness with building height, the second-to-fourth story strongback brace areas, #A,>, were additionally scaled with respect to the first story brace area, 
de,úde,û. The same brace area 

was used for the strongback braces in stories two-through-four as they exhibited similar demands 

during the iteration process.  

In summary, a grid of possible strongback brace sizes were scaled to [1] the ratio of the 

first-story strongback to inelastic brace lateral stiffness, 
¬e,û¬f  and area, 

de,ûdf , and [2] the distribution 

of the strongback brace area in the upper stories relative to the first-story strongback brace lateral 

stiffness, 
¬e,ú¬e,û, and area, 

de,úde,û. 

5.4.3 Objectives and Acceptance Criteria 

For a strongback to meet the force-controlled objectives outlined in Table 1.1, the median 

probability of failure in any one of the force-controlled actions must be an acceptable ratio above 

the  !" intensity level. Using the procedure outlined in Section 5.2.3 and working backwards 

from a failure probability of 10%, a period-based ductility, í ≥ 8, a spectral shape factor of **º =1.45, and an uncertainty of )°�° = 0.525, the numerical model must survive one-half or more of 

the ground motions scaled to 1.36 × *rË at the upper limit period, � = 0.94 �. This corresponds 

to ! < = 1.36 and is similar to the suggested initial scale factor in FEMA-P695.  

If the numerical model survived one-half or more of the ground motions scaled to this level, 

then the trial benchmark design was considered acceptable. The numerical model used during this 

process was described in detail in Section 4.5. Designs were considered unacceptable if any of the 

following occurred in the numerical model: 

1. Numerical solution failed to converge, 

2. Global displacements exceeded the valid range of modeling, 

3. Force demands in non-simulated force-controlled actions exceeded the element capacity, 

or 

4. Deformation demands exceeded the non-simulated deformation limits. 

Axial compression in force-controlled regions were checked by limit state checks using the 

nominal buckling strength of the element and a resistance factor, ê = 0.9. Non-simulated limit 

state checks of flexural deformations in beams and columns ensured modeled demands did not 

exceed the valid range of the numerical models; see Section 4.5.7.  

5.4.4 Design Space Results 

To explore the design space of possible strongback sizes, elastic brace and tie strut sizes were 

evaluated systematically in terms of their median peak demands for all 22 ground motion pairs 

scaled to the 1.3 ×  !"-level. Median and 85th percentile results at the  !"-level were also 

assessed for comparison. 

Global responses for the strongback system at each iteration of strongback-to-inelastic 

brace stiffness are shown in Figure 5.6 and Figure 5.7. Strongback axial-force demands for the 
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resulting design space are shown in Figure 5.8 through Figure 5.13. Though other column, beam, 

and tie sizes were also explored, the results presented here are representative of the final round of 

column, beam, and tie sizes; see Figure 5.5. As trends were less apparent by the inclusion of non-

simulated failure modes, results with and without non-simulated failure modes were included at 

the 1.3 ×  !" intensity level. To give these trends context with respect to a conventional system, 

results were additionally compared to that of a reference BRBF system. 

5.4.4.1 Global Response 

The peak story drift response was plotted against the strongback-to-inelastic brace stiffness (or 

area) ratio in Figure 5.6. Peak story drift was measured in terms of the maximum story drift ratio 

of all four stories, max 1> . The peak story drift ratio decreases as the strongback brace area 

increases. This is representative of the strongback becoming more effective at imposing a uniform 

drift distribution with increasing strongback-to-inelastic brace lateral stiffness. The median drift 

response for the 1.3 ×  !"-level plateaus at max 1> = 2.5%. This trend aligns with a plateau in 

the drift concentration factor. This plateau occurs when the strongback brace lateral stiffness is 

approximately three times larger than the inelastic brace lateral stiffness, 
¬e,û¬f = 3.3 (or six times 

larger in terms of area, 
de,ûdf = 6.3). This plateau was also observed in the median and 85th percentile 

drift response at the  !"-level. Up to this plateau, both drift measures decrease as the strongback 

sizes become larger with respect to the inelastic brace sizes. Drift response depends little on the 

ratio of the upper story strongback sizes to the first-story strongback size, 
de,úde,û, unless non-simulated 

failure modes were included in calculations of the response.  

Lateral resistance of the system was measured in terms of the ratio between the peak base 

shear extracted from the model, %G, to the design base shear, %R; see Figure 5.6. As would be 

expected, this quantity increased as the strongback sizes increased, indicating increasing strength 

and accelerations and decreasing period with increasing strongback stiffness.  

Though trends were similar, non-simulated failure modes triggered flexural deformation 

limits in the beam links resulted in increased response quantities compared to results calculated 

without inclusion of the non-simulated failure modes. Lines that ended prematurely at the  !"-

level of response indicate non-simulated collapse states at some 85th percentile levels.  

The median peak drift profile at 1.3 ×  !" for the strongback design space is shown in 

Figure 5.7(a) for 
de,úde,û = 1. For comparison, the median and 85th percentile drift profile at  !" are 

shown in Figure 5.7(b). With larger strongback brace area to inelastic brace area, the story drift 

profile becomes increasingly uniform. It is clear from these plots that a stronger and stiffer 

strongback, increases the system’s ability to impose a uniform drift response. Note, however, that 

though this drift response is near uniform, it does not result in reduced drift response everywhere. 

Rather, the strongback results in an averaging effect that causes increased drift in the upper stories 

and decreased drift in the lower stories. 
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(a) (b) (c) 

 

 

 
Figure 5.6. Global demands versus brace stiffness ratio.  

(a) and (b) median global demands at 1.3 ×  !", (c) median and 85th percentile global demands at  !". 
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(a) (c) 

 

 

 

Figure 5.7. Peak and residual story drift ratio profile.  

(a) median global demands at 1.3 ×  !", (b) median and 85th percentile global demands at  !". 

5.4.4.2 Strongback demands 

The ratio of the median strongback brace peak demand-to-capacity ratio, �A,>/�A,>∗ , is shown for 

each story (& = 1 to 4) in Figure 5.8 through Figure 5.11. This demand-to-capacity ratio is plotted 

against both the first-story strongback-to-inelastic brace lateral stiffness and area in terms of the 

median response at 1.3 ×  !" and the 85th percentile response at  !". Plateaus in these plots 

indicate that the peak strongback brace demand has reached or exceeded its buckling capacity in 

the numerical model. Inclusion of non-simulated collapse modes resulted in higher estimates of 

force demands in the strongback elements. 

The compression capacity of the first-story strongback brace controlled the design of the 

strongback braces. An area of 8.5 times the adjacent inelastic brace area is required for the first-

story brace to remain safely elastic for more than half of the ground motion pairs considered (i.e., 

the median 
�e,ûü�e,û∗ < 1 for 

de,ûdf = 8.5). Upper story braces can be reduced to an area of 0.8 times the 
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first-story strongback brace area and still be acceptable (i.e., the median 
�e,úü�e,ú∗ < 1 for #A,> =0.6#A,G). In terms of stiffness, the strongback first-story brace lateral stiffness must be 4.1 times 

the inelastic brace lateral stiffness for the strongback to safely remain elastic at the 1.3 ×  !"-

level. For this �A,G/�@, the upper story brace stiffness can be reduced to 0.6 times the first-story 

strongback brace stiffness and still remain acceptable.  

The demands on the tie are shown in Figure 5.12 and Figure 5.13. Tie demands tend to 

increase with increasing strongback brace sizes but tend to depend more on global displacements 

than strongback brace size. A plateau in the tie demands occurs at a similar stiffness and area ratio 

as the plateau observed for the story drift plots in Figure 5.6. Unlike plots of the strongback braces, 

these plateaus do not correspond to brace buckling. 

Mitigation of drift concentration was achieved with smaller strongback brace sizes in 

Figure 5.6 than as indicated by the median strongback brace peak demands in Figure 5.8 through 

Figure 5.13. This may indicate some level of inelastic behavior in the strongback components 

could still result in an acceptable global response. Inclusion of non-simulated failure modes 

resulted in even more stringent criteria for strongback element demands with little benefit in global 

drift response.  

 

(a) (b) (c) 

 

 

 
Figure 5.8. First-story strongback brace peak axial-force demands versus brace stiffness ratio.  

(a) and (b) median demand at 1.3 ×  !", (c) 85th percentile demand at  !". 
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(a) (b) (c) 

 

 

 
Figure 5.9. Second-story strongback brace peak axial-force demands versus brace stiffness ratio.  

(a) and (b) median demand at 1.3 ×  !", (c) 85th percentile demand at  !". 

 

(a) (b) (c) 

 

 

 
Figure 5.10. Third-story strongback brace peak axial-force demands versus brace stiffness ratio.  

(a) and (b) median demand at 1.3 ×  !", (c) 85th percentile demand at  !". 
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(a) (b) (c) 

 

 

 
Figure 5.11. Fourth-story strongback brace peak axial-force demands versus brace stiffness ratio.  

(a) and (b) median demand at 1.3 ×  !", (c) 85th percentile demand at  !". 

 

(a) (b) (c) 

 

 

 
Figure 5.12. Second-story tie peak axial-force demands versus brace stiffness ratio. 

(a) and (b) median demand at 1.3 ×  !", (c) 85th percentile demand at  !". 
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(a) (b) (c) 

 

 

 
Figure 5.13. Third-story tie peak axial-force demands versus brace stiffness ratio. 

 (a) and (b) median demand at 1.3 ×  !", (c) 85th percentile demand at  !". 

5.4.4.3 Comparison of SBF and BRBF response 

The final minimized strongback sizes are shown in Figure 5.14(a) for the constant column, beam, 

and tie sizes shown in Figure 5.5. These sizes correspond roughly to 
de,ûdf = 7.5 and 

de,úde,û = 0.6. For 

the forty-four far-field ground considered, the benchmark-strongback design represents a possible 

design that achieves less than twenty-two instances of strongback “failure” for ground motions 

scaled to 1.3 ×  !" intensity level. The system was additionally acceptable under the criterion of 

less than 10% probability of system collapse (e.g., system instability). For comparison, 

acceptability was also satisfied for the 85th percentile response for ground motions scaled at the  !"-level. 

The plots in Figure 5.15 show the peak story drift ratio for all forty-four ground motions 

scaled to 1.3 ×  !" (gray lines) and their median response (green line). This median was 

calculated including non-simulated failure modes. The median peak and residual drift responses 

in this plot are approximately 2.2% and 0.35%, respectively and are nearly uniform with building 

height.  

To give the behavior of the SBF context with respect to a conventional system, a BRBF 

was designed and analyzed under the same suite of ground motions; see Figure 5.14(b). Note the 

period of vibration, �G, for the BRBF was larger than the SBF system; see Table 5.1. Though both 

designs passed the collapse assessment criteria in FEMA-P695 (i.e., less than half the ground 

motions at 1.3 ×  !" exhibited collapse), the BRBF system showed increased concentrations of 

drift compared to the SBF system, as exhibited by the median peak story drift ratio and drift 

concentration factor in the first story of Figure 5.15(b). Peak residual drifts were also larger in the 

first and second story in the BRBF (though they were also smaller in the third and fourth story). 

These results indicate increased peak drift and residual drift demands compared to that of the 

benchmark strongback design. 
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In contrast, the SBF system exhibited higher peak accelerations and story shear demands 

compared to the BRBF system; see Figure 5.16(a) and (b). This is especially true of the upper story 

envelope response, usually indicative of higher-mode contributions. The benchmark strongback 

exhibited a large fourth story acceleration response that is absent in the BRBF envelope. Story 

shears estimated from the lateral story resistance indicate entirely different height-wise 

distributions and are reflective of the differences in acceleration profiles for the two systems. 

Envelope plots including the median, 85th percentile, and 100th percentile scaled to the '"- 

(Design Earthquake) and  !"-levels showed similar trends; see Appendix B. 

 

 
(a) (b) 

Figure 5.14. (a) benchmark embedded SBF, (b) reference BRBF. 
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(a)

 

 

(b)

 

 

 
Figure 5.15. Peak drift response at 1.3 ×  !": (a) SBF and (b) BRBF 
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(a)

 

(b)

 

 
Figure 5.16. Peak acceleration, #Z and story shear, %>, response at 1.3 ×  !": (a) SBF and (b) BRBF. 

5.5 INCREMENTAL DYNAMIC ANALYSIS 

The benchmark-strongback design was based on the acceptance criteria outlined in the FEMA-

P695 methodology. However, this methodology was developed for collapse performance in terms 

of the behavior of the overall system and not the failure of individual components or elements, like 

those in the strongback. Though the record-to-record variability, )?Ë?, was used to estimate the 

intensity level for preliminary design of the strongback, the constant )?Ë? used in FEMA-P695 

was calibrated to structural collapse and not strongback failure. Use of this methodology for 

strongback qualification implies that inelastic behavior in the strongback results in collapse of the 

system, an overly conservative assumption as this behavior mode is unlikely to result immediate 

collapse. 

In light of these limitations, an incremental dynamic analysis (IDA) (Vamvatsikos & 

Cornell, 2002) was conducted to justify the assumptions used in evaluating performance of the 

benchmark-strongback design (e.g., assuming constant )?Ë?). This procedure is similar to but 

distinct from the FEMA-P695 methodology. The IDA methodology incrementally scales a ground 

motion by increasing intensity until a limit state threshold is reached. The intensity associated with 

that threshold can be associated with demand measures extracted from the analysis. This process 

can be repeated for a suite of ground motions to get a distribution of intensity values that include 

variability in the structural response. Fragility functions can then be fit to failure data extracted 

from the IDA results to relate the probability of failure to a ground motion intensity.  
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The IDA analysis procedure was used to verify that the strongback design resulted in less 

than 10% probability of collapse. The IDA data was also utilized to construct fragilities for the 

probability of failure in any one of the strongback elements. To give these results context, 

comparisons were made to the collapse potential of the reference BRBF design from Section 

5.4.4.3. 

5.5.1 IDA Results 

Results from the incremental dynamic analyses are shown in Figure 5.17. The intensity measure, *Ë, represents the scaled median spectral acceleration of the normalized record set at the upper 

limit period. Horizontal lines in these plots represent the 'ý"-,  !"-, and 1.3 ×  !"-level 

intensities (i.e., 
ðñòðóò = J_, 1, 1.3). 

Green, red, and blue lines in these plots correspond to the median, 85th percentile, and 100th 

percentile values at each intensity level. Dotted lines represent calculations of statistical response 

without non-simulated failure modes. The end of these lines represents intensities corresponding 

to the 50th, 85th, and 100th percentile failure-levels. If the non-simulated failure modes are 

neglected, the strongback system exhibited smaller peak story drifts compared to the reference 

BRBF at similar intensity levels, as indicated by the higher slope of the analysis lines for the SBF 

compared to those of the BRBF.  

However, results including non-simulated failure modes indicate smaller collapse levels 

for the benchmark strongback compared to the reference BRBF. Black dots in these plots represent 

failure states triggered by non-simulated failure modes. These non-simulated limit state checks 

trigger failure prior to collapse simulated in the numerical model. It is apparent that the benchmark 

strongback exhibited numerous non-simulated failure modes that were not triggered by the 

reference BRBF. These were all triggered by flexural deformation limits in the beam at the tie-to-

beam intersection.  

Peak compression and tension demands in the strongback braces and tie are shown on the 

negative and positive sides of the IDA plot in Figure 5.17(c), respectively. The lower slope of the 

compression side of this plot indicates that compression, rather than tension, controlled demands 

in the strongback. Based on the intersection of the median, 85th, and 100th percentile lines with the 

intensity levels corresponding to 'ý",  !", and 1.3 ×  !", the final benchmark strongback 

exhibited essentially elastic behavior at each of these intensity levels. 
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(a) (b) (c) 

  
 

Figure 5.17. Results of incremental dynamic analyses: (a) collapse for referene BRBF,  
(b) collapse for benchmark SBF, and (c) failure of any one strongback element 

5.5.2 Fragility curves 

Fragility curves were constructed by relating increasing values of median spectral acceleration, *ìË, to the collapse or failure potential. Lognormal fragility functions were estimated using the 

methodology outlined in Baker (2014). The sample mean, í̂, and lognormal standard deviation, )ë , 

assumed a lognormal cumulative distribution function and were fit to the failure data per the 

maximum likelihood method.  

Several fragility curves are plotted in Figure 5.18. A lognormal distribution was fit to the 

raw data with and without inclusion of the non-simulated failure modes. Slopes of these curves 

represent the record-to-record variability. Fragilities including non-simulated failure modes were 

adjusted to account for uncertainty due to the quality ratings per Equation 5.4. The final fragility 

curve was then modified by the spectral shape factor, **º, per Section 5.2.2.1; this effectively 

shifted the mean of the curves to the right. Values extracted the resulting fragility curves for 

collapse probability and strongback failure probability are shown in Table 5.4. The estimated 

record-to-record variabilities were similar to the constant )?Ë? = 0.4 used in FEMA-P695 for 

design of the benchmark strongback.  

The red line in these plots corresponds to the failure probability at the  !"-intensity level. 

Both the benchmark strongback and reference BRBF exhibited less than 10% probability of 

collapse at the  !"-level. Without consideration of the non-simulated failure modes, the 

strongback benchmark showed decreased collapse potential compared to the reference BRBF. 

Though it was hypothesized that the addition of a strongback would result in increased collapse 

potential, the benchmark strongback system considered here, though still acceptable, showed 

increased collapse probability compared to the reference BRBF frame if the non-simulated failure 

modes were included in the response. The fragility curve in Figure 5.18(c) shows that the 

benchmark strongback successfully achieved less than 10% probability of exhibiting inelastic 

behavior at the  !"-level. 
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Note that there is a conservative bias to the collapse/failure assessment of the strongback 

benchmark as a number of non-simulated failure modes were not directly incorporated into the 

nonlinear dynamic analysis model. Alternative models including the in-cycle deterioration of the 

response would be better able to explicitly model collapse. Other frameworks of estimating risk, 

like the Conditional Scenario Spectra (CSS) methodology (Arteta & Abrahamson, 2017), could 

also provide more robust interpretations of strongback performance. 

 

Table 5.4. Summary of fragility curves. 

Fragility Curve 

BRBF collapse SBF collapse Strongback failure 

��  Üh  ��  Üh  ��  Üh  

observed data 1.89 0.29 2.08 0.27 1.38 0.44 

including non-simulated failure 
modes 

1.89 0.29 1.64 0.31 1.26 0.31 

including quality rated 
uncertainty 

1.89 0.45 1.64 0.47 1.26 0.46 

adjustment for spectral shape 2.73 0.45 2.38 0.47 1.82 0.46 

 

 
(a) (b) (c) 

 

 
Figure 5.18. Fragility curves: (a) collapse for reference BRBF,  

(b) collapse for benchmark SBF, and (c) failure of any one strongback element 

5.5.3 Beam Link Deformations 

In light of the non-simulated limit state triggered in the beam links, the incremental dynamic 

analysis was repeated for the following strongback-braced frame designs: 
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i. The benchmark SBF but with fully pinned beam links representing connection regions with 

larger deformation capacity. 

ii. A hybrid BRBF-SBF that separates the strongback from the inelastic brace bay; see Figure 

5.19. Incremental dynamic analysis for this design was conducted using both continuous 

and fully pinned beam links. 

Rotational demands in the pinned beam links were checked through deformation limit checks 

assuming shear tab details at the beam link ends. The IDA results and corresponding fragility 

curves are shown in Figure 5.20 and Figure 5.21. The collapse probabilities and strongback failure 

probabilities are tabulated for the BRBF, embedded SBF, and separated SBF configurations in 

Table 5.5. 

With the pinned beam links, the SBF exhibits near-zero collapse probability. The 

probability of inelastic behavior in the strongback is also reduced. The pinned beam links delayed 

triggering of the non-simulated limit states to peak story drift ratios from near 2.5% to above 4%. 

This is primarily due to the increased rotational capacity of the beam links. Note that the pinned 

beam links remove some of the back-up redundancy of the secondary system and could result in 

potentially smaller reserve capacity if the strongback braces buckled.  

Removal of the strongback bay to an adjacent bay reduced the ductility demands on the 

inelastic braces but did not address the rotational demands in the beam links. A modified model 

with pinned beam links resulted in near zero-collapse probability and reduced probability of 

strongback failure to 1.3% at the  !"-level. The separated SBF configuration with pinned beam 

links exhibited the lowest collapse potential out of the BRBF and SBF designs. Note that if the 

strongback braced buckle in an SBF configuration, the system reverts to a near-conventional 

BRBF.  

 

Table 5.5. Failure probabilities. 

Failure Probability BRBF 

Benchmark SBF Separated SBF 

continuous 
beams 

pinned 
beam links 

continuous 
beams 

pinned 
beam links 

collapse probability at �÷ß-level 
1.3% 3.2% 0.5% 4.4% 0.3% 

strongback probability at �÷ß-level 
- 9.8% 7.0% 5.0% 1.3% 
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Figure 5.19. Modifed design: (a) separated SBF. 

 

 
(a) (b) (c) 

  
 

Figure 5.20. Results of incremental dynamic analyses: (a) embedded SBF with pinned beam links,  
(b) separated SBF, and (c) separated SBF with pinned beam links. 
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(a) (b) (c) 

 

 
Figure 5.21. Fragility curves: (a) embedded SBF with pinned beam links,  

(b) separated SBF, and (c) separated SBF with pinned beam links. 

5.5.4 Limitations of FEMA-P695 

The following limitations were recognized in using FEMA-P695 to evaluate the strongback’s 

response: 

- Use of this methodology for strongback qualification implies that inelastic behavior in the 

strongback results in collapse of the system, an unnecessarily conservative assumption as this 

damage mode has energy dissipation capacity. The methodology also ignores the influence of 

secondary systems, like the reserve strength from gravity beam-column connections and 

nonstructural components and the impact of varying degrees of irregularity.  

- Collapse simulation is a detailed, data-intensive process with a high degree of uncertainty. 

Values for uncertainty are based on judgement. As the FEMA-P695 methodology was intended 

to apply broadly to all buildings, it incorporates a variety of simplifying assumptions.  

- The numerical model used in the nonlinear dynamic analyses was described in detail in Section 

4.5. As noted in that section, the softening response of to the beam-column elements was not 

explicitly considered. Though these failures were accounted through non-simulated limit state 

checks, they resulted in a conservative bias in assessing strongback collapse performance. 

Models with pinned beam links circumvented this issue, but the incorporation of numerical 

models that include axial-flexural interaction and in-cycle softening response would provide 

further estimates of the SBF’s collapse performance. 

- Though utilized herein as the standard for the state-of-practice, FEMA-P695 is inadequate for 

evaluation of archetypes whose failure response is dominated by higher-mode effects, like that 

of the strongback system. Over-estimation of the ground motion intensity at the higher-mode 

periods due to ground motion scaling near the fundamental period is ignored by the 

methodology. Inclusion of higher-mode response may be critical for characterization of the 

force demands in the force-controlled actions.  
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- Use of the far-field record set provided by FEMA-P695 does not appropriately reflect the shape 

of the response spectrum. Since the higher-mode response of the strongback can be critical, a 

more robust ground motion selection procedure that is better able to represent the response at 

the higher-mode periods may be important in evaluating the strongback’s collapse 

performance. The most direct approach to account for spectral shape would be to select a 

unique set of ground motions that have an appropriate shape for each site, hazard level, and 

structural periods of interest. Conditional mean spectra conditioned on the first three periods, 

for example, may be a more suitable method of selecting ground motions to characterize the 

strongback’s dynamic response. 

5.6 CONCLUSIONS 

A benchmark strongback-braced frame was developed to initiate the design development process. 

The benchmark-strongback design was the result of an iterative dynamic capacity design 

procedure. The FEMA-P695 methodology was used to estimate the probability of inelastic 

behavior in any one of the strongback elements. Based on an acceptable 10% failure probability, 

a design space of possible strongback element sizes was developed and validated in terms of 

probability of exceedance at the  !"-level. A deterministic grid-search optimization study 

revealed the following: 

 A stronger and stiffer strongback increases the SBF’s ability to impose a uniform drift 

response. Note, however, that the addition of the strongback averages the drift profile, resulting 

in increased drifts in some stories and decreased drifts in other stories. 

 Adequate drift response can still be achieved even when the strongback elements buckle, 

indicating that smaller strongback element sizes could still achieve an acceptable global 

response. For example, strongback sizes with areas of 8.5 times the inelastic brace area and 4 

times the inelastic brace stiffness were needed for the strongback braces to remain elastic while 

strongback sizes with areas of 6.3 times the inelastic brace area and 3.3 times the inelastic 

brace stiffness were needed for drift control.  

 For the benchmark configuration studied in this chapter, the first-story strongback brace 

experienced the largest strongback demands. Upper story brace sizes could be reduced to 0.6 

times the first-story strongback brace stiffness and area and still be effective.  

 Though all the archetype designs passed the collapse assessment criteria in FEMA-P695, a 

reference BRBF system showed increased concentrations of peak and residual drift compared 

to the SBF benchmark design. In contrast, peak accelerations were larger for the benchmark 

strongback than the reference BRBF.  

 A reference BRBF system exhibited comparable – if somewhat lower - collapse potential to 

the SBF benchmark design with continuous beams. This design triggered collapse through 

non-simulated flexural deformation limits in the beam links. This collapse mode was not 

modeled in the numerical simulation, and it is unclear whether these results are biased by the 

inclusion of these non-simulated limit states. Triggering of this limit state emphasizes the 

significant ductility demands that can develop in the beam links. Designs utilizing pinned beam 
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links and separated strongback configurations exhibited near-zero collapse probability in 

increased collapse performance compared to the reference BRBF. 

  



117 

 

 

6 Parametric Study of Design Alternatives 

6.1 INTRODUCTION 

Previous numerical studies and one experimental test revealed a number of practical design 

concerns for strongback-braced frames (Simpson & Mahin, 2018b), especially with regards to the 

large deformation demands that can develop in the fuses due to the kinematic response of the 

strongback truss. These induced deformations were described in detail in Chapter 3 and impacted 

the strongback’s collapse performance in Chapter 5. Appropriate design methods for strongback-

braced frames depend on being aware of possible design alternatives and their impact on the 

strongback’s behavior. 

The benchmark four-story strongback-braced frame developed in Chapter 5 was used to 

systematically study the effects of different design alternatives on the strongback’s dynamic, 

inelastic response. Several cases of design alternatives, including ground motion selection and 

detailing conditions, are considered for the parametric study. General conclusions are drawn 

regarding the relative impact of design alternatives on the behavior of strongback-braced frames. 

6.1.1 Cases Considered 

Changes in different boundary condition parameters can result in changes to the system’s dynamic 

response. This chapter focuses on sensitivity of the response to design alternatives and ground 

motion selection. A case study considering one ground motion was used to characterize the 

following design alternatives:  

1. Case 1: ground motion selection 

2. Case 2: beam end connections 

3. Case 3: column base fixity and column bending orientation 

4. Case 4: beam composite action and diaphragm rigidity 

5. Case 5: strongback brace and tie connection conditions 

A second parametric study then investigated the median response quantities of the above cases 

under the far-field suite of ground motion records described in Section 5.3.2. The following 

additional cases were included in this second statistical study: 

1. offset of the brace-to-beam intersection 
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2. height-wise distribution of inelastic brace size in BRBFs and SBFs 

Except where indicated, cases were compared to the finalized benchmark design in Figure 5.14(a) 

using the numerical model described in Section 4.5.  

6.1.2 Response Quantities 

The response quantities used for studying behavior in this chapter include: 

1. Peak inelastic brace strain and axial demand, �@ and �@ 

2. Peak strongback brace and tie axial demand, �A,> and �°,> 

3. Peak beam moments and axial demand,  R,@ or  R,A and �R,@ or �R,A 

4. Ratio of beam deformation to acceptability limits from Section 4.5.7, íR,@ and íR,A 

5. Peak column moments and axial demand,  D,@ or  D,A and �D,@ or �D,A 

6. Peak story drift ratio, 1>  

7. Peak residual story drift ratio, 1>,@�A��Ý�t 
8. Drift concentration factor, '!º = �+$(1>)/1? 

9. Peak absolute horizontal acceleration, #Z 

10. Peak story shear, %> 

11. Deflected shape, bending moment diagram, and axial force diagram at peak story shear 

12. Deflected shape, bending moment diagram, and axial force diagram at peak drift ratio & = story, < = roof level, (∙)A = strongback element designation, (∙)@ = fuse designation. The 

system’s tendency for drift concentration, or drift concentration factor, is represented by the ratio 

of the maximum drift response in all the stories, �+$i1>j, with respect to the average or peak roof 

drift ratio, 1? (MacRae et al., 2004; Ji et al., 2009; Chen & Mahin, 2012): 

'!º = �+$i1>j1?  Equation 6.1 

The maximum '!º taken over all stories represents the tendency of the system to form a story 

mechanism. The larger the drift concentration factor, the higher the system’s tendency to 

concentrate drift demands. A '!º of 1.0 represents a uniform drift distribution over the building 

height. This factor was used to determine the structure’s potential for non-uniform lateral 

displacements and to identify the magnitude and uniformity of inelastic demands on the strongback 

system. 

6.1.3 Response Envelopes 

Peak response envelopes are plotted over building height and are overlaid to emphasize the effect 

of different cases on the response quantity of interest. For some design alternatives, plots show the 

demand-to-capacity ratio using (∙)∗ to indicate whether an element exhibited inelastic behavior. 

To condense information into a single plot, moment plots show (∙)@ quantities on the negative side 

of the plot and (∙)A quantities on the positive side of the plot. The sign change indicates whether 

the data is from the inelastic or elastic portion of the frame and does not indicate the sign or 
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direction of the moment demands. The designation mid-beam is a misnomer and refers to the 

location of brace intersection between the beam ends, which may be offset from the beam 

centerline; see Chapter 3. Plots of axial force show peak tensile demands on the positive side of 

the plot and peak compressive demands on the negative side of the plot. Note that some 

information is lost in comparing response envelope rather than response history plots.  

“Snapshots” of the deflected shape, moment diagrams, and axial force diagrams were taken 

at the time instant of peak story drift and peak story shear; for example, see Figure 6.9 and Figure 

6.10. Additional demand-to-capacity plots to the far right of these figures highlight those elements 

most engaged in lateral force-resistance during that snapshot in time. Yellow elements are above 

their flexural or axial strength capacity. Those elements in violet have demands less than 50% of 

their strength capacity. Other colors represent the gradient in color scale between violet and yellow 

(i.e., between > 50% to < 100% the element strength capacity). These plots are intended to visually 

display distributions of demands and do not include axial-flexural interaction. 

6.2 CASE STUDY 

Ideally, this parametric study would account for variability by considering the mean (or median) 

and coefficient of variation (COV) of a response quantity subjected to the entire suite of far-field 

ground motions. The computational time and additional amount of data required for such a 

parametric study, however, makes in-depth analysis and understanding of the behavioral 

characteristics under each ground motion difficult. Moreover, means and medians can result in 

smoothed response quantities, making it challenging to distinguish differences in behavior as 

design alternatives result in similar response quantities “on average”; see plots in Appendix D.  

Thus, the response results for the four-story parametric study presented herein were 

initially described in terms of a case study for one of the records, gm44. This record was selected 

for: [i] its close spectral proximity to the target design spectrum around the fundamental period of 

the four-story benchmark design; [ii] its reasonable amplification of higher-mode effects compared 

to other ground motions in the far-field record suite; and [iii] its similarity to response quantities 

representing the median response calculated using the full far-field record set. Statistical evaluation 

of the seismic response was then conducted in Section 6.3 with more in-depth knowledge of the 

relation between certain design alternatives and the strongback’s seismic response. Member sizes 

were kept constant irrespective of design alternative to isolate the impact of the chosen design 

alternative on the structure’s response. Additional envelope plots for each case study under gm44 

can be found in Appendix C. 

The gm44 record was recorded at the Tolmezzo receiving station during the 1976 Friuli, 

Italy earthquake. This record was scaled by a factor of 3.6 to match the  !"-level target design 

spectra at the upper design period, �. The median and mean response spectra for the far-field 

record suite are shown in Figure 6.1. The response spectra for gm44 is overlaid for comparison 

purposes. From these figures, it can be observed that gm44 matches the elastic response spectra 

well at the fundamental period, �G, but over-estimates the response in potential higher modes like 

at the second period, �J. To properly account for these higher-mode effects, the design spectrum 

for the benchmark frame was modified to the dotted line shown in Figure 6.1 (*A = 2.09; and *G = 0.63;). Though record gm44 still exhibits spectral accelerations above this modified design 
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spectrum, this amplification highlights the higher-mode contributions to the response quantities of 

interest and was considered reasonable for this parametric study. These higher-mode effects are 

elaborated on in more detail in Section 7.5.4.2.  

 

 

 

Figure 6.1. Characteristics of ground motion 44 (gm44). 

6.2.1 Case 0 – Benchmark Response 

To emphasize the difference between responses due to varying design alternatives and that of the 

benchmark design, this section will present a general description of the behavior of the benchmark 

frame. The response of the benchmark frame to gm44 is represented by the solid black line in 

Figure 6.4 through Figure 6.10. 

The axial strain and axial force envelope for the inelastic braces under gm44 was nearly 

uniform, indicating similar peak demands for all four inelastic braces; see Figure 6.4. Axial-force 

demands were largest on the first and fourth story strongback braces; see Figure 6.5(a). This is 

indicative of higher-mode contributions, which tend to affect the forces in upper stories more than 

lower stories (Chopra, 2011). Axial-force demands were largest for the fourth story strongback 

brace and are close to the buckling load; see Figure 6.5(b). Tie demands were similar in both 

tension and compression demands; see Figure 6.5(c).  

End-beam moments in the strongback,  R,A, were relatively small compared to the mid-

beam moments and end-beam moments of the beam link in the inelastic portion of the system,  R,@; see Figure 6.6(a). The beam link exhibited flexural yielding at both ends. Peak moments at 

the ends of the roof beam tended to be smaller than beam moments at other floors, consistent with 

the lack of vertical motion that would have occurred had the roof beam had a brace-to-mid beam 

intersection. Beam axial-force demands were near or below 20% of their axial strength capacity, 

indicating the beams are primarily operating in flexure; see Figure 6.6(b). Beam deformation 

demands were in the acceptable range of the model. These demands were near zero for the 

strongback portion of the beams and largest for the beam links; see Figure 6.6(c). 
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Column bending moments tended to be largest near the top of the column where the beam 

column connection was modeled as partially restrained; see Figure 6.7(a). Flexural demands at the 

column base were negligible, consistent with the pinned column base. Axial-force demands were 

on average 3.8 times larger in tension and 2.2 times larger in compression in the strongback column 

than the inelastic column; see Figure 6.7(b) and (c). This stems from the larger demands delivered 

to the columns by the strongback braces compared to the inelastic braces.  

Peak story drift ratios were nearly uniform, but showed some larger drift demands in the 

upper stories; see Figure 6.8(a). Residual drifts were approximately 0.18%, and indicated a nearly 

uniform distribution of drift with story height; see Figure 6.8 (b). The benchmark design tended to 

concentrate drifts in the fourth story during gm44, the location of the largest '!º, see Figure 

6.8(c). Higher-mode contributions were apparent in the upper story shear envelopes; see Figure 

6.8(e). Accelerations were to some extent uniform with building height; see Figure 6.8(d).  

The benchmark frame showed complete engagement of the inelastic braces at the time of 

peak story shear, but only partial engagement of the upper level inelastic braces at the time of the 

peak story drift ratio; see the yellow color of the inelastic braces in Figure 6.9(d) and Figure 

6.10(d). This and the displaced shape indicate that the upper story strongback elements may be 

most engaged when demands are non-uniform and the strongback exhibits “bending”; see the light 

blue color of the third and fourth story strongback braces in Figure 6.9(d) compared to the first 

through third story strongback braces in Figure 6.10(d).  

In summary of the benchmark response: 

1. Axial strain and axial force are similar for all four inelastic braces under gm44.  

2. Strongback demands tend to be largest for the first- and fourth-story strongback braces 

under gm44.  

3. The bending moment envelope indicates the beam link ends have yielded. Beam axial-

force demands are near 20% of the beam axial strength. 

4. Column moment demands tend to be large near the top of the column where the beam-

column connection is partially restrained and reinforced by a gusset plate. Axial-force 

demands in the strongback column are significantly larger than in the inelastic column.  

5. Peak and residual drift ratios are nearly uniform. Plots of the drift concentration factor 

illustrate a tendency for the benchmark design to form a story mechanism in the fourth 

story under gm44. 

6. The peak story shear demands occur in the first and fourth story, illustrating higher-mode 

contributions to the upper story shear response. The profile of absolute accelerations is 

nearly uniform with a pinched response at the third-floor level.  

6.2.2 Case 1 – Ground Motion Selection 

It is important to identify which response quantities are sensitive to the characteristics of the 

ground motion. Case 1 investigated three additional ground motions. This comparison included 

ground motions with larger spectral pseudo-accelerations in the first mode (gm1), larger spectral 

pseudo-accelerations at the higher modes (gm13 and gm44), and longer duration of strong 

amplitude shaking (gm10). 
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The modified design spectrum is overlaid with the response spectra for gm1, gm10, gm13, 

and gm44 in Figure 6.2. The �G and �J labels represent the elastic first- and second-mode periods 

from an eigenvalue analysis of the benchmark design. The selected ground motions vary widely 

in pseudo-acceleration values at both the fundamental and higher-mode periods. The four selected 

ground motions also vary in amplitude, duration, and general appearance; see ground acceleration 

history plots and information on magnitude, fault type, site class, and the horizontal component of 

acceleration [e.g., fault normal (FN) or fault parallel (FP)] in Figure 6.3.  

Envelopes of the peak response quantities are shown in Figure 6.4 through Figure 6.8. 

Axial strains in the inelastic braces were by far largest for gm10, the ground motion with the largest 

duration of strong amplitude shaking; see Figure 6.4(a). This corresponded to larger strain 

hardening in the inelastic braces compared to that of the other ground motions; see Figure 6.4(b). 

Ground motion 10 resulted in the largest compression demand in the first story strongback brace; 

see Figure 6.5(a) and (b).  

In contrast, gm44 and gm13 resulted in the largest compression demand in the upper 

stories. These were the ground motions with the largest pseudo-accelerations at the higher-mode 

periods; see Figure 6.2. Compared to the other ground motions, gm1 tended towards the smallest 

strongback brace demands. Though compression demands in the tie were similar for all four 

ground motions, tension demands in the tie were more variable, indicating a tendency towards 

asymmetric behavior depending on whether bending in the strongback puts the tie in compression 

or tension; see Figure 6.5(c). Tie demands were smallest for gm1, the ground motion with the 

smallest pseudo-accelerations at the higher-mode periods. 

In general, axial force and bending moment demands in the beams and columns were 

largest for gm10, were similar for gm13 and gm44, and were smallest for gm1, though this trend 

was not perfect in all cases; see Figure 6.6 and Figure 6.7. The axial-force demand in the inelastic 

column was largest for gm10, consistent with the larger axial forces observed in the inelastic 

braces. The demand in the strongback column was largest for gm13 and gm44, the ground motions 

with the largest axial force in the upper story strongback braces. Deformation demands indicate 

that non-simulated defamation limit states were exceeded in the beam links for gm10; see Figure 

6.6(c). 

Ground motion 10 resulted in the largest peak and residual drift ratios, likely due to 

increased strain hardening and permanent elongation or shortening of the inelastic braces; see 

Figure 6.8(a) and (b). The drift concentration factor was largest for the fourth story in gm13 and 

gm44, indicating higher-mode influence in the upper levels of the strongback; see Figure 6.8(a) 

and (b). In contrast, the drift concentration factor was nearly uniform for gm1 and gm10. 

Higher-mode contributions to the upper story response were apparent in the story shear 

response for gm44 and gm13; see Figure 6.8(e) and (f). In contrast, the story shears for gm1 and 

gm10 indicated a more dominant first-mode story shear distribution (i.e., the story shear envelope 

increases incrementally from the roof level to the base level). Ground motion 10 exhibited the 

largest base shear (i.e., first story shear). Absolute accelerations were smallest for gm1 and similar 

for gm10, gm13, and gm44; see Figure 6.8(d).  

Except for gm13, all four inelastic braces were at or beyond yield at the instance of peak 

story shear; see Figure 6.10. Ground motions 13 and 44, the ground motions with the largest 
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higher-mode response, engaged only a portion of the inelastic braces during the instant of peak 

story drift ratio.  

In summary: 

1. Ground motions with larger pseudo-accelerations at the higher-mode periods can result in 

“bending” in the strongback truss. These higher-mode contributions can result in larger 

demands in the upper strongback braces, tie, and columns. 

2. The duration of ground shaking gives time for the inelastic braces to exhibit substantial 

strain hardening, leading to increased peak and residual drifts and surrounding frame 

demands. Longer duration also gives the strongback system ample time to for a complete 

mechanism, potentially resulting in higher risk of collapse with longer ground motion 

shaking. 

 

 

 

 

Figure 6.2. Response spectra of compared ground motions. 
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�¦Õ -  6.7 1994 Northridge Beverly Hills – Mulhol 

Site Class D, Fault Type – Thrust, FN component 

�¦Õ¨ -  6.5 1979 Imperial Valley Delta 

Site Class D, Fault Type – Strike-slip, FP component 

�¦Õæ -  6.9 1995 Kobe, Japan Nishi-Akashi 

Site Class C, Fault Type – Strike-slip, FN component 

 

�¦çç -  6.5 1976 Friuli, Italy Tolmezzo 

Site Class C, Fault Type – Thrust, FP component 

Figure 6.3. Ground acceleration histories. 

 

 

 
(a) (b) 

Figure 6.4. Case 1 – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure 6.5. Case 1 – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 

 
 

 

 

 
(a) (b) (c) 

Figure 6.6. Case 1 – Beam peak response envelopes. 
(a) moment demand, (b) axial-force demand; (c) deformation acceptability ratio 

 

 
(a) (b) (c) 

Figure 6.7. Case 1 – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.8. Case 1 – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 
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(a) gm1 

 
(a) gm10 

 
(c) gm13 

 
(d) gm44 

Figure 6.9. Case 1 – Response diagrams at time of peak story drift ratio. 
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(a) gm1 

 
(a) gm10 

 
(c) gm13 

 
(d) gm44 

Figure 6.10. Case 1 – Response diagrams at time of peak story shear. 

6.2.3 Case 2 – Beam-Column Connections 

Large shears can develop along the beam link upon the formation of plastic hinges at the beam 

link ends. These vertical shears can put additional demands on the strongback braces and tie. 

Pinned versus fixed connections can also affect the stiffness and residual strength of the global 
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system. As such, Case 2 investigated the impact of the beam end condition on the surrounding 

structural elements. 

Five cases of beam-column connections were considered. The alternating beam-column 

connections used pinned conditions to represent beam-column regions without gusset plates and 

fixed conditions to represent regions with gusset plates. Pinned beam-column connections, fixed 

beam-column connections, fully pinned beam links, and partially-restrained (PR) beam-column 

connections were also considered. The fully pinned beam links were pinned at both the beam-end 

and on the inelastic side of the mid-beam connection. The PR connections were modeled per 

Section 4.5.1.  

The envelopes for each of the beam-column connection cases are overlaid in Figure C.1 

through Figure C.5. The moment diagrams and demand-to-capacity ratios at the instance of peak 

story drift ratio and story shear for each beam end condition are shown in Figure 6.11 and Figure 

6.12 for each beam end condition. The deformed shape, axial force diagrams, and response at time 

of peak story shear are omitted because they are relatively similar to Figure 6.9(d) and Figure 

6.10(d). The beam end condition has the largest affect the moment distributions in the system. The 

case of the fully pinned beam link exhibits negligible moments at the time of peak story drift ratio. 

In contrast, almost every beam-column element exhibited double curvature with fixed beam-

column conditions.  

In summary of Appendix C.1: 

1. The beam-column end condition has the most impact on the moments in the beams and, 

through equilibrium, the columns. When the moments at the beam-ends were released, the 

envelope of the column moment is non-zero and developed primarily from bending. 

2. Residual drifts were largest for the fixed beam condition and smallest for the fully pinned 

beam link and pinned end conditions. The '!º in the fourth story indicates that drifts tend 

to concentrate more in the fourth story as more moment conditions are released. Provided 

the strongback can overcome this increased tendency, peak and residual drifts were smaller 

with pinned beam conditions for gm44. This contradicts later statistical observations about 

the median and 85th percentile response. 
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(a) (b) (c) (d) (e) (f) 

Figure 6.11. Case 2 – Response diagram at time of peak story drift ratio.  

(a) fully pinned beam link; (b) pinned beam-column connection; (c) alternating beam-column connection; (d) PR 
beam-column connection; (e) fixed beam-column connection; (f) demand-to-capacity ratio. 

 

      
(a) (b) (c) (d) (e) (f) 

Figure 6.12. Case 2 – Response diagram at time of peak story shear.  

(a) fully pinned beam link; (b) pinned beam-column connection; (c) alternating beam-column connection; (d) PR beam-
column connection; (e) fixed beam-column connection; (f) demand-to-capacity ratio. 

6.2.4 Case 3 – Column Base Fixity and Bending Orientation  

As described in Chapter 1, the strongback portion of the frame tends to engage the fuses through 

a pivoting motion about its column base. The ability of the strongback to rotate about its base could 

be enhanced using a pin connection at the base of the strongback column. Alternatively, a column 

oriented in weak axis bending could provide similar axial capacity while limiting the bending 

moment able to develop at the column base; see Section 2.4.2.1. As such, Case 4 compared 

differences in seismic response due to variations in the column base fixity (i.e., pinned or fixed) 

and the column bending orientation (i.e., weak-axis or strong-axis oriented bending).  

Plots of the envelope demands are shown in Figure C.6 through Figure C.10. The moment 

diagrams at the time of peak story shear are shown in Figure 6.12; other response diagrams are 

similar to Figure 6.9(d) and Figure 6.10(d) and are omitted. At the time of peak story shear, 

moment at the column base was largest for the fixed, strong-axis oriented columns, followed by 

the fixed, weak-axis oriented columns, and negligible for the pinned strong-axis oriented column. 
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Moment demands in the upper stories were similar for the pinned and fixed strong-axis oriented 

columns and were smaller for the weak-axis oriented columns. 

In summary of Appendix C.2: 

1. Axial-force demands in the elements are little impacted by the column base fixity or 

orientation. 

2. Moment demands at the column base were most affected by the change in column base 

fixity from pinned to fixed. The base fixity has little effect on moment demands in upper 

stories. 

3. The weak-axis column orientation reduced moments along the column height compared to 

the use of columns oriented in strong-axis bending. However, weak-axis oriented columns 

also have reduced moment capacity compared to columns oriented in strong-axis bending. 

 

    
(a) (b) (c) (d) 

Figure 6.13. Case 3 – Response diagram at time of peak story shear.  

(a) fixed column base with strong-axis oriented columns; (b) fixed column base with weak-axis oriented columns; 
(c) pinned column base with strong-axis oriented columns; (d) demand-to-capacity ratio 

6.2.5 Case 4 – Beam Composite Action and Diaphragm Rigidity 

Case 4 studied the impact of diaphragm rigidity and beam composite action on peak response. 

These parameters have a direct impact beam flexural and axial-force demands. Composite action 

was simulated by a wide-flange beam section with a concrete fiber slab modeled with a 

compression-only material. This section model assumed complete composite action between the 

slab and beam. Diaphragm rigidity was represented by a rigid elastic truss between beam nodes or 

by a compression-only concrete material truss representing the effective area of the concrete slab 

tributary to the benchmark frame.  

Envelope comparisons of response quantities for each parameter are overlaid in Figure 

C.11 through Figure C.15. Moment and axial diagrams at the instance of peak story drift are shown 

in Figure 6.14. Composite action clearly resulted in asymmetric bending; see Figure 6.14(c). Axial 

forces were virtually zero for the rigid elastic diaphragm, asymmetrically reduced for the concrete 

diaphragm, and largest for the composite and non-composite bare beam. 

In summary of Appendix C.3: 

1. A rigid elastic diaphragm virtually eliminates axial forces in the beams.  
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2. A concrete truss diaphragm reduces compression demands on the beams and has little 

effect on the tension and flexural demands in the beams. 

3. Explicit modeling of composite action asymmetrically affects the moment capacity and 

inelastic deformations of the beams. Composite action has little impact on other elements 

in the system. 

 

  
(a) (b) 

  
(c) (d) 

Figure 6.14. Case 4 – Axial and moment diagrams at time of peak story drift.  
(a) bare, non-composite beam; (b) rigid elastic diaphragm; (c) composite beam; and (d) concrete diaphragm. 

6.2.6 Case 5 – Strongback Brace and Tie End Conditions 

Case 5 studied changes in response due to the strongback brace and tie end restraints. End 

conditions were specified as pinned or fixed. The impact of a continuous tie that was fixed at the 

second floor was also considered. Envelopes of the peak response quantities are shown in Figure 

C.16 through Figure C.20. In summary of Appendix C.4: 

1. Strongback brace end rigidity has little impact on the benchmark system’s response under 

gm44. 

2. Though not explored herein, inelastic brace end conditions could also affect the 

strongback’s response. 
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6.2.7 Comparison Case 

Cases 2 through 5 examined the response of a strongback-braced frame subjected to different 

design alternatives. Some cases caused the strongback demand to increase with respect to the 

benchmark design while other cases caused the strongback demand to decrease. To illustrate the 

extremities of the simulated response, this section compares design alternatives that generally 

maximized demands in the strongback elements to design alternatives that generally minimized 

demands on the strongback elements under gm44. The following two cases were compared:  

1. A maximization case corresponding to designs employing a fully pinned beam link, a fixed 

column base with the columns oriented in weak-axis bending, a rigid elastic diaphragm, 

and fixed strongback end conditions.  

2. A minimization case corresponding to designs with fixed beam-column connections, a 

pinned column base with the columns oriented in strong-axis bending, a non-composite 

bare beam, and pinned strongback end conditions. 

Results of this comparison are shown in Figure 6.15 through Figure 6.19. The compression demand 

in the fourth story strongback brace increased by 18% in the maximization case compared to the 

minimization case. This resulted in buckling in the fourth story strongback brace. Averaged over 

all the strongback braces, the maximization case resulted in an increase of 15% in compression 

demand; see Figure 6.16(a) and (b). The compression demand in the tie increased on average by 

20%; see Figure 6.16 (c). Increases in strongback brace demands also resulted in increased axial-

force demands on the strongback column; see Figure 6.18(c). 

Though the '!º was larger in the fourth story for the maximization case, peak and residual 

drifts were smaller compared to the minimization case; see Figure 6.19(a), (b), and (c). In contrast, 

peak absolute accelerations and corresponding equivalent-lateral forces were larger for the 

maximization case; see Figure 6.19(d) and (e). This effect likely stems from the difference in 

periods for the maximization case versus the minimization case; see Table 6.1. 

Table 6.1. Comparison Case: Elastic periods. 

Parameter Description åÕ [�] åÖ [�] åæ [�] åç [�] 
Maximization of strongback demand 0.847 0.265 0.198 0.144 

Minimization of strongback demand 0.834 0.269 0.160 0.118 
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(a) (b) 

Figure 6.15. Comparison case – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure 6.16. Comparison case – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure 6.17. Comparison case – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

 
(a) 

 
(b) (c) 

Figure 6.18. Comparison case – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.19. Comparison case – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 

6.3 STATISTICAL COMPARISON OF CASES 

Further investigation of a wider range of samples was needed to extend and verify the trends 

studied in Section 6.2. Ideally, mean values would show trends in the response and the coefficient 

of variation (COV) would reflect the sensitivity of the response to the characteristics of the ground 

motions. Responses insensitive to the characteristics of the ground excitation would exhibit 

uniform means and small COV.  

However, the few cases when non-simulated failure modes were triggered at the  !" 

intensity level resulted in outliers. These outliers can significantly influence the mean and standard 

deviation response. As such, this section studied design alternatives in terms of the median and 

85th percentile response, which are little influenced by extreme outliers like those caused by 

collapse or non-simulated limit state checks. In this sense, differences between the median 85th 

percentile are an indicator of the dispersion in the data.  
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6.3.1 Median and 85th Percentiles of Cases 2-5 

The median and 85th percentile responses for the maximum story drift, max 1>; maximum residual 

drift, max 1>,@�A��Ý�t; and normalized base shear, %R/�, for Cases 2-5 are shown in Table 6.3 

through Table 6.5. These statistical quantities were calculated with and without inclusion of the 

non-simulated failure modes. In these tables, cells showing “Inf” means that a non-simulated failure 

state was triggered at that percentile. For comparison, the mean and COV values are additionally 

shown alongside the median and 85th percentile values. The mean and COV were calculated 

without the inclusion of responses triggered by collapse or non-simulated failure modes. 

The median response envelopes over several ground motions results in a smoother response 

profile compared to the envelopes from Section 6.2 under gm44; see plots of the median envelope 

response in Appendix D. Statistical evaluation of a response under multiple ground motions 

removes atypical behavior that may occur under a single ground motion. Note, however, that 

median response plots can attain peak values during the same or under different ground motions. 

As such, these values tend to result in a smoothed response envelope compared to envelopes of 

response quantities under a single ground motion. 

Designs with fixed beam-column connections, fixed column bases, composite beams, and 

fixed strongback connections resulted in the smallest peak and residual drifts. However, the 

majority of these conditions resulted in non-simulated failure modes at the 85th percentile level. 

All non-simulated failure modes were triggered by excessive flexural deformation in the beam 

links.  

Though similar, some observations were reversed from that of the case study described in 

Section 6.2. For example, in terms of both peak and residual story drift, the fully pinned beam link 

response exhibited the largest peak and residual drift response, though it also exhibited the smallest 

base shear response. The fully pinned beam link resulted in the smallest median strongback 

demand but the largest median inelastic brace axial strains. This trend was reversed with fixed 

beam-column connections. Generally, the benchmark frame exhibited neither the largest nor the 

smallest response for any of the global response quantities.  
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Table 6.2. Elastic periods of cases 2-5. 

Design alternative åÕ [s] åÖ [s] åæ [s] åç [s] 

 benchmark 0.840 0.267 0.157 0.125 

C
a

s
e

 2
 

 

alternating beam-column 
connections 

0.841 0.268 0.156 0.118 

fixed beam-column 
connections 

0.833 0.267 0.156 0.118 

pinned beam-column 
connections 

0.848 0.269 0.197 0.159 

fully pinned beam link 0.852 0.269 0.197 0.159 

C
a

s
e

 3
 

 

fixed column base, 
 x-axis bending 

0.833 0.263 0.156 0.125 

fixed column base,  
y-axis bending 

0.840 0.268 0.159 0.146 

C
a

s
e

 4
 

 

bare beam 0.840 0.270 0.160 0.125 

rigid diaphragm 0.837 0.265 0.143 0.124 

composite beam 0.840 0.269 0.165 0.121 

C
a

s
e

 5
 

 

fixed strongback brace 
connection 

0.840 0.267 0.157 0.125 

continuous tie 0.838 0.267 0.157 0.125 

Table 6.3. Statistical response of ��	 (|
). 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

 benchmark 1.66 2.65 1.80 0.39 1.66 2.71 1.61 0.29 

C
a

s
e

 2
 

 

alternating beam-column 
connections 

1.67 2.72 1.79 0.39 1.67 Inf 1.54 0.25 

fixed beam-column 
connections 

1.61 2.75 1.77 0.41 1.61 Inf 1.46 0.26 

pinned beam-column 
connections 

1.70 2.67 1.84 0.39 1.70 2.67 1.71 0.31 

fully pinned beam link 1.70 2.64 1.90 0.40 1.70 2.64 1.90 0.40 

C
a

s
e

 3
 

 

fixed column base, 

 x-axis bending 
1.64 2.75 1.80 0.40 1.64 2.75 1.71 0.35 

fixed column base,  

y-axis bending 
1.68 2.73 1.80 0.39 1.68 2.73 1.71 0.34 

C
a

s
e

 4
 

 

bare beam 1.67 2.60 1.79 0.39 1.67 2.60 1.60 0.28 

rigid diaphragm 1.68 2.73 1.80 0.39 1.68 2.73 1.61 0.29 

composite beam 1.61 2.64 1.81 0.41 1.61 Inf 1.39 0.22 

C
a

s
e

 5
 

 

fixed strongback brace 
connection 

1.65 2.73 1.80 0.40 1.65 Inf 1.54 0.25 

continuous  
tie 

1.66 2.66 1.80 0.39 1.66 2.73 1.61 0.29 
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Table 6.4. Statistical response of ��	 (|
,~��Ò�Þà{). 
Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

 benchmark 0.18 0.61 0.31 0.90 0.18 0.62 0.24 0.78 

C
a

s
e

 2
 

 

alternating beam-column 
connections 

0.21 0.58 0.31 0.94 0.22 Inf 0.21 0.75 

fixed beam-column 
connections 

0.25 0.67 0.36 0.85 0.25 Inf 0.25 0.72 

pinned beam-column 
connections 

0.23 0.57 0.32 0.86 0.23 0.65 0.29 0.84 

fully pinned beam link 0.35 0.69 0.41 0.69 0.35 0.69 0.41 0.69 

C
a

s
e

 3
 

 

fixed column base, 

 x-axis bending 
0.17 0.61 0.29 0.96 0.17 0.61 0.27 0.97 

fixed column base,  

y-axis bending 
0.16 0.57 0.29 0.93 0.16 0.57 0.27 0.94 

C
a

s
e

 4
 

 

bare beam 0.18 0.59 0.31 0.88 0.18 0.59 0.24 0.80 

rigid diaphragm 0.19 0.58 0.30 0.89 0.19 0.59 0.23 0.76 

composite beam 0.21 0.63 0.33 0.90 0.24 Inf 0.18 0.74 

C
a

s
e

 5
 

 

fixed strongback brace 
connection 

0.22 0.59 0.33 0.85 0.24 Inf 0.24 0.73 

continuous  
tie 

0.18 0.61 0.32 0.90 0.18 0.64 0.24 0.78 

Table 6.5. Statistical response of peak �y/
. 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

 benchmark 0.149 0.186 0.154 0.159 0.150 0.191 0.150 0.152 

C
a

s
e

 2
 

 

alternating beam-column 
connections 

0.149 0.184 0.153 0.161 0.150 Inf 0.148 0.153 

fixed beam-column 
connections 

0.158 0.191 0.160 0.154 0.159 Inf 0.155 0.152 

pinned beam-column 
connections 

0.145 0.179 0.148 0.163 0.145 0.183 0.146 0.160 

fully pinned beam link 0.140 0.175 0.143 0.168 0.140 0.175 0.143 0.168 

C
a

s
e

 3
 

 

fixed column base, 

 x-axis bending 
0.158 0.193 0.161 0.164 0.158 0.194 0.159 0.164 

fixed column base,  

y-axis bending 
0.153 0.188 0.155 0.157 0.153 0.189 0.154 0.154 

C
a

s
e

 4
 

 

bare beam 0.150 0.185 0.153 0.152 0.150 0.187 0.151 0.153 

rigid diaphragm 0.152 0.182 0.155 0.171 0.153 0.192 0.151 0.156 

composite beam 0.152 0.185 0.156 0.150 0.164 Inf 0.149 0.146 

C
a

s
e

 5
 

 

fixed strongback brace 
connection 

0.150 0.187 0.155 0.168 0.151 Inf 0.150 0.156 

continuous  
tie 

0.149 0.186 0.154 0.159 0.150 0.192 0.151 0.152 
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6.3.2 Location of Offset Intersection 

The location of the brace-to-beam intersection due to an offset configuration was studied in terms 

of the recommendations for offset location made in Chapter 3. To isolate the impact of the design 

alternative from changes in period due to offset location, the inelastic brace size was varied to 

maintain similar stiffness for all offset locations. Inelastic brace area was back-calculated relative 

to the stiffness of the benchmark fame in each story. This back-calculation was conducted using 

Equation 3.1 assuming the strongback brace size remained the same. The resulting inelastic brace 

areas are shown in Table 6.6. This resulted in similar first-mode periods regardless of the offset 

location. The ratio, �/Q, represents the ratio of the strongback truss width to the total bay width 

and is indicative of the amount of offset from the middle of the bay. Additional envelope plots can 

be found in Appendix C.5. 

Envelopes of median response quantities for each offset geometry are shown in Figure 6.20 

through Figure 6.24. Axial strain demands in the inelastic braces were significantly impacted by 

the offset location. Strain demands were largest for the inelastic braces in the centered scheme; see 

Figure 6.20(a). Strongback demands tended to be largest for the centered scheme and smallest for 

larger offsets; see Figure 6.21 and Figure C.22. Offset locations of 1/3, 1/4, and 1/5 the bay width 

resulted in similar strongback demands. 

Beam deformations and axial-force demands tended to decrease with increasing offset; see 

Figure 6.22 and Figure C.23. These demands were similar for all offsets away from the centered 

scheme. Column moments tended to increase with increase offset, and were smallest for 
RS = GJ and G_; see Figure 6.23(a) and Figure C.24. Inelastic column and strongback axial-force demands tended 

to respectively increase and decrease with increasing offset, reflecting larger and smaller axial 

demands in the corresponding braces; see Figure 6.23(b) and (c). 

Median and 85th percentile global response quantities are tabulated in Table 6.7 through 

Table 6.9. The centered scheme triggered non-simulated failure modes at the 85th percentile 

response due to flexural deformations exceeding allowable limits in the beam links. The 

benchmark frame utilizing an offset of 1/3 the brace bay generally exhibited the smallest residual 

story drift ratios; see Figure 6.24(a) and (b). Larger drift concentration factors occurred in the 

lower stories with increasing offset; see Figure 6.24(c). Floor accelerations and estimated 

equivalent-lateral force distributions grew smaller with increasing offset; see Figure 6.24(d) and 

(e).  

Demand-to-capacity ratios of the members are shown in Figure 6.25 and Figure 6.26 at the 

time of peak story drift and story shear. Depending on offset location, demands exhibited in these 

figures were variable. Like the benchmark design, plots at the time of peak story drift exhibited 

nonuniform engagement of the fuses. However, the distribution inelastic braces engagement 

differed depending on the offset location. Only the offset of 1/3 the bay width exhibited complete 

engagement of the inelastic braces at the time of peak story shear; see Figure 6.26.  

In summary: 

1. Generally, the observations observed in Chapter 3 can also be applied to the response of 

the four-story benchmark frame. Accelerations, inelastic demands, strongback axial-force 

demands, beam flexural and axial-force demands, and column axial-force demands tended 
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to decrease with increasing offset. Notably, column moment demands and inelastic column 

axial-force demands increased with increasing offset. 

2. Median residual drift ratios were smallest for an offset located at 1/3 the bay width. This 

is consistent with the recommendations made in Chapter 3 about the ideal offset location. 

3. Inelastic demands were by far largest for the centered scheme. Beam link deformation 

demands for the centered scheme triggered non-simulated failure modes at the 85th 

percentile level.  

Table 6.6. Offset case: Elastic periods.  

Parameter 
Description 

�Õ [��Ö] �
 [��Ö] åÕ [�] åÖ [�] åæ [�] åç [�] 
� Q⁄ = 1 2⁄   5.04 5.13 0.846 0.247 0.150 0.144 � Q⁄ = 1/3  8.00 8.00 0.839 0.267 0.157 0.125 � Q⁄ = 1 4⁄   10.03 9.98 0.835 0.279 0.164 0.118 � Q⁄ = 1/5  11.45 11.37 0.831 0.285 0.169 0.122 

Table 6.7. Offset case: statistical response of ��	 (|
). 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

O
ff

s
e

t 
C

a
s

e
 

 

� Q⁄ = 1 2⁄   1.72 2.51 4.14 3.58 1.72 Inf 1.54 0.28 � Q⁄ = 1/3  1.66 2.65 1.80 0.39 1.66 2.71 1.61 0.29 � Q⁄ = 1 4⁄   1.56 2.49 1.78 0.39 1.56 2.49 1.67 0.33 � Q⁄ = 1/5  1.60 2.62 1.82 0.38 1.60 2.62 1.73 0.33 

Table 6.8. Offset case: statistical response of ��	 (|
,~��Ò�Þà{). 
Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

O
ff

s
e

t 
C

a
s

e
 

 

� Q⁄ = 1 2⁄   0.28 0.69 2.73 5.50 0.32 Inf 0.28 0.81 � Q⁄ = 1/3  0.18 0.61 0.31 0.90 0.18 0.62 0.24 0.78 � Q⁄ = 1 4⁄   0.23 0.59 0.32 0.76 0.23 0.63 0.29 0.71 � Q⁄ = 1/5  0.26 0.58 0.34 0.81 0.26 0.58 0.30 0.72 
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Table 6.9. Offset case: statistical response of peak �y/
. 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

O
ff

s
e

t 
C

a
s

e
 

 

� Q⁄ = 1 2⁄   0.166 0.199 0.184 0.671 0.170 Inf 0.165 0.196 � Q⁄ = 1/3  0.149 0.186 0.154 0.159 0.150 0.191 0.150 0.152 � Q⁄ = 1 4⁄   0.144 0.171 0.147 0.134 0.144 0.171 0.145 0.120 � Q⁄ = 1/5  0.144 0.166 0.147 0.134 0.144 0.167 0.145 0.117 

 

 
(a) (b) 

Figure 6.20. Offset case median – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

 
(a) (b) (c) 

Figure 6.21. Offset case median – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure 6.22. Offset case median – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

 
(a) (b) (c) 

Figure 6.23. Offset case median – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.24. Offset case median – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 

 

    
(a) (b) (c) (d) 
Figure 6.25. Offset case – Response diagram at time of peak story drift ratio for gm44.  

(a) �/Q = 1/2; (b) �/Q = 1/3; (c) �/Q = 1/4; (d) �/Q = 1/5 
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(a) (b) (c) (d) 

Figure 6.26. Offset case – Response diagram at time of peak story shear for gm44. 
(a) �/Q = 1/2; (b) �/Q = 1/3; (c) �/Q = 1/4; (d) �/Q = 1/5 

6.3.3 BRBF and SBF Comparison 

The benchmark strongback response was compared to that of the reference BRBF from Section 

5.4.4.3 to give the observations of this chapter context with respect to a conventional system. To 

isolate the impact of BRB size with story level, two distributions of BRB sizes were investigated: 

[1] uniform BRB sizes in each story like that shown in Figure 5.14(a) and [2] distributed BRB 

sizes with uniform demand-to-capacity ratio under a first-mode equivalent-lateral force 

distribution like that shown in Figure 5.14(b). This resulted in somewhat longer periods where the 

uniform BRB size was utilized; see Table 6.10. 

The median response envelopes for the benchmark SBF and reference BRBF including 

uniform and distributed BRB sizes are overlaid in Figure 6.27 through Figure 6.31. Both the 

distributed and uniform BRB sizes in the strongback benchmark design experienced similar 

median peak strains; see Figure 6.27(a). In contrast, strains in the BRBF system became 

progressively smaller with increasing story level. Relative to the BRBF utilizing distributed BRB 

sizes, uniform BRB sizes in the BRBF resulted in smaller strains in the upper story braces and 

increased strains in the lower story braces. Both the BRBF and SBF designs exhibited yielding of 

all four BRBs at the median level of response. 

Median strongback axial-force demands were relatively independent of inelastic brace 

distribution; see Figure 6.28. Irrelevant of the inelastic brace size, the inelastic braces in the SBF 

systems exhibited uniform distributions of inelastic strains with building height. 

Median moment and deformation demands in the beams were significantly smaller for the 

reference BRBF compared to the SBF; see Figure 6.29(a) and (c). Full yielding of the beam links 

was observed in the benchmark SBF; see Figure 6.29(a). Beam axial forces in the BRBFs were 

near zero at beams without brace-to-beam intersections; see Figure 6.29(b). Beam axial-force 

demands were similar in all stories of the SBF.  

Median column moments were larger for the BRBF system than the SBF system; see 

Figure 6.30(a). This is because the BRBF utilizes bending in the columns as the mechanism to 

distribute demands vertically to adjacent stories. These demands were larger for the uniform BRB 

sizes than the distributed beam sizes. Though axial forces in the inelastic column and BRBF 
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columns were similar, axial forces in the strongback column were significantly greater than that 

experienced by the BRBF columns; see Figure 6.30(b) and (c).  

Median and 85th percentile demands are shown in Table 6.11 through Table 6.13. The SBF 

experienced much smaller drift levels compared to the BRBF; see Table 6.11. A similar trend was 

observed for the median residual drift; see Figure 6.31(b). This stems from the strongback’s ability 

to average story drifts with building height. This trend was reflected in the difference in drift 

concentration factor between the two systems; see Figure 6.31(c). 

 Floor accelerations and story shears were significantly larger for the benchmark SBF than 

the reference BRBF and exhibited dissimilar height-wise profiles; see Figure 6.31 and Table 6.13. 

In the BRBF system, accelerations, and thus story shears, are limited by the strength of the bracing 

elements. This no longer holds true for the SBF system as the strongback has additional bracing 

elements that are designed to remain essentially elastic. Story shear profiles were relatively 

independent of bracing size. Demand-to-capacity ratio diagrams at the time of peak story shear 

emphasize the difference in demand distributions in the two systems; see Figure 6.32. 

In summary: 

- The reference BRBF exhibited non-uniform strain demands with building height. This was 

especially true for the BRBF utilizing uniform BRB sizes. In contrast, the SBF exhibited 

uniform inelastic brace strain demands independent of BRB distribution. 

- Beam flexural and axial-force demands were larger for the SBF than the BRBF. As this is 

the mechanism of force re-distribution in the BRBF system, column moment demands were 

larger for the BRBF than the SBF. Axial forces in the strongback column were significantly 

larger than axial forces in the columns of the BRBF.  

- Conventional BRBF systems with braces sized uniform to their first-mode demand-to-

capacity ratios experience reduced concentrations of drift demands compared to systems 

using uniform brace sizes and non-uniform demand-to-capacity ratios. Note, however, that 

both BRB distributions in both BRBF systems exhibited drift concentration factors much 

larger than one.  

- Accelerations and story shear demands tend to be larger for the SBF compared to the 

BRBF. Note that the height-wise acceleration and story shear profile is varies significantly 

between the two systems.  

 

Table 6.10. SBF and BRBF comparison case: elastic periods 

Parameter Description åÕ [�] åÖ [�] åæ [�] åç [�] 
SBF, uniform BRB size 0.839 0.267 0.157 0.125 

SBF, distributed BRB size 0.848 0.275 0.162 0.125 

BRBF, uniform BRB size 0.955 0.330 0.200 0.163 

BRBF, distributed BRB size 0.944 0.351 0.220 0.163 
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Table 6.11. SBF and BRBF comparison case: statistical response of ��	 (|
). 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

SBF, uniform BRB size 1.66 2.65 1.80 0.39 1.66 2.71 1.61 0.29 

SBF, distributed BRB size 1.79 2.54 1.89 0.39 1.79 2.54 1.72 0.29 

BRBF, uniform BRB size 2.84 4.30 3.06 0.41 2.84 4.30 2.77 0.31 

BRBF, distributed BRB size 2.40 3.35 2.48 0.44 2.40 3.35 2.39 0.40 

Table 6.12. SBF and BRBF comparison case: statistical response of ��	 (|
,~��Ò�Þà{). 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

SBF, uniform BRB size 0.18 0.61 0.31 0.90 0.18 0.62 0.24 0.78 

SBF, distributed BRB size 0.28 0.60 0.33 0.83 0.28 0.60 0.27 0.72 

BRBF, uniform BRB size 0.36 0.65 0.41 0.57 0.37 0.84 0.40 0.58 

BRBF, distributed BRB size 0.34 0.91 0.47 0.66 0.34 0.91 0.46 0.66 

Table 6.13. SBF and BRBF comparison case: statistical response of peak �y/
. 

Design alternative 

without non-simulated failure modes with non-simulated failure modes 

median 
85th 

percentile 
mean COV median 

85th 
percentile 

mean COV 

SBF, uniform BRB size 0.15 0.19 0.15 0.16 0.15 0.19 0.15 0.15 

SBF, distributed BRB size 0.15 0.19 0.16 0.18 0.15 0.20 0.16 0.18 

BRBF, uniform BRB size 0.082 0.089 0.084 0.096 0.082 0.089 0.082 0.065 

BRBF, distributed BRB size 0.095 0.105 0.096 0.093 0.095 0.105 0.095 0.077 
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(a) (b) (c) 

Figure 6.27. SBF and BRBF comparison, median – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial-force demand, and (c) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure 6.28. SBF and BRBF comparison, median – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure 6.29. SBF and BRBF comparison, median – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure 6.30. SBF and BRBF comparison, median – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.31. SBF and BRBF comparison, median – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 

 

 
(a) BRBF 

 
(a) SBF 

Figure 6.32. SBF and BRBF comparison – Response diagram at time of peak story shear for gm44. 
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6.4 SUMMARY 

In summary of this parametric study –  

 The dynamic inelastic response was more sensitive to the characteristics of the ground motions 

than to design alternatives like connection condition, column base fixity, composite beam 

actions, etc. Those ground motions with larger spectral pseudo-accelerations at the higher-

mode periods tended to have significant higher-mode effects. This primarily resulted in 

increased force demands on the strongback braces in the upper stories. The ground motion with 

the largest duration resulted in the largest peak and residual drift demands. Longer ground 

motions give the strongback opportunity to form a complete mechanism, potentially resulting 

in increased collapse potential.  

 Non-simulated collapse modes were triggered by excessive deformations in the beam link at 

the 85th percentile level of response. This response was exacerbated in beams employing fixed 

end conditions. A fully pinned beam link results in substantially more deformation capacity of 

the beam link, but also results in increased peak and residual drifts compared to other types of 

beam-column connections. These demands were significantly smaller in a reference BRBF 

system. Proper detailing alternatives could provide more deformation capacity in this region.  

 Axial-force demands in the strongback column can be significantly larger than that of the 

inelastic column. This stems from the larger axial forces that can develop in the strongback 

braces. 

 The column base fixity impacts the flexural demands at the column base but has little impact 

on column flexural demands in the upper stories or on other elements in the system. A column 

oriented in weak-axis bending generally reduces moments in the system, but has less column 

flexural capacity than a system utilizing columns oriented in strong-axis bending. 

 Inclusion of a rigid diaphragm results in negligible axial-force demands in the beams. Beam 

composite action asymmetrically affects beam flexural demands. The inclusion of composite 

action also resulted in the triggering of on-simulated collapse modes at the 85th percentile due 

to excessive deformations in the beam links. By equilibrium, beam bending moments can 

impact flexural demands in the columns if the beam-column connections are restrained. 

 Brace end condition and tie continuity has little impact on the behavior of the system unless 

the beam-column connections are fixed. Though not a part of this study, the end condition of 

the inelastic braces could also affect behavior.  

 The location of the offset can significantly affect force and deformation demands in the system. 

Careful choice of offset location or complete removal of the strongback to a different bay 

should be considered in a final design methodology.  

 The distribution of inelastic brace size with building height has negligible impact on the 

strongback’s dynamic response. As such, it is irrelevant for inelastic braces to be sized based 

on a first-mode demand-to-capacity ratio in an SBF system.  

 Column moment demands were larger for the BRBF than the SBF as this is the mechanism of 

force re-distribution in the BRBF system. 
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Further investigation of a wider range of archetype designs is needed to extend any results from 

this chapter. The above observations depend on the design studied, in this case the four-story X-

bracing strongback benchmark design. Larger or smaller differences in the response could result 

from the selection of a different benchmark frame, chosen design alternatives, or ground motion 

characteristics (e.g., some of these differences may become more apparent in designs with heavier 

beam sizes).  
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7 Characterizing the Behavior of Multi-Story 
Strongbacks 

7.1 INTRODUCTION 

Higher-mode effects have been identified as the cause of substantial force amplification in 

essentially elastic spine system like wall-type systems, rocking frames, etc. Since the essentially 

elastic nature of such systems is expected to be similar to that of the strongback, multi-story 

strongback systems can be expected to have similar higher-mode amplification and exhibit 

distinctly different behavior from conventional yielding system. 

This hypothesis is supported by the findings of previous chapters. Story shear envelopes 

of a benchmark strongback-braced frame indicated a height-wise profile that was unlike that of a 

reference buckling-restrained braced frame; see Section 5.4.4.3. Parametric studies exploring the 

impact of ground motion characteristics on structural response found that ground motions with 

larger pseudo-accelerations at the higher-mode periods resulted in greater upper story shears and 

strongback-force demands; see Section 6.2.2. In structural dynamics, these results are consistent 

with observations that upper-story forces tend to be more affected by higher-mode contributions 

than lower-story forces (Chopra, 2011).  

In this chapter, the fundamental behavior underlying the dynamic-force demands in multi-

story strongbacks is studied in detail. This chapter studies the strongback’s behavior in terms of: 

[i] static demands from plastic analysis, [ii] the strongback’s lateral stiffness, [iii] compatibility 

between the inelastic and elastic portions of the strongback system, and [iv] dynamic higher-mode 

effects. Inelastic force re-distributions are studied analytically and governing parameters 

influencing dynamic behavior are identified. 

7.2 PLASTIC ANALYSIS 

An initial estimate for the strongback-force demands can be formulated by a rigid, plastic analysis 

of the structure at the “limit load” – the magnitude of lateral load needed to form a mechanism at 

incipient collapse. The plastic mechanism of a generalized strongback frame is shown in Figure 

7.1. At incipient collapse, the frame can be assumed to deform in a rigid-plastic mechanism with 

a first-mode shape. This first-mode displaced shape is characterized by linear lateral displacements 

with story height; see Figure 7.1(b): 
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1 = $?� = $>ℎÊ> = Δ>ℎ>  Equation 7.1

1 = roof and story drift ratio; & = story number. This linear shape assumes that the story drift ratio 

is uniform across all of the stories (i.e., 1> = 1). Similar to the derivation in Section 3.4.1, 

geometric considerations under a virtual displacement field result in the following deformation 

relations on a story-by-story basis:  

�> = 1�> Equation 7.2

1R,> = Q7> 1 Equation 7.3

u@,> = 74> Δ> + ℎ>4> � = ℎ>Q4> 1 Equation 7.4

� = vertical beam displacement; 1R = beam link rotation angle; u@,> = inelastic brace axial 

deformation. For mathematical simplicity, each story & can be alternatively represented by vectors 

of the geometric terms in each story, 

� =
⎩⎪⎨
⎪⎧ ℎG⋮ℎ>⋮ℎ?­Gℎ? ⎭⎪⎬

⎪⎫ , �h =
⎩⎪⎪
⎨⎪
⎪⎧ ℎÊG⋮ℎÊ>⋮ℎÊ?­GℎÊ? ⎭⎪⎪

⎬⎪
⎪⎫ =

⎩⎪⎨
⎪⎧ ℎG⋮Σ��G> ℎ�⋮ℎG + ⋯ + ℎ?­GℎG + ⋯ + ℎ? = �⎭⎪

⎬
⎪⎫, Equation 7.5

y =
⎩⎪⎨
⎪⎧ 

�⋮�⋮�0
 
⎭⎪⎬
⎪⎫ , { = z − y =

⎩⎪⎨
⎪⎧ 

7⋮7⋮7Q
 
⎭⎪⎬
⎪⎫ , ~ = Ä7J + �J =

⎩⎪⎨
⎪⎧ 4G⋮4>⋮4?­G4? ⎭⎪⎬

⎪⎫ , � = Ä�J + �J =
⎩⎪⎨
⎪⎧ �G⋮�>⋮�?­G�? ⎭⎪⎬

⎪⎫, 
the element capacities in each story, 

¢@ =
⎩⎪⎪
⎨⎪
⎪⎧ �@∗G⋮�@∗>⋮�@∗?­G�@∗? ⎭⎪⎪

⎬⎪
⎪⎫ , �R =

⎩⎪⎪
⎨⎪
⎪⎧  R∗G⋮ R∗>⋮ R∗?­G R∗? ⎭⎪⎪

⎬
⎪⎪⎫ , �@ =

⎩⎪⎪
⎨⎪
⎪⎧  @∗G⋮ @∗>⋮ @∗?­G @∗? ⎭⎪⎪

⎬⎪
⎪⎫, Equation 7.6

and the global displacements and deformations: 

� = 1�h, }@ = �Q~ 1, |R = 1Q{ , × = 1y Equation 7.7

1/(∙) = the reciprocal of each term in the associated vector; < = total number of stories. In the 

case of roof beams like that in Figure 7.1(a), the inelastic width at the roof, 7?, becomes equal the 

bay width, Q; see Equation 7.5. Where pinned rather than fixed connections have been detailed at 



155 

 

possible plastic hinge locations, the expected capacity, (∙)∗, should be assumed to equal zero (i.e.,  @∗> = 0 or  R∗> = 0 at the story location of the respective pin).  

The applied gravity loads, �o,>, and equivalent lateral loads, 	>, in each story can be 

expressed in vector format: 

£ =
⎩⎪⎨
⎪⎧ 	G⋮	>⋮	?­G	? ⎭⎪⎬

⎪⎫ , ¢o =
⎩⎪⎪
⎨⎪
⎪⎧ �oG⋮�o>⋮�o?­G�o? ⎭⎪⎪

⎬
⎪⎪⎫

 Equation 7.8

Use of this vector notation allows for an indexed representation of the variables on a story-by-

story basis in terms of the vectors listed in Equation 7.5, Equation 7.6, and Equation 7.8. It also 

allows for a similar representation to that of the one-story strongback studied in Chapter 3. 

 The roof drift profile, �, is a vector of virtual displacements under the kinematically 

acceptable plastic mechanism in Figure 7.1(b). External work can be interpreted as the dot product 

between the applied lateral-force distribution, £, operating through the virtual displacement 

profile, �. Internal work can be interpreted as the dot product of the internal forces undergoing 

virtual deformations; see Figure 7.1(c). By virtual work: 

�£Ë� = ¢@Ë}@ + (�@ + �R)Ë|R + ( D@∗ +  DA∗ )1 ± ¢oË× 

Or in terms of the story drift ratio: 

�£Ë(1�h) = ¢@Ë ø�Q~ 1ù + (�@ + �R)Ë ®Q{ 1± + ( D@∗ +  DA∗ )1 ± ¢oË(y1) Equation 7.9

� = scalar amplification of applied lateral-force distribution, £. The sign of the gravity loading, ¢o, depends on whether the direction of motion causes the beam to move upward or downward. 

If the beam moves upward, this contribution is additive. If the beam moves downward, this 

contribution is subtractive.  

The left-hand side of Equation 7.9 represents the external work done by the applied 

equivalent-lateral forces. The right-hand side of Equation 7.9 represents the internal work done by 

the associated axial and flexural yielding of the inelastic braces, beam links, and column bases. 

7.2.1 Limit Load 

Scaling any lateral load distribution, £, by the amplification ratio, �, effectively amplifies that load 

distribution to the magnitude of loading required to form the plastic mechanism shown in Figure 

7.1(c). Solving for �: 

� = ø 1£Ë�hù �¢@Ë ø�Q~ ù + (�@ + �R)Ë ®Q{± + ( D@∗ +  DA∗ ) ± ¢oËy� Equation 7.10
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Equation 7.10 can be re-written in summation format as: 

� = 1Σ>�G? 	>ℎÊ> �� ��@,>∗ øℎ>Q4> ù + ( @,>∗ +  R,>∗ ) Q7> ± �o>�>�?
>�G + ( D@∗ +  DA∗ )� Equation 7.11

By the upper bound theory of plastic analysis, the correct mechanism corresponds to the smallest 

amplification factor, �. Other plastic mechanisms could also be considered to determine whether 

this mechanism gives the lowest value of the limit load. 

(b) (c) 

 (a)  

Figure 7.1. Kinematic mechanism example – (a) geometric labels; (b) plastic mechanism; (c) amplified lateral load �	> = amplified lateral force at &°l story  R,>∗ = &°l story flexural capacity near beam centerline  @,>∗ = &°l story flexural capacity at beam end �@,>∗ = &°l story inelastic brace axial capacity 

�o,> = &°l story tributary gravity point load on beam  D,@∗ = &°l story flexural capacity of inelastic column base  D,A∗ = &°l story flexural capacity of strongback column base 

7.2.2 Equilibrium 

Equilibrium can be used to approximate the axial-force demands in the strongback elements. 

Neglecting column shears, essentially elastic brace demands, �A,>, can be estimated considering 

the horizontal equilibrium at each story; see Figure 7.2:  
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%> = �@,> 74> + �A,> ��> Equation 7.12

%> = the story shear calculated from the force distribution, £. Solving for the strongback brace 

axial force: 

�A,> = �>� ø%> − �@,> 74>ù Equation 7.13

The strongback brace axial-force demand, �A,>, can be interpreted as the diagonal component of 

the difference between the story shear demand generated from the applied lateral-force 

distribution, %>, and the axial force in the opposite inelastic brace in the same story, �@,>.  

Demands in the vertical tie struts in each story, �°,>, can be estimated considering vertical 

equilibrium between the vertical components of the axial load in the braces in the story above and 

the story below, the shear in the inelastic and strongback portions of the beam, %@ú =  4,&+ �,&7  and %Aú =  �,&+ �,&� , and tributary gravity loads; see Figure 7.3:  

�°,> = �°,>­G + ��> i�A,>­G + �A,>j − 74> i�A,>­G + �A,>j − �o,>­G − %@,>­G − %A,>­G = �°,>©G + �o,> + %@,> + %A,> 

Equation 7.14

At the limit load, forces and moments in the fuses are known and correspond to their plastic 

capacity, (∙)∗. The applied force distribution determines whether a brace is in compression or in 

tension. As such, axial-force demands in the strongback brace can be calculated per Equation 7.12 

using the expected capacity of the opposite inelastic brace and the story shear demand amplified 

by �. Once the axial forces in the strongback braces are known, the tie demands can be estimated 

through substitution of known quantities into the vertical equilibrium equations in Equation 7.14. 

For this estimation, the moment at the end of the strongback portion of the beam,  R,A, can be 

neglected for straightforward determination of the strongback tie axial-force demands.  
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Figure 7.2. Horizontal equilibrium. �A,> = &°l story strongback brace axial force �°,> = &°l story tie axial force 

�%> = &°l amplified story shear demand 

 

 

 

(b) 

Figure 7.3. Vertical equilibrium. %@,> = &°l story beam link shear force %A,> = &°l story strongback beam shear force 
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7.3 LATERAL STIFFNESS  

As observed in Section 5.4.4.1, the strongback is better able to maintain rigid body motion and a 

pivoting-like response with increasing flexural stiffness. This stiffness study focused on the 

stiffness contributions from the inelastic braces, strongback braces, and vertical tie. For simplicity, 

beams and columns have been excluded from this analytical derivation.  

Consider a simplified story of a multi-story strongback like that shown in Figure 7.4(a). 

This story is similar to that of the one-story study conducted in Chapter 3, but includes a vertical 

component representing the additional contribution of the beam and tie to the stiffness of a story. 

No gravity loads are applied in this model. Beams and columns are considered to be axially 

inextensible.  

By equilibrium, the story shear, %, can be estimated as the sum of the horizontal component 

of the braces in a story: 

% = �@ 74 + �A ��  Equation 7.15

This is the same as Equation 7.12 except the subscript, &, has been dropped for brevity. The net 

vertical force can be interpreted as an unbalanced force, �ÝR, generated from the difference in the 

vertical components of the braces at the brace-to-beam intersection: 

�ÝR = �@ ℎ4 − �A ℎ� Equation 7.16

From the geometry of the frame under a lateral story drift, Δ, and vertical deflection, �, the inelastic 

brace elongates by u@ and the strongback brace shortens by uA. These axial deformations can be 

written in terms of the story drift, Δ, and vertical displacement, �, as: 

u@ = 74 Δ + ℎ4 � 

uA = �� Δ − ℎ� � 

Equation 7.17

Axial forces can be written in terms of their elastic stiffness and axial deformation: 

�@ = �@u@ = �@ ®74 Δ + ℎ4 �± 

�A = �AuA = �A ®�� Δ − ℎ� �± 

Equation 7.18

�A = strongback brace axial stiffness; �@ = strongback brace axial stiffness. The vertical 

unbalanced load can be written similarly as: 

�ÝR = −�á� Equation 7.19
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�á = effective vertical stiffness provided by tie and elements connected through the tie. To obtain 

an effective story tangent stiffness (�h = %/Δ), the equations for axial force in Equation 7.18 can 

be substituted into the equations of equilibrium in Equation 7.15 and Equation 7.16: 

% = ��@ ®74±J + �A ®��±J� Δ + ®�@ 7ℎ4J − �A �ℎ�J ± �  
�ÝR = −�á� = ®7ℎ4J �@ − �ℎ�J �A± Δ + ��@ ®ℎ4±J + �A ®ℎ�±J� y 

Equation 7.20

Solving for the story shear, %, in terms of the story drift, Δ, results in the following effective lateral 

stiffness: 

�h = %Δ = ®74±J �@ + ®��±J �A − �7ℎ4J �@ − �ℎ�J �A�J
�á + �ℎ4�J �@ + �ℎ��J �A Equation 7.21

This equation can be written in condensed form as: 

�h = �R@,ZZ − �R@,ZCJ�á + �R@,CC Equation 7.22

�R@,ZZ = �t@�J �@ + �RA�J �A = lateral component of brace stiffness; �R@,CC = �l@�J �@ + �lA�J �A 

vertical component of brace stiffness; �R@,ZC = tl@� �@ − RlA� �A = coupled component of brace 

stiffness.  

Assuming perfectly plastic behavior, after yielding of the inelastic braces, �@ = 0, and �h 

reduces to: 

�h = ®��±J �A  1 − �A�á ��ℎ�J + �A! Equation 7.23

If �á = 0 , the effective lateral stiffness of the story, �h, after yielding of the inelastic braces 

becomes zero. Thus, the vertical component of the strongback stiffness is critical to maintaining 

lateral resistance after yielding in the inelastic braces. In a conventional system, this stiffness is 

provided by the surrounding beam-column elements that are neglected in this derivation. Note that 

some of this effect can be alleviated with inelastic brace strain hardening.  

As the vertical stiffness, �á, approaches infinity, Equation 7.21 reduces to:  

�h = �R@,ZZ = ®74±J �@ + ®��±J �A Equation 7.24

This is equivalent to the story stiffness of a shear building where the beam does not move 

vertically.  
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The vertical contribution term, �á, can make it difficult to proportion strongback elements 

based on stiffness alone. The effective vertical stiffness includes the flexural stiffness of the floor 

beam along with all other stories linked to the story of interest through the vertical tie. Thus, this 

term represents the combined stiffness of the brace, beam, and tie from the other stories in the 

system.  

To illustrate this point, this stiffness study was extended to an example two-story frame; 

see Figure 7.4(b). Neglecting the stiffness contributions of the beams and columns, the effective 

lateral stiffness of the braces for the two-story frame can be written as:  

�hG = �ZZ,G − �ZC,GJ i�ZC,JJ − �ZZ,J(�CC,J + �á)j�CC,G(�ZC,JJ − �ZZ,J�CC,J) + �ái�ZZ,Ji�CC,G + �CC,Jj − �ZC,JJ j Equation 7.25

�á = effective beam and tie stiffness; the subscript (∙)R@ has been dropped for condensation of the 

equation. The subscripts, (∙)G and (∙)J represent contributions from the first and second level 

respectively, see Figure 7.4(b). The equation for effective lateral story stiffness becomes 

increasingly complex as the number of stories increases. When the vertical stiffness term, �á, is 

zero, Equation 7.25 reduces to: 

�hG = �R@,ZZ,G − �R@,ZC,GJ�R@,CC,G Equation 7.26

Without the vertical tie tethering the stories together, the first story effective lateral stiffness 

decouples from the second story. The tie term, �á, links the second story stiffness to the lateral 

stiffness of the first story. As such, the stiffness of one story is coupled with the stiffness of all the 

other stories, making it difficult to individually interpret stiffness on a story-by-story basis for SBF 

systems.  

In the system where the strongback is embedded within the same bay as the inelastic braces, 

the inelastic and strongback brace response are coupled vertically as well as horizontally. The 

vertical coupling between these two portions of the system may be alleviated by separating the 

strongback from the inelastic brace bay. 

 
(a) (b) 

Figure 7.4. Idealized frame for for stiffness study: (a) 1-story, (b) 2-story. 
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7.4 COMPATIBILITY 

This section provides a simplified formulation of compatibility between the inelastic and 

strongback elements. This formulation illustrates the mechanism of interaction between the elastic 

and inelastic portions of the strongback system. Similar to the continuous column formulation 

proposed by Ji et al. (2009), this compatibility study was conducted using a simplified elastic 

model where the strongback is represented by a single continuous column and the inelastic brace 

bay can be characterized as a shear building. Deformation and force quantities for the separate 

inelastic and strongback portions of the system are defined in Figure 7.5 and Figure 7.6, 

respectively. The story height, ℎ> , cumulative story height, ℎÊ>, and total building height, �, are 

defined in Figure 7.5.  

 

Figure 7.5. Deformation relations for compatibility formulation. 
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Figure 7.6. Free body diagram of force relations for compatibility formulation. 

7.4.1 Inelastic Frame 

The horizontal displacement at each story of the inelastic portion of the system (termed the 

inelastic frame), 6> , can be written as the sum of the story drift, Δ>, and the displacement of the 

story below, 6>­G: 

6> = 6>­G + Δ> 

The story drift of the inelastic portion can be written in terms of the inelastic frame’s lateral 

stiffness, �Ê@,>, and the difference in total story shear and shear taken by the strongback (%> − ">): 

Δ> = 1�Ê@,> i%> − ">j Equation 7.27

%> = Σ��># º� = total story shear across the inelastic and strongback frames; "> = Σ��># 	� = story 

shear taken by the strongback frame.  

7.4.2 Strongback 

The story displacements in the strongback, 6> , can be divided into two contributions: [i] the 

contribution from the strongback’s pivoting motion, $>, and [ii] the relative bending exhibited by 

the strongback, u>: 

6> = $> + u> 

Similar to that of the inelastic frame, relative bending of the strongback can be written in terms of 

the shear taken by the strongback, "> , and the strongback’s effective lateral stiffness, �ÊA,>:  
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u> = ">�ÊA,> Equation 7.28

Relative bending should consider both shear stiffness generated by the braces and bending stiffness 

generated by the force couple between the column and tie. A column representing the strongback 

with equivalent shear and bending stiffness could be used as means of estimating this effect (Chen 

et al., 2017).  

The relative bending displacement is zero at the roof, ux = 0; see Figure 7.5. The pivoting 

displacement, $>, can be related to the roof displacement, $x = 6x, by: 

$> = ℎÊ>� 6x  

This assumes displacements due to the pivoting response are linear with cumulative story height. 

7.4.3 Compatibility 

Assuming the beams connecting the two portions of the system enforce compatibility, the story 

displacements in the inelastic frame and strongback are equal and yield the following compatibility 

relationship: 6> = $> + u> = 6>­G + Δ>  

From equilibrium, these can be written in terms of story shear as: 

6G = ℎG� 6x + "G�ÊA,G = %G − "G�Ê@,G  

6J = ℎÊJ� 6x + "J�ÊA,J = 6G + %J − "J�Ê@,J  

6_ = ℎÊ_� 6x + "_�ÊA,J = 6J + %_ − "_�Ê@,_  

6x = $x = 6_ + %x − "x�Ê@,x  

 

Substituting 6x into the first three equations for 6G, 6J, and 6_ and algebraically combining story 

shear terms gives the following system of equations: 

"G Y G¬Ê e,û + G¬Ê f,û �1 − lû$ �[ − lû$ ® á�¬Ê f,� + á%¬Ê f,% + á&¬Ê f,&±  = 'û¬Ê f,û �1 − lû$ � − lû$ ® '�¬Ê f,� + '%¬Ê f,% + '&¬Ê f,&±  

 áû¬Ê f,û �1 − lh�$ � + "J Y G¬Ê e,� + G¬Ê f,� �1 − lh�$ �[ − lh�$ ® á%¬Ê f,% + á&¬Ê f,&±  = 'û¬Ê f,û �1 − lh�$ � + '�¬Ê f,� �1 − lh�$ � − lh�$ ® '%¬Ê f,% + '&¬Ê f,&±  

 

Equation 7.29 
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áû¬Ê f,û �1 − lh%$ � + á�¬Ê f,� �1 − lh%$ � + "_ Y G¬Ê e,% + G¬Ê f,% �1 − lh%$ �[ − lh%$ á&¬Ê f,&  = 'û¬Ê f,û �1 − lh%$ � + '�¬Ê f,� �1 − lh%$ � + '%¬Ê f,% �1 − lh%$ � − lh%$ '&¬Ê f,&  

If the base of the strongback is assumed to be pinned, moment equilibrium about the column base 

(point ( in Figure 7.5) gives the following relationship between the roof level force and the other 

forces: 

	? = 	x = − øℎÊG� 	G + ℎÊJ� 	J + ℎÊ_� 	_ù = "x = − ®ℎGℎx "G + ℎJℎx "J + ℎ_ℎx "_± Equation 7.30 

Using this relationship and given a lateral-force distribution, º>, and associated story shear 

distribution, %>, the demands on the strongback, "> , can be found by solving the system of equations 

in Equation 7.29. Story drifts, and relative bending of the strongback can then be found by 

substituting these demands back into Equation 7.27 and Equation 7.28.  

As an entire system, there is interaction between the inelastic frame – which primarily 

behaves in shear – and the strongback – which behaves in combined shear and bending. The 

magnitude of this interaction is sensitive to the relative stiffness of the strongback-to-the-inelastic 

frame, which changes as the structure yields.  

Though this approach is unwieldly as a design method for similar reasons to the stiffness 

study conducted in Section 7.2, it does reveal a beam-like bending behavior in the strongback’s 

response. Compatibility between the strongback and inelastic bay results in a sign reversal lateral-

force distribution, 	>; see Equation 7.30. If this reversal occurs at the rood, this force reversal 

causes the strongback to behave as an upright, simply supported beam. As such, the strongback 

could even be modeled as a simply-supported beam of equivalent lateral stiffness.  

7.5 DYNAMIC HIGHER-MODE RESPONSE 

The distribution of lateral inertial forces – and associated story shear and force demands in force-

controlled actions – is constantly changing with time due to the dynamic nature of the ground 

excitation. Figure 7.7 demonstrates the change in flexural demands in a column of a moment-

resisting frame due to slight variations in the applied lateral-force distribution. 

Moments in the column can be approximated using a plastic analysis considering the 

applied lateral load and the flexural strength of the fuses. However, if the distribution of the lateral 

load changes or is uncertain, the moments in the columns change even though the flexural strength 

of the fuses remains known and unchanged; see the force distributions and column moment 

demands at time instances ªG, ªJ, and ª_ in Figure 7.7. Demands in force-controlled actions would 

be expected to vary from one-time instance to another as the inertial forces change with time. 

Slight changes in the relative flexural strengths of the fuses or lateral-force distribution could also 

result in another controlling mechanism (Kelly, 1974). Thus, the moment demands in the column 

are variable and uncertain.  

The dynamic demands in the example column are similar to the force demands in a 

strongback truss. An iterative procedure, like the dynamic capacity design method outlined in 

Section 5.2, can statistically estimate the force demands in the strongback elements. However, 
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nonlinear dynamic procedures are complicated and require a considerable amount of modeling 

expertise to properly implement. Such procedures also need a preliminary design to initiate the 

iterative design process. Information about a single response history can also be lost in aggregating 

the response from multiple ground motions into summary statistics. 

A static analysis approach could be used to inform the design of force-controlled actions 

in strongback-braced frames by providing information on the fundamental dynamic response of 

the strongback without resorting to nonlinear dynamic analysis. As outlined in Section 7.2, 

strongback demands can be estimated from equilibrium between the story shear demands from the 

ground motion and the axial force exhibited by the inelastic brace in the same story. Compatibility 

between the strongback and the inelastic portions of the system can also be used to derive story 

shear demands; see Section 7.4.  

However, these analysis methods depend on previous knowledge of the equivalent-lateral 

force distribution used to represent the inertial loads. Both the distribution of lateral forces and the 

corresponding force demands in the force-controlled actions are unknown. If an appropriate 

distribution of static lateral forces could be found, strongback-force demands could be estimated 

directly through equilibrium and compatibility using static analysis methods. 

A reliable static analysis approach depends on finding a single or envelope of force 

distributions that appropriately bounds the force demands extracted from the nonlinear dynamic 

analyses. This section explores several different force distributions intended to estimate force 

demands on the strongback truss. Inertial force distributions were extracted from nonlinear 

dynamic analysis results using the four-story benchmark-strongback design from Chapter 5. 

Comparisons were made between force demands extracted from these analyses and the force 

demands estimated using several static force distributions. A perfectly plastic case study was used 

to illustrate the strongback’s dynamic response. Based on these findings, the dynamic behavior of 

the strongback was characterized in terms of its higher-mode response. 

 

Figure 7.7. Effect of slight variation in force distribution (Mahin, 2017). 
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7.5.1 Traditional Force Distributions 

Force demands in the strongback truss were calculated using a set of traditional force distributions. 

Extracted force demands were then compared to the nonlinear dynamic demands for the four-story 

benchmark strongback. Trial force distributions included:  

1. an inverted triangular force distribution (ASCE-7-16, 2016),  

2. a uniform force distribution (FEMA-356, 2000) 

3. roof point load [similar to NBCC (2010)] 

4. reverse triangular distribution, see Figure 7.8(4), to attempt to represent the “bending” 

response observed during the parametric study conducted in Chapter 6. 

These force profiles and associated story shear distributions are shown in Figure 7.8(1)-(3). Force 

distributions were applied based on the floor mass and the amplification factor, �, from Section 

7.2. 

Force demands were also estimated using a modified equivalent-lateral force (ELF) 

procedure. An elastic analysis subjected the benchmark strongback to ELF forces reduced by an <-factor calculated per ASCE-7-16 (2016). Forces in the strongback elements were multiplied by 

an overstrength factor of ΩO = _J ?J. This is equivalent to applying different <-factors to the inelastic 

and strongback portions of the system. The 
_J factor represents adjustment from the 'ý"-level to 

the  !"-level of response. This is similar to the ΩO design approach utilized by Lai and Mahin 

(2015); see Section 2.4.1.2. 

Comparisons of strongback demands generated under each force distribution were 

compared to median and 85th percentile strongback demands extracted from nonlinear dynamic 

analyses of the benchmark-strongback design developed in Chapter 5. It is clear from the height-

wise profiles of force demands that the trial force distributions grossly under-represent the 

demands extracted from the nonlinear dynamic analyses; see Figure 7.9. This is especially true of 

demands estimated in the upper stories.  

Resulting axial-force demands on the strongback elements are tabulated in Table 7.1, Table 

7.2 and Table 7.3. Force demands calculated using the inverted triangular distribution under-

estimated force demands in the upper stories of the strongback. The uniform distribution resulted 

in larger estimates of the force-demands in the lower stories but critically under-estimated force 

demands in the upper stories. The point load distribution under-estimated force demands in every 

story. The reverse triangular distribution gave the best estimate of the force demands compared to 

the other trial force distributions, but still under-estimated the second- and third-story strongback 

brace demands by a significant margin.  

The point load and ELF procedure provide the least appropriate estimates for the force 

demands in the strongback tie. Demands in the tie are activated by unbalanced demands between 

the vertical component of the axial force in the strongback and inelastic braces. The point load 

force distribution results in small unbalanced forces that do not adequately estimate the forces in 

the strongback tie. Similarly, the ELF analysis method is conducted in the elastic range where 

these unbalanced forces are small. Since force demands per the ELF procedure were calculated 
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using an elastic analysis, this method was not able to directly capture inelastic behavior (e.g., force 

re-distributions due to yielding, strain hardening, etc.). Similar to the results reported by Lai and 

Mahin (2015), the ELF approach under-estimated force demands in the upper stories of the 

strongback truss.  

Adaptive force distributions have been proposed by other researchers (FEMA-356, 2000) 

to better account for `inelastic response, including force distributions proportioned with respect to 

the deflected shape (Fajfar & Fischinger, 1988), load patterns based on mode shapes derived from 

secant stiffness at each load step (Eberhard & Sozen, 1993), and load patterns proportioned with 

respect to story shear resistance (Bracci et al., 1997). Such methods require nonlinear static 

analysis methods to determine the change in force distribution with every time step. However, 

comparisons between adaptive force distributions and constant vector force distributions (i.e., first 

mode, inverted triangular, etc.) found that such distributions resulted in small improvements and 

did not provide enough benefit to warrant their added complexity and computational effort 

(FEMA-440, 2005). 

Table 7.1. Strongback demands from traditional equivalent-lateral force distributions. 
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T
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Lateral Load 
Distribution 

Axial-force demand 

�A,G  �A,J  �A,_  �A,x  �°,J  �°,_  

[kips] [kips] [kips] [kips] [kips] [kips] 

min max min max min max min Max min max min max 

D
y
n

a
m

ic
 

Median 1 -1625 1614 -745 768 -956 859 -851 941 -1157 1176 -1141 1085 

85th percentile 1 -2287 2342 -994 1002 -1411 1279 -1461 1474 -1713 1724 -1585 1719 

E
L

F
 

Elastic with ΩO = _J ?J 2 -1698 1698 -942 942 -744 744 -228 228 -456 456 -432 432 

P
la

s
ti
c
 

First mode 3 -1198 1041 -842 678 -476 326 -214 55 -737 729 -617 609 

Uniform 3 -1569 1414 -811 647 -287 137 -384 225 -1035 1029 -915 858 

Point load 4 -724 565 -585 427 -583 434 -585 427 -114 103 -18 6 

Reverse triangular 6 -2143 1991 -1179 1013 -283 130 -936 780 -1842 1839 -1722 1719 

1 at  !"; 2 	> = ΩO )úlhú*+ú,û- )úlhú* %R; 3 	> = �>êG,>; 4 	> = �>; 5 £ = [0,0,0,1]Ë; 6 £ = [�G, 2�J, �_, 0]Ë 
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Table 7.2. Ratio of static demand to median dynamic response. 
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Lateral Load 
Distribution 

Demand Ratio 

�A,G/�A,GµO%  �A,J/�A,JµO%  �A,_/�A,_µO%  �A,x/�A,xµO%  �°,J/�°,JµO%  �°,_/�°,_µO%  

min max min max min max min max min max min max 

E
L

F
 

Elastic with ΩO = _J ?J 1.01 1.09 1.25 1.24 0.77 0.88 0.26 0.25 0.38 0.40 0.37 0.41 

P
la

s
ti
c
 

First mode 0.71 0.67 1.12 0.89 0.49 0.39 0.25 0.06 0.61 0.64 0.53 0.57 

Uniform 0.93 0.91 1.08 0.85 0.30 0.16 0.44 0.24 0.86 0.91 0.79 0.81 

Point load 0.43 0.36 0.78 0.56 0.60 0.51 0.68 0.46 0.09 0.09 0.02 0.01 

Reverse triangular 1.27 1.28 1.57 1.33 0.29 0.15 1.08 0.84 1.53 1.62 1.48 1.62 

 

Table 7.3. Ratio of static demand to 85th percentile dynamic response. 
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Lateral Load 
Distribution 

Demand Ratio 

�A,G/�A,G.µ%  �A,J/�A,J.µ%  �A,_/�A,_.µ%  �A,x/�A,x.µ%  �°,J/�°,J.µ%  �°,_/�°,_.µ%  

min max min max min max min max min max min max 

E
L

F
 

Elastic with ΩO = _J ?J 0.72 0.74 0.94 0.95 0.52 0.59 0.15 0.16 0.26 0.27 0.27 0.25 

P
la

s
ti
c
 

First mode 0.51 0.46 0.84 0.68 0.33 0.26 0.15 0.04 0.42 0.43 0.38 0.36 

Uniform 0.67 0.62 0.81 0.65 0.20 0.11 0.26 0.15 0.59 0.61 0.57 0.51 

Point load 0.31 0.25 0.58 0.43 0.41 0.34 0.40 0.29 0.06 0.06 0.01 0.00 

Reverse triangular 0.91 0.87 1.18 1.02 0.20 0.10 0.63 0.53 1.05 1.09 1.07 1.01 

 

 

force distribution story shear demand 

Figure 7.8. Possible force distributions. 
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Figure 7.9. Comparison of static demands to nonlinear dynamic output. 

7.5.2 Peak Force Demands 

The traditional lateral-force distributions tested in Section 7.5.1 under-estimated demands in the 

strongback elements, especially in the upper stories. As such, efforts were undertaken to extract 

equivalent-lateral force distributions from the nonlinear dynamic analyses. These force 

distributions were estimated based on the lateral story shear resistance of the elements in a story. 

Force distributions were extracted at the time of peak axial-force demand in the inelastic braces, 

strongback braces, and tie for each of the forty-four ground motions of the far-field record set.  

The force distributions in Figure 7.10 through Figure 7.12 illustrate “snapshots” of force 

profiles extracted at instances of peak axial-force demand in a brace. The vertical axis in these 
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plots corresponds to the brace of interest. If the label reads max(�(∙),>), the figure plots the peak 

tension brace force. If the label reads min(�(∙),>), the figure plots the peak compression brace 

force.  

The median, 85th, and 100th percentile lines in these figures represent force profiles 

extracted for the ground motion representing the median, 85th, and 100th percentile of the peak 

axial force in a brace. The force distributions in these figures are not distorted and represent the 

force distribution exhibited by a single ground motion and time instance when the statistics of the 

brace force were expressed. This process was repeated in Figure 7.13 through Figure 7.21 for story 

shear force profile, story drift ratio profile, and inelastic brace axial force profile. Tabulated values 

for these peak demands and additional snapshots of the response distributions can be found in 

Appendix E. 

Equivalent-lateral force distributions extracted at peak inelastic brace axial force are shown 

in Figure 7.10. These distributions follow an inverted triangular distribution with story height. The 

story shear profile tends to be either fully positive or fully negative, indicative of single sign inertial 

forces; see Figure 7.13. The inelastic braces develop peak axial-force demands when the story drift 

distribution is nearly uniform; see Figure 7.16. The lower-story inelastic braces experienced peak 

axial-force demands when all of the inelastic braces exhibited strain hardening after yielding. 

Upper-story inelastic braces exhibited peak axial-force demands under non-uniform distributions 

of inelastic brace yielding. These results suggest that the inelastic braces exhibit peak force 

demands under primarily first-mode contributions with slight higher-mode contributions. 

Equivalent-lateral force distributions extracted at peak strongback brace and tie axial force 

are shown in Figure 7.11 and Figure 7.12. These force distributions exhibit distinct sign reversals, 

suggestive of higher-mode contributions. The story shear profiles exhibit similar sign reversals; 

see Figure 7.14 and Figure 7.15. The strongback braces and tie develop peak axial-force demands 

when the story drifts become non-uniform and the story displacements deviate from a linear 

profile; Figure 7.17 and Figure 7.18. The tie and lower-story strongback braces experienced peak 

axial-force demands when all of the inelastic braces exhibited strain hardening after yielding. 

Upper-story strongback braces exhibited peak axial-force demands under non-uniform 

distributions of inelastic brace yielding.  

In summary, though the peak inelastic brace axial-force demands exhibit roughly first-

mode demands, these results suggest that peak strongback-force demands exhibit dominant higher-

mode effects. Upper story forces in the strongback truss are larger when the frame experiences 

non-uniform yielding and drift patterns compared to uniform yielding and drift patterns. 
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Figure 7.10. Equivalent-lateral force distribution at peak inelastic brace axial force. 
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Figure 7.11. Equivalent-lateral force distribution at peak strongback brace axial force. 

 

 

 
Figure 7.12. Equivalent-lateral force distribution at peak strongback tie axial force. 
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Figure 7.13. Story shear distribution at peak inelastic brace axial force. 
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Figure 7.14. Story shear distribution at peak strongback brace axial force. 

 

 

 
Figure 7.15. Story shear distribution at peak strongback tie axial force. 
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Figure 7.16. Story drift distribution at peak inelastic brace axial force. 
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Figure 7.17. Story drift distribution at peak strongback brace axial force. 

 

 

 
Figure 7.18. Story drift distribution at peak strongback tie axial force. 
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Figure 7.19. Inelastic brace axial force distribution at peak inealstic brace axial force. 
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Figure 7.20. Inelastic brace axial force distribution at peak strongback brace axial force. 

 

 

 
Figure 7.21. Inelastic brace axial force distribution at peak strongback tie axial force. 

7.5.3 Perfectly Plastic Case Study 

Results from 7.5.2 suggest that force demands in the strongback truss are indicative of higher-

mode demands. To interpret this behavior, the strongback’s dynamic response is presented in terms 

of a simple case study. This example is provided for illustrative purposes only. 
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The benchmark-strongback design was subjected to perfectly plastic pushover analyses in 

the first two modes using the structural analysis tool, FEDEUSlab (2013). The strongback braces 

and tie were modeled with an elastic material. Columns and beams were assumed to be inextensible 

with concentrated flexural hinges at their ends. Flexural-axial interaction was neglected. All braces 

were modeled as truss elements. Buckling-restrained braces were adjusted by the stiffness 

modifier, É = 1.4, to account for connection and transition regions outside of the yielding length; 

see Section 4.4.2. Gravity loading was excluded from the numerical model. Mass was calculated 

from the design seismic weight per Section 4.5.5. In the first mode, the BRB axial strength was 

adjusted using the parameters, ( and β, from Table 4.5. In the second mode, the BRB axial strength 

used the expected yield strength. 

The plastic pushover analysis results of the benchmark strongback model were compared 

to the results from a reference BRBF system. Figure 7.23 shows the first three modes calculated 

from an eigenvalue analysis of the structures. Figure 7.22 shows the propagation of plastic hinge 

formation from the pushover analysis in both the first and second modes. Pushover curves 

associated with the plastic hinge formation are shown in Figure 7.24.  

In the first mode, the SBF and BRBF exhibit little lateral stiffness after yielding of the 

inelastic braces. The BRBF also exhibits little lateral strength after yielding of the fourth-story 

braces. However, the strongback exhibits significant stiffness and strength in the second and higher 

modes, even after yielding of the fuses. This response is a result of the elastic nature of the 

strongback truss. The first-mode base shear is limited by the yield capacity of the fuses. However, 

the strongback truss has significant capacity in higher-mode bending. In these second- and higher-

modes the strongback truss remains elastic and continues to accumulate force demands after 

yielding of the fuses.  

In summary, the BRBF exhibits little stiffness in the first and second mode as its story 

shear strength depends primarily on the inelastic strength of the braces. The SBF exhibits similar 

behavior in the first-mode but also exhibits significant bending capacity in the second- and higher-

modes. If the strongback is expected to remain elastic under all modes of excitation, higher-mode 

force demands in the strongback truss are limited by the ground motion intensity rather than the 

strongback’s bending capacity.  

The amplification of higher modes has been observed in similar structures intended to 

remain elastic in shear, including concrete shear walls [e.g., Aoyama (1986), Ghosh and 

Markevicius (1990), Shahrooz and Moehle (1987), Eberhard and Sozen (1993), Panagiotou and 

Restrepo (2011), etc.] and rocking frames [e.g., Eatherton et al. (2014b), Wiebe and Christopoulos 

(2009), Roke et al. (2008) etc.]. It has been suggested that such behavior can be approximated by 

combining the modal responses using an appropriate modal combination rule and < = 1 for the 

higher modes (Eibl & Kreintzel, 1988). This is the method that has been adopted by Eurocode 8 

(2004) for concrete shear walls.  
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Figure 7.22. Propagation of plasticity. 
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Figure 7.23. Modes for (a) SBF and (b) BRBF. 
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Figure 7.24. Lateral resistance-roof drift ratio pusover curves. 
(a) mode shape of a uniform cantilever column, (b) pushover of BRBF, and (c) pushover of SBF. 

7.5.4 Dynamic Behavior 

Traditional force distributions that only account for a single-mode response are inadequate for 

estimating the force demands in the strongback truss. Though the strongback is intended to enforce 

a first-mode response, strongback demands are most critical when the system exhibits non-uniform 

yielding in the fuses or non-uniform drift distributions. The force demands extracted from 

nonlinear dynamic analysis were suggestive of higher-mode bending contributions. These higher-

modes tend to be amplified due to the substantial bending strength of the strongback truss. This 

section explores the dynamic characteristics of the strongback system in terms of an equivalent-

lateral force procedure using pseudo-accelerations derived from a response spectrum analysis.  

7.5.4.1 Equivalent-lateral force Procedure 

It is instructive to break-down the equations for equivalent static forces in terms of their derivation 

in structural dynamics. Equivalent static forces, £, are external forces that, when applied to the 

structure, produce the same displacements and internal forces in the structure at the time of interest. 

In the elastic range, the distribution of these equivalent-lateral forces in mode � is: £L = Ð�L Equation 7.31 Ð = (LJ¦ = elastic stiffness matrix in terms of natural modal frequency, (L, and mass matrix, ¦. 

Using the equations from dynamics, the corresponding displacements in each mode can be written 

in terms of an equivalent single-degree-of-freedom oscillator:  
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�L = ΓLêL'L Equation 7.32 

ΓL = +ú,û- �úü4,ú+ú,û- �úü4,ú� = �°l mode participation factor assuming a diagonal mass matrix and a building 

symmetric in plan; êL =  �°l natural mode of vibration; 'L = displacement response of an 

equivalent single-degree-of-freedom oscillator. The variables, (L and êL, are the eigenvalues and 

eigenvectors computed from an eigenvalue analysis using the elastic stiffness and mass properties, Ð and ¦.  

Plugging Equation 7.32 into Equation 7.31, the equivalent-lateral forces become: £L = ΓL¦êL#L Equation 7.33 #L(ª) = (LJ'L(ª) = pseudo-acceleration in the �°l mode. Demands can be determined for each 

mode at each time instant by static analysis of the structure subjected to £L. For a response 

spectrum analysis procedure, demands derived in each mode can be combined using an appropriate 

modal combination rule [e.g., square-root-of-the-sum-of-the-squares (SRSS), complete quadratic 

combination (CQC), etc.] and the spectral ordinates for the pseudo-acceleration response at period, �L, and damping ratio, âL.  

For elastic systems, the initial elastic modes are orthogonal to one another and the equations 

of motion in each mode become decoupled. The �°l modal response then contains no contributions 

from the other modes, and the total response can be derived by the superposition of each modal 

response quantity.  

For inelastic systems, modal orthogonality is no longer valid. The modes derived from 

elastic analysis become coupled as the structure yields, causing other elastic modes to contribute 

to the �°l modal response of interest. Assuming that the contribution of the coupled response using 

elastic modes is small for systems responding inelastically [i.e., the elastic modes are “weakly” 

coupled with inelastic response (Chopra, 2011)], approximations can be made by combining the 

inelastic response in the elastic modes and ignoring the coupled response. This can be 

circumvented by performing an eigenvalue analysis at every time step to obtain the inelastic modes 

at each time increment. 

7.5.4.2 Modified Design Spectrum 

The benchmark building was subjected to the FEMA-P695 far-field ground suite scaled to the 

fundamental period, �. Though appropriate for the fundamental mode, this scaling amplified the 

pseudo-accelerations at the higher-mode periods; see Figure 7.25. To account for higher-mode 

effects in design, a modified response spectrum, also shown in Figure 7.25, was created to match 

the FEMA-P695 design spectrum at the upper limit period, �, and to match the median far-field 

response spectra at the higher-mode periods. Spectral values for the modified design spectrum are 

shown in Table 7.4. 
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Figure 7.25. Modified response spectra for the FEMA-P695 far-field record set. 

 

Table 7.4. Spectral values for modified spectrum. 

Intensity 
Pseudo-

acceleration  *A  2.09 g *G  0.63 g *rð  2.09 g *rG  0.94 g *îð  1.40 g *îG  0.63 g 

 

7.5.4.3 Height-wise Variation of Higher-mode Response 

Equivalent-lateral forces can be estimated for each mode using the modified design spectrum in 

Figure 7.25. Details for the calculation can be found in Table 7.5. The first-mode response was 

calculated per the plastic analysis method outlined in Section 7.2. The second and higher-mode 

force distributions were calculated assuming the system remained elastic and used the pseudo-

acceleration ordinate of the elastic response spectrum (i.e., < = 1 in the second and higher modes).  

 In the first mode, the system’s lateral capacity is dependent primarily on the lateral 

resistance of the inelastic braces and secondarily on flexural yielding in the beam links. Though 

eighty-five percent of the mass participates in the first mode, pseudo-accelerations are limited by 

the plastic capacity of the fuses in the first mode. Since the strongback system yields in the first 

mode, first-mode forces can be estimated through a reduction factor of 
_J �?5� to account for the 

system’s inelastic response at the  !"-level of shaking; < = 8 is the response-modification factor 

for BRBFs per ASCE-7-16 (2016). The amplification factor, �, is representative of the 

overstrength needed to yield all of the fuses in Equation 7.10. 
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 The second mode has the next highest mass participation. Though only 13% of the mass 

participates in the second mode, pseudo-accelerations in the higher modes can be significant. Since 

the system remains essentially elastic in bending, force demands in the higher-modes are limited 

by the ground motion intensity and not by the fuse capacity. The higher-mode periods can be 

estimated from the constant acceleration range of an elastic response spectrum using < = 1. 

Force distributions extracted from the nonlinear dynamic analyses in Section 7.5.2 were 

compared to the static lateral-force distributions estimated from Equation 7.33 using the elastic 

modes and pseudo-accelerations from the response spectrum; see Figure 7.26 through Figure 7.28. 

Pseudo-accelerations were reduced by 
_J .5 in the first mode and < = 1 in the higher modes. The 

calculated first-mode force distribution aligns well with the peak inelastic brace axial force 

demands, while the second- and third-mode force distributions align well with the peak strongback 

force demands. This is true of both the median and 85th percentile level of response. The lack of 

perfect consistency is an indication of the complex dependence of the structural response on the 

earthquake excitation. 

Figure 7.29 and Figure 7.30 break-down the total force distribution under gm44 into 

estimates of its modal contributions. Inelastic modes were estimated using an eigenvalue analysis 

at every time step. A time stepping procedure using the modal forces from the previous time step 

was used to estimate the modal forces at the current time step. The first mode dominates the 

response upon initial yielding of the inelastic braces, as shown by the orange color in Figure 7.29. 

The strongback participates little under this primarily first-mode distribution. However, the 

strongback elements become mode activated in second-mode bending, as exhibited by the green 

and light blue colors in Figure 7.30. At this time instant, the second-mode has the largest 

contribution to the total lateral force distribution.  

 

Table 7.5. Equivalent static force distribution in each mode. 

Mode 
å�  
[s] 

¦Õ∗¦  6� 

Mode, 7� Õ. äÔ8  �� 2   
[�] 

£ [kips] 

7�,Õ 7�,Ö 7�,æ 7�,ç £�,Õ £�,Ö £�,æ £�,ç 

1 0.84 0.850 2.91 0.12 0.25 0.36 0.45 3.6 1 1.12 106 214 310 380 

2 0.27 0.129 1.14 0.39 0.34 0.06 -0.35 1 2.09 853 782 145 -795 

3 0.16 0.016 0.40 0.37 -0.05 -0.36 0.27 1 2.09 295 -49 -338 219 

4 0.13 0.000 0.01 0.05 -0.08 0.03 -0.02 1 2.09 1 -3 1 0 

1 per BRBF < = 8 in ASCE-7-16 and � = 3.3 from plastic analysis in the first mode. 
2  !"-level 
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Figure 7.26. Modal comparison to force distribution at peak inelastic brace axial force. 
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Figure 7.27. Modal comparison to force distribution at peak strongback brace axial force. 

 

 

 
Figure 7.28. Modal comparison to force distribution at peak strongback tie axial force. 
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(a) (b) (c) (d) (e) (f) 

Figure 7.29. Snapshot of first-mode response for gm44. 

(a) schematic of demand-to-capacity ratios; (b)-(e) first, second, third, and fourth mode equivalent-lateral force 
distributions; (f) estimated total equivalent-lateral force distribution. 

  
(a) (b) (c) (d) (e) (f) 

Figure 7.30. Snapshot of second-mode response for gm44. 

(a) schematic of demand-to-capacity ratios; (b)-(e) first, second, third, and fourth mode equivalent-lateral force 
distributions; (f) estimated total equivalent-lateral force distribution. 

7.6 SUMMARY  

The intent of this chapter was to better understand the basic mechanics of multi-story strongback-

braced frames. In summary –  

1. The force demands on the strongback braces can be derived through horizontal equilibrium 

and depend on the story shear demands generated from the ground motion and the axial 

force in the inelastic brace in the same story. Tie demands can be estimated by vertical 

equilibrium. 

2. Equations estimating stiffness on a story-by-story basis like Equation 3.1 are valid only in 

the elastic range. Once the inelastic braces yield, the stiffness of the vertical tie needs to be 
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included in the lateral stiffness calculations. Coupling of the vertical and horizontal 

demands of the elastic and inelastic portions of an embedded strongback and coupling of 

every story through the tie can make design methods using stiffness metrics difficult and 

unwieldly for potential design methods.  

3. Compatibility between a braced bay containing the fuses and a separated strongback truss 

revealed a load reversal effect resulting from moment equilibrium. The strongback’s 

response is analogous to the “bending” response in a simply supported beam.  

4. Though the strongback is intended to impose a uniform yielding and drift response, force 

demands in the strongback truss are primarily activated under non-uniform demand 

profiles, especially those associated with higher-mode reversal effects like the second-

mode bending response.  

5. If the strongback was infinitely stiff, strongback-braced frames would exhibit a solely first-

mode response. However, higher-mode force demands need to be considered when 

optimizing the strongback to meet realistic strength and stiffness design criteria since the 

strongback is designed to remain elastic under all modes of excitation.  

6. Though strongback-braced frames tend to exhibit near-uniform story drift profiles, the 

acceleration and story shear profiles show large higher-mode contributions. These higher 

modes are characterized by sign reversals in the height-wise force distribution and impact 

force demands in the upper stories.  

7. A higher-mode bending response is amplified in strongback-braced frames due to the 

elastic nature of the strongback truss. Though forces in the first mode are limited by the 

fuse strength, forces in the second and higher modes are limited by the ground motion 

intensity. Strongback-braced frames exhibit significant strength in higher-mode bending. 

This higher-mode response is either elastic or associated with the formation of partial 

mechanisms. 

An equivalent-lateral force procedure using pseudo-accelerations derived from an elastic response 

spectrum was able to approximate the force distributions extracted from nonlinear dynamic 

analyses. This procedure can be used to develop an analysis method to estimate higher-mode force 

demands for design. 
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8 Proposed Design Methods 

8.1 INTRODUCTION 

Capacity design is the traditional method for proportioning force-controlled actions in 

conventional yielding systems (Hollings, 1969; Park & Paulay, 1975). Deformation-controlled 

actions are specially detailed to enable them to deform well into the inelastic range without 

excessive loss of strength or failure. Per simplified capacity or plastic design, the remaining force-

controlled actions are designed to remain essentially elastic under the forces delivered by the 

intended mechanism. This provides a hierarchy of strength to promote yielding in the ductile 

regions and protection of the force-controlled regions. 

The elastic nature of the strongback truss ensures that yielding occurs primarily in the 

designated fuses. Demands and details in those inelastic regions can be determined by analysis 

methods typical of a conventional system [e.g., as required by ASCE/SEI 7-16 (2016)]. To remain 

elastic, strongback elements could then be designed for the force demands delivered by the fuses 

(including overstrength, strain hardening, etc.) per capacity design principles.  

However, traditional capacity design alone is insufficient to bound the force demands in 

the strongback truss. Though deformation-controlled actions are well constrained by their 

respective fuse capacities, force-controlled actions in the strongback truss also depend on the 

inertial forces developed by the ground shaking. Traditional capacity design assumes that the 

strength of the fuses limits the forces that can develop under all modes of vibration. However, the 

strongback can exhibit significant strength and stiffness in higher mode bending. This “bending” 

strength can be significantly larger than the higher-mode inertial forces developed from an 

earthquake. Since the strongback is designed to remain elastic under all modes of vibration, inertial 

forces in the second and higher modes continue to accumulate after the fuses have yielded and as 

the ground shaking intensifies.  

These seismic demands are dynamic and constantly changing with time. Though the 

displaced shape is dominated by a first-mode (uniform) response, the demands in the strongback 

elements are also subject to amplified higher-mode (bending) contributions. Thus, the required 

strength of the essentially elastic components is still bounded by capacity design principles but is 

additionally bounded by elastic or partially inelastic higher-mode bending effects. These demands 

can be significantly higher than those estimated solely from traditional capacity design principles. 

Higher-mode characterization of the strongback’s dynamic response was studied in detail in 

Chapter 7. 
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 This chapter compares three analysis methods to estimate higher-mode demands on the 

strongback truss. The chapter introduces possible design methods for the sizing of the fuses. Quasi-

static (traditional) capacity analysis methods for the design of the strongback elements are briefly 

discussed to provide justification of the other proposed methods. Modal analysis methods are 

divided into three categories: [i] nonlinear dynamic analysis methods, [ii] modal pushover analysis 

methods (MPA), and [iii] simplified modal enveloping methods (MEA). Simplified versions of 

the MPA and MEA methods are also evaluated. Possible approaches for the design the beams and 

columns of are also provided. Comparisons to nonlinear dynamic analysis results in this chapter 

were extracted from the nonlinear dynamic analysis of the benchmark strongback described in 

Chapter 5. 

8.2 DESIGN OF THE FUSES 

Table 1.1 outlined desirable deformation- and force-controlled actions for strongback-braced 

frames utilizing buckling-restrained braces. This section describes the analysis method used to 

design the fuses. Analysis methods for the design of the force-controlled actions in the strongback 

truss, beams, and columns are described in the following sections. It is recommended that the fuses 

be designed by either of the two following methods: 

i. The fuses are designed for the forces developed at yield (i.e., the design base shear, %R). 

These forces can be approximated using traditional earthquake forces reduced by a 

response modification (<) factor. 

ii. The fuses are designed considering the force re-distributions that occur at the “limit load” 

upon formation of the first-mode plastic mechanism. 

These methods of design are shown schematically in Figure 8.1. Method [i] is the conventional 

method for sizing the fuses [i.e., per equivalent-lateral force or response spectrum analysis 

procedures ASCE/SEI 7-16 (2016)]. Method [ii] assumes that the BRBs will all yield near-

simultaneously because of the similar deformation demands imposed in every story by the 

strongback truss under rigid body rotation.  

Each BRB experiences similar amounts of axial elongation and shortening at the plastic 

limit load. Method [ii] accounts for the ability of the strongback to engage all of the BRBs under 

similar levels of axial deformation under a first-mode displaced shape. Per method [ii], the BRBs 

are sized with respect to their expected deformation at the limit load. If every story has the same 

geometry, design forces for the BRBs per method [ii] are derived from the average of the design 

story shear forces.  

To ensure adequate sizing of the BRBs, a minimum reduction of 0.8 times the design base 

shear is recommended herein. Comparison of peak response quantities in Section 6.3.3 using the 

distributed BRB sizes resulting from method [i] and the uniform BRB sizes resulting from method 

[ii] showed that there is little difference in dynamic response using either of the two methods to 

design the fuses when the minimum 0.8-reduction factor is utilized.  
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Figure 8.1. Schematic of analysis method for the fuses. 

8.3 TRADITIONAL STATIC ANALYSIS 

An equivalent-lateral force (ELF) method of elastic analysis is the simplest form of static analysis. 

Inelastic behavior is accounted for through a response-modification factor, <, and reduced code-

level earthquake forces. Axial-force demands in the strongback can then be estimated considering 

the overstrength-factor, ΩO, to approximate the forces developed upon yielding of all the fuses. 

However, as an elastic analysis method, the ELF procedure does not account for potential force 

re-distributions due to yielding, resulting in an under-representation of demands in actions 

governed by unbalanced forces like those in the tie. The ELF method with overstrength also does 

not explicitly incorporate the expected strength of the fuses or allowances for amplified demands 

arising from higher-mode effects. 

A plastic analysis approach would be able to explicitly represent internal force re-

distributions due to yielding. Such methods can be useful in understanding the effects of 

nonlinearity at the limit load but depend on the choice of lateral-force distribution. As such, slight 

variations in the distribution of lateral forces result in different demands in the force-controlled 

regions. Higher-mode effects may also result in some floors not yielding or yielding in opposite 

directions, resulting in an incomplete mechanism. The plastic analysis method typically results in 

a single critical mechanism, though other mechanisms could be nearly as critical. Slight variation 

in force distribution or element capacity could also change the intended mechanism.  

Traditional capacity design raises similar issues to the plastic analysis approach. Per 

traditional capacity design, it is assumed that the capacity of the fuses limits the forces that can 

develop under all modes of vibration. Thus, it is possible to approximate demands in force-

controlled regions by calculating the forces that can be developed in neighboring fuses on a story- 

or element-wise basis. However, traditional capacity design cannot account for the use of similar 

inelastic brace sizes in multiple stories, inelastic brace removal, or amplification of demands due 

to higher-mode effects. Unlike a traditional yielding system, inertial forces in strongback-braced 

frames are not limited by the capacity of the fuses but continue to accumulate as the ground shaking 

intensifies due to the elastic higher-mode bending response of the strongback truss. Traditional 

capacity design cannot account for these inertial force contributions, because force demands are 
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estimated on an element-wise basis assuming that the inertial forces are limited by the capacity of 

the fuses 

Traditional capacity or plastic design alone under-estimates the force demands in the 

strongback truss, especially in the upper stories. Demands extracted from nonlinear dynamic 

analysis of the benchmark four-story strongback were an order of magnitude greater than those 

estimated from a plastic analysis approach using traditional lateral-force distributions; see Section 

7.5.1. Force demands estimated using these traditional approaches assume a first mode-only 

response and are inappropriate in both height-wise distribution and magnitude. Such methods do 

not adequately represent forces developed due to the strongback’s elastic response under dynamic 

excitation.  

8.4 DYNAMIC CAPACITY ANALYSIS 

Dynamic capacity design was first introduced in Section 5.2 for the design of the benchmark 

strongback. As a nonlinear dynamic approach, dynamic capacity design explicitly accounts for the 

transient nature of strongback demands. Provided enough analyses are used to obtain results, 

dynamic capacity design can also account for aleatory variability in the material properties and 

ground motion characteristics and epistemic uncertainty in the design and modeling of the fuse 

and strongback elements.  

The dynamic capacity procedure depends on nonlinear dynamic analysis of the system 

under multiple ground motion records. Demands in force-controlled regions are then based on 

statistical evaluation of the results [e.g., use of the procedure in Tall Building Initiative (PEER, 

2017), ASCE 7-16 (2016), or ATC-114 (2017)]. As this approach is iterative, it requires several 

analyses and design phases; including a preliminary design stage, refinement with nonlinear-static 

(pushover) methods, and nonlinear dynamic analyses upon final or close to final design. Provided 

enough analyses are used to obtain results, dynamic capacity design can also account for aleatory 

variability in the material properties and ground motion characteristics and epistemic uncertainty 

in the design and modeling of the fuse and strongback elements. 

Dynamic capacity design is not a design method appropriate for preliminary design. The 

nonlinear dynamic analyses needed for dynamic capacity design requires extensive data reduction, 

modeling expertise, and computational expense. Moreover, ground motion selection can have a 

considerable impact on the force estimates for the strongback truss. Ideally, ground motions would 

be selected for multiple periods to account for different ground motion characteristics near the 

first-mode and higher-mode periods.   

8.5 MODAL PUSHOVER ANALYSIS 

Modal response spectrum analysis can account for the elastic dynamic behavior of a structure 

subjected to multiple modes. The value of the total response is obtained by combining the peak 

modal responses with an appropriate modal combination rule [e.g., square root of the sum of the 

squares (SRSS), complete quadratic combination (CQC), etc.]. Such methods typically assume 

that the structure yields in every mode; i.e., the same <-factor can be applied to every mode. The 
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following represents traditional elastic modal response spectrum analysis using the SRSS modal 

combination rule: 

4 = 9�4G,�t< �J + �4J,�t< �J + ⋯ + �4L,�t< �J + ⋯ + �4M,�t< �J
 Equation 8.1 

4 = total response; 4G,�t, 4J,�t, 4L,�t = peak elastic response in the first, second, third, …, �th, …, :th  modes. Since the strongback tends to reman elastic under higher-mode bending (i.e., < = 1 in 

the higher modes), Equation 8.1 can be revised to the following: 

4 = 9�4G,�t< �J + 4J,�tJ + ⋯ + 4L,�tJ + ⋯ + 4M,�tJ  Equation 8.2 

Response spectrum analysis using different <-factors can be incorporated into conventional 

structural analysis software using a truncated response spectrum similar to that shown in Figure 

2.12(c).  

However, even with < = 1 in the higher modes, elastic modal response spectrum analysis 

cannot account for force re-distributions due to yielding and < is a substitute for the inelastic 

response. As described in Section 8.3, these force re-distributions can be captured by a plastic 

analysis method. These are typically captured assuming a first-mode only response: 

4 = 4G,Et Equation 8.3 4G,Et = response due to a full plastic mechanism in the first mode. Conventionally, this method is 

simplified using traditional capacity design methods to estimate force demands on a story- or 

element-wise basis. To incorporate higher-mode effects into the total response in Equation 8.4, the 

peak higher modes can be combined using a modal combination rule similar to Equation 8.2: 

4 = I4G,EtJ + 4J,�L�tJ + 4_,�tJ + ⋯ + 4L,�tJ + ⋯ + 4M,�tJ  Equation 8.4 

4J,�L�t = elastic or partially inelastic response due to the second mode; 4_,�t = elastic response due 

to the third mode. Equation 8.4 requires a pushover analysis in the second mode since the response 

is neither elastic nor fully plastic. 

Though modal combination rules like the SRSS and CQC rule are not strictly valid for 

inelastic systems, if the elastic modes are assumed “weakly” coupled when the building deforms 

inelastically (i.e., the coupled terms are small), the coupling of the elastic modes can be ignored 

and an appropriate modal combination rule can still be applied to obtain total response quantities. 

This procedure of combining modal pushover analyses was developed by Chopra and Goel (2002; 

2004) and termed Modal Pushover Analysis (MPA). This procedure has been adapted herein as an 

approximate method of incorporating force re-distributions due to yielding and of addressing the 

elastic higher-mode behavior of the strongback. 
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8.5.1 Superposition Modal Combination Rule 

The MPA approach incorporates higher-mode demands in the strongback through a modal 

combination rule. Algebraic signs of the total response are lost during the modal combination 

calculation, and the combined response will not satisfy equilibrium. As such, total response 

quantities need to be combined from the peak response in each mode and cannot be derived from 

the modal combination of another response quantity. 

Because the inelastic behavior of the strongback is primarily exhibited in the first mode, it 

can be assumed that the first mode plastic response is de-coupled from the second and higher 

modes. This can be interpreted as higher mode oscillations about the fundamental mode; see the 

results in Section 7.5.4.3. To model this phenomenon, an SRSS of the higher modes can be 

superimposed on the fundamental mode of the strongback by a superposition modal combination 

rule: 

4 = p4G,Etp + I4J,�L�tJ + 4_,�tJ + ⋯ + 4L,�tJ + ⋯ + 4M,�tJ   Equation 8.5 

This is the same modal combination rule as that proposed for rocking frames (Wiebe et al., 2015); 

see Section 2.3.6. This modal combination approach assumes the higher-mode periods are well 

separated. It is assumed that a partial mechanism response results in only “weak” coupling in the 

second and higher modes and is neglected in this study. Note, that since the first and second mode 

are inelastic, Equation 8.5 can result in double counting and a more appropriate modal combination 

rule may result in better estimates of the dynamic-force demands. 

8.5.2 MPA Procedure 

The MPA method is similar to the response spectrum analysis approach for elastic structures, but 

combines peak inelastic rather than elastic modal response quantities. Though analysis of fully 

elastic structures and complete plastic mechanisms is straightforward, potential partial 

mechanisms in the higher modes can make estimates of strongback demands challenging. It is not 

immediately clear which elements have yielded in a partial mechanism. Moreover, assuming the 

structure is elastic in a mode when it exhibits a partially inelastic response can be un-conservative 

and can result in smaller demands on the strongback truss than if the fuses had actually yielded in 

those modes; see Equation 7.13.  

The final state of a partial mechanism requires incremental determination of the event-to-

event change in stiffness upon yielding of each fuse. This makes a method utilizing pushover 

analyses appropriate for representing the partial mechanism behavior in the second and potentially 

higher modes. The steps for an MPA approach can be summarized as follows: 

1. Designate deformation- and force-controlled actions. 

2. Design deformation-controlled actions (e.g., axial force in the inelastic braces, flexural 

force in the beams, etc.) by traditional analysis methods, such as those provided in 

ASCE-7-16 (2016). Estimate the stiffness and capacity of the force-controlled actions 

(e.g., area and moment of inertia). See Section 5.4.1 for more details. 
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3. Determine the elastic natural frequencies, periods, and modes ((L, �L, êL) by an 

eigenvalue analysis of the elastic structure. Determine the pseudo-acceleration for a single 

degree-of-freedom oscillator in each mode, #L(�L, âL), by reading the elastic pseudo-

acceleration ordinate from the elastic response spectrum. Estimate the modal participation 

factor in each mode by ΓL = +ú,û- �úü4,ú+ú,û- �úü4,ú� . 

4. Find the limit load of the system under a first mode equivalent static force distribution (e.g., �£G = �¦êG) using a perfectly plastic or appropriate nonlinear static analysis [e.g., ASCE-

41-17 (2017)]; see Section 7.5.4. Compute the demands in the first mode, 4G, assuming the 

structure forms a full mechanism in the first mode. 

5. Compute equivalent-lateral forces for the second and higher modes by £L = ΓL¦êL#L 

using the elastic modes, pseudo-accelerations, and modal participation factors calculated 

in [3]; see Section 7.5.4. Monotonically apply each modal force distribution until the modal 

base shear in the numerical model exceeds the base shear calculated from £L. Extract the 

force demands, 4L, from each pushover analysis in each higher mode, �. 

6. Calculate the total response, 4, by combining the first and higher-mode response quantities, 4G and 4L, from [4] and [5] by an appropriate modal combination rule to account for at least 

the first and second-mode response and enough other higher modes to achieve 95% mass 

participation. 

This method is comprised of two analyses: [i] an analysis for the deformation-controlled actions 

in step 2 and [ii] multiple sub-analyses for the force-controlled actions in steps 4 and 5; see Figure 

8.2. The force-controlled sub-analyses are divided into a first mode fully plastic “pivoting” 

response in step 4 and higher-mode partially inelastic “bending” responses in step 5. The difference 

between steps 4 and 5 stems from different limitations on the force demands in the system. The 

forces in the pivoting response are limited by the capacity of the fuses while the forces under a 

bending response are limited by the ground motion intensity estimated from the elastic response 

spectrum.  

Note that the application of modal combination rules to inelastic systems lacks a rigorous 

theoretical basis as the modes calculated from the elastic system become coupled when the system 

responds inelastically. As stated in Section, 7.5.4, approximations can be made by combining the 

inelastic response in the elastic modes by ignoring the coupled response if it is assumed that modes 

derived from the elastic system are weakly coupled when the system becomes inelastic (Chopra, 

2011). It should be emphasized that this method is an estimation of the total response by 

combination of the peak inelastic modal responses. As such, results will not be exact.  

This MPA process is shown schematically in Figure 8.2. Like the dynamic capacity 

approach, the MPA method still requires nonlinear material models for the fuses and post-

processing of the results. Note that consideration of inelastic behavior may be performed by a 

plastic analysis in the first mode but does require pushover analyses to address potential partially 

inelastic behavior in the higher modes.  
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Figure 8.2. Schematic of Modal Pushover Analysis method. 

8.5.3 MPA Case Study 

To study the impact of material behavior on the MPA results, simulations of increasing simplicity 

were compared to the force demands extracted from nonlinear dynamic analysis of the benchmark 

numerical model. A description of the three types of models used for the MPA analyses can be 

found in Table 8.1. The standard square-root-of-the-sum-of-the-squares (SRSS) modal 

combination rule was additionally compared to the superposition modal combination rule 

presented in Equation 8.5. 

The nonlinear pushover model (NP) was the most sophisticated of the models used in the 

MPA case study. Nonlinear material models, gravity loading, and mass were the same as that of 

the dynamic model. Elastic modes used for the pushover analyses were calculated based on an 

eigenvalue analysis of the elastic structure. This numerical model fostered direct comparison 

between the MPA outputs and the nonlinear dynamic outputs.  

The second perfectly-plastic model (PP) introduced perfectly plastic material models for 

the yielding actions in the simulation. The use of perfectly plastic material allowed for direct 

calculation of the limit load per Equation 7.11 and interpolation of the higher-mode partial 

mechanism response between the sequential formation of plastic hinges; see dots representing the 

point of hinge formation in Figure 8.3. Note that a perfectly-plastic material assumption should 

not be applied to yielding actions experiencing strength degradation, like strongback-braced 

frames using buckling braces for the fuses.  

Perfectly plastic material models have zero-stiffness upon yielding. To incorporate the 

adjusted brace strength of the BRBs in the first mode, perfectly plastic material models used the 

expected yield strength of the material including the adjustment parameters, ( and () from Table 

4.5. Nominal yield strengths were used for the second and higher modes as these forces were 

expected to be near yield and away from the limit load. These material strengths are described 
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schematically in Figure 8.2. Gravity loading and �Δ effects were neglected in this model and mass 

was calculated from the design seismic weight. Force-controlled actions were modeled as elastic 

in all of the modes. 

The third model (EP) represents the simplest numerical model used in this case study. Like 

the PP model, demands from the first mode were calculated assuming a complete plastic 

mechanism response per Section 7.2. Analyses in the second and higher modes were linear elastic, 

and neglected potential yielding in the fuses due to partial mechanisms.  

8.5.4 Comparison of MPA and Nonlinear Dynamic Results 

Demands from each of the MPA models are compared to demands extracted from nonlinear 

dynamic analysis of the benchmark strongback in Table 8.2. The ratio of the MPA output to the 

median and 85th percentile output from the dynamic analyses are shown in Table 8.3 and Table 

8.4, respectively. The distribution of static demands from the MPA models are shown side-by-side 

with the dynamic output in Figure 8.4. 

The superposition modal combination rule generally gave better representations of the 85th 

percentile dynamic response compared to the SRSS modal combination rule. However, this modal 

combination did over-estimate demands in the first story strongback brace. Estimated demands 

using the NP model were closest to the dynamic output. The distribution of demands was well 

estimated by the NP model to within ±1% to ±17%, except for the first story strongback brace 

demand which was over-estimated the 85th percentile response by 22 to 25%.  

The NP model and the simplified PP model gave similar estimates for the strongback 

demands. The PP model estimated demands with more conservatism than the NP model but with 

less computational expense. For the benchmark case considered, elastic analyses could replace the 

third and fourth mode analyses as the fuses remained elastic under these modes; see Figure 8.3. 

Like the NP model, the PP model over-estimated demands in the first story strongback brace. 

Differences in the minimum and maximum demands in the strongback elements arise from 

differences in adjusted tension and compression strengths in the BRBs when the model was pushed 

to the “left” versus the “right”. 

The EP model was the least conservative of the MPA models. This model especially under-

estimated demands in the upper story strongback braces and tie. This is because the deformation-

controlled actions do not yield in the second mode of this simulation, resulting in inaccurate 

characterization of potential unbalanced forces in the second mode. Force re-distributions due to 

the partial mechanism behavior in the second mode are not represented in this model.  
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Table 8.1. Numerical models used in MPA case study. 

Analysis Method 
Material Model for Deformation-Controlled Actions 

Mode 1 Mode 2 and higher 

Modal Pushover (NP) Same as dynamic model [Section 4.5] Same as dynamic model [Section 4.5] 

Modal Plastic (PP) Perfectly plastic with expected yield 
strength 

Perfectly plastic with nominal yield 
strength 

Modal Elastic (EP) Perfectly plastic with expected yield 
strength 

Linear elastic 

 

  

  

Figure 8.3. Example of interpolation usng PP model. %C = base shear at yield; %� = elastic base shear calculated from the modal force distribution, 	L, in Equation 7.33 

using elastic spectral pseudo-accelerations, #L(�L), at the modal period, �L.  
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Figure 8.4. Comparison of static demands from MPA to nonlinear dynamic output. 
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Table 8.2. Static strongback demands using MPA. 
A
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Lateral Load 
Distribution 

Axial-force demand 

�A,G  �A,J  �A,_  �A,x  �°,J  �°,_  

[kips] [kips] [kips] [kips] [kips] [kips] 

min max min max min max min max min max min max 

G
ra

v
it
y
 (1.2 + 0.2*îð)' + 0.5Q  -81 3 -22 -6 -66 -23 (0.9 − 0.2*îð)'  -38 -1 -9 -5 -31 -13 1.05' + 0.125Q  -57 -7 -14 -13 -44 -21 

D
y
n

a
m

ic
 

Median 1 -1625 1614 -745 768 -956 859 -851 941 -1157 1176 -1141 1085 

85th percentile 1 -2287 2342 -994 1002 -1411 1279 -1461 1474 -1713 1724 -1585 1719 

M
o

d
a
l 
P

u
s
h

o
v
e

r,
 N

P
 4G, 1st mode -1346 1173 -759 632 -545 421 -341 181 -841 810 -630 607 4J, 2nd mode -1468 1546 -37 51 -722 689 -853 859 -844 893 -839 887 4_, 3rd mode -170 171 -200 198 -146 146 -219 219 -15 17 -16 17 4x, 4th mode 0 0 -1 1 -1 1 0 0 0 1 0 1 Ä4GJ + 4JJ + 4_J + 4xJ  2057 787 916 949 1226 1088 

|4G| + Ä4JJ + 4_J + 4xJ  2852 965 1282 1227 1734 1517 
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o

d
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l 
P
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u
s
h

o
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e

r,
 P

P
 4G, 1st mode -1204 1057 -802 659 -470 345 -198 50 -728 708 -607 -607 4J, 2nd mode -1815 1815 -103 103 -753 753 -952 952 -1095 1095 -1088 -1088 4_, 3rd mode -133 133 -173 173 -109 109 -196 196 -22 22 -22 -22 4x, 4th mode -12 12 -45 45 -47 47 -12 12 -16 16 -16 -16 Ä4GJ + 4JJ + 4_J + 4xJ  2182 828 895 992 1315 1246 |4G| + Ä4JJ + 4_J + 4xJ  3024 1009 1232 1170 1822 1696 
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l 
E
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o
v
e

r,
 E

P
 4G, 1st mode -1204 1057 -802 659 -470 345 -198 50 -728 708 -607 -607 4J, 2nd mode -1200 1200 -96 96 -603 603 -673 673 -550 550 -550 -550 4_, 3rd mode -133 133 -173 173 -109 109 -196 196 -22 22 -22 -22 4x, 4th mode -12 12 -45 45 -47 47 -12 12 -16 16 -16 -16 Ä4GJ + 4JJ + 4_J + 4xJ  1705 828 773 729 912 820 |4G| + Ä4JJ + 4_J + 4xJ  2411 1005 1084 899 1278 1158 
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Table 8.3. Ratio of static demand using MPA to median dynamic response. 
A
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Lateral Load 
Distribution 

Axial-force demand Ratio 

�A,G/�A,GµO%  �A,J/�A,JµO%  �A,_/�A,_µO%  �A,x/�A,xµO%  �°,J/�°,JµO%  �°,_/�°,_µO%  

min max min max min max min max min max min max 

N
P

 Ä4GJ + 4JJ + 4_J + 4xJ  1.22 1.32 1.05 1.03 0.94 1.08 1.10 1.02 1.02 1.08 0.94 1.02 

|4G| + Ä4JJ + 4_J + 4xJ  1.70 1.83 1.28 1.27 1.32 1.52 1.42 1.32 1.44 1.53 1.31 1.43 

P
P

 Ä4GJ + 4JJ + 4_J + 4xJ  1.30 1.40 1.10 1.09 0.92 1.06 1.15 1.07 1.09 1.16 1.07 1.17 

|4G| + Ä4JJ + 4_J + 4xJ  1.80 1.94 1.34 1.33 1.27 1.46 1.35 1.26 1.52 1.61 1.46 1.59 

E
P

 Ä4GJ + 4JJ + 4_J + 4xJ  1.01 1.10 1.10 1.09 0.80 0.91 0.84 0.79 0.76 0.81 0.71 0.77 

|4G| + Ä4JJ + 4_J + 4xJ  1.43 1.55 1.34 1.32 1.12 1.28 1.04 0.97 1.06 1.13 1.00 1.09 

 

Table 8.4. Ratio of static demand using MPA to 85th percentile dynamic response. 

A
n

a
ly

s
is

 
T

y
p

e
  

Lateral Load 
Distribution 

Axial-force demand Ratio 

�A,G/�A,G.µ%  �A,J/�A,J.µ%  �A,_/�A,_.µ%  �A,x/�A,x.µ%  �°,J/�°,J.µ%  �°,_/�°,_.µ%  

min max min max min max min max min max min max 

N
P

 Ä4GJ + 4JJ + 4_J + 4xJ  0.88 0.90 0.79 0.79 0.64 0.72 0.64 0.65 0.70 0.73 0.68 0.64 

|4G| + Ä4JJ + 4_J + 4xJ  1.22 1.25 0.96 0.97 0.90 1.01 0.83 0.84 0.99 1.03 0.94 0.89 

P
P

 Ä4GJ + 4JJ + 4_J + 4xJ  0.93 0.95 0.83 0.83 0.63 0.71 0.67 0.68 0.75 0.78 0.78 0.73 

|4G| + Ä4JJ + 4_J + 4xJ  1.29 1.32 1.01 1.01 0.86 0.97 0.79 0.80 1.04 1.08 1.06 1.00 

E
P

 Ä4GJ + 4JJ + 4_J + 4xJ  0.73 0.75 0.83 0.83 0.54 0.61 0.49 0.50 0.52 0.54 0.51 0.48 

|4G| + Ä4JJ + 4_J + 4xJ  1.03 1.06 1.00 1.01 0.76 0.86 0.61 0.62 0.73 0.76 0.72 0.68 

8.6 MODAL ENVELOPE ANALYSIS 

A simplified modal static method was developed based on the higher-mode framework outlined 

for the MPA method in Section 8.5. Recalling the equation of horizontal equilibrium calculated in 

Section 7.2, the strongback brace demand in a story, �A,>, can be estimated by: 

�A,> = �>� ø%> − �@,> 74>ù Equation 8.6

%> = story shear demand; �@,> = axial force in the adjacent inelastic brace. The upper bound of the 

strongback brace axial force, �A,>, occurs with one of the three following scenarios takes place: 
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1. The story shear is zero (%> = 0) such that �A,> = − AúR t@ú �@,>. 

2. The axial force in the inelastic brace is zero (�@,> = 0) such that �A,> = AúR %>. 

3. The story shear and inelastic brace axial force act in the same direction such that �A,> =− AúR ®%> + �@,> t@ú±. 

These scenarios are generally supported by observations extracted from nonlinear dynamic 

analysis of the benchmark strongback. The zero-story shear in scenario [1] is justified by Figure 

7.15. The story shear envelopes in this plot exhibit near-zero story shear in some of the stories 

when the corresponding strongback demand is at a peak. The axial force in the inelastic braces in 

scenario [2] is justified by Figure 7.20 and Figure 7.21. Inelastic brace forces can be near zero at 

the time of peak strongback demands. This scenario would also occur upon BRB rupture. Scenario 

[3] is unlikely and was not observed to be a primary characteristic of the forty-four ground motions 

analyzed for the benchmark strongback. Scenarios [1] and [2] are then left as probable upper 

bounds to the strongback brace force.  

If it is assumed that the strongback is designed for the entirety of the dominant higher-

mode response and has little participation in the first mode other than through yielding in the fuses, 

then an upper estimate for the strongback brace demands can be estimated from the following 

envelope: 

ê�A,>∗ ≥ �A,> = max ��>� ø 74> �@,>∗ ù , �>� %J,>� Equation 8.7

%J,> = story shear developed by a second-mode force distribution at the second-mode period, �J; �@,>∗ = adjusted strength of the inelastic braces. This approximation assumes that the fuses do not 

contribute lateral resistance in the second mode. As such, the strongback is designed for the 

entirety of the second-mode response.  

This procedure, termed the Modal Envelope Analysis (MEA) method, separates force 

demands in the strongback truss into two parts: [i] the forces developed from the diagonal 

component of the axial force in the adjacent inelastic brace in the same story and [ii] an elastic 

higher-mode “bending” response that does not include the fuses. In some cases, the third mode 

may also contribute significantly to demands in the strongback elements. This contribution will 

depend on the mass participation of the third mode and on whether the second-mode period is in 

the constant acceleration range or on the descending branch of the constant velocity range of the 

elastic response spectrum. For the case when there the third mode should also be included, 

Equation 8.7 becomes: 

ê�A,>∗ ≥ �A,> = max ;�>� ø 74> �@,>∗ ù , 9� �>� %J,>�J + � �>� %_,>�J< Equation 8.8

Strongback forces are then calculated from an envelope including the demands from the second- 

and third-mode story shear distributions. 
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8.6.1 MEA Procedure 

Every analysis in the MEA procedure is elastic, thereby eliminating the partial mechanism 

analyses requirements in the MPA procedure. Strongback demands are estimated by enveloping 

the demands delivered by the fuses under a first mode pivoting response and elastic analysis in the 

higher modes involving only the essentially elastic actions. The MEA procedure modifies steps 

[4-6] from the MPA procedure as follows: 

4. Calculate the force demands delivered to the strongback elements under a first mode 

distribution considering the full plastic mechanism, 4G.  

5. Compute the equivalent-lateral forces for the second-mode period by £J = ΓJ¦êJ#J using 

the second-mode pseudo-acceleration and modal participation factor from an eigenvalue 

analysis of the full elastic structure (see [3] in the MPA procedure). Create a separate 

analysis of the strongback frame with the inelastic braces removed and pins designated for 

the locations of expected beam flexural hinging. Add a roller at the roof level for stability 

and compute the second-mode demands, 4J, using the separate model. 

6. Repeat step [5] for additional modes as needed to achieve 95% mass participation. 

Combine the additional modes with the demands from [5] using an appropriate modal 

combination rule (e.g., SRSS or CQC). 

7. Calculate the total response, 4, by enveloping the first and higher-mode response quantities, 4 = max (|4G|, |4L|), from [4] and [5,6]. 

This method is shown schematically in Figure 8.5. Analysis 1 for the deformation-controlled 

actions is similar to the MPA method in Figure 8.2.  

 Though this method removes the need for nonlinear material models in the simulations, it 

requires two numerical models: [i] an eigenvalue analysis of the full structure to calculate the 

necessary modes and to perform a first mode plastic analysis and [ii] a higher-mode analysis of 

the strongback-only model. To simplify this process further, the following section introduces a 

simplified higher-mode force distribution to estimate the first mode plastic analysis step and to 

account for the higher-mode bending without resorting to a supplemental eigenvalue analysis of 

the full model.  
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Figure 8.5. Schematic of Modal Envelope Analysis method. 

8.6.2 Simplified Higher-mode Distribution 

Elastic modes become coupled as the system behaves inelastically, and inelastic modes change 

with time with changes in stiffness. Thus, though justified for the MPA procedure, use of elastic 

modes and inelastic behavior is approximate and relies on assumptions of “weak” coupling. In 

light of these less than rigorous assumptions, this section presents a simplified applied force 

distribution that does not rely on eigenvalue analysis. 

The higher-mode sign reversal was deemed critical to estimating higher-mode bending 

effects. Based on this premise, force reversal rather than elastic mode shape was emphasized for 

the simplified force distribution. This section focuses on force reversals representing the second-

mode response. Similar simplifications can be made for other higher-mode shapes.  

This simplification begins by using the ELF method in ASCE-7-16 (2016) to approximate 

a first-mode shape. Herein, the ELF procedure representing a first-mode force distribution will be 

termed ELF1. Force distributions per ELF1 can be written as: 

	>,G = �>ℎÊ>¬Σ>�G? �>ℎÊ>¬ %R,G Equation 8.9 

	> = force at level &; %R,G = design base shear; < = roof level. The subscript (∙)G indicates a first 

mode response. The first mode shape, ê>,G, can be extracted from Equation 8.9 to vary linearly 

(� = 1) with cumulative height, ℎÊ>: 

ê>,G = �>ℎÊ>Σ>�G? �>ℎÊ> Equation 8.10 

�> = lumped floor seismic weight as a proxy for mass. The effective weight, �G∗, in the first mode 

can be estimated using the first mode shape in Equation 8.10 normalized its magnitude at the roof 

(êÊ>,G = üú,ûü-,û): 
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�G∗ = Σ>�G? �>êÊ>,GJ  Equation 8.11 

This is an estimate of the seismic weight participating in the first mode assuming a symmetric 

building with the mass lumped at every floor level. Mass participation in the second mode, �J∗, 

can be estimated from the difference between the total seismic weight, �, and �G∗: �J∗ = � − �G∗ Equation 8.12 �J∗ = estimated seismic weight acting in the second mode. This formulation assumes that all of 

the remaining seismic weight in the higher-modes acts in the second mode. Alternatively, mass 

participation can be calculated per an eigenvalue analysis. The second-mode base shear, %R,J, can 

be estimated as:  %R,J = �J∗#J Equation 8.13 #J(�J) = pseudo-acceleration at the second-mode period, �J = �G/3, in units of ;. The higher-

mode periods for a shear building can be estimated from the first mode period and are shown in 

Table 8.5. Usually this pseudo-acceleration would fall in the constant acceleration range of the 

elastic design spectrum and can be estimated as #J = *rð or *îð depending on whether the 

strongback is expected to remain elastic at the  !"- or '"-level. 

A simplified second-mode shape, =, can be generated based on a reversal of a uniform load 

distribution over 
 stories. The second-mode reversed shape, =J, for a four-story building is 

shown in Figure 8.6 and written in vector format below: =J = >1, 1, 0, −1?Ë Equation 8.14 

Note that the forces cancel at the third-floor level because of the sign reversal. The base shear from 

the reversed shape, =J, needs to be amplified to equal the second-mode base shear, %R,J. Assuming 

the strongback behaves like a simply supported beam (see Section 7.4), the base shear from =J 

can be calculated by taking moment equilibrium about the roof of the strongback; point 0 in Figure 

8.6. The base shear, "G,J, resulting from =J can be written in terms of seismic floor weight, �>, 

frame height, �, and cumulative height, ℎÊ>, as: 

"R,J = Σ>�G? ø�> =>,J � − ℎÊ>� ù Equation 8.15 

The final reversed force distribution, 	>,J, can then be scaled to the base shear from Equation 8.13: 

	>,J = �>=>,J %R,J"R,J = �>=>,JΣ>�G? ø�> =>,J � − ℎÊ>� ù %R,J 
Equation 8.16 

This equation has been formulated similar to Equation 8.9 to mimic the traditional ELF1 force 

distribution from ASCE-7-16. Herein, it is termed the ELF2 procedure. Note that this formulation 

assumes a residual reaction force at the roof level takes the place of the roof level load; see <?,> in 

Figure 8.6: <?,J = %R,J − Σ>�G? 	>,J Equation 8.17 

Story shears can be calculated using this reaction force to satisfy equilibrium. Conceptually, this 

reaction force is a representation of the simply supported beam analogy for the strongback derived 
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in Section 7.4. This force reversal assumes that all the higher modes are represented by the second-

mode representation, =J. It is envisioned that the participating mass in the third and higher modes 

would require nested variations of this derivation.  

 

 
Figure 8.6. Simplified higher-mode distribution for ELF2 procedure. 

8.6.3 Points of Load Reversal 

The number of stories, 
, participating in the sign reversal for =J can be estimated from the mode 

shape of a cantilever beam with uniform mass and stiffness; see Figure 8.7. A uniform cantilever 

column has elastic vibrational modes: 

êLiℎÊj = !G[cosh)LℎÊ − cos)LℎÊ − cosh)L� + cos)L�sinh)L� + sin )L� isinh)LℎÊ − sin )LℎÊj Equation 8.18

!G = arbitrary constant. The parameter, )L�, can be solved numerically for each mode ()L� =1.8751, 4.6941, 7.8548, 10.996) (Chopra, 2011). The roots of Equation 8.18 for the first four 

modes can be found in Table 8.5. The heights found in this table estimate the point of load reversal 

for the first four modes. The number of stories participating in the reversal, 
, can be estimated 

by interpolating between the closest floor levels and the point of load reversal, ℎÊ/�; see Figure 

8.7.  

For the four-story benchmark building, this reversal occurs approximately three-quarters 

up the height of the building, corresponding to a load reversal at the third story; see Figure 8.6. As 

the strongback gets taller and other modes besides the second become more dominant, multiple 

load reversal effects other than the second-mode reversal may also need to be considered. Though 

not studied for the four-story benchmark strongback, potential load profiles estimating the third 

and fourth modes are shown for completeness. 
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Table 8.5. Estimate of point of load reversal with building height. 

   
Location of reversal, �h/D 2 

Mode åÕ/å� 1 Ü�D 2 1 2 3 4 

Mode 1 1 1.8751 0    

Mode 2 3 4.6941 0 0.78   

Mode 3 5 7.8548 0 0.50 0.87  

Mode 4 7 10.996 0 0.36 0.64 0.85 

1 Estimated from a uniform shear building.  

2 Estimated from a uniform cantilever beam. 

 

 

Figure 8.7. Schematic of load reversal profiles. 

8.6.4 SMEA Procedure 

The Simplified Modal Envelope Analysis (SMEA) method uses the load reversal formulated in 

Section 8.6.2 and approximates demands delivered by the fuses using an overstrength factor, ΩO =_J ?J, as a proxy for the amplification factor, �, from Equation 7.10. This overstrength factor was 

calibrated to the nonlinear dynamic results of the benchmark strongback and is not reflective of 

the overstrength factors for conventional systems in ASCE 7-16; see Section 7.5.1. This procedure 

simplifies steps [3-7] of the MEA method to the following: 

3. Estimate the second-mode period from the fundamental period, �J = �G/3. Determine the 

second-mode pseudo-acceleration, #J(�J), by reading the pseudo-acceleration ordinate 
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from the elastic response spectrum. Alternatively, #J(�J) = *rð or *îð depending on 

whether the strongback is expected to remain elastic at the  !"- or '"-level. 

4. Calculate the demands, 4G, delivered by the forces using the ELF1 procedure with � = 1. 

Use ΩO = _J ?J to estimate forces in the strongback truss. 

5. Compute the reversed force distribution using Equation 8.16 and the pseudo-acceleration 

from [3]. Remove all fuse actions by removing the inelastic braces and specifying pins at 

the locations of expected beam flexural hinging. Add a roller at the roof level for stability 

and compute the bending response, 4J, using the separate model. Alternatively, fuses can 

be given an appropriately small material stiffness (e.g., 0.1"). If a roller at the roof is not 

used for stability, the "QºJ distribution needs to include a force reversal at the upper levels, 
. 

6. Calculate the total response, 4, by enveloping force demands from [4] and [5]; 4 =max (|4G|, |4J|). 

The SMEA method estimates demands delivered by the fuses through ΩO = _J ?J and provides a 

simple means of estimating higher-mode bending effects. More research is needed to evaluate 

appropriate values for ΩO and to extend this work to taller strongback systems with dominant third 

or fourth modes. 

Note that step [4] is intended to approximate demands delivered by the fuses. However, 

this step uses an elastic analysis that cannot capture force re-distributions due to yielding and does 

not incorporate the adjusted strength of the fuses; e.g., inclusion of ( and ) for the BRBs. 

Moreover, if the strongback was separated from the inelastic brace bay, this step would result in 

minimal strongback demands. As such, step [4] would ideally be replaced with a plastic analysis 

or pushover analysis after preliminary design.  

 

 

Figure 8.8. Schematic of Simplified Modal Envelope Analysis method. 



210 

 

8.7 COMPARISON OF PROPOSED DESIGN METHODS 

To validate the proposed analysis methods, estimates of strongback demands using the MPA, 

MEA, and SMEA procedures were compared to the output from nonlinear dynamic analysis of the 

four-story benchmark strongback. To emphasize the difference between a single-mode and multi-

mode method of analysis, comparisons were also made using a first mode-only plastic analysis 

and the ELF1 procedure using ΩO = _J ?J. Force demands in the strongback from each of the analyses 

are tabulated in Table 8.6. The ratio between the static-to-median and -85th percentile dynamic 

response for each analysis is shown in Table 8.7 and Table 8.8. The distribution of estimations 

alongside the dynamic demand output is shown in Figure 8.9. 

When compared to the results from the nonlinear dynamic analyses, the modal procedures 

provide superior estimates of strongback demands compared to that of the traditional first mode-

only distributions. The MPA results are tabulated in terms of the NP and PP models using the 

superposition modal combination rule. The MPA procedure gives the closest estimate to the 

nonlinear dynamic response for all elements other than the first-story strongback brace, which was 

over-estimated by 28 to 44%. The MPA method explicitly includes the inelastic response of the 

first four dominant translational modes.  

The MEA and SMEA enveloping procedures provide better estimates for the demands in 

the first-story strongback brace than the MPA methods but over-estimate demands in the tie by 37 

to 50% compared to the 85th percentile response. Note that the MEA procedure calculates the 

modes from the original model and applies these modes separately to a model where the fuses are 

removed. The SMEA procedure utilizes the simplified force reversal calculated per Equation 8.16. 

To justify use of the elastic modes in the MEA methods, comparisons were also made to 

force distributions estimated from the mode shapes extracted from a strongback-only model with 

the fuses removed and a roller at the roof. These modes are termed transient modes as they account 

for the low post-yield stiffness of the fuses by removing their contribution to the eigenvalue 

calculations. The first mode of the transient modes corresponds to the desired bending response. 

Calculation of a transient first mode using the strongback-only model over-estimated strongback 

demands in the fourth story strongback brace and tie by a significant margin.  

The SMEA procedure using the simplified force-reversal distribution gave similar 

estimates to the MEA procedure. The MEA procedure additionally compared estimates using the 

second mode and an SRSS of the second-to-fourth translational modes. Use of more than the 

second mode in the MEA procedure did little to improve estimates of the strongback demands. 

Demands estimated from a plastic analysis using a first mode force distribution and the ELF1 

method with ΩO = _J ?J served as an appropriate lower bound for the SMEA method. This lower 

bound controlled the demands in the second-story strongback brace. Note that a more appropriate 

estimate of tie demands could be obtained by assuming a notional value of force in the fuses instead 

of complete inelastic element removal.  



211 

 

 

 

 

 

(a) (b) 

 

 
Figure 8.9. Comparison of static demands from proposed methods to nonlinear dynamic output. 
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Table 8.6. Static strongback demands. 
A

n
a
ly

s
is

 
T

y
p

e
  

Lateral Load 
Distribution 

Axial-force demand 

�A,G  �A,J  �A,_  �A,x  �°,J  �°,_  

[kips] [kips] [kips] [kips] [kips] [kips] 

min max min max min max min max min max min max 

G
ra

v
it
y
 (1.2 + 0.2*îð)' + 0.5Q  -81 3 -22 -6 -66 -23 (0.9 − 0.2*îð)'  -38 -1 -9 -5 -31 -13 1.05' + 0.125Q  -57 -7 -14 -13 -44 -21 

D
y
n

a
m

ic
 

Median 1 -1625 1614 -745 768 -956 859 -851 941 -1157 1176 -1141 1085 

85th percentile 1 -2287 2342 -994 1002 -1411 1279 -1461 1474 -1713 1724 -1585 1719 

N
P

 |4G| + Ä4JJ + 4_J + 4xJ  2852 965 1282 1227 1734 1517 

P
P

 |4G| + Ä4JJ + 4_J + 4xJ  3024 1009 1232 1170 1822 1696 

P
la

s
ti
c
 

1st mode -1198 1041 -842 678 -476 326 -214 55 -737 729 -617 609 

E
L

F
1
 

Elastic with ΩO = _J ?J -1698 1698 -912 912 -685 685 -192 192 -462 462 -438 438 

E
la

s
ti
c
 1

 

2nd mode -2224 2224 -229 229 -1109 1109 -1457 1457 -2135 2135 -2135 2135 

3rd mode -159 159 -293 293 -197 197 -313 313 -105 105 -105 105 

4th mode -13 13 -72 72 -76 76 -18 18 -49 49 -49 49 

Transient 1st mode -2593 2593 -776 776 -1084 1084 -2417 2417 -2912 2912 -2912 2912 

Simplified reversal  -2489 2489 -299 299 -1418 1418 -1492 1492 -2407 2407 -2407 2407 

E
n

v
e

lo
p

e
 

MEA of 2nd mode -2224 2224 -842 678 -1109 1109 -1457 1457 -2135 2135 -2135 2135 

MEA of higher modes 2 -2230 2230 -842 678 -1129 1129 -1485 1485 -2138 2138 -2138 2138 

SMEA with ELF2 -2489 2489 -912 912 -1418 1418 -1492 1492 -2407 2407 -2407 2407 

1 analysis does not include contributions from fuses or gravity 
2 uses SRSS modal combination of second through fourth translational modes 
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Table 8.7. Ratio of static strongback demands to median dynamic response. 
A

n
a
ly

s
is

 
T

y
p

e
  

Lateral Load 
Distribution 

Axial-force demand 

�A,G/�A,GµO%  �A,J/�A,JµO%  �A,_/�A,_µO%  �A,x/�A,xµO%  �°,J/�°,JµO%  �°,_/�°,_µO%  

min max min max min max min max min max min max 

N
P

 |4G| + Ä4JJ + 4_J + 4xJ  
1.70 1.83 1.28 1.27 1.32 1.52 1.42 1.32 1.44 1.53 1.31 1.43 

P
P

 |4G| + Ä4JJ + 4_J + 4xJ  
1.80 1.94 1.34 1.33 1.27 1.46 1.35 1.26 1.52 1.61 1.46 1.59 

P
la

s
ti
c
 

1st mode 0.71 0.67 1.12 0.89 0.49 0.39 0.25 0.06 0.61 0.64 0.53 0.57 

E
L

F
1
 

Elastic with ΩO = _J ?J 1.01 1.09 1.21 1.20 0.71 0.81 0.22 0.21 0.38 0.41 0.38 0.41 

E
n

v
e

lo
p

e
 

MEA of 2nd mode 1.32 1.43 1.12 0.89 1.14 1.31 1.69 1.57 1.78 1.89 1.84 2.01 

MEA of higher modes 1.33 1.43 1.12 0.89 1.16 1.34 1.72 1.60 1.78 1.89 1.84 2.01 

SMEA with ELF2
 1.48 1.60 1.21 1.20 1.46 1.68 1.73 1.61 2.00 2.13 2.07 2.26 

Table 8.8. Ratio of static strongback demands to 85th percentile dynamic response. 

A
n

a
ly

s
is

 
T

y
p

e
  

Lateral Load 
Distribution 

Axial-force demand 

�A,G/�A,G.µ%  �A,J/�A,J.µ%  �A,_/�A,_.µ%  �A,x/�A,x.µ%  �°,J/�°,J.µ%  �°,_/�°,_.µ%  

min max min max min max min max min max min max 

N
P

 |4G| + Ä4JJ + 4_J + 4xJ  
1.22 1.25 0.96 0.97 0.90 1.01 0.83 0.84 0.99 1.03 0.94 0.89 

P
P

 |4G| + Ä4JJ + 4_J + 4xJ  1.29 1.32 1.01 1.01 0.86 0.97 0.79 0.80 1.04 1.08 1.06 1.00 

P
la

s
ti
c
 

1st mode 0.51 0.46 0.84 0.68 0.33 0.26 0.15 0.04 0.42 0.43 0.38 0.36 

E
L

F
1
 

Elastic with ΩO = _J ?J 0.72 0.74 0.91 0.92 0.48 0.54 0.13 0.13 0.26 0.27 0.27 0.26 

E
n

v
e

lo
p

e
 

MEA of 2nd mode 0.95 0.97 0.84 0.68 0.78 0.88 0.99 1.00 1.22 1.27 1.33 1.26 

MEA of higher modes 0.95 0.98 0.84 0.68 0.79 0.89 1.01 1.02 1.22 1.27 1.33 1.26 

SMEA with ELF2
 1.06 1.09 0.91 0.92 0.99 1.12 1.01 1.02 1.37 1.43 1.50 1.42 
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8.8 BEAM AND COLUMN DESIGN 

This section describes approaches for the design of the beams and columns in strongback-braced 

frames. Axial forces in the columns extracted from each of the proposed analysis methods were 

compared to that from the nonlinear dynamic analysis of the benchmark strongback. 

Recommendations of minimal column flexural strength for flexural-axial interaction checks of the 

columns are also provided. 

8.8.1 Beam Design 

Beams are considered deformation-controlled in flexure and force-controlled under axial 

compression and shear. Flexural strength is determined per traditional analysis, such as those 

provided in ASCE-7-16 (2016). Moment strength of the beam is determined from flexural 

demands generated from gravity loading as if the braces in the story above and below were not 

present.  

Shear developed from beam plastic hinging should be accounted for in designing for the 

shear strength of the beam. This could be considered based on capacity design assuming flexural 

plastic hinging at the beam link ends. Beam links should conform to the classification and 

deformation limits associated with links in eccentrically braced frames (EBFs); see Section 2.2.2. 

Provided the beams are long enough, they can be assumed to conform to flexural links with a strain 

hardening adjustment factor of 1.0. 

Axial-force demands are checked based on demands extracted by any one of the proposed 

analysis methods; see Sections 8.4 through 8.6. If these axial-force demands are significant, axial-

flexural interaction of the beam should be considered.  

8.8.2 Column Design 

Columns are deformation-controlled in flexure and force-controlled under axial compression. Both 

moments and axial loads can be calculated per any one of the proposed analysis methods 

accounting for higher-mode bending in Sections 8.4 through 8.6.  

Columns can be designed considering accumulated gravity loading, �o,Dú; the vertical 

component of the adjoining braces, !>∗, �>∗, or �A,>; and the shear developed from plastic hinging 

in the beam links, %@,> or %A,>; see Figure 8.10. Note that the 0.88 reduction factor allowed for the 

design of columns in EBFs three stories and greater is not applicable for the design of strongback-

braced frames as all inelastic braces and beam links can yield at the same time due to the presence 

of the strongback; see Section 2.2.2. 

Axial-force demands are well-constrained for the design of the inelastic column. However, 

these demands are less well constrained in the strongback column due to uncertainty in 

determining the forces in the strongback braces and the randomness of the ground motion. To 

account for uncertainty in the ground motion intensity, it is recommended that that axial forces in 

the strongback truss include an adjustment factor of at least 1.1 for calculating column axial-force 

demands. Further analysis is needed to justify the value of this adjustment factor.  
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Comparisons of the demands extracted from the analysis and the modal pushover and 

enveloping procedures for the strongback column are shown in Table 8.6. Though axial-force 

demands are well estimated by the proposed analysis methods, the models used for the PP modal 

pushover analysis and MEA and SMEA enveloping methods under-estimated in-plane flexural 

moments developed in the strongback column. These models assumed pins at all beam-column 

connections while the nonlinear dynamic model used partially-restrained springs at those 

locations. Note that at the 85th percentile, column flexural demands were 18 and 44% of the 

column’s expected plastic flexural capacity at the first and fourth story respectively. 

Column compression forces should be checked based on the lower-bound limit states of 

flexural, flexural-torsional, and torsional buckling. To account for the high axial-force demands 

that can develop in the strongback column, columns should also consider a minimum flexural 

capacity; see Figure 8.11. Herein, it is recommended that columns be designed including 

interaction between the calculated axial forces and bending moments of 20% of the column’s 

expected plastic moment strength (CSA-S16-14, 2014). Alternatively, flexural demands can be 

extracted directly from the analysis; see Figure 8.11. Further analysis is needed to justify the 

magnitude of the additional bending moment. 

  
 (a) (b) 

Figure 8.10. Column free body diagram – (a) positive loading, (b) negative loading. 
Note: directions of internal forces may change depending on assumed distribution of lateral loading. 
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Figure 8.11. Axial and moment diagrams extracted from pushover analyses in first and second mode. 
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Table 8.9. Static strongback column demands. 
A

n
a
ly

s
is

 
T

y
p

e
  

Lateral Load 
Distribution 

Force Demand 

�DA,G  �DA,J  �DA,_  �DA,x   DA,G 1  DA,J 1  DA,_ 1  DA,x 1 

[kips] [kips] [kips] [kips] [k-in.] [k-in.] [k-in.] [k-in.] 

min max min max min max min max     

G
ra

v
it
y
 (1.2 + 0.2*îð)' + 0.5Q  -140 -115 -70 -45 - - - - (0.9 − 0.2*îð)'  -72 -57 -36 -22 - - - - 1.05' + 0.125Q  -131 -99 -64 -32 - - - - 

D
y
n

a
m

ic
 

Median -1486 1262 -1504 1290 -763 764 -811 720 2467 2359 3120 4775 

85th percentile -2095 1736 -2175 1826 -1235 1199 -1262 1272 3128 3035 4392 5933 

M
o

d
a
l 
P

u
s
h

o
v
e

r,
 N

P
 4G, 1st mode -386 506 -460 637 -234 385 -112 238 - - - - 4J, 2nd mode -1380 1318 -1363 1300 -712 709 -721 720 - - - - 4_, 3rd mode -106 106 -105 105 -184 183 -185 184 - - - - 4x, 4th mode 0 0 0 0 0 0 0 0 - - - - Ä4GJ + 4JJ + 4_J + 4xJ  1474 1508 830 781 2957 2928 3956 6549 

|4G| + Ä4JJ + 4_J + 4xJ  1885 2003 1120 982 4179 4100 5072 8363 

M
o

d
a
l 
P

la
s
ti
c
 P

u
s
h

o
v
e

r,
 P

P
 4G, 1st mode -534 672 -614 753 -122 245 -42 165 - - - - 4J, 2nd mode -1520 1520 -1506 1506 -789 789 -792 792 - - - - 4_, 3rd mode -72 72 -72 72 -162 162 -163 163 - - - - 4x, 4th mode -8 8 -8 8 -10 10 -10 10 - - - - Ä4GJ + 4JJ + 4_J + 4xJ  1663 1685 842 825 2292 2292 1009 967 |4G| + Ä4JJ + 4_J + 4xJ  2194 2260 1051 974 2935 2935 1352 1341 

P
la

s
ti
c
 

1st mode -534 672 -614 753 -122 245 -42 165 779 853 853 535 

E
L

F
 

Elastic with 0.75< -1530 1530 -1548 1548 -168 168 -186 186 1200 1200 198 198 

E
n

v
e

lo
p

e
 

2nd mode -1945 1945 -1945 1945 -1212 1212 -1212 1212 2500 2500 2188 704 

Simplified reversal  -2173 2173 -2173 2173 -1241 1241 -1241 1241 2656 1241 1241 340 

1 maximum moment along column length. 
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8.9 SUMMARY AND CONCLUSIONS 

Two methods were proposed to size the fuses in strongback-braced frames: 

1. Sizing by traditional demand-to-capacity ratios at yield due to first-mode demands. 

2. Sizing for potential force re-distributions at the limit load using plastic analysis.  

Higher-mode effects are amplified by the presence of the strongback. As such, traditional capacity 

design assuming a first-mode shape is inadequate for estimating demands in the strongback 

elements. This chapter proposed three methods of analysis to estimate demands in the strongback 

truss: 

1. Dynamic capacity analysis 

2. Modal pushover analysis (MPA) 

3. Modal envelope analysis (MEA) 

The MPA method combines individual pushover analyses in each mode. First-mode 

demands can be estimated from a plastic analysis using the complete mechanism. Pushover 

analyses can be used to account for potential partial mechanism response in the second and higher 

modes. Elastic analyses can be used to estimate the response in those modes that remain elastic. A 

superposition modal combination rule was found to well-estimate forces extracted from nonlinear 

dynamic analysis. Use of a simple, perfectly plastic material model introduced an appropriate level 

of conservatism at reduced computational cost. Such perfectly plastic analyses, however, are 

limited to elements with stable, full hysteretic behavior and cannot be applied to strongback-braced 

frames utilizing buckling braces as fuses.  

 A simple enveloping analysis approach was proposed for preliminary strongback design. 

The enveloping method broke apart the strongback’s response into a “pivoting” first mode 

response and a “bending” strongback-only higher-mode response. This eliminated the need for 

analyses involving partial mechanisms in the higher modes. A simplified force distribution was 

derived to represent higher-mode force reversal effects without the need for eigenvalue analysis. 

As formulated herein, the enveloping method is intended to provide immediate information for 

design. Note that the point of force reversal for this method was derived based on assumptions of 

uniform mass and stiffness. As such, this method may not be suitable for structures exhibiting 

large vertical stiffness or mass irregularities. 

The methods herein utilized spectral ordinates of an  !"-level response spectrum. Any 

one of the proposed methods could be adjusted using spectral ordinates from a '"-level response 

spectrum. This gives the engineer the flexibility to choose a desired performance level provided 

ductile details are utilized where the strongback is expected to buckle or yield at other levels of 

ground shaking.  

The proposed analysis methods require both experimental and numerical studies to 

evaluate their robustness and ensure their validity. For example, the benchmark strongback used 

to rationalize the proposed methods used a strongback embedded in the same bay as the inelastic 

braces and the same BRB size in every story. Observations about modal response may be more 

salient when the strongback bay is separated from the inelastic brace bay. These analysis methods 

did not address the non-simulated collapse modes triggered by deformation limits in the beam link 
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during the nonlinear dynamic analyses conducted in Chapter 5. Further verification of the proposed 

methods using other ground motion characteristics, bracing configurations, bracing type, building 

heights, story heights, etc. is needed to more fully evaluate the proposed analysis methods. 

Supplemental detailing, stiffness, and compatibility requirements are also needed to ensure 

appropriate inelastic response.  
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9 Summary and Conclusions 

9.1 SUMMARY 

The strongback is intended to mitigate story mechanisms, re-distribute inelastic demands 

vertically, and efficiently mobilize the fuses across every story. Though strongback-braced frames 

have shown promise in both research and in practice, prior studies have found it difficult to 

proportion the elastic members in the strongback truss and have recognized that the strongback 

can induce significant deformation demands in the fuses. As such, this study characterized the 

dynamic response and seismic performance of the strongback system and developed simple and 

robust analysis methods for estimating force demands in the strongback truss.  

A summary of the studies conducted as part of this research is provided below: 

 An analytical study investigated the force, stiffness, and plastic deformation parameters that 

influence the behavior of a one-story strongback with an offset bracing scheme. Based on 

several design objectives, the offset geometry was optimized to maximize elastic lateral 

stiffness and minimize plastic deformations. 

 A buckling-restrained brace material model was calibrated to eight component BRB tests and 

one quasi-static experimental test of a strongback system. A BRB simulation using the 

calibrated material model was subjected to the qualification loading protocol from AISC-341-

16 (2016) to derive adjustment factors, ( and ), for design.  

 The number of integration points and the number of sub-elements needed to characterize brace 

curvature and fiber strains for low-cycle fatigue were studied in detail. The numerical 

perturbation used to initialize buckling in the strongback braces and tie were calibrated to the 

elastic and inelastic buckling equations in AISC-360-16 (2016) per Equation 4.6. 

 A four-story benchmark strongback was designed per dynamic capacity design using nonlinear 

dynamic analyses supplemented with the acceptance criteria from FEMA-P695 (2009). The 

strongback truss was designed for less than 10% probability of inelastic response in any one 

of the strongback elements. Strongback-braced frames designs were evaluated based on an 

acceptable 10% collapse probability at the  !"-level of shaking. Adequate collapse 

performance was also verified through incremental dynamic analysis. 

 The benchmark-strongback design was utilized to parametrically study the sensitivity of 

strongback brace frame’s response to various design alternatives, including beam releases, 
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column base fixity, columns orientation, beam composite and diaphragm action, and brace end 

conditions. The response of embedded strongback configurations with varying offset and BRB 

sizes were also compared to the response of conventional BRBFs. These parameters were 

studied in terms of the median and 85th percentile response.  

 Multi-story strongback-braced frames were analytically characterized in terms of plastic 

analysis, stiffness, compatibility, and dynamic higher-mode behavior. Several analysis 

methods were proposed to estimate the force demands that develop due to higher mode 

“bending” effects for the design of the strongback truss.  

9.2 CONCLUSIONS 

Significant conclusions are summarized below -  

 The addition of a strongback can induce significant deformation demands in the fuses that are 

larger than that of a typical yielding system. An embedded strongback configuration without 

an offset results in BRB axial deformations and beam link flexural deformation that are about 

twice that of a conventional BRBF. As such, appropriate details are needed to ensure that the 

fuses have enough deformation capacity to ensure adequate ductile behavior. Offsetting the 

brace-to-beam intersection from the centerline of the braced bay can reduce inelastic 

deformations provided the frame is designed with sufficient lateral stiffness. Optimal offsets 

of the brace-to-beam intersection between the range of 1/3 to 1/4 the bay width provided a 

balance between adequate lateral stiffness and reduced deformation demands on the fuses. 

Brace axial deformations can also be reduced by moving the strongback to a separate bay. This 

separated configuration, however, does not result in reduced deformation demands in the beam 

links. 

 Strains in the fibers of distributed plasticity elements in a buckling brace non-objectively 

depend on the number of integration points used in the element. As such, parameters defining 

the low-cycle fatigue material model used in this study need to be re-calibrated to experimental 

results for choices of numerical modeling parameters, like the number of brace sub-elements, 

number of integration points per sub-element, etc. different than those used for the calibration 

studies conducted herein. 

 The inelastic and associated strain-hardening behavior of buckling-restrained braces depends 

on the loading history. As such, it is important that BRB material models be able adapt to 

changes in loading and appropriately reflect experimental data. Herein, a procedure was 

developed to consistently relate experimental data and design factors to potential dynamic 

loading. Provided the material model is history dependent, this method of calibration can also 

account for changes in the loading history. Note that calibrated models reported herein could 

be further refined with a larger experimental database of BRBs with different core cross-

sections, connections, manufacturers, etc. 

 Ground motion characteristics were found to have a greater impact on peak response over the 

other design alternatives parametrically considered herein; see Section 6.4. Ground motions 

with long durations or large pseudo-accelerations at the higher-mode periods significantly 
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affect the strongback’s dynamic response. As such, site location and the expected ground 

motion characteristics should be carefully considered.  

 The addition of a strongback results in an averaged drift profile compared to that of a 

conventional buckling-restrained braced frame. Though this results in smaller peak story drifts, 

it also results in decreased drifts in some stories and increased drifts in other stories. Due to 

the elastic nature of the strongback, accelerations also exhibit a different height-wise profile 

and tend to be larger than that of buckling-restrained braced frames. Though the collapse 

performance of strongback-braced frames is expected to be better than that of conventional 

braced frames, it is unclear how the strongback compares to conventional systems in terms of 

the performance of drift-sensitive and acceleration-sensitive components. 

 Incremental dynamic analysis of the benchmark strongback triggered non-simulated failure 

modes associated with the deformation capacity of the beam links. The rotational capacity of 

the beam links was the primary factor limiting the collapse performance of the four-story 

benchmark strongback considered herein. Non-simulated deformation demands triggered in 

the beam links and observed failure modes in this region during an experimental study illustrate 

the critical nature of inelastic demands induced in this region. Supplemental studies with fully 

pinned beam links and separated strongback configurations resulted in near-zero collapse 

probability. Details with enough deformation capacity should be considered to ensure adequate 

ductility of the beam links.  

 The strongback is better able to maintain a near-uniform drift profile with increasing lateral 

stiffness relative to that of the fuses. Though an infinitely stiff strongback would exhibit a first 

mode-only response, the prohibitive cost and unrealistic nature of such a structural assembly 

necessitates optimization of the strongback elements. This unavoidable flexibility in the 

strongback truss introduces higher-mode demands. Since the strongback has significant 

higher-mode bending capacity compared to than that of a typical yielding system, the higher-

mode force demands depend on the intensity of ground shaking rather than the yield strength 

of the fuses.  

 If the strongback elements are intended to remain essentially elastic under all modes of 

excitation, the strongback elements must be designed to resist elastic or partially inelastic 

higher-mode demands. These demands stem from the non-zero mass participation in the 

second and potentially higher modes and an elastic or partially inelastic strongback bending 

response. The presence of these higher-mode demands is supported by their amplification in 

similar essentially elastic spine systems, such as concrete shear walls and rocking frames. Note 

that some yielding allowed at intermediate levels of shaking could still result in adequate 

performance and limit the large force demands that can develop due to these higher-mode 

effects. 

 Since higher modes contribute to force demands in the strongback elements, traditional 

capacity or plastic design alone are insufficient to bound the demands in the strongback truss. 

Capacity design assumes that the capacities of the fuses limit the forces that can develop during 

an earthquake. However, since the strongback truss is dually designed to remain essentially 

elastic and resist lateral loads, it continues to accumulate demands in the second and higher 

modes after the fuses have yielded and as the ground shaking intensifies. As such, any analysis 
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method used to design the elements in the strongback should estimate the force demands from 

this higher-mode bending response. 

9.3 PROPOSED ANALYSIS METHODS 

The essentially elastic nature of the strongback truss ensures yielding occurs primarily in the 

designated fuses. The strength of the fuses is generally controlled by the first-mode response. 

Demands and details in those inelastic regions are well defined by the capacity of the fuses. As 

such, design of the fuses can be determined by traditional design methods typical of a conventional 

system [e.g., as required by ASCE/SEI 7-16 (2016)].  

Demands in the essentially elastic actions a less well-defined. Though the displaced shape 

is dominated by a first mode (inverted triangular) response, the demands in the strongback 

elements are maximized under higher-mode (bending) contributions. Thus, the required strength 

of the essentially elastic components is still bounded by capacity design principles but is 

additionally bounded by elastic or partially inelastic higher-mode effects. These force demands 

can be significantly larger than those estimated from methods that assume a first mode-only 

response. Two static analysis methods incorporating higher-mode demands were proposed: [i] 

modal pushover analysis and [ii] modal envelope analysis. Both of these methods included 

simplifications to make them more accessible for preliminary design. A summary of the methods 

is provided below: 

1. A modal pushover analysis procedure that combined the pushover responses in each mode 

was found to closely match the results extracted from nonlinear dynamic analysis. A 

simplified analysis procedure utilizing a perfectly plastic material response was able to 

estimate force demands in the strongback truss at reduced computational cost. Perfectly 

plastic material assumptions are not appropriate in strongback-braced frames utilizing 

buckling braces for the fuses. A modal combination rule similar to that of rocking frames 

was suggested to account for coupling of inelastic modes.  

2. It is critical that any proposed design methods recognize both the stochastic nature of the 

ground excitation and the yielding response of the fuses. As such, an enveloping analysis 

procedure was proposed to bound the demands on the strongback elements. This procedure 

assumes the strongback is designed for the entirety of the higher-mode demands. As a 

lower bound, strongback elements are also designed for the first-mode demands delivered 

by the fuses. It was found that this analysis procedure closely matched the distribution of 

peak demands in the strongback braces, but over-estimated demands in the tie.  

3. A simplified enveloping procedure was proposed that enveloped strongback demands from 

a “pivoting” and “bending” response. This approximated first mode demands utilizing a 

different <-factor for the inelastic and strongback portions of the system. A reversed force 

distribution was proposed to mimic higher-mode bending in the strongback. The force 

distribution was derived to imitate the equivalent-lateral force procedure from ASCE-7-16 

(2016). The simplified enveloping approach resulted in similar estimates of demands to the 

other proposed methods, but more research is needed to determine the limitations of this 

method. 
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Herein, the strongback is kept elastic under the average  !"-level of excitation. Any of the above 

methods can be modified to meet performance objectives at the '"-level provided that ductile 

details are used for the design of the strongback elements.  

9.4 FUTURE WORK 

This study is a step towards a comprehensive design method for strongback-braced frames. The 

following work is needed to supplement the design procedures proposed herein: 

1. The proposed analysis methods should be verified against other bracing configurations, 

types of bracing (e.g., buckling braces, re-centering braces, etc.), and building height other 

than the four-story embedded strongback investigated herein. Minimum stiffness and 

compatibility requirements are additionally needed to ensure adequate stiffness of the 

strongback truss. Finalized design guidelines should explicitly evaluate the limitations of 

the proposed design methods and include recommendations for drift limits, detailing 

requirements, etc.  

2. In this study strongback was kept essentially elastic under  !"-level excitation, and as 

such, ordinary details could be used in the strongback truss. Some inelastic behavior could 

be allowed in the strongback if the designed details are adequately ductile. For example, 

designing the strongback to remain essentially elastic at the '"-level may be a more 

economical performance objective and still result in acceptable collapse performance. 

3. The design of the columns is based on the estimated axial forces expected to develop in the 

strongback braces. As such, the proposed design methods could result in substantial 

strongback brace sizes that could overload the columns, connections, and tie under some 

instances of more severe levels of shaking. Evaluation of the 1.1 multiplier recommended 

herein to adjust strength demands in the columns is needed to ensure that the strongback 

braces and/or tie exhibit inelastic behavior before buckling is triggered in the columns. This 

would provide confidence that a desirable hierarchy of failure modes is achieved for cases 

where the expected intensity of the ground motion is exceeded. 

4. An embedded strongback within the same bay as the inelastic braces complicates the 

system’s global response by coupling the inelastic actions in the yielding portions of the 

system with that of the strongback and results in significant plastic deformation demands 

on the fuses. Future work should further study the advantages of separating the strongback 

from the inelastic brace bay.  

5. As the building height and frame slenderness increases, flexural deformation and higher-

mode effects will become more significant. Extension to taller frames is essential in 

validating the design methods proposed in this study. Note that multi-modal strongbacks 

(i.e., strongback designed to impose a second or third rather than first mode response) may 

become more viable for taller systems. Introducing controlled inelastic behavior in the tie 

and separating the strongback to a separate bay may become necessary for economic design 

of taller strongbacks.  

6. The inherent vertical redundancy of the strongback system has been used to justify a 

redundancy factor, P = 1 (Panian et al., 2015). It is unclear at the time of this research how 
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this redundancy factor would impact the collapse performance of strongback-braced 

frames compared to other systems. Though the strongback could conceivably bridge across 

stiffness and mass and irregularities (e.g., due to inelastic brace removal or uncertainty in 

the loading conditions), such configurations and loading conditions were not explored 

during this study. 

7. This study focused on utilizing buckling-restrained braces for the inelastic braces. The 

strongback could also be added to other conventional system. For example, strongbacks 

could be added to moment-resisting frames to alleviate restrictions on strong-column-

weak-beam capacity design. A deep column or shear wall could be more efficient than a 

strongback truss for certain frame heights. The addition of a strongback could also aid 

bridging over story irregularities in existing buildings.  

8. Detailed collapse assessment utilizing the methodology in FEMA-P695 or more 

sophisticated collapse assessment procedures are needed to verify the performance of 

strongback-braced frames designed under the proposed methods and to justify the use of <, !�, and ΩO factors. 

9. The elastic nature of the strongback results in distinctly different dynamic response than 

that of a typical steel system. Strongback and similar spine-like systems are not currently 

addressed in current design provisions. A cohesive narrative for all elastic spine systems, 

including strongback-braced frames, rocking systems, wall-like systems, etc. is needed to 

characterize their dynamic behavior and produce simple guidelines for their 

implementation in practice. 

Though this study used the FEMA-P695 methodology to design a working strongback, this 

methodology is prone to a number of limitations that may not be suitable in validating the 

performance of the strongback system. Limitations included the following: 

1. As observed in Section 6.2.2, duration of shaking may be an important parameter in the 

strongback’s dynamic response. Large magnitude earthquakes can be associated with deep 

subduction zone events and would affect the related seismic performance. The performance 

evaluated herein was performed only for the far-field ground motion suite from FEMA-

P695. Ground motion characteristics associated with subduction and near-field events 

should also be considered. 

2. Scaling the normalized far-field record set from FEMA-P695 near the upper limit period 

of the building resulted in amplified spectral accelerations at the higher-mode periods. To 

account for this in design, a modified response spectrum was proposed that corrected the 

design response spectrum to include the higher-mode periods. This allowed for continued 

use of the FEMA-P695 methodology. However, period-dependent ground motion selection 

would more appropriately represent the first-mode and higher-mode effects. The use of 

conditional mean spectra, for example, conditioned on the fundamental and higher-mode 

periods could more realistically emulate the spectral shape at the fundamental and higher-

mode periods and circumvent use of the spectral shape factor from FEMA-P695.  

By mitigating story mechanisms, the strongback’s performance is expected to be better than that 

of a conventional braced frame. However, enhanced design, alternative analysis methods, 

configurations, details, and proportioning strategies have been discussed – but not investigated – 
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that would reduce or delay the onset of damage that would require post-earthquake repair. For 

example:  

1. Different brace strengths or the use of BRBs that use low yield strength steel can result in 

structures that are stiffer but not stronger, thus limiting peak drifts and accelerations.  

2. Residual displacements in a strongback system are reduced but not eliminated. Self-

centering braces can be used in conjunction with the strongback system to reduce residual 

drifts, resulting in decreased repair time and cost after an earthquake.  

3. A conventional column to baseplate connection at the base of a strongback and at the beam 

links provides adequate safety, but may also suffer damage (local buckling, local fractures) 

that will require repair and result in loss of occupancy. Other details (an RBS or pin type 

connection) may eliminate damage requiring repair.  

It is not clear at the time of this study whether larger drifts in a few stories result in increased repair 

time and repair cost compared to distributed damage across all stories. Developing a performance-

based design philosophy for the strongback systems would enhance its ability to satisfy 

serviceability requirements for minor, frequent earthquakes and avoid collapse or life-threatening 

damage during major, rare earthquakes. This could include return on investment type calculations 

using FEMA-P-58.  
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Appendix A Gravity Loading 

This appendix describes the gravity loading used for the archetype building in Chapter 4.  

A.1 GRAVITY LOADING 

Superimposed 

Dead         

   3.25" LWC (3000psi) 39 psf       

   W2 2" 18 gage deck 2.7 psf PLN-24 3" 16 gage deck 4.2 psf 

    42 psf       

                    

Typical Floor   Gravity   Seismic weight  

   Floor finish 1 psf  1 psf    

   Fire proofing 1 psf  1 psf    

   

Mechanical / 

plumbing / electrical 4 psf  4 psf    

   Ceiling 4 psf  4 psf    

   Partitions - psf  10 psf    

   Miscellaneous 3 psf  3 psf    

    13 psf  23 psf    

            

   Slab on deck 41.7 psf       

   

Estimated steel 

framing 10 psf       

            

Live Load  Offices 50 psf       

   Partitions 15 psf       

    65 psf       

            

   Corridors 100 psf       
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Roof   Gravity   Seismic weight 

   Built-up roof 6 psf  6 psf    

   Fire proofing 1 psf  1 psf    

   Insulation  2 psf  2 psf    

   

Mechanical / 

plumbing / electrical 4 psf  4 psf    

   Ceiling 4 psf  4 psf    

   Partitions - psf  5 psf    

   Miscellaneous 3 psf  3 psf    

    20 psf  25 psf    

            

   Slab on deck 42 psf       

   

Estimated steel 

framing 8 psf       

            

Live Load  Ordinary flat roof 20 psf       

                    

Penthouse  Gravity   Seismic weight 

   Superimposed dead 13 psf  13 psf    

   Partitions - psf  10 psf    

   Equipment - psf  33 psf    

    13 psf  56 psf    

            

   Slab on deck 42 psf       

   

Estimated steel 

framing 10 psf       

            

Live Load  Equipment 100 psf       
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Penthouse 

roof  Gravity Seismic weight  

   Built-up roof 6 psf  6 psf    

   Fire proofing 1 psf  1 psf    

   Insulation  2 psf  2 psf    

   

Mechanical / 

plumbing / electrical 4 psf  4 psf    

   Ceiling - psf  - psf    

   Partitions - psf  - psf    

   Miscellaneous 3 psf  3 psf    

    16 psf  16 psf    

            

   Deck 4.2 psf       

   

Estimated steel 

framing 8 psf       

            

Live Load  Ordinary flat roof 20 psf       

                    

Exterior Wall  Gravity Seismic weight  

   Cladding 8 psf  8 psf    

   Metal studs 2 psf  2 psf    

   Insulation 2 psf  2 psf    

   5/8-in. gypsum board 3 psf  3 psf    

   Miscellaneous 5 psf  5 psf    

    20 psf  20 psf    
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Appendix B Additional BRBF and SBF 
Envelope Plots 

This appendix provides additional plots of the benchmark strongback response at the '",  !", 

and 1.3 ×  !"-level from Chapter 5. 

B.1 DE INTENSITY LEVEL 

   
(a) 

   
(b) 

 
Figure B.1. Peak drift response at '": (a) SBF, (b) BRBF 
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 (a)  

  
 (b)  

 
Figure B.2. Peak acceleration, #Z, estimated equivalent-lateral force distribution, 	>,  

and story shear, %>, response at '": (a) SBF, (b) BRBF 
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B.2 MCE INTENSITY LEVEL 

   
(a) 

   
(b) 

 
Figure B.3. Peak drift response at  !": (a) SBF, (b) BRBF 
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(a) 

   
(b) 

 
Figure B.4. Peak acceleration, #Z, estimated equivalent-lateral force distribution, 	>,  

and story shear, %>, response at  !": (a) SBF, (b) BRBF 
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Appendix C Additional Envelope Results from 
the Parametric Study 

This appendix describes the results of the parametric study conducted in Chapter 6 in more detail. 

C.1 CASE 2 – BEAM END CONNECTIONS 

The axial strain envelope for the inelastic braces was largest for the fully fixed beam-column 

connection and smallest for the fully pinned beam link; see Figure C.1(a). Peak axial force in the 

inelastic braces were negligibly different for all the beam end conditions; see Figure C.2(b). 

Though the trend was imperfect, the pinned end conditions resulted in larger compression demands 

in the first and fourth stories while the fixed end conditions resulted in reduced demands at those 

locations; see Figure C.2.  

End moments in the strongback portion of the beam tended to be smaller than moments in 

the beam link, indicating near rigid global rotation of the strongback truss; see Figure C.3(a). For 

all cases, moment demands at the ends of the roof beam are smaller than the moment demands in 

lower stories. Different end conditions caused little variation in beam axial-force demands; see 

Figure C.3(b). Deformation demands in the beam link were largest for the fixed beam-column 

condition and smallest for the other connection types; see Figure C.3(c). 

Column moment demands were affected by the beam end conditions; see Figure C.4(a). 

Where the beam-column connection is fixed or a PR connection, the moment demands generated 

in the beams are transferred to the column through equilibrium. This effect is more apparent in the 

inelastic column where the end of the beam link reaches its full plastic moment. The pinned end 

condition and fully pinned beam still results in moment in the columns, but this moment is solely 

due to the bending nature of the frame rather than the development of plastic hinges in the beam 

links. Differences in axial force in the inelastic column resulted from additional shear developed 

in the beam links due to plastic hinging at its ends; see Figure C.4(b). This beam shear had 

negligible impact on the axial-force demands in the strongback column; Figure C.4(c). 

The fully pinned beam link resulted in the lowest peak drift ratio; see Figure C.5(a). This 

was followed closely by the pinned beam-column connections, alternating beam-column 

connections, PR beam-column connections, and fixed beam-column connections. The largest '!º 

occurred in the fourth story for all beam-column connections, though the trend was in reverse to 

that of the peak drift ratio; see Figure C.5(c).  

The general shape of the acceleration profile remained similar between all end conditions; 

see Figure C.5(d). Generally, story shear demands were largest for the fixed beam end condition, 

followed by the PR end condition, the alternating end condition, the pinned end condition, and the 

fully pinned beam link; see Figure C.5(f).  
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(a) (b) 

Figure C.1. Case 2 – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure C.2. Case 2 – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure C.3. Case 2 – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure C.4. Case 2 – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure C.5. Case 2 – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 

C.2 CASE 3 – COLUMN BASE FIXITY AND BENDING ORIENTATION  

Axial-force demands in the inelastic braces, strongback tie, beam, and columns were relatively 

unaffected by the change in column base fixity; see Figure C.6, Figure C.7(c), Figure C.8(b), and 

Figure C.9(c) and (d). Tensile axial-force demands were largest in the first-story for the pinned 

column base and largest in the second-story for the fixed column base; see Figure C.7(a) and (b). 

Beam deformation demands were little affected by column fixity and orientation; see Figure 

C.8(c). 

The moment demands in the roof beam and height-wise moment distributions in the 

columns were most impacted by the change in column fixity and bending orientation. A column 

oriented in weak axis bending reduced the flexural demands at bean ends of the roof level beam; 

see Figure C.8(a). Though the weak-axis oriented column has less moment capacity, column 

moments over the story height tended to be reduced with the utilization of a weak-axis column; 

see Figure C.9(a). The difference between the pinned and fixed column base were most apparent 

at the base of the columns. Differences between the fixed and pinned column base condition with 

strong-axis oriented columns were negligible in the upper stories. Global response parameters were 

little affected by the change in base fixity; see Figure C.10. 
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(a) (b) 

Figure C.6. Case 3 – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure C.7. Case 3 – Strongback elements peak response envelopes.  

(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure C.8. Case 3 – Beam peak response envelopes.  

 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

 
(a) 

 
(b) (c) 

Figure C.9. Case 3 – Column peak response envelopes.  

 (a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure C.10. Case 3 – Global peak response envelopes.  

(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 
peak equivalent-lateral force distribution; (f) peak story shear 

C.3 CASE 4 – BEAM COMPOSITE ACTION AND DIAPHRAGM RIGIDITY 

Axial-force demands in the fuses, tie, and inelastic column were similar for all the parameters 

studied in case 4; see Figure C.11, Figure C.12(c), and Figure C.14(b). The strongback braces were 

impacted by the rigidity of the beam, but little impacted by the inclusion of composite beam action; 

see Figure C.13(a) and (b). This increased demand had some impact on the strongback column 

axial-force demand; see Figure C.14(c).  

Diaphragm modeling and composite action primarily affected axial and flexural demands 

in the beams. Composite action asymmetrically increased the moment capacity of the beams, but 

had little impact on the beam axial-force demands; see Figure C.13(a). In contrast, the type of 

diaphragm had little impact on beam moments but decreased beam axial-force demands; see Figure 

C.13(b). Fiber element models derive axial force from axial strains due to elongation and 

shortening observed at the fiber section level. As such, any axial constraint along the beam length 

results in near-zero axial force in the beam elements. A concrete truss diaphragm reduced beam 

compression demands and had little effect on the beam tension demand. Deformation demands 

were by far largest with the composite fiber section; see Figure C.13(c). 
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Composite action and diaphragm rigidity had little impact on the drift response; see Figure 

C.15(a) through (c). Acceleration demands and estimated equivalent-lateral force distributions 

were largest for the rigid diaphragm; see Figure C.15(d) and (e). 

 

 

 
(a) (b) 

Figure C.11. Case 4 – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure C.12. Case 4 – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure C.13. Case 4 – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure C.14. Case 4 – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 

 



252 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure C.15. Case 4 – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 

C.4 CASE 5 – STRONGBACK BRACE AND TIE END CONDITION 

Other than the beam moments, strongback brace end condition had little impact on any of the 

response quantities. Less bending moment was observed in the strongback portion of the beams if 

the beam ends were fixed, as it was instead distributed through equilibrium to the strongback tie 

and braces; see Figure C.18(a).  
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(a) (b) 

Figure C.16. Case 5 – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure C.17. Case 5 – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure C.18. Case 5 – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure C.19. Case 5 – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure C.20. Case 5 – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 

C.5 OFFSET CASE – LOCATION OF BRACE-TO-BEAM INTERSECTION 

A description of these results can be found in Section 6.3.2. 

 
(a) (b) 

Figure C.21. Offset case – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 
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(a) (b) (c) 
Figure C.22. Offset case – Strongback elements peak response envelopes.  

(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 

 
 

 

 

   
(a) (b) (c) 

Figure C.23. Offset case – Beam peak response envelopes.  

 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 
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(a) (b) (c) 

Figure C.24. Offset case – Column peak response envelopes.  

(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure C.25. Offset case – Global peak response envelopes.  

(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 
peak equivalent-lateral force distribution; (f) peak story shear 
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Appendix D Median Envelope Results from the 
Parametric Study 

This appendix provides additional plots of the median envelopes described in the parametric study 

conducted in Chapter 6. 

D.1 CASE 2 – MEDIAN BEAM END CONNECTIONS 

 

 
(a) (b) 

Figure D.1. Case 2 median – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 
Figure D.2. Case 2 median – Strongback elements peak response envelopes.  

(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure D.3. Case 2 median – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure D.4. Case 2 median – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure D.5. Case 2 median – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 
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D.2 CASE 3 – MEDIAN COLUMN BASE FIXITY AND BENDING ORIENTATION  

 

 
(a) (b) 

Figure D.6. Case 3 median – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 
Figure D.7. Case 3 median – Strongback elements peak response envelopes.  

(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure D.8. Case 3 median – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure D.9. Case 3 median – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure D.10. Case 3 median – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 
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D.3 CASE 4 – MEDIAN BEAM COMPOSITE ACTION AND DIAPHRAGM RIGIDITY 

 

 
(a) (b) 

Figure D.11. Case 4 median – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure D.12. Case 4 median – Strongback elements peak response envelopes.  

(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure D.13. Case 4 median – Beam peak response envelopes.  

 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure D.14. Case 4 median – Column peak response envelopes.  

(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 

 



266 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure D.15. Case 4 median – Global peak response envelopes.  

(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 
peak equivalent-lateral force distribution; (f) peak story shear 
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D.4 CASE 5 – MEDIAN STRONGBACK BRACE AND TIE END CONDITION 

 

 
(a) (b) 

Figure D.16. Case 5 median – Inelastic brace peak response envelopes.  
(a) strain demand, (b) axial demand-to-capacity ratio 

 

   
(a) (b) (c) 

Figure D.17. Case 5 median – Strongback elements peak response envelopes.  
(a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

Figure D.18. Case 5 median – Beam peak response envelopes.  
 (a) moment demand; (b) axial-force demand; (c) deformation acceptability ratio 

 

   
(a) (b) (c) 

Figure D.19. Case 5 median – Column peak response envelopes.  
(a) moment demand; (b) and (c) axial-force demand. (a) axial-force demand; (b) and (c) axial demand-to-capacity ratio 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure D.20. Case 5 median – Global peak response envelopes.  
(a) peak story drift ratio; (b) peak residual drift ratio; (c) drift concentration factor; (d) absolute acceleration; (e) estimated 

peak equivalent-lateral force distribution; (f) peak story shear 
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Appendix E Peak Response Plots 

This appendix gives additional calculations of plots of the height-wise distribution of demands at 

the time of peak inelastic brace, strongback brace, and tie axial force from Chapter 7.  

E.1 PEAK RESPONSE 

Table E.1. Median of peak response. 

Peak 
Response 

gm 
no. 

Axial-force demand [kips] �@,G  �@,J  �@,_  �@,x  �A,G  �A,J  �A,_  �A,x  �°,J  �°,_  ¦Ò�(¢~Õ) 30 -461 422 -301 314 991 -445 210 87 539 402 ¦Ò�(¢~Ö) 4 391 -447 396 -425 -1051 530 -347 -184 -670 -503 ¦Ò�(¢~æ) 4 -423 399 -451 414 128 -535 661 -347 -83 -197 ¦Ò�(¢~ç) 5 -269 95 198 -443 910 -108 -755 1051 782 934 ¦à�(¢~Õ) 29 421 -401 406 -359 -828 492 -224 -166 -540 -469 ¦à�(¢~Ö) 28 -398 415 -378 403 857 -433 266 142 537 454 ¦à�(¢~æ) 36 401 -438 413 -449 -493 532 -619 40 -226 -96 ¦à�(¢~ç) 21 -63 239 -324 415 300 -265 409 12 227 175 ¦Ò�(¢�Õ) 9 447 -439 363 -129 -1687 308 385 -465 -1096 -1034 ¦Ò�(¢�Ö) 36 -425 383 -388 59 1083 -752 -7 572 949 842 ¦Ò�(¢�æ) 15 368 -449 410 -471 -243 664 -966 91 -46 155 ¦Ò�(¢�ç) 29 199 -245 -285 366 -997 217 485 -854 -735 -717 ¦à�(¢�Õ) 31 -444 387 -408 375 1519 -499 -86 379 1085 963 ¦à�(¢�Ö) 15 408 -486 409 -467 -383 751 -894 -15 -192 9 ¦à�(¢�æ) 2 2 244 -443 407 -381 -375 821 -340 -257 -354 ¦à�(¢�ç) 33 -3 -253 399 -398 624 -29 -716 887 756 799 ¦Ò�(¢¤Ö) 1 -35 -1 -6 -6 -57 -7 -14 -13 -44 -21 ¦Ò�(¢¤æ) 24 418 -457 -147 276 -1811 391 545 -859 -1197 -1033 ¦à�(¢¤Ö) 23 368 -168 -385 377 -1492 198 1055 -851 -1121 -1135 ¦à�(¢¤æ) 1 -35 -1 -6 -6 -57 -7 -14 -13 -44 -21 
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Table E.2. 85th percentile of peak response. 

Peak 
Response 

gm 
no. 

Axial-force demand [kips] �@,G  �@,J  �@,_  �@,x  �A,G  �A,J  �A,_  �A,x  �°,J  �°,_  ¦Ò�(¢~Õ) 8 -527 455 -481 293 1019 -843 158 448 875 784 ¦Ò�(¢~Ö) 26 452 -512 461 -489 -892 551 -610 27 -433 -237 ¦Ò�(¢~æ) 8 -475 402 -514 408 730 -806 529 191 595 438 ¦Ò�(¢~ç) 1 435 -523 429 -500 -743 568 -716 72 -315 -107 ¦à�(¢~Õ) 24 451 -497 450 -495 -798 690 -606 -104 -492 -314 ¦à�(¢~Ö) 33 -305 451 -244 -10 721 -597 131 322 536 409 ¦à�(¢~æ) 2 372 -518 445 -557 250 459 -1276 657 603 806 ¦à�(¢~ç) 26 -416 420 -417 452 779 -351 199 113 437 438 ¦Ò�(¢�Õ) 6 386 -401 365 -342 -2104 545 390 -966 -1692 -1604 ¦Ò�(¢�Ö) 24 -443 426 -466 423 252 -994 714 195 374 245 ¦Ò�(¢�æ) 2 372 -518 445 -557 250 459 -1276 657 603 806 ¦Ò�(¢�ç) 39 247 -137 -171 356 -1383 85 656 -1258 -1088 -1170 ¦à�(¢�Õ) 5 -443 386 -398 374 1881 -726 -163 951 1595 1483 ¦à�(¢�Ö) 43 126 -442 399 -377 -935 893 -153 -589 -1068 -932 ¦à�(¢�æ) 39 21 146 -422 381 -939 -274 1134 -582 -749 -843 ¦à�(¢�ç) 26 -305 202 211 -373 1322 -16 -720 1173 939 1064 ¦Ò�(¢¤Ö) 1 -35 -1 -6 -6 -57 -7 -14 -13 -44 -21 ¦Ò�(¢¤æ) 28 405 -506 397 -464 -1965 687 -126 -835 -1523 -1312 ¦à�(¢¤Ö) 13 -20 299 -465 429 -1149 123 1283 -1230 -1358 -1447 ¦à�(¢¤æ) 1 -35 -1 -6 -6 -57 -7 -14 -13 -44 -21 
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Table E.3. 100th percentile of peak response. 

Peak 
Response 

gm 
no. 

Axial-force demand [kips] �@,G  �@,J  �@,_  �@,x  �A,G  �A,J  �A,_  �A,x  �°,J  �°,_  ¦Ò�(¢~Õ) 10 -701 545 -654 438 1062 -957 501 195 757 588 ¦Ò�(¢~Ö) 21 403 -596 431 -567 -1259 700 -588 -357 -844 -622 ¦Ò�(¢~æ) 10 -698 545 -676 524 1046 -806 547 -16 614 442 ¦Ò�(¢~ç) 21 -8 -318 417 -580 -269 359 -851 212 -141 73 ¦à�(¢~Õ) 10 593 -560 559 -494 -1102 621 -404 -42 -610 -469 ¦à�(¢~Ö) 10 -561 557 -523 533 999 -519 349 155 540 510 ¦à�(¢~æ) 10 548 -546 561 -497 -948 602 -491 16 -497 -354 ¦à�(¢~ç) 10 -695 544 -675 538 993 -728 588 -110 505 333 ¦Ò�(¢�Õ) 5 407 -416 392 -193 -2391 430 580 -934 -1759 -1685 ¦Ò�(¢�Ö) 42 -588 469 -584 463 1573 -1116 296 894 1469 1305 ¦Ò�(¢�æ) 24 434 -476 447 -505 728 569 -1492 734 913 1093 ¦Ò�(¢�ç) 25 -172 352 -476 451 -858 171 892 -1613 -1313 -1422 ¦à�(¢�Õ) 25 -441 378 -324 159 2532 -11 -989 756 1682 1691 ¦à�(¢�Ö) 25 497 -448 459 -436 -516 1120 -348 -241 -680 -567 ¦à�(¢�æ) 13 -5 300 -463 427 -1116 -10 1486 -825 -1211 -1292 ¦à�(¢�ç) 43 87 -287 392 -460 1342 8 -1319 1546 1535 1698 ¦Ò�(¢¤Ö) 1 -35 -1 -6 -6 -57 -7 -14 -13 -44 -21 ¦Ò�(¢¤æ) 5 406 -413 391 -114 -2360 529 626 -1014 -1849 -1751 ¦à�(¢¤Ö) 5 406 -413 391 -114 -2360 529 626 -1014 -1849 -1751 ¦à�(¢¤æ) 1 -35 -1 -6 -6 -57 -7 -14 -13 -44 -21 
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Figure E.1. Snapshot at minimization of inelastic brace demands. 
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Figure E.2. Snapshot at maximization of inelastic brace demands. 
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Figure E.3. Snapshot at minimization of strongback brace demands. 
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Figure E.4. Snapshot at maximization of strongback brace demands. 

 

 

 

 
Figure E.5. Snapshot at minimization of tie demands. 
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Figure E.6. Snapshot at maximization of tie demands. 
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