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Abstract

Equivalence of the core and the set of Walrasian allocations has long been taken as one of the
basic tests of perfect competition. The present paper examines this basic test of perfect
competition in economies with an infinite dimensional space of commodities and a large finite
number of agents. In this context we cannot expect equality of the core and the set of
Walrasian allocations; rather, as in the finite dimensional context, we look for theorems
establishing core convergence (that is, approximate decentralization of core allocations in
economies with a large finite number of agents).

Previous work in this area has established that core convergence for replica economies and core
equivalence for economies with a continuum of agents continue to be valid under assumptions
much the same as those usual in the finite dimensional context. For general large finite
economies, however, we present here a sequence of examples of the failure of core
convergence. These examples point to a serious disconnection between replica economies and
continuum economies on the one hand an general large finite economies on the other hand. We
identify the source of this disconnection as the measurability requirements that are implicit in
the continuum model, and which correspond to compactness requirements that have especially
serious economic content in the infinite dimensional context.

We also obtain positive results. When the commodity space is a Riesz space, we show that
familiar assumptions lead to a kind of “local” core convergence; strong assumptions lead to
“global™ core convergence. In the differentiated commodities context, we obtain core
convergence results that are quite parallel to known equivalence results for continuum
economies. Our positive results depend on infinite dimensional versions of the Shapley-
Folkman theorem.
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1 Introduction

Since Edgeworth (1881), equivalence of the core and the set of Walrasian
allocations has been taken as one of the basic tests of perfect competition.
If the core is much larger than the set of competitive allocations (or the set
of approximately competitive allocations), the price-taking assumptions un-
derlying the whole competitive story are seriously in question.! The purpose
of the present paper is to examine this basic test of perfect competition in
economies with an infinite dimensional commodity space and a large finite
number of agents. In this context, of course, we cannot expect eguality of the
core and the set of Walrasian allocations; rather, as in the finite dimensional
case, we look for theorems establishing that the core converges, i.e. that
core allocations of economies with a sufficiently large number of agents are
approximately competitive in an appropriate sense.

Our motivation for studying the core in economies with an infinite dimen-
sional commodity space and a large but finite number of agents is two-fold.
First, an extensive literature on the existence of Walrasian equilibrium in
economies with a finite number of agents and an infinite dimensional com-
modity space has developed over the last twenty-five years. This literature is
motivated by a variety of economic issues, including choice under uncertainty
(especially finance), choice over an infinite time horizon, and choice among
subtly differentiated commodities. It is important to know whether the price-
taking assumption implicit in the definition of Walrasian equilibrium can be
justified in these models.

Second, our study of core convergence in economies with an infinite di-
mensional commodity space and a large finite number of agents provides us
with a way to study properties of economies with a large finite number of
commodities and a large finite number of agents. Consider, for example, a
model in which every agent is endowed with his/her labor. Each person’s

1We do not suggest that equivalence of the core and the set of competitive allocations
is sufficient for perfect competition, only that it is necessary. We would make a similar
argument for other tests of perfect competition that have been offered, such as Ostroy’s
no surplus condition, or the coincidence of Walrasian equilibria with the Nash equilibria
of the corresponding Shapley—Shubik market game. See Gretsky, Ostroy and Zame (1994)
for a comparative analysis of various tests of perfect competition in the context of the
assignment model.




labor is subtly different from that of every other agent, and very different
from that of some other agents. If we consider an Arrow-Debreu model with
each agent’s labor treated as a wholly separate commodity, we have no con-
venient way to capture the fact that the labor of certain individuals are close
substitutes. In a sequence of economies in which the number of agents is
growing and the labor endowments are treated as distinct components in
the Arrow-Debren commodity space, the number of distinct goods is grow-
ing as rapidly as the number of agents. As a consequence, none of the core
convergence theorems in the literature suffices to show that core allocations
become approximately competitive as the number of agents grows. How-
ever, by treating the various kinds of labor as elements of an appropriate
infinite dimensional commodity space, we can capture the fact that the labor
of certain individuals will be cl ose substitutes, and core convergence can be
established.

For economies with a finite dimensional commodity space, the “classi-
cal” results connecting the core and the set of competitive allocations are
the Debreu—Scarf theorem (which identifies the competitive allocations of
an economy with a finite number of traders with those in the core of ev-
ery replication), Aumann’s theorem (which identifies the competitive alloca-
tions of an economy with a continuum of traders with the core of the econ-
omy), and the convergence theorems of Anderson (1978, 1981, 1987), Bewley
(1973a), Brown and Robinson (1974), Cheng (1981, 1982, 1983a, 1983b),
Debreu (1975), E. Dierker {1975), H. Dierker (1975), Keiding (1974), Geller
(1987), Grodal (1975), Grodal and Hildenbrand (1974), Kannai (1970), Khan
(1974, 1976), Khan and Rashid (1976), Trockel (1976), Vind (1965) and oth-
ers (which assert that core allocations of “large” finite economies can be
“approximately decentralized by prices” ). For our purposes in this paper, we
say (following E. Dierker (1975) and Anderson (1978)) that an allocation is
approximately decentralized by a price p if

e the average amount by which the allocation fails to be budget feasible
with respect to p is small, and

e the average saving that can be effected at prices p while still improving
on the given allocation is small.

We say an allocation can be approximately decentralized by prices if there is
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a price vector p which approximately decentralizes it.?

For economies with an infinite dimensional commodity space, analogs
of the Debreu-Scarf theorem and of Aumann’s theorem have been known
for some time (Aliprantis, Brown and Burkinshaw (1989), Bewley (1973b),
Gabszewicz (1968), Mas-Colell (1975), Ostroy and Zame (1993), Rustichini
and Yannelis (1991), Zame (1986)). However, no analogs of the non-replica
convergence theorems have been established.?

In this paper we argue that, for economies with an infinite dimensional
commodity space, there may be a substantial disconnection between replica
economies and continuum economies on the one hand and general large fi-
nite economies on the other hand. One way to understand the source of this
disconnection is to review the assumptions that underlie Aumann’s theorem
and its extensions. Aumann’s theorem assumes that the preference mapping,
the endowment mapping, the core allocation mapping, and all comparison
bundle mappings are measurable. In the finite dimensional context, these
requirements are usually interpreted as slightly unpleasant technical condi-
tions, but without real economic import.* In the infinite dimensional context,
however, measurability has a great deal more bite. The reason is that, in ei-
ther the finite dimensional or the infinite dimensional situation, a measurable
mapping has “almost compact” range; this is a much more serious restric-
tion in the infinite dimensional setting because compact subsets of infinite

2Some of the finite dimensional results establish stronger conclusions, for example,
that individual’s core consumptions are close to their demand sets at the price p, under
additional hypotheses, such as equiconvexity of preferences. Many of these conclusions
can be derived, under the additional hypotheses, from approximate decentralization by
prices in the sense used here.

SNomura (1993) asserts, for the commodity space L2, the existence of a price which
approximately decentralizes core allocations up to a constant which depends on a measure
of nonconvexity. However, it appears to us that his measure of nonconvexity will often
be infinite, even for a single well-behaved convex preference on L2. If his measure of
nonconvexity is indeed infinite, his conclusion will be satisfied by any allocation and any
price.

4A little care should be exercised even in the finite dimensional context. Integrability
of the endowment mapping implies that the endowments of most agents lie in a compact
set. Measurability of the preference mapping together with monotonicity of individual
preferences implies a kind of equimonotonicity. Clearly, these conclusions have economic
import.




dimensional spaces are typically very thin subsets of the underlying spaces.’
Thus, the infinite dimensional versions of Aumann’s theorem point at infi-
nite dimensional versions of the convergence theorems that are significantly
different from the finite dimensional versions.

For replica economies, of course, compactness restrictions on preferences,
on endowments and on core consumptions have no additional bite. By as-
sumption, preferences, endowments, and core consumptions all lie in a finite,
hence compact set. When preferences are strictly convex, the equal treat-
ment property implies that the core is homeomorphic to a closed subset of
the Pareto set of the unreplicated economy, which in turn can be shown to
be homeomorphic to a simplex of dimension one less than the number of
types; thus, the core is compact. It is less obvious, but true, that a com-
pactness restriction on comparison bundles also carries no bite. The proof
of the Debreu-Scarf theorem, in either the finite or infinite dimensional con-
text, proceeds one allocation at a time. Once a non-Walrasian allocation is
specified, one immediately finds a profile of profile of comparison bundles,
a convex combination of which lies in the negative orthant. One then need
only choose n sufficiently large that the convex coefficients can be well ap-
proximated by rational numbers with denominator less than or equal to n;
once aga in, the convexifying effect of large numbers takes place in a simplex
of dimension one less than the number of types. Thus, one establishes that
every allocation which is in the core of every replica is Walrasian. Moreover,
since the replica cores are nested and compact, it follows that given any
neighborhood U, there is a sufficiently large ng such that every core alloca-
tion of the n-fold replica for n > ng is within U of a Walrasian equilibrium.
Thus, the replica context is actually very similar to the continuum context.

For general large finite economies, these compactness restrictions turn
out to have a great deal of bite. Indeed — and this is a central point of this
paper — these compactness restrictions have real economic content.

We emphasize this point through four examples of sequences of finite
economies and core allocations that cannof be approximately decentralized
by prices. The examples are:

51t is not clear how to interpret the measurability restriction on preferences, since no
convincing topology on spaces of preferences has been offered in the infinite dimensional
context.




e 3 sequence of economies in which consumers retain monopsony power;,
the source of monopsony power is that core consumptions do not lie in
a compact set

e asequence of economies in which consumers retain monopoly power; the
source of monopoly power is that endowments do not lie in a compact
set

¢ a sequence of economies in which consumers retain neither monopoly
power nor monopsony power, but the (unique) core allocation cannot
be approximately decentralized by prices; the source of the failure of
approximate decentralization is that the relevant comparison bundles
do not lie in a compact set

e a sequence of economies in which there is no Walrasian equilibrium,
and core allocations cannot be approximately decentralized by prices;
in the continuum analogue of the sequence, core equivalence holds be-
cause both the core and the set of Walrasian equilibria are empty; the
source of the failure of approximate decentralization is that the prefer-
ences exhibit increasing refurns to specialization in consumption. This
example also establishes a failure of upper hemicontinuity of the core,
demonstrating that it will be extremely difficult to study core conver-
gence by topologizing economies in the manner of Hildenbrand (1974).

The examples can be imbedded in most of the infinite dimensional commodity
spaces that have been used in economic analysis.

It may be useful to comment on the connection between compactness
on the one hand and monopoly or monopsony on the other. Suppose all
agents’ endowments lie in a compact set. Given £ > 0, this compact set can
be covered by a finite number of balls of radius €. Suppose the number of
agents in the economy is large. Then the proportion of agents with isolated
endowments (in the sense that there are few other agents with endowments
in the same € ball}) must be small. The agents whose endowments are not
isolated cannot have monopoly power.® The agents whose endowments are

6The argument is actually = little more complex than we have indicated here. If pref-
erences of the agents were equicontinuous over the whole commodity space, then agents
whose endowments are not isolated cannot have monopoly power. However, equicontinuity




isolated may have monopoly power, but they are few in number, and their
monopoly power does not prevent approximate decentralization of core allo-
cations. On the other hand, if endowments do not come from a compact set,
1t is possible to have all the endowments a uniform distance away from every
other endowment. In this case, i t is possible that every agent possesses sig-
nificant monopoly power, resulting in a big core. Dually, if individual agents’
core consumptions all lie in a compact set, then few agents will have isolated
consumptions. As in the case of monopoly, this implies that few agents will
have monopsony power, and these few agents. will not upset approximate
decentralization. On the other hand, if core consumptions do not lie in a
compact set, it is possible that all consumptions lie a uniform distance from
every other consumption, because each agent has a special preference for a
personal good. In this case, every agent will possess significant monopsony
power, and once again the core will be large.

Of course, monopoly power and monopsony power are the antithesis
of perfect competition; what the first two examples demonstrate is that
monopoly power and monopsony power are particularly easy to come by —
and particularly hard to avoid — in infinite dimensional commodity spaces.”
It has long been known that the form of core convergence may change if cer-
tain standard assumptions -— notably convexity — are relaxed. The striking
work of Manelli (1991} shows that core convergence and approximate decen-
tralization may fail outright, even in the finite dimensional context, if the
“standard” assumption of monotonicity is weakened slightly. We emphasize,
therefore, that the examples described above satisfy natural infinite dimen-
sional analogs of all the “standard”assumptions; in particular, preferences
are strictly monotone and marginal rates of substitution are bounded.

These examples suggest that, in the infinite dimensional context, the

over the whole commodity space is a strong assumption. Accordingly, in our positive the-
orems, we impose an equicontinuity assumption only on a subset of the commodity space,
and then either assume, or prove under additional hypotheses, that the core allocations
and relevant consumption bundles are contained the set on which equicontinuity holds.

TFor the first two of these examples, we also show that the Walrasian equilibria of these
sequences of economies fail Ostroy’s approximate no-surplus test of perfect competition; we
conjecture that the Nash equilibria of the corresponding Shapley-Shubik market games do
not approximate Walrasian equilibris. The third example has a different character, in that
only infeasible allocations demonstrate the impossibility of approximately decentralizing
core allocations.




failure of core convergence and approximate decentralization is far more per-
vasive than in the finite dimensional context. One way to understand why
the equivalence theorems for continuum economies in the infinite dimensional
context are compatible with our counterexamples for large finite economies
is to take literally the compactness restrictions implicit in the measurability
requirement, and formulate an approximate decentralization result for large
finite economies which incorporates these compactness restrictions. We say
an allocation can be approximately decentralized with respect to X if there
is a price for which

e the average amount by which the allocation fails to be budget feasible
is small, and

¢ the average saving that can be effected by consumption in X while still
improving on the given allocation is small.

Following this stratagem leads to a peculiar-looking result:

Most Peculiar Theorem 7.1 Fiz the commodity space L = C(Q)), where
Q1 is a compact Hausdorff space, and a compact subset K C L,. Consider a
finite economy for which endowments lie in K. If the number of consumers
is sufficiently large, then every core allocation with consumptions lying in K
ean be approzimately decentralized with respect to K.

As we have argued, it seems to us that this peculiar result is actually the fi-
nite agent analog of Aumann’s equivalence theorem for continuum economies
because the measurability assumptions in Aumann’s theorem correspond to
compactness assumptions in the large finite economies.

For Dedekind complete Riesz spaces, we can do substantially better than
Most Peculiar Theorem 7.1 by proceeding in a different direction. For most
commodity spaces of interest, order bounded sets are, roughly speaking, much
bigger than compact sets.® In particular, Edgeworth boxes are always order-
bounded, but almost never compact. In essence, Slightly Silly Theorem 8.2

8In L* and /.., compact sets are necessarily order bounded, but this is not true
generally, for example in L!. Thus, Slightly Silly Theorem 8.2 is not a generalization of
Most Peculiar Theorem 7.1.




is obtained by substituting order bounded sets for compact sets in the state-
ment of Most Peculiar Theorem 7.1.° Requiring endowments to come from
an order bounded set is a weaker requirement than requiring endowments to
come from a compact set. Restricting attention to core allocations from an
order bounded set is more problematic because it is an endogenous assump-
tion; however, such a restriction is not nearly as objectionable as restricting
attention to core allocations from a compact set. Similarly, while decentral-
ization with respect to an order bounded set is a disappointing conclusion, it
is far less troublesome than decentralization with respect to a compact set.

Our convergence theorems for Dedekind complete Riesz spaces depend
on an assumption on preferences called equimonotonicity, a kind of uniform
strict monotonicity in a given direction. This assumption is weaker than uni-
form properness. Indeed, in finite dimensions, the assumption is weaker than
monotonicity. The preferences in Manelli’s (1991) nonconvergence examples
are equimonotone in the sense used here.

Slightly Silly Theorem 8.2 Fiz the commodity space L, a Dedekind com-
plete Riesz space with an order continuous topology.l® Fiz an order bounded
set B, and a family P of preferences which is equimonotone on order bounded
sets. Consider a finite economy for which endowmenis lie in B and prefer-
ences lie in P. If the number of consumers is sufficiently large, then every
core allocation with consumptions lying in B can be approzimately decentral-
tzed with respect to B.

With one additional assumption (which is strong but natural in some con-
texts) — that marginal utilities decrease to zero as consumption increases to
infinity — we can obtain “global” approximate decentralization for endow-
ments that lie in an order bounded set:

Theorem 8.8 If the commodity space is a Dedekind complete Riesz space with
an order continuous topology, endowments lie in an order bounded set, and
preferences belong to a family that has uniformly vanishing marginal utility
at infinity and is equimonotone on order bounded sets, then core allocations

91n fact, we can weaken order boundedness to & kind of “uniform integrability” condi-
tion with respect to the order.

10The spaces LP(u) (1 < p < oo) and L*=(u) with the Mackey topology all satisfy this
hypothesis.




of sufficiently large finite economies can be approzimately decentralized by
: 11
prices.

As we have argued, compactness is a strong restriction in infinite dimen-
sional spaces because compact sets are typically very thin. There is one
important context however in which compact sets may be quite big: if the
commodity space is a dual space endowed with the weak star topology, then
closed norm balls are compact. One such space is the space of measures (on
some compact Hausdorff space of characteristics), which is a natural setting
for the study of commodity differentiation; see Mas-Colell (1975), and Jones
(1984). Here we obtain two results for large finite economies that are quite
reminiscent of the continuum results of Ostroy and Zame (1993). In each of
these results, an equimonotonicity assumption rules out monopsony power,
and bounds on endowments rule out monopoly power. Together, these two
assumptions amount to a kind of “economic thickness.” (The first result
assumes uniform bounds on marginal rates of substitution; the second result
dispenses with these bounds, at the expense of requiring stronger bounds on
endowments.)

Theorem 9.4 If the commodity space is M(S2), endowments are resiricted
to lie in a norm bounded set, and preferences belong to a family that exhibits
uniformily bounded marginal rates of substitution and is weak star equimono-
tone on norm bounded sets, then core allocations of sufficiently large finite
economies can be approzimately decentralized by prices.

Theorem 9.5 If the commodity space is M(S)), endowments are restricted
to lie in an order bounded set, and preferences belong to a family that is weak
star equimonotone on norm bounded sets, then core allocations of sufficiently
large finite economies can be approzimately decentralized by prices.

We emphasize that, in these results, we make no assumption about the core
allocation and we obtain global approximate decentralization by prices

As in the finite dimensional case, our positive results depend on the con-
vexifying effect of large numbers, through two infinite dimensional versions
of the Shapley—Folkman theorem, which may be of interest in themselves:

1 Again, we can relax order boundedness to a kind of “uniform integrability” with
respect to the order.
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Theorem 5.1 In a locally convex topological vector space, the mean of a
large (finite) number of sets, each lying in a given compact set, differs from
the convex hull of the mean of the sets by an arbitrarily small amount.

Theorem 5.2 In a Dedekind complete Riesz space with an order continuous
topology, the mean of a large (finite) number of sets, each lying in a given
order bounded set, differs from the convez hull of the mean of the sets by an
arbitrarily small amount.

As we have said, we have used “approximate decentralization” to mean
the existence of a price for which (a) the average amount by which the al-
location fails to be budget feasible is small, and (b) the average saving that
can be effected while still improving on the given allocation is small. As
in the finite dimensional setting, approximate decentralization in this sense
does not generally imply the stronger conclusion that core consumptions
are close to demands at this price or al any other price (see Anderson and
Mas-Colell{1988)). We are able to show that this stronger conclusion holds
when the commodity space is M({2), and marginal rates of substitution are
bounded, and the preferences satisfy an equiconvexity assumption:

Theorem 10.2 If the commaodity space is M ({1}, endowments are restricted
to lie in a norm bounded set, and preferences belong to a family that exhibits
uniformly bounded marginal rotes of substitution and is weak star equimono-
tone and weak star equiconvexr on norm bounded sets, then core allocations
of sufficiently large finite economies are close to demands.

We conjecture that this stronger conclusion will hold in other contexts (with
appropriate assumptions}, but the arguments may not be entirely straightfor-
ward since a characteristic of many infinite dimensional commodity spaces is
that demand sets (for many non-pathological preferences) may well be empty
at many prices. For a detailed analysis and discussion of the connection be-
tween approximate decentralization and core consumptions close to demands
in the finite dimensional setting, see Anderson (1981).

In none of our positive results do we establish a “rate of convergence.”
That is, we do not estimate the number of agents required to guarantee
decentralization to within a fixed amount e. Straightforward adaptation of
our arguments would probably yield such rates of convergence, but the rates
that could be obtained in this way might be very slow. Indeed, in Section
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11, we provide an example in the space of measures in which convergence is
arbitrarily slow.'? It remains to be seen whether there are natural assump-
tions which will guarantee a reasonably fast rate of convergence. Because
a very slow rate of convergence raises questions about the interpretation of
approximate decentralization, we believe that the rate of convergence is an
important topic that deserves further exploration.

We believe that the results of this paper raise some questions as to when
and whether Walrasian equilibrium, with its implicit assumption of price-
taking behavior, is appropriate as a positive equilibrium notion in economies
with an infinite dimensional commodity space, even if the number of agents
is large. Of course, in addition to its positive significance, Walrasian equilib-
rium also has normative significance as a benchmark to which other economic
outcomes can be compared. Our results also suggest that much work remains
to be done to understand the relationship of Walrasian equilibrium to other
economic outcomes in the infinite dimensional setting.

The remainder of the paper is organized in the following way. Section
2 discusses lower bounds on the social endowment, the normalization of
prices, and the notion of decentralization. Section 3 contains our central
nonconvergence examples. Section 4 gives some basic background about
Riesz spaces, and states a representation theorem for Riesz spaces due to
Abramovich, Aliprantis and Zame (1995). Section 5 contains our two ver-
sions of the Shapley—Folkman Theorem. An algebraic result connecting a
separation property to decentralization is presented in Section 6. Our ap-
proximate decentralization result in the presence of compactness restrictions
is in Section 7. Our approximate decentralization results for Riesz spaces
are in Section 8; the corresponding results for the space of measures are in
Section 9. In Section 10, we use an approximate decentralization result in the

12In the finite dimensional context, Anderson (1978) and E. Dierker (1975) show that
the number of agents required to guarantee approximate decentralization to within ¢ is
bounded by a constant times 1/¢; no smoothness or regularity is required. If one measures
the distance of the core to the nearest Walrasian equilibrium in uiifity terms, the situation
is more complex. Aumann {1979) gives examples showing that the convergence of the
core to the set of Walrasian allocations in the sense of utilities can be arbitrarily slow.
If preferences are smooth, Debreu (1975} and H. Dierker (1975) show that the rate of
convergence of the core to the set of Walrasian allocations in the sense of utilities is 1/e
for a generic set of economies (namely, the regular economies).

12




space of measures to establish a stronger conclusion — core consumptions
are close to demand sets — under strict convexity assumptions. Finally, in
Section 11, we provide an example in the space of measures in which con-

vergence {measured in terms of approximate decentralization) is arbitrarily
slow.
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2 The Notion of Decentralization, the Social
Endowment and the Price Normalization

E. Dierker (1975) and Anderson (1978) show that core allocations in finite
economies can be approximately decentralized — whether or not the social
endowment is strictly positive. Specifically, the following definition estab-
lishes a measure of how well a given price decentralizes an allocation.

Definition 2.1 Let x : A — P x L, be an exchange economy, where A is a
finite set, L, is the nonnegative cone of an ordered vector space, and P is a
set of preferences on L. We define the endowment e{a) and preference >,
of an agent a € A by (>~,,e(a)) = x(a). Suppose X C L. If f: A — L,
and p is in the vector space dual of L, we define the following measures of
the budget, support, and approximate decentralization gaps:

e budget gap

pe(f,a,p) = |p-(f(a) — e(a))]
PB(f,P) - '—1“293(]‘.,@,10)
IAlaeA

¢ support gap

ps(fra,p, X) = max{0,sup{p-(f(a) —z):z € X, >, f(a)}}
pS(f7a‘?p) = pS'(f,a':paL+)
ps(f,p, X) = ﬁ—!Zps(f,a,p,X)

acA

pS(fa a":p) = pS(f& a’:p:L+)
e approximate decentralization gap

p{f,a,p,X) = pr(f a,p)+ps(f,a,p X)

ro(f:a'ap) = p(faa':p?L+)
olfp,X) = ﬁzp(f,a,p,}f) (1)

acA

p(f:p) = p(f)pa L+)
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pp measures the budget deviation of f at the price p; if we know that pg(f)
is small, then we know that the net trades of most agents are almost in the
hyperplane perpendicular to p. ps measures how well p serves as a support
price to agents’ preferences at f; ps(f,p, X) measures how well p serves as
a support to agents’ preferences when comparison bundles are restricted to
lie in X. In the definition of ps(/f,a,p, X), we take the maximum of the
supremum and 0 for two reasons. First, there may not be any z € X which
is preferred to f(a), in which case the supremum would be —co. Second, if
every z € X with z >, f(a) satisfied, say, p- 2z > p- f(a) + 1 (so that p
supports the preferred set too well), the supremum would be negative; since
we do not want to allow negative values for some agents to offset support
failures for other agents, we want ps(f,a,p, X) to be 0 in this case.

E. Dierker (1975) and Anderson (1978) establish, under minimal assump-
tions on preferences, that when L, = R¥, any core allocation [ satisfies

6k max,c 4 [le(a) ||
p(f,p) < IA|

for some price p satisfying ||p|l, = 1.

The theorem just described normalizes prices in a way which, while com-
mon in finite-dimensional theory, is inappropriate in infinite-dimensional the-
ory. Specifically, prices are normalized to lie in the standard price simplex
{p € RE : |lp|l1 = 1}; if the social endowment is not strictly positive, the
value of the social endowment could well be 0. Indeed, if the social en-
dowment of good 7 is 0, the conclusion of the approximate decentralization
theorem is trivially satisfied by taking p = (0,...,0,1,0,...,0), where the
1 occurs in the ¢-th component. In infinite-dimensional commodity spaces,
the corresponding normalization would be to require that the L! norm of
the price be 1; this makes sense only if the commodity space is L and the
price space is L'. For this reason, a new normalization is needed. To avoid
triviality, it is natural to choose p so that the mean social endowment has

value 1, i.e,
1
pr— ) efla)=1. 2)
S el (

acA

Definition 2.2 Let x : A— P x L. be an exchange economy, and f : A —
L. We say that p e-decentralizes f with respect to X if p satisfies Equation
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(2) and ]
plf,p, X) <e (3)

We say that p e-decentralizes f if p e-decentralizes f with respect to X = L.
We say that f is e-decentralizable with respect to X if there is a price p which
e-decentralizes f with respect to X. We say that f is e-decentralizable if it
1s e-decentralizable with respect to X = L.

When we normalize prices by the social endowment, however, approxi-
mate decentralization may fail even in finite dimensional spaces.

Example 2.3 We construct a replica sequence %, of finite exchange economies
(with two goods and one type of agent) and core allocations that cannot be
approximately decentralized by prices assigning value 1 to the mean social
endowment. '

In the nth economy, the set of agents is 4, = {1,...,n}. For each agent
a € A,, we have
ela) = (1,0), u.(z) = zlz2.

Let fn(a) = (1,0) for each a € A,,. Clearly, f, belongs to the core of xy,.

Suppose p, e-decentralizes f, for € = % Since the per capita social

endowment is (1,0), we must have p, = (1, ) for some a, € R. If o, < 0,
then inf{p, - (z — f,(a)) : © >, fu(a)} = —o0. Thus, we may assume that
o, 2 0. But then ps(fn, a,pn) = |inf{p, - (z — fu(a)) : 2 =, fala)}| =1 for
all a € A, so ps(fn,pr) = 1, which is a contradiction.

The difficulty posed by this example could be ruled out by requiring that
the mean social endowment be bounded away from 0.1% It is not entirely clear
how to translate such a requirement on the mean social endowment from the
finite dimensional context to the infinite dimensional context. The path we
shall follow is to require that the mean social endowment be bounded below
by a fixed (strictly) positive vector.

13The example is easily modified so that the mean social endowment in each economy is
strictly positive, but cannot be modified so that the mean social endowments are bounded
away from 0.
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3 Examples

We have argued in the Introduction that the finite agent analog of Au-
mann’s theorem (approximate decentralizability by prices) requires that en-
dowments, core allocations, and comparison bundles all lie in small subsets
of the commodity space. In this Section we show that these requirements
have economic content, and are not simply artifacts of interpretation. In
the absence of any one of these requirements, core allocations may fail to
be approximately decentralizable by prices. For each of these requirements,
we describe & sequence of economies and core allocations for which the re-
quirement fails and show that the core allocations cannot be approximately
decentralized by prices. We conclude with a fourth example of a sequence of
economies with no Walrasian equilibria and core allocations which cannot be
approximately decentralized by prices. Every agent in every economy has the
same preference and endowment; thus, there is no sense in which the example
is driven by monopsony or monopoly. Because the preferences and endow-
ments are constant along the sequence, the sequence has a well-defined limit
economy with a continuum of agents. In this limit economy, core equivalence
holds because the core and the set of Walrasian equilibria are both empty.

It is convenient to set all four examples in essentially the same envi-
ronment. (As we shall see later, they can each be cast in a wide variety of
environments.) Let A denote Lebesgue measure on the unit interval {0, 1], and
let L' = L*(X) be the space of (equivalence classes of) real-valued integrable
functions on [0,1] {as usual, we identify functions which are equal almost
everywhere.) Similarly, L% denotes the space of square-integrable functions.
The first three examples are set in L', while the fourth is in L2, Write 1 for
the function which is 1 everywhere. For E C [0,1] a measurable set, write
1g for the characteristic function of E; that is, the function which is 1 on E
and 0 elsewhere. The first example, adapted from Anderson (1990), shows
how monopsony power may lead to the failure of perfect competition. Here,
the expression of monopsony power is that core consumptions are not order
bounded (although they are norm bounded).

Example 3.1 We describe a sequence of economies. Fix an even integer
N; write A = {1,2,...,N} for the set of agents in the N* economy. The
endowment of each agent n € A is e(n) = 1. To describe preferences, first
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define intervals F,, = [2:1, 2} (Note that these intervals form a partition of
[0, 1) into disjoint subintervals of equal measure 1/N. Let ¢, : [0,1] — R be

the function which is 2 on F,, and 1 elsewhere; agent n’s utility function is
wn(@) = [ o(t)gn(6)dAC)

Thus, agent n’s utility function is linear, with constant marginal utility equal
to 2 for commodities in his/her “preferred interval” F,,, and with constant
marginal utility equal to 1 for commodities outside this preferred interval.
Note that these utility functions are quite well-behaved: norm continuous,
strictly monotone, and having marginal rates of substitution bounded above
and bounded away from zero (hence uniformly proper).

This economy has a unique Walrasian equilibrium; the equilibrium price
is p = 1 and the equilibrium allocation gives consumer n the consumption
bundle:

z{n) = N1p,

The core of this economy, however, is quite large. In particular, we assert
that the allocation f defined by

Nlg, + 3N1p,,, ifnisodd
fln) =

%N].Fﬂ if n is even
is i1 the core.

To see that f is in the core, it is useful to begin by calculating the total
utility achievable by a group B C A of size M < N, using its own resources;
as we shall see, this total utility depends on the size of B but not on its
composition. The total endowment of such a group is M1. The utilitarian
allocation of these total resources (that is, the allocation which maximizes
the sum of individual utilities) has consumptions:

yM(m) = M]‘Fm + Z 1Fﬂ
ne A\B

This yields (identical) individual utility levels of

M N-M_ M
UM =T N N
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and total utility to the coalition B of

M?
B)y=M+ —
v(B) + I
Thus utility achievable by a coalition exhibits strictly increasing returns to
scale; as is well-known, this provides a recipe for a big core. (In game-
theoretic language: the transferable utility game (A,v) we have just con-
structed is strictly convez, and strictly convex games have big cores.)

Now consider a blocking coalition B C A; say that B contains & odd
consumers and ! even consumers, and suppose that g : B — L! is a feasible
allocation for the coalition B which improves on f. We first analyze total
utilities, in order to obtain an estimate for the size and population distri-
bution of B. The allocation f yields utility of 17/8 for each even consumer
and 7/4 for each even consumer; in order that g be an improvement on f, it
must provide each odd member utility exceeding 17/8, and each even mem-
ber utility exceeding 7/4. In particular, the total utility provided by g must
exceed the total utility provided to B by f. The calculation above shows
that the total utility available to members of B, using only the resources of
B, is v(B) = (k+1)?/N + (k + ). Since B can block, we must have

(k+1)? 17
5 +k+1 > “g”’”:il > Z(icH)

Simplifying the extremes of this inequality implies that k& +1 > 3N/4. As
we have already noted, the total utility available to a coalition depends on
its size but not on its composition; since f gives odd consumers greater
utility than even consumers, a new blocking coalition could be constructed
from B by replacing odd consumers with even consumers (to the limit of the
number of even consumers). Thus there is no loss in assuming that I = N/2
and k > N/4 (so that all the even consumers and more than half the odd
consumers belong to B). Write B, for the set of odd consumers in B, and
B, for the set of even consumers. We now analyze actual consumptions. For
each b € B, write

7 7

o) = [ 9()(t)ars)

{the mean consumption of agent b). Since g is an improvement on f, it must
provide each even agent in B utility exceeding 7/4, and hence must provide
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each even agent mean consumption exceeding 7/8. Since B, contains all N/2
even agents, it follows that

7
> e(b) > w
bEB. 16
On the other hand, the total endowment of members of B is just (k + N/2)1,
so the sum (over all agents in B) of the mean endowments is 1. Because g
is feasible for B, it follows that

N TN N
b)) <k+ o -——F=k+—
Py 2 16 6

Hence there is at least one consumer a € B, for whom

k+& N
BT
Recall that the total endowment of the coalition B is just (k + N/2)1; thus

the utility of consumer a is at most

c(a) <

2k+5) N _k+gy kN 3
N 16k N N 18k 2

Since f(a) yields consumer a the utility 17/8, and g(a)} yields higher utility,

it follows that
k + N 4 3 S 17
N 18t 2 8

or equivalently that

k N 5
AT (4)

If we view k as a real variable, and differentiate, we find that
d [k N 1 1 N

dk

N ' 16k

N 16k?

The right hand side is non-negative for % in the interval [N/4, N/2], so the
maximum value of k/N + N/16k is obtained for k¥ = N/2, where k/N +
N/16k = 5/8. It follows that equation(4) has no solution for N/4 < k < N/2,
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which is a contradiction. Hence there are no blocking coalitions, and f is in
the core, as asserted.

As we have already noted, f yields utility 17/8 for odd consumers and
7/4 for even consumers, independently of the size of the economy. Thus the
core does not shrink to the unique Walrasian allocation as N — oco. More to
the point (for our purposes), we claim that there is no price p for which the
mean social endowment has value 1 and which 1/100-decentralizes the core
allocation f.

To see this, note first that all individual endowments, and hence the mean
social endowment, is 1. Let p be a linear functional on I for which p-1 = 1,
and suppose that p 1/100-decentralizes f. Since all consumers have the same
endowment, they all have wealth 1.

We claim first of all that p is a positive linear functional. For if not, there
would be a positive element z € L} such that p-z < 0. Since marginal util-
ities for all consumers le between 1 and 2, the consumption bundle 3z/||z}|
would be preferred to the core consumption f by every consumer, and would
have a negative or zero cost, a contradiction since p 1/100 decentralizes and
wealth is 1. We conclude that p is a positive linear functional, and hence
continuous (because every positive linear functional on a Banach lattice is
continuous (Aliprantis and Burkinshaw (1985))). Since the dual space of L*
is L, we may identify p with a positive function on [0, 1].

Since the price p 1/100-decentralizes f, and the number of even and odd
consumers is each precisely 1/2 the total number of consumers (recall that N
is even), it follows that there is at least one odd integer k such that the odd
consumer & and the even consumer k+ 1 are each within 1/25 of optimization
in their budget sets. That is

ep-f(k) <1+ % and

® Ay such that u(y) > w(f(k)) and p-y <1 — %
and similarly

o p-flk+1) <1+ and

o Ay such that up1(y) > w1 (f(k+ 1)) andp-y<1— %
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By assumption, p- f(k) < 141/25. If p- f(k) < 1—1/25, strict monotonicity
would provide a consumption bundle preferred to f{k) and costing less than
1 —1/25, a contradiction. Hence

1
- <. —
1 pf(k)<1+25

Similarly, .
1
- <p. 14 —
1 55 SP flk+1)< -i-25
Recall that f(k) = N1g, 4 (1/8)N1g,,, and that f(k + 1) = (7/8)N1p,,,;
substituting into the previous equations and combining yields
1 142 1 1-4
e B <p.Nlp <14 — -5
5~ 7 P NInsltogm—
On the other hand, the commeodity bundle (17/16)N1y, yields consumer
k the same utility as f(k) (because the marginal utility of consumer k is
identically 2 on F}, and identically 1 elsewhere}; hence strict monotonicity of
preferences implies

17 1
i >1 - —
Prighin2l-5
Combining the last two equations yields
17 1 144 1
- — 2T Bys 1o
wltE 7 )2l g
Simplifying yields
0 _1
231 25

which is absurd. We conclude that f cannot be 1/100-decentralized by any
price, as asserted.

As a final note, it is useful to view the economy as if it had transfer-
able utility, and calculate marginal contributions and individual surplus in
the sense of Ostroy (1980). At the Walrasian allocation, each consumer ob-
tains utility 2. However, each consumer contributes to society the difference
between the total utility society could obtain with his presence and the to-
tal utility society could obtain in his absence. According to our previous
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calculations, this means that each individual’s contribution to society is

%—EJF(N—-D 35—~

2N — N

Hence, each consumer’s marginal contribution to society exceeds his utility
at the Walrasian allocation by 1~ 1/N, and this difference remains bounded
away from 0 as N — oo. Therefore individuals do not (approximately)
extract their marginal contributions to society, and the economy fails what
Ostroy calls the asymptotic no-surplus test of perfect competition.

Our second example, a variation on a theme of Ostroy and Zame (1993),
shows how monopoly power may again lead to the failure of perfect compe-
tition. Here, the expression of monopoly power is that endowments are not
order bounded (although they are norm bounded). As we will see, these two
examples are essentially dual to one another, reflecting the essential duality
of monopoly and monopsony.

Example 3.2 We again construct a sequence of economies. Fix an even
integer N; write A = {1,2,..., N} for the set of agents in the N** economy.
The endowment of consumer n € Ay is

e(n) = Nlg,
where F, = [{n — 1)/N,n/N), as before. To define preferences, define a
felicity function U : R* — R*by!

U(t):{gt if0<t<1

t+4+1 if1<t<oo

Now define the common utility function u of all consumers by

uo) = [ula()dre)

1 The particular form of this felicity function is chosen simply for computational conve-
nience; the non-differentiability at 1 can easily be smoothed without affecting the quali-
tative behavior of the example. Alternatively, any strictly concave felicity function would
serve.
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Thus, consumer n has a monopoly on commodities in the interval F},, and
all consumers prefer to spread out consumption on the interval {0,1). Again,
this economy has a unique Walrasian equilibrium; the equilibrium price is
P = 1 and the equilibrium allocation gives each consumer n the identical
consumption bundle z = 1. And again, the core of this economy is quite
large. In particular, we assert that the allocation f defined by:

21 ifnis odd
f(n)=
%1 if n is even
is in the core.

To see this, we begin once again by computing the total utility that can
be obtained by a coalition B C A having M members. The total endowment
of such a coalition is

> Nip

beB

The utilitarian allocation gives each member of B the identical consumption

N

o 2 15

M be B ’
and the identical utility

M N M M
o+ (1) (%) = w1

Thus the total utility that can be obtained by B is

M?
By=—
v(B) N T M
which is precisely the total utility we computed for such a coalition in Ex-

ample 3.1.

Now consider a blocking coalition B C A; say that B contains k& odd
consumers and ! even consumers, and suppose that g : B — L' is a feasible
allocation for the coalition B which improves on f. Since the utilities at
the core allocation f and the total utility obtainable by B are the same as
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in Example 3.1, our previous calculation applies to show that I = N/2 and
k > N/4. To complete the argument that [ is in the core, we analyze actual
consumptions; the argument is only very slightly different than in Example
3.1. Write B, for the set of odd members of B and B, for the set of even
members. For each b € B, write

o) = [9B)H)arE)

(the mean consumption of agent b). Since g is an improvement on f, it must
provide each even agent in B utility exceeding 7/4, and hence must provide
each even agent mean consumption exceeding 7/8. Since B, contains all N/2
even agents, it follows that

TN
> c(b) > 16

On the other hand, the total endowment of members of B is just (k+N/2)1,
so the sum (over all agents in B) of the mean endowments is 1. Because g is
feasible for B, it follows that

N TN N
RS A 4
2Bl <kt g -5 =kt

Hence there is at least one consumer a € B, for whom

k+ & N
C(G)(——k 1+ﬁ

Recall that the total endowment of the coalition B is Just 2.peB V1g; thus
the utility of consumer a is at most

N N k+X k N 3
ok 4 ¥ N krs kN3
(+2)+1+16k N Ntier T3

Since f(a) yields consumer a the utility 17/8, and g(a) yields higher utility,
it follows that

or equivalently that




As we know from Example 3.1, this equation has no solution for N/4 < k <
N/2. Hence there are no blocking coalitions, and f is in the core, as asserted.

As we have already noted, f yields utility 17/8 for odd consumers and
7/4 for even consumers, independent of the size of the economy. Thus the
core does not shrink to the unique Walrasian allocation as N — oco. We
claim that the allocation f cannot be 1/504-decentralized by any price. To
see this, let p be a linear functional on L' for which p- 1 = 1, and suppose
that p 1/504-decentralizes f. Just as in Example 3.1, the price functional pis
necessarily positive, hence continuous,and may be identified with a positive
function on [0,1]. Since the price p 1/504-decentralizes f, and the number of
even and odd consumers is each precisely 1/2 the total number of consumers
(recall that N is even), it follows that more than 1/2 of all consumers are
within 1/126 of optimization in their budget sets; in particular, there is some
odd consumer & and some even consumer ! for which

o $=pf(k) <p-e(k)+ & and
o Ay such that u(y) > u(f(k)) and p-y < p-e(k) — “1‘%“6

and
« i=p f(l)<p-e(l) + g5 and
o Ay such that u(y) >u(f(I)) and p-y<p-e(l) — &=

The bundle 1+ (N/8)1p, yields consumer k the same utility as f(k) = (9/8)1,
s0 approximate optimization in the budget set and strict monotonicity for
consumer k guarantee that

N 1 9 2
. - celk) — oo > o —
P [1+81F']>p k) - 5 > 8 ~ Top
Hence
-e{ll)=p-N1 >1—£
pre\ly=p A oh 126

On the other hand, approximate optimization in the budget set for consumer
l guarantees that

1 7 1
P'€(5)<P'f(l)+ﬁg—~§+@
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Combining the last two inequalities and simplifying yields
117 1 |

8”126 8
which is absurd. We conclude that f cannot be 1/504-decentralized by any
price, as asserted.

Finally, note that the calculation of marginal contributions and individual
surplus gives the same results as in Example 3.1: At the Walrasian allocation,
each consumer obtains utility 2, but each individual’s contribution to society
is 3—~1/N. Hence, each consumer’s marginal contribution to society exceeds
his utility at the Walrasian allocation by 1 — 1/N, so once again individuals
do not{approximately) extract their marginal contributions to society, and
the economy fails the asymptotic no-surplus test of perfect competition.

In each of the preceding examples, we have constructed a core allocation
that cannot be approximately decentralized by prices. In each case, the
distance in consumption from the core allocation to the Walrasian allocation
is quite large(the agents who do worse lose 1/8 of their consumption) but the
failure of approximate decentralization by prices is much smaller (the relative
error being only 1/100 in the first example, 1/504 in the second). However,
this apparent disparity reflects only the difference in the metric; the same
phenomenon occurs in the finite dimensional context. Consider, for example,
an N-consumer economy in R?, and assume that preferences are strictly
convex and that individual endowments are bounded by the vector (1,1).
Anderson (1987) shows that any core allocation can be 1/N2-decentralized,
but the mean distance (in consumption) from a core allocation to a Walrasian
allocation is generically 1/N (Debreu(1975)).

The third example has a more technical — and perhaps less economic
— interpretation. As we have shown, failure of approximate decentralizabil-
ity by prices may occur when core consumptions fail to be order bounded
(monopsony) or when endowments fail to be order bounded (monopoly).
As the following example shows, failure of approximate decentralizability by
prices may occur even when endowments are order bounded and core con-
sumptions are order bounded, but the relevant comparison bundles are not
order bounded.
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Example 3.3 Again, we describe a sequence of economies. The N** econ-
omy is composed of N identical agents, with endowments e = 1. To define
utility functions, let U : Ry — R, be any smooth function such that U’ is
continuous, nonnegative and satisfies

() 1<V (z)<2for 0K < 2N
(b) U'(xz) > 5 for 3N <3 < 6N

Now let utility functions be defined by
= U(z(t))dA(t
ule) = [ Ula(®)dr)

The endowment is the unique core allocation (indeed, the unique Pareto
optimal allocation); the crucial point is that the feasible consumptions are
bounded by N1. However, this allocation cannot be approximately decen-
tralized by prices.

To see this, let p be any price with p-1 = 1. We can find an interval
E C [0,1} of length 1/8N for which [, pdA(t) < 1/8N. Then p- (6N1g) <
3/4 and u(6N1g) > 2% > 2 > u(e); that is, 6N1g is preferred (by every
consumer) to the core allocation, and costs much less, a contradiction.

We have cast each of these examples in L*()), but they may easily be re-
cast in other commodity spaces. Indeed, since all the allocations in question
are bounded (although not uniformly bounded), each of these examples may
be interpreted in LP(\) for any p with 1 < p < oo. In each case, it is the
failure of the relevant consumption bundles to be order bounded that leads
to the failure of perfect competition.

Alternatively, since we may view L!()) as a subspace of the space of
measures M|[0, 1], we may also interpret these examples in that commodity
space.’® Looking ahead to Section 9, in M|[0, 1] we note that the failure of
perfect competition in these examples may be traced, not to the unbounded-

154 little care must be taken in the interpretation of the preferences in Example 3.1;
see Ostroy and Zame (1993).
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ness of endowments, core consumptions, or comparison bundles, but rather
to the failure of preferences to be weak star equimonotone on bounded sets.?®

The final example constructs a sequence of economies with core alloca-
tions that cannot be approximately decentralized by prices, and with no
Walrasian equilibria; these features result from increasing returns to spe-
cialization in consumption. The economies in the sequence also have the
property that the preferences and endowments are the same for all agents,
and are independent of which economy in the sequence is chosen. As a con-
sequence, the sequence has a well-defined continuum limit economy. Core
equivalence holds in this continuum limit economy — but it holds vacuously:
both the core and the set of Walrasian equilibria are empty. The discon-
nection between the continuum limit and the large finite economies arises
because the core allocations of the finite economies are becoming very spiky;
as a consequence, there is no corresponding limit allocation in the continuum
economy. This example also demonstrates that it will be extremely hard to
topologize the space of economies in such a way that core convergence re-
sults in large finite economies can be deduced from properties of economies
with a continuum of agents, as in Hildenbrand (1974). Every agent in the
finite economies has the same endowment and preference as every agent in
the continuum limit economy; if any sequence of economies converges, surely
this one must. However, we see that the core is not upper hemicontinuous
along this sequence. In the finite economies, the cores are nonempty; in the
continuum economy, the core is empty.!”

Example 3.4 Again, we construct a sequence of economies. The commodity
space is L?()). Fix an integer N and write A = {1,..., N} for the set of

agents in the N** economy. Each agent n € A has endowment 1 and utility
function

u(X) = f X(2)%d

[o,1]

81n fact the preferences we have given are not weak star continuous, but this can be
remedied; the failure of weak star equimonotonicity is irremediable.

17 Another example showing the difficulty of following the topological approach is given
in Anderson (1990). Two sequences of economies xn and Y, are considered. x is the
same sequence of economies which appears in Example 3.1. y/ is the same as xy, except
that it contains N2 agents, with NV clones of each of the N types of agents present in .
The core of x}y can be approximately decentralized by prices, while the core of X~ cannot.
Note that x» and x), generate exactly the same distribution of agents’ characteristics.
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Let
f(n) = N1g,

where as before Fy = {1‘%1, %) We claim that f is in the core of the N*
economy. Note first that u(f(n)) = N2/N = N. Given a coalition S with
M agents, the maximum aggregate utility it can achieve for its members
is M?, while to block it must achieve aggregate utility strictly exceeding
MN > M?, which is impossible; thus, f is in the core. Now suppose p
approximately decentralizes f. Since p- & = 1, we can find a measurable set
E with A(E) = 5 such that [ppdA < . Let X =3N1g. Thenp 2 < 3,
while u{X) = 2, in other words, X yields more than twice as much utility
as f(n) and costs at most three-quarters as much as the endowment.

Since every agent has the same preference and endowment, which is inde-
pendent of N, the sequence has a well-defined continuum limit economy with
A=10,1], e(a) = 1 and u(X) = [ X (£)*d) for all a. We claim that the core
of this economy is empty. For if f : A — L? is an allocation, then u(f(a)) is
finite for A-almost all a. Find a such that if A* = {a : u(f(a)) < a}, then
AMA*) = B8 > 0. Let T : A* — [0,1] be defined by T(a) = 2400l et
6 = &= and define g : A* — L% by

1
gla) = Flr@ @+

where the interval is interpreted modulo 1. Then [4. g(a)dh = 81 = [,. e(a),
so g is feasible for A*. u(g(a)) = & = 1 = 2a > u(f(a)), which shows that
A* blocks f via g. Since the core is empty, the economy also has no Walrasian
equilibria, so core equivalence is vacuously satisfied.
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4 Riesz Spaces

We collect here some necessary facts about Riesz spaces, including a recent
representation theorem of Abramowicz, Aliprantis and Zame (1995). The
books of Aliprantis and Burkinshaw (1978, 1985) provide excellent general
references.

A Riesz space (or vector lattice) is an ordered vector space L which is a
lattice in its ordering; that is, every pair z, % € L of elements has a supremum
{least upper bound) z V¥ and an infimum (greatest lower bound) z Ay. We
write £+ = z V 0 for the positive part of z, z~ = 2 A 0 for the negative part
of z, and |z| = 2 + z~ for the absolute value of z. We denote by [z, y] the
order interval {z : z < z < y}. A set is order bounded if it is contained in
some order interval. We write L, for the positive cone of L (the set of non-
negative elements). The Riesz space L is Dedekind complete if every subset
A C L which has an upper bound has a least upper bound.

We write z, T & (respectively, z,, | z) to mean that {z,} is an increasing
{decreasing) net in L with supremum (infimum) .

An order ideal is a vector subspace K C L with the property that y € K
whenever ¥ € L and there is an ¢ € K with [y| < |z|. If z € L, is a positive
element, then the principal order ideal I, generated by x is the smallest
order ideal containing x:

Ly={yeL:3M |y| < Mz}

An order ideal K isa band if z € L, {z,} C K and z, zimply z € K. A
positive element z € L is a weak order unit if the smallest band containing
x is L itself.

A linear functional f : L — R is positive if f(z) > 0 whenever x > 0 and
strictly positive if f(z) > 0 whenever x > 0 (i.e., z > 0,z # 0). A positive
linear functional f is erder continuous if f(z,) — 0 whenever z, | 0.

A subset E C L is solid if |z] € E whenever z € E. A locally-convex
solid topology T on L is a linear topology which has a neighborhood base
at, 0 consisting of convex, solid sets. The locally-convex solid topology T is
order continuous if z, — 0 in the topology 7 whenever z, | z. f T is a
locally-convex solid topology on L then the dual space (L,7) {the space of
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T-continuous linear functionals) is itself a Riesz space in the natural ordering:
f2gif f(z) > g(z) forall z € L. As usual, we frequently suppress explicit
mention of the topology and write L' rather than (L, 7).

If 7 is a locally convex solid topology on L, a vector z € L is strictly
positive if f(x) > 0 whenever f € (L,7Y, f is positive, and f # 0 (ie., v
acts as a strictly positive functional on (L,7)"). Strictly positive vectors are
always weak order units, but a weak order unit need not be strictly positive.

Our Riesz space results depend on a representation theorem of Abramow-
icz, Aliprantis and Zame (1995), which has several parts; the following col-
lects the assumptions required to obtain the parts we desire.

Assumption 4.1 L is a Riesz space and 7 is a Hausdorff locally convex
solid, order continuous topology on L such that

e L is Dedekind complete
e [ has a weak order unit z € L

e the dual space (L, 7)' contains a strictly positive order continuous linear
functional

Assumption 4.1 holds for every separable Banach lattice with order con-
tinuous norm, including (for any probability measure u) each of the Banach
lattices L = L?(u), (1 < p < oo) as well as (i), equipped with the Mackey
topology. If L = LP(u) for 1 < p < oo, 1 denotes the element of I which is
1 almost surely.

The representation theorem we require is:

Theorem 4.2 (Abramovich, Aliprantis and Zame) Let L be a Riesz
space satisfying Assumption 4.1, let v € L be a weak order unit, and let
w € L' be a strictly positive order continuous linear functional. Then there

is a countably additive probability space (0, F, u} and a continuous mapping
R: L — LYu) such that

(i) R is a vector lattice isomorphism onto its range R(L)
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(tt) R(v) =1 and R(L,) = L={p)
(iit) the range R(L) is a dense order ideal in L(u)

(tv) for each positive real number M > 0, the restriction of R to the or-
der interval [—Mwv, Mv] is a homeomorphism onto R([—Mv, Mv]) =
[-M1, M1}
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5 The Convexifying Effect of Large Numbers

In this Section we establish two analogs of the Shapley—Folkman Theorem
for infinite dimensional spaces. In both cases we show that the mean of
a sufficiently large finite number of sets differs from its convex hull by an
arbitrarily small amount, provided that the sets in question are subsets of a
given “sufficiently small” set. Our first result applies to the setting of locally
convex topological vector spaces; in this setting, “sufficiently small” means
“compact.”

Theorem 5.1 Let L be a locally convex topological vector space, and X a
compact subset of L. For every neighborhood U of 0 in L, there exists an
integer ng such that if Ay,...,An C X and n > ng, then

n n
con (—1— Z/—L;) C (EZAZ) +U. (5)
i s

Proof: Let U be a neighborhood of 0. Since L is locally convex, we can find
a convex open set V with 0 € 4V C U. The collection {z+V :z € X} isan
open cover of X. Since X is compact, there is a finite subcover {z;+V : 1 <
i £ M}. Fix a function ¢ : X — {z1,...,Zzx} such that ¢(z) = 2; = z €
z; + V. Let spanX denote the linear span of {z1,...,Zx}, and let &k be the
dimension of spanX. Since scalar multiplication is continuous, the collection

{%#V :n € N} is an open cover of X, so there exists np such that X C 22V,
Ifs:1,...,8m € X and m <k, and n > ng,

Y siem (@V) C nV, (6)
=1 k .

since V is convex.

Suppose £ € con (A + -+ Ap), withn > ng. Then z =z, + -+ + 2,
where z; € con A;. Therefore,

T =) N, (7)
j=1
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where Ti; € A, A; > 0, and ¥, A;; = 1 for each 4. Let

Yig = B@s), % =D Mg¥iir Y= > %6 Bi={wyg:5=1,...,m}. (8)
i=1

i=1

n Mg

T—y=2> Mz — v, (9)
i=1j=1 J""'"E*;"""’
A
env

since V is convex. By the usual finite-dimensional Shapley-Folkman Theo-
rem, we can find §; € con B; such that y = 3,4, #: € B; for i € § and
|S| > n~k. Let § =3 e

y—9=>) fi€nV, (10)

T
by Equation (6).

For i € S, 4; € B, so §; = y;; for some 7; let &; = z;;. For ¢ € S, choose
%; € A; arbitrarily. Let & = 7 ; #;. Observe that 2 € A; +--- A,,.

g—&=) §i—&i— > (11)
ies o igs
i e S——
env €nV by Equation (6)
e2nV
Therefore,
z—&=(z-y)+{y— 9 + (- 2) €4nV Cnl, (12)
80 ]
z 1
il PP Rl 13
€ (nZAa) ¥ (13)
|

Our second result shows that, in a wide variety of interesting commodity
spaces, we may weaken the compactness assumption of Theorem 5.1 to order
boundedness. It makes use of the representation Theorem 4.2, and hence
requires Assumption 4.1.
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Theorem 5.2 Let L be a Riesz space and 7 a Hausdorff locally-convex solid
topology on L, salisfying Assumption 4.1. Let X C L be an order bounded
set. For every neighborhood U of 0 in L, there exists an integer ng such that
if A1,..., A, C X and n > ng, then

con (%;1,4) c (;.1;214«) +U. (14)

=1

Proof: Since X is order bounded, there is a positive vector £ € L such
that X C [—%, %] By translation, we can assume without loss that X C
[0,z]. Let y € L be a weak order unit, and set v = z + y; since z is positive,
the band generated by v contains y, and so contains the band generated by
y, so v is also a weak order unit. Choose a probability space (2, 4) and a
representation R : L — L'{u) having the properties given in Theorem 4.2;

in particular, R(v) =1, so R{(X) C [0,1].

Since p is a probability measure, every bounded measurable function on
{) is integrable and square integrable; in particular, the order interval [0, 1]
is contained in L?(u). Moreover, if h € [0,1] then [|A]]; < 1. In particular,
the diameter (computed in L?(p)) of any subset of the order interval [0, 1]
is at most 1. Cassels (1975) asserts that there is a constant K such that, if
Biy,...,B, C [0,1] then

dists (Z B;, con (E B@)) < KY2nl/2

where dist; is the Hausdorff distance, computed with respect to the L? norm.
Dividing by n yields

disty (%231,0011 (%g.&)) < KY2p-i/2
BEquivalently,
con (~1— iBﬁ') C (ii& + B*{0, Ki/zn”l/z)) (15)
i T
where B%(0,7) is the L? ball of center 0, radius r.
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We now prove the desired assertion. Let U be a neighborhood of 0 in L.
Since the restriction of R to each order interval is a homeomorphism, we can
find a neighborhood V? of 0 in L? such that R(UN[-v, +v]) = VIn[-1,+1].
As a simple computation shows, the fact that u is a finite measure implies
that the L' norm and the L? norm define equivalent topologies on the order
interval {—1, +1]. Hence there is an L? neighborhood V2 of 0 such that

Vini-1,+1 c vin[-1,+1]
There is no loss of generality in supposing that V2 is a ball, say V? — B? (0,7).
Set ng = K/r?. Suppose that n > ng and that A;,..., 4, C X. For each

i, write B; = R(A;). Keeping in mind that X C [0,v], and hence that
B; C [0,1] for each i, we may apply equation {15) and obtain

1
con (E;Bl) C

C

13 2 1/2,,~1/2

Hg& + (B*0,K"*n"Y?)n[-1,1])
12 n

E;Bz + (Vin[-1,1])

Applying the inverse of R gives

con (%Zn:A,) C i—zn:A,, + (U N[—v,+v])

i=1
C %Z:‘h%—(f

i==1

which is the desired result. &
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6 Separation and Decentralization

In this section, we isolate the basic algebraic result relating a separation
property to approximate decentralization. This result will be used in estab-
lishing all of our convergence theorems. The essential idea of the argument
is contained in the proof of a finite-dimensional core decentralization result
in Anderson (1978); since our context is more general, we shall give a proof.

Proposition 6.1 Let x : A — P x L, be an exchange economy, where A is
a finite set of agents, L is an ordered vector space with nonnegative cone L
and P is a set of preferences on L. Let f be an allocation and X C L.
Suppose that the preferences are locally nonsatiated with respect to X at f
forag S ie

Ya€ S e L, VAE(0,1) {}”%iiz o~ fX(a,)

Define

Y(a) = {z—ela): E€X, z %, f(a)} U{0}
' = Y 4(a)

acA
Then, for every nonnegative linear functionalp: L — R,

—2infp - I"+2p- 3 cms €la)
|4

ps(f,p) < (16)

and .
—4infp-I"+3p- e arsela)

pS(f:PJX)S |A|

where infp- TV =inf{p- G . G e [}

(17)

Proof: For a € S, choose v(a) € X such that
£(a) + 60(a) -0 f(a) and f(a) + Sv(a) € X

and hence

f(a) + bv(a) — e(a) € ¥/ (a)
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for all 6 € (0,1).
To obtain Equation {16), decompose A = A; U A into two disjoint sets:

A = {a€A:p-(f(a)—ela)) <0}
Ay = {a€A:p-(f(a)—ela)) 20}

We want to find an upper bound for

S lp- (f(0) — e(a)

cEA
To accomplish this, consider first the sum over the set A;; we will later use the
feasibility of f to show that the sum over A; equals the sum over A;. Since
0 € v'(a) for all a, inf p-+'(a) < 0. Fora € A,NS, p-(f(a)+év(a)—ela)) <0
for & sufficiently small, since p is linear. Since § is arbitrary, p is nonnegative
and p- (f(a) —e(a)) < Ofora € Ay,

Yolp-(fl@)—ela))l < Y (=p-(fla)—el@))+ > p-ela)
a€ Ay ae(A11S) acA\S

< —infp-I+p- Y efa)

ac A\S

Since Yqea(f(a) — efa)) = 0,
Yo lp-(f@)—e@)l = 2% Ip-(fla) —e(a)l

acA aE Ay

< 2infp-T'+2p- > ela)
acA\S

It remains to establish Equation (17). It is enough to show that

> |min{0,inf{p- (z —e(a)) : z € X, z >, f(a)}}|

ac A
< —2infp-T'+p- Y ela) (18)
acA\S
for then
> ps(f,a,p,X)
acA
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VAN

A

2 |min{0,inf{p- (z — e(a)) : z€ X, z =, fa)}}]
+ 3 p- (f(a) — e(a))]

acA
—2infp-T'+p- > e(a)—2infp-T'+2p- > efa)
acA\S ae A\S
—4infp-T"+3p- > e(a)
acA\S

We now establish Equation (18). Since f(a)+ év(a) — e(a) € +'(a) for all
6 €(0,1) and all ¢ € S, and p is linear and nonnegative, we can draw three
conclusions depending on the location of a: if a € A; NS, then

inf{p- (z —e(a)) : z€ X, 2>, fla)}{ = —infp-+(a)

ifae A; N S, then

ifae A\ S,

inf{p - (z —e(a)): z€ X, 5>, f(a)}]
< max{—infp-7(a),p- (f(a) - e(a))}

then

jmin{0,inf{p - (z —e(a)) : € X, 2q f(A)}} < p-ela)

Therefore,

> |min{0,inf{p- (z —e(a)) : z € X, = =, f(a)}}]

a€A
<

<

=3 p Y@+ Y lp-(fla)—el@)l+ Y p-efa)
acA acAg a€A\S
—infp-I'—infp-T"+p- > ela)
ac A\S

—2infp-T"+p- > ela)

acA\S

which establishes Equation (18) and completes the proof. =
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7 A Most Peculiar Theorem

At first sight, the most puzzling aspect of the results reported in this paper
is the stark contrast between the nonconvergence examples of Section 3 and
the known versions of Aumann’s Theorem and the Debreu-Scarf Theorem in
infinite-dimensional commodity spaces. In this section, we discuss how these
nonconvergence examples can diverge so dramatically from the equivalence
results.

The central reason for this divergence is that measurable mappings have
“almost compact” range. Consider, for example, a complete metrizable topo-
logical vector space L and a measurable mapping f : [0,1] — L. For every
g > 0 there is a compact set K C L such that, if u is the distribution of f,
then pu{K) > 1. This conclusion is valid whether L is a finite dimensional
space (i.e.,, R¥) or an infinite dimensional space, but the implications of the
conclusion are dramatically different in the two contexts. Compact subsets
of R* may be relatively large: balls are compact, and the whole space is
a union of countably many compact sets. By contrast, compact subsets of
infinite dimensional spaces are relatively thin: balls are never compact, and
the whole space will typically not be the union of countably many compact
sets. Indeed, if L is an infinite dimensional Banach lattice, the Edgeworth
box of feasible allocations will typically not be compact.

To make the same point in another way, suppose the commodity space L
is any metrizable topological vector space. Suppose X C L is compact and
g > 0. Then X is covered by a finite collection of £ balls centered at points
T1y. ey T, € X. Write X, for the linear span of {z1,...,Zn,, }. Obviously,
X; is a finite dimensional subspace of L, and every point in X is within ¢ of
this finite dimensional subspace; X is thus “almost finite dimensional.”

Because measurability has such strong implications in infinite dimensional
spaces, the “fechnical” measurability assumptions needed to formulate Au-
mann’s Theorem correspond, in economies with a finite number of agents, to
compactness requirements which have quite unpleasant economic interpreta-
tions.

e Endowments come from a compact set. This is a very stringent as-
sumption, but at least it is exogenous.
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o Core consumptions come from a compact sef. This is a very strin-
gent assumption, and it is endogenous. Even if endowments come
from a compact set, there is no reason why core consumptions should
also come from a compact set (when the commodity space is infinite
dimensional).’8

o The comparison bundles used in testing approzimate decentralization
come from a compact set. When approximate decentralization is weak-
ened in this way, it does not rule out the possibility that there are
consumptions outside the compact set which are preferred to the core
allocation, and which are much cheaper than the endowment.

¢ The blocking allocations considered in the definition of the core come
from a compact set. Note that this restriction on blocking makes the
core bigger than it would otherwise be.

To make this point, we state and prove Most Peculiar Theorem 7.1, which
incorporates explicitly the first three of these points, producing a very pe-
culiar result. The counterexamples of Section 3 are consistent with Most
Peculiar Theorem 7.1 precisely because this theorem assumes the problems
away.

For convenience, we take L = C(Q2), the space of contirmous functions on
a compact Hausdorff space, endowed with the sup norm topology. We choose
to work in C(f2) because the nonnegative cone has nonempty interior. this
siroplifies the statement and proof of the theorem, because:

o The fact that an allocation is in the core guarantees that a certain
set I" does not intersect the negative orthant. In order to achieve
separation, we need to show that the conver hull of IV does not intersect
an appropriate convex cone. The infinite dimensional Shapley-Folkman
Theorem guarantees that con I is contained in a neighborhood of IV,
The fact that the negative orthant has nonempty interior then allows
us to conclude that con IV does not intersect a translate of the negative
orthant.

®When the commodity space is finite dimensional, Bewley (1973a) shows that com-
pactness of the space of preferences implies that core consumptions also lie in a compact
sef.
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¢ The fact that the negative orthant has nonempty interior then guaran-
tees that there is a price separating it from con I".

The proof turns out to be quite easy — it is essentially the same as in the
finite dimensional case (Anderson (1978)). (Just as the proof of Aumann’s

theorem in this context (Gabszewicz (1968)) is very much the same as in the
finite dimensional case.)

We write P for the space of preference relations on I, that are irreflexive,
transitive, monotone and algebraically contimious.

Most Peculiar Theorem 7.1 Let L = C(§)), where ) is a compact Haus-

dorff space. For every compact conver set X, every 6 > 0, and every e > 0,
there is an integer Ny such that:

If x: A— P x L, is an exchange economy for which
(a) ea) € X forallaec A

(b) 1< &= Y e(a)

(c) |Al= N > N

and [ is a core allocation of x with f(a) € X for all a € A, then

there is a price p € (L), that e-decentralizes [ with respect to
X'IQ

Proof: Fix X compact and € > 0. Set

X' =X 40,611
and note that X’ is compact.
Let
ot
T

19Recall that decentralization with Tespect to X is defined in Section 2.
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By Theorem 5.1, we may choose an integer Ny such that, if N > Ny and
Xy ooy XnC X'~ X={g'—z:2"€ X',z € X} then

1 & 1 ¥
con (—]—V—an) C E;Xn—!—B(O,a)

Now let x : A — P x L, be an exchange economy satisfying assumptions (a)
- {d), and fix a core allocation f with f{a) € X for all a € A. We construct
a price p that approximately decentralizes f with respect to comparison
bundles in X.

For each a € A, set
Y(@)={y—ela): ye€ X', y >4 fla)} U {0}

and write

=" +(a)

aci
Note that +'{a) is a truncated version of the net preferred set of agent a
(together with {0}), and that I is a truncated version of the aggregate net
preferred set.

We claim that :
I'n(-Ls) = {0}

To see this, suppose not. Then we can find a coalition A* C A and vectors
y(a) — e(a) € ¥ (a),0 #£ c € L, with

> [yla) —e(a)] = —c

acA*
Since ¢ #£ 0, A* # 0.
For a € A* let z{a) = yla) + 47 Then z(a) > y(a) >a f(a), so
z(a) 4 f(a).




so z is feasible for A*. Therefore, A* can block f via 2, so f is not in
the core, a contradiction. Thus, we have shown that I N (—L;) = {0}, so
TN (—Ly) = {0}.

Since (1/N)con I' C (1/N)I" + B (0, ), and the norm is the sup norm,

1
FconI" N (—el-Ly) = @

Since (1/N)con I is convex and (—a1 — L) is convex and has nonempty
interior, we can find a nonzero continuous linear functional p on L (that is,
a continuous function p € L') such that

supp- (—al — L) <infp- ir——con v {19)

Note that we must have p > 0; if not, there exists x € —L4 such that
p-xz > 0,80 supp- (—al— L,) = 400, while 0 € 1", which implies that
infp- %con IV < 0, contradicting Equation 19. Since 1 is strictly positive,
p-e>p-(61) > 0.

By renormalizing, we may assume that p-&= 1. Thus,

!
infp-%z—(f—:)piz—;p-é:—; (20)

We are now in a position to establish the approximate decentralization
conclusion. Monotonicity, the requirement that f(a) € X for all a € A, and
the definition of X’ implies that for all ¢ € A,

flay+&v =, f(a)forall £e€(0,1)
fla)+&v e X'

so >, is locally nonsatiatied with respect to X' for all a € A. Proposition
6.1 implies that

!

, I
p{f.p,X) < —Tinfp- v

which is the desired result. ®
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8 Decentralization in Riesz Spaces

In this Section we obtain (approximate) decentralization in certain Riesz
spaces (those satisfying Assumption 4.1). We show that if endowments are
bounded, then bounded core allocations can be decentralized with respect to
bounded comparisons. Roughly speaking, “local” decentralization is always
possible; the examples of Section 3 show clearly that “global” decentraliza-
tion generally will not be possible. In one interesting case, however — when
marginal utility tends to 0 at infinity — we can show that local decentral-
ization leads to global decentralization.

Throughout this section, we assume that the Riesz space L satisfies As-
sumption 4.1, so that the representation theorem of Abramovich, Aliprantis
and Zame (1995) {cited as Theorem 4.2 above) holds. As before, we write P
for the space of preference relations on L that are irreflexive, transitive, mono-
tone and algebraically continuous. For v € L, a preference relation »~& P
is strictly monotone in the directionvif z+fv > zforeveryz € L, t € R,.
Write P, for the set of all preferences in P that are strictly monotone in the
direction v.

Definition 8.1 Let v € L. A set of preferences P, is said to be equimono-
tone in the direction v if, for every order bounded set X C L. and every
a > 0, there is an open set W C L such that for every preference -¢€ Py,

zeytavt+Wiy,ze X = 2>y

Equimonotonicity of a single preference relation is an assertion that strict
monotonicity in the direction v holds uniformly over the order bounded set X;
equimonotonicity of a family of preferences is an assertion that strict mono-
tonicity holds uniformly over the order bounded set X and over the family
of preferences. Note that equimonotonicity of a single preference relation is
a consequence of either

¢ uniform properness in the direction v, or

e strict monotonicity in the direction v, continuity, and compactness of
order intervals
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In the following result, we require that all preferences be strictly monotone
in the direction v and that there be an equimonotone family of preferences
such that all but a small fraction of agents have preferences in the family. The
reader may wonder why we have not assumed simply that all agents have
preferences in the equimonotone family. We believe there is good reason
for not doing so. There can be little doubt that there are some individuals
whose preferences are highly unconventional. For a number of years, Polka
Dot Man was a fixture on the Berkeley campus. Polka Dot Man maximized
his utility by spending the entire day posing in Sproul Plaza wearing blue
clothing with large white polka dots. After several years of this behavior, he
received an important revelation. He then took to spending the entire day
posing in Sproul Plaza wearing white clothing with medium size black crosses.
The presence of unconventional individuals such as Polka Dot Man makes us
reluctant to impose compactness conditions on all agents. It is important to
know that the presence of a few unconventional individuals will not upset the
decentralization conclusions for the vast majority of individuals whose tastes
are more conventional. One might at first think that Polka Dot Man and
other unconventional people can simply be excluded from consideration in
our exchange economy, permitting us to assume that all agents’ preferences
come from the equimonotone family. The problem with that approach is that
Polka Dot Man trades with other agents; it is conceivable that the presence
of Polka Dot Man could upset approximate decentralization for other agents
{in particular, the core consumptions of the other agents may be infeasible
if Polka Dot Man is excluded from consideration). Intuition may suggest
that the presence of a small number of people with very unconventional
tastes should not matter very much; our formulations and proofs validate
this intuition. |

The first main result of this Section is the following.

Slightly Silly Theorem 8.2 Suppose L satisfies Assumption 4.1. For ev-
ery strictly positive v € L, every K,e > 0, and every uniformly integrable
set F of probability distributions, there exists & > 0 such that for every set
of preferences Py C P, which is equimonotone in the direction v, there is an
integer Ny such that:

Ifx: A— P, x L, is an ezchange economy for which
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(a) +{a € A:=,e Po}| >1-6

(b) v<E= £ e(a) < Kv

(c) if

{a € A:e(a) < te}|

E@) = | =

then Ee F %
(d) |[A]l=N>N,

and f is a core allocation of x for which

(e) if
_Hoed fa) <)

F(t) N

then FF € F

then there is a price p € (L') that e-decentralizes f with respect
to [0, K%). &

Proof: Fix v € L., K,e > 0, and a uniformly integrable set F of
probability distributions. Because L satisfies Assumption 4.1, we can apply
Theorem 4.2, to obtain a countably additive probability space (2, 1) and a
vector lattice isomorphism R : L — L*(u) onto a dense order ideal R(L) C
L*{p), satisfying the various conclusions of 4.2. In particular, R(v) = 1 and,
for all M, the restriction of R to the order interval [0, Mv] C L {endowed with
the topology of L) is a homeomorphism onto the order interval {0, M1] C
L*(p) (endowed with the norm topology of L'(x)).

Because R is an vector lattice isomorphism, we may and shall identify
L and R(L) as sets and as vector lattices (and we shall henceforth refer to
L ¢ LYp)); we identify the vector v € L with 1 € L*(u). Because R is
not a homeomorphism, however, the given topology T on L may differ from

PNote that E is the cumulative distribution function of lle[|s, where ||z|jz = inf{t: |x] <
te}.

#10ne can actually show that f is e-decentralized with respect to uniformly integrable
comparison bundles. Specifically, there exists a price p such that (i) p-& = 1; (i)
& pealp (fl@) ~ e(@))] < €/2; and (iii) if g : A — L satisfies (f) g(a) >a f{a) for all
a€ Alg)if G(t) = HagAwg(a)<tz}| “EA‘%“)S“ | then G € F: then % Yoacalp- (gle) — fla)))~ < e/2.
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the restriction to L of the norm topology of L!(u); we shall write 7% for the
latter topology. Of course, continuity of R means that the topology 7 is
stronger than the topology 7!; and the fact that the restriction of R to order
intervals is a homeomorphism means that the topologies 7,7} agree on order
intervals [0, Mv] = [0, M1]. Note that the definition of equimonotonicity
involves a particular topology, and that we have assumed equimonotonicity
only with respect to the topology 7, but that all our other assumptions about
preferences are purely algebraic.

Fix Py, a set of preferences which is equimonotone in the direction v = 1.
Fix £ > 0. Find T such that

/T ¥t dG(t) < /T2

for all G € F. There is no loss of generality in assuming e < 1 < T £ K.

Set,
€

b= 57

It is convenient at this point to introduce constants C, D; later in the
proof we shall take C' = D = 1. The point of introducing these constants is
to allow us, in the proof of Theorem 8.8, to quote verbatim a large section
of the present proof.

We work in the order interval [0,2CDK?1] = [0,2CDK?v]. Equimono-
tonicity with respect to the topology 7 means that there is a T7-neighborhood
@ of 0 such that z > y whenever y,z € [0,2CDK?1], z € (y+ v+ Q) and
~€ Py. Because the topologies 7,7% agree on order bounded sets, we can
find a Tl-neighborhood W; of 0 such that :

_ 2, £ 2, &
Qﬂ[ (4C’DK +36) 1,(401)1{ +36) 1]

_ _ 2, £ 2, £
_Wln[ (4C’DK +36) 1, (4GDK +36) 1]

Thus, z > y whenever y,z € [0,2CDK?1], z € (y+ £v+ W1) and >»€ Py;
in other words, the preference is equimonotone with respect to 3. Without
loss of generality, we may assume that

W= {wel: |ulh <e)
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for some ¢, € (0,1].

Using the same argument, we can also find a T'-neighborhood W; of 0
such that z > z whenever y,2 € [0,2CDK?%1];, z € (y + CDK% + W),
=€ Py and y > z. Without loss of generality, we may assume that

Wo={welL:|wl <e}

for some g5 > 0.

Let .
U= {U eL: ”'Uaul < Wmm{el,q}}

By Theorem 5.2, we may choose an integer N; such that, if N > Ny and
X1y-.., Xy C[-K1,CDK?1] then

1 N 1 N
T AT n
con (Nn§=an) C N,nE=1X +U

Now let x : A — P, x M(§2); be an exchange economy satisfying as-
sumptions (a) — (d), and fix a core allocation f satisfying assumption (e).
We construct a price p that approximately decentralizes f with respect to
uniformly integrable comparison bundles.

Let
() Ha € A :lji(la) < té}]
Ha € A: fla) < te}|
F(t) A

By assumption, E,F € F. Let

Al = {O,EAI}‘G,&‘PU}
Ay = {a€A:ela) £ Ke}
A; = {a€A: fl(a) £ Ke}

Ay, Ay, and Aj are sets of agents who are, from the point of view of our decen-
tralization argument, badly behaved. However, the members of 4; U A;U A4,
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‘WiH nol’t:;i matter in the overall decentralization result because }lV 3 acAiudauds €(a)
is small:

T @ = = 3 ea)

as Ay

+o)e= e (21)

N IA
S L -
2
2

AN
S~
8

|5

&

[A

Te (22)

2|~
2
&
{l
=]
o
2
B

A
=

N
1Y)

&

f(a)£Te
acA: fla)LTe 1
eeA SO LTy, L o

e{a)£Te
FtdF(t), o0
e + L t dE(2)

£ e _
TTETT8+56
£

AN

IA

1A

(23)

3—6'6
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For each a € A, set .

7(a) ={y—e(a) :y€[0,(CDK*+1)1], y >, f(a)} U{0}
and write
I"=3"7(a)
acA
Note that ¥'(a) is a truncated version of the net preferred set of agent a
(together with {0}), and that I'" is a truncated version of the aggregate net
preferred set.

We claim that
e (-fé— L +2U) =0
N 9 + -

To see this, suppose not. Then we can find a coalition A*™ C A and vectors
y(a) — e(a) € ¥'(a),d € L,,u € 2U with
1

I > ly(a) — e(a)] :~§é—d+u§ —gé+u
acA*

Let A* = A\ (A, U A3). Then

1 1 1
~ 2 ) —el@) < = 3 la)-ela) + = e(a)
N acA* N aEZA“ N aE(AZlL:JAa)
< —Setutoe4_s
-9 36 36
£
= —E’U +u
by Equation (21). Furthermore,
S =5 2o ()
18°lh ~ 18 = “\72CDK?
so Sv & 2U, which shows that A* # §.
£ Ne |A*|e
—ul < - =
x> vla) + 361;] < X el - fgvt Nut g
Ne Ne  |A*e
< ela) - —v+ N —(—v— )
a§. 36 36 36
Ne '
< ——v+ N
GE‘ e(a) gV T Ve




Let

€
2(@) = y(o)+ o0
= Y z(a)
acA*
e = > e(a)
aEA*
™= [*-—N(—Ev—u)]/\e*
R 36
. £ -
= g —N(%v—u)
z# — E* /\8**
Note that
.T*—Z* — (mt 8**)-}-
e € +
< e =N{—v-u)—¢ —y—
= € N(36” “) 8+N(sa"’ ”)

I
=
I

o) () ()
36" “) 360 ¢ 36

- N(iv—u)w

36
< Nu*

By the Riesz Decomposition Property, there exists z(a) with

We will show that z(a) >, f(a) for all but a few agents a € 4*, and will

z(a) € [0,z(a)]

> z(a) = 2

ac A

then alter the allocation for those few agents. Let

A ={a€ A": z(a) € z(a) + W}

Ifae A*\ A***, then

z{a) €

£
yla) + T + W
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z{a) < z(a) =yla) + 38—6'0 < 2CDK*v
y(a) < 2CDK%
y(a) =. fla)

s € By

so z(a) >, f(a) by the definition of W,

Since
Neg;
2(0) = 2(a)| = ljo" = #'lly S Nty < ==
; 1 T2CDK?
we have
&% * L
4™ = o € A"+ Jla(a) = 2(a)lh 2 &1}l < ez
Define
) z(a) ' if agA*\A™
Z(a) = (QCDKQ'U — Mu+)+ if ag A*™* (24)

If a € A** write ¥ = f(a). (As with the constants C, D, this extra bit
of notation is introduced here so that we can cite a large section of this proof
in the proof of Theorem 8.8.) Note that >,€ P; and that

y < CDK%
72CDK? \"
#a) = (QC’DKZU—TK'MJ’) < 20DK*
, 2 +
3a) = (2013}(%-3-2-9?5_&)
72¢DK? \*
> (y'-%-C’DKZU—%u"’)
T2C0DK? 72CDK?
— | = ———|lufl:
. N1

720DK2( €€ )
:62

€ T2CDK?
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so that

] +
(y’ + CDK% — %u*) s f(a)

by the definition of W;. Hence
£(a) »a f(a) (25)

by monotonicity and transitivity.

We now show that the allocation % is feasible for the coalition A*:

- 72CDK? \*
Zﬁ(a) < z*+|A***|(ZCDK2v—M»u+)
aEA* €
€ + Ne , T2CDK? \V
< LI o = e ot
< C-N(gu-u) b (ZC’DK'U u)

+ +
= e*—N(f—v—u) +N(iv—u+)
< €
We have shown that 3°,.4- 2(a) < €* and Z(a) >, f(a) for all ¢ € A.
We may find 2z’ : A* — L, with 2'(a) > z(a) and ¥ ,-4. 2'(a) = ¢*. By

monotonicity and transitivity, 2'(a) >-. f{a) for all @ € A*, which contradicts
the assumption that f is a core allocation. We conclude that

1rn (——EE—L++2U> _

N 9
as claimed.
Let
PH — Z ,71(0‘) - Iv
ac A\Aq
For A € A\ A;, ¥'(a) C [-K1, (C’DzK +1)1], so
-1——con1_’" C -l-I‘"—!—U - iI"—}—U
N N N

Suppose that

1 It £_
ﬁconF ﬂ(—ge——L++U) # 0
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Then we can find » € U and x € L, such that

£ _ 1 " 1.,
( 68 J:“{»u)eﬁconl" CNI‘ +U

so there exists G € lNI"’ and »' € U such that
(—gé—x—{—u) =G+
SO .
G= (—-gé—x—l—(u—u’))

Since U is symmetric, —u’ € U; since U is convex,
u—u
u—u =2 ( ) € 2U
2
1

(e ;
WF”( " L++2U)7é®

a contradiction which establishes that

which shows

}ﬁcon M"n (—g—é - L.+ U) =0

Since (1/N)con I is convex and (—(g/9)& — L. +U) is convex and open,
we can find a T!-continuous linear functional p on L that separates +con I
from (—%é -L,.+U ); note that p is necessarily nonnegative.?® Since v is
strictly positive and & > v, we conclude that p- & # 0; renormalizing if
necessary, we may assume that p- & = 1, and thus

infp- (%) IV > infp- (%F”) —p- (-—11\7 3 8((1))

£ €
>» ———=p.{—£
= 7y (728)

> _ =3 £
g9 72
5e
> “% (26)

#Since L is dense in L'(4), p defines & continuous linesr functional on L!(x), end hence
may be identified with an element of L™(u).
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We are now in a position to establish the approximate decentralization
conclusions. We have already normalized so that p- & = 1. Taking X to be
the order bounded set [0, (CDK? 4 1)v], strict monotonicity of {>,} in the
direction v implies that for all a € A\ A3, and all £ € (0,1)

fla)+&v =g fla) ,
fl@)+&v € [0,(CDK®+ 1))

§0 =, is locally nonsatiated at f(a) with respect to [0, (CDK? + 1}v].
Now take C' = D = 1. Proposition 6.1 implies that

p(f.p, 10, K%)) < p(f,p, [0, (K% + 1)2])

!

T
< -9infyp- ﬁ+5p- > e(a)
ac Az

30e + de <
36 36
which shows that p e-decentralizes f with respect to [0, K*v}.

<

By construction, the price functional p is continuous in the topology 7;
since the topology 7 is stronger than the topology 7!, the price functional p
is a fortioi continuous in the topology 7, so the proof is complete. m

We now turn to the case in which marginal utility tends to zero at infinity.
"The most natural examples lie in the commodity space L*([0, 1]), representing
contingent claims over states of the world. If agents are expected utility
maximizers, their preferences are represented by utility functions of the form

u(z) = /H v(z(t)) dp

where v is a felicity function. It is very natural to suppose that, in states
where consumption is very large, the marginal utility of additional consump-
tion is vanishingly small compared to the marginal utility of additional con-
sumption in states where consumption is moderate. The following definition
embodies this idea for commodity spaces that are vector sublattices of L (u).

Definition 8.3 Let L be a vector sublattice of L*(1). A set of preferences
Py on L is said to exhibit uniformly vanishing marginal utility at infinity if,
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for every £ > 0 and every 8 > 0, there exists ¢ > 0 such that, for every
preference »¢€ Py, if

c<z(t) = ylt)=0c
<z(t)<o = z(t) =ylt)
)< = () <y() <P
Iy =2l > elly—2)lh

then y = z.

Remark 8.4 Some comments may help in understanding this definition.
One should think of # as being of moderate size, while ¢ is extremely large.
The function y is formed from z in two stages. First, we truncate z to a
consumption level of o (ie. we take z A ¢1). Second, we compensate for
the consumption lost in the truncation by adding back at least £ times the
- amount of consumption lost, in such a way that all of the consumption added
back is consumed at density levels at most 5. Our assumption requires that
for every § and ¢, there is a o such that whenever y is constructed from z in
this way, then y is preferred to z.

A simple example may help to illustrate.
Example 8.5 Let A denote Lebesgue measure on the interval [0,1]. Let V
be a family of C? felicity functions v: R, — R, satisfying
supv'(t) — 0Qast— oo
vely
v'(t) > Oforevery TER

1
veV, tel0,T)

Given v € V, define the utility function u, on L=()) € L}()) by

uy(z) = /{0

Then {u, : v € V} exhibits uniformly vanishing marginal utility at infinity.

, V(e(e) ax

For general Riesz spaces, we extend the definition by using the Tepresen-
tation theorem. .
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Definition 8.6 Let L be a Riesz space satisfying Assumption 4.1. A set of
preferences P on L is said to exhibit uniformly vanishing marginal utiity at
infinity if there exists a representation (in the sense of Theorem 4.2) R : L —
L'(u) such that the set of induced preferences on R(L) exhibits uniformly
vanishing marginal utility at infinity.

It might be desirable to define uniformly vanishing marginal utility at
infinity in terms of the intrinsic properties of a general Riesz space, without
reference to the representation provided by Theorem 4.2. Unfortunately,
this does not seem possible because — as the next example demonstrates
— a preference relation may exhibit uniformly vanishing marginal utility at
infinity in one representation, but not in another.

Example 8.7 Let A\ denote Lebesgue measure on [0, 1], and 4 the measure

whose Radon-Nikodym derivative, with respect to A, is f(t) = 5—% Then

# and A are mutually absolutely continuous, so L=(u) = L*(\). However,
# is not boundedly absolutely continucus with respect to A, which allows
us to find a preference which exhibits uniformly vanishing marginal utility
at infinity as a preference on L*®(x) C L'(u) but not as a preference on
L=(X) c LY(\).

For z € L*™(u) = L*(}), define

u(e) = [ V(o) du

u obviously exhibits uniformly vanishing marginal utility at infinity when we
view L*(p) = L()) as a sublattice of L'(u). However, when we view we
view L*(u) = L°°(A) as a sublattice of L'(\) we compute:

u(z) = /[0,11\/;(5 dy

i f
= - E:.E)_ ai
2 Jio1 t

Let 5=1,e=1/2, and define

n if te|0,1
n(t) = "
zn(t) {Oifteglla

n!
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If {u} exhibits uniformly vanishing marginal utility at infinity with respect to
A, there exists o satisfying Definition 8.6. Let 3, be formed by truncating z,
to o and spreading half of the removed mass evenly over the interval (%, 1],

ie. ,
o if tel0,%

y""(t) = { n—o if gljr;.
2(n-1) I 1€ n?

Then we should have u(z,) < u(y,) for all n; however, an easy calculation
shows that u(z,) = 1, while u(y,) — 715, a contradiction which shows that
{u} does not exhibit uniformly vanishing marginal utility at infinity when
we view L®(u) = L*®(A) as a sublattice of L1(A).

The following result shows that the assumption of uniformly vanishing
marginal utility leads to global approximate decentralization.

Theorem 8.8 Suppose L satisfies Assumption 4.1. For every strictly posi-
tivev € L, every K,e* > 0, and every uniformly integrable set F of prob-
ability distributions, there exists § > 0 such that for every set of preferences
Po C Py which exhibits uniformly vanishing marginal utility at infinity and
is equimonotone in the direction v, there is an integer Ny such that:

Ifx: A— P, x L, is an exchange economy for which

(o) yH{a€Aime Py} >1-6
(o) v<e= %E.e(a) < Kv

(c) if
_ |{a € A :ela) < te}]

N

E(t)

then E€ F
(d) |A|=N 2> Ny

and f is a core allocation of x then there is a price p € (L"),
which €*-decentralizes f.

Proof: As in the proof of Slightly Silly Theorem 7.2, we may find a
probability space (€2, 1) and identify L with a dense order ideal in L'(z), in
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such a way that the vector v is identified with the function 1. As before,
write 7 for the given topology on L and 7! for the restriction to L of the
norm topology of L{u).

Fix ¢* > 0 and let ¢ = 2¢*. Find T such that
/T t dG(t) < /72

for all G € F. There is no loss of generality in assuming e < 1 < 7 < %.

Set, o
€

=57

Fix Py, a set of preferences which exhibits uniformly vanishing marginal
utility at infinity and is equimonotone in the direction v = 1. Let

B £
® T RK
p = B
£
Choose C such that if
z(t) < DK? = z(t) <y(t) < DK®
DK?* < 2(t) < CDK? = z(t) = y(t)
CDK? <z(t) = y(t)=CDK?
3 _
ly=2)7l: > Sliy~2)l
- € Py

then y » z.

We work first on the order interval [0, CDK?1] = [0,CDK 2v]. Equi-
monotonicity means that we can find a T-neighborhood W; of 0 such that
z > y whenever y,z € [-K1,CDK?1], z € (y+ £v+ W), ~€ Py. As
before, the fact that the topologies 7, 7' agree on order bounded sets means
that we may assume

Wi={wel:|wl<e}
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for some £, € (0,1]. In addition, equimonotonicity means that we can find
a neighborhood W; of 0 such that z > y whenever y,z € [0,2CDK?1],
z € (y+ CDK?* + W>) and =€ P,. Without loss of generality, we may
assume that

Wo={weL:ull < )

for some g5 > 0. Let
£ .
U= {’U. el ”’U.',”]_ < Wmm{sl,sg}}

By Theorem 5.2, we may choose an integer Ny such that, if N > Ny and
X1,..., XN C[-K1,CDK?1] then

1 & 1 I
- X, — > X
con (Nr; )C Nngl ntU
Now let x : A — P, x M{f1), be an exchange- economy satisfying as-

sumptions (a) — (d). We will first find a decentralizing price with respect to
comparison bundles in [0, CDK?1}; then, we shall modify the price so that
for every comparison bundle y outside [0; CDK?1] which is preferred to f(a),
we can find a comparison bundle ¢’ inside [0, CDK?1] which is also preferred
to f(a) and such that p- 3/ <p-v.
Let
{a € A:e(a) < te}]

B = 2S5

By assumption, F € F. Let

A1 = {CLEAZFa,gP{]}

Ay = {a€A: ea) £ Ke}

As = {a€A: ||f(a): > DK?}
Ay, A,, and Aj are sets of agents who are, from the point of view of our decen-
tralization argument, badly behaved. However, the members of 4, U A;U A,

do not upset the overall decentralization result because —11\-, 2 ac A uAuA; Ba)
is small.
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Note that Equations (27), (28) and (29) are identical to Equations (21),
(22) and (23) in the proof of Slightly Silly Theorem 8.2. Follow the proof of
Slightly Silly Theorem 8.2 verbatim from the end of Equation (23) through
the end of Equation (24), then continue as follows:

Suppose a € A***, so in particular a ¢ A, U A3. We will construct a
consumption vector ' by truncating f(a) to CDK? and adding an equal
mass so that all of the added mass is consumed at a density of at most DK?2.
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Let

o (fla) — CDE®1)H|,
v = @) A DR e

Since a & As, [|f(a)ll; < DK?, so

(DK*1 - f(a))*

1(f(a) = CDK*1)*|l; < ||(f(a) - DK*1)* ||,
< |{(f{e) - DK*1) [
= I(DK*~ f(@)"lh
and hence
fe)@) < DK? = fla)(t) <y'(t) < DK2
DK? < f(a)(t) < CDK® = f(a)(t) =v'(¢)
CDK2<f( Wt = yY(t) = CDK?
I = fla)* = @ - fle) |l
> S - f@) T

with strict inequality in the last line unless 4 = f(a). Thus, either i’ = f{a)
or y' =¢ f{a), by our definition of C; in either case, ¥ € [0, CDK?11.

Now return to the proof of Slightly Silly Theorem 8.2 at the sentence be-
ginning “Note that” shortly after Equation (24). Follow that proof verbatim
through the end of Equation (26). We conclude that we can find ¢ € (L'},
(which is called p in Equation (26)) such that ¢- & =1 and

I 5 '
infg- = > ~— 30
TN =56 (30

Since L is dense in L*(p), the functional g may be identified with an element
of L>®(u).

Proposition 6.1 implies that the price g approximately decentralizes the
core allocation with respect to comparison bundles in [0, CDK?1). Since we
want to decentralize with respect to comparison bundles chosen anywhere
in F,, we modify the price g, finding a price p so that if z is a comparison
bundle preferred to f(a), there is a comparison bundle y € [0, CDK?1] such
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that y >, f{a) and p-y < p-z. In particular, we will produce a price p which
is bounded away from 0, eliminating the difficulties which arise because we
cannot say anything about the ratio max g/ ming.
Define P,pe (L')y by P=q+ Zland p= £.
2s
oK
g+ %) &
28
oK
T
£
K

m&np(u) = (

v
o=

(=}

On the other hand, let
Qo= fweQ: plw) <2

Then
) = 1= p{w:plw)>2})

p v

> —c

> 1 5
p-e

> - -

.1

9

Observe that if y = z — e(a) € ’y’(aj, a€ A\ Ay and p-y < 0, then

pry > w—e(a))
= ( —1) - (—ela))
> gz ~ela) - oelle@)l: (31)
Let,
Me) = {y—ela):y>a fla)}U{0}
I = > ~(a)
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We will show that .
infp. — > —= (32)
Since v(a) 2 4(a), infp - v(a) < infp- ¥ (a) < 0. On the other hand, if
z € ¥(a) \ ¥(a), then z = y — e{a) where y =, f(a) and {|y|jc > CDKZ.
Now suppose a € A\ Az and y — e(a) € 7¥/(a) \ y(a). We consider two
cases:
o Case I: [yl > 252 Then

DK*
2

p-y > (minp)
ilSK2

9K 2
= K

Since a € A\ Ay, p-e(a) < Kp-é = K,sop-(y—e(a)) > 02 inf p-v'{a).

o Case 2: |ly|: < DTKz. We will construct a consumption vector ¥ such
that ¥’ — e(a) € ¥{a) and p- (3 —e(a)) < p- (y — e(a)); we do this by
truncating ¥y to CDK? and adding back a small fraction of the mass
removed, so that all of the added mass is consumed at a density of at
most DK? and at-point where the price is at most 2. Let

I{y — CDK*1)*|, (DK2XQ _ y)+

"=y ANCDK?1 +¢
vy (DK%xa0 — v)7 11

Since {|yl|; < DTKz,
Iy~ CDK* 1)1 < [y — DE®xa0)" |
< |y — DK®xa,) " I

DK *xa, — ¥)* L

and hence
y(t) < DK* = y(t) <y'(t) < DK*
DK? < y(t) < CDK?* = y(t) =v(t)
CDK® < y(t) = y'(t)=CDK?
I - = el -9k
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¥ =, f(a), by our definition of C; 3’ € [0, CDK?*1] so i/ —e(a) € v'(a).

p-(y—~ela)) = p-(y—ela)+p ¥ —y)
= py—e@)+p- ¥ - —-p -y
< ply- e(a))+2n(y -9l - gl ~ )7l
= p-{y—e(@) + 2|y —v) 7 h — 2y —v) " |h
= p-{y—e(a))
infp-+'(a) <infp-(a)
and hence

infp-+/(a) = infp - v(a)

Therefore, by Equations (30) and (31),

: 1 _ 1
infp- = > Ha) = mfp-ﬁ > ()
) ac A\Ap ac A\ Az
2e
2 infg-— >, Y(a) > lle(@)
aEA\A QNK a€ A\ A2
r 2
> infg- N__Q&:
S5¢ 2 13e
D e e —
- 36 9 36
By Equation (28),
inf 1I‘ ! > infp-y(a) + = > infp- y(a)
1 p . — = — . —_— R
N NGEA\AZ NﬂEAz
> —1—35 - Z p-efa
aEA

132 ¢ 27e e*

BT R s R (33)

We are now in a position to show that the price p approximately decen-
tralizes the core allocation f. We have already normalized so that p-& = 1.
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Taking X, to be the compact set f(a) + [0, 1}v, equimonotonicity of {4} in
the direction v implies that f(a}+&v =, f(a) for all £ € (0,1) and all a € A,
80 >, is locally nonsatiated with respect to L, at f{a). The decentalizing
conclusion then follows from Proposition 6.1. Finally, continuity of the price
functional p in the topology 7 follows, as before, because T is stronger than
. . ‘
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9 Commodity Differentiation

In this Section we address decentralization in the space of measures, a set-
ting which has been used by Mas-Colell (1975) and Jones (1984) to model
commodity differentiation, and by Ostroy and Zame (1994) and Anderson
(1990) in their work on perfect competition.

Throughout, we let {2 be a compact Hausdorff space. Write C(f2) for the
Banach lattice of continuous real-valued functions on 2, equipped with the
supremum norm. Write M((2) for the space of regular Borel measures on (3,
which is the dual space of C(f2). The pairing between a continuous function
0 € C(Q) and a measure p € M(Q) is

e fr = d
@ p fneo#

We consider two topologies on M(Q): the norm topology induced by the total
variation norm, and the weak star topology, which is the weakest topology
for which the map

prpop MEQ) - R
is continuous for each ¢ € C(Q2). Note that M(Q) is a Banach lattice in its
norm topology, but that the weak star topology is not a lattice topology (the
operations of sup and inf are not continuous).

I pe M(Q) and ¢ € C(€) then pu is the measure on ) defined by

pu(E) = Lwdﬂ

Note that
lowl =il - el = | keldlal

As before, we take consumption sets for all consumers to be the nonnega-
tive cone M(Q).. As before, we write P for the space of preference relations
on L that are irreflexive, transitive, monotone and algebraically continuous.
For v € L., a preference relation € P is strictly monotone in the direction v
ifz+tv > z for every x € Ly, t € Ry. Write P, for the set of all preferences
in P that are strictly monotone in the direction v. An ezchange economy is
a map

XA—)PXM(Q)+
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where A is a finite set of agents and P is a set of binary relations on M ().
We continue to write >, for the preference relation and e(a) for the endow-
ment of agent a, and

for the mean endowment.

Definition 9.1 A set of probability distributions F on R, is said to be
uniformly integrable if, for every £ > 0, there exists T € R such that for all
FeF

fT T HdF(t) < €

Definition 9.2 Let v € M(£2),. A set of preferences Py is said to be weak
star equimonotone in the direction v if, for every weak star compact set
X C M(Q)+ and every a > 0, there is a weak star open set W such that for
every preference »€ Py,

zeytavtWyzeX = z>y

Note that equimonotonicity of a single preference relation is a consequence of
strong monotonicity in the direction v together with weak star continuity and
transitivity; it is also a consequence of uniform weak star properness in the
direction v and transitivity. Equimonotonicity is a compactness condition on
the family Py.

Definition 9.3 The family Py C P has bounded marginal rates of substitu-
tion if there is a constant R > 0 such that y = z whenever z,y € M ()4
and ||(y — z)*|| > R||(y — z)7||. (Note that this condition implies strong
monotonicity. )

The following result shows that the combination of equimonotonicity and
bounded marginal rates of substitution is enough to imply approximate de-
centralization in the sense that the average deviation from the budget set is
small and the average support error is also small; if preferences are equicon-
vex, the average distance from core consumptions to agents’ budget sets is
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small. This result is very much in the spirit of Theorem 5 of Ostroy and Zame
(1994), which establishes core equivalence in the presence of an economic
thickness assumption; an early version of this result appeared in Anderson
(1989). In the statement, § is needed only to allow a small proportion of the
agents to have preferences outside the equimonotone set P,.

Theorem 9.4 For every nonzero v € M (Q)4, every R,e > 0, and every
uniformly integrable set F of probability distributions, there ezists § > 0 such
that for every set of preferences Py C P, which is weak star equimonotone in
the direction v and has bounded marginal rates of substitution with constant
R, there is an integer Ny such that:

Ifx: A— P, x M{Q), is an exchange economy for which

(a) [{a € A€ P} >1-6

(b) e=+Tela)>v

(c) if

_HacA:e@] < 8

E(@) =

then E e F
(@) |Al=N2>N,

and f is a core allocation of x, then there is a price p € C()4
that e-decentralizes f and which satisfies

max,cn pw R
Minweq plw) =

1 : 1
Rlie] S MTy,en p(w) S “_'”'IT
1 R
T S maxueeplw) < Tol

Proof: Fix € > 0. Find T such that

%0 ellvll
/T tdE(t) < 50R
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for all F € F. There is no loss of generality in assuming ¢ < 1 < T and
R>1. Set

_ el
K =T+ 0R
5 _ <ol

20TR
C = R

Fix Py, 2 set of transitive preferences which is weak star equimonotone
in the direction v. Let B(0,4CK), be the nonnegative part of the closed
ball of radius 4CK. Equimonotonicity means that we can find a weak star
neighborhood W of 0 such that z > = whenever y,z € B(0,4CK),, z €
(y+55v+ W), =€ Py and y = z. Without loss of generality, we may suppose
that W is of the form

W={XeM®) : |pp-A<l,i=1...,I}
where p1,...,p; € C(Q2). Set

1
17 50K

Continuity of the functions p; and compactness of {2 enable us to find a finite
covering {A;:j =1,...,J} of € by open sets with the property that

wy,wz € Aj = |pi(w1) — pilws)| < &1

for each i. Choose a partition of unity {p; : j = 1,...J} subordinate to the
cover {A,}; thus
0<p; <1 for each j

J
Yopi=1
i=1

supp ¢; C A; for each j

Set
_ £lvl]

7 WORJ

T2




and define
Ur={Ae M) : lp;- M <ey for each j}

Define the cone

D={de MQ):|ld*| < ﬂ%""“}

and
1

U= [5 (M@ (—50+ D))J
Notice that

0¢ (—1—%@ +D+ QU“) and 0€ U™ (34)

We claim that U** is weak star open. It is enough to show that D is weak star
closed. Suppose {dy}sca is anet, d, € D, and d, — d in the weak star topol-
ogy. It is not true generally that the positive and negative parts of a weak
star convergent sequence or net of measures need be norm bounded. How-
ever, we will show in this situation that (d))* and (d,)~ are norm bounded.
Observe that

H@) = d)"ll = -1-dy > =1-d = ||d"]| - {ld7]|

Moreover, .
)= )l > (1= %) 1)l

which implies, since R > 1, that [[(d))7[| is bounded, so [{{d\)*] is also
bounded. Since norm bounded sets are weak star compact by Alaoglu’s

Theorem, we may, by choosing a subnet and relabelling, assume without loss
of generality that

(dy)~ —
@A)t =y
y—xr = d

Since (d,)~, (di}* are nonnegative,

ot wa o epm @) 1-(d)” 1.z |z
Iyl = 1y = tim1-(ds)* = lim |(d;) I < lim 2= = lim P - h T R
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z and y need not be disjoinf, but

lzll = =1l = llwll = Il > 0
It = iyl + (™) - wl)
=yl + (a1l - ll=])
Izl , lld- || = =]
S I
_ lath
R

so d € D; thus, D is weak star closed, so U** is weak star open. Let U be a
symmetric (i.e. z € U — —z € U) convex open set with 0 € U < U**.

Alaoglu’s Theorem guarantees that B(0,2CK) is weak star compact, so
we may use Theorem 4.1 to choose an integer N such that, if N > N and
X1,...,Xn C B(0,2CK) then

1 1 X
con (anan)Cﬁ;Xn-}—U

Nowlet x : A — P, x M {£2) be an exchange economy satisfying as-
sumptions (a)-(e), and fix a core allocation f. We construct a price p that
approximately decentralizes f.

! o A: (@) < 1}
ae A lela 2
Ei) = =
By assumption, F € F. Accordingly,
_ ellvl}
< — =
el < T + 0R K

Let

A = {GEA:)-GQ‘P()}
Ay = {a€A: [lela)] > K}
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A; and A; are sets of agents who are, from the point of view of our decen-
tralization argument, badly behaved. However, the members of A; U A, will
not matter in the overall decentralization result because [[% S acA1UA; e(a)“
is small:

1
N Y- ela)

~a ¢P0

< (T5+% > ne(am)

liela) il £T

elivl] | 1=
(Eﬁﬁ+ fT tdE(t))
()

il

1
iz

aE Ay

20R  20R/ 10R

> el

lle(a)li £ &

> el

lle(a)ll £7
“y dE(t))
T

I
20R (36)
(37

2|

fi
o N

For each a € A define 7
v(a)={y—ela) : |yl < CK,y >, fa)} U {0}

and write

I'=> 7(a)

a€A

Note that +/(a) is a truncated version of the net preferred set of agent a
(together with {0}), and that I" is a truncated version of the aggregate net
preferred set. We will first find a decentralizing price with respect to com-
parison bundles in B(0,CK).; then, we shall show that comparison bundles
outside B(0, CK ), are too expensive to upset the decentralization.
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We claim that 1
NFﬂ( 56-|—D—|—2U)—@

To see this, suppose not. Then we can find a coalition A*™ C A and vectors
y(a) — e{a) € ’7’(a),y(a) —efa) #0, d* € D,u € 2U with

+ 3 vla) (@) = —Ze+d" +u

aeA b

Let A* = A*\ A,. Then

1 1
la) —e(a)] < = > lwla)—ela)] + 5 3 ela)
e V.2 N
< ~Zetdtut (St = Y elo)
= T10° 0° "N &
From Equation (35),
1 . o]
£ _ | ellv
("?{5“?5} 8("“)) = Nag el < Jor
e_ 1 R 5|1U|
(et so)] - e
Setting
. £
d=d"+ (——06+ ; e(a)) ED
ac Al
we have

— Z[y —ea)]<—--6€+d+u —%v—l—d%—u

ae A*

Since 0 ¢ —%v + D + 2U by Equation (34), we must have A* # 0.

£ Ne [A*|e
i i Nd+ Nu+ 2
ag- {y(a)-i— 55 } < agie(a) gV T Nd+ Nut v
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Ne Ne  |A%e
< Xe (a)—Eé-U—FNd-i-N (20 20 )

acA*

< Z (a,)——v+Nd+Nu

aEA*

We shall use the left hand side as a template to redistribute 3 4. e(a),
obtaining a contradiction to the fact that f is a core allocation. To this end,
write z(a) = y(a) + (¢/20)v for each a € A* and define

t = Y xz(a)

acA*
e = Y efa)
ag A*
a; = min {p; €', ;- z"}
bi = ;2" —aq
J
b = b;
i=1
o= 11—
ﬁJ { ;- 8*]{:9.7
J
B = Y5
7=1

{In the definition of 3;, we use the convention that 0 /0 =0.) Foreacha € A*,
define

d a) ' = (i - 2(a))b;
;1 ;- *)(GJ{PJG )+ [; (05 -2%)b :‘ g

At this point, we pause to provide some motivation for the construction
just given. It is useful in this discussion to pretend (contrary to fact) that
{; is the characteristic function of a set €, where {{};: j = 1,---,J} is a
partition of ). Then ;e* is just the endowment possessed by the coahtzon
A*, restricted to the set Q;, while ;2* is the consumption on the set Q;
prescribed by z. The first term in the definition of z{a) distributes all or
part of ;e* among the members of A* in proportion to g; - z(a) = sz {a)]l.
In the event that |lp,z*|| > |l; - ||, all of pe* is distributed; note that this
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will leave members of the coalition less well off than at z, so they will need
to be compensated by getting additional consumption on other sets in the
partition. In the event that ||@;z*|] < [lw; - €*||, the total mass distributed
is ||lp;z*]|, as this is enough to give the same utility level as at z, modulo
an element of W; the remaining mass is retained in the second term. The
second term then compensates individuals for losses on the partition sets
on which |[p;z*|| > |[;e*|] by handing out the retained mass in proportion
to the losses on those partition sets. The amount of mass retained is large
enough so that the norm of the compensating handout is at least R times
the norm of the losses. We then use the assumption that marginal rates of
substitution are bounded by R, and the equimonotonicity assumption (which
involves W) to show that z(a) =, f(a).

We now return to the formal proof that A* can block f via the allocation
z. The first step is to show that it is feasible for the coalition A* to achieve
the consumption specified by z:

N e

i=1 (‘Pj - z*) (5 - 8*)

acA* j=1
J (7
— ©; - 2oaca- z(a) s ({Pj'zaeA‘ z{a))b;
= Ller oty ey e E=RCRERT ]ﬁ
J L J T* b
R Cr o Y }
_ J 1 . J ?g_
- ;(@j.e*)(az%e)‘i‘ ;b]ﬁ
J
= Z(‘P:re - B+ 8
= ¢e—fif=c

The next step is to show that z(a) >, y(e) — and hence that z(a) >, f(a)
— for each a € A*. We first show that the norm of the consumption handed
out in the second term of the definition of z{a) is at least R times the norm
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of consumption lost in going from « to the first term in the definition of z(a).
This requires that we given an estimate on B. Write J for the set of indices
J for which ;- e* < ;- 2* and K for the complementary set of indices for
which ;- €* > ;- z*. We want to establish the following estimate:

18l > Ry [pj- 2" — ;- €]
ieg
To this end, we first use the fact that the norm of the sum of positive measures
is the sum of the norms to write

181 = 1225l

7

= > 16

J
*
_ Z Pi€ —ay ot
= 2 _“—-—%’e* ¥j
F]

= X lpj-e" —ay
3

= > [ € —min{p; €', ;- 2%}

J

Thus
18l =3l - " — ;- 37]

jex
Recall that

x‘ge*mg—{f—v—i—!\fd-f—]\fu

Substituting and collecting terms yields
MBI =R g -2 — ;- €]

j€eg
2 D pi-(€=3)V—RY ;- (z*-¢")
jeK JjeT
N
> Yo (—%-Nd—zvu) ~RY ¢;- (—-JE'U+Nd+Nu)
Jex 20 jeg 20

J
= N{%Z‘Pi'U‘F(R“l)Z%'U}

i=1 JjeT
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W,

+N{—ZJ:%'d—(R—1)Z%"d}

=1 jed

+N{—Zapj-u—RZ<pj-u}

Jex : jed

£
N{%Lwo}

+N{-1-d— (R-1)|ld*|}}

v

AYS

N [ slloll = ool = (el = i) = (R — 1)ja*1)]
N{ld | - Rlld*|] >0

since 4 € ). Therefore,

1B = RY lo; - " — 05 - €]
JeT

as desired.

We now are in a position to complete the demonstration that z(a) =, y(a)
for each a € A*. The idea is to connect z{(a) to y(a) in two steps, the
first of which can be handled using the assumption that marginal rates of
substitution are bounded by R, and the second of which can be handled using
equimonotonicity. Fix a € A*. Write

e . (Ioj ) I;(CL) A E
AR P T 8“)(%6 )
and 5
_ ;- z(a)
#= [§ Ko z*)b} g
so that

z(a) = Z‘Pjaj +u
7

80




—Z% (y(a) + = 20 )+ D wics +
7

= y@)+; U+2%a, > wim(a) + p

We have

J J
Y i — Y piz(a)
=1 =1

(p . - e (p P e
= Y lpsos — pz(a)] + 3 lpio; — L—pz(a)] - S (1 - —)p;z{a)
X 7 Py T K Yi- T
Write
Z[@;% piz(a)] + D lpses — —p;a(a))]
T 7
and
T e*
Wy = (1 — ? : x,,) piz(a)
T 2
so that ‘

£
2(a) = y{a) + sV twr —w2tp

We claim that wy € W and wy — p € D. By construction,

w; - z{a)

lesesl = a, 228

Note that a; = ;- €* when j € J, and a; = p; - z* when j € K so

Pzt
llpsesll = {
llpsz(al for j € K

piz(a)l forjeJ

ol < Sln (s - oz(@) + T ;-(soja,- 6i°¢  (ola )))l

*
JER JjeT L

< S aorlenl + T ppr e les)]

JjeX
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IA

(]
s
g
O

xm
ly(@)l} + sl
2CK
CK + R(K - T)

2CK
. WK _
2CK ~

so wy € W. Our estimate for |3} guarantees that ||z > R|lws|, so our
assumption that marginal rates of substitution are bounded by R guarantees
that

A

<

£
z(a) = y{a) -I— £ +wy — wy + poe y(a) + —v +wy

20 20
Since
ly + 5 ’UI! = |y(a )il+—|lv|l
< C’K-I-R(K T)
< 2CK
ly+ v twl < 20K + jus
< 20K +2)|z{a)
= 2CK
+ly(a) + vl
< 4CK
equimonotonicity guarantees that
2(0) = (0) + S50 + vy >0 9(0)

Finally, y(a) >, f(a) by construction. Since A* C A\ Ay, ~,€ Py, and thus
>q 1s transitive, so z(a) =, f(a), as asserted. However, since z is feasible
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for the coalition A* and f is a core allocation, this is a contradiction. We
conclude that

1 £ _
EI"H(—EB-I—D—%QU) =0
as claimed.
From our choice of Ny it follows that
1

P
ﬁconf‘ CNP +U

Suppose that

1

fv—conr’ﬂ (—§é+D+U) £ 0
Then we can find d € D, u € U such that

£ _ 1 , 1,
(——5-6+d+u) = NconF C NP + U

so there exists G € %T’ and ©' € U such that

(—~-§é+d+u> =G+

50

G= (——%é+d+(u—u’))

Since U is symmetric, —u' € U; since U is convex,

_ I
u—u’:z(” 2”) € 2U

1_, £ _

a contradiction which establishes that

which shows

%conf'ﬂ(—%é-{—D—]—U):@

Since wcon I' is convex and {—(¢/5)e+D+U} is convex and weak star open,
we can find a weak star continuous linear functional p on M(Q)) (that is, a
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continuous function p € C((2)) that separates 1-con I" from {—(e/5)é -+ D +
U}. Proposition 6.1 then implies that the price p approximately decentralizes
the core allocation with respect to comparison bundles in B(0,CK),. Since
we want to show we have decentralization with respect to comparison bundles
anywhere in M{(Q),, we need to show that bundles outside B{0,CK). are
too expensive to upset the decentralization. The definition of I} guarantees
that p satisfies

max p(w)/ minp(w) < R

Since this implies mingeq p(w) > 0, p- € > 0; renormalizing, we may assume
that p-2=1, so

1 £ £
i T > ——peE = —— 38
inf p (NF > 5p ] 3 (38)
maX,eq plw) <R
minweﬂp(w) -
1
o < minp(w < T
Rl < AP <
1 R
— <maxplw) < ——
ey = max ol

Let

v(a) = {y—ela):y>. fla)}U {0}
I = > +(a)

acA

We will show that
£

r
i >
nfp- 5 2 -7

(39)

Since y{(a) D v'(a), infp-v(a) < infp: ¥ (a) < 0. On the other hand, if
z € y{a) \ ¥'(a), then z = y — e(a) where y >, f(a) and {lyl| > CK.

Therefore,

p-y > (minpW)lyll
CK RK

Toll ~ Tl
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Now suppose a € A\ A;. Then

p-e(a) < maxpw)e(a)l]
R RK

Tl ™~ Tl

so p- (y—e(a)) > 0 > inf p-+v(a), so inf p-y(a) = inf p- ¥'(a). Therefore, by
Equations (36) and (38),

<

1 1 1
infp- =T = = 5 infp-~y(a)+ = > infp-v(a)
N N &5, N &,
1 1
> — infp-v(a)~ = > p-ela)
Na€§\:/12 Nﬂ&A?
g€ 1
> - mapl)| 7 T o
. s B <l
5 o] 20R
- _&_&__¢ (40)
5 20 4

We are now in a position to show that the price p approximately decen-
tralizes the core allocation f. We have already normalized so that p-& = 1,
which is (i}, Taking X, to be the compact set f(a}+[0, 1], equimonotonicity
of {>,} in the direction v implies that f(a)}+&v =, f(a) forall £ € (0,1) and
all ¢ € A, so =, is locally nonsatiated with respect to M{Q). at f(a). Propo-
sition 6.1 (modulo a slight rejuggling of the epsilonics) then implies that p
e-decentralizes f. The conclusions about min,eqp(w) and max,eq p{w) are
contained in Equation (38). m

The argument of Theorem 9.4 uses the assumption of bounded marginal
rates of substitution to provide upper and lower bounds on the separating
price, which in turn guarantee that anything outside the ball of radius CK
is too expensive for anyone to afford. In the absence of a bound on marginal
rates of substitution, however, stronger restrictions on the endowments will
still yield approximate decentralization. The following result is in the spirit
of Theorem 4 of Ostroy and Zame (1994), which yields core equivalence in
the presence of physical thickness assumptions.
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Theorem 9.5 For every v € M(Q). with supp v = Q, every K,e > 0,
and every uniformly integrable set F of probability distributions, there exists
6 > 0 such that for every set of preferences Py C P, which is weak star
equimonotone in the direction v, there is an integer Ny such that:

If x 1 A— P, x M(Q), is an exchange economy for which

(a) 2{a € A€ Po}|>1-6
(b) é= 5 Te(a) 2v

(c) lel < K
(@) f ]
Bt = Hae A :;{(a) < te}]
then E ¢ F2

(8) |AltNZNO

and f is a core allocation of x, then there is a price p € C(Q)4
that e-decentralizes f.

Proof: The argument has much in common with the proof of Theorem
9.4, but there are some significant differences. Fix € > 0. Find T such that

f”t dE(t) < £/36
T

for all ¥ € F. There is no loss of generality in assuming e < 1 < T < K.
Set

£
6= 27
Set 36K
O =
£

Fix Py, a set of preferences which is weak star equimonotone in the direc-
tion v. Let B(0,2CK), be the nonnegative part of the closed ball of radius

23Note in particular we do not require e{a) to lie in the order ideal generated by v.
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2CK. Equimonotonicity means that we can find a weak star neighborhood
W of 0 such that 2 » = whenever y,z € B(0,2CK),, z € (y + =V + W),
€ Po and y = z. Without loss of generality, we may suppose that W is of
the form

W={XeMQ) : |p-A<1,i=1,..,1I}

where py,...,p; € C(0)).

Set
© 1

LT oK
Continuity of the functions p; and compactness of {} enable us to find a finite
covering {A;:j=1,...,J} of Q by open sets with the property that

wiwe € A = |pi{wr) — pilun)] < &

for each i. Choose a partition of unity {¢; 7 =1,...J} subordinate to the
cover {A;}; thus
0<w; <1 foreachj

J
dopi=1
=1

supp ¢; C A; for each j

Without loss of generality, we may assume that {A;:5=1,...,J} contains
no proper subcover, and hence that no ¢; is identically zero. Our assumption
that supp v = ) guarantees that w; - v > 0 for each j; set

sgzmin{

£V €<PJ'U}
72 777772

and define
U={Ae M) : |p;- A <ey for each j}

Alaoglu’s Theorem guarantees that B(0, CK )+ is weak star compact, so
we may use Theorem 4.1 to choose an integer Ny such that, if N > N, and
X1,...,Xn C B(0,CK). then




Now let x : A — P, x M(Q)). be an exchange economy satisfying as-
sumptions {a) ~ {(e), and fix a core allocation f. We construct a price p that
approximately decentralizes f.

Let
Ha € A:ela) L te}]

Ble) = 7y

By assumption, ¥ € F. Let

A = {aEA:F—aﬁ'Po}
Ay = {ae A ela) £ K&}

A; and A, are sets of agents who are, from the point of view of our decen-
tralization argument, badly behaved. However, the members of A; U A, will
not matter in the overall decentralization result because %Zae Ayua, ela) is
small:

= = T o)
N“EZAE N*gpo
< (Tée+—= > e(a))
( N e(a)£Te
£
= (g + [ ram)e
£ € £ _
< gé"*‘%) m-l-ge (41)
1 1
< 2 ¢ela) = += e(a)
‘Na.EA2 Ne(a)gKé
1
< = Y, ela)
Ne{a);{Te
- ([ dEt)
([CeeE@
g _
< é—ée (42)

For each a € A, set
v(a)={y—ela) : |yl £ CK, y >, fla)} U {0}
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and write

=2_7(a)
agA
Note that v'(a) is a truncated version of the net preferred set of agent a
(together with {0}), and that I'" is a truncated version of the aggregate net
preferred set. We will first find a decentralizing price with respect to compari-
son bundles in B0, CK),; then, we shall modify the price so that comparison
bundles outside B(0, CK).. are too expensive to upset the decentralization.

We claim that
Lrn (_fé - M(Q) + QU) =0
N 9 N -

To see this, suppose not. Then we can find a coalition A** C A and vectors
ylay —e(a) € ¥(a),d € M{Q)y,u € 2U with

%a;‘w[y(a) (@) =—Se-d+us-Setu
Let A* = A*\ A;. Then
+ 3 lbla) < = Y b -e@]+ = Y efa)
aEA‘ NaEA“‘ Nae;h
< —§e+u+ Té_ —;—Sv-i—u

by Equation (41). Since Sv & 2U, we must have A* # (). Therefore,

Ne iA*|£
Py [y(”') 36] S 2 ela)-Jgut Nut S
Ne |A*fe
< Z} ()-—"HN (36 36 )

< Y ela) - St Nu
acA*

As in the proof of Theorem 9.4, we use the left hand side as a template
to redistribute 3, 4. e(a), obtaining a contradiction to the fact that f is
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a core allocation. To this end, write z(a) = y(a) + £v for each a, and
€' = 2 4c 4~ (a); for each a € A*, define

=y

=
jﬁf’Je

We claim that 2 is a feasible allocation for the coalition A*, and is pre-
ferred to f{a} by each member of A*. To see that z is feasible, we simply
expand 3_,c 4+ 2{a} — e(a), using the facts at our disposal:

> (2@)—efa)) = 3 Z (M%e* - soje(a))

ac A+ ag€ A*

-x(z[a fe*J )
SR CRPETIF=

ag A*

A
o
AS
o
»*
I
2
& o
<
+
Z
B
5
4 *
!
5
G)*
N’

_ Y ol P
Our choice of £; guarantees that ¢; - u < 2¢; - (ev/72) = @;(ev/36) for each
Jj. We conclude that
2 z(a)—ela) <0

eEA*
That is, z is feasible for the coalition A*.

On the other hand, we claim that z is preferred to the core allocation f
by every member of A*. To see this, fix a € A* and note that

QD"III(&) *
ﬁr%‘e and  @;z(a)

are both nonnegative, have support contained in A;, and have the same
norm:

¢;-3(a) je*]

[‘PJ z{a)| B 28 pet) = I(PJ x(a)]
vj- € wie

T e €l = llpsz(all
;- €| [pj-et] ’
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Therefore,

i - (2(a) — z(a))| =

;- (Z %%wje* -2 wr(a))
Z D (%—_mi—?)%e' - %”w’"(a))

< Z:Elu%w(a)!l

IA

CK
< L

for each 1, so z(a} ~ z{a) € W. Moreover, {|z(a)|| = |z{a)]| < |y(a)|l +
sllvll SCK+K <2CK, |yl < CK and =,€ Py. Accordingly, z(a) >, f(a)
by the definition of weak star equimonotonicity.

We have shown that 3°,. 4. 2(a) < e* and z{a) >, f(a) for alla € A. We
may find 2’ : A* — M(2); with 2'{a) > 2{a) and T ¢ 4- 2'(a) = e*. By free
disposal, z'(a) =, f(a) for all @ € A*, which contradicts the assumption that
[ is a ¢ore allocation. We conclude that

}Nrf A (—g—é — M), + 2U) )

as claimed.

From our choice of Nj it follows that

]—}chon I"c %I” + U

Suppose that

%con 'n (—gé— M), + U) # 0

Then we can find u € U and p € M(Q), such that
1
(-gémp+u) € WconF’C -JIVF’-J-U
so there exists G € £I” and v’ € U such that
€ _ !
(fempse) =G
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” G:(—gé-—u-t—(u——u’))

Since U is symmetric, —u' € U; since U is convex,

u—-u’z?(u_u)EQU

2
which shows 1
L N B
TP ( ce— M(Q), +2U) £
a contradiction which establishes that
1

F7eon I'n (—gé— M), + U) =0

Since (1/N)con I is convex and (—(g/9)8 — M(Q), +U) is convex and weak
star open, we can find a weak star continuous linear functional g on M{Q)
(that is, a continuous function ¢ € C(Q2)) that separates (%con T’) from
(£ — M(Q); +U); note that g is necessarily nonnegative. Since supp v =
and € > v, we conclude that g- & # 0; renormalizing if necessary, we may
assume that ¢- &€ = 1, and thus

infg-— > -2 (43)

Proposition 6.1 implies that the price ¢ approximately decentralizes the
core allocation with respect to comparison bundles in B(0, CK).. Since we
want to decentralize with respect to comparison bundles chosen anywhere
in M(Q),, we modify the price ¢ so that bundlés outside B(0,CK). are
too expensive to upset the decentralization. In particular, we will produce a
price p which is bounded away from 0, eliminating the difficulties which arise
because we cannot say anything about the ratio max g/ ming.
Define P,p € C{Q) by P(w) = ¢(w) + Eﬁ,licﬂjllll and p = £. Note that

.é'

2(1+ig]])
minplw) 2 C_
weﬂp( ) (q_i__(_ﬂ_wze l)é
2
> C
s 2_1
- 2 C




Observe that if y = £ — e(a) € ¥'(a), a € A\ A and p- y < 0, then

py > P-(z—ela))
- (q+3(i#11)-(x—e(a))

> ¢ (o efa)) - 21Dy
> g (@ e0) - Lo ()]
> g (z~e(e) - g=lle(a)] (44)

Let

¥a) = {y—ela): y>=a fla)} U {0}

I' = Y +(a)
acd
We will show that
infp. = > _¢ (45)
mrp N = P,

Since y(a) D 7(a), infp-v(a) < infp- +'(a) < 0. On the other hand,
if z € 7{a) \ ¥(a), then z = y — e(a) where y >, f(a) and lyll > CK.
Therefore,

Py 2 minpw)ly
1
> =
> ZCK=K

Now suppose a € A\ A,. Thenp-e(a) < Kp-é=K,sop-{y—efa)) > 0>

)
infp-+'(a), so infp- y(a) = infp- v(a). Therefore, by Equations (43) and
(44),

. 1 . 1
infp- = 2 @) = infp- = > 7(a)
ac A\ Ay ac A\ Az
1 €
2 infg- = 3 Y@ -o= 3 le(d)]
N a€ A\ Az 9KN acA\Ag
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v
E’;
e
2|
!
ik
G}

v
|

By Equation {42),
1

. 1 _ R
infp- zI' = & 2 infp-y(e)+ 5 2 infp-1(a)

ae A\Az ac Az

2¢e 1

—E o T el
g Na;{:z
2e £ £

> ST % : (46)

v

We are now in a position to show that the price p approximately decen-
tralizes the core allocation f. We have already normalized so that p- & = 1,
which is conclusion (i), Taking X, to be the compact set f(a) + [0, 1]jv, equi-
monotonicity of {=,} in the direction v implies that f(a) + &v =, f(a) for
all £ € (0,1) and all @ € A, so >, is locally nonsatiated with respect to
M(Q), at f(a). Proposition 6.1 then implies, modulo a slight rejuggling of
the epsilonics, that p e-decentralizes f. m
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10 A Stronger Form of Decentralization

The form of decentralization established in Theorems 8.2, 8.8, 9.4 and 9.5 in-
volves a measure of how well the constructed price p decentralizes thé given
core allocation f. In the finite dimensional literature, this conclusion has
been shown to imply, in the presence of equiconvexity conditions, a stronger
form of convergence: f(a) is, on average, close to agent a’s demand set,
D(p, a); see in particular Anderson (1981). This stronger conclusion is desir-
able, since it shows that }}7- Paca D(p,a) is close to g, or in other words, that
P is an approximate Walrasian price. For a discussion of this interpretation,
see Anderson (1993).

In this section, we take a first step toward extending our infinite di-
mensional results in the same way. In Theorem 10.2, we show, under the
assumptions of Theorem 9.4 and the additional assumption of equiconvexity
of preferences, that core consumptions are on average close to agents’ de-
mand sets. The essential idea of the proof is the same as part of the proof
in Anderson (1981): if prices are bounded away from zero, and preferences
are equiconvex, the fact that p nearly supports f implies that f(a) is close
to D(p,a). We obtain the lower bound on the prices from the bound on
marginal rates of substitution assumed in Theorem 9.4.

It would be highly desirable to obtain this stronger conclusion also in
the context of Theorems 8.8 and 9.5. The principal obstacle is that the
lower bound established on price in those results depends on e, while the
argument used in Theorem 10.2 requires that the lower bound on price be
independent of £. It might be possible to show directly that equiconvexity
implies that approximately decentralizing prices are bounded away from zero
in a manner independent of ¢; indeed, this is done in the finite dimensional
case in Anderson (1981). It may also be possible to establish the conclusion
by a different argument altogether.

Definition 10.1 A set of preferences P, is said to be weak star equiconver
if, for every weak star compact set X C M(f), and every weak star open
set V, there exists a norm open set I/ such that for every preference »~€ P,

TyeEX, s gy+V
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T+y

— (-—-!*U)QX:»Q:OI (:1:+y

2

> -}-U)ﬂX>—y

Note that equiconvexity of a single preference relation is a consequence of
strong convexity together with weak star continuity; indeed, we could have
required that the set U be weak star open. Equiconvexity is a compactness
condition on the family P;.

Theorem 10.2 Suppose that the assumptions of Theorem 9.4 are satisfied.
If in addition Py is equiconvez and V is weak star open, there is an Ny such
that if x is an exchange economy satisfying assumptions (a)—(e), then there
is a family {t, : a € A} such that

f(a’)—D(p:a) C .V
%Ztu < 1 :

atA
If in addition () is a metric space, there is an Ny such that
1 :
N Z;ig(f(a’)}D(pta)) <€
ac

where ¢ is the Prohorov metric on M(Q).

Proof: Fix a weak star open set V. Find M such that

B(O,L) cV
M

Find 7" such that .

22RM
Without loss of generality, we may assume that T > 1.

[_ T Bl <

T

Let
K = T+ !
B 29RM
= — L
: 11RMT

X = {peM@Q).: Il <RR +1}
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Note that

. 1 N
g} <T4+ —=K
el < 22RM

Fix Py, an equiconvex equimonotone set of preferences. Since Py is
equiconvex, there exists p > 0 such that

v
B, veX, /JrVQE

_ m}B(m, )%porB(w,p) -
: 2 2
Without loss of generality, we may assume that p < 1. Let
é == _"‘-eﬁ'
44R?KTM

From Theorem 9.4, there exists Ny such that if y satisfies assumptions (a)—
(f) (with é and Ny substituted for § and Ny) and f is in the core of y there
exists p € C'(Q2), such that

p-g=1
XlT'ZaEAlp' (fa)— e(a))| < é

¥ Laea inf{p- (z — f(a)): © >, fla)} < &

RK — Rl&| = (]l
1 1 R
= < TETRS maX,eq plw) < Tl

maxwgnpng < R
mingen plw) —

Since mingeqp(w) > 0, each agent’s budget set at the price p is norm
bounded, and thus weak star compact. Since >, is transitive for all g € A
the demand set D(p, a) is nonempty.?

1t is easy to see that D(p,a) has only one element if {4} is equiconvex. For those
agents whose demand set has more than one element, our proof will show that fla)—z¢
t.V for some x € D(p,a).
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Let

A = {a€ A& Pgl}

{a€ A:|e(a)] > K}

Ay = {a€A: |p-(f(a) —ela))| > 22RMT%

or linf{p- (z — f(a)) : ¢ > f(a)}| > 22RMT¢}

b
v
Il

|A; U Ay . 2
—— < 6+ﬁ“
N - 22RMTé
= 04+6=20
Therefore,
1
= X o) < ( ne(a)u)
sediudaudy N joanisr
= ( + f tdE(t) ) e
1RMT
< ( )_ 5€
11RN | 2RI 22RM
s0
1
+ X Ife)- Do)
ac AjiuAaUAY
1 .
S 5% 2 @l+iDpe)
ac A;UAgUA,
<« L ) p- fla) +P-D(p,a)
N acA1LA2UA, min“)en p(l.d) mjnuEQ P(w)
<l vy pelath(@-c), _ped
- NG.EJLUAQU;L; min“EQP(w) mjnwenp(w)
< _1_ Z 2maxwisnp( w)ile(a) le — e(a))|
N acA1UAjUd, mingeq plw) mmwen P(w)
1
< w 3" 2R|e(a)]| + RK¢
GE.&.;[UAQU.'&,;
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10 p

— + —=
2M 22RTM
10 1 1

— + — = —=
2M 22M 2M

Now suppose a € A\ (4; U Ay U A;). We claim that f(a)—D(p,a) € %.
Note that
P D(p? a)
mingeq p(w)
p-¢fa)
mingeq p(w)
MaX,e0 p(w)
mingeq plw)
RK
p- fla)
mingen p(w)
pefa) | lp-(fla) —e(a))l
min o p(w) mingeq plw)
m‘axwen plw) le(a)] + ?QRMTE
mingen pw) min,eq p(w)
RK + 2RMT(RK)—F2
A4R2KTM

1D, a)ll <

IN

A

lle(a)]

[A

1F{a)]

IA

IN

IA

IN

< RK+p<RK+1
so fla), D{p,a) € X. Let

_ f)+D(p,a)

2
;o el -%),

[E]

Note that
na:n—%f)
— < |1~
el < (1-252E) el
3p
< 7 <P
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Since a ¢ A,, either y >, f(a) or y >, D(p,a). If |jzf] < % we have
y = 0, which shows that we cannot have either y =, f(a) or y =, D(p,a). If

]| > 2, we have

py < p'm—gneigp(W)%p
< p_(f(a)JrD(P,a))_ 3p
= 2 4RK
p- (D(p,a) — fla)) e s
< p-fla)+ 5 — 33RT'M¢
< p‘f(a)+fp'(8(a)2_ 1@))| _ a3t ire
< p-fla) + 11RTMé — 33RT Me
< p-fla)—22RTMée ' L

Since a ¢ Ay, this shows that y ¥, f(a). In addition, note that

pry < p-w—ggp(w)??f
< p_(f(a)"*“D(P,a))_ 3p
2 4RK
P'(f(a)—e(a))}_%RTMé
2

< pela)+]
< p-ela)+11RTMé — 33RT M¢
< p-ela)

which contradicts y >, D{(p, a). This contradiction establishes the claim, i.e.
a € A\ (AU Ay U Ay) implies f(a) — D(p,a) € ¥.

For each g € A, let
sq = inf{s: f(a) — D(p,a) C sV}
Then

%Zsa S % Z SG+ Z SG

acd acAjUAz04, aEA\{A1UA2U£4)
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1 N | 1
<5 X W@-DealM+s ¥ ;5
aEA1UAsUA, ac A\(AjudzuAy)
M 1
S —_— + - = 1
oM 2

so there exits t, such that f{a) — D(p,a) C ¢,V for all a € A and such that
EGEA tﬂ. < 1.

Now suppose that (2 is metric. Since () is also compact, it is separable,
so M(1) is metrizable by the Prohorov metric (Billingsley {1968)). Choose
V=28 (0, %) It is easy to see that

ift, <1

LV C { B(0,5) ife,>1

Then
1 I
AT J(f(a),D(p,a)) S aAT max{]-ata}
N2 w2
£
<
< 2]\rcm(lﬂﬂ)<s
]
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11 Slow Convergence

In Sections 8 and 9, we gave conditions sufficient to rule out the kind of
monopsony and monopoly power and the other difficulties demonstrated in
the Examples, and showed that those conditions lead to approximate de-
centralization. It is natural to ask about the rate at which approximate
decentralization takes place — in other language, about the “rate of conver-
gence.” Some results in this direction could presumably be extracted from
our positive results, but it does not seem easy to obtain satisfactory results
in this way. Part of the difficulty is that our positive results depend on var-
ious forms of equimonotonicity in a way that seems hard to quantify. The
following example illustrates this point by showing that the positive results
of Section 9 are consistent with arbitrarily slow rates of convergence.

QOur example is a modification of Example 3.1. However, it is convenient
to work, not on the unit interval [0, 1], but rather on a Cantor subset {2 C
{0, 1] having positive measure. {The example could be recast in the unit
interval, but the construction would be much messier and the verifications
would be very unpleasant.) Let A\ denote Lebesgue measure on the unit
interval [0,1}. We construct a Cantor set Q C [0,1] in the following way.
Let @; be the open middle 1/4 of [0,1], and write X; = [0,1] \ @,. Note
that A(X;) = 3/4 and that X; is the union of two closed intervals, each of
length 3/8. Let @)y be the union of the open middle 1/6 of each of these two
intervals, and let X5 = X, \ Q2. Note that AM(Xy) = 5/8 and that X3 is the
union of four closed intervals, each of length 5/32. Continuing in this way
we obtain a descending sequence X, X5, Xz, ... of closed subsets of [0,1];
MXe) = (2% + 1)/2F*1, and X* is the union of 2* intervals X7, each of
length (2% + 1)/2%+1, Define ! = 1 X. Our construction guarantees that
M§2) = 1/2; since tllle sets 2 N X} are all translates of each other, it follows

that A(QN X7) = & = 275! for each k,n.

Write p = 2| (so that p is the restriction of A to {2, re-normalized so
as to have total mass 1). For £ C () a measurable set, write 15 for the
characteristic function of F; that is, the function which is 1 on £ and 0
elsewhere. '

Example 11.1 We describe a sequence of economies in the commodity space
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M (2} for which the results of Section 9 guarantee approximate decentraliza-
tion, but for which the rate at which this approximate decentralization takes
place is arbitrarily slow. To this end, we begin by fixing a strictly decreasing
sequence {ay} of real numbers converging to 0. In the N** economy, there
are 2V agents: Ay = {1,2,...,2¥}. The endowment of each agent n € Ay
is e{n) = p. To describe preferences, define Fiy, = X7 N$2; our construction
guarantees that (for fixed V) the sets Fi,1, Fivz, ... Fiy v form a partition of
§2 into disjoint closed subsets of equal p-measure 2V, Let fun 22— R be
the (continuous) function which is 1 + ay on Fy, and 1 elsewhere. Agent
n’s utility function is
uN,n(’}') = ./S'an(t) d’)((t)

Thus, agent n’s utility function is linear, with constant marginal utility equal

to 1+ ay for commodities in his/her “preferred set” F N,n, and with constant

marginal utility equal to 1 forother commodities. These utility functions are

well-behaved: strictly monotone, weak star continuous (because Q is totally

disconnected), with marginal rates of substitution bounded between 1 and

1+ a;. Moreover, it is easily verified (using the fact that a,, — 0) that the
family {un,} is weak star equimonotone.

Note that the endowments— hence all feasible consumption bundles —
are absolutely continuous with respect to . Hence, all feasible consumption
bundles lie in the subspace L'(n) C M(Q). Analysis of this example is
almost identical to that of Example 3.1. In particular, it is easily seen that
this economy has a unique Walrasian equilibrium; the equilibrium price is p =
1 € C(Q2) and the equilibrium allocation gives consumer 7 the consumption
bundle:

. z(n) = QN]'FN,mU‘

However, the core of this economy is large. In particular, the allocation
f defined by

2 1py o+ 42N, u ifnis odd
fln} =

[1~22]2M1p, p ifmis even

is in the core. Moreover, there is no price for which the mean social endow-
ment has value 1 and which (ay)/100-decentralizes the core allocation f.
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(Again, the analysis is essentially the same as for Example 3.1; we leave the
details to the reader.)

Since we are free to choose the sequence {an} so that convergence to 0
is as slow as we like, we can arrange that the rate of approximate decentral-
ization is arbitrarily slow.
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