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ABSTRACT

Robust Approximation of the Stochastic Koopman Operator

by

Mathias Thomas Wanner

We analyze the performance of DMD-based approximations of the stochastic Koop-

man operator for random dynamical systems where either the dynamics or observables

are affected by noise. Under certain ergodicity assumptions, we show that standard

DMD algorithms converge provided the observables do not contain any noise and span

an invariant subspace of the stochastic Koopman operator. For observables with noise,

we introduce a new, robust DMD algorithm that can approximate the stochastic Koop-

man operator and demonstrate how this algorithm can be applied to Krylov subspace

based methods using a single observable measured over a single trajectory. We test the

performance of the algorithms over several examples.
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1 Introduction

For many complex systems and processes, governing equations cannot be derived through

first principles, or the models generated by them may be too complicated to be of practical

use. Additionally, for such a system, the true state of the system may be difficult or even

impossible to measure, making a state-space model impractical for applications such as

control or prediction. Instead, only a limited set of measurements, or observables, will

be made available. One of the tools available to model such a system is the Koopman

operator. The Koopman operator represents a system in a high-dimensional linear space,

which allows us to use spectral methods to analyze the system.

Originally introduced in [7], the Koopman Operator has gained traction for its utility

as a data driven method through various form of Koopman Mode Decomposition (KMD),

which decomposes the system based on eigenfunctions of the Koopman operator [9], [10].

Introduced in [8], Generalized Laplace Analysis (GLA) is an early data driven method

of KMD based on the generalized Laplace transform. Another data driven method is

Dynamic Mode Decomposition (DMD), which was introduced in [14] and shown to be

connected to KMD in [13]. There are many different variations of DMD and it can

be used for a wide array of applications. Despite their widespread use, many DMD

algorithms possess a major drawback; they can fail if the data contains noise or some

other randomness.

For systems with random dynamics, the eigenvalues produced by standard DMD

algorithms converge to the spectrum of the stochastic Koopman operator provided the

observables themselves do not contain any randomness and lie within a finite dimensional

invariant subspace. Total Least Squares (TLS) DMD, proposed in [5], was developed to

remove the bias for systems with measurement noise, but only converges when the under-

lying dynamics are deterministic. In [15], subspace DMD was introduced to converge for

observables with additive noise even when the underlying dynamics are random. While

many of these methods can combat the bias from measurement noise in DMD, they im-
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pose relatively strict assumptions on either the dynamics (the underlying dynamics must

be deterministic for TLS DMD) or the structure of the noise (i.i.d. additive noise in

subspace DMD)

Of particular interest are Krylov subspace based DMD methods, where the iterates

of a single observable under the Koopman evolution is used to generate an invariant

subspace of the Koopman operator [11]. For deterministic systems, Hankel DMD uses

time delays of a single observable to generate the Krylov subspace, and was shown to

converge in [1]. This allows us to generate a model of a deterministic system using the

data from a single trajectory of a single observable. However, for random systems, the

time delayed observables contain randomness from the dynamics, and Hankel DMD does

not converge. Further, the noise introduced is neither i.i.d. nor independent of the state.

In [4], a new Stochastic Hankel DMD algorithm was shown to converge, but it requires

the Stochastic Koopman evolution of the observable, which in general requires multiple

realizations of the system.

In this paper, we introduce a new DMD algorithm which allows us to work with a

more general set of observables with noise. We replace the i.i.d. assumption on the

noise with a slightly weaker independence condition and we allow the distribution of the

noise to depend on the state of the system. With these weaker conditions, we can use

time delayed observables to form a variant of Hankel DMD. This allows us to compute a

realization of the stochastic Koopman operator using data from a single observable over

a single realization of the system. The paper is organized as follows: First we review

the basics of random dynamical systems and the stochastic Koopman operator. Then,

we establish the convergence of standard DMD algorithms for random systems in the

absence of noise. Finally, we demonstrate the failure of standard DMD algorithms in the

presence of noise and introduce a new algorithm which can accurately approximate the

stochastic Koopman operator using noisy observables.
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2 Random Dynamical Systems

2.1 Preliminaries

We define a random dynamical system as follows:

Let (Ω,F, P ) be a probability space, and let T be a semigroup. Let {θt}t∈T be a group

or semigroup of measurable transformations on Ω which preserve the measure P . This

forms a metric dynamical system on Ω. Now, let (M,B) be a measurable space, and let

T : Ω×T×M →M be a measurable map. We say T forms a random dynamical system

on M if the maps T tω := T (ω, t, ·) : M →M form a cocycle over θ(·), i.e.

T 0
ω = idM , and T t+sω = T tθs(ω) ◦ T sω. (1)

We call (Ω,F, P, θ) a driving dynamical system and θ a driving flow. If T is a group,

then T tω is invertible, with inverse T−tω [2]. We will denote T tωx0 = xt and θtω0 = ωt for the

remainder of the paper. We note that given an initial distribution for x0, {(xt), t ≥ 0} is

a stochastic process.

Typically, we will not have access the state of the system at any given time. Instead,

we will be able to measure some set of functions on the state space.

Definition 1. An observable is any B measureable map f : M → C.

For any observable, we will denote f(t) = f(xt). We are interested in the evolution

of observables over time. For a deterministic system the Koopman family of operators is

defined to evolve an observable, f , on the state space under the flow, St of the system:

U tf = f ◦St. However, since a random dynamical system has many possible realizations,

the stochastic Koopman operators is defined using the expectation of its evolution.

Definition 2. The stochastic Koopman operator, K, is defined by

Ktf(x) = EΩ(f ◦ T tω(x)) =

∫
Ω

f ◦ T tω(x)dP.
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2.2 Measure Preservation and Stationarity

The preceding discussion allows for a very general random dynamical system. For our

analysis, however, we will need restrict our attention to systems satisfying a few proper-

ties. First, we would like the stochastic Koopman operator family to have the semigroup

property:

Kt+sf = Ks ◦ Ktf, s, t ≥ 0. (2)

For the deterministic Koopman operators, this is clearly true provided the system is

autonomous and solutions exist and are unique, since in this case the flow forms a semi-

group. To obtain the semigroup property for the stochastic Koopman family of operators,

we need an analogous condition on the system. The condition that {(xt), x0 ∈ M} is

a time homogeneous Markov family suffices to give the semigroup property [4]. With

this condition, the semigroup property follows from the Chapman-Kolmogorov equation.

For a time homogeneous Markov family, the transition probabilities depend only on the

current state; they do not depend on the time or the past of the process.

We will continue to specialize to systems which are weakly measure preserving. We

say random dynamical system is weakly measure preserving if there exists a measure µ

such that

E(µ((T tω)−1A)) =

∫
Ω

µ((T tω)−1A)dP = µ(A) (3)

for each A ∈ B. The measure µ is called an invariant measure. Weakly measure preserv-

ing systems give the stochastic Koopman operator the following nice property: For any

f ∈ L1(µ), we have

∫
M

Ktfdµ =

∫
M

∫
Ω

f ◦ T tω dPdµ =

∫
M

fdµ. (4)
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To see this, for any simple function g =
∑n

i=1 aiχAi
, we have

∫
M

Ktg dµ =

∫
M

∫
Ω

g ◦ T tω dPdµ =
n∑
i=1

ai

∫
Ω

µ((T tω)−1Ai) dP =
n∑
i=1

aiµ(Ai) =

∫
M

g dµ,

which we can use to extend (4) for any integrable f .

If our system is both a homogenous process and possesses an invariant measure µ,

then we can extend (4) a little farther. If we let µ be our initial distribution for x0, the

stochastic process {(xt), t ≥ 0} is a stationary process ([6], p.86). In this context µ is also

called the stationary distribution. Stationary processes are determined by the transition

kernal P : M ×B × T → [0, 1]. The transition probability P (x,A, t) is the probability

that the state x evolves into the set A at time t:

P (x,A, t) =

∫
Ω

χA(T tωx)dP.

Stationarity gives us the equality, for t1, ..., tn ≥ 0,

∫
M

∫
Ω

f(T t1+s
ω x, ..., T tn+s

ω x) dPdµ =

∫
M

∫
Ω

f(T t1ω x, ..., T
tn
ω x) dPdµ. (5)

Stationary processes have a useful representation as a measure preserving determin-

istic system in a probability space of bi-infinite sequences, (MT,C, ν) ([6]). Restricting

to the discrete time case (i.e. T = Z or Z+), for any u = (..., u0, u1, u2, ...) ∈ MT, the

evolution is given by the left shift map: (Su)t = ut+1. The invariant measure ν is con-

structed as follows:

We say that C is a cylinder set over the coordinates t1 < ... < tk with the basis

B ∈ Bk if C = {u : (ut1 , ..., utk) ∈ B}. Let C̄ be the semiring of cylinder sets. Define the
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function ν : C̄ by

ν(C) =

∫
M

∫
Ω

χB(T xω , T
t2−t1
ω x, ..., T tk−t1ω x)dP (ω)dµ(x) = E(χB(xt1 , xt2 , ..., xtk)). (6)

It is easy to verify that (6) is well defined and countably additive, so we can extend ν to a

measure on C, the completion of C̄ by the Caratheodory extension theorem. Additionally,

since ν is clearly invariant by (5), its extension to C will also be invariant. The space

(MT,C, ν) represents all possible realizations of the RDS T , and S gives the evolution

of each realization over time. Using this, we can write the Koopman evolution of an

observable on M using a conditional expectation on MT:

Ktf(x) =

∫
Ω

f(T tωx)dP = EMT(f(us+t)|us = x).

The representation of the system in the space of sequences also allows us to define the

adjoint of the stochastic Koopman operator, if we restrict our space of observables to

L2(µ).

(Kt∗f)(x) = EMT(f(us−t)|us = x). (7)

To see that this is the adjoint, using (5) and (7), we have

〈Ktf, g〉 =

∫
M

EMT(f(ut+s)|us = x)g(x)dµ =

∫
MT

f(us+t)g(us)dν

=

∫
MT

f(us)g(us−t)dν =

∫
M

f(x)EMT(g(us−t)|ut = x)dµ = 〈f,Kt∗g〉.

The adjoint gives the expected previous value of observables. If T is a group (and

therefore Tω is invertible), this can be expressed more simply in terms of the negative

time evolution of observables:

Ktf(x) =

∫
Ω

f(T−tω x)dP.
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We use (7) to define K∗ since T tω is not necessarily invertible. However,

2.3 Invariant Sets and Ergodicity

We define an invariant set for a stationary random system to be a set A such that

∫
A

∫
Ω

χA ◦ T tωx dPdµ = µ(A).

In other words, for almost every ω and almost every x ∈ A, T tωx ∈ A. Clearly the

countable union of invariant sets is an invariant set. Similarly the complement of A, Ac

is an invariant set, since

∫
Ac

∫
Ω

χA ◦ T tωxdPdµ =

∫
M

∫
Ω

χA ◦ T tωxdPdµ−
∫
A

∫
Ω

χA ◦ T tωxdPdµ = µ(A)− µ(A) = 0,

so the invariant sets form a σ-algebra. For a deterministic measure preserving system,

Birkhoff’s Ergodic theorem gives us information about the time average of a function.

In the discrete time case, it tells us

lim
n→∞

1

n

n−1∑
j=0

f(xj) = E(f | I),

where I is the σ-algebra of invariant sets [6]. We will need a similar fact to hold on

random systems in order to work with time averages.

Lemma 1. Let I be the σ-algebra of invariant sets of M for the stationary random

dynamical system T . Let f̂ : Mk → C be Bk measurable and let f : Ω×M be defined by

f(x, ω) = f̂(T t1ω x, ..., T
tk
ω x).
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Then, if
∫
M

∫
Ω
|f | dPdµ ≤ ∞,

lim
n→∞

1

n

n−1∑
j=0

f(xj, ωj) = EM(EΩ(f(x, ω)) | I)

for almost every initial condition (x0, ω0) (with respect to µ× P ).

Proof. Consider the representation of the Markov process in a probability space of se-

quences, (MT,C, ν) with the measure given in (6) and the evolution given by the shift

map. Denote f̂(u) = f̂(ut1 , ..., utk), where u is the sequence corresponding to the initial

condition (x0, ω0). Since S is a measure preserving map, by Birkhoff’s Ergodic Theorem

we have for almost every u,

lim
n→∞

1

n

n−1∑
j=0

f(xn, ωn) = lim
n→∞

1

n

n−1∑
j=0

f̂(Sju) = EMT(f̂ | Î),

where Î is the σ-algebra of S invariant sets in MT.

Now we need to show that EMT(f̂ | Î) = EM(EΩ(f(x, ω)) | I). For any cylinder set

C with basis B, let gC(x, ω) = χB(x, T t2−t1ω , ..., T tk−t1ω ) and

hC(x) =

∫
Ω

χB((x, T t2−t1ω x, ..., T tk−t1ω x))dP (ω) =

∫
Ω

gC(x, ω) dP.

Let A be an S-invariant set and let h(x) = infC⊃A hC(x). If C1 and C2 are both cylinder

sets containing A, if t1 and tk are the first and last times for C1 and s > tk − t1, we have

h(x) ≤
∫

Ω

gC1(x, ω)gC2(T
s
ωx, θsω)dP =

∫
Ω

gC1(x, ω)

∫
Ω

gC2(T
s
ωx, α)dP (α)dP (ω)

Taking the infimum over all C2 ⊃ A, this gives us

h(x) ≤
∫

Ω

gC1(x, ω)h(T sωx)dP.
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Additionally, choosing C1 = MT, we have h ≤ Ksh. But then

‖h‖2 =

∫
M

h2 dµ ≤
∫
M

∫
Ω

h(h ◦ Tω)dPdµ

≤
(∫

Ω

∫
M

h2dPdµ

∫
Ω

∫
M

(h ◦ Tω)2dPdµ

) 1
2

= ‖h‖2,

which shows, by Cauchy-Schwarz, that h and h ◦ Tω are linearly dependent. Then

h(Tω(x)) = h(x) for almost every x, ω. Then for almost every x, ω we have

h(x) ≤
∫

Ω

gC1(x, ω)h(T sωx)dP = h(x)

∫
Ω

gC1(x, ω)dP.

Taking the infimum over all C2 ⊃ A, we obtain h(x) ≤ h(x)2, so h(x) = 0 or h(x) = 1

for almost every x. Since Ã = f−1(1) is an invariant set, and ÃT = A (mod ν), we have

∫
A

f̂(x, Tωx, ..., T
k−1
ω x)dν =

∫
ÃT
f̂(x, Tωx, ..., T

k−1
ω x)dν =

∫
Ã

∫
Ω

f(x, ω)dPdµ,

which gives the result.

Lemma 1 shows that the value of the time average of an observable depends only on

which ergodic set our initial condition lies within. If every invariant set of our system

has µ-measure 0 or 1, we say that the system is ergodic. The proof above shows that

this is equivalent to the process {xt} being an ergodic stationary process, which means

that every S-invariant set in MT has ν measure 0 or 1, and we have

lim
n→∞

1

n

n−1∑
m=0

f(xn, ωn) =

∫
M

∫
Ω

f(x, ω)dPdµ (8)

for any f as defined in Lemma 1. If we have a function f : M → C with no dependence

on ω, this property allows us to use time averages to evaluate integrals over the state

space. For the rest of this paper, we will assume that {xt} is an ergodic stationary process

and that T is discrete (T = Z or Z+).
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Remark 1. The definitions of invariant measure and ergodicity presented here are those

used for stationary Markov processes, and differ from the standard ones for random

dynamical systems. Typically, invariant and ergodic measures are defined in terms of the

skew product system on M × Ω given by Θt(x, ω) = (T tωx, θtω). The stationary measure

on M is related to the disintegration of the invariant measure on M × Ω. We choose

to focus on the stationary measures since we are interested in the evolution on the state

space M and the evolution on Ω may not be possible to measure. See [2],[3],[12].

3 Dynamic Mode Decomposition

Dynamic Mode Decomposition is an algorithm which allows the computation of an ap-

proximation of the Koopman operator from data. For what follows, we assume T = Z or

Z+. Assuming the eigenfunctions of Kt, span our function space, we can decompose any

(possibly vector valued) observable f as

f =
∑
j

vjφj.

The expected evolution of f is then given by

E(f(T tωx)) =
∑
j

λjvjφj(x). (9)

In this Koopman mode decomposition, the functions φj are the Koopman eigenfunctions

with eigenvalue λj, and the vectors vj are called the Koopman modes associated with

f . However, the expansion above can contain an infinite number of terms. In order to

work with (9) using finite arithmetic, we must restrict ourselves to a finite dimensional

subspace of our original function space.

Let F be a finite dimensional subspace of L2(µ), and let F̄ be its orthogonal com-

plement. Let P1 and P2 be the projections on to F and F̄ . For any function g ∈ L2(µ),
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we can compute the Koopman evolution as

Kg = P1Kg + P2Kg = P1KP1g + P2KP1g + P1KP2g + P2KP2g.

The operator P1KP1 maps F into itself. Since for any g ∈ F , P2g = 0, we can view

P1KP1 as an approximation ofK provided ‖P2KP1‖ is small. If F is an invariant subspace

under K, we have ‖P2KP1‖ = 0, and Kg = P1KP1g for all g ∈ F . If we let f1, f2, ..., fk

be a basis for F , we can represent the restriction of P1KP1 to F as a matrix K that

acts on the basis by

K

[
f1 f2 . . . fk

]T
=

[
Kf1 Kf2 . . . Kfk

]T
. (10)

Remark 2. The matrix K can also be thought of as the matrix acting (on the right) on

the vector of coefficients of functions represented in the basis f1, . . . , fK: for any function

g ∈ F we can write

g =
k∑
j=1

ajfj = a

[
f1 . . . fk

]T
,

and a =

[
a1 . . . ak

]
is the row vector of coefficients of g. Then (aK) is the row vector

of coefficients for Kg, since

Kg = K(a

[
f1 . . . fk

]T
) = a

[
Kf1 . . . Kfk

]
= aK

[
f1 . . . fk

]T

Dynamic mode decomposition algorithms compute an approximation of the matrix K

from data. If we can measure the observables f1, f2, ..., fk along a trajectory x0, x1, ..., xn,

we can form the vector valued observable f : M → Rk by

f =

[
f1 f2 . . . fk

]T
.

11



Given K, Each f(t) is called a data snapshot. Given a data matrix of these snapshots

D =

[
f(0) f(1) . . . f(n)

]
,

we can construct an operator A : Rk → Rk, called the DMD operator, which (approxi-

mately) maps each data snapshot to the next one, i.e.

Af(i) ≈ f(i+ 1).

Standard DMD constructs a matrix C to minimize the error

n−1∑
i=0

‖Cf(i)− f(i+ 1)‖2
2.

Algorithm 1: Standard DMD

Let x0, x1, ..., xn be a trajectory of our random dynamical system and f : M → Ck be a

vector valued observable on our system.

1: Construct the data matrices

X =

[
f(0) f(1) . . . f(n− 1)

]
, Y =

[
f(1) f(2) . . . f(n)

]
.

2: Form the matrix

C = Y X†,

where X† is the Moore-Penrose psuedoinverse.

3. Compute the eigenvalues and left and right eigenvectors, (λi, wi, vi) i = 1, 2, ..., k, of

C. Then the dynamic eigenvalues are λi, the dynamic modes are vi, and the numerical
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eigenfunctions are given by

φ̂i = wTi X.

Let f1, f2, ..., fk be the components of f . If we let f̂i be the ith column of X,

f̂i =

[
fi(0) fi(1) . . . fi(n− 1)

]
=

[
fi(x0) fi(x1) . . . fi(xn−1)

]
,

we see that f̂i represents fi by evaluating it along a trajectory. With standard DMD,

we construct the DMD operator C represented in the basis f̂1, f̂2, ..., f̂k. Similarly, the

numerical eigenfunctions, φ̂i will be approximations of eigenfunctions of the stochastic

Koopman operator evaluated along our trajectory. Unfortunately, depending on the

choice of basis, this DMD construction may be numerically unstable. This leads to the

second algorithm [14].

Algorithm 2: SVD based DMD

Let x0, x1, ..., xn be a trajectory of our random dynamical system and, f1, f2, ..., fl, l ≥ k,

be a set of l observables on our system.

1: Construct the data matrices

X =

[
f(0) f(1) . . . f(n− 1)

]
, Y =

[
f(1) f(2) . . . f(n)

]
.

2: Compute the truncated SVD of X using the first k singular values.

X = WkSkV
∗
k .

3: Form the matrix

A = S−1
k W ∗

kY Vk.
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4. Compute the eigenvalues and left and right eigenvectors, (λi, wi, ui) i = 1, 2, ..., k, of

A. Then the dynamic eigenvalues are λi, the dynamic modes are

vi = WSui,

and the numerical eigenfunctions are given by

φ̂i = wTi V
∗
k .

The benefit of SVD based DMD is that it is more numerically stable. If X has a

large condition number, the pseudoinversion of X can introduce large errors to the DMD

operator and make Algorithm 1 unstable. To combat this, Algorithm 2 computes the

SVD of X and truncates to include only the dominant singular values. Since Sk has a

smaller condition number than X, the inversion of Sk in Algorithm 2 is more numerically

stable than the psuedoinversion of X. Algorithm 2 uses singular values and vectors to

choose a basis of observables to construct the DMD operator; the matrix A generated is

the same as the one produced by Algorithm 1 using the observable f̂ = S−1
k W ∗f .

4 Convergence of DMD for Random Systems

The utility of Algorithms 1 and 2 comes from the convergence of the dynamic eigenvalues

and modes to eigenvalues and eigenfunctions of K.

Proposition 1. Let T be an ergodic random dynamical system. Let F be a k dimensional

subspace of L2(µ) which is invariant under the action of K, and let f1, f2, ..., fk span F .

Let λj,n be the dynamic eigenvalues and vj,n be the dynamic modes produced by Algorithm

1 using the trajectory x0, x1, ..., xn. Then as n → ∞, the dynamic eigenvalues converge

to the eigenvalues of K restricted to F for almost every initial condition (x0, ω0) with
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respect to (µ × ω). If the eigenvalues of K are distinct, the numerical eigenfunctions

converge to a sampling of the eigenfunctions along the trajectory.

Proof. Let f1, f2, ..., fk, and K be as described in (10). Let Xn, Yn, and Cn be the

matrices produced by Algorithm 1 for the trajectory x0, x1, ..., xn, and let ω0, ω1, ..., ωn

be the evolution of the noise. Let f =

[
f1 f2 . . . fk

]T
as above. If we define the

matrices

G0 =

∫
M

[
f1 f2 . . . fk

]T [
f ∗1 f ∗2 . . . f ∗k

]
dµ =

∫
M

f f∗ dµ

and

G1 =

∫
M

[
Kf1 Kf2 . . . Kfk

]T [
f ∗1 f ∗2 . . . f ∗k

]
dµ =

∫
M

K f f∗ dµ = KG0.

We can see that G0 has full rank, since if v is in its nullspace, we would have

‖f∗v‖2 = v∗G0v = 0,

which implies v = 0 since f1, f2, ..., fk are linearly independent. This gives us K = G−1
0 G1.

Now, let G0,n = 1
n
XnX

∗
n and G1,n = 1

n
XnY

∗
n . We have G0,n → G0 and G1,n → G1 for

almost every initial condition (x0, ω0). To see this, by Lemma 1 we have

lim
n→∞

G1,n = lim
n→∞

1

n

n−1∑
m=0

f(xm+1)f∗(xm) = lim
n→∞

1

n

n−1∑
m=0

f(Tωmxm)f∗(xm)

=

∫
M

∫
P

f(Tωx)f∗(x) dPdµ =

∫
M

K f(x) f∗(x) dµ = G1,

and similarly for G0, we have
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lim
n→∞

G0,n = lim
n→∞

1

n

n−1∑
m=0

f(xm)f∗(xm) =

∫
M

∫
Ω

f(x)f∗(x) dPdµ = G0.

Since G0 has full rank and G0,n → G0, G0,n is full rank for n large enough, so G−1
0,n

exists and

lim
n→∞

G−1
0,nG1,n = G−1

0 G1 = K.

Since G0,n = 1
n
XnX

∗
n, we have Xn has full row rank for n large enough, so

Cn = Yn(Xn)† = YnX
∗
n(XnX

∗
n)−1 =

(
1

n
YnX

∗
n

)(
1

n
XnX

∗
n

)−1

= G−1
0,nG1,n,

which shows that Cn → K. This shows that the dynamic eigenvalues λj,n converge to

the eigenvalues of K, λj as n→∞.

To show the numerical eigenfunctions converge to samplings of our eigenfunctions, let

wj,n and wj be the left eigenvectors of Cn and K, respectively. Consider the functions

φj,n = wTj,nf and φj = wTj f . We know φj is a Koopman eigenfunction, since

Kφj = K(wTj f) = wTj K f = λjw
T
j f = λjφj.

If K has distinct eigenvalues, the vectors wj,n each converge to wj, so φj,n → φj. The

numerical eigenfunctions, φ̂j,n are the values of the function φj,n sampled along the tra-

jectory x0, ..., xn−1.

The convergence of Proposition 1 is based on the inner product of functions in L2(µ).

As such, we cannot glean any information about dynamics outside the support of µ. There

could be an eigenvalue/eigenfunction pair, (λ, φ), such that φ is zero on the support of

µ. Such a pair cannot be captured by Algorithm 1, since φ = 0 almost everywhere with

respect to µ. In particular, if µ is a singular measure concentrated on some attractor,

the eigenvalues governing the dissipation to the attractor cannot be found using ergodic

sampling. For random systems, the invariant measure is often absolutely continuous, so
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the dissipation can be captured, but may take a large amount of data depending on the

distribution µ.

5 DMD with Noisy Observables

5.1 Preliminaries

The proof above shows that Dynamic Mode Decomposition converges for random dy-

namical systems. However, it is important to note that although the systems can have

randomness, the observables cannot. The stochastic Koopman operator acts on functions,

f : M → C, which depend only on the state of the system. If we allow our observables to

have some noise, (i.e. dependence on ω), the proof fails. In particular, observables with

i.i.d. measurement noise and time delayed observables (used in Hankel DMD) both have

some dependence on ω, and therefore cannot be used with the above DMD methods.

Examining the failure of standard DMD with noisy observables is instructive. First we

must define our requirements for “noisy observables.”

Definition 3. A noisy observable is a measurable map f̃ : M × Ω → C, such that the

random function f̃ω = f̃( · , ω) : M → C is B measurable for almost every ω.

For notation, we will always denote a noisy observable, f̃ , with a tilde and let the

space of noisy observables be H . We will also denote f̃(t) = f̃ωt(xt) and will define f to

be its mean:

f(x) =

∫
Ω

f̃ω(x)dP.

In what follows, we will assume that f exists and is in L2(M).

In order to evaluate the stochastic Koopman evolution of f , we will need to place

further restrictions on f̃ . If f̃ωt is independent of Tωs for all s < t, we will say f̃ ∈ H+.

Roughly speaking, this means the random function f̃ωt cannot be predicted by the past

of the dynamics on M . This gives us
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∫
Ω

f̃θjω(T jωx)dP =

∫
Ω

∫
Ω

f̃ψ(T jωx)dP (ψ)dP (ω) =

∫
Ω

f(T jωx)dP = Kjf(x). (11)

Finally, in order to approximate integrals from data, we will need some ergodicity

assumptions on our noisy observables. Namely, we will need time averages to converge

in a similar sense to Lemma 1 and (8). In particular, we will need

lim
n→∞

1

n

n−1∑
m=0

f̃(t+ j)g̃(t) =

∫
M

∫
Ω

f̃θj(T
j
ωx)g̃ω(x)dPdµ, (12)

for two vector valued noisy observables f̃ and g̃ and almost every initial condition (x0, ω0).

Remark 3. While we make the ergodicity assumption for generality, we will show that

(12) holds for observables with i.i.d. measurement noise and time delayed observables,

the primary observables of interest in this paper. More generally, we can consider the

skew product system Θ on M ×Ω treat f̃ as an observable on M ×Ω, f̃(x, ω) = f̃ω(x).If

Θ has an invariant measure and f̃ is independent of the σ-algebra of Θ invariant sets,

we can evaluate its average with respect to the invariant measure on M × Ω.

5.2 Failure of Dynamic Mode Decomposition with Noisy Ob-

servables

Now, assuming some of the above properties, we can see exactly how DMD fails. The

convergence of DMD depends largely on estimation of the inner products using time

averages. As before let f1, ..., fk be observables which span a k-dimensional subspace F ,

and let K be the restriction of K to F as in (10). Let f =

[
f1 . . . fk

]T
. We have from

Lemma 1 that

Gj = lim
n→∞

1

n

n−1∑
m=0

f(xm+j)f
∗(xm) =

∫
M

∫
Ω

f(T jωx)f∗(x)dPdµ =

∫
M

Kjf f∗ dµ.
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We can use the fact that Gj = KGj−1 to estimate K. However, suppose have an ergodic

(in the sense that (12) holds) noisy observable f̃ ∈H + such that EΩ(f̃ω) = f . When we

take the comparable time average, we do not obtain the same results:

G̃j = lim
n→∞

1

n

n−1∑
m=0

f̃(m+ j)f̃(m) =

∫
M

∫
Ω

f̃θjω(T jωx)f̃∗ω(x)dPdµ.

We cannot simplify this inner product any farther because f̃ω and f̃θjω ◦ T jω are not

necessarily independent. In fact, if we examine the error in these averages, we obtain

G̃j −Gj =

∫
M

Cov(f̃θjω ◦ T jω, f̃ω)dµ,

where Cov(f̃θjω ◦ T jω, f̃ω)(x) denotes the covariance of f̃θjω(T tωx) and f̃ω(x).

Since Algorithms 1 and 2 depend on the numerical approximations of Gj, we can conclude

that the error stems from the covariances of the observables. However, if we had an

observable g̃ω which met some independence conditions with f̃ω and T tω, we could still

compute K. This brings us to our third algorithm.

5.3 Noise Resistant DMD Algorithms

Algorithm 3: Noise Resistant DMD

Let f̃ ∈H k
+ , and g̃ ∈H l, l ≥ k.

1: Construct the data matrices

X =

[
f̃(0) f̃(1) . . . f̃(n− 1)

]T
,

Y =

[
f̃(1) f̃(2) . . . f̃(n)

]T
,
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and

Z =

[
g̃(0) g̃(1) . . . g̃(n− 1)

]T
.

2: Form the matrices G̃0 = 1
n
XZ∗ and G̃1 = 1

n
Y Z∗.

3: Compute the matrix

C = G̃1G̃
†
0.

4: Compute the eigenvalues and left and right eigenvectors, (λi, wi, vi) of C. The dynamic

eigenvalues are λi, the dynamic modes are vi, and the numerical eigenfunctions are given

by

φ̂i = wTi X.

The idea behind Algorithm 3 is to use a second noisy observable, g̃, which meets

some independence requirements with f̃ , to generate a second basis for F . If g̃ meets the

proper independence requirements, the convergence can be shown in a similar manner to

Proposition 1.

Proposition 2. Let f̃ ∈ H k
+ and g̃ ∈ H l be such that f̃ and g̃ satisfy (12). Suppose

g̃ωt is independent of f̃ωt, f̃ωt+1, and Tωt. Define f(x) = EΩ(f̃ω(x)) and g(x) = EΩ(g̃ω(x)).

Suppose the components of f , f1, ..., fk, span a k-dimensional invariant subspace, F , of

K and F ⊂ span{g1, ..., gl}, where g1, ..., gl are the components of g. Then the matrix C

generated by Algorithm 3 converges to the restriction of K to F as n→∞.

Proof. Let K be the restriction of K to F . Let G̃0,n and G̃1,n be the matrices generated

in Algorithm 3 with n data points. Using the independence conditions on g̃ and f̃ and

(11), define

G0 =

∫
M

∫
Ω

f̃ω(x)g̃∗ω(x)dPdµ =

∫
M

f g∗dµ (13)
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and

G1 =

∫
M

∫
Ω

f̃θω(Tωx)g̃∗ω(x)dPdµ =

∫
M

∫
Ω

f̃(Tωx)dP

∫
Ω

g̃∗ω(x)dPdµ = K

∫
M

f g∗dµ.

(14)

We can show that G0 has full row rank, since if v is in its left nullspace, we would

have

〈vT f , gi〉 = 0

for each i, which shows v = 0 since F ⊂ span{gi}. This gives us K = G1G
†
0. We will

show that G̃0,n → G0 and G̃1,n → G1 as n→∞. Taking the limit of G0,n with (12) and

using (13), we have

lim
n→∞

G̃0,n = lim
n→∞

1

n

n−1∑
m=0

f̃(m)g̃∗(m) =

∫
M

∫
Ω

f̃ω(x)g̃∗ω(x) dPdµ = G0

and similarly G̃1,n → G1 using (14). Since G0 has full rank and G̃0,n → G0, we have

G̃†0,n → G†0, so G̃1,nG̃
†
0,n → K.

It follows from Proposition 2 that the eigenvalues and eigenvectors of C go to those

of K. Therefore, the dynamic eigenvalues limit to Koopman eigenvalues. The numerical

eigenfunctions, however, are more complicated. If wi is a left eigenvector of K, we have

wTi f is a Koopman eigenfunction. The numerical eigenfunctions, however, limit to wTi X,

which a sampling of wTi f̃ . In this regard, the numerical eigenfunction is a sampling of an

eigenfunction with some zero mean noise added to it.

The key idea in the proof of Proposition 2 is the assumption that we have a second

observable g̃ that is uncorrelated with f̃ . This allows us to estimate the inner product of

g and f using time averages without introducing a covariance term. We call g̃ our “dual

observable” since we are using it to evaluate these inner products. While the necessity

of a second observable may seem restrictive, Proposition 2 allows us to work with very

general observables. If we specialize to more specific classes of observables, we will find
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that we often do not need a second observable. Often, we can use time delays of single

observable f̃ so that f̃ω0 and f̃ωs are independent.

5.4 Observables with i.i.d. Measurement Noise

Often, when measuring an observable on a system, the measurement will be imprecise.

The error in the measurement are often modeled as an i.i.d. random variable. We call

observables with this type of noise an observable with measurement noise:

Definition 4. A noisy observable, f̃ , is an observable with i.i.d. measurement noise if

f̃ω is an i.i.d. random function and is independent of the dynamics Tωt.

We note that for any given ω, the measurement error,

ẽω(x) = f̃ω(x)− f(x),

can vary over the state space M ; it does not need to be a constant additive noise. Since

f̃ωt is an i.i.d. random variable and independent of Tωt for all t, the ordered pair (xt, f̃ωt) ∈

M ×L2(M) is an ergodic stationary process, with ergodic measure ν = µ× f̃∗(P ), where

f̃∗(P ) is the pushforward of P . This allows us to evaluate the time averages as in (12).

The proof of this follows from the lemma below and the fact that i.i.d. processes are

mixing.

Lemma 2. Let xt and yt be independent stationary processes with invariant measures µ1

and µ2, respectively. Then the ordered pair (xt, yt) is stationary with stationary measure

µ1 × µ2. If xt is ergodic and yt is mixing, (xt, yt) is ergodic.

Proof. Let P1 and P2 be the transition kernals for xt and yt, respectively, and let P be

the transition kernal for (xt, yt). The pair (xt, yt) is stationary with measure µ1 × µ2,
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since

∫
X×Y

P ((x, y), A×B, t)d(µ1 × µ2) =

∫
X

P1(x,A, t)dµ1

∫
Y

P2(y,B, t)dµ2 = µ1(A)µ2(B).

Now, let ν1 and ν2 be the cylinder measures defined by (6) for xt and yt, respectively.

Let S1 and S2 be the shift map on XT and Y T, respectively. If S1 is ergodic and S2 is

mixing, then the map S(x,y) = (S1(x), S2(y)) is ergodic with respect to ν1 × ν2.

If the components of f̃ are observables with measurement noise, it turns out we don’t

need second observable to use in Algorithm 3. Instead, we can use a time shift of f̃ to

generate g̃. The i.i.d. property of f̃ will give us the independence properties we need.

Corollary 1. Suppose f̃ is a vector valued observable with i.i.d. measurement noise, and

the components of f , f1, ..., fk span a k-dimensional invariant subspace, F such that the

restriction of K to F has full rank. Then Algorithm 3 converges setting g̃(t) = f̃(t− 1).

Proof. Let K be the resriction of K to F . By Lemma 2, (xt, fωt) is an ergodic stationary

sequence. Then, using ergodicity and the independence properties of f̃ , we have

lim
n→∞

1

n

n∑
m=1

f̃(m)g̃∗(m) = lim
n→∞

1

n

n−1∑
m=0

f̃(m)f̃∗(m− 1) =

∫
M

∫
Ω

f̃θω(T j+1
ω x)f̃∗ω(x) dPdµ

=

∫
M

∫
Ω

f̃θω(Tωx)dP

∫
Ω

f̃ω(x)dPdµ = K

∫
M

f f∗dµ,

which has full rank since K has full rank. Similarly,

lim
n→∞

1

n

n∑
m=1

f̃(m+ 1)g̃∗(m) = lim
n→∞

1

n

n−1∑
m=0

f̃(m+ 1)f̃∗(m− 1) = K2

∫
M

f f∗dµ.

The rest of the proof follows Proposition 2.

Remark 4. It is useful to note that if T is a group (e.g. T = Z), we would be able

to define g̃ω = f̃θ−1ω ◦ (T−1
ω ), and g̃ would meet the conditions of Proposition 2 exactly.
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However, if T = Z+, we cannot define g̃ω ∈ L2(M) explicitly, since Tω may not be

invertible. However, since we are still able to evaluate time averages, the proof is nearly

identical.

6 Time Delayed Observables and Krylov Subspace

Methods

Another important type of noisy observable are time delayed observables. Allowing time

delayed observables in DMD is useful for two reasons. First, time delays allow us to

enrich our space of observables. Oftentimes, there are functions on our state space which

cannot be measured by a certain set of observables, but can be observed if we allow time

delays. For example, the velocity of a moving mass cannot be observed by any function

on the position, but can be approximated using the position at two different times. Sec-

ond, using time delays allows us to identify an invariant (or nearly invariant) subspace

spanned by the Krylov sequence f,Kf, ...,Kk−1f .

Of particular interest is an analogue of Hankel DMD for random systems, which

uses a Krylov sequence of observables to generate our finite subspace. With Hankel

DMD, we use a single observable, f̃ , and its time delays to approximate the sequence

f,Kf, ...,Kk−1f . If f̃ is an observable with measurement noise (or has no noise), we can

define

f̃(t) =

[
f̃(t) f̃(t+ 1) . . . f̃(t+ k − 1)

]T
.

By (11), its mean is ∫
Ω

f̃ dP =

[
f Kf . . . Kk−1f

]T
.

We can then use time delays of f̃ to approximate the Krylov sequence f,Kf, ...,Kk−1f .

Additionally, if we set g̃(t) = f̃(t−k) in Algorithm 3 we will have the necessary indepen-
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dence conditions, and the time averages will converge as in (12) due to the pair (xt, f̃ωt)

being an ergodic stationary variable.

Corollary 2. (Hankel DMD for Random Systems) Let f̃ be an observable with measure-

ment noise, and let its mean, f , be such that the Krylov sequence f,Kf, ...,Kk−1f spans

a k-dimensional invariant subspace F and the restriction of K to F has full rank. Let

f̃(t) =

[
f̃(t) f̃(t+ 1) . . . f̃(t+ k − 1)

]T
,

and

g̃(t) = f̃(t− k) =

[
f̃(t− k) f̃(t− k + 1) . . . f̃(t− 1)

]T
.

Then the matrix A generated by Algorithm 3 converges to the restriction of K to F . If

f̃ has no noise (i.e. f̃ = f) we can use

g̃′(t) = f̃(t− k + 1) =

[
f̃(t− k + 1) f̃(t− k + 2) . . . f̃(t)

]T
.

Proof. Using (11), we can see that the components of f are f,Kf, ...,Kk−1f , which spans

F . Additionally, using the independence properties of f̃ , we have f̃ωt and f̃ωt+s are

independent for s ≥ k. Since (xt, f̃ωt) is ergodic by Lemma 2, we can take the time

averages

lim
n→∞

1

n

n+k−1∑
m=k

f(m)g∗(m) = lim
n→∞

1

n

n−1∑
m=0

f(m+ k)f∗(m) =

∫
M

∫
Ω

f̃θkω(T kωx)f̃∗ω(x)dPdµ

=

∫
M

∫
Ω

f̃θkω(T kωx)f̃∗(x)dPdµ = Kk

∫
M

f f∗dµ,

which has full rank since K has full rank. Similarly, we can take the time average

lim
n→∞

1

n

n+k−1∑
m=k

f(m+ 1)g∗(m) = Kk+1

∫
M

f f∗dµ,
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and the rest of the proof follows Proposition 2. If f̃ω = f , f̃ωt and f̃ωt+k−1
are independent,

and we can take the time averages using g̃(t) = f̃(t− k + 1).

Corollary 2 allows us to compute an approximation of K using the data from a single

observable evaluated along a single trajectory. However, the method does not require

that the we only use time delays of a single observable. In general, even if f̃ is vector

valued, we can take time delays of f̃ as in Corollary 2 so long as we span the proper

subspace. The dual observable, g̃, is also generated in the same way.

7 Conditioning of Algorithm 3

Asymptotically, the convergence rate of Algorithm 3 is governed by the rate at which

G0,n and G1,n converges to G0 and G1, as defined in the proof of Proposition 2. This

is governed by the convergence rate of ergodic sampling. However, Algorithm 3 also

requires the pseudo-inversion of G0,n ≈ G0. If the matrix G0 is ill-conditioned, small

errors in the time averages approximations of G0 and G1 can cause large errors in our

DMD operator. The condition number of G0, κ(G0), can become large if either set of

observables, f1, ..., fk or g1, ..., gl, are close to being linearly dependent.

Both of these issues arise particularly often when using Hankel DMD. With Hankel

DMD, we use the basis f,Kf, ...,Kk−1f as our basis for F . This is often a poor choice

of basis, as f and Kf may be close to being linearly dependent. This is particularly the

case when data from a continuous time system is sampled with a short period, such as

from a discretization of an ODE or SDE. Similarly, if j is large or K has eigenvalues close

to zero, Kjf and Kj+1f may be close to being linearly dependent, which will also cause

conditioning issues.
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7.1 SVD Based Algorithms

To combat these conditioning issues, we have some leeway in the observables we choose

for f̃ and g̃. Looking at G0, we have

G0 =

∫
M

g f∗ dµ =

∫
M

[
f1 f2 . . . fk

]T [
g∗1 g∗2 . . . g∗l

]
dµ. (15)

Ideally, {g1, ..., gl} and {f1, ..., fk} would be orthonormal bases for , so κ(G0) would be

1. However, we rarely can choose such bases a priori. Instead, we can try to augment f̃

and g̃ with extra observables and use the singular value decomposition to choose a well

conditioned basis. This brings us to the SVD implementation of Algorithm 3.

Algorithm 4: SVD implemented Noise Resistant DMD

Let f̃ ∈H l1
+ , and g̃ ∈H l2

− , l1, l2 ≥ k be noisy observables on our system. Fix the length

of the time shift s ≥ 0. 1: Construct the data matrices

X =

[
f̃(0) f̃(1) . . . f̃(n− 1)

]
,

Y =

[
f̃(1) f̃(2) . . . f̃(n)

]
,

and

Z =

[
g̃(0) g̃(1) . . . g̃(n− 1)

]
.

2: Form the matrices G̃0 = 1
n
XZ∗ and G̃1 = 1

n
Y Z∗.

3: Compute the truncated SVD of G̃0 using the first k singular values:

G̃0 ≈ WkSkV
∗
k .
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5: Form the matrix

A = S−1
k W ∗

k G̃1Vk.

6: Compute the eigenvalues and left and right eigenvectors, (λi, wi, ui) of A. The dynamic

eigenvalues are λi, the dynamic modes are

vi = WkSkui,

and the numerical eigenfunctions are

φ̂i = wiS
−1
k W ∗

kX.

Similar to Algorithm 2, Algorithm 4 uses the SVD to choose a basis of observables

to use in Algorithm 1. It is equivalent to performing Algorithm 3 using data from the

observable (S−1
k W ∗

k )f̃ , while leaving g̃ unchanged. It is important to note that Algorithm

4 uses the components of (S−1
k W ∗

k )f to as a basis for F , so when we add observables to

f̃ , we need their means to lie in our invariant subspace. One way to guarantee this is to

only use time delays of our original observables.

7.2 Augmented Dual Observables

Typically, augmenting f̃ with extra observables and using Algorithm 4 to truncate the

singular values is an effective way to improve the conditioning of the problem. However,

we have an alternate tool at our disposal. While each component of f must lie within F ,

the components of g can be arbitrary, and we do not need to take an SVD to truncate

the extra observables in g. Since we do not need to worry about leaving our invariant

subspace, we can add arbitrary functions of g̃ (e.g. powers of g̃) to our dual observable

and still expect convergence. However, while this can improve conditioning, it also can
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slow down the convergence of the time averages, so should only be done when the error

stems from poor conditioning.

8 Numerical Examples

8.1 Random Rotation on a Circle

Consider a rotation on the circle. The dynamical system is defined by

xt+1 = xt + ν, (16)

where ν ∈ S1. If we perturb (16) by adding noise to the rotation rate we obtain the

random system

xt + 1 = xt + ν + π(ωt) (17)

where π(ωt) ∈ S1 is an i.i.d. random variable. For the stochastic Koopman operator

associated with (17), the functions ϕn(x) = einx are eigenfunctions with eigenvalues

λi = E(ein(ν+π(ω)), since

Kϕi(x) = E(ϕi(Tωx)) =

∫
Ω

ein(x+ν+π(ω))dP = einx
∫

Ω

ein(ν+π(ω))dP = ϕi(x)λi.

We can compare these eigenvalues with the results obtained from our different DMD

algorithms. We will set our system parameter to ν = 1
2

and draw π(ωt) from the uniform

distribution over [−1
2
, 1

2
]. In this case the eigenvalues are λi = i−iein

n
. For the first test,

we will compare Algorithms 1 and 3 using a set of observables with measurement noise.

We will let our observable be

f̃(t) = [sin(xt), ..., sin(5xt), cos(xt), ..., cos(5xt)]
T + m(t), (18)
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where m(t) ∈ [−0.5, 0.5]10 is measurement noise drawn from the uniform distribution.

Algorithm 1 is applied directly to the data from measurements of f̃ , and for Algorithm 3

we let g̃(t) = f̃(t− 1).

For the second test, we let f̃ = sin(x) + sin(2x) + sin(3x) + sin(4x), and use time

delays to generate f̃ :

f̃(t) =

[
f̃(t) f̃(t+ 1) . . . f̃(t+ d).

]
(19)

To perform Algorithms 1 and 3 we would use five time delays (d = 5) so the components

of f span an invariant subspace. We perform Algorithm 1 directly from the data, while

for Algorithm 3, we set g̃(t) = f̃(t−5). To combat the poor conditioning associated with

Hankel DMD, Algorithm 4 is performed using using f̃ and 24 time delays (setting d = 24

in (19) and letting g̃(t) = f̃(t − 24). The SVD is truncated to include only the first six

singular values to compute the DMD operator. Finally, we run Algorithm 3 a second

time with an augmented dual observable g̃ while letting f̃ contain f̃ and five time delays

as before. For the augmented dual observable, we let g̃ contain f̃ , f̃ 2, and f̃ 3, as well as

44 time delays of each of these functions.

As can be seen in Figure 8.1, Algorithm 1 fails to accurately approximate the eigenval-

ues of K in both tests. For the first test, Algorithm 3 gives very accurate approximations

to the eigenvalues of K. Using the time delayed observables, (19), however, gives less

accurate eigenvalues. This is because the conditioning of the matrix Gj is very poor,

which amplifies the errors in our time averages. When we add extra time delays to f̃

and g̃ for Algorithm 4, and truncate to the leading singular values, we obtain much more

accurate results. Alternatively, if we add extra functions and time delays to g̃ and leave

f̃ unchanged, we also accurately capture the eigenvalues.
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Figure 1: (Left) Outputs of Algorithm 1 and Algorithm 3 using (18) as observables
on (17) with 20,000 data points. Algorithm 1 shows a clear error in the approximate
eigenvalues while Algorithm 3 captures them accurately.
(Right) DMD outputs from Algorithms 1, 3, and 4 using (19) as observables on (17)
with 20,000 data points. Algorithm 1 shows a bias in the eigenvalues while Algorithm 3
fails to accurately capture the eigenvalues due to conditioning issues. Algorithm 3 using
the Augmented observables and Algorithm 4 both combat the conditioning issues and
accurately capture the eigenvalues.

8.2 Linear System with Additive Noise

Consider the linear system in R4:

x(t+ 1) =



0.75 0.5 0.1 2

0 0.2 0.8 1

0 −0.8 0.2 0.5

0 0 0 −0.85





x1(t)

x2(t)

x3(t)

x4(t)


= Ax(t). (20)

If we perturb (20) by including a random forcing term b, we obtain

x(t+ 1) = Ax(t) + bt, (21)

where bt ∈ R4 is assumed to be an i.i.d. random variable. Let (wi, λi), i = 1, ..., 4 be the

left eigenpairs of A. If bt is assumed to have zero mean, wTi x is an eigenfunction of K

with eigenvalue λi. For this example we will assume each component of bt is drawn from
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randomly from the uniform distribution on [−0.5, 0.5]. As before, we will test Algorithms

1 and 3 using observables with measurement noise and time delayed observables. For the

first test, we will use a state observables with Gaussian measurement noise:

f̃(t) = x(t) + m(t) (22)

where each component of m(t) ∈ R4 is drawn from the standard normal distribution. As

before, will let g̃(t) = f̃(t− 1).

For the second test, to generate the time delayed observables, we will let f̃(x) =

x1(x) + x2(x) + x3(x) + x4(x), an use three time delays:

f̃(t) =

[
f̃(t) f̃(t+ 1) f̃(t+ 2) f̃(t+ 3)

]
. (23)

We will apply Algorithm 1 directly to this matrix, while for Algorithm 3 we let g̃(t) =

f̃(t− 3).

Figure 2: (Left) Outputs of Algorithm 1 and Algorithm 3 using state observables with
measurement noise (22) on 10,000 data points from (21).
(Right) Outputs of Algorithm 1 and Algorithm 3 using (23) as observables on (21) with
10,000 data points. For both cases, Algorithm 3 accurately captures the eigenvalues while
Algorithm 1 fails to do so.

Figure 8.2 shows that the eigenvalues generated by Algorithm 1 again fail to accurately
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approximate those of K. However, for both sets of observables, Algorithm 3 estimates

the eigenvalues of K well. Since we did not run into conditioning issues, we did not test

the results using Algorithm 4 or an augmented dual observable.

8.3 Stuart Landau Equations

Consider the stochastic Stuart Landau equations defined by

dr = (δr − r3 +
ε2

r
)dt+ εdWr (24)

dθ = (γ − βr2)dt+
ε

r
dWθ, (25)

where Wr and Wθ satisfy

dWr = cos θ dWx + sin θ dWy

dWθ = − sin θ dWx + cos θ dWy

for independent Wiener processes dWx and dWy. It was shown in [16] that for small ε

and δ > 0, the (continuous time) stochastic Koopman eigenvalues are given by

λl,n =


−n2ε2(1+β2)

2δ
+ inω0 +O(ε4) l = 0

−2lδ + inω0 +O(ε2) l > 0,

where ω0 = γ − βδ.

Let γ = β = 1, δ = 1/2, and ε = 0.05 in (24) and (25). Define the observables

fk(r, θ) = eik(θ−(log(2r)).
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First, we will let

f̃(t) = [f1(t), f−1(t), ..., f6(t), f−6(t)]T + m1(t) + im2(t), (26)

where each component of m1(t) and m2(t) is drawn independently from a normal dis-

tribution with mean 0 and variance 1/4. In Algorithm 3, we let g̃(t) = f̃(t − 1). The

(continuous time) eigenvalues generated by Algorithms 1 and 3 are shown from a simu-

lation with 10,000 data points with a time step of 0.05 in Figure 8.3.

To test Hankel DMD, we use the observable

f =
6∑

k=1

(fk + f−k),

and let f̃ contain f and d time delays of f :

f̃(t) =

[
f(t) f(t+ 1) . . . f(t+ d)

]
. (27)

Due to the poor conditioning of Algorithms 1 and 3, the eigenvalues they generate are

highly innaccurate, so we instead implement Algorithms 2 and 4. In each case, we let

d = 399 and truncate the SVD to the leading 12 singular values. As usual, we let

g̃ = f̃(t− d) in Algorithm 4. The results shown in Figure 8.3 are from a simulation with

100,000 data points and a time step of 0.05.

As can be seen in Figure 8.3, Algorithm 1 exhibits a clear bias towards the left

of the complex plane using observables with measurement noise, although it appears to

accurately estimate the imaginary part of the eigenvalue. Algorithm 3, on the other hand,

appears to give a mostly accurate spectrum. When using time delayed observables for

Hankel DMD, Algorithms 1 and 3 were very poorly conditioned, and gave eigenvalues far

outside the windows shown in Figure 8.3. When using Algorithms 2 and truncating to the

12 dominant singluar values, we again see that the imaginary parts of the eigenvalues seem
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Figure 3: (Left) Outputs of Algorithm 1 and Algorithm 3 using observables with mea-
surement noise (26). The data is taken over 100,000 data points from (24) and (25) with
a time step of 0.05. The eigenvalues produced by Algorithm 1 are biased towards the
left hand plane while Algorithm 1 captures them accurately. (Right) Outputs of Algo-
rithm 2 and Algorithm 4 using (27) as observables on (24) and (25). The Algorithms
used 100,000 data points with a time step of 0.05. Algorithm 4 captures most of the
eigenvalues accurately while Algorithm 2 biases all eigenvalues towards the imaginary
axis.

to be captured, but the real parts are all biased to the right. Algorithm 4, however, again

captures the correct spectrum, but with some error for the most dissipative eigenvalues.

9 Conclusions

In this paper we analyzed the convergence of DMD algorithms for random dynamical

systems, culminating in the introduction of a new DMD algorithm that converges to the

spectrum of the stochastic Koopman operator in the presence of both random dynamics

and noisy observables. We then specialized the algorithm to handle observables with

i.i.d. measurement noise and time delayed observables and showed that measurements of

a single set of observables was sufficient to generate an approximation of the stochastic

Koopman operator. In particular, we demonstrated that a single trajectory of a single

observable could be used to generate a Krylov subspace of the operator, which allows us

to use DMD without needing to choose a basis of observables.
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This algorithm provides a method for modeling complex systems where a deterministic

model is unfeasible. This could be because a full state model would be to complex,

observables of the full state are unavailable, or measurements come with uncertainty. A

possible extension of this algorithm could adapt it to handle data from systems with

control inputs, which could be used to develop control algorithms for random dynamical

systems.
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