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Changes in the Earth’s environment are now sufficiently complex that our abil-

ity to forecast the emergent ecological consequences of ocean acidification

(OA) is limited. Such projections are challenging because the effects of OA

may be enhanced, reduced or even reversed by other environmental stressors

or interactions among species. Despite an increasing emphasis on multifactor

and multispecies studies in global change biology, our ability to forecast out-

comes at higher levels of organization remains low. Much of our failure lies in

a poor mechanistic understanding of nonlinear responses, a lack of specificity

regarding the levels of organization at which interactions can arise, and an

incomplete appreciation for linkages across these levels. To move forward,

we need to fully embrace interactions. Mechanistic studies on physiological

processes and individual performance in response to OA must be comple-

mented by work on population and community dynamics. We must also

increase our understanding of how linkages and feedback among multiple

environmental stressors and levels of organization can generate nonlinear

responses to OA. This will not be a simple undertaking, but advances are of

the utmost importance as we attempt to mitigate the effects of ongoing

global change.
1. Introduction
Environmental change, which encompasses a wide range of physical and

chemical changes, is outpacing our ability to forecast its consequences. Several

issues limit our understanding of the emergent effects of these changes. First,

CO2-driven environmental change comprises a suite of stressors with different

and sometimes opposing patterns of occurrence and effects on species. Inter-

actions between OA and other environmental stressors, defined here as

natural or anthropogenic pressures that cause measureable biological responses,

both positive or negative [1], can determine species responses [2,3]. Context is

critical for forecasting the ecological effects of OA, and studies spanning a

wide range of conditions are crucial to accurately interpret experiments.

Second, the combined effects of multiple stressors on individual species will

be mediated by the interactions with other species in an ecosystem [4]. Thus,

studies are needed in diverse, functioning ecosystems that incorporate species

interactions and compensatory dynamics.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2016.0802&domain=pdf&date_stamp=2017-03-29
mailto:kkroeker@ucsc.edu
http://orcid.org/
http://orcid.org/0000-0002-5766-1999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


or
ga

ni
sm

1

co
m

m
un

ity

po
pu

la
tio

n 
si

ze
po

pu
la

tio
n 

si
ze

po
pu

la
tio

n

po
pu

la
tio

n 
si

ze

temperature

pe
rf

or
m

an
ce high O2 or

low CO2

low O2 or
high CO2

temperature

(a)

(b)

(c)

(d)

temperature

11

increased competition
or consumer pressure

time

time time time

time

increased facilitation
or resource supply

additiveantagonistic synergistic

l

Figure 1. Conceptual figure highlighting how non-additive effects of environmental change drivers can arise within an organism, population or community despite a
lack of non-additivity at lower levels of organization. For a single species exposed to two drivers (e.g. warming � high CO2 or low O2), the coloured symbols
represent (a) changes in individual-level performance (circles), (b) intraspecific population responses at a static point in time (bars), (c) intraspecific population
growth trajectories (lines) based on the scenarios presented in panel (b), and (d ) alterations to one such set of growth trajectories ( panel c, centre) when influenced
by negative (left) or positive species interactions (right). For all graphs, blue represents the current ‘control’ conditions, green represents acidification (or low
oxygen), orange represents warming, and red represents the simultaneous application of both stressors. The dotted line in panel (b) represents zero population
growth (l ¼ 1). In these examples, a change in thermal performance with exposure to low oxygen or high CO2 can create antagonistic, additive or synergistic
effects [12] (a). Species physiological responses can result in population persistence or extinction if growth rates are pushed past a demographic threshold (b,c).
Interactions among species can also push populations past demographic thresholds (d ), as when negative species interactions reduce population growth rates
(shifting the orange trajectory from growth (in panel (c), centre) to decline (in panel (d ), left)) or when positive interactions enhance population growth rates
(shifting the green trajectory from decline (in panel (c), centre) to growth (in panel (d ), right)). In such cases, indirect effects can override the direct effects
at lower levels of organization.
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Interactions among multiple environmental stressors, where

the ecological effect of one is dependent on the magnitude of

another, are very common across ecosystems [5–7]. These inter-

actions can lead to non-additive outcomes, where the combined

effects are more or less than expected (synergistic orantagonistic,

respectively) compared with an additive or multiplicative
model. However, our ability to predict interaction outcomes is

very limited [6,8]. Several recent reviews highlight the need for

a more mechanistic understanding of the physiological

responses to OA and multiple stressors [9] and suggest a frame-

work for scaling up these physiological effects to ecosystems

[10,11]. Here, we expand that perspective to discuss how the



rsbl.

3
underlying causes of non-additive outcomes of OA and other

stressors may be due to interactions at or among several levels

of organization (figure 1).
 royalsocietypublishing.org
Biol.Lett.13:20160802
2. Interactions within the environmental milieu
Increasing atmospheric CO2 concentrations are causing a

wide range of physical and chemical changes both on land

and sea that interact [13]. For example, temperature influences

seawater carbonate chemistry, such that warming will affect

OA by decreasing CO2 solubility and affecting the disso-

ciation coefficients of the carbonate system, leading to higher

saturation states given the same CO2 concentration [14].

Environmental change is also likely to affect other physical

and chemical factors associated with organismal performance.

For example, the biological availability of heavy metals in

the environment is enhanced by a reduction in pH, which

increases the toxicity of these contaminants [12]. In cases

such as these, researchers must ensure that OA effects are

examined at appropriate levels of potentially interacting factors

[15] and recognize that the ecological effects of OA may vary

spatially and temporally, resulting in a mosaic of effects due

to overlapping and interacting factors [3].
3. Interactions within an organism
At the physiological level, changes in an environmental stres-

sor may exert selective pressure on traits that increase

susceptibility or tolerance to a second stressor, such as OA

[16]. The combined effect is in part due to whether both stres-

sors stimulate or impair similar or different physiological

pathways. For example, a stressor can increase susceptibility

if it impairs a pathway that is critical in mounting a response

to a second stressor (e.g. low oxygen levels preventing organ-

isms from mounting a heat shock response to warming [17]).

By contrast, a stressor can increase tolerance if it activates a

pathway that is used in response to a second stressor [18].

For example, exposure to elevated temperature can prepare

an organism to elicit a stress response to low oxygen [19].

In all of these scenarios, the history of exposure to the

different stressors can further define the outcomes [9].

One simplified way to envision nonlinear outcomes of

multiple stressors is to consider each stressor as having a

threshold beyond which performance is inhibited, but the

position of this threshold is dependent on the level of

additional, interacting factors [20], such as OA lowering

species’ upper thermal lethal limits [21] (figure 1a). Elucidating

the energy budgets for species of concern may provide a

framework for incorporating the effects of interactions among

multiple stressors. For example, a non-additive outcome of

exposure to multiple stressors may arise when energy expended

via maintenance metabolism exceeds energy gained through

photosynthesis or consumption, creating a tipping point

beyond which exposure results in death [20].
4. Threshold dynamics in populations
At the population level, non-additive outcomes could arise

through the additive accumulation of effects on physiological

processes when the cumulative effect crosses a demographic tip-

ping point. For example, even a small, additive effect of a second

stressor could cause population growth rate to switch from
positive to negative (figure 1b). If sustained, the consequences

of such combined effects may result in local extinction when

the drivers co-occur (figure 1c). Thus, additivity at one level of

organization does not preclude non-additivity at another.
5. Interactions within a community
Environmentally mediated changes in per capita interaction

strength of species with strong influence on the community,

including keystone species [22] or ecosystem engineers [23],

can also have cascading effects on the abundance of other

species. Even small increases in the abundance or per capita
effects of competitors and consumers that nudge population

growth rates of a focal species downwards could cause non-

additive outcomes in response to OA if the population is

pushed past key demographic thresholds (figure 1d, left).

By contrast, increased resource availability (and the concomi-

tant reduction in competition) or increased facilitation via

habitat provision can increase population growth rates,

potentially pushing the population past the threshold from

negative to positive growth (figure 1d, right). Thus, non-

additive effects of multiple stressors can arise in populations

in a community setting due to interactions with other species,

even when/if multiple stressors combine additively for the

organism or population alone (figure 1d ). While the mechan-

isms underlying community responses to OA and multiple

stressors can be ecological in nature, these effects primarily

stem from physiological changes of the constituent species.

Intra- or interspecies differences in responses to multiple

stressors can also lead to non-additive outcomes in ecosystem

function depending on whether species’ tolerance or adaptive

ability covaries [16]. If functional redundancy is low or many

functionally similar species have similar responses to OA,

then the effects on the ecosystem may be much greater than

expected based on population-level responses of single

species. Exposure to multiple stressors could increase the

probability of non-additive changes in ecosystem function

even among communities with high variability in tolerance

or adaptive ability among species to single drivers, due to

the probability that more species within the community are

likely to be affected as the number of stressors increases.
6. Moving forward
At the physiological level, a better understanding of the func-

tional responses to single stressors, such as OA, is critical for

building the theoretical framework necessary to forecast the

combined effects of multiple stressors. Energy allocation con-

cepts, commonly used to describe responses to temperatures

[24], will be useful to assess the costs of physiological and

adaptive responses and can provide important guidance

for OA [25]. These theoretical frameworks can then inform

population-level studies regarding the combined effects of

multiple stressors on energy budgets and vital rates governing

population dynamics. At the community level, long-term

manipulative field experiments that incorporate natural

variation in other environmental factors through time, as well

as organismal acclimation or adaptation, may provide

unparalleled insight into the emergent effects of ocean

change. Long-term experiments in terrestrial grasslands can

provide important guidance here [26]. Moreover, coordinated

manipulative OA experiments that span a range of
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environmental conditions will be critical for understanding

generalities in ecosystem responses [27]. In marine ecosystems,

natural analogue systems, such as CO2 vents, could be

especially useful to cross with other stressors. In all of these

approaches, a focus on organismal traits or ecosystem

responses that allow comparisons across levels of biological

organization can reduce the likelihood of ecological surprises

and improve the practical application of global change biology

to conservation and management.
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