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ABSTRACT 

Modeling the Effects of Fire on Streamflow in a Chaparral Watershed 
 

by 

Christine Eleana McMichael 

 

A comprehensive understanding of the effects of fire and post-fire succession on 

streamflow dynamics in California chaparral watersheds is needed to facilitate 

effective planning and management in these semi-arid shrublands.  Watershed 

experiments have provided insights into the hydrologic effects of fire and post fire 

succession in chaparral watersheds, however extrapolation of these results is 

constrained by the small number of studies and the limited space and/or time 

scales examined.  As it was not logistically or economically feasible to conduct 

additional field experiments for this research, an integrated remote sensing-

distributed hydrological modeling strategy was utilized to advance our 

understanding of the effects of fire and post-fire succession on streamflow 

dynamics in these ecosystems.  A wide range of inputs was derived for a modified 

version of the distributed, physically-based MIKE-SHE model using remote 

sensing and geographic information systems (GIS) techniques, including the 

development of a remote sensing-chronosequence approach for estimating the 

post-fire recovery sequence of chaparral leaf area index (a key input given that 

approximately 75% of incoming rainfall is returned to the atmosphere via 

evapotranspiration).  The Monte Carlo-based Generalized Likelihood Uncertainty 



 

 xii

Estimation (GLUE) methodology provided the framework for model calibration, 

testing, and predictive uncertainty estimation.  Model simulations were performed 

using a suite of fire size-weather regime combinations to investigate the impacts of 

fire on annual and seasonal streamflow dynamics.   

 Over two-thirds of the observations (comprising over 90% of the total 

observed flow) in the calibration and test periods were contained within the 

GLUE-based predictive uncertainty bounds, an acceptable level of model 

performance relative to total period flow; prediction errors were generally 

associated with large rainfall and fire events.  Model simulation results 

demonstrated that seasonal and annual streamflow response increased 

approximately linearly with fire size under both the wet and dry weather regimes.  

Moreover, the sensitivity of streamflow response to fire size varied with annual 

rainfall condition and stand age.  However, these predictions were largely 

indistinguishable from the predictive uncertainty associated with the calibrated 

model used to make them - highlighting the importance of analyzing hydrologic 

predictions for altered land cover conditions in the context of model uncertainty. 
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PREFACE 

Chaparral shrublands in California cover approximately 3.4 million hectares of 

land from sea level to about 2000m in regions dominated by a semi-arid climate.  

Fires in these watersheds dramatically alter land cover conditions and initiate a 

complex matrix of vegetation recovery sequences that span many decades.  Future 

climate- and anthropogenic-induced changes may modify the current fire regime in 

these ecosystems and, consequently, post-fire vegetation recovery patterns and 

related streamflow dynamics.  Catchment experiments have provided insights into 

the effects of fire and post-fire succession on streamflow in these shrublands, 

however extrapolation of these results is constrained by the small number of 

studies and the limited space and/or time scales examined.  A more comprehensive 

understanding of these effects is required in order to facilitate effective planning 

by those charged with protecting and managing California’s chaparral watersheds 

for water supply, water quality and wildlife/vegetation habitat.  It is not feasible to 

conduct the field experiments required to investigate the impacts of fire size on 

streamflow dynamics at the larger spatio-temporal scales of interest.  Therefore, 

this dissertation utilized an integrated remote sensing-distributed hydrological 

modeling strategy to examine these effects for a medium size chaparral catchment 

in central California.   

Organization of the dissertation 

Chapter One discusses the importance of the leaf area index (LAI) vegetation 

parameter in modeling the eco-hydrological effects of land cover change (e.g., due 



 

 xxii

to fire), as well as the scant availability of chaparral LAI values in the literature.  

This limitation is addressed in Chapter One via the development and application of 

a remote sensing-based chronosequence approach for estimating LAI recovery 

sequences following fire in central California chaparral shrublands.   

 Chapter Two explains the concept of equifinality, that acceptable model 

predictions might be achieved using different parameter sets, and describes the 

application of a methodology (the Generalized Likelihood Uncertainty Estimation 

(GLUE) technique) that explicitly recognizes this phenomenon and provides a 

framework for model calibration, testing and predictive uncertainty estimation.  

The GLUE-based evaluation of the spatially distributed, physically based MIKE-

SHE hydrologic model is presented in Chapter Two for the Jameson catchment, a 

34 km2 chaparral-dominated basin in central California.   

 Despite the widespread use of remote sensing-based LAI estimates in 

hydrological modeling, there is little understanding of how uncertainty in these 

inputs translates into uncertainty in model predictions (predictive uncertainty) or 

affects the sensitivity of model output to individual parameters (parameter 

sensitivity).  Chapter Three examines the effects of uncertainty in LAI inputs on 

the predictive uncertainty and parameter sensitivity of the MIKE-SHE model 

using the Monte Carlo-based GLUE and Generalized Sensitivity Analysis (GSA) 

methodologies, respectively, for the Jameson catchment. 

 Fire is a major agent of land cover transformation in chaparral watersheds, 

however little is known about the relationship between fire size and seasonal and 
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annual streamflow response in these semi-arid basins.  Chapter Four describes the 

application of the calibrated MIKE-SHE model to examine these relationships 

over a range of fire sizes in the Jameson catchment for both a wet and a dry period.  

Chapter Four also introduces the concept of ‘inherent predictive uncertainty’ (i.e., 

the predictive uncertainty associated with a GLUE-calibrated model) and evaluates 

model predictions for each fire size-period combination relative to the inherent 

predictive uncertainty of the calibrated MIKE-SHE model.
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CHAPTER ONE 

 

Post-fire recovery of leaf area index in California chaparral: a remote 

sensing-chronosequence approach 

 

Abstract.  Fire is a major driver of land surface transformation in California 

Mediterranean-type shrublands (i.e. chaparral).  The re-growth of leaves following 

fire impacts a wide variety of ecosystem processes and information on the post-fire 

recovery of leaf area index (LAI) is often required in eco-hydrologic modelling 

studies.  A few studies have reported LAI values for chaparral, but none have 

tracked LAI dynamics over the entire post-fire recovery sequence.  In this study 

we used a chronosequence approach with satellite imagery to determine the post-

fire development sequence of LAI for chaparral shrublands in central California.  

Moreover, we explored how LAI varied with differences in annual antecedent 

precipitation conditions (APC) and physical site factors.  LAI recovery following 

fire was most rapid during the first 10-15 years, after which it remained relatively 

constant with increasing stand age.  For a given stand age, LAI varied non-linearly 

with annual APC, while spatial variations in LAI were associated with differences 

in topographic aspect and landscape wetness potential.  However, a better 

understanding of the nature and interaction of these controls on LAI is needed if 

realistic post-fire LAI trajectories (for historic, present and future periods) for eco-
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hydrological modelling studies in chaparral catchments are to be developed in the 

future.   

 

1.  Introduction 

Fire is a major driver of land surface transformation in California Mediterranean-

type shrublands, i.e. chaparral (Keeley et al. 1999).  The removal and re-growth of 

green leaves following fire impacts a wide variety of ecosystem processes 

including canopy light interception (Henry and Hope 1998), river discharge 

(Rambal 1994, Loaiciga et al. 2001) and soil nutrient cycling (Christensen 1994).  

Consequently, information on the spatio-temporal dynamics of green leaf area is 

often required in physically based, spatially distributed eco-hydrologic models to 

study the effects of land-cover change (e.g. due to fire) on ecosystem and 

catchment processes.  The parameter most widely used to represent changes in 

green leaf abundance in these types of studies is the leaf area index (LAI), which 

is the total (one-sided) area of the transpiring leaf surface above a given ground 

area.  While a number of authors have reported LAI values for chaparral 

shrublands (Table 1-1), these data are typically restricted to a single species (or 

community type), a few observations over a limited area and/or to one point in 

time.  Observations of LAI at the spatio-temporal scales required to study 

landscape- and catchment-level impacts of fire and vegetation recovery in 

chaparral are not practical given the considerable sampling and logistical 

difficulties associated with such a field campaign. 
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1.1.  Remote Sensing of LAI 

Previous work has demonstrated the viability of using remote sensing-based 

techniques to characterise the spatio-temporal patterns of LAI over large areas 

and/or multiple time periods (Nemani and Running 1989, Spanner et al. 1990, 

Curran et al. 1992, Friedl et al. 1994, Watson et al. 1999).  Remote sensing-based 

estimates of LAI are typically made using site specific empirical relationships that 

have been established between ground-based measurements of LAI and vegetation 

indices derived from multi-spectral satellite data (de Jong 1994, Hoff et al. 1995, 

Chen and Cihlar 1996, Turner et al. 1999).  These spectral vegetation indices 

(SVIs) generally take the form of a ratio or linear combination of sensor bands and 

represent a means of reducing multi-spectral information to a single value for 

estimating vegetation characteristics (e.g. LAI).  The SVI most widely used to 

estimate LAI is the Normalized Difference Vegetation Index, NDVI (1): 

 

   NDVI     =        NIR - R           (1) 
             NIR + R 

 

where, NIR and R refer to the near-infrared and red regions of the electromagnetic 

spectrum, respectively; values of NDVI range between -1 and 1.  Green leaves 

exhibit strong absorption in the red region and high reflectance in the near-infrared 

region of the electromagnetic spectrum.  The NDVI has been shown to be linearly 

related to the fraction of photosynthetically active radiation absorbed by the 

canopy which, in turn, is nonlinearly related to LAI (Asrar et al. 1984, Sellers 
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1985, 1987).  The relationship between NDVI and LAI generally has a near-linear 

form for LAIs between zero and three, becoming asymptotic as values approach 

four to five (Asrar et al. 1984, Sellers 1985, Fassnacht et al. 1997).  Based on 

published values of chaparral LAI (Table 1-1) it is unlikely that the relationship 

between NDVI and LAI would reach saturation levels.   

A generalized NDVI-LAI model developed by Baret et al. (1989) has been 

applied in Mediterranean Basin ecosystems using multi-temporal satellite data to 

estimate LAI inputs for carbon and water flux models (Hoff et al. 1995, Lacaze et 

al. 1996, Teixeira-Filho et al. 1996).  Gamon et al. (1995) examined the 

relationship between the NDVI and LAI in a California Mediterranean-type 

ecosystem using ground-based measurements.  Although a strong relationship 

between the NDVI (hand-held radiometer) and the LAI (destructive harvesting) 

was reported when measurements from evergreen shrubs and trees were combined 

(Gamon et al. 1995), the uncertainties associated with extrapolating these plot-

level results to large chaparral catchments over successional time periods may be 

large.  

 

1.2. Post-fire succession in chaparral 

One of the most striking and consistent observations regarding chaparral growth 

patterns is its rapid recovery during the first 10-15 years following fire.  A number 

of measures of evergreen shrub growth have been shown to increase rapidly during 

the first 10-15 years following fire, including vegetation cover fraction (Horton 
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and Kraebel 1955, Hanes 1971), above-ground biomass (Rundel and Parsons 

1979, Mooney 1981), live above-ground biomass (Black 1987), foliage biomass 

(Rundel and Parsons 1979, Riggan et al. 1988) and LAI (Rundel and Parsons 

1979).  Descriptions regarding changes in biomass and LAI after age 15 are 

mixed.  Some evidence suggests that small increases in aboveground biomass 

occur through age 30, after which it remains relatively constant for the remainder 

of the shrubs’ lifespan (Mooney 1981).  In contrast, Rundel and Parsons (1979) 

documented a consistent decline in aboveground biomass, leaf biomass and LAI 

between ages 16 and 60, while Black (1987) reported an initial increase in live 

biomass after age 30, followed by a decline, followed by another increase.   

 In addition to stand age, chaparral shrub re-growth has been shown to 

respond to differences in precipitation conditions. Observations of percent 

vegetation cover (Keeley and Keeley 1981), NDVI (Henry and Hope 1998) and 

model simulations of LAI (Miller 1981) have demonstrated that chaparral shrub 

recovery for sites in southern California responds to inter-annual variability in 

precipitation.  Measurements of aboveground biomass (Black 1987) and estimates 

of percent vegetation cover (Hanes 1971) in chaparral have also been shown to 

vary with topographic aspect (in response to differences in energy and soil 

moisture balances).     

Depending upon the post-fire regeneration strategy employed (i.e. seedling 

recruitment or re-sprouting), evergreen chaparral shrubs typically live 30-50 years 

(seeders) or 50+ years (re-sprouters – the above-ground portion) (Horton and 
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Kraebel 1955, Hanes 1971, Black 1987).  Some authors have reported evergreen 

shrub stands as old as 80-100 years (e.g. Keeley and Keeley 1977, Keeley 1992, 

Zammit and Zedler 1992).  As a result, it is necessary to relate LAI to stand age 

over at least an 80 year period in order to characterise the entire post-fire 

successional sequence.  To date, it has not been possible to monitor this entire 

sequence in chaparral shrublands due to the relatively short length of the satellite 

era (1972-present) and the timing of fires within this period.  Problems related to 

image acquisition (e.g. cloudiness and limited anniversary date coverage) have 

further confounded such attempts.  An alternative strategy is to use a 

chronosequence approach to relate satellite-based estimates of chaparral LAI to 

stand age at a given point in time (after Rundel and Parsons 1979).  The entire 

post-fire sequence of LAI may be characterized via this exchange of space for time 

given a sufficient range of stand ages.  

 

1.3. Research objectives 

In this study we used a chronosequence approach with satellite imagery to 

investigate the relationship between chaparral LAI and stand age following fire.  It 

was expected that the post-fire trajectory of LAI development would follow 

chaparral re-growth trends reported in the literature and increase most rapidly 

during the first 10-15 years after fire.  However, temporal differences in annual 

antecedent precipitation conditions (APC) and spatial variability in site energy and 

moisture balances imply a range of possible LAI values for any given stand age.  
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Therefore, we also expected LAI to vary with differences in annual APC and 

physical site characteristics. 

 

2.  Methods 

Satellite imagery and fire history maps were used to develop an empirical 

procedure for determining the trajectory of chaparral LAI development following 

fire in the Coast Range of central California.  The general NDVI-LAI model 

proposed by Baret et al. (1989) was used to convert NDVIs into LAI values for ten 

fall Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper+ (EMT+) 

images.  In each image the mean LAI was extracted from eleven chaparral stands 

and plotted against stand age (chronosequence approach).  The general 

relationship between LAI and stand age was examined using LAI-stand age data 

pairs from all images (the pooled data set).  The impact of differences in annual 

APC on LAI was determined by stratifying the pooled data by image date.  

Variability in LAI resulting from differences in site energy and moisture balances 

was investigated by examining the relationships between LAI, topographic aspect 

and an index of landscape wetness. 

 

2.1.  Study area 

This study was carried out over an approximately 3200 km2 area in the San Rafael 

Mountains (Coast Range) north of Santa Barbara, California, USA (Figure 1-1).  

The Mediterranean-type climate of this non-urbanized region is characterized by 
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cool, wet winters and warm, dry summers.  Annual average precipitation and river 

discharge are approximately 780 mm and 233 mm, respectively.  Elevation ranges 

between 238 m and 2083 m.  Rocky, nutrient-poor sandy-loam soils are typically 

found on the relatively steep, rugged hillslopes (average slope ~ 43%), while 

somewhat deeper soils are found in ravines, valley bottoms and along gentle 

foothill slopes (O’Hare and Hallock 1988). Serpentine soils occur in limited areas 

(O’Hare and Hallock 1988).  The combination of stands in different stages of post-

fire succession with spatial variability in physical site characteristics (e.g. terrain 

and soils) produces a complex vegetation mosaic dominated by evergreen shrub 

and tree species (e.g. Adenostoma fasiculatum, Ceanothus leucodermis, 

Arctostaphylos glauca, Quercus spp.), intermixed with herbs/grasses, summer 

deciduous sub-shrubs (e.g. Salvia mellifera, Artemisia californica, Eriogonum 

fasiculatum), and winter-deciduous riparian trees (e.g. Salix spp. and Populus spp.) 

(Stephenson and Calcarone 1999).  Fires in this region generally occur towards the 

end of the dry summer period, with the largest events coinciding with extreme 

weather conditions (Moritz 1997, Moritz 2003).   

 

2.2.  Satellite imagery 

Nine Landsat TM images and one Landsat ETM+ image (28.5 m pixel resolution) 

were obtained from the Earth Resources Observation Systems (EROS) Data 

Center in South Dakota, USA (Table 1-2).  All images were terrain-corrected 

using a co-registered 28.5 m digital elevation model (DEM).  Fall 
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(August/September) imagery was selected in order to minimise the contribution of 

non-evergreen vegetation types to the spectral signal.  The fall 2002 ETM+ image 

was selected as the base image for both the geo-referencing and relative 

radiometric registration procedures.  Each of the nine remaining images was 

spatially registered to the fall 2002 image using Digital Imaging Made Easy 

(DIME) software and a minimum of 700 tie points.  Root mean square errors 

(RMSE) for the geo-referenced image set ranged between 0.30-0.65 pixels.    

Atmospheric correction and conversion of DN images to apparent surface 

reflectance (hereafter referred to as reflectance) was performed using ACORN 

(Atmospheric CORrection Now) software.  ACORN pre-processing involved 

preparing the required image metadata files (i.e. image spectral response, image 

acquisition parameters, and atmospheric conditions) and converting the fall 2002 

scene into radiances using the gains and offsets provided with the image.  ACORN 

was used in Mode 5 (atmospheric correction of calibrated multispectral data) with 

a ‘Mid-latitude summer’ atmospheric model to convert the fall 2002 radiance 

image into apparent surface reflectances.  ‘Relative radiometric calibration’ 

standardizes an image dataset with respect to atmospheric, illumination and sensor 

effects so that image-derived products can be compared over time (Roberts et al. 

1998).  Thirty temporally invariant targets (each 2x2 pixels in size) were selected 

across the range of image brightness (rock outcrops, runways, buildings, deep 

ocean) and used to radiometrically intercalibrate each of the fall images to the base 

fall 2002 image.  A minimum of 25 targets was used to develop the linear 
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calibration equations (the presence of clouds and/or outliers in the linear 

regressions occasionally reduced the number of available targets).  The mean 

digital number (DN) and reflectance value were extracted from each band for each 

target for the ‘uncalibrated’ image and the fall 2002 (base) image, respectively.  

Reflectance values for each target from the 2002 image were regressed against the 

DNs from the paired image for each band to derive a set of calibration equations; 

adjusted R2 values were greater than 0.88 for all equations.   

Differences in surface illumination conditions caused by topography have 

been shown to cause variability in surface spectral response that is independent of 

actual changes in land cover (Teillet et al. 1982, Civco 1989, Gu and Gillespie 

1998, Dymond et al. 2001).  Given the rugged nature of our study area, an 

illumination correction algorithm was applied to each of the 10 Landsat 

reflectance-based images to normalise for topographic effects.  The C-correction 

algorithm (Teillet et al. 1982) was used for this procedure given its superior 

performance (Meyer et al. 1993, McDonald et al. 2000) over other widely-used 

illumination corrections (e.g., cosine correction, Smith et al. 1980, Teillet et al. 

1982; Minnaert correction, Minnaert 1941, Smith et al. 1980).   

 Following illumination correction, the 3200 km2 study area was subset 

from each image in the set.  Image pixels located in topographic shadows were 

identified and masked out using the 28.5 m DEM.  Each reflectance-based image 

was then converted into an NDVI image using ERDAS IMAGINE software.  

Finally, since this research focused on the post-fire recovery of evergreen 
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chaparral shrubs, all other vegetation types were masked out of the NDVI images 

using an existing digital vegetation map of the area (2 ha minimum mapping unit) 

(Franklin et al. 2000). 

 

2.3.  Approach 

2.3.1.  NDVI-LAI model 

The following general model (2) has been used to estimate LAI from NDVI values 

in Mediterranean-type ecosystems (Baret et al. 1989, Hoff et al. 1995, Lacaze et 

al. 1996): 





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


−
−

∗−=
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backNDVINDVI
NDVINDVI

k
LAI ln1                                          (2)  

 

where, k is a parameter related to the extinction of solar radiation through a 

vegetation canopy, NDVI∞ is the maximum NDVI observed for ‘infinite’ 

vegetation, and NDVIback is the background NDVI.  Parameterized values used in 

previous Mediterranean-type ecosystem studies are given in Table 1-3.  In this 

study the value of NDVI∞ was set equal to the maximum chaparral NDVI observed 

in study area over the entire image set (0.850).  This value of NDVI∞ corresponds 

closely to those reported in Table 1-3.  A value for NDVIback was selected by  

examining the near-infrared vs. red feature space for the driest image in the set 

(September 3, 2002, Table 1-2).  To avoid potential bias introduced by outliers, 

NDVIback was set equal to the average NDVI of the 20 brightest pixels located 
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along the soil line (0.123).  While our value of NDVIback is different from those 

cited in Table 1-3, Lacaze et al. (1996) indicated that values of this parameter may 

be highly variable from site to site as a result of local differences in canopy 

understory, soil surface conditions and litterfall.   

Ideally the NDVI-LAI model should be calibrated with respect to k using 

paired observations of LAI and NDVI for a range of representative vegetation 

sites.  As discussed previously, observations of this type are not available for 

California chaparral ecosystems, especially at scales consistent with pixels in 

satellite imagery.  Moreover, such a set of observations is not likely to be collected 

in the near future as a result of the considerable logistical difficulties involved in 

carrying out such a comprehensive field study in this landscape, including the 

potential uncertainties associated with accurately characterising LAI for 88.5 m x 

88.5 m plots.  The absence of paired LAI-NDVI observations is not critical to this 

study since we are more concerned with the relationship between LAI and stand 

age than with the absolute magnitude of predicted LAIs.  However, in order to 

model LAI values as realistically as possible, we adopted the following strategy 

for selecting a value of k.   

Miller (1981) stated that LAI values for evergreen chaparral shrubs 

generally range between one and two, but may rise to three or four as annual 

precipitation increases.  LAI values reported in the chaparral literature (1- 1) range 

between approximately one and three.  Based on this information, we assumed that 

mature chaparral stands in this region reach a LAI of two under average annual 



 

 13

precipitation conditions.  The value of k for which NDVI-LAI model predictions 

corresponded to this LAI value was found to be 0.365.  This value of k was used 

when applying the NDVI-LAI model to each satellite image under the assumption 

that it was equally valid for all stands and antecedent precipitation conditions.   

 

2.3.2.  Vegetation stand age  

Digital fire history maps of the study area were used to delineate fire perimeters 

and determine dates of ignition (CDF/USDA 2001, M. Moritz, personal 

communication).  These maps were intersected with each LAI image to determine 

the vegetation age mosaic in the study area at each point in time.  Eleven different 

fires were identified in this area for the time period encompassing the satellite 

imagery.  For purposes of this research the area associated with each fire was 

referred to as a ‘stand’.  We restricted our analysis to fires larger than 30 km2 as 

the recovery of small areas may be strongly affected by local site conditions.  The 

impact of human activities on vegetation re-growth dynamics was assumed to be 

negligible given the non-urbanized state of the study area.   

 

2.3.3.  LAI-stand age relationship:  antecedent precipitation and site 

characteristics 

Ten LAI images were generated by applying the calibrated NDVI-LAI model to 

each of the NDVI images.  The average LAI was calculated for each stand in each 

image and plotted against the corresponding stand age to examine the general 
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relationship between LAI and stand age over all images.  This pooled data set was 

then stratified by image date to assess how values of LAI for a given stand age 

were affected by differences in annual APC, the total precipitation for the water 

year (October-September) preceding the satellite image date.  An image was 

classified as ‘average’ if its corresponding annual APC was within ½ standard 

deviation (390mm) of the long term average annual APC (715mm); images with 

annual APC values greater or less than ½ standard deviation were classified as 

‘wet’ or ‘dry’, respectively (Table 1-2).  

 An examination of the relationship between LAI and two variables 

representing site energy and moisture availability - topographic aspect and 

landscape wetness potential – was conducted for a mature stand in one image (this 

approach standardized the analysis for both stand age and APC).  The stand with 

the highest average standard deviation (1.093) over the four average APC images 

(1986, 1988, 1997 and 2000) was selected for this analysis.  In order to facilitate 

the comparison of continuous variables (LAI, aspect and wetness) across the 

landscape we divided the ‘mature’ stand into three separate sub-units on the basis 

of ‘relative landscape productivity’.  Differences in relative landscape productivity 

(RLP) across the mature stand were assumed to follow the spatial variability in the 

mean LAI image for this stand (computed using all 10 LAI sub-scenes for this 

stand).  Pixels in the mature stand were assigned to a RLP-unit (low, moderate and 

high) via an equal-value division of the mean LAI image histogram.  An aspect 

grid for the mature stand was derived from the 28.5 m DEM.  A grid of landscape 
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wetness for this stand was generated by calculating the compound topographic 

index (CTI) from the 28.5 m DEM (3): 

 

  CTI = ln ( A / tan (β) )     (3) 

 

where, A is the upslope contributing area and β is the landscape slope.  The CTI is 

commonly used in hydrologic analysis to characterise the potential for different 

areas in a catchment to develop saturated conditions (Beven and Kirkby 1979); 

typical values of CTI range between 1 (dry) and 15 (saturated).  Polar plots were 

used to examine the relationships between aspect and CTI for each RLP unit in the 

mature stand.   

 

3.   Results and discussion 

3.1. The general LAI-stand age relationship 

Plotting mean LAI versus stand age for all stands in all images yielded the scatter 

of points shown in Figure 1-2.  An exponential growth function (broken line) was 

fit to this pooled dataset to illustrate the general shape of the relationship between 

mean LAI and stand age.  [Note: all fitted lines in this paper are for illustrative 

purposes only; they are not predictive models.]  This function was forced through 

LAI = 0 at stand age = 0 based on the assumption that all photosynthetically active 

vegetation within a mapped perimeter was completely consumed by fire.  In reality 

some green vegetation may have survived fire, however information regarding its 
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location and extent was not available for our study area (nor is this information 

generally available for fires in this region).  Fires analyzed in this study occurred 

in the summer and chaparral re-growth does not usually begin until the following 

spring when temperatures rise and soil moisture supplies are adequate.  

Consequently, LAI values in the fall immediately following fire could reasonably 

be expected to equal zero.   

The general relationship depicted in Figure 1-2 indicates that LAI 

increased most rapidly during the first 15 years following fire, with the largest 

change in LAI occurring between ages zero and five.  LAI remained essentially 

constant from age 15 through age 81 (the oldest stand in the image set).  The rapid 

increase in mean LAI during the first 10-15 years is consistent with the trend in 

LAI reported by Rundel and Parsons (1979) for this age span [and with 

measurements of biomass (Rundel and Parsons 1979, Mooney 1981, Black 1987, 

Riggan et al. 1988) and estimates of percent cover (Horton and Kraebel 1955, 

Hanes 1971).]  Rundel and Parsons (1979) measured LAI for five Adenostoma 

fasiculatum-dominated chaparral stands of different ages (2, 6, 16, 37 and 60) in 

Sequoia National Park, California and documented an increase in LAI between 

ages 2 and 16.  The agreement between our results and those of Rundel and 

Parsons (1979) suggests that, despite differences in species composition between 

sites, the post-fire recovery dynamics of chaparral in the Sequoia and San Rafael 

Mountain areas are broadly similar for stands younger than 16 years of age.   
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In contrast to the decline in LAI between ages 16 and 60 reported by 

Rundel and Parsons (1979), our results indicate that mean LAI remained steady 

between ages 15 and 81 (similar to findings reported by Mooney (1981) for above-

ground biomass).  This difference in LAI dynamics after age 16 could be a result 

of site-to-site variability in species composition.  Rundel and Parsons (1979) 

measured LAI for pure stands (3-5 shrubs) of Adenostoma fasiculatum, while each 

large stand used in this study contained a mix of evergreen shrub species (from 

which a mean LAI was obtained).  The resulting variability in life history 

strategies, life span, morphology and physiology modifies stand composition over 

time, potentially maintaining a nearly constant mean LAI value for a given stand 

as some species thrive and expand while others senesce and die.  In contrast, LAI 

values for mono-specific stands are directly tied to changes in the structure and 

function of a single vegetation type.           

 

3.2.  Antecedent precipitation condition and LAI  

The effect of variability in annual APC on the general LAI-stand age relationship 

was examined by stratifying the pooled data pairs in Figure 1-2 by satellite image 

date (Figure 1-3).  This APC-based stratification greatly reduced the variability in 

the relationship between mean LAI and stand age.  As before, an exponential 

growth curve was fit through each image-based set of points to illustrate the form 

of the relationship.  Post-fire LAI recovery was most rapid over the first 10-15 

years under each antecedent precipitation condition, with the largest gains 
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generally taking place in the first five years after fire.  There was very little to no 

change in LAI after age 15 in each case.   

From Figure 1-3 it is clear that the relationship between mean LAI and 

stand age responded to differences in annual APC.  For stand ages between zero 

and 30 in the ‘dry’ image set (Figure 1-3a), mean LAI values were smallest in the 

driest year (fall 2002).  Mean LAI values for stands older than age 30 were 

approximately the same in 1985 and 2002 despite the fact that 148 mm more rain 

fell in 1985 than in 2002 (Table 1-2).  Values of mean LAI were largest for all 

stand ages in the 1994 image, approaching 30% larger for stands older than 30 

years.  Although we expected the antecedent precipitation from the preceding year 

to have a large effect on leaf productivity, two-year antecedent precipitation may 

be the critical period associated with leaf production.  The leaves of evergreen 

chaparral shrubs remain on the plants for an average of two years following leaf 

initiation (Miller 1981, Kummerow and Ellis 1989).  Hence, the very wet 

conditions in water year 1993 (1260 mm) may have enhanced leaf production 

(and/or limited leaf drop) in 1994 relative to the 1985 and 2002 images, which had 

drier 2-year antecedent precipitation conditions.   

Stands older than 20 years had approximately the same mean LAI values in 

each of the four ‘average’ APC images (Figure 1-3b).  Younger stands in this 

image set followed one of two post-fire recovery trajectories, one reaching peak 

values more rapidly (1986 and 1988) than the other (1997 and 2000).  The young 

stand ages in 1986 and 1988 are associated with a fire in 1985, while the young 
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stand ages in 1997 and 2000 correspond to a fire that occurred in 1994.  

Differences in the two post-fire trajectories are likely due to variability in fire 

properties (e.g., intensity), physical site characteristics (e.g., slope/aspect) and/or 

rainfall conditions between stands.   

Values of mean LAI were different across nearly all stand ages for the 

three ‘wet’ APC images (Figure 1-3c).  The 1-year and 2-year antecedent 

precipitation conditions were larger for the 1995 image than for the 1992 image, 

while both APC values were greatest preceding the 1998 image.  However, despite 

wetter conditions, the 1998 image had the lowest mean LAI values over all stand 

ages.   A potential explanation for this phenomenon may be related to observed 

differences in rainfall patterns between water years.  In particular, 1998 

experienced over 50 percent more days with rainfall totals above 50 mm than 

either 1992 or 1995.  Moreover, there were 30 percent and 78 percent more days 

with rainfall totals over 25 mm in 1998 than in 1992 and 1995, respectively.  It is 

possible that the occurrence of more days with high rainfall totals in 1998 may 

have been associated with greater cloudiness and cooler temperatures, conditions 

which may have constrained and/or delayed chaparral productivity that year. 

Overall, the response of the LAI-stand age curves to differences in APC 

was not linear (Figure 1-3).  This finding agrees with Miller’s (1981) LAI 

simulation results which predict an asymptotic relationship between LAI and 

annual precipitation, i.e. beyond some value, further additions of precipitation to 

the land surface do not greatly affect the magnitude of LAI.  This precipitation 
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threshold effect is illustrated in Figure 1-4 for three different stand ages (5, 10 and 

20 years old).  A logarithmic curve was fit to the set of points for each stand age in 

order to illustrate the diminishing effect of increasing precipitation on mean LAI.   

 The ten satellite images used in this study encompass the range of annual 

APC observed in the study area over the past forty-five years.  While 

representative, this is not a comprehensive set of imagery and we do not fully 

understand the non-linear response of LAI to annual antecedent precipitation 

condition.  Future research will analyse additional imagery (including spring 

imagery) in an attempt to more completely characterise the nature of this response.  

In addition to the one-year, two-year and cumulative antecedent precipitation 

conditions, the effect of intra-annual variability in precipitation on LAI will be 

examined.   

 

3.3.  LAI, topographic aspect and landscape wetness 

The relationship between topographic aspect and landscape wetness potential (i.e. 

CTI) for each RLP-unit is displayed in Figure 1-5.  It is clear from these plots that 

both aspect and landscape wetness potential influence the spatial distribution of 

chaparral LAI.  The  polar plots show that each RLP-unit (i.e. LAI class) was 

dominated by different topographic aspects.  The majority of pixels in the low 

RLP-unit were located in the south-west quadrant, while most pixels in the high 

RLP-unit were found on north-west facing slopes.  The moderate RLP-unit was 

almost equally dominated by south-west and north-west facing pixels.  Overall, 
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these patterns correspond closely to those found in the literature, where above-

ground biomass (Black 1987) and percent cover (Hanes 1971) were greater on 

north-facing slopes than on south-facing slopes.     

 The range of CTI values was similar among all three RLP-units, however 

the concentration and spatial distribution of values within each range varied 

between units (Figure 1-5).  The mean (and standard deviation) CTI increased 

from 1.2 (1.5) to 1.6 (1.8) to 2.7 (2.5) for the low, moderate and high RLP-units, 

respectively.  CTI values in the low RLP-unit were generally less than 5 (fairly 

dry), while larger values (wetter conditions) were more common in the moderate 

and high RLP-units.  This shift in landscape wetness potential with increasing RLP 

reflects the fact that water is the limiting resource for vegetation productivity in 

chaparral ecosystems.  Differences in the spatial distribution of low, medium and 

high CTI values between RLP-units suggest that variability in soil moisture across 

the landscape is controlled both by slope drainage characteristics and incoming 

radiation (aspect).  Future work will examine this hypothesis in more detail and 

will investigate the role that other physical site characteristics (e.g. soil type and 

elevation) play in controlling the spatial variability of LAI in this environment.   

 

4. Conclusions  

Our remote sensing-based results indicate that chaparral LAI recovers rapidly 

during the first 10-15 years after fire.  However, after this point, stand age seems 

to have a very small impact on changes in LAI and differences in annual APC and 
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physical site characteristics (aspect and landscape wetness potential) appear to 

emerge as the primary controls on LAI dynamics.  A better understanding of the 

nature and interaction of these controls is needed if future efforts to develop 

realistic post-fire LAI trajectories (for historic, present and future periods) for 

hydro-ecological modelling studies in chaparral catchments are to be successful.   

 Efforts are underway to obtain field-based estimates of LAI in order to 

improve the calibration of the Baret et al. (1989) NDVI-LAI model.  At a 

minimum, this sampling strategy should include LAI estimates for each of the 

major shrub species for each functionally significant combination of terrain and 

soil attributes.  Although the present study focused on evergreen shrubs, other 

vegetation types typically intermix with these shrubs in the study basin and 

surrounding areas – types which may be ecologically and/or hydrologically 

significant at particular spatio-temporal scales.  For example, annual herbaceous 

species dominate the immediate post-burn environment in chaparral, yet nearly 

disappear after three to four years as they are shaded out by the recovering shrubs 

(Keeley and Keeley 1981, Keeley et al. 1981).  Therefore, additional LAI 

sampling of the non-shrub vegetation (e.g. grasses and summer deciduous sub-

shrubs) should be carried out whenever possible.   

Finally, in order to extend our analysis to additional years and seasons, 

future work will also investigate the potential of applying the NDVI-LAI model to 

multi-spectral imagery from other remote sensing platforms (e.g. the Advanced 

Visible and Infrared Imaging Spectrometer (AVIRIS)).  In conjunction with this 
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effort, additional remote sensing-based measures of ‘green vegetation abundance’ 

will be related to field-based LAI estimates in an attempt to identify the most 

accurate remote sensing-based LAI model for chaparral.  In general, spectral 

vegetation indices (SVIs, of which the NDVI is the most widely applied) may be 

affected by extraneous variables such as the presence of non-photosynthetic 

material (Gamon et al. 1995), variability in illumination conditions (Deering et al. 

1994) and soil background (Elvidge and Lyon 1985, Huete et al. 1985) in image 

pixels.  As a result, a NDVI-based LAI model may not, ultimately, be the most 

appropriate approach in chaparral shrublands that contain a large proportion of 

woody material and favour steep slopes.  Moreover, SVIs are only capable of 

providing single spectral ratio information for each, usually 'mixed', pixel.  An 

alternative to SVIs is linear spectral mixture analysis (LSMA), which can be used 

to identify sub-pixel components (e.g. green vegetation abundance, woody 

material and shade) that are largely independent of extraneous conditions (Roberts 

et al. 1993, Roberts et al. 1997).  It is possible that the green vegetation abundance 

component derived from LSMA may provide improved estimates of chaparral 

LAI, however additional work is needed to develop and calibrate a LSMA-based 

LAI model for these ecosystems. 
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TABLES 

Table 1-1.  LAI values reported in the chaparral literature, by species/stand type 
and age/life stage. 
 

Species /  
Stand Type 

Age (years) 
/ Life Stage 

 
LAI 

 
Citation 

Adenostoma 
fasciculatum 

 
20 

 
2.65 

 
Lawrence 1975 

Ceanothus 
greggii 

 
20 

 
1.62 

 
Lawrence 1975 

Adenostoma 
fasciculatum 

 
21 

 
3.09 

 
Mooney et al. 1977 

Evergreen 
shrub 

 
mature 

 
2.50 

 
Mooney et al. 1977 

Adenostoma 
fasciculatum 

 
2 

 
1.79 

 
Rundel and Parsons 1979 

Adenostoma 
fasciculatum 

 
6 

 
1.53 

 
Rundel and Parsons 1979 

Adenostoma 
fasciculatum 

 
16 

 
2.20 

 
Rundel and Parsons 1979 

Adenostoma 
fasciculatum 

 
37 

 
1.23 

 
Rundel and Parsons 1979 

Adenostoma 
fasciculatum 

 
60 

 
1.22 

 
Rundel and Parsons 1979 

Adenostoma 
fasciculatum 

 
5 

 
0.80 

 
Schlesinger and Gill 1980 

Adenostoma 
fasciculatum 

 
21 

 
1.60 

 
Schlesinger and Gill 1980 

Adenostoma 
fasciculatum 

 
22 

 
2.10 

 
Gray 1982 

Adenostoma 
fasciculatum 

 
21 

 
2.20 

 
Riggan et al. 1988 

Ceanothus 
oliganthus 

 
21 

 
1.70 

 
Riggan et al. 1988 

Evergreen 
shrub 

 
mature 

 
~2 

 

 
Gamon et al. 1995 
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Table 1-2. Acquisition dates for Landsat TM and ETM+ imagery. 

 
Year 

 
Month / Day 

Annual 
Precipitation* 

(mm) 

 
APC class 

1985 09 / 12 413 Dry 

1986 08 / 30 804 Average 

1988 09 / 04 634 Average 

1992 09 / 15 993 Wet 

1994 08 / 20 498 Dry 

1995 09 / 24 1498 Wet 

1997 08 / 28 621 Average 

1998 08 / 31 1855 Wet 

2000 08 / 20 760 Average 

2002 09 / 03 265 Dry 

* Annual precipitation is reported on a water year basis (October-September); see                 
Section 2.3.3 for description of APC classes. 
 

Table 1-3.  NDVI-LAI model parameters for studies conducted in Mediterranean-
type ecosystems. 
 

 
Source 

 
NDVI∞ 

 
NDVIback 

 
k 

Vegetation 
Type 

 
Sensor 

 
de Jong 
(1994)* 

 
0.859 

 
0.224 

 
0.213 

Oak 
woodlands 

Landsat 
TM 

 
Hoff et al. 
(1995)* 

 
0.862 

 
0.225 

 
0.212 

Oak 
woodlands 

NOAA 
AVHRR# 

 
This study 

 
0.850 

 
0.123 

 
0.365 

Evergreen 
shrublands 

Landsat 
TM/ETM+ 

* Cited in Lacaze et al. (1996). 
# National Oceanic and Atmospheric Administration (NOAA) Advanced Very 
High Resolution Radiometer (AVHRR). 
 
 



 

 39

FIGURES 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1.  Study region near Santa Barbara, California (boxed area). 
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Figure 1-2.  Mean LAI vs. stand age – pooled data set.  [The line is for illustrative 
purposes only; it is not a predictive model.] 
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Figure 1-3.  Mean LAI vs. stand age – by APC class and image date: (a) ‘dry’ 
APC; (b) ‘average’ APC; (c) ‘wet’ APC.   Point symbol colors correspond to line 
colors; closed boxes in (3b) correspond to solid lines and open boxes correspond 
to dashed lines.  [Lines are for illustrative purposes only; they are not predictive 
models.] 
 

 

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

stand age

M
ea

n 
LA

I

Fall_85
Fall_94
Fall_02

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

stand age

M
ea

n 
LA

I Fall_86
Fall_88
Fall_97
Fall_00

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

Stand Age (years)

M
ea

n 
LA

I

Fall_92
Fall_95
Fall_98

(a) 

(b) 

(c) 



 

 42

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-4. The relationship between mean LAI and antecedent precipitation 
condition (APC) for three stand ages.  APC values used in this figure correspond 
to the 2002 (265 mm), 1997 (621 mm), 1992 (993 mm), and 1995 (1498 mm) 
Landsat images. 
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Figure 1-5. Relationship between the compound topographic index (CTI) and 
topographic aspect (in degrees) for the: (a) High RLP-unit, (b) Moderate RLP-unit, 
and (c) Low RLP-unit.  
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CHAPTER TWO 

 

Distributed hydrological modeling in chaparral shrublands: MIKE SHE 

model calibration and uncertainty estimation   

 
Abstract.  Manual and automatic calibration approaches in distributed 

hydrological modeling have traditionally focused on identifying a single parameter 

set which optimizes the agreement between observed and predicted values.  In 

recent years the concept of equifinality, that acceptable model predictions might 

be achieved using different parameter sets, has gained recognition as a more 

appropriate framework for hydrological simulations.  In this study the Generalized 

Likelihood Uncertainty Estimation (GLUE) methodology was used for model 

calibration, testing and predictive uncertainty estimation in the application of the 

MIKE-SHE model for estimating monthly streamflow in a semi-arid shrubland 

catchment in central California.  One thousand randomly generated parameter sets 

were used to make Monte Carlo simulations for a 20 year calibration period 

encompassing variable climatic and wildfire conditions.  One hundred and nine 

behavioral parameter sets were retained following model calibration and 

uncertainty bounds were established using the resulting ensemble of model 

predictions.  Two thirds of the observations in this period fell between the 

calculated uncertainty bounds.  This group of 109 behavioral parameter sets was 

subsequently used to make streamflow predictions and construct uncertainty 
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bounds for a 12 year test period with different climatic and fire characteristics.  

Again, more than two-thirds of the observations fell between the uncertainty 

bounds.  Predictive uncertainty bounds were wide for most months in each 

evaluation period.  Prediction errors (i.e., observations falling outside the 

uncertainty bounds) were generally associated with large rainfall and/or fire 

events.  Observations outside the uncertainty bounds are indicative of deficiencies 

in model structure and/or errors in input and/or observed data.   

 

1. Introduction 

Mediterranean-type ecosystems (MTEs) are transitional areas between the arid and 

mesic regions of the world.  These semi-arid ecosystems comprise a vegetation 

form with worldwide distribution and are of special interest to global change 

research for a variety of reasons related to population growth, biodiversity, land 

use/land cover change and water resources (Moreno and Oechel 1995, Davis et al. 

1996, Mittermeier et al. 1998).  The large, expanding human populations in these 

regions are expected to exert ever-greater pressure on the environment, resulting in 

significant changes in land cover condition and dynamics (Verstraete and 

Schwartz 1991, Hill et al. 1995).  Moreover, as MTE water relations are predicted 

to be among the most sensitive to global change (Moreno and Oechel 1995), the 

potential impacts that land cover change may have on hydrologic processes in 

MTEs are of particular concern.   
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 Fires in California MTE shrublands dramatically alter catchment land 

cover and initiate a complex matrix of vegetation recovery sequences that span 

many decades.  Future climate- and anthropogenic-induced changes may modify 

the current fire regime in this region (Ryan 1991, Davis and Michaelsen 1995) 

and, consequently, post-fire vegetation recovery patterns and related streamflow 

dynamics.  Catchment experiments have provided insights into the effects of fire 

on streamflow in MTE shrublands (Hoyt and Troxell 1932, Scott 1993; Lavabre et 

al. 1993, Loaiciga et al. 2001), however, extrapolation of these results is 

constrained by the limited space and/or time scales examined.  A more 

comprehensive understanding of these effects is required in order to facilitate 

effective planning by those charged with protecting and managing California’s 

shrubland catchments for water supply, water quality and wildlife/vegetation 

habitat.  It is not feasible to conduct the field experiments required to improve our 

understanding of the hydrological impacts of fire and post-fire succession at the 

space (tens to hundreds of square kilometers) and time (seasonal and annual) 

scales most relevant to water resource managers in this semi-arid environment.  

Rather, a distributed hydrological modeling approach is required, one capable of 

representing changes in vegetation patterns following fire and the concomitant 

effects on catchment hydrological processes.   

 Application of a distributed hydrological model requires calibrating on 

historical records, as well as a number of assumptions related to the model 

structure, input data and parameters.  Manual and automatic approaches 
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traditionally used to calibrate distributed hydrological models focus on identifying 

a single parameter set which optimizes the agreement between observed and 

predicted values.  However, the goal of identifying a single optimum parameter set 

may be ill-founded in rainfall-runoff modeling as a result of uncertainties related 

to process representation, catchment parameterization, input data, the specification 

of initial/boundary conditions and the measurement of discharge data used in 

calibration (Beven 1989, Binley and Beven 1991).  Given these uncertainties, it 

should be expected that multiple parameter sets and/or model structures might 

provide acceptable predictions – this is the concept of equifinality (Beven 1993, 

1996, Beven and Freer 2001).   

 The Generalized Likelihood Uncertainty Estimation (GLUE) methodology  

(Binley and Beven 1991, Beven and Binley 1992, Beven and Freer 2001) is a 

Bayesian Monte Carlo-based approach that recognizes the equifinality of 

parameter sets and model structures and provides an alternative strategy for 

distributed model calibration and uncertainty estimation.  The GLUE framework 

recognizes that multiple acceptable parameter sets can be identified and used to 

generate a range of model predictions which serves as the basis for uncertainty 

estimation.  In contrast, the single optimum parameter set identified using a 

traditional calibration approach provides only a single prediction sequence.   

In this research we used a GLUE-based approach to characterize the 

uncertainty and error associated with MIKE-SHE (Refsgaard and Storm 1995) 

predictions of monthly streamflow for a semi-arid shrubland catchment near Santa 
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Barbara, California, USA.  Specifically, we investigated how predictive 

uncertainty varied from season to season, under different rainfall and fire 

conditions, and between model calibration and test periods.   

 

2. Methods 

2.1.  MIKE-SHE modeling system 

MIKE-SHE (a derivative of the Systeme Hydrologique Europeen, SHE, Abbott et 

al. 1986a, b) is a physically-based, spatially distributed model that has been widely 

used to study a variety of water resource and environmental problems under 

diverse climatological and hydrological regimes (Refsgaard and Storm 1995).  

MIKE-SHE comprises five process-oriented modules, each representing a major 

component of the hydrologic cycle including: a) interception/evapotranspiration, 

b) overland and channel flow, c) unsaturated zone flow, d) saturated zone flow and 

e) aquifer-river exchange.  The user creates an application-specific model by 

including all or some of (or portions of) these modules in the model setup.  The 

catchment is subdivided into grid cells of equal size and time steps are allowed to 

vary between modules in order to account for the varied time scales of different 

flow processes (Refsgaard and Storm 1995).     

A modified version of MIKE-SHE (after Andersen et al. 2001) was used in 

this study.  The major differences between the original (MIKE-SHE) and modified 

(MSHE_m) versions of the model are found in the representations of flow in the 

unsaturated and saturated zones.  In MIKE-SHE vertical flow in the unsaturated 
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zone is modeled using the full Richard’s equation, whereas in MSHE_m it is 

calculated using a ‘simplified’ Richard’s equation where the tension term is 

ignored.  Within each grid cell the soil column is divided into a number of layers, 

each with associated parameters based on soil type.  Groundwater flow in the 

original version is represented by a three-dimensional saturated zone module that 

is dynamically coupled to the unsaturated zone module.  In MSHE_m a net 

vertical drainage from the unsaturated zone is accumulated in a series of linear 

interflow reservoirs; thus, there is a many-to-one mapping between unsaturated 

zone grids and the set of cascading interflow reservoirs.  The interflow reservoirs 

model lateral subsurface throughflow using a reservoir threshold parameter and a 

set of horizontal time constants.  A vertical time constant is used to compute 

drainage from each interflow reservoir to the single catchment groundwater 

reservoir.  Finally, baseflow from this groundwater reservoir is modeled as a 

function of current storage and a horizontal time constant.  The decision to 

implement MSHE_m was necessitated by the lack of knowledge and data 

regarding groundwater processes in the study catchment.   

Interception of rainfall in MSHE_m (and MIKE-SHE) is computed as a 

function of the canopy interception storage capacity and the leaf area index (LAI) 

– a key input variable in this fire-prone environment given that greater than 70% 

of annual rainfall is returned to the atmosphere via evapotranspiration (Poole et al. 

1981).  Evaporation from canopy storage is governed by the potential 

evapotranspiration (PE) rate; stem flow occurs once the storage is filled.  Three 
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separate, non-linear functions control plant transpiration (T): a) f1(LAI), b) f2(soil 

volumetric moisture content, θ) and c) f3(rooting depth/density); each function can 

take on a value between zero and one.  These functions express the dependence of 

plant transpiration on the abundance of green leaves, the amount of water available 

in the root zone, and the distribution of roots with depth, respectively.   

Transpiration is calculated by successively multiplying PE by the value of each 

function (after Kristensen and Jensen 1975).  Soil evaporation is calculated as a 

function of soil moisture in the upper layer of the soil column and is added to T in 

order to compute actual evapotranspiration (AE) (Refsgaard and Storm 1995). 

 

2.2.  GLUE methodology 

The limitations of current physically-based, distributed hydrological models have 

been discussed by Beven (1989) and others (Grayson et al. 1992, Refsgaard and 

Storm 1996) in some detail.  Many studies have demonstrated the prevalence of 

equifinality in physically-based hydrological modeling resulting from uncertainties 

in model structure, boundary conditions, catchment parameterization and errors in 

input and observed variables (Freer and Beven 1996, Zak and Beven 1999, Brazier 

et al. 2000, Beven and Freer 2001).  Consequently, the traditional search for an 

optimal parameter set is no longer considered an appropriate approach to the 

problem of model calibration.  The GLUE methodology (Binley and Beven 1991, 

Beven and Binley 1992) explicitly recognizes the equifinality of parameter sets 

(and models) in physically-based modeling and provides a more suitable 
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framework for model calibration and uncertainty estimation.  An overview of 

GLUE is given below, the reader is referred to Beven and Binley (1992), Freer and 

Beven (1996) and Beven and Freer (2001) for additional details. 

A number of decisions need to be made when implementing GLUE in the 

context of a particular physically-based modeling application.  First, realistic 

ranges are selected for each parameter included in model calibration on the basis 

of prior model applications and/or physical reasoning.  The goal is to create a 

parameter space which maximizes the number of good (behavioral) model runs 

without generating unnecessary (non-behavioral) model runs.  Monte Carlo 

simulations are made using a large number of parameter sets whose values are 

randomly selected from uniform distributions across the defined range for each 

parameter (non-uniform distributions may used if supported by available 

information or previous experience).  The relative performance of each parameter 

set is evaluated on the basis of a likelihood measure (or measures) calculated by 

comparing model predictions with observed data.  It should be noted that, in the 

context of GLUE, the meaning of ‘likelihood’ is broader than that found in 

classical statistics (Beven and Binley 1992).  A parameter set is classified as 

behavioral if the corresponding likelihood value is equal to or greater than a 

specified threshold value; parameter sets that do not meet this criterion are rejected 

as non-behavioral.    

The final step in the GLUE procedure is to establish predictive uncertainty 

bounds (or, prediction limits) for comparison with observed values.  First, the set 
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of behavioral likelihood values is rescaled to unity by dividing each value by the 

sum of likelihood values.  Next, behavioral model predictions for each time step 

are ranked in ascending order and each prediction is assigned to a user-specified 

bin.  The rescaled likelihood values corresponding to the ranked predictions in 

each bin are summed to give the height of each bar in the density plot.  A 

cumulative density plot may be constructed by graphing the cumulative sum of the 

likelihood values versus the ranked model predictions.  Typically, the 5th  and 95th 

percentiles calculated at each time step are used to generate the uncertainty bounds 

over the period of observations (Binley and Beven 1991, Beven and Binley 1992, 

Zak and Beven 1999, Ratto et al. 2001), however, other values may be used 

(Brazier et al. 2000).  Prediction limits calculated in this manner capture the 

uncertainty in model output associated with errors in model parameterization; 

observations falling outside the uncertainty bounds are likely the result of errors in 

input data, model structure and/or observed variables (Beven and Freer 2001). 

 It should be emphasized that the decisions made at each step in the GLUE 

methodology are subjective.  For example, the choice of both the likelihood 

measure and corresponding threshold value has been shown to influence the 

number of behavioral parameter sets retained following Monte Carlo simulations 

which, in turn, directly impacts the calculation of prediction limits (Beven and 

Binley 1992, Freer and Beven 1996).  However, a major advantage of the GLUE 

framework is that, while subjective, these decisions are made explicit so that they 

are both repeatable and subject to critique by the wider modelling community.       
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2.3. Study site 

The Jameson catchment (34 km2), located in the San Rafael Mountains north of 

Santa Barbara, California, USA (Figure 2-1), is one of the few remaining non-

urbanized catchments in this region.  There is a comprehensive geo-spatial dataset 

available for the study site including digital maps of fire history, vegetation type, 

soil type and elevation.  The semi-arid climate of this region is characterized by 

cool, wet winters and warm, dry summers.  Annual average precipitation and 

streamflow in the Jameson catchment are 780 mm and 233 mm, respectively.  

Elevation ranges from 677 m at the catchment outlet to 1771 m at the highest point 

along the ridge.  Sandy-loam soils are typically found on the steep, rugged 

hillslopes (average slope ~ 43%), while somewhat deeper sandy-loam and loam 

soils are found on gentler slopes.  The combination of stands in different stages of 

post-fire succession with spatial variability in physical site characteristics (e.g. 

terrain and soils) produces a complex vegetation mosaic dominated by evergreen 

shrubs (chaparral) intermixed with oak woodlands, summer deciduous sub-shrubs 

(coastal sage scrub), conifer forest and grassland (Stephenson and Calcarone 

1999).   

 

2.4. Input data 

Model grid cell size for the Jameson catchment was fixed at 270 m.  This spatial 

scale was selected to allow for the most accurate representation of catchment  
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attributes without placing excessive demands on computer run time required for 

Monte Carlo simulations.  Model predictions of streamflow were made at a daily 

time step and aggregated to monthly values for comparison with observed 

streamflow data.  Observed values of monthly streamflow were obtained from the 

United States Geological Survey gage (#11121010) located at the catchment outlet 

(daily values were not available).  Input time series and spatially distributed 

datasets are described below.   

 

2.4.1. Time series data 

Daily temperature and precipitation data from water years (October – September) 

1961 to 1993 were obtained from National Climate Data Center (NCDC) gages in 

and around the Jameson catchment.  Temperature data were quality checked and 

missing values were interpolated by developing linear regression equations 

between individual stations; separate regressions were developed for minimum 

and maximum temperatures.  Precipitation data were also quality checked and 

missing values were interpolated using daily precipitation data from neighboring 

gages maintained by the Santa Barbara County Water Agency.  Less than one 

percent of the temperature and precipitation values were missing and had to be 

estimated using these techniques. 

It was assumed that the spatial distribution of individual precipitation 

events across the catchment corresponded to the spatial pattern of mean annual 

precipitation (MAP).  Five distinct precipitation zones were identified in the study 
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catchment based on a digital MAP map of Santa Barbara County (J. Michaelsen, 

personal communication).  The ratio between MAP at the NCDC stations (located 

in Zone 1) and the MAP for each of the remaining four zones was calculated and 

used as the basis for redistributing observed (point) values of precipitation to each 

zone.  A time series of daily rainfall values was generated for each zone using this 

approach.   

MSHE_m also requires daily inputs of potential evapotranspiration (PE).  

The lack of measured wind speed, net radiation and relative humidity data 

precluded the use of the Penman equation (Penman 1956) in the study catchment.  

Instead, PE was estimated using the Hargreaves-Samani (1985) model with 

observed, lapse-rate adjusted daily temperature data and daily estimates of slope-

aspect adjusted extraterrestrial radiation (Dingman 1994).  Daily values of PE 

calculated using the Penman model were obtained from a California Irrigation and 

Management Information System (CIMIS) meteorological station (No. 64) located 

approximately 30 km to the west.  These CIMIS-based values were used to 

calibrate and validate the Hargreaves-Samani PE model for this environment.  

Values of the coefficient of efficiency (Nash and Sutcliffe 1970) for the calibration 

and verification periods were 0.99 and 0.94, respectively.  Spatial variation in PE 

across the Jameson catchment was characterized using twelve different zones, 

defined using three slope (low, moderate and high) and four aspect (North, East, 

South and West) classes.  A daily time series of PE was calculated separately for 

each zone using the calibrated Hargreaves-Samani model.   
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2.4.2. Spatially distributed data 

A time sequence of LAI maps was used to represent chaparral growth and 

recovery in MSHE_m.  These maps were derived using an integrated remote 

sensing-chronosequence approach (Chapter One).  The basis of this approach was 

to convert values of the normalized difference vegetation index (NDVI) into LAI 

values using the generalized model of Baret et al. (1989).  In this model LAI is 

calculated as a function of the maximum NDVI, the minimum NDVI and k, a 

coefficient representing the extinction of solar radiation through the canopy.  In 

Chapter One a time series of ten (near-anniversary date) fall Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper (ETM+) satellite images was 

converted from NDVI to LAI using this model (calibrated to regional conditions).  

Mean LAI values were recorded for a series of fires and used to derive a 

relationship between LAI and chaparral stand age for each image date.  An 

average LAI-Stand Age trajectory was computed from the ten individual 

relationships and used as the basis for developing input sequences of chaparral 

LAI for MSHE_m.  While inter-annual variability in chaparral LAI was captured 

using this approach, intra-annual variability was not represented in the 

hydrological model given: (a) the exclusive use of fall imagery to develop the 

LAI-Stand Age relationships in Chapter One, and (b) the absence of information 

on seasonal LAI in the chaparral literature.  However, adjustments (small 

increases) were made to input LAI values in each of the first four years following 

fire (successively smaller increases each year) in order to account for the presence 
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of herbaceous vegetation that normally occurs on post-burn chaparral sites during 

this period (Keeley et al. 1981, Keeley and Keeley 1981).  Input LAI sequences 

for non-chaparral vegetation types were derived using information from the 

literature (Gray and Schlesinger 1981, Gamon et al. 1995).   

 Temporally varying vegetation rooting depths were specified using 

information from the literature (Kummerow et al. 1977, Hellmers et al. 1985) and 

results from a previous application of MSHE_m (using manual calibration) in the 

Jameson catchment (Tague et al. in press).  Existing digital vegetation, soils and 

elevation maps were used to delineate vegetation, soil and topographic units 

within the catchment.  Vegetation stand age was determined by intersecting the 

vegetation type map (Franklin et al. 2000) with the digital fire history map.  A soil 

profile (texture and depth of each horizon) was specified for each model grid cell 

using available soil survey data (3rd Order) for the study catchment (O’Hare and 

Hallock 1988).     

  

2.5. Calibration parameters  

The actual number of parameters in MSHE_m depends on which modules are 

included in the model setup and how the catchment is discretized (horizontally and 

vertically).  Eleven parameters were used for model calibration and uncertainty 

estimation in this study (Table 2-1 and Appendix B) based on previous 

applications of MIKE-SHE (Xevi et al. 1997, Christiaens and Feyen 2002, 

Vazquez et al. 2002, Vazquez and Feyen 2003) and MSHE_m (Andersen et al. 
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2001, Tague et al. in press), and the MIKE-SHE user’s manual (DHI Water and 

Environment 2000).  The range for each parameter varied in model calibration was 

set using previous studies and/or physical reasoning.      

The parameters C1 and C2 control the distribution of actual 

evapotranspiration between transpiration and soil evaporation, while C3 influences 

the value of the moisture content function (f2).  The saturated hydraulic 

conductivity (Ks) and exponent (n) parameters are used to compute the hydraulic 

conductivity as a function of effective saturation for the sandy loam 

(Ks_SandyLoam and n_SandyLoam) and loam (Ks_Loam and n_Loam) soil types.  

The remaining four parameters (IFt, IFh, IFv and GWh) control interflow (IF) and 

groundwater (GW) dynamics in MSHE_m.  The interflow reservoir threshold (IFt) 

sets the storage capacity of the reservoir.  The horizontal time constant (IFh) 

regulates interflow between reservoirs, or between a reservoir and the river, and 

the vertical time constant (IFv) controls interflow contribution to groundwater.  

The groundwater reservoir time constant (GWh) governs the rate of baseflow 

contribution to streamflow  

 The following assumptions were made in order to minimize the number of 

parameters used in model calibration.  First, only the values of C1, C2 and C3 for 

shrubland vegetation types were used in calibration since more than 85% of the 

catchment area was classified as shrubland and it was the only vegetation 

impacted by fire.  Parameter values for other vegetation types were held constant.  

In addition, we assigned the same values of IFt, IFh, and IFv to each interflow 
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reservoir (after Andersen et al., 2001) given that no information was available to 

guide a separate parameterization for each reservoir.    

 

2.6.  Model calibration, testing, and uncertainty estimation 

The number of Monte Carlo runs implemented in a particular application is a 

function of the interactions between catchment size, model structure (including 

grid cell size), the number of calibration parameters and the available computer 

resources.  Tens of thousands (Zak and Beven 1999) to millions (Brazier et al. 

2000) of runs can be made when model codes are less complex, grid cell size is 

large, few parameters are used in calibration, extensive computing power is 

available, and/or for smaller catchments.  The physically-based, distributed 

MSHE_m model code is very complex and, therefore, extremely computer 

intensive.  This fact, coupled with the large number of calibration parameters and 

catchment grid cells used in this study, constrained the number of Monte Carlo 

simulations possible given available computer resources to 1000.   

One thousand randomly generated parameter sets were used to make 

Monte Carlo simulations for a 20 year calibration period (water years 1962-1981) 

encompassing a wide range of climatic conditions and containing one small fire 

(one percent of the catchment area, October 1971) and one medium size fire (20% 

of the catchment area, September 1964).  A standard performance metric, the 

Nash-Sutcliffe (1970) coefficient of efficiency, E (1), was used to evaluate model 

performance following each run:   
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where, O is the observed flow, Ō is the mean observed flow, and P is the 

predicted flow.  We selected the widely used coefficient of efficiency as our 

likelihood measure in order to evaluate the accuracy of both the magnitude and 

timing of predicted flows (e.g., Andersen et al. 2001, Beven 2001, Vasquez et al. 

2002, Tague et al. in press).  The first two water years in each simulation period 

were used to spin-up model storages and, thus, were excluded from the calculation 

of E.  The ‘behavioral’ threshold value of E used in this application of MSHE_m 

followed Andersen et al. (2001), where ‘good’ model runs were those with E ≥ 

0.80.  Parameter sets identified as behavioral were used to make predictions for a 

second (test) period in order to evaluate the robustness of the behavioral parameter 

sets for the study catchment.  This second period (water years 1982-1993) 

contained one very large fire (78% of the catchment area, July 1985) and 

experienced widely varying climatic conditions.  The range of behavioral model 

predictions made for each period were used to calculate the 5th and 95th percentiles 

using the GLUEWIN software package (Ratto and Saltelli 2001); the resulting 

uncertainty bounds were compared with observed streamflow values for each 

period.   
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3. Results and discussion 

3.1. Model calibration 

One hundred and nine of the 1000 Monte Carlo-based calibration runs were 

classified as behavioral, with values of E ranging from 0.80 to 0.92.  This 

proportion of behavioral parameter sets is comparable to that found in other 

GLUE-based modeling studies (e.g., Brazier et al. 2000, Beven and Freer 2001).  

The distribution of E for behavioral parameter sets was positively skewed (Figure 

2-2) with approximately 50% of the simulations having values of E less than or 

equal to 0.84; only five of the 109 behavioral runs had a value of E greater than 

0.90.  

 Predicted monthly streamflow values for each of the 109 behavioral 

parameter sets (excluding the first two water years) were used to compute the 5% 

and 95% uncertainty bounds.  Sixty-eight percent of the observed streamflow 

values fell within these bounds (Figure 2-3a); the remaining 32% of the 

observations comprised just over six percent of the total observed streamflow.  

This level of flow prediction error (i.e., < 10%) was considered acceptable for the 

calibration period as a whole (after Andersen et al. 2001). 

The average range between the upper and lower uncertainty bounds (Ravg) 

was largest in wet season months (November-April, Figure 2-3b), with values 

decreasing steadily through the transition (May-June) and dry (July-October) 

seasons.  That is, greater predictive uncertainty was associated with high flows 

than with low flows.  The variability around Ravg (Figure 2-3b) results from year to 
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year differences in predictive uncertainty, and is particularly high in the wet 

season.  On the other hand, values of the normalized average range (NRavg) 

(computed by dividing the uncertainty range for each time step by the observed 

flow depth and re-calculating Ravg) were largest (i.e., uncertainty was greatest) in 

transition and dry season months (Figure 2-3c); variability around NRavg was also 

greatest in these months.   

Observed streamflow values in four of the 18 water years were completely 

contained within the uncertainty bounds.  Considering the large variability in 

rainfall totals for these years, ranging from low (1968 and 1981) to moderate 

(1979) to very high (1969), it is apparent that the group of 109 behavioral 

parameters sets was capable of accurately representing integrated catchment 

behavior (streamflow) under different rainfall conditions.  However, catchment 

behavior was not always well modeled and some degree of prediction error (under- 

and/or over-estimation) occurred in each of the remaining water years. 

The largest under-estimation errors (observed values above the 95% 

bound) and over-estimation errors (observed values below the 5% bound) occurred 

in wet season months (Figure 2-4).  Sixty-eight percent of the total calibration 

period under-estimation error was found in just three months, November 1971 

(8%), January 1974 (39%) and February 1976 (21%).  Thirty-four percent of the 

total period over-estimation error occurred in March (6%) and April (28%) 1967; 

much of the remaining over-estimation error (44%) occurred in February, March 

and April 1978.  Under-estimation errors occurred in both average and high 
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rainfall years, generally in association with very large events (e.g., 316 mm over 

five days in 1974).  On the other hand, over-estimation errors occurred primarily 

in high rainfall years and were associated with a range of event sizes.   

 

3.2.  Model testing 

Each of the 109 behavioral parameter sets from the calibration period was used to 

make daily streamflow predictions for the test period in order to evaluate their 

robustness under different fire and rainfall regimes.  Uncertainty bounds for this 

period were calculated using predicted monthly flows.  Sixty-seven percent of the 

observed streamflow values fell within the 5% and 95% uncertainty bounds 

(Figure 2-5a); the remaining 33% of observed values comprised approximately 

nine percent of the total observed flow.  Thus, nearly the same proportion of 

observed values was contained within the uncertainty bounds in each period, and 

the overall level of prediction error (< 10%) in each period was considered 

acceptable.  

The trend in (and magnitude of) Ravg for the test period (Figure 2-5b) was 

very similar to that seen in the calibration period.  Predictive uncertainty was 

largest in wet season months, progressively declining through the transition and 

dry season months.  As before, normalizing for observed streamflow (NRavg) 

reversed this trend such that the greatest uncertainty was found in the dry season 

months (Figure 2-5c).  Variability around Ravg and NRavg was again highest in wet 

season and dry season months, respectively.   
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No water years in the test period were error-free, in contrast to the 

calibration period.  As with predictions in the calibration period, most under- and 

over-estimation error in the test period occurred during wet season months (Figure 

2-6).  Nearly 40% of the total under-estimation error occurred in January 1993, 

with an additional 46% in January (11%) and February (35%) 1986 following a 

very large fire in 1985.  Twenty percent of the total over-estimation error occurred 

in March 1988 when 135 mm of rain fell over three days.  Sixty percent of the 

remaining over-estimation error corresponded to a very large storm event in 

February 1992 (458 mm over six days).  Under- and over-estimation errors in the 

test period, as in the calibration period, were associated primarily with large events 

(e.g., 390 mm of rainfall over six days in 1993) in wet rainfall years.  In addition, a 

large portion of the total under-estimation error in the test period was associated 

with the 1985 fire.  

 

3.3. Discussion  

Virtually the same proportion of observed monthly streamflow values was 

captured by the 5% and 95% uncertainty bounds in each evaluation period, despite 

quite different rainfall patterns and fire conditions.  The total prediction error (i.e., 

the sum of over- and under-estimation errors) for each period as a whole was 

considered acceptable as it represented less than 10% of the observed flow.  

Seasonal trends in Ravg and NRavg were very similar in both periods, demonstrating 

a level of consistency in the ability of MSHE_m to predict high, moderate and low 
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flows across periods.  Differences in the magnitude of, and variability in, Ravg and 

NRavg between evaluation periods were generally small.   

Average predictive uncertainty (Ravg) was greatest, and most variable, in 

wet season months, declining through the transition and dry seasons.  However, 

the opposite pattern was seen once Ravg was normalized for observed flow (NRavg), 

indicating that the mean relative predictive uncertainty was greatest in dry season 

months.  That is, model predictions were most uncertain, relative to observed 

values, in months when streamflow was low to non-existent; the relative 

variability in predictive uncertainty was also greatest in the dry season.  In wet 

season months NRavg was generally less than 5% of the observed flow and the 

relative variability in predictive uncertainty was small.  Overall, the fact that NRavg 

was less than 10% of observed flow in all seasons (Figures 2-3c and 2-5c) 

suggests that (on average) MSHE_m predictions of monthly streamflow in this 

catchment were relatively certain for both evaluation periods.  Even so, the wide 

absolute uncertainty bounds observed in many wet season months, and following 

the large fire in 1985, indicate that the group of behavioral parameter sets used in 

this application of MSHE_m does not adequately represent the full range of 

hydrologic processes in the Jameson catchment. 

Over-estimation errors in dry months (July – October) represented less 

than 1.5% of the total prediction error for each evaluation period.  Monthly 

streamflow was not under-estimated during the dry season in either period.  

Absolute over- and under-estimation errors in transition months (May-June) were 
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also very small, comprising just 1% and 2.5% of the total error in the calibration 

and test period, respectively.  Overall, total streamflow in both transition and dry 

months was modeled with acceptable errors by MSHE_m using the group of 109 

behavioral parameter sets, indicating that the moderate and low flow conditions 

were generally well characterized by the model structure.        

Estimation errors (over and under) were largest in wet season months 

(November-April), comprising 98% of the total estimation error for each period.  

In contrast to findings for the transition and dry seasons, catchment processes in 

the wet season were not always characterized adequately by MSHE_m, 

particularly in relation to large storms and extensive fire.  The patterns of over- 

and under-estimation were notably different between wet season months in the 

calibration and test periods (Figures 2-4 and 2-6).  Over- and under-estimation 

errors generally increased from November through April in the calibration period, 

while nearly the opposite pattern was seen in the test period.  This phenomenon is 

somewhat difficult to explain given that errors in both periods were associated 

with (often very) large rainfall events.   

Differences in under- and over-estimation errors following fire in 

September 1964 (20%), October 1971 (1%) and July 1985 (78%) are most likely a 

function of the variability in fire size.  The lack of appreciable estimation error in 

water years 1965 (597 mm of rainfall) and 1972 (417 mm of rainfall) indicates that 

the GLUE-based calibration of MSHE_m successfully captured post-fire 

catchment behavior over a range of fire size (1 – 20%) and rainfall conditions 
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(including large storm events).  On the other hand, nearly half of the total test 

period under-estimation error occurred in water year 1986 (830 mm of rainfall) 

following the massive fire in July 1985.  Errors that year were largely associated 

with sizable rainfall events (e.g., 196 mm in three days in February 1986) in wet 

season months.  While these errors represent only 3% of the total observed flow in 

the test period, they highlight deficiencies in the ability of the model structure 

and/or input data to adequately characterize successional dynamics in this 

catchment following very large fires.   

 

3.4. Sources of uncertainty and error 

Previous work has demonstrated that the identification of behavioral parameter 

sets is directly influenced by the choice of likelihood measure and/or the 

corresponding threshold value (Beven and Binley 1992, Freer and Beven 1996).  

In this study 109 parameter sets out of 1000 were classified as behavioral based on 

a 0.80 threshold of the coefficient of efficiency.  As stated earlier this number of 

behavioral parameter sets is proportional to that found in other GLUE-based 

studies, but the absolute number of sets identified in this study is much smaller.  A 

larger number of Monte Carlo simulations (e.g., 10,000) would likely yield 

additional behavioral parameter sets and provide a more complete sampling of the 

parameter space.  However, a substantial increase in computing resources would 

be required to make this number of runs for such a complex model.  The number 
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of behavioral parameter sets might also be increased by selecting a different 

likelihood measure and/or threshold value.   

The 5% and 95% bounds represent predictive uncertainty arising from 

errors associated with specifying values and ranges for calibration parameters.  

Monthly observations falling between these uncertainty bounds denote time steps 

at which acceptable streamflow predictions were made using the selected group of 

behavioral parameter sets.  Observations not captured by the uncertainty bounds 

(i.e., prediction errors) are indicative of deficiencies in model structure and/or 

errors in input and/or observed data which prevented acceptable streamflow 

predictions from being made for those time periods (Beven 2001, Beven and Freer 

2001).  A number of factors which may have contributed to predictive uncertainty 

and/or prediction error in this study are discussed below.     

The general lack of information and data for subsurface conditions in the 

study catchment precluded the use of the 3-D groundwater module available in the 

full version of MIKE-SHE.  Instead, we implemented the semi-distributed Linear 

Reservoir groundwater module (MSHE_m) with three interflow reservoirs and one 

ground reservoir.  The Linear Reservoir module does not allow interactions and 

feedback between the saturated and unsaturated zones and, consequently, may not 

adequately represent subsurface flow dynamics under all conditions.  Moreover, 

MSHE_m is not capable of representing time-varying soil properties.  This may be 

an important limitation of the model as fire has been shown to alter soil physical 
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properties in California semi-arid shrublands (DeBano and Conrad, 1978), 

potentially modifying soil water-holding capacity.   

The grid cell size used in this study (270 m) was somewhat coarse given 

the rugged nature of the terrain in the study area.  However, results from previous 

studies using MIKE-SHE and MSHE_m demonstrate that overall model 

performance is marginally sensitive to changes in grid cell size for small (1 km2, 

MIKE-SHE, Xevi et al. 1997), medium (34 km2, MSHE_m, Tague et al. in press), 

and large catchments (568 km2, MIKE-SHE, Vasquez et al. 2002).  For example, 

Vazquez et al. (2002) found little change in a number of model performance 

measures when MIKE SHE was applied over a range of grid cell sizes (300-1200 

m) in a large catchment.  The manual calibration and application of MSHE_m at 

30 m and 270 m grid cell resolutions in the Jameson catchment resulted in very 

similar values of E, 0.96 and 0.93, respectively (Tague et al. in press). 

Errors associated with observed data and model inputs may also have 

contributed to predictive uncertainty and prediction errors in this study.  For 

example, LAI inputs may contain errors associated with satellite image processing 

and/or NDVI-LAI model calibration (Chapter One).  The use of LAI values 

derived from fall (i.e., dormant season) imagery may have contributed to greater 

absolute predictive uncertainty in wet season months, compared with transition 

and dry season months, due to the possible under-estimation of growing season 

LAI.  For example, Riggan et al. (1988) reported quite different LAI values in the 

peak season and dormant season for two California evergreen shrub species.  
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Additional research is needed to examine the potential of new remote sensing 

datasets, e.g., the daily Earth Observing System Moderate Resolution Imaging 

Spectrometer (EOS-MODIS) LAI product, to help refine the representation of 

chaparral LAI phenology in future MIKE-SHE model applications. 

The LAI-Stand Age trajectory has also been shown to vary with annual 

antecedent precipitation conditions (Chapter One), a dynamic not accounted for in 

this study due to the use of an average recovery trajectory.  In addition, 

uncertainties in the approach used to increase input LAI values in the immediate 

post-fire years (to account for herbaceous vegetation) may have contributed to the 

large under-prediction errors observed in the wet season months following the 

large fire event in 1985.  Errors and uncertainty associated with the procedures 

used to develop spatially distributed precipitation and potential evapotranspiration 

inputs for this rugged catchment may also have influenced MSHE_m model 

performance in this study. 

 

4. Conclusions 

Results from the GLUE-based calibration and testing of MSHE_m provide 

insights into both the strengths and weaknesses of the combined model structure, 

parameters and input data as a tool for predicting integrated catchment behavior in 

Jameson.  Over two-thirds of the observations (comprising over 90% of the total 

observed flow) in each period were contained within the uncertainty bounds, an 

acceptable level of model performance relative to total period flow.  However, the 



 

 71

fact that the greatest (absolute) prediction errors were associated with critical 

catchment events, i.e., large storms and large fires, suggests that refinements are 

needed to improve MSHE_m performance and reduce predictive uncertainty at the 

monthly/seasonal time scales prior to future application in this fire-prone 

environment.  Sources of uncertainty and error discussed above will be 

investigated in future work.   

 GLUE provides a useful modeling approach for advancing beyond the flawed 

concept of parameter optimization.  Working within an equifinality framework 

allows modelers to explicitly recognize and quantify the effects of uncertainties on 

model predictions.  Future versions of commercially available modeling systems 

should incorporate the flexibility to conduct GLUE-based modeling and 

uncertainty estimation – particularly given the use of distributed model predictions 

as a basis for environmental decision-making.   
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TABLES 

 

Table  2-1.  Parameter ranges used in the MSHE_m Monte Carlo simulations. 
 

 
Parameter 

Minimum 
value 

Maximum 
value 

Interflow/Groundwater reservoirs   
          IFt         (m) 0.0001 0.3 
          IFh        (days) 0.0001 3 
          IFv        (days) 0.0001 80 
          GWh     (days) 0.05 100 

Soil    
           Ks_Sandy Loam   (m s-1) 1.0 x10-6 5.0x10-4 
           n_Sandy Loam     1 30 
           Ks_Loam              (m s-1) 1.0 x10-6 5.0x10-4 
           n_Loam              1 30 

Vegetation   
          C1                                                        0.01 1 
          C2                                      0.01 1 
          C3    (mm day-1) 1 60 
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Figure 2-1.  The study site - Jameson watershed near Santa Barbara, California. 
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Figure 2-2. Frequency distribution of the coefficient of efficiency, E, for the group 
of 109 behavioral parameter sets. 
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Figure 2-3.  Calibration period results: (a) 5% and 95% uncertainty bounds with observed 
streamflow values, (b) average predictive uncertainty (Ravg), by month and (c) Ravg 
normalized for observed streamflow (NRavg), by month. One standard deviation above the 
mean is shown in (b) and (c) to illustrate the variability in predictive uncertainty for each 
month.   
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Figure 2-4.  The calibration period ‘absolute error’ was calculated, for each 
observation not contained by the uncertainty bounds, as the absolute difference 
between the observed value and the nearest uncertainty bound.  Under-estimation 
occurred when observed values fell above the 95% bound; over-estimation 
occurred when observations fell below the 5% bound. 
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Figure 2-5.  Test period results: (a) 5% and 95% uncertainty bounds with observed 
streamflow values, (b) average predictive uncertainty (Ravg), by month and (c) Ravg 
normalized for observed streamflow (NRavg), by month. One standard deviation above the 
mean is shown in (b) and (c) to illustrate the variability in predictive uncertainty for each 
month.   
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Figure 2-6.  The test period ‘absolute error’ was calculated, for each observation 
not contained by the uncertainty bounds, as the absolute difference between the 
observed value and the nearest uncertainty bound.  Under-estimation occurred 
when observed values fell above the 95% bound; over-estimation occurred when 
observations fell below the 5% bound. 
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CHAPTER THREE 

 

Uncertainty in leaf area index: effects on predictive uncertainty and 

parameter sensitivity of the distributed MIKE-SHE model 

 

Abstract.  Remote sensing-based estimates of leaf area index (LAI) are often used 

to represent green vegetation dynamics in distributed hydrological modeling.  

However, we have little understanding of how uncertainty in these estimates 

translates into uncertainty in model predictions (predictive uncertainty) or affects 

the sensitivity of model output to individual parameters (parameter sensitivity).  In 

this study we used the Monte Carlo-based Generalized Likelihood Uncertainty 

Estimation (GLUE) and Generalized Sensitivity Analysis (GSA) methodologies to 

examine the effects of uncertainty in LAI inputs on the predictive uncertainty and 

parameter sensitivity, respectively, of the distributed MIKE-SHE model applied to 

a semi-arid shrubland catchment in central California.   

 Overall, uncertainties in LAI inputs did not greatly affect the uncertainty 

associated with model predictions of streamflow.  Relative changes in predictive 

uncertainty between ‘LAI uncertainty scenarios’ and the ‘baseline’ LAI sequence 

were usually less than ten percent, suggesting that remote sensing-based estimates 

of LAI are generally appropriate for distributed hydrological modeling in this 

environment.   However, given that some of the largest changes in predictive 

uncertainty were observed in the first few years following fire, particularly in wet 
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season months, future work will focus on refining both inter- and intra-annual LAI 

estimates for this initial recovery period.  The influence of uncertainty in LAI on 

parameter sensitivity was greatest for evapotranspiration and unsaturated zone 

parameters, highlighting the key role that LAI plays in partitioning rainfall in this 

model.  As expected, model output was relatively insensitive to saturated zone 

parameters across all LAI uncertainty scenarios.  

 

1.  Introduction 

Fire in California semi-arid shrublands, i.e., chaparral, dramatically alters 

catchment land cover and initiates a complex matrix of vegetation recovery 

sequences that span many decades.  The removal and re-growth of vegetation 

following fire affects the partitioning of rainfall into evapotranspiration and 

streamflow.  Green leaves become increasingly abundant as the vegetation 

regenerates, altering the relative contributions of canopy evaporation and 

transpiration and soil evaporation to total evapotranspiration.  As a result, 

information on the spatio-temporal patterns of green leaf area is often required in 

distributed hydrological models to simulate the impacts of land cover change (e.g., 

due to fire) on catchment processes.  The variable most widely used to represent 

changes in canopy leaf area in distributed modeling studies is the leaf area index 

(LAI), the total (one-sided) leaf area per unit ground area.  While a number of 

authors have reported LAI values for chaparral shrublands (e.g., Rundel and 

Parsons 1979, Schlesinger and Gill 1980, Riggan et al. 1988, Gamon et al. 1995), 
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these values are typically restricted to a single species (or community type), a few 

observations over a limited area and/or to one point in time.  As such, these data 

are not generally suitable for distributed hydrological modelling given the 

(potentially large) uncertainty associated with extrapolating point measurements 

over large areas and long periods.  This is of particular concern in chaparral 

shrublands where recurring fires give rise to considerable landscape heterogeneity.   

Alternatively, remote sensing-based techniques may be used to 

characterize catchment LAI dynamics.  Remote sensing-based estimates of LAI 

are typically made using site specific empirical relationships between ground-

based measurements of LAI and spectral vegetation indices (SVIs) derived from 

multi-spectral satellite data (de Jong 1994, Hoff et al. 1995, Chen and Chilar 1996, 

Turner et al. 1999).  These SVIs generally take the form of a ratio or linear 

combination of sensor bands and represent a means of reducing multi-spectral 

information to a single value for estimating vegetation characteristics.  The SVI 

most widely used to estimate LAI is the normalized difference vegetation index 

(NDVI = (near-infrared – red) / (near-infrared + red)), formulated to exploit the 

strong absorption (red) and reflectance (near-infrared) properties of green leaves.  

Remote sensing-based estimates of LAI for chaparral shrublands were made in 

Chapter One using the generalized NDVI-LAI model of Baret et al. (1989).  In this 

model LAI is calculated as a function of the maximum NDVI, the background 

NDVI and k, a parameter related to the extinction of solar radiation through the 

vegetation canopy.  The general model was calibrated for regional conditions and 
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used it to convert 10 fall Landsat Thematic Mapper (TM) and Enhanced TM 

(ETM) images from NDVI into LAI (Chapter One).  Values of mean LAI were 

extracted from eleven large (> 30 km2) chaparral stands and plotted against stand 

age (chronosequence approach) to characterize the post-fire recovery sequence of 

LAI in each image. 

There are many advantages to using remote sensing-based approaches for 

estimating catchment scale LAI dynamics, however, validation of these values is 

difficult and not often performed – leading to unknown errors in estimated LAI 

values.  Uncertainty in LAI estimates may also arise from errors in image 

processing procedures and/or uncertainties in calibrating NDVI-based LAI 

models.  Nevertheless, remote sensing-based LAI estimates have been used to 

characterize catchment vegetation dynamics in distributed hydrological modeling 

studies in a variety of environments.  Mackay and Band (1997) prescribed LAI 

inputs for the Regional Hydro-ecological Simulation System (RHESSys) using 

estimates based on Landsat TM NDVI imagery for a 13 km2 mixed-coniferous 

catchment in the Central Sierra Nevada, California.  Input LAI values for the 

MIKE-SHE model applied to the 350,000 km2 Senegal River catchment in West 

Africa were derived using coarse scale Advanced Very High Resolution 

Radiometer (AVHRR)-based NDVI images (Sandholt et al. 1999, Andersen 

2002).  Watson et al. (1999) used a combination of ground-based measurements 

and Landsat TM NDVI images to represent vegetation canopy dynamics in the 

MACAQUE model applied to eucalypt-dominated catchments in southeast 
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Australia.  Finally, the average LAI recovery sequence from Chapter One was 

used in Chapter Two to characterize post-fire LAI dynamics in an application of 

the modified MIKE-SHE model to a chaparral catchment in central California.  

However, despite the widespread use of remote sensing-derived LAI inputs, we 

have little understanding of how uncertainty in these estimates translates into 

uncertainty in model predictions (predictive uncertainty) or affects the sensitivity 

of model output to individual parameters (parameter sensitivity).     

Accurate estimation of LAI inputs for distributed hydrological modeling in 

chaparral shrubland catchments is particularly critical since greater than 70% of 

annual rainfall is returned to the atmosphere via evapotranspiration (Poole et al. 

1981).  In this study we investigated how uncertainty in remote sensing-derived 

LAI inputs affects both predictive uncertainty and parameter sensitivity of the 

distributed MIKE-SHE model applied to a chaparral shrubland catchment in 

central California.  A variety of techniques have been used to perform uncertainty 

analysis (UA) and sensitivity analysis (SA) in hydrological modelling (e.g., Xevi 

et al. 1997, Christiaens and Feyen 2001, Anderton et al. 2002, Vachaud and Chen 

2002, Eckhardt et al. 2003).  However, the prevalence of equifinality in distributed 

hydrological models, i.e., that multiple parameter sets may provide acceptable 

model results, necessitates the use of Monte Carlo-based techniques to allow 

parameter interactions throughout the entire parameter space.  Therefore, we 

implemented the Monte Carlo-based Generalized Likelihood Uncertainty 

Estimation (GLUE, Beven and Binley 1992, Beven and Freer 2001) and 
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Generalized Sensitivity Analysis (GSA, Spear and Hornberger 1980, Hornberger 

and Spear 1981) methodologies for UA and SA, respectively (explained in more 

detail in sections 3.4 and 3.5).  Specifically, we used: (a) a GLUE-based 

framework to examine the uncertainty associated with model predictions arising 

from uncertainties in LAI inputs and (b) a GSA-based approach to evaluate how 

uncertainties in LAI inputs influence parameter sensitivity. 

 

2.  Methods 

2.1.  MIKE-SHE modeling system 

MIKE-SHE, a derivative of the Systeme Hydrologique Europeen, SHE (Abbott et 

al. 1986a, b), is a physically-based, distributed hydrological model that has been 

widely used to study a variety of water resource problems in diverse environments 

(Refsgaard and Storm 1995).  MIKE-SHE comprises a number of sub-modules 

representing all major phases of the hydrologic cycle.  Spatial variation in 

catchment characteristics is represented using equally sized grid cells, each of 

which is vertically discretized into a number of sub-layers to represent the soil 

profile.  In this study the model grid cell size was fixed at 270 m to allow the most 

accurate representation of catchment attributes without placing excessive demands 

on computer run time.  Model predictions of daily streamflow values were 

summed to monthly totals for comparison with observed monthly values (daily 

observations were not available).  A modified version of the MIKE-SHE model, 

developed by Andersen et al. (2001) for use in catchments with limited data on 
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subsurface processes, was used in this study.  The major differences between the 

original (MIKE-SHE) and modified (MSHE_m) versions of the model are found 

in the representations of flow in the unsaturated and saturated zones.  A fairly 

detailed description of the MSHE_m model is provided in Chapter Two and will 

not be repeated here.  However, given this study’s focus on LAI inputs, those 

equations requiring values of LAI are presented below. 

Each of the sub-components comprising the total actual evapotranspiration 

(ETa), evaporation from canopy storage, plant transpiration and soil evaporation, is 

calculated within the evapotranspiration module (DHI 2000).  Canopy interception 

of rainfall (1) is a function of the interception storage capacity, Imax: 

 

LAICI intmax =           (1) 

 

where, Cint is an interception parameter and LAI is the input leaf area index; stem 

flow occurs once Imax is filled.  Evaporation from canopy storage (2) depends upon 

the actual amount of water intercepted by the leaves, I, and the rate of potential 

evapotranspiration, Ep: 

 

),min( tEIE pcan ∆=        (2) 

where, Ecan is the canopy evaporation and ∆t is the simulation time step.  Canopy 

transpiration (3) is calculated on the basis of LAI, soil moisture content (θ) and the 

distribution of plant roots with depth (after Kristensen and Jensen 1975):   
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   pERDFfLAIfT ∗= )()( 21 θ       (3)    

 

where T is canopy transpiration, f1(LAI) is a function of LAI, f2(θ) is a function of 

soil moisture content and RDF is a function of rooting depth; the maximum value 

of each function is unity.  The f1(LAI) function (4) is computed using input LAI 

and two empirical parameters, C1 and C2, that influence the ratio of transpiration to 

soil evaporation (DHI 2000).  The C1 and C2 parameters are the slope and 

intercept, respectively, of Eq. (4) which describes a linear relationship between 

ETa / Ep and LAI for LAI between zero and LAI’ = (1- C2) / C1 (Kristensen and 

Jensen 1975).  The value of C2 establishes a minimum amount of soil evaporation 

that occurs regardless of canopy leaf area and soil dryness conditions, as long as 

soil moisture content (θ) is above the wilting point (θw).  Consequently, f1(LAI) is 

greater than or equal to C2 whenever θ ≥ θw.  The value of f1(LAI) rises above C2 

as LAI increases to LAI’, after which point f1(LAI) is equal to unity.   

 

   ILACCLAIf ′+= 121 )(     (4) 

 

 The soil moisture function, f2(θ), expresses the dependence of ETa / Ep  on 

soil dryness, as the ability of vegetation to extract water from the soil is assumed 

to decline as moisture content in the root zone is reduced (Kristensen and Jensen 

1975).  The root distribution function, RDF, is determined by the input root depth 
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and a vertical root density distribution (logarithmic).  Soil evaporation is 

calculated as a function of soil moisture in the upper layer of the soil column, and 

is added to Ecan and T in order to compute ETa (Refsgaard and Storm 1995, DHI 

2000).                                                                        

                                                                                                                                                                

2.2.   Study site  

The Jameson catchment (34 km2), located in the San Rafael Mountains north of 

Santa Barbara, California, USA (Figure 3-1), is one of the few remaining non-

urbanized catchments in this region.  The semi-arid climate of this area is 

characterized by cool, wet winters and warm, dry summers.  Average water year 

(October – September) precipitation and streamflow are 780 mm and 233 mm, 

respectively.  Elevation ranges from 677 m at the catchment outlet to 1771 m at 

the highest point in the catchment.  Sandy-loam soils are typically found on the 

rugged hillslopes (average slope ~ 43%), while somewhat deeper sandy-loam and 

loam soils are found on gentler slopes.  The combination of stands in different 

stages of post-fire succession with spatial variability in physical site characteristics 

(e.g., terrain and soils) produces a complex vegetation mosaic dominated by 

evergreen shrubs (chaparral) intermixed with oak woodlands, summer deciduous 

sub-shrubs (coastal sage scrub), conifer forest and grassland (Stephenson and 

Calcarone 1999).   
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2.3. Input data 

A brief description of the time series and spatial datasets required for MSHE_m is 

given here (see Chapter Two and Appendix A for a more detailed explanation of 

dataset compilation procedures).  Daily temperature and precipitation data from 

water years 1961 to 1993 were obtained from National Climate Data Center 

(NCDC) gages in and around the Jameson catchment.  Less than one percent of the 

temperature and precipitation values were missing and had to be interpolated.  

MSHE_m also requires daily inputs of potential evapotranspiration, however, 

observed values were not available.  Therefore, we used the Hargreaves-Samani 

(1985) model (calibrated and validated for regional conditions) to calculate daily 

values of potential evapotranspiration for each of twelve topographically-defined 

catchment zones (derived using three slope and four aspect classes).  Existing 

digital vegetation (Franklin et al. 2000), soils (O’Hare and Hallock 1988) and 

elevation maps were used to delineate and characterize vegetation, soil and 

topographic units within the catchment.  An average LAI recovery trajectory was 

calculated from the set of 10 sequences derived in Chapter One and used as the 

‘baseline’ (i.e., ‘no uncertainty’) LAI input sequence for MSHE_m in both the 

uncertainty analysis and sensitivity analysis studies described below.  As 

discussed in Chapter Two, this sequence does not represent intra-annual variation 

in LAI, with the notable exception of the immediate post-fires years when 

winter/spring LAI is augmented to account for the presence of herbaceous 
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vegetation.  The use of fall-based LAI values may underestimate growing season 

LAI and, thus, contribute additional uncertainty to model predictions.   

 

2.4. GLUE-based uncertainty analysis  

Implementing a GLUE-based uncertainty analysis requires making Monte Carlo 

simulations using a large number of parameter sets, assessing the relative 

performance of each set by comparing model estimates with observed data, and 

retaining only those parameter sets that provide behavioral (acceptable) 

predictions.  The suite of behavioral model predictions is then used to compute the 

5% and 95% uncertainty bounds, i.e., prediction limits, for the given model 

application.  The reader is referred to Binley and Beven (1991), Zak and Beven 

(1999), Ratto et al. (2001) and Chapter Two for additional details on this 

procedure.   

 A previous GLUE-based application of MSHE_m in the Jameson 

catchment yielded 109 behavioral parameter sets for a period in which mature 

chaparral stands dominated the landscape (Chapter Two).  These parameter sets 

were then used to make simulations for a second period containing a fire which 

burned nearly 78% of the Jameson catchment in July 1985.  Greater than two-

thirds of the observed monthly streamflow values (comprising over 90% of the 

total observed flow) in each period were contained within the calculated 5% and 

95% prediction limits, an acceptable level of model performance relative to total 

period flow (Chapter Two).  However, most estimation errors were associated with 



 

 101

key catchment events, i.e., large storms and fire, particularly in the second period 

where nearly half of the under-estimation error occurred in the first post-fire year. 

 In this study we examined the impacts of uncertainty in LAI inputs on 

MSHE_m predictive uncertainty for the second period (described above) when 

inter-annual changes in canopy leaf area were most rapid.  The 109 behavioral 

parameter sets identified in Chapter Two were used to make seven sets of model 

simulations for this ‘recovery’ period, one for the baseline LAI sequence (section 

2.3) and one for each of six ‘uncertainty scenarios’.  The six LAI uncertainty 

scenarios were generated by increasing and decreasing the baseline sequence by 

10, 20 and 40%, increments selected to cover the potential range of (unknown) 

error levels associated with remote sensing-based estimates of LAI.  The 90% 

uncertainty interval (i.e., the range of acceptable model predictions) was computed 

for all seven cases as the total distance between the 95% and 5% uncertainty 

bounds.  The effect of uncertainty in LAI inputs on predictive uncertainty was 

examined by comparing uncertainty intervals between each uncertainty scenario 

and the baseline case, as well as among uncertainty scenarios.  

 

2.5. Generalized sensitivity analysis  

Conducting a GSA involves following many of the same procedures used in the 

GLUE methodology described above.  Specifically, Monte Carlo simulations are 

made for a large number of randomly selected parameter sets which are 

subsequently divided into behavioral and non-behavioral subsets.  These subsets 
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are further analyzed in GSA to distinguish between sensitive and insensitive 

parameters by comparing the behavioral and non-behavioral cumulative 

distribution functions (CDFs) for each individual parameter.  It is assumed that 

model predictions are not influenced by parameters whose behavioral and non-

behavioral CDFs are very similar (Hornberger et al. 1985, Beven 2001).  The non-

parametric Kolmogorov-Smirnov d statistic, the maximum vertical distance 

between a pair of CDFs, may be used to quantify the difference between CDFs 

(Beven 2001, Makino et al. 2001, Wade et al. 2001).  While this test statistic is not 

robust for large numbers of simulations, relative sensitivity may be assessed by 

grouping parameters into low, medium and high sensitivity classes on the basis of 

their associated p values (Madsen 2000).   

 In this research GSA was used to examine the sensitivity of predicted monthly 

streamflow to eleven model parameters (Table 3-1) for three different input LAI 

sequences.  The eleven parameters examined in the GSA component of this study 

are the same as those used in the GLUE-based calibration of MIKE-SHE for the 

Jameson watershed (Chapter Two and Appendix B).  Parameter sensitivity was 

examined for two periods with contrasting post-fire recovery dynamics (the mature 

and recovery periods described in section 2.4) using the minimum, average and 

maximum LAI recovery sequences from Chapter One as model inputs.  As in the 

uncertainty analysis, the average LAI sequence was used here as the baseline case 

for GSA.  The minimum and maximum sequences were used to represent the 

extreme remote sensing-based LAI estimates for this study area.  One thousand 
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Monte Carlo simulations were made for each combination of input LAI and time 

period, for a total of 6000 runs.  The performance of each parameter set was 

evaluated following each simulation using two different, but related, performance 

measures: the coefficient of efficiency, E, and E calculated using the natural log of 

observed and estimated values, lnE.  The coefficient of efficiency (5) is a standard 

performance metric used to evaluate the accuracy of both the magnitude and 

timing of predicted flows (e.g., Andersen et al. 2001, Beven 2001, Vasquez et al. 

2002).  The lnE metric places increased emphasis on the frequent low flows 

observed in this semi-arid catchment. 
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The first two water years in each simulation period were used to spin-up model 

storages and, thus, were excluded from the calculation of E and lnE.  The 

behavioral threshold value of E used in this application of MSHE_m followed 

Andersen et al. (2001), where ‘good’ model runs were those with E ≥ 0.80; for 

consistency, the same threshold value was used for lnE. 
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3.  Results and discussion 

3.1. Uncertainty analysis 

For ease of discussion the six LAI uncertainty scenarios were labeled using either 

a ‘+’ or ‘-’, depending upon whether simulated uncertainty of 10, 20 and 40% was 

added to (+10, +20 and +40) or subtracted from (-10, -20 and -40) the baseline 

LAI sequence.  The 90% uncertainty interval (UI) was calculated for all seven LAI 

sequences as the difference between the 95% and 5% uncertainty bounds (i.e., the 

total distance between the bounds).  The relative change in the UI (UIrc) between 

an uncertainty scenario and the baseline case was calculated as: UIrc = (UIscenario – 

UIbaseline) / UIbaseline.  Positive (negative) values of UIrc indicated an increase 

(decrease) in predictive uncertainty resulting from uncertainty in LAI inputs.     

The relative change in MSHE_m predictive uncertainty (UIrc) associated 

with each uncertainty scenario is shown in Figure 3-2.  Overall, the amount of 

uncertainty associated with monthly streamflow predictions increased when input 

LAI was lowered below the baseline (-10, -20 and -40 scenarios), while predictive 

uncertainty decreased for LAI inputs above the baseline sequence (+10, +20 and 

+40 scenarios).  (Absolute) values of UIrc generally followed the expected 

directional trends, with values increasing as input errors progressed from 10 to 

40%.  The largest (absolute) values of UIrc over the post-fire recovery period 

(1986-1993) occurred for LAI inputs below the baseline, especially with the -40 

uncertainty scenario.  (Absolute) values of UIrc were less than 10% for the -10, -

20, +10 and +20 uncertainty scenarios over this period, with the exception of the -
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20 scenario in 1987 and 1990 (two very dry years).  Values of UIrc for the -40 and 

+40 scenarios were much more variable.       

Values of UIrc associated with the +10, +20 and +40 uncertainty scenarios 

were much smaller than values related to the -10, -20 and -40 scenarios in the first 

year following fire (1986, Figure 3-2).  LAI inputs above the baseline had little 

effect on values of UIrc in 1986, suggesting that the baseline LAI sequence 

represented sufficient canopy leaf area for the available soil moisture that year.  

That is, all available soil moisture was apparently utilized under the baseline LAI 

scenario, leaving no reserves to support LAI values in excess of baseline values.  

In contrast, lowering input LAI below the baseline resulted in higher predicted 

flows and larger (absolute) values of UIrc in 1986 for the -10, -20 and -40 

uncertainty scenarios.  Modified LAI inputs in the second post-fire year (1987) 

produced proportional changes in predictive uncertainty for the ± 10, 20 and 40% 

scenarios (Figure 3-2).  Moreover, UIrc values for this year were generally much 

larger than in 1986, possibly due to the extremely dry conditions in 1987 (272 

mm).  These results imply that streamflow dynamics are very sensitive to LAI in 

dry years.  In 1987, raising LAI above the baseline apparently drained already low 

soil moisture reserves, reducing predicted streamflow values and narrowing the 

uncertainty bounds.  In contrast, predictive uncertainty increased when input LAI 

was below the baseline sequence by even a small percentage.  Raising LAI inputs 

above the baseline had an increasingly smaller effect on UIrc values in the third 

through eighth post-fire years (Figure 3-2).  This may be explained, at least in part, 
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by the formulation of the transpiration function f1(LAI) in MSHE_m which tends 

to limit the effect of increasing LAI after a threshold value determined by the C1 

and C2 parameters (Eq. 4).  The effects of reducing LAI inputs below the baseline 

during this period varied with rainfall conditions and were generally largest in 

drier years.   

(Absolute) values of UIrc were highest in wet season months (November – 

April), decreasing into the transition (May – June) and dry (July – October) season 

months (Figure 3-3).  UIrc values associated with the ± 10 and 20% uncertainty 

scenarios were less than 10% in all months, as were values corresponding to the 

+40 scenario.  However, values UIrc for the -40 scenario were greater than 10% in 

six of twelve months, including all wet season months except April.  Overall, 

uncertainty in LAI inputs had the greatest impact on catchment water balance in 

wet season months as canopy leaf area directly affects the partitioning of rainfall 

into evapotranspiration and streamflow in MSHE_m.  The potential under-

estimation of LAI values in the growing season (section 2.3) may also have 

contributed to greater relative predictive uncertainty in these months.  

Differences in the UIs between LAI uncertainty scenarios and the baseline 

sequence were largely the result of changes in the 95% uncertainty bound (Figure 

3-4a), particularly for the -10, -20 and -40 scenarios.  The difference between the 

95% bound for each uncertainty scenario and the baseline sequence was calculated 

as:  ∆95% = (scenario_95% - baseline_95%) / baseline_95%; a similar calculation 

was performed using the 5% uncertainty bounds.  Values of ∆95% were highest in 
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the driest years (1987 and 1990) and smallest in the two wettest years (1992 and 

1993).  These results indicate that uncertainty in LAI inputs has a greater impact 

on predicted high flows (which control the 95% bound) when rainfall is limited, 

especially when input LAI was less than the baseline.  Uncertainty in LAI inputs 

under very wet conditions may have little impact on predicted high flows since 

there is an upper limit on the ability of vegetation to utilize incoming rainfall.  

Values of ∆5% were largest in the first year following fire (Figure 3-4b), and were 

greater than values of ∆95% that year for all uncertainty scenarios except -40.  

Overall, values of ∆5% were greatest in the first few post-fire years, generally 

decreasing with increasing stand age.  It appears that uncertainty in LAI inputs has 

a greater impact on predicted low flows (which control the 5% bound) in the early 

stages of post-fire recovery when the development of canopy leaf area may be 

most tightly coupled to available water resources.  

 

3.2. Generalized sensitivity analysis 

Each of the parameter sets used to make MSHE_m simulations in the GSA was 

classified as either behavioral or non-behavioral based on the 0.80 threshold for 

both E and lnE.  The number of behavioral parameter sets identified for each of the 

three LAI scenarios was low for both performance measures in both the periods 

(Table 3-2).  However, in some cases the proportion of behavioral parameter sets 

(i.e., ~10%) was comparable to that found in other hydrological modelling studies 

(e.g., Spear 1997, Brazier et al. 2000, Beven and Freer 2001).  In the first period 
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substantially more behavioral parameter sets were identified based on E than on 

lnE, while very few behavioral parameter sets were identified in the second period 

using either measure.  The sensitivity of individual parameters was only assessed 

for those cases (i.e., combination of performance measure and period) where at 

least 5% of the 1000 parameter sets were classified as behavioral.  This criterion 

was adopted to ensure that the behavioral CDFs were calculated using a 

reasonable number of parameter sets.  Hence, parameter sensitivity was evaluated 

for each LAI scenario in the first period only, and only as a function of the E 

performance measure.  Behavioral and non-behavioral CDFs were computed for 

each parameter under each of the LAI scenarios examined; corresponding values 

of d and p are given in Table 3-3.  Parameter sensitivity was assessed using the 

following classes (after Madsen 2000) (a) p ≥ 0.100, low sensitivity, (b) 0.010 < p 

< 0.100, medium sensitivity, and (c) p ≤ 0.010, high sensitivity.   

For ease of discussion, individual parameters were placed into one of three 

groups according to their role in regulating catchment hydrologic processes (after 

Vazquez and Feyen 2003).  Water balance parameters (C1, C2 and C3) are those 

that affect the partitioning of rainfall into evapotranspiration and streamflow.  

Water routing parameters are subdivided into those that regulate processes in the 

unsaturated zone (n_Loam, Ks_Loam, n_Sandy Loam and Ks_Sandy Loam) and the 

saturated zone (IFt, IFh IFv and GWh).   
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3.2.1. Water balance parameters 

Model performance was highly sensitive to values of the C2 parameter for all three 

LAI uncertainty scenarios (Table 3-3).  Values of the d-statistic and p-value were 

similar for each scenario, indicating that C2 sensitivity was not affected by 

uncertainty in LAI inputs.  In contrast, the sensitivity of C1 declined as input LAI 

increased, while the C3 parameter was characterized by low sensitivity for all three 

uncertainty scenarios.   

As previously mentioned, C1 and C2 are the slope and intercept, 

respectively, of the LAI function used in the calculation of canopy transpiration 

(section 2.1).  The fact that C2 was not dependent on input LAI may be a result of 

its role in establishing the minimum soil evaporation that occurs whenever soil 

moisture is greater than the wilting point, regardless of canopy leaf area.  Once 

LAI ≥ LAI’, the LAI function is always equal to one and increasing LAI has no 

additional affect on transpiration.  A possible explanation for the high sensitivity 

of C1 under the minimum LAI scenario is tied to its role in determining the value 

of LAI’, and the fact that input LAI values remain below LAI’ for the longest 

period of time under the minimum LAI scenario.  Overall, these results support 

previous MIKE-SHE work that demonstrated the sensitivity of model output to 

both C1 and C2 (Xevi et al. 1997, Vazquez and Feyen 2003).   

The low sensitivity of model output to C3, which influences the linear 

relation between ETa/Ep and relative soil dryness (i.e., f2(θ)), might be explained as 

follows.  The value of C3 does little to influence the value of f2(θ) when plant 
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available water is at or near its maximum value.  However, at lower moisture 

contents, C3 strongly influences the value of f2(θ), such that smaller values of C3 

lead to lower values of f2(θ) (DHI 2000).  That is, the ratio of ETa to Ep is smaller 

for lower values of C3 at a given moisture content.  Kristensen and Jensen (1975) 

recommend larger values of C3 for light soils and vegetation with dense, shallow 

roots, and smaller values for heavy soils and deep-rooted vegetation.  Previous 

work with MIKE-SHE has shown C3 to be a sensitive parameter for study areas 

characterized by sandy loam soils and agricultural crops, i.e., light soils and 

shallow rooted vegetation (Xevi et al. 1997, Vazquez and Feyen 2003).  In 

contrast, MSHE_m predictions for the Jameson catchment, where soils are light 

and chaparral rooting depth is substantial, were relatively insensitive to C3 

regardless of input LAI values.  This combination of soil texture and rooting habit 

is not discussed in the MIKE-SHE User’s Manual (DHI 2000) or Kristensen and 

Jensen (1975), suggesting that it may fall outside of the range of conditions best 

represented by the soil moisture function, f2(θ). 

 

3.2.2. Water routing parameters – unsaturated zone (UZ) 

Two soils types were used in MSHE_m to represent soil characteristics in the 

study catchment, a moderately deep ‘upland’ soil and a deeper ‘lowland’ soil.  

Both horizons in the upland soil were characterized as ‘Sandy Loam’, while the 

lowland soil type had a ‘Sandy Loam’ upper horizon and a ‘Loam’ lower horizon.  

Model output was highly sensitive to n_Sandy Loam for each LAI uncertainty 
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scenario at very similar values of d and p (Table 3-3).  The n parameter influences 

the reduction of saturated hydraulic conductivity (Ks) to actual hydraulic 

conductivity (Kact) as a function of the effective saturation (S): Kact = Ks *  Sn .  

Larger values of n lead to greater reductions in Ks for a given value of S, thus 

influencing soil percolation rates, soil evaporation and transpiration.  Suggested 

values of n are lower for sandy soils than for clayey soils (DHI 2000), implying 

that the sensitivity of model output to n_Sandy Loam is largely a function of soil 

properties – and is independent of uncertainty in LAI inputs.   

Model output was highly sensitive to Ks_Sandy Loam for the minimum and 

maximum LAI scenarios only.  Values of d and p were very similar for these two 

scenarios, but very different from values associated with the average LAI scenario.  

The use of the simplified Richard’s equation to model UZ flow means that vertical 

water movement is primarily a function of Ks, which explains why model output 

would be sensitive to this parameter.  However, it is not clear why Ks was only 

highly sensitive under the minimum and maximum LAI uncertainty scenarios.  

Perhaps it is the result of a ‘compensating effect’, where model output becomes 

increasingly sensitive to Ks as LAI inputs diverge from baseline values.  That is, Ks 

may play a larger role in regulating UZ flows when input LAI values are too large 

or too small.  Model performance was not sensitive to either of the UZ routing 

parameters corresponding to the Loam soil type (n_Loam and Ks_Loam), most 

likely due to its limited presence in the Jameson catchment.   
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3.2.3. Water routing parameters – saturated zone (SZ) 

Model performance was highly sensitive to IFt, IFh and IFv for all but one of the 

LAI uncertainty scenarios, while it was relatively insensitive to GWh in each case 

(Table 3-3).  Thus, the sensitivity of model output to SZ parameters was 

essentially independent of uncertainty in LAI inputs, which was expected given 

the absence of feedbacks between the saturated and unsaturated zones in 

MSHE_m.  The sensitivity of model predictions to the interflow reservoir 

threshold and timing parameters suggests that interflow dynamics strongly 

influenced the routing of stormflow following a rainfall event.  The low sensitivity 

of model output to GWh was somewhat surprising given the high frequency of low 

flows in the study catchment, though this might be related to the use of E which is 

somewhat biased towards higher flows.  

 

3.3. GSA revisited - modifying the lnE threshold for behavioral parameter sets 

One of the original objectives of this study was to examine the impact of 

uncertainty in LAI inputs on parameter sensitivity using two different performance 

measures, E and lnE.  However, there were insufficient behavioral parameter sets 

available to make this comparison (for all combinations of LAI uncertainty 

scenario and time period) when the 0.80 threshold was used for both performance 

measures.  Upon completion of the GSA described above, we decided to re-

examine our choice to use the same behavioral threshold for both performance 

measures.   
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As noted previously values of E tend to be biased by larger flows, whereas 

the use of lnE lessens this bias by logarithmically transforming observed and 

estimated values prior to calculating E.  Therefore, it could be argued that the 

behavioral threshold for lnE should, in fact, be lower than the value used for E.  

Working under this assumption we selected a new behavioral threshold for lnE of 

0.65, a value which produced nearly the same number of behavioral parameter sets 

for each LAI uncertainty scenario in the first period as did the 0.80 threshold for E 

(Table 3-4).   

 New CDFs were calculated for each model parameter based on the 

modified behavioral threshold for lnE.  Table 3-5 shows the resulting d and p 

values for each model parameter under each of the LAI uncertainty scenarios in 

Period One.  A number of important differences in parameter sensitivity were 

observed between Table 3-4 (E) and Table 3-5 (modified lnE, lnEm) which 

appeared to be related to the different emphasis given to high flows by each 

performance measure.  For example, GWh was identified as having low sensitivity 

using the E performance measure, but was classified as highly sensitive based on 

lnEm.  The interflow reservoir parameters IFt and IFv were classified as highly 

sensitive for all LAI uncertainty scenarios using both E and lnEm, however IFh was 

only highly sensitive based on E.  These differences between performance 

measures emphasize the sensitivity of estimated low flows to the vertical interflow 

contribution to baseflow (which is a function of both IFt and IFv).  Horizontal 

interflow (determined by IFt and IFh) contributes directly to streamflow 
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(bypassing the groundwater reservoir) and, consequently, is more likely linked to 

the timing of larger flows.  As before, the sensitivity of SZ parameters was 

independent of uncertainty in LAI inputs.  These results highlight the fact that the 

choice of performance measure and corresponding threshold value affects the 

separation of behavioral from non-behavioral parameter sets (Beven and Binley 

1992, Freer and Beven 1996), which, in turn, directly impacts the calculation of 

CDFs and the assessment of parameter sensitivity. 

  

4. Conclusions 

Overall, MSHE_m predictive uncertainty was not greatly influenced by 

uncertainty in remote sensing-based LAI inputs.  Relative changes in UI between 

five of the six LAI uncertainty scenarios (i.e., -10, -20, +10, +20 and +40) and the 

baseline LAI sequence were less than 10% in all but the two driest years.  These 

results suggest that remote sensing-derived estimates of LAI are generally 

appropriate for distributed modelling in chaparral-dominated catchments.  

However, given that some of the larger (absolute) changes in UIrc occurred in the 

first few years following fire, future remote sensing efforts should focus on 

refining LAI estimates for this initial recovery period.  Additional work is also 

needed to incorporate intra-annual variability in LAI inputs as a step towards 

reducing predictive uncertainty in wet season months.    

Model output was highly sensitive to many individual parameters across all 

three LAI uncertainty scenarios (i.e., it was independent of uncertainty in LAI 
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inputs); this was particularly true for saturated zone parameters.  However, model 

sensitivity did vary between LAI uncertainty scenarios for a number of key 

parameters in the evapotranspiration and unsaturated zone modules – highlighting 

the importance of LAI in partitioning rainfall in this model.  While these results 

are based on a relatively small number of behavioral parameter sets, they 

underscore the need for refining our remote sensing-based estimates of LAI.  The 

current study could be expanded in future work to examine how different 

performance measures and thresholds, modified parameter ranges, and additional 

Monte Carlo simulations influence GSA results. 

In this study we focused on the effects of uncertainty in remote sensing-

based LAI inputs on the performance of MSHE_m in a chaparral shrubland 

catchment.  Results from this study are expected to facilitate future applications of 

MSHE_m in this region and will be used to improve remote sensing-based 

estimates of LAI.  In addition, we hope they illustrate the importance of examining 

the effects of uncertainty in LAI inputs on distributed model performance – 

regardless of the technique used to estimate input LAI.     
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TABLES 

 

Table 3-1. Parameters and associated ranges used in the GSA sensitivity analysis. 

 
 

Parameter* 

 
Minimum  

value 

 
Maximum  

value 
Vegetation   

          C1                                                        0.01 1 
          C2                                      0.01 1 
          C3    (mm day-1) 1 60 
   

Interflow/Groundwater reservoirs   
          IFt        (m) 0.0001 0.3 
          IFh       (days) 0.0001 3 
          IFv       (days) 0.0001 80 
          GWh    (days) 0.05 100 
   

Soil    
           Ks_Sandy Loam   (m s-1) 1.0x10-6 5.0x10-4 
           n_Sandy Loam     1 30 
           Ks_Loam             (m s-1) 1.0x10-6 5.0x10-4 
           n_Loam              1 30 

* Parameter definitions: (a) Vegetation: C1, C2, and C3 (see Section 2.1); (b) 
Interflow (IF) / Groundwater (GW) reservoirs: IFt (storage threshold), IFh 
(horizontal time constant), IFv (vertical time constant), and GWh (horizontal time 
constant);(c) Soil: Ks (saturated hydraulic conductivity), and n (exponential 
coefficient).  Please see Appendix B for more a more detailed explanation of each 
parameter. 
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Table 3-2. Number of behavioral parameter sets for each LAI scenario – by period 
and performance measure. 
 
Period  
One 

No. sets  
E ≥ 0.80 

No. sets 
lnE ≥ 0.80 

Period 
Two 

No. sets  
E ≥ 0.80 

No. sets  
lnE ≥ 0.80 

      
Minimum 
LAI 

95 15 Minimum 
LAI 

1 0 

      
Average 
LAI 

109 16 Average 
LAI 

4 0 

      
Maximum 
LAI 

95 22 Maximum 
LAI 

7 0 

      
TOTAL 299 53 TOTAL 12 0 
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Table 3-3. Values of the d-statistic and p-value for each model parameter in 
Period One – by LAI scenario.   
 

PERIOD ONE    
    

E ≥ 0.80    
 Minimum Average Maximum 

Parameter LAI* LAI* LAI* 
    

C1 d 0.251 0.134 0.122 
 p 0.000 0.055 0.146 
    

C2 d 0.257 0.280 0.278 
 p 0.000 0.000 0.000 
    

C3 d 0.094 0.121 0.074 
 p 0.421 0.109 0.718 

    
IFt d 0.504 0.538 0.570 

 p 0.000 0.000 0.000 
    

IFh d 0.285 0.305 0.286 
 p 0.000 0.000 0.000 
    

IFv d 0.185 0.163 0.169 
 p 0.005 0.010 0.013 
    

GWh d 0.075 0.106 0.099 
 p 0.696 0.212 0.353 
    

n_Loam d 0.077 0.090 0.064 
 p 0.664 0.393 0.863 
    

Ks_Loam d 0.123 0.091 0.092 
 p 0.136 0.376 0.443 
    

n_Sandy Loam d 0.226 0.221 0.252 
 p 0.000 0.000 0.000 
    

Ks_Sandy Loam d 0.222 0.101 0.252 
 p 0.000 0.258 0.000 

*Numbers in ‘bold’ type indicate highly sensitive parameters. 
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Table 3-4. Number of behavioral parameter sets for each LAI scenario in Period 
One – by performance measure. 
 

Period  
One 

No. sets 
E ≥ 0.80 

No. sets 
lnE ≥ 0.65 

   
Minimum LAI 95 89 

   
Average LAI 109 100 

   
Maximum LAI 95 103 

   
TOTAL 299 292 
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Table 3-5. Modified lnE: values of the d-statistic and p-value for each model 
parameter in Period One – by LAI scenario.   

 

PERIOD ONE    
    

lnE >= 0.65    
    

 Minimum Average Maximum 
Parameter LAI* LAI* LAI* 

    
C1 d 0.344 0.230 0.192 

 p 0.000 0.000 0.002 
    

C2 d 0.327 0.340 0.347 
 p 0.000 0.000 0.000 
    

C3 d 0.123 0.115 0.086 
 p 0.161 0.174 0.485 
    

IFt d 0.348 0.357 0.370 
 p 0.000 0.000 0.000 
    

IFh d 0.102 0.104 0.089 
 p 0.354 0.269 0.436 
    

IFv d 0.275 0.341 0.290 
 p 0.000 0.000 0.000 
    

GWh d 0.427 0.547 0.511 
 p 0.000 0.000 0.000 
    

n_Loam d 0.084 0.124 0.128 
 p 0.598 0.115 0.091 
    

Ks_Loam d 0.120 0.073 0.068 
 p 0.179 0.707 0.767 
    

n_Sandy Loam d 0.203 0.138 0.122 
 p 0.002 0.060 0.117 
    

Ks_Sandy Loam d 0.075 0.588 0.089 
 p 0.743 0.000 0.447 
    

*Numbers in ‘bold’ type indicate highly sensitive parameters. 
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FIGURES 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-1.  The study site – Jameson catchment near Santa Barbara, California. 
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Figure 3-2.  Relative changes in predictive uncertainty (UIrc) for each LAI 
uncertainty scenario over the study period.   
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Figure 3-3.  Relative changes in predictive uncertainty (UIrc) for each LAI 
uncertainty scenario over the study period – by month. 
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Figure 3-4.  Relative changes in predictive uncertainty for each LAI uncertainty 
scenario over the study period for the (a) 95% and (b) 5% uncertainty bounds 
(∆95% and ∆5%, respectively). 
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CHAPTER FOUR 

 

Modeling the effects of fire size on streamflow in a chaparral watershed  

 

Abstract.  Fire is a primary agent of land cover transformation in chaparral-

dominated watersheds, however few studies have examined the impacts of fire and 

post-fire succession on streamflow dynamics in these basins.  While it may seem 

intuitive that larger fires will have a greater impact on streamflow response than 

smaller fires in chaparral catchments, the actual nature of these relationships has 

not been determined.  The effects of fire size on seasonal and annual streamflow 

responses were investigated for a medium sized chaparral catchment in central 

California using a modified version of the MIKE-SHE model (MSHE_m) [which 

had been previously calibrated and tested for this catchment using the Generalized 

Likelihood Uncertainty Estimation (GLUE) methodology].  Model simulations 

were made for two contrasting periods, wet and dry, in order to assess whether fire 

size effects varied with weather regime.  Results indicated that seasonal and 

annual streamflow response increased nearly linearly with fire size in both periods.  

The sensitivity of annual streamflow response varied with both annual rainfall 

conditions and stand age.  Moreover, model predictions were largely 

indistinguishable from the inherent predictive uncertainty associated with the 

calibrated model - a key finding that highlights the importance of analyzing 

hydrologic predictions for altered land cover conditions in the context of model 
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uncertainty.  Future work will investigate whether the effect of fire size on 

streamflow varies with fire location, given that different catchment locations are 

characterized by different combinations of attributes (e.g., soil type and terrain).   

  

1. Introduction 

Fire is a major agent of land surface transformation in California semi-arid 

shrublands (i.e., chaparral) – a region predicted to be among the most sensitive to 

global change (Moreno and Oechel 1995).  However, little attention has been 

given to the effects of fire and post-fire succession on streamflow response in this 

water-limited environment.  The need to understand and predict these effects is 

driven by a variety of issues related to water supply, water quality, ecosystem 

hydro-ecology, prescribed burning and flood hazard management.  Moreover, it is 

anticipated that future climate change and increasing anthropogenic pressures will 

alter the current fire regime in this region (Ryan 1991, Moreno and Oechel 1995, 

Davis and Michaelsen 1995, Lenihan et al. 2003) and, subsequently, streamflow 

dynamics. 

Chaparral ecosystems are, by definition, resilient to fire.  That is, following 

fire community structure tends to return to its pre-fire state fairly rapidly (Keeley 

1986).  However, if the fire return-interval is very short, or fire intensity is too 

high, rapid shifts in community composition are possible (Zedler et al. 1983, 

Haidinger and Keeley 1993, Zedler 1995).  The fire rotation interval in California 

chaparral shrublands is generally on the order of three to six decades (Keeley et al. 
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1999).  Available moisture is very often the dominant factor affecting fuel 

flammability so fires tend to occur most often during late summer and early fall 

when fuel moisture has been depleted; large, catastrophic fires occur when dry 

conditions are coupled with high winds (Moritz 1997).  Although fires can 

typically kill all aboveground biomass, much of the belowground biomass remains 

intact.  Overall vegetation mortality is variable and results from a number of 

interacting factors including fire intensity, seasonality, elevation, soil moisture, 

plant size, physiological condition, and life history strategy.  

 Herbaceous species dominate the immediate post-burn environment, but 

most generally disappear after three to four years as they are shaded out by the 

recovering shrubs and trees (Keeley et al. 1981, Keeley and Keeley 1981).  

Evergreen shrub/tree cover tends to reach pre-fire levels within the first decade 

following fire depending upon species’ life history strategies (i.e., resprouting or 

seedling recruitment) and site characteristics (Horton and Kraebel 1955, Keeley 

and Keeley 1981). Growth rates for most evergreen species level off after 20-30 

years and remain small for the balance of the shrubs’ life-span (Horton and 

Kraebel 1955, Hanes 1971, Black 1987).    

Research that has examined the impacts of fire and post-fire succession on 

streamflow in chaparral and other semi-arid shrubland ecosystems indicates that 

storm flow dynamics (Hoyt and Troxell 1932, Lavabre et al. 1993), summer flows 

(Hoyt and Troxell 1932), and annual water yields (Hoyt and Troxell 1932, Scott 

1993, Lavabre et al. 1993) are all modified following fire.  Loaiciga et al. (2001) 
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demonstrated that mean annual streamflow in 'fire' years was statistically 

significantly greater than in 'non-fire' years, and that mean annual streamflow 

increased by 20-30% in 'fire-impacted' vs. 'non-impacted' years.  All of these 

authors suggest that the modified streamflow patterns they observed following fire 

were primarily due to the removal of the vegetation cover, and the concomitant 

reductions in total evapotranspiration.  However, extrapolation of these results is 

constrained by the limited space and/or time scales examined.  For example, most 

of these studies were carried out in small experimental catchments that were 

completely (or almost completely) burned (Hoyt and Troxell 1932, Scott 1993, 

Lavabre et al. 1993).  In contrast, fires in larger chaparral catchments rarely burn 

the entire landscape, rather a sample of catchment attributes (e.g., vegetation, soil, 

terrain) is usually treated by a given fire – with larger fires sampling through a 

greater range of characteristics than smaller fires.  Consequently, post-fire 

streamflow in chaparral catchments is usually impacted by a combination of the 

newly regenerating area and the unburned portion of the landscape (which itself is 

a complex mosaic of vegetation types in different stages of recovery and with 

different fire histories).  While it may seem intuitive that larger fires will have a 

greater impact on streamflow response than smaller fires in these catchments, the 

actual nature of these relationships has not been determined.   
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1.1. Research objectives 

It is not feasible to conduct the field experiments required to improve our 

understanding of the effects of fire size on streamflow dynamics at the space (tens 

to hundreds of square kilometers) and time (seasonal and annual) scales most 

relevant to water resource managers in this semi-arid environment.  Rather, a 

distributed hydrological modeling approach is required, one capable of 

representing changes in vegetation patterns following fire and their effects on 

integrated catchment response.  In this study we utilized a modified version of the 

distributed MIKE-SHE model (Andersen et al. 2001) to investigate the impacts of 

fire size on the seasonal and annual hydrologic responses of a medium-sized 

chaparral catchment in central California.  Model simulations were made for two 

contrasting periods, wet and dry, in order to assess whether fire size effects varied 

with weather regime.  It is recognized that other factors (e.g., fire location, 

intensity, frequency and seasonality) may interact with fire size (and with each 

other) to impact post-fire streamflow dynamics, however examination of these 

variables is beyond the scope of the current study.   

  The modified version of MIKE-SHE utilized in this study (MSHE_m) was 

previously calibrated and tested for the study catchment using the Generalized 

Likelihood Uncertainty Estimation (GLUE) methodology of Beven and Freer 

(2001) (Chapter Two).  GLUE is a Bayesian Monte Carlo-based approach that 

recognizes the equifinality of parameter sets, i.e., that multiple parameter sets may 

provide acceptable model results, and provides a strategy for distributed model 
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calibration and uncertainty estimation.  Implementing GLUE requires making 

Monte Carlo simulations using a large number of parameter sets, assessing the 

relative performance of each set by comparing model estimates with observed 

data, and retaining only those parameter sets that provide behavioral (acceptable) 

predictions.  The suite of behavioral predictions is then used to compute the 5% 

and 95% uncertainty bounds, i.e., prediction limits, which capture the uncertainty 

in model predictions arising from uncertainties in model parameterization (Binley 

and Beven 1992, Beven 2001).  It is suggested here that these prediction limits 

represent the ‘inherent predictive uncertainty’ associated with using the calibrated 

MSHE_m model in this catchment, and that it is important to understand how 

predictions for altered conditions (e.g., due to fire) relate to the inherent 

uncertainty of the model used to make them.  Therefore, an additional objective of 

this study was to evaluate the effects of fire size on catchment hydrologic response 

relative to the inherent predictive uncertainty of MSHE_m.   

 

2.  Methods 

Detailed descriptions of the MSHE_m model, the study site and input data can be 

found in Chapter Two (and Appendix A); therefore, only summaries are provided 

in the first three sections below. The remaining sections describe the set up and 

execution of the fire size scenarios, including the random generation of fires, the 

selection of wet and dry weather regimes, and the approach used to make scenario-

based model simulations. 
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2.1. MSHE_m model 

MIKE-SHE is a physically-based, distributed hydrological model capable of 

representing all major phases of the hydrologic cycle (Refsgaard and Storm 1995).  

Spatial variation in catchment characteristics is represented using equally sized 

grid cells, each of which is vertically discretized into a number of sub-layers to 

represent the soil profile.  Following Chapters Two and Three, model grid cell size 

in this study was fixed at 270 m and model predictions of daily streamflow were 

aggregated to monthly values.  A modified version of the MIKE-SHE model, 

developed by Andersen et al. (2001) for use in catchments with limited data on 

subsurface processes, was used in this study.  The major differences between the 

original (MIKE-SHE) and modified (MSHE_m) versions of the model are found 

in the representations of flow in the unsaturated and saturated zones.   

 

2.2. Study site 

Jameson is a medium size catchment (34 km2) located in the mountains just north 

of Santa Barbara, California, USA (Figure 4-1).  This non-urbanized area is 

dominated by evergreen chaparral shrubs, followed by drought-deciduous sub-

shrubs (coastal sage scrub), oak woodland, conifer forest and grassland (Franklin 

et al. 2000).  Sandy-loam soils cover the generally rugged terrain.  Mean water 

year (October-September) precipitation and streamflow in this semi-arid region are 

approximately 780 mm and 233 mm, respectively.   
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2.3. Input data  

Observed daily precipitation and temperature data were obtained for the study 

period from National Climate Data Center (NCDC) gages in and around the 

Jameson catchment. Time-varying, spatially distributed inputs of precipitation 

were estimated by redistributing daily observed (point) values across the 

catchment based on computed patterns of mean annual precipitation.  Together, 

the temperature data and estimated values of solar radiation were used to predict 

daily, spatially distributed inputs of potential evapotranspiration via application of 

the Hargreaves-Samani (1985) model (calibrated for regional conditions).  

Existing digital maps were used to characterize spatially varying vegetation, soil, 

and topographic units within the catchment.  The average LAI recovery trajectory 

described in Chapter Two was used to represent post-fire LAI dynamics in this 

study.  As discussed in Chapter Two, this sequence does not represent intra-annual 

variation in LAI, with the exception of the first four years after fire when growing 

season LAI is augmented to account for the presence of herbaceous vegetation 

(Keeley et al. 1981).   

 

2.4. Fire size scenarios 

Approximately 85% of the Jameson catchment is covered by chaparral (75%) and 

coastal sage scrub (10%) vegetation types.  Given the predominance of shrub 

vegetation in this catchment, and the propensity of fires in this region to favor 

shrub-covered hillslopes over wooded riparian areas, model simulations were 



 

 146

made for five different fire sizes ranging from 0% to 100% of the shrub-covered 

catchment area.  Specifically, each fire size scenario corresponded to 0% (No 

Fire), 25%, (Small Fire), 50% (Medium Fire), 75% (Large Fire), and 100% (Total 

Fire) of the shrub-covered area, which translated into 0%, 21%, 43%, 64% and 

85% of the total catchment area, respectively (Table 1).   

A rule-based program was written in MATLAB to generate fire ‘shapes’ of 

different sizes located randomly in the Jameson catchment.  It should be noted that 

this program does not model fire spread dynamics; instead, the algorithm creates a 

user-specified number of shapes for each fire size.  A few simple rules govern the 

selection of grid cells included in each fire shape.  First, a cell must fall within the 

defined catchment boundary.  Second, only cells designated ‘chaparral’ or ‘coastal 

sage scrub’ may be selected.  Subject to these rules, a fire shape is created via the 

following steps.  Initially, a ‘seed’ cell is randomly selected from all available grid 

cells and its location is recorded in a log file.  The second cell to be included in the 

shape is then randomly selected from among the eight neighboring grid cells and, 

providing it meets the criteria, its location is recorded in the log file.  Based upon 

the specified fire size, additional cells are randomly selected, one at a time, for 

inclusion in the fire shape provided they: a) are adjacent to an existing shape cell, 

b) meet all of the abovementioned criteria, and c) have not been previously 

selected (this is determined by having the program examine the log file before 

adding new cells to the existing shape).   
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The fire shape program was used in this study to generate 30 fire shapes for 

each of the three intermediate fire sizes, i.e., small, medium and large – each shape 

being randomly located in the catchment; one shape from each group was 

randomly selected for use in model simulations.  Fire shapes for the No Fire and 

Total Fire scenarios (one each) were generated manually by selecting either none 

or all of the shrub-covered grid cells in the catchment, respectively.  Each of the 

five fire shapes was converted into MSHE_m format using customized ARC/INFO 

scripts and ARCVIEW extension files and used to ‘burn’ the corresponding grid 

cells in the Jameson catchment prior to each scenario-based simulation.  

 

2.5. Weather regimes 

Dry and wet weather regimes were selected by examining five-year trends in water 

year (October-September) rainfall totals for the period 1961- 1981 (the calibration 

period from Chapter Two).  Observed daily rainfall values for the driest and 

wettest (non-overlapping) five-year periods were used in model simulations.  The 

five-year rainfall total for the 1965-1969 wet regime (5071 mm) was much higher 

than that for the 1970-1974 dry regime (3353 mm) (Table 2).  The mean (standard 

deviation) water year rainfall was 1014 mm (649 mm) and 670 mm (248 mm) in 

the wet and dry period, respectively.  A five year ‘sampling’ period was used in 

this research based on the assumption that, given the rapid recovery of chaparral in 

the first five years following fire (Chapter One), fire size effects would be greatest 

and most different within this time frame.   
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2.6. Model simulations 

The GLUE-based calibration of MSHE_m in the Jameson catchment yielded 109 

behavioral parameter sets for the period October 1961 – September 1981 (Chapter 

Two).  These parameter sets were used in the present study to make five sets of 

model simulations for each weather regime (for a total of 1090 runs), one for the 

baseline No Fire scenario and one each for the Small Fire, Medium Fire, Large 

Fire and Total Fire scenarios.  Prior to running the simulations, two additional 

water years were added to the beginning of each period in order to allow model 

storages to ‘spin up’ prior to ‘burning’ the catchment; these additional years were 

excluded from subsequent analyses.  The 5% and 95% uncertainty bounds were 

calculated for each group of 109 model predictions using the GLUEWIN software 

package (Ratto et al. 2001).  The 90% uncertainty interval was computed for each 

fire size scenario (in each weather regime) as the difference between the 95% and 

5% uncertainty bounds.   

  The effects of fire size on seasonal and annual streamflow were assessed 

by comparing median flow responses between the baseline case and the remaining 

fire size scenarios, both within and between weather regimes; median flow was 

calculated as the midpoint of the corresponding 90% uncertainty interval.  The 

inherent predictive uncertainty (IPU) of MSHE_m was represented using the 90% 

predictive uncertainty interval from those portions of the calibration period in 

Chapter Two (1961-1981) that corresponded to the wet (1970-1974) and dry 

(1965-1969) periods used in this study.  Median flows for each fire size – weather 
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regime combination were evaluated relative to the corresponding IPU interval; 

predicted values falling outside of the IPU interval were regarded as more 

‘reliable’ than those valued found within the IPU interval.  That is, model 

predictions greater than the 95% inherent uncertainty bound were considered 

indicative of periods when fire-induced alterations in shrub cover resulted in flow 

estimates that were most distinguishable from the inherent predictive uncertainty 

associated with the use of MSHE_m in the Jameson catchment.  

 

3. Results and discussion 

3.1.  Effects of fire size on streamflow  

3.1.1.  Cumulative flow 

Trends in cumulative median flow were similar for all fire size scenarios within 

each period, with more total flow predicted as fire size increased (Figure 4-2). 

Differences in cumulative median flow between scenarios in a given period were 

nearly proportional to changes in fire size at every time step.  That is, doubling 

(Small Fire  Medium Fire), tripling (Small Fire  Large Fire) and quadrupling 

(Small Fire  Total Fire) fire size generated approximately two-, three-, and four-

fold increases in cumulative median flow for a given time step.  [Hereafter, 

median flow (Q) is referred to as Qmed.]  Total cumulative Qmed in the dry period 

was lower than for the wet period for all fire size scenarios (Figure 4-2).    
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3.1.2. Annual flow 

The absolute change in Qmed (Qac) between each fire size scenario (Small Fire 

(SF), Medium Fire (MF), Large Fire (LF) and Total Fire (TF)) and the baseline 

case (No Fire (NF)) increased approximately linearly with fire size in each year of 

the wet and dry periods (Figure 4-3).  For a given scenario-baseline pair (e.g., TF-

NF), larger values of Qac were often associated with higher annual rainfall totals in 

both periods, however the effect of time-since-fire (i.e., stand age) appeared to 

confound a clear trend with respect to annual rainfall.  Values of Qac in the wet 

period were smallest for all scenario-baseline pairs in the first and fourth water 

years following fire (the two driest years in the period), yet the largest values of 

Qac were not seen in the wettest year (the fifth water year following fire) (Figure 4-

3a).  In fact, values of Qac in the wet period were greatest, and nearly equal, for all 

scenario-baseline pairs in second and third water years following fire (two years 

with quite different rainfall totals).  The smallest and largest values of Qac for each 

scenario-baseline pair in the dry period (Figure 4-3b) were found in the first (very 

dry) and the fourth (very wet) post-fire water years, respectively.  On the other 

hand, very different values of Qac were observed in the second and fifth water 

years following fire, despite similar values of annual rainfall.  Finally, it is 

important to note that the small values of Qac in the first post-fire water year in 

each period may be a consequence of over-estimating model inputs related to 

vegetation re-growth (i.e., LAI) for this year.   
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To better understand the effect of stand age on the relationship between 

fire size and Qmed, each Qac value in Figure 4-3 was divided by the corresponding 

annual rainfall total; Figure 4-4 shows the result of this calculation (i.e., 

normalization) for the wet and dry periods.  Examination of Figure 4-4 reveals that 

‘normalized’ annual streamflow peaked for all scenario-baseline pairs in the 

second and third post-fire years in the wet and dry period, respectively.  Values of 

the normalized response in both periods were generally less than 10% by the fifth 

year following fire.   

 

3.1.3.  Seasonal flow 

The relative change in Qmed between a fire size scenario and the baseline (No Fire) 

case was calculated for each month as: Qrc = (Qmed(Scenario) – Qmed(No Fire)) / 

Qmed(No Fire).  Positive (negative) values indicated an increase (decrease) in Qrc 

resulting from a change in fire size relative to the baseline case.  Values of Qrc for 

each fire size scenario were largest in the early part of the wet season (November-

April), declining into the transition (May-June) and dry (July-October) seasons for 

both periods (Figure 4-5).  Qrc values in the wet period increased steadily with fire 

size over all months and were nearly proportional to changes in fire size in six of 

the twelve months (October, November, December, January, March and April) 

(Figure 4-5a); similar seasonal trends were observed for Qac (results are not 

shown).  The month with the largest values of Qrc across all fire size scenarios in 

the dry period was December, one month later than that observed in the wet 
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period.  Values of Qrc were nearly proportional to changes in fire size in four of the 

twelve months (December, January, March and September) in the dry period 

(Figure 4-5b); similar seasonal trends were observed for Qac (results are not 

shown). 

 

3.2. Inherent model uncertainty 

Only 29 of the 300 Qmed values (5 years * 12 months * 5 fire sizes), or 10%, fell 

outside of the IPU interval in the wet period, i.e., were considered ‘reliable’ 

(Figure 4-6a); all values of Qmed associated with the No Fire and Small Fire 

scenarios fell within the IPU interval.  The largest number of reliable Qmed values 

(14) was found in the driest year in this period (1968), the greatest proportion of 

which was associated with the Total Fire size (8).  In the dry period, forty-nine of 

the 300 Qmed values (16%) fell outside of the IPU interval and were regarded as 

reliable predictions (Figure 4-6b).  Reliable Qmed predictions were observed 

concurrently for all fire size scenarios (except No Fire) in only six months of this 

period; all values of Qmed associated with the No Fire scenario in this period fell 

within the IPU interval.   

 Reliable predictions of Qmed in wet season months within the wet period 

were often, but not always, associated with high rainfall totals.  With the exception 

of 1968, no Qmed values fell outside of the IPU interval in transition and dry season 

months in the wet period.  Reliable values of Qmed in the dry period were generally 

concentrated in wet season months, although they occurred in nine of 12 months in 
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1972 (the driest year).  Overall, the Total Fire size scenario was associated with 

the highest number of reliable Qmed values, followed by the Large and Medium 

Fire size scenarios.  

 

3.3. Discussion 

Results from this study are in agreement with previous research that demonstrated 

increases in seasonal and annual flows following fire in chaparral-dominated 

catchments (Hoyt and Troxell 1932, Loaiciga et al. 2001).  As expected, total Qmed 

increased with fire size in both the wet and dry periods (Figure 4-2), i.e., larger 

fires produced more streamflow than smaller fires.  Absolute changes in Qmed (Qac) 

were generally proportional to changes in fire size for a given month or annual 

time step.  However, this proportionality was not constant between time steps, but 

varied with monthly and annual rainfall conditions.  For example, annual Qmed 

increased approximately 10 mm for every 25% increase in fire size in 1965 (597 

mm precipitation), while it increased nearly 60 mm for every 25% increase in fire 

size in 1966 (810 mm precipitation).  Mean annual streamflow increased 

approximately 38 mm per 25% change in fire size in both periods, though this 

represented a much larger relative increase in flow in the dry period (22%) than in 

the wet period (9%).  This value is somewhat larger than that reported by Bosch 

and Hewlett (1982) who, summarizing information from 94 paired-catchment 

studies around the world, found a 10 mm change in annual water yield for each 
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10% change in shrub cover.  Nevertheless, the similarity in these two values 

provides a measure of confidence in the realism of our simulation results.   

 Absolute changes in Qmed (Qac) for each scenario-baseline pair increased 

with fire size in a near linear fashion under both weather regimes (Figure 4-3) 

[recall that Qac values in the first post-fire year may be artificially low due to over-

estimating input LAI values immediately following fire].  Note that the range of 

Qac values for each fire size scenario under the wet regime is comparable to that 

observed in the dry regime, despite the variability in annual rainfall totals between 

periods.  This finding helps explain why the average annual change in Qmed with 

increasing fire size was approximately the same in both periods (i.e., 38 mm for 

each 25% increase in fire size).   

 Values of Qac for a given scenario-baseline pair were also shown to vary 

with annual rainfall condition and stand age.  For example, the largest values of 

Qac in the wet period were not found in the wettest year (1969), but in two years 

with quite different rainfall totals (1966 and 1967).  A possible explanation for this 

result may be related to observed differences in intra-annual rainfall patterns 

between these two years.  Rainfall in the drier year (1966) was concentrated in just 

a few, large storms early in the wet season, while a greater number of large storms 

in 1967 were fairly evenly distributed over the wet season.  These patterns suggest 

that if rainfall is concentrated in a few storms, and there is a fire, relatively more 

of the annual rainfall will become streamflow.  In contrast, if rainfall is more 

evenly distributed, and there is a fire, relatively less of the annual rainfall will be 
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partitioned into streamflow.  Additionally, a larger fraction of incoming rainfall 

may have been partitioned into evapotranspiration in 1967, compared with 1966, 

as a result of increased leaf area, potentially reducing predicted flows in the wetter 

year.  The fact that values of Qac were smaller in 1969 (the wettest year) than in 

1966 and 1967 may be a function of higher leaf areas in 1969 (the fifth year 

following fire) and the fact that, after a certain threshold, the vegetation cannot 

utilize additional rainfall.   

 Trends in the normalized annual streamflow response in both periods were 

generally similar, peaking in the second or third water year following fire and then 

steadily decreasing through the fifth post-fire year (Figure 4-4).  [As previously 

mentioned, LAI may have been overestimated in the first post-fire year – such that 

the peak response did not occur in the first year following fire.]  The difference in 

the timing of the peak response between periods may be the result of very different 

rainfall conditions in the third following fire in each period.  The third post-fire 

year in the dry period experienced very little rainfall (416 mm), compared to the 

third post-fire year in the wet period (1206 mm).  Hence, the value of Qac in the 

dry period represented a relatively larger percentage of the corresponding annual 

rainfall total than in the wet period.  Following its peak in each period, the 

normalized response continued to decline through the fifth post-fire year as the 

vegetation recovered (i.e., LAI increased). 

 The relative change in Qmed (Qrc) increased with increasing fire size for 

every month in each period (as did Qac; results not shown).  Values of Qrc were 
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greatest in wet season months for all fire size scenarios in both periods (Figure 4-

5), while Qrc values in transition and dry season months were much lower.  This 

set of results highlights the importance of leaf area in partitioning incoming 

rainfall into evapotranspiration and streamflow in the wet season, such that 

burning larger and larger areas of the catchment produces increasingly higher 

flows in wet months.  The relative insensitivity of Qrc to changes in fire size in the 

transition and dry seasons should be expected since chaparral evapotranspiration 

rates steadily decline as soil moisture reserves are depleted through the summer 

and fall months (Poole and Miller 1975, Poole et al. 1981).   

 This research has demonstrated that streamflow response in the Jameson 

catchment varies with fire size, rainfall condition and stand age.  However, 

evaluating these responses relative to the inherent predictive uncertainty (IPU) of 

MSHE_m revealed that only a small percentage of modeled flows (Qmed) could be 

considered ‘reliable’ in either the wet (10%) or dry (16%) periods (Figure 4-6).  It 

was rare for these flows to occur for the Small, Medium, Large and Total fire size 

scenarios in the same month; in fact, almost all values of Qmed associated with the 

No Fire and Small Fire scenarios fell within the inherent uncertainty of the model 

(i.e., were uncertain).  The majority of reliable Qmed estimates occurred in early 

wet season months in both periods, usually in conjunction with very large storms.  

The driest year in each period contained the greatest number of reliable Qmed 

predictions, and the only occurrences of reliable Qmed values in transition and dry 

season months.  Overall, the greatest proportion of reliable Qmed values were 
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associated with the Total Fire size scenario, followed by the Large Fire, Medium 

Fire and Small Fire size scenarios.  The greater proportion of reliable Qmed values 

in the dry period, and in the driest year in both periods, is likely a function of the 

smaller inherent uncertainty interval found in drier years and in the dry versus wet 

period.   

 

4. Conclusions 

As expected, modeled (seasonal and annual) streamflow in the Jameson catchment 

increased with fire size in both the wet and dry periods.  The relationship between 

fire size and streamflow response was approximately linear for all years examined, 

although the sensitivity of catchment response to fire size varied with annual 

rainfall condition and stand age.  While these results enhance our understanding of 

the effects of fire size on hydrologic response in chaparral catchments, it is crucial 

to remember that very few model predictions actually fell outside of the model’s 

inherent uncertainty interval (i.e., were considered reliable).  That is, the effects of 

fire size on streamflow response were usually indistinguishable from the 

predictive uncertainty associated with MSHE_m.  This is a key finding, one which 

highlights the importance of analyzing hydrologic predictions for altered land 

cover conditions in the context of model uncertainty.   

The inherent uncertainty interval used in this study was itself a function of 

the many subjective decisions that were made during the GLUE-based calibration 

of MSHE_m in the Jameson catchment (Chapter Two).  For example, the choice of 
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both the likelihood measure and corresponding threshold value has been shown to 

influence the number of behavioral parameter sets retained following Monte Carlo 

simulations which, in turn, directly impacts the calculation of prediction limits 

(Beven and Binley 1992, Freer and Beven 1996).  More recently, research has 

shown that GLUE-based predictive uncertainty is also affected by the number of 

free parameters used in calibration (A. Hope, personal communication).  Thus, any 

comparison between model predictions for altered conditions and inherent 

predictive uncertainty is predicated on the appropriateness of the subjective 

decisions made during the GLUE-based calibration process.  Additional work is 

needed to examine how different likelihood measures and thresholds, modified 

parameter ranges, and additional Monte Carlo simulations influence MSHE_m 

predictive uncertainty and, in turn, our confidence in model predictions of 

streamflow following different size fires. 

Future work should also investigate whether the effect of fire size on 

streamflow varies with fire location, given that different catchment locations are 

characterized by different combinations of attributes (e.g., soil type and terrain).  

Moreover, the interacting effects of annual rainfall and stand age on modeled 

flows indicate that future work should strive to refine remote sensing-based model 

inputs of leaf area index to include variability arising from both intra- and inter-

annual rainfall dynamics.  Finally, while this study examined the effects of fire 

size on streamflow using median flow values (Qmed), each set of Monte Carlo 

simulations actually produced a range of model predictions for each fire size 
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scenario, i.e., a 90% uncertainty interval (95%-5% uncertainty bounds).  

Additional efforts are needed to investigate how the upper (95%) and lower (5%) 

uncertainty bounds for each scenario vary with both rainfall condition and stand 

age. 
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TABLES 

Table 4-1.  Key attributes of each of fire shape used in model simulations. 

 
Attribute 

 
 

Small 
Fire 

Medium 
Fire 

Large 
Fire 

Total 
Fire 

Catchment  
area  

[%] 21 43 64 85 

Fraction  
chaparral          

[%] 91 87 85 85 

Fraction 
coastal  
sage scrub 

[%] 9 13 15 15 

Mean 
elevation   
(SD) 

[m] 1210 
(178) 

1236 
(225) 

1148 
(283) 

1145 
(268) 

Mean slope  
(SD) 

[%] 25 
(6) 

24 
(7) 

22 
(9) 

22 
(9) 

Mean aspect   
(SD) 

[0] 209 
(34) 

215 
(42) 

213 
(52) 

217 
(62) 

 
 
 
Table 4-2. Water year rainfall totals for the WET (1965-1969) and DRY (1970-
1974) periods. 
 
WET Period Rainfall [mm] DRY Period Rainfall [mm] 

1965 597 1970 463 
1966 810 1971 631 
1967 1206 1972 416 
1968 410 1973 1132 
1969 2048 1974 709 
Sum 5071 Sum 3353 
Average 1014 Average 670 
Standard 
Deviation 

 
649 

Standard 
Deviation 

 
284 
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FIGURES 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1.  The study site - Jameson catchment near Santa Barbara, California. 
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Figure 4-2.  Cumulative median flow (Qmed) for each fire size scenario for the (a) 
wet and (b) dry periods. 
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Figure 4-3.  Absolute change in median flow (Qac) for each fire size-baseline pair, by 
water year, for the (a) wet and (b) dry periods.  Total precipitation is shown for each water 
year at the top of the graph.  [NF = No Fire; SF = Small Fire; MF = Medium Fire; LF = 
Large Fire; TF = Total Fire.]   
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Figure 4-4.  ‘Normalized’ change in median flow (Qac / Ppt) for each fire size-baseline 
pair, by water year, for the (a) wet and (b) dry periods.  Total precipitation (Ppt) is shown 
for each year at the top of the graph.  [NF = No Fire; SF = Small Fire; MF = Medium Fire; 
LF = Large Fire; TF = Total Fire.]   
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Figure 4-5.  Relative change (Qrc) in monthly median flow (Qmed) for each fire size-
baseline pair (e.g., SF-NF) for the (a) wet and (b) dry periods.  [NF = No Fire; SF = Small 
Fire; MF = Medium Fire; LF = Large Fire; TF = Total Fire.] 
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Figure 4-6.  ‘Reliable’ median flow (Qmed) predictions for the (a) wet and (b) dry periods 
– by fire size scenario.  Points represent Qmed values falling outside of the inherent 
predictive uncertainty (IPU) interval; line represents the upper (95%) bound of the IPU.  
Note the y-axis is plotted using a logarithmic scale. [NF = No Fire; SF = Small Fire; MF = 
Medium Fire; LF = Large Fire; TF = Total Fire.] 
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CONTRIBUTIONS OF THE DISSERTATION 
 
This dissertation has made important contributions in the fields of chaparral eco-

hydrology and distributed hydrological modeling.  These contributions are 

discussed in the corresponding sections below, as are areas for future research.  

Chaparral Eco-Hydrology 

The remote sensing-chronosequence approach developed in this research provides 

a reasonable estimate of the post-fire LAI recovery sequence for the chaparral-

dominated study area in central California.  This sequence represents new 

information about this ecosystem, and provided key input data for the hydrological 

modeling component of this study.  Additional work is needed to refine this 

sequence to account for the seasonal development of LAI and the effects of inter-

annual rainfall conditions, however it represents an important advance in our 

understanding of post-fire vegetation re-growth dynamics in California chaparral 

ecosystems.   

The demonstration of a near-linear relationship between fire size and 

streamflow response in the study watershed contributes new information about 

chaparral eco-hydrology that is expected to assist forest and watershed scientists 

in, e.g., planning prescribed burns, managing the water supply, and protecting 

wildlife habitat.  Additional work is needed to better understand the interacting 

effects of stand age and annual rainfall conditions on this relationship, and to 

investigate whether the hydrologic effects of fire size vary with fire location – 
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given that different watershed locations are characterized by different 

combinations of attributes (e.g., soil, terrain, and fire history).   

Distributed Hydrological Modeling 

There were number of important ‘firsts’ in this research associated with the 

hydrologic modeling component of the study.  The use of (a modified version of) 

the MIKE-SHE model in this research was the first application of a physically-

based, spatially distributed hydrological model in chaparral-dominated watersheds.  

Another ‘first’  was the coupling of MIKE-SHE with the GLUE methodology for 

model calibration, testing and uncertainty estimation.  Moreover, using the GLUE-

based behavioral parameter sets to evaluate how uncertainty in LAI inputs affected 

model output represents an extension of the GLUE framework in the arena of 

distributed hydrological modeling.  In addition, this study was the first to evaluate 

model predictions related to land cover modifications (e.g., fire) in the context of 

‘inherent predictive uncertainty’.  It is expected that this comparison, and the 

related finding that model predictions were generally indistinguishable from the 

predictive uncertainty of the calibrated model used to make them, will stimulate 

other modelers to make similar assessments in their own research.  Finally, it is 

hoped that results from this research encourage model developers to incorporate 

the flexibility to conduct GLUE-based modeling and uncertainty estimation – 

especially since distributed model predictions are widely used as a basis for 

environmental decision-making.   
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APPENDIX A: DATASETS AND DATA PROCESSING 

Precipitation 

Daily precipitation data were obtained from the National Climate Data Center for 

two gages in the Gibraltar watershed (Gibraltar and Juncal).  These gages were 

selected on the basis of record length (> 40 years) and completeness (> 95%).  The 

Gibraltar and Juncal precipitation series were quality checked and missing data 

values were ‘patched’ using daily precipitation data from neighboring gages 

maintained by the Santa Barbara County Water Agency.  The resulting time series 

contained complete records of daily precipitation for each gage for the period 

1952-1997.   

The spatial distribution of daily precipitation is a required MIKE-SHE 

model input.  However, there are only two available gages in the Gibraltar 

watershed, and both are located at lower elevations along the stream channel.  

Therefore, an approach was developed to augment the existing gages, and thereby 

generate the required spatial patterns of precipitation for this basin.  This strategy 

involved two major steps: 1) calculating the ratio of mean annual precipitation 

between a given site in the basin and an existing gage (i.e. the normal ratio 

method) and 2) generating a new daily precipitation time series for the selected 

site by multiplying daily observed precipitation values at the existing gage by this 

MAP ratio.  Implementing this strategy required a digital MAP map of the area 

and daily precipitation values for each of the existing gages. 
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A digital map of mean annual precipitation (MAP) was obtained for Santa 

Barbara County with a grid cell resolution of approximately 0.92 km (J. 

Michaelsen, personal communication).  All mapped MAP grid cells for the 

Gibraltar watershed were grouped into one of seven classes as a means of 

delineating the spatial distribution of precipitation in this basin.  Classes were 

created via an equal-value division of the MAP histogram – the mapped range of  

MAP from 37 cm to 72 cm was subdivided into 5 cm increments.  The value of 

MAP for each class midpoint was assigned as the class MAP value.   

The classified MAP map was examined to determine the class association 

for each of the two existing precipitation gages.  A point coverage of the existing 

gages was overlain on the raster-based MAP map of Gibraltar in ARC/INFO and 

each gage (point) was assigned to the class of the corresponding grid cell.  The 

MAP for each gage was calculated and compared to that from the MAP map (i.e., 

the corresponding grid cell).  In each case the gage-based value of MAP was 

somewhat smaller than the map-based MAP (approximately 10% less at Juncal 

and 7% less at Gibraltar).  Reasons for this discrepancy likely relate to the 

particular method used to calculate MAP in each case.  MAP map values were 

modeled as a function of geographic (e.g., latitude, distance from coast) and 

topographic attributes (e.g., elevation) and daily precipitation data (November-

April) from the period 1961-1990.  MAP values for the Gibraltar and Juncal gages 

were calculated directly from daily precipitation data (October – September) 

covering the 1952-1997 period.  Despite these differences in MAP, the relative 
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spatial patterns displayed in the MAP map were assumed to be accurate given the 

expertise involved in creating the map.   

MAP ratios were calculated between the class corresponding to the 

Gibraltar gage and the remaining classes using the class midpoint MAP values.  

The Gibraltar gage was selected as the ‘base station’ because it is located at the 

basin outlet.  The observed daily precipitation series at the base station was 

assigned to the class corresponding to the Gibraltar gage.  New daily precipitation 

time series were generated for the remaining classes by multiplying daily base 

station values by the appropriate MAP ratio.  The accuracy of the resulting 

precipitation values was evaluated by comparing daily precipitation values 

recorded at the Juncal gage with those predicted using the MAP ratio method.  A 

plot of predicted versus observed daily precipitation reveals some scatter around 

the 1:1 line with an R2 of 0.83).  A plot of the residuals (observed – predicted) 

versus observed values shows a fairly random scatter around the zero line (line of 

no difference).   

 MIKE-SHE requires precipitation input in millimeters per hour.  Given that 

only daily precipitation data are available for the Gibraltar watershed, each of the 

seven precipitation time series were converted from [mm/day] to [mm/hr] by 

dividing the daily values by 24.  This method assumes that precipitation falls 

uniformly throughout a day – which is generally not the case in this environment.   

However, as there is no information available on the actual distribution of hourly  
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precipitation over individual days for this watershed, this assumption holds.  The 

final precipitation inputs for MIKE-SHE comprise a map depicting the spatial  

arrangement of the seven MAP classes and the seven corresponding time series  

containing hourly precipitation values for each day of record. 

Streamflow 

Monthly streamflow data for the Gibraltar watershed (and Jameson Lake sub-

watershed) over the period 1960-2000 were transcribed from annual USGS data 

reports and double-checked for accuracy.  Missing data values were patched using 

monthly streamflow data obtained from the Santa Barbara County Water Agency 

for the Gibraltar watershed (and Jameson Lake sub-watershed) (J. Ahlroth, 

personal communication).  Scatterplots of precipitation and streamflow were 

analyzed for accuracy. 

Temperature/Potential Evaporation 

A long-term daily maximum/minimum temperature dataset was needed for the 

Gibraltar watershed as input into the Hargreaves-Samani model of potential 

evaporation (a required MIKE-SHE input).  However, the temperature dataset 

from the only station within the watershed boundary (Gibraltar station) contained a 

total of 244 values for the 1952-1998 period.  Therefore, a simulated temperature 

time series for the Gibraltar watershed was generated using daily 

maximum/minimum temperature data from a nearby station (Cachuma Dam) in 

combination with calculated lapse rates.  
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 Daily minimum, maximum and mean air temperature data [C] for the 

Cachuma Dam station were obtained for the period 1952-1998.  Missing 

temperature data were patched by developing a linear regression equation between 

the stations at Cachuma Dam and the Santa Barbara airport.  While these two 

stations are on opposite sides of the Santa Ynez mountains (Cachuma Dam = 

leeward/valley, airport = windward/coast), the coastal airport station was the only 

nearby station with a record that was both long and complete enough for use in a 

regression analysis.  Separate regression equations were developed for the 

minimum and maximum temperature datasets.  The resulting R2 values were 0.67 

and 0.44, respectively.  These lower than ideal R2 values are likely the result of 

differences in microclimate factors between stations (e.g. fog, cold air drainage, 

winds).  However, as the coastal station was the only long-term dataset available 

for this analysis, and as only one percent of the temperature data were missing, the 

Cachuma Dam temperature datasets were patched using these regression 

equations.   

The patched Cachuma Dam temperature dataset was then used as the basis 

for creating a daily temperature dataset for the Gibraltar watershed.  The first step 

in this process was to calculate the minimum and maximum temperature lapse 

rates between the Gibraltar (472 m) and Cachuma Dam (238 m) stations.  The 244 

Gibraltar values were grouped into ‘winter’ (213 points) and ‘summer’ (31 points) 

periods for lapse rate calculations, as were the corresponding data points for 

Cachuma Dam.  Overall, lapse rates for maximum temperature (winter = -4.15 
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C/km;  summer = 2.61 C/km) and winter minimum temperature (-7.26 C/km) were 

within acceptable limits.  However, the lapse rate for summer minimum 

temperature was extremely large (18 C/km) and considered unrealistic.  Therefore, 

only a daily maximum temperature dataset was generated via this process (which 

necessitated modifying the Hargreaves-Samani PE model before generating a daily 

PE time series for the Gibraltar basin - see below).  Since the actual lapse rate 

applied to the Cachuma Dam maximum temperature dataset was ‘per kilometer’, 

the resulting maximum temperature dataset was actually representative of a site 

located at approximately the mean elevation of Gibraltar basin (1212m) – not of 

the Gibraltar station itself. 

The Hargreaves-Samani (HS) model (1) requires daily inputs of solar 

radiation (RS) and mean temperature (T) to estimate values of potential 

evaporation (ETo):    

 

ETo = 0.0135 * RS (T + 17.8)   (1) 

 

Before applying this model to estimate ETo for the Gibraltar watershed, it was 

evaluated to determine its ‘fitness’ for making ETo predictions in this 

environment.  Daily RS, T and ETo data obtained from a nearby CIMIS station 

(No. 107) for the period 1995-97 were used in (1) to calibrate the model for this 

station (and, in theory, this region).  The calibrated coefficient was 0.0126 (close 

to the initial value of 0.0135) and the coefficient of efficiency was 0.992.  Satisfied 
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that the HS model was generally applicable in this region, it was used to generate a 

daily ETo dataset for the Gibraltar watershed. 

There was no observed daily solar radiation data available for the Gibraltar 

watershed.  Instead, it was derived using an equation (2) provided in Hargreaves-

Samani (1985) which required daily values of extra-terrestrial radiation (RA) and 

temperature range (TD).  Prior to applying it in Gibraltar, this equation was 

calibrated using observations of RA, TD and RS from the abovementioned CIMIS 

station..  Calibration results were good and the equation was used to estimate daily 

value of RS for Gibraltar.   

 

  RS = KRS* RA * TD0.50    (2) 

 

RA was calculated using a computer program written to incorporate equations 

from Dingman (19XX) which calculate RA as a function of slope-aspect.  This 

was an important consideration given that microclimate conditions in chaparral 

(e.g., soil moisture, available energy) are controlled largely by the distribution of 

slope-aspect.  Slope and aspect grids generated from a 90m digital elevation model 

of the Gibraltar watershed were classified into twelve slope-aspect combinations 

(3 slope classes (low, moderate and high) and 4 aspect classes (N, S, E, W).  Given 

the uncertainties related to the summer minimum temperature lapse rate, the same 

lapse rates (maximum temperature - summer and winter) were applied to both the 

maximum and minimum temperature data from Cachuma Dam in order to 
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calculate TD for the Gibraltar basin.  [Actually, no lapse rates needed to be applied 

in this case, given that the same rates were applied to both temperature datasets -  

TD would be the same before and after applying the same lapse rates to the two 

temperature datasets.]  TD was assumed constant over the watershed (i.e., the 

same at all elevations) in order to reduce the number of slope-aspect-elevation 

combinations for which ETo had to be calculated – while still retaining enough 

classes to be representative of the range of basin characteristics.  RS was 

calculated for each of the twelve slope-aspect-elevation classes given daily inputs 

of TD and RA.          

Originally, mean daily temperature inputs for the HS ETo model (1) were 

to be calculated using lapse-rate adjusted minimum and maximum temperature 

data (from Cachuma Dam).  However, given the uncertainties related to the 

summer minimum temperature lapse rate, only simulated maximum temperature 

estimates were deemed reliable.  Therefore, the HS ETo model was re-calibrated 

for CIMIS station 107 using maximum temperature in place of mean temperature 

values.  [The step assumes that maximum temperature is the primary driver of ETo 

dynamics over a day, on average, for this area.]   The new model coefficient was 

0.011 and the coefficient of efficiency was 0.99.  Given this result, lapse rate 

adjusted maximum temperature data and estimated solar radiation data for 

Gibraltar were used in (1) to generate a daily ETo time series for each of the 

twelve slope-aspect-elevation classes in the watershed. 
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Fire History Map 

A digital fire history map (ARC/INFO regions coverage) for the Los Padres 

National Forest was obtained from Max Moritz (Cal Poly – SLO), along with an 

AML script used for deriving ‘stand age’ maps from the coverage.  This script was 

used to generate a stand age map (90m grid cells) for each year of Landsat TM 

imagery (1988, 1990, 1997 and 1998).  This grid cell resolution was selected to 

match that of the imagery.  Each of the resulting stand age maps was subset to the 

Gibraltar watershed and the areal coverage for each fire within the basin was 

calculated.   

Vegetation Type 

A digital vegetation type map of the southern California region (30m grid) was 

obtained from Stephenson and Calcarone (1999).  This map was subset to an area 

just surrounding the Gibraltar watershed.  A 3x3 block majority filter (Arc/Info) 

was used to smooth the 30m map.  The resulting map was aggregated to 90m and 

now contained 19 mapped vegetation types.  Vegetation types with similar 

‘hydrologic functioning’ (e.g., northern mixed chaparral and chamise chaparral) 

were placed into the same class.  Five vegetation type classes resulted: grassland 

(1.1%), coastal sage scrub (9.7%), chaparral (75.7%), oak woodland (10.0%) and 

conifer (2.9%) – and two miscellaneous classes: water (0.2%) and barren (0.4%).  

Vegetation Succession 

Representing the temporal dynamics of vegetation succession/growth in MIKE-

SHE requires information on vegetation type and vegetation age.  Each mapped 
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vegetation type in the watershed (except ‘grassland’) comprised stands of different 

ages (as determined from the fire history maps).  In order to represent each 

type/age combination in MIKE-SHE it was necessary to sub-divide mapped 

vegetation types into multiple ‘sub-types’ based on stand age, e.g., chaparral-age1, 

chaparral-age2, etc.  LAI values were then attached to each sub-type using 

information from the literature and the remote sensing-based LAI curves (XXX).  

In fact, only the chaparral and coastal sage scrub types were divided into sub-types 

in this manner – grassland, conifer and oak types were not.  The reasons for this 

are three-fold.  First, the literature suggests that LAI is a function of stand age in 

chaparral and coastal sage scrub communities.  Therefore, it was important to 

represent the intra- and inter-annual LAI dynamics for these vegetation types.  

Second, as the grassland type was assumed to be comprised solely of annual 

species, the same LAI values could be applied from year to year (i.e., annual 

grasses don’t ‘age’).  And third, the very limited information on conifer and oak 

LAI for this region suggested that LAI was not a function of age for these two 

types.  This, combined with the fact that much of the conifer and oak covered 

areas in the basin had not burned in over 30 years, led to the use of a constant LAI 

for each type.   

Soils 

A digital version of a 3rd order soil survey for the Los Padres National Forest was 

obtained from the Geography Department at UCSB (O’Hare and Hallock, National 

Cooperative Soil Survey, USDA, 1980).  This soils coverage identifies soil 



 

 186

associations and soil complexes – map units composed of two or more major soil 

families (or subgroups).  This 3rd order survey was compiled for use as a 

management tool and for determining the suitability and potential of a particular 

soil type for specific uses.  The report that accompanies the digital data describes 

the general region, individual soil families/subgroups and provides detailed 

attribute information (e.g., texture, drainage class, soil profile depths, slope, etc.) 

for each map unit. 

This soils coverage was clipped to the Gibraltar watershed boundary and 

converted to a 90m grid in Arc/Info, comprising 17 different soil associations. 

During a field visit to the watershed it was decided to generalize these 17 soils into 

2 classes (upland and lowland), as the soils along a trial from valley bottom to 

ridge top appeared very similar - varying mainly in depth.  The first step in the 

generalization process was to classify each of the 17 soil associations into either 

‘upland’ or ‘lowland’.  The NCRS Soil Survey Manual describes slopes classes for 

use in soil type classification (Table 3-1, NRCS Soil Survey Manual).  From this 

table, slopes less than/equal to 8% are described as ‘nearly level’ to ‘gently 

sloping’ and slopes greater than 8% are characterized as ‘strongly sloping’ to ‘very 

steep’.  This ‘8%’ criteria was used as the basis for subdividing a slope map of the 

watershed (derived from a 90m DEM) into two classes, upland and lowland.  Soil 

associations were then assigned to either the upland or lowland soil class by 

overlaying the slope map on the soil association map.  Two of the 17 mapped soil 
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associations fell predominantly within the ‘lowland’ area (and were classified as 

such), while the remaining 15 associations were classified as upland.   

In addition to soil type and distribution information, MIKE-SHE requires 

descriptions for each soil horizon (depth and texture) in the lowland and upland 

soil classes.  These attributes were derived by examining the depth and texture 

descriptions for the soil associations comprising the upland and lowland soil 

classes.  As mentioned above, each soil association is composed of a number of 

soil families.  The 3rd order soil survey provided information on the depth and 

texture of each horizon for each soil family in each association.  As a 

simplification, it was assumed in this study that each soil family had only two 

horizons (in some cases there were three horizons – in which case the 2nd and 3rd 

horizon attribute information was combined).   

Determining the depth of each horizon for the lowland and upland soil 

classes required a number of steps.  First, the depth of each horizon for each 

family in each soil association was established.  Second, using information in the 

soil survey report, the total area of each family in each association was expressed 

as a percentage of the total area occupied by that association.  These values were 

termed ‘family weighting factors’.  The weighted average depth of the upper 

horizon for each soil association was calculated by multiplying the depth of each 

family’s upper horizon by the corresponding family weighting factor.  The same 

procedure was used to determine the weighted average depth of the lower horizon 

for each soil association.  Third, the percent area occupied by each soil association 
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within each soil class (upland or lowland) was calculated and termed  the 

‘association weighting factor’.  For each association, the weighted average depths 

of the upper and lower horizons were multiplied by the corresponding association 

weighting factor to determine the weighted average depths of each horizon for the 

soil association as a whole.  Finally, the total depth of the upper and lower 

horizons for the lowland and upland soil classes were calculated by summing up 

the appropriate association-based horizon depths.  The total depths of the 

upper/lower horizon for the lowland and upland soil classes were 

15.03cm/92.85cm and 12.55cm/57.97cm, respectively. 

The dominant soil texture (e.g., sandy loam) for each horizon for each soil 

class (lowland and upland) was established in the following manner.  First, the 

dominant texture of each horizon for each soil family was assumed to be the 

texture that was mentioned first in the horizon description.  A total of seven 

texture types were identified using this approach.  Next, the number of 

occurrences of a given soil texture were tabulated by horizon (upper/lower) and 

soil class (lowland/upland).  The texture type found most often in a given 

horizon/soil class was assigned as the texture type for that horizon/soil class.  The 

‘sandy loam’ texture type was assigned to the upper/lower horizons of the upland 

soil class and to the upper horizon of the lowland soil class.  A ‘loam’ texture type 

was assigned to the lower horizon of the lowland soil class.  

For each horizon for each soil class MIKE-SHE requires information on 

the hydraulic conductivity, the soil moisture characteristic curve and various other 
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physical characteristics (e.g., soil moisture content at saturation, residual soil 

moisture content).  A review of the literature provided baseline values for these 

parameters/curves.  For each horizon in each soil class parameter values were set 

on the basis of the assigned soil texture.   

Topography 

A 30m digital elevation model (DEM) of the Santa Barbara region was compiled 

in Arc/Info using 20 individual digital topo-quads obtained from the USGS.    

Sinks were filled to ‘smooth’ the surface and remove artifacts related to DEM 

compilation and aggregation.  A variety of input datasets for MIKE-SHE were 

then generated using this DEM.  Topographic slope, aspect and elevation were 

derived from the DEM and used in the production of basin geometry (boundary, 

elevation) rainfall, potential evaporation and soil input datasets (see Sections 1, 3 

and 7, respectively).  The river channel was then identified using a set of Arc/Info 

commands.  The elevation of each cell in the channel was extracted into a digitized 

file and input into a utility program used to create the final river file in MIKE-SHE 

format. 

The linear reservoir (LR) module in MIKE-SHE requires the user to 

specify the number and spatial distribution of watershed sub-basins and 

topographic zones.  Two sub-basins were delineated for the Jameson sub-basin 

using a series of Arc/Info commands.  Seven sub-basins were delineated for 

Gibraltar in the same manner.  Each sub-basin was then sub-divided into three 

‘topographic zones’: a) cells bordering the river, b) hillslope cells and c) ridgetop 
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cells.  Water within a sub-basin is ‘moved’ through these zones from ridgetop to 

hillslope to river channel.  

Fire Shape Simulation 

Testing the research hypotheses involves running model simulations using a range 

of fire sizes found in different parts of the watershed.  A simple, rule-based 

program (SHAPEGEN) was written in MATLAB to generate (fire) shapes of 

different sizes located randomly across the watershed.  This program is not a fire 

simulator, rather it attempts to encompass the range of possible fire sizes and 

locations for a given watershed.  A number of simple rules govern the selection of 

shape cells.  First, a cell must fall within the watershed boundary.  Second, the cell 

cannot contain a NODATA value.  Third, only cells designated ‘chaparral’ or 

‘coastal sage scrub’ may be selected (these vegetation types dominate the 

watersheds).  Subject to these rules, a shape is created via the following set of 

steps.  First, a ‘seed’ cell is randomly selected from all available cells and its 

location is recorded in a ‘log’ file.  The second cell to be included in the shape is 

then randomly selected, provided that it is adjacent to the seed cell (eight possible 

cells border a given cell) – its location is also recorded in the log file.  Based on a 

user-defined size, additional cells are then randomly selected, one at a time, for 

inclusion in the shape provided they: a) meet all of the abovementioned criteria 

and b) have not previously been selected (this is determined by having the 

program examine the log before selecting each new cell).  All resulting shapes are 
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converted into an Arc/Info grid file using a customized .aml script and then 

imported into MIKE-SHE for use in model simulations. 
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APPENDIX B:  MIKE-SHE CALIBRATION PARAMETERS – DEFINITIONS 

 

The following table lists each of the parameters used in the calibration of the 

modified MIKE-SHE model (MSHE_m) in Chapter Two, and in the sensitivity 

analysis in Chapter Three (parameter definitions can be found following the table); 

parameter ranges are also shown in the table.  

 

 

Parameter 

Minimum 

value 

Maximum 

value 

Interflow/Groundwater reservoirs   

          IFt         (m) 0.0001 0.3 

          IFh        (days) 0.0001 3 

          IFv        (days) 0.0001 80 

          GWh     (days) 0.05 100 

Soil    

           Ks_Sandy Loam   (m s-1) 1.0 x10-6 5.0x10-4 

           n_Sandy Loam     1 30 

           Ks_Loam              (m s-1) 1.0 x10-6 5.0x10-4 

           n_Loam              1 30 

Vegetation   

          C1                                                        0.01 1 

          C2                                      0.01 1 

          C3    (mm day-1) 1 60 
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Interflow/Groundwater Parameters 

IFt: Interflow (IF) reservoir threshold (depth) in meters. 

IFh: Interflow reservoir horizontal time constant in days. 

IFv: Interflow reservoir vertical time constant in days. 

GWh: Groundwater (GW) horizontal time constant in days. 

 

Soil 

Ks_Sandy Loam: Saturated hydraulic conductivity for the Sandy Loam soil 

                            type. 

Ks_Loam: Saturated hydraulic conductivity for the Loam soil type. 

n_Sandy Loam: exponent in the unsaturated hydraulic conductivity equation. 

n_Loam: exponent in the unsaturated hydraulic conductivity equation. 

 

Vegetation 

C1: Constant in the f(1) leaf area index (LAI) function used in the calculation  

 of transpiration. 

 

C2: Constant in the f(1) leaf area index (LAI) function used in the calculation  

 of transpiration. 

 

  C3: Constant in the f(2) soil moisture function used in the calculation of   

             transpiration. 
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